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Abstract  

In practical engineering, the presence of dependent evidence is not rare due to various imperfections. Misuse of 

such information in reliability analysis will lead to conflicting or even erroneous results. In this paper, we propose 

a Bayesian reliability approach for complex systems with dependent life metrics. Notions such as explicit evidence 

and implicit evidence are established based on an identification of different roles of multiple dependent evidence 

in the likelihood construction. A likelihood decomposition method is developed to convert the overall likelihood 

into a product of Explicit Evidence-based Likelihood (EEL) function and Implicit Evidence-based Likelihood (IEL) 

function. An inferential diagram is developed to intuitively generate the required implicit evidence taking both 

outer-source information and the system configuration into consideration. An algorithm is then presented for 

implementation. The contribution of our work is a systematic investigation of the role of dependent evidence in 

system reliability evaluation and a full Bayesian approach that is applied to various system reliability models. 

Extensive numerical cases and a practical engineering case are demonstrated for validation and to illustrate the 

benefits of our approach. 
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Acronyms and Notations 

RBD Reliability Block Diagram Aj Predecessor nodes set of Xj 

FT Fault Tree Qj Direct predecessor nodes set of Xj 

PDF Probability density Function C Component nodes set 

CDF Cumulative Density Function S Subsystem/system nodes set 

BN Bayesian Network O Observed nodes set 

DAG Directed Acyclic Graph I Inferential nodes set 

CPT Conditional Probability Table  U Set of nodes that the likelihood of which is EEL 

EEL Explicit Evidence-based Likelihood V Set of nodes that the likelihood of which is IEL 

IEL Implicit Evidence-based Likelihood θ Life time distribution parameter vector 

  p Conditional probability table parameters vector 

 

1 Introduction 

Reliability assessment of a system prototype at its early stage is of great importance since any later modification 

to the system design is costly, time-consuming and even impossible [1]. In reliability engineering practice, analyzing 

such a system is challenging due to various imperfections, e.g. undiscovered failure mechanisms, biased prior 

knowledge, undetermined system structure and limited test data [2]–[4]. In this scenario, it is desired to aggregate 

all available information to produce a more reliable result [5]. 

In recent years, the Bayesian-based approach has gained great attention from the reliability community as it 

provides a rigorous statistical model to integrate both expert judgments and experimental data [6]–[9]. In particular, 

Bayesian Networks (BN) have been increasingly employed in system reliability modeling and analysis [10]. 

Compared with traditional Reliability Block Diagram (RBD) or Fault Tree (FT) models, BNs are capable of 

incorporating both model uncertainty and parameter uncertainty in a coherent framework [11]. This capability is of 

great use in reliability modeling for prototypical systems because the interactive relationships between components 
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have not been fully discovered yet. Model inherent uncertainty makes representing the system structure of this type 

of reliability model by “AND”, “OR” gates unrealistic. Instead, by representing the reliability structure in 

conditional probabilities and assigning appropriate prior distributions, the BN parameters (both model parameters 

and distribution parameters) are progressively learned via Bayesian updating based on the accumulated evidence.  

Besides the model uncertainty, another barrier in reliability analysis and assessment is insufficient test data. In 

practical engineering, repeatedly conducting independent reliability tests of the whole system is prohibitively 

expensive or not permissible. In order to increase the effectiveness of tests, it is not uncommon to install multiple 

sensors to monitor the health state of both subsystems and components and to collect data within one reliability 

experiment. Admitting the fact that component-level data is a valuable complement to the scarce system-level data, 

its misuse will, however, lead to conflicting or even erroneous results as they are essentially dependent. In this 

situation, a system reliability approach which is capable of correctly and efficiently dealing with dependent data has 

profound meanings to reliability practitioners. 

The primary goal of this paper is to develop a Bayesian-based approach for system reliability analysis, where 

the model uncertainty and data dependence are particularly addressed. The dependent data discussed in this paper 

is based on continuous life metrics. We use the term “life metric” because two types of evidences are considered: 

(1) failure time data, which corresponds to a witness of failure occurring at an explicit time-point; (2) censored data, 

which suggests the exact failure time is not detected and we only know the failure time falls within an interval. The 

dependence discussed in this paper relies on the following two criteria: 

(i) Coherence: the data set is drawn from the same coherent system, i.e. reliability block, fault tree, Bayesian 

network, etc.; and 

(ii) Simultaneity: the data set is collected within the same period time. 

The remainder of this paper is organized as follows. In Section 2, we demonstrate the problem at stake and 
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review the relevant state-of-the-art methodologies. Sections 3 gives some preliminary knowledge. In section 4, the 

main body of our methodology is elaborated, followed by the developed algorithm for implementation. In section 

5, we validate the proposed method through three comparisons to well-established approaches. In section 6, we 

demonstrate the benefits of our approach via an application to a case that existing methods have difficulties to handle. 

Finally, some concluding remarks are drawn in section 7. 

 

2 Problem description and state-of-the-art methodologies 

2.1 Dependent data in system reliability analysis 

We demonstrate the significant importance of distinguishing dependent data and independent data in system 

reliability analysis through a simple motivating example. 

 

Example 1 Consider the parallel system shown in Fig. 1, where two sensors are installed to record the failure time 

of the system or component. It is assumed that the time-to-failure of two components follows exponential 

distributions that are conditioned on the parameter λ1 and λ2 respectively. If we observed that component 1 is failed 

at t1 first and then the system is failed at tS. The task is to estimate the unknown parameters λ1, λ2 and system 

reliability using collected test data. 

Component 1

Component 2

System

Sensor #1

Sensor #2
 

Fig. 1  Parallel system with two installed sensors 

According to the Bayesian theorem, the parameter vector  1 2,   can be estimated as  
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Given the prior distributions of θ, the key point here is how to formulate the likelihood function. 
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Scenario 1. Independent data 

This scenario is equivalent to that the system has been tested twice independently. The observation of 

“component 1 is failed” does not affect the likelihood of system failure as the data is collected at two isolated times. 

The likelihood function is directly calculated by multiplying the two individual likelihoods as 

           1 1 1 1 1 1 2 2 1 1 2 2 and  are independent data | | | | |S S S S SL t t f t f t F t F t f t          (2) 

where  1 1|f t  ,  2 2|f t   denote the probability density functions (PDF) of time-to-failure for component 1 and 

component 2, and  1 1|F t  ,  2 2|F t   denote the corresponding cumulative density functions (CDF). 

 

Scenario 2. Dependent data 

This scenario corresponds to the system being tested only once. It is observed that component 1 fails first at t1 

and the whole system fails subsequently at tS. From the parallel system configuration, we can learn that component 

2 fails at tS. This is because the component 1 has already failed before and it is only the failure of both components 

that could lead to the failure of the whole system. In this manner, the likelihood should be constructed by considering 

the contributions from component 1 and component 2. That is,  

     1 1 1 1 2 2 and  are dependent data | |S SL t t f t f t        (3) 

It is obvious that the likelihood function derived in Eq. (3) has a primary difference compared with that in Eq. (2), 

suggesting the dependent data does not infer the same information when it is treated as independent data. When 

multi-level data becomes available, a comprehensive approach is required to correctly and efficiently aggregate the 

dependent information of a complex system for reliability analysis. 

 

2.2 Bayesian methods for system reliability using multi-source information 

2.2.1 Independent information integration for multi-level system reliability models 
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The Bayesian method is very appealing in the integration of multi-source information for reliability analysis. 

Early works from Martz and Wailer [12] explored the system reliability when multi-level data is available. However, 

this study is only limited to simple system structures e.g. series/parallel system with binary data. Johnson [13] 

developed a hierarchical Bayesian model for early system reliability analysis when limited system-level data is 

available. Its novelty includes a unique “quality” index established to distinguish the system produced by 

“experienced” & “inexperienced” manufactures. Hamada et al. [14] proposed a full Bayesian approach to combine 

multi-level independent (termed as non-overlapping by them) data in the quantification of a Fault Tree (FT). Grave 

et al. [15] followed this research line and extended the work to a multi-state system.  

Recently, Straub [16], [17] established enhanced BNs for reliability and risk analysis of structural systems by 

combining traditional BNs and structural reliability methods. Guo et al. [18], [19] proposed a system reliability 

assessment approach taking multi-level information into account where special attention is paid on a scenario that 

multiple prior knowledge exists. Guo, Huang, and Peng [20] proposed a Bayesian information fusion approach to 

leverage the degradation information from multiple sources. Reese et al. [21] presented a Bayesian model to 

naturally integrate multi-source life information such as the life data obtained from the system, subsystem, 

component level, and the prior information in any level. Wilson et al. [22] demonstrated a practical example of 

reliability and uncertainty quantification via a combination of different types of data. Guo and Wilson [23] proposed 

a Bayesian approach for system evaluation using heterogeneous data sets. Li et al. [24]–[26] proposed a 

comprehensive Bayesian approach to aggregate heterogeneous data sets. Recent advances in system reliability with 

independent data combination are well summarized in [27], [28]. 

 

2.2.2 Dependent information integration for multi-level system reliability models 

Addressing dependent information, Coolen [29] established the novel concept of “survival signature” for 
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system reliability analysis. Following this research line, Patelli [30], [31] designed simulation algorithms for its 

implementation in the system reliability quantification. Aslett [32] presented its use from a Bayesian perspective. 

Walter et al. further extended it to a scenario that sets of prior exist [33] and prior-data conflict [34]. Focusing on 

the dependent data, Grave et al. [35] proposed a cut set-based method to incorporate the dependent data, in which a 

four-step algorithm is developed for implementation. Kim [36] established a practical method for mitigating the 

Bayesian anomaly. Jackson and Mosleh [37]–[40] discovered the role of dependent evidence played in the Bayesian 

inference and further developed comprehensive methodologies for on-demand systems [37], [38] as well as 

continuous life metric systems [39], [40]. Grave and Hamada [41] proposed a method to correctly construct the 

likelihood for simultaneous failure time data. Lin [42] proposed a copula-based approach addressing the formulation 

of a dependent structure. However, in previous studies, the system reliability models are usually limited to a RBD 

or a FT. As an alternative, BN has a more flexible capacity to represent a multi-level system structure. In the area 

dependence modeling using BN, researchers at Memorial University have made a worthy contribution [43]. 

Khakzad and Khan [44] introduce the bow-tie (BT) analysis in dynamic safety analysis by representing the 

conditional dependence in the BN model [45], [46]. They employed copula functions to model the joint probability 

distributions of causations in the BT model of the accident scenario. The application fields include major accident 

modelling using spare data [47], rare event modelling considering dependence [48], process fault detection and 

diagnosis using BN [49] and Copula BN [50], and risk analysis or assessment to asset integrity [51] etc.. 

For the integration of dependent data in a BN model, Yontay and Pan [52] proposed a computational Bayesian 

approach to assess the dependence of a hierarchical system. The condition probabilities are estimated based on the 

combination of discrete data and expert opinions from multi-level. Further, Pan and Yontay [53] extended this study 

to a hierarchical system with continuous failure time data. However, since the study is only applied to a hierarchical 

system but not a general BN model, its applicability is limited to a system without sharing components. As a 
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summary, none of the existing studies explicitly address the reliability of a general BN model with dependent data. 

In this paper, we focus on this unresolved issue and aim to develop a general Bayesian approach for a multi-level 

system with dependent evidence. 

 

3 Preliminaries 

From the topological perspective, a BN model is a Directed Acyclic Graph (DAG) which is composed of the 

nodes representing random variables, and the arcs representing the dependence among nodes. Given a BN model 

with a directed path from Ni to Nj, the node Ni is said to be the predecessor node of Nj, and conversely, Nj is said to 

be the descendant node of Ni . In this paper, the predecessor nodes set of Nj is denoted as Aj. For any Ni  Aj, if Ni 

has an arc directed into Nj, it is said to be a parent node (or direct predecessor) of Nj, and Nj is the child node of Ni. 

For a simple BN shown in Fig. 2, the predecessor nodes set of N1 is A1 = (N2, N3, N4) and the direct predecessor 

nodes set is Q1 = (N2). 

N1

N2

N4N3

 

Fig. 2  A simple BN model 

Any two nodes that are not directedly linked by an arc are said to be conditionally independent. One benefit of 

the BN is that the complex joint likelihood can be decomposed as a product of several conditional probabilities 

using the conditional independence. For instance, the probabilistic graphic model of the BN shown in Fig. 2 is 

represented as 
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where P(N3), P(N4) are marginal probabilities and P(N1 | N2), P(N2 | N3, N4) are conditional probabilities. For the 

system reliability analysis, we also adopt the following conventions in the rest of this paper:  

(i) the set of nodes without arcs directed into them (usually located at the bottom level) is denoted as 

component C;  

(ii) the set of nodes with arcs directed into it (usually located at the intermediate/top level) is denoted as 

system/subsystem S;  

(iii) the set of nodes with an observation (failure time data or censored data) is denoted as O. 

 

4 Methodology 

The likelihood function plays a central role in Bayesian inference. For dependent data, the system likelihood 

function of a complex system has an encompassing form and cannot be constructed by simply multiplying each 

individual likelihood. In the proposed method, we calculate the overall likelihood function via a joint likelihood 

decomposition approach. 

4.1 A likelihood decomposition approach 

To illustrate the principle of our approach, consider a 3-level BN model shown in Fig. 3. In this paper, we 

consider a time-based system with binary states, namely, the state of a node can be either functioning (denoted as 

“1”) or failed (denoted as “0”). The conditional probability table (CPT) parameters are given in Eq. (5) and the 

failure time {E0: t = t0, E1: t = t1, E2: t = t2} of the three nodes S0, S1 and C2 are observed. Compared with a typical 

hierarchical system, this BN model contains a sharing node C2 which means the likelihood cannot be derived using 

traditional methods. 
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S1

C1 C3

S2

S0

C2

 

Fig. 3  3-level BN model 
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From a mathematical perspective, the aim of our work is to represent the probability of observing these 

evidences (failure time t0, t1 and t2) using the PDF or CDF of failure times of bottom-level components. In general, 

we have 
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where Ψ is the system structure function determined by the system configuration; p is the CPT parameter vector; θ 

is the distribution parameter vector; Sj and Cj denote the system/subsystem node and component node respectively; 

Q is the direct predecessor nodes set. Based on the system configuration, the overall joint likelihood function is 

decomposed as a product of three individual likelihoods 

       0 1 2 1 0 1 2 1 2 2, , | , |L E E E L E E E L E E L E       (7) 

The individual likelihood L(E2) for the component C2 is simply calculated as Eq. (8) since it is a bottom-level node 

without any lower level composing nodes. 

 
 

 2

2 22 2 2: |C

t t C

dF t
L E t t f t

dt            (8) 
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However, the derivation of likelihood functions for subsystem node S1 and system node S0 may require additional 

considerations. This is because the observed evidence E2 may impact the formulation of L(E0 | E1, E2) and L(E1 | E2) 

as they are conditioned on E2. To better understand the likelihood formulation of a complex system in the presence 

of dependent data, we introduce the following notion of an inferential node. 

Definition 1: For a system/subsystem node Si, its predecessor node Nj  Ai  (Nj could either be a subsystem node 

or a component node) is said to be inferential to Si if at least one propagating path from Nj to Si: Nj → Si is active. 

Examining the 3-level BN model shown in Fig. 4, it is found the state of C1 will not affect the state of S0 though 

C1 is one predecessor of S0. This is because the only propagating path C1 → S1 → S0 is deactivated when an 

observation t1 is available. Comparably, the state of component node C2 will affect the state of system node S0 even 

an observation for S1 is available. This is because the information flow could bypass the blocked node S1 and exert 

an influence on S0 as the propagating path C2 → S2 → S0 is activated. 

S1

C1 C3

S2

S0

C2

propagating path 
C1 → S1 → S0

 is blocked bypass the 
blocked 
node S1

 

Fig. 4  Blocked propagating path and its bypass 

Consequently, for the likelihood construction of any observed node in a system with multiple dependent data, 

only the influence of its inferential nodes should be taken into consideration. Using the advantages of the inferential 

node, the interactive relationship between any two nodes in a multi-level system is clearly revealed. 
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4.2 Generating the explicit evidence and implicit evidence via an inferential diagram 

By listing all inferential nodes of S1 and S0, L(E1 | E2) and L(E0 | E1, E2) are given in form as  
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To derive the explicit expressions of L(E1 | E2) and L(E0 | E1, E2), collected evidence should be built into Eq. 

(9) and (10). Given the available test data, uncertain PDFs or CDFs will collapse into a deterministic “jump” 

function. For instance, let t2 <t1 < t0, the following three unit step functions are established. 

           
3 1 0

3 01
3 3 1 1 0 0

3 01

0 00
, ,

1 11S S S

t t t tt t
F t H t t F t H t t F t H t t

t t t tt t

  
            

 (11) 

To investigate the implicit information embedded within the dependent evidence, we developed the following 

inferential diagram to generate necessary implicit evidence, which is consistent with both system configuration 

and the rationality of the presence of explicit evidence. The inferential diagram is developed based on the idea that 

by listing all explicit evidence in an ordinal sequence, the implicit evidence can be easily identified and compiled 

into the constructed likelihood functions. For example, besides the direct observation t2 < t1 <t0, we can also learn 

that  
2 1 1CF t  ,  

2 0 1CF t  , and  
1 0 1SF t   from the inferential diagram shown in Fig. 5. Since these findings 

are not directly obtained from outer sources but are learned from the inference diagram taking into account of the 

system configuration, they are termed as implicit evidence. By contrast, failure time data or censored data that is 

directly obtained from an outer source, e.g. an installed sensor, is termed as explicit evidence. 
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t2

t1

t0

Explicit evidence

Implicit evidence

S0

S1

C2

 
1 0 1SF t 

 
2 1 1CF t   

2 0 1CF t 

 
2 0 0Cf t  

2 1 0Cf t 

 
1 0 0Sf t 

 

Fig. 5  Inferential diagram based on the explicit evidence t2 < t1 <t0 

To investigate the different roles of evidence in the likelihood construction, the following notions of Explicit 

Evidence-based Likelihood (EEL) and Implicit Evidence-based Likelihood (IEL) are introduced. 

Definition 2. For a node Ni with an observed failure time ti, If none of its inferential node has an explicit evidence 

i.e. i  A O , its likelihood function Li is an Explicit Evidence-based Likelihood (EEL) function, otherwise, Li 

is an Implicit Evidence-based Likelihood (IEL) function. It follows, that 

(i) If the likelihood of a node is an EEL, all its predecessors are inferential nodes.  

(ii) The likelihood function for any observed component node is an EEL. 

To determine the type of likelihood function of a subsystem or system-level node, we have to check if there is 

another observation available in the same branch of this network model. As presented in Eq. (8), the derivation of a 

EEL is straightforward by calculating the differential of its CDF of failure time.  

 
 
   i

j

j i j

j

N

i C
C C
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L E f t
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A
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         (12) 

Given the failure time data t2, the likelihood function of component C2 is calculated by substituting the evidence E2: 

t = t2 into Eq. (8). However, for an IEL, not only the observed data but also the implicit evidence will exert influence 

on its the expression. The general form of an IEL could be expressed as  
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Compared with the expression of EEL shown in Eq. (12), the IEL is composed of two parts. The first term in the 

right hand side represents the likelihood contributions from unobserved components and the second term 

represents the likelihood contributions from observed nodes. Given the failure probabilities between adjacent 

nodes 
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We have  
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the two IEL functions for L(E1 | E2) and L(E0 | E1, E2) are calculated by plugging Eq. (14), (15) and the generated 

implicit evidence  
2 1 1CF t  ,  

2 0 1CF t  , and  
1 0 1SF t   into Eq. (13) 
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Note that the likelihood contribution from C2 has been derived in the EEL, so here it only serves as a piece of 

evidence. 

 

 



15 
 

4.3 The role of implicit evidence in the likelihood construction 

For a EEL function, the value of an observation (explicit evidence) will not affect its expression form. That 

is, once the system configuration is fully specified, the expression of an EEL is settled. However, for the 

formulation of an IEL function, the (both explicit and implicit) evidence has a more complicated impact. To 

demonstrate this point, we modify the explicit evidence as t2 > t1 > t0 (which indicates that the system S0 is failed 

before the subsystem S1 and subsequently the component C2), then the corresponding inferential diagram is drawn 

as Fig. 6. 

S0

S1

C2

Explicit evidence

Implicit evidence

t0

t1

t2

 
1 0 0SF t 

 
2 1 0CF t  

2 0 0CF t 

 
1 0 0Sf t 

 
2 1 0Cf t   

2 0 0Cf t 
 

Fig. 6  Inferential diagram based on the explicit evidence t2 > t1 > t0 

By substituting the implicit evidence  
2 1 0CF t  ,  

2 0 0CF t  , and  
1 0 0SF t   into Eq. (13), the two IEL 

functions are now derived in the following Eq. (18) and (19) 
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It is found that the IEL functions derived in Eq. (18) and (19) are substantially different from the IEL function 

in Eq. (16) and (17) as their expressions contain different CPT parameters. Compared with the explicit evidence, 
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the implicit evidence will affect the expression of an IEL function as it is developed through an inference taking 

system configuration into consideration. 

 

4.4 Implementation—a full Bayesian approach for system reliability analysis in the presence of dependent data 

For the practical engineering use, we present the proposed full Bayesian approach in the following Fig. 7 and 

illustrate its implementation procedure step by step. 

Step 3: Construct the IEL function

Step 4: Compile the evidence

Step 2: Construct the EEL function

Step 4: Compile the evidence

Reliability analysis for system with 
dependent data set E

Step 1: Decompose the overall likelihood

 

Formulate the EEL function
Using Eq. (21)

Formulate the IEL function 
Using Eq. (22)

Explicit evidence Implicit evidence

Draw the inferential diagram to generate 
the implicit evidence

Calculate the EEL function Calculate the IEL function

Step 5 : Parameter estimation and reliability evaluation

Calculate the posterior distributions of unknown parameters using Eq. (23)
Estimate the system reliability using Eq. (24) 

Identify the inferential nodes set I

Separate the joint likelihood into a 
product of EEL and IEL using Eq. (20)

 

Fig. 7  Schematic of the proposed method for system reliability analysis with dependent data. 
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Step 1 Decompose the overall likelihood 

Identify the inferential nodes set I for all nodes with explicit evidence and then decompose the overall likelihood 

into the product of several EEL functions and IEL functions as Eq. (20). 

     1
, ,
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, ,..., |
i i j j

k k j
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i n i j k

N N
N N
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U V
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O I

 
      (20) 

where : ,i iN  U O A O  is the set of nodes that the likelihood of which is EEL, : ,j jV  V O A O  

is the set of nodes that the likelihood of which is IEL, Ij is the set of inferential nodes of Nj.  

The node with an EEL function could be either a component node or a system/subsystem node but the node 

with an IEL function must be a system/subsystem node. There are as many EEL functions and IEL functions as the 

number of nodes with explicit evidence. 

 

Step 2 Construct the EEL function 

Formulate the EEL function using the following Eq. (21) 
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where A is the predecessor nodes set, O is the observed nodes set, and Eq. (6) should be taken into account to 

simplify the expression of an EEL function. 

 

Step 3 Construct the IEL function 

Formulate the IEL function using the following Eq. (22) 
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where I is the inferential nodes set, O is the observed nodes set, and Eq. (6) should be taken into account to simplify 

the expression of an IEL function. 
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Step 4 Generate the implicit evidence and compile the evidence to calculate all EELs and IELs 

Draw the inferential diagram by listing all explicit evidence in a time sequence and generate the implicit 

evidence from the corresponding unit step function. For an EEL function, compile explicit evidence into Eq. (21) 

to simplify its expression. To calculate the IEL function, both explicit evidence and implicit evidence should be 

considered. The IEL function constructed in Eq. (22) should be represented as a function of known PDFs or CDFs 

of time-to-failure of inferentially nodes or components. Note that here we use the term “evidence” instead of “data” 

because this notion covers a more wide range of available information such as an observed time-to-failure (failure 

time data) or a knowledge that the system is not failed until a specific time (censored data). In this situation, The 

contributions of an EEL function or an IEL function could be either the probability density for an exact failure time 

data or a probability for the censored data. 

 

Step 5 Parameter estimation and reliability evaluation 

The overall likelihood is constructed by multiplying all EEL functions and IEL functions. Once the likelihood 

function is fully determined, the posterior distribution of unknown parameters (both model parameters and 

distribution parameters) are estimated using the Bayesian rule as Eq. (23).  
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p p
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p p p
θ

θ θ
θ

θ θ θ
       (23) 

The system reliability that is of interest is estimated accordingly. 

     | 1 , , : ,
i i i j j j jS S S S S C S j i j iR t F F S Q C Q       p       (24) 

Since the proposed reliability method has no specific requirement on the model structure, it allows an 

extensive application field including both hierarchical systems and BN models with hybrid structures. However, it 

should be noted that above development of this approach is under a static Bayesian framework. Extensions to a 

dynamic BN with time-dependent structure and/or evidence is possible but much efforts are required in the 

construction of inferential diagram since it varies with respect to both model structure and available information in 

such case. 
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5 Comparisons and validations 

In this section, we present three numerical case studies to demonstrate the proposed approach. Comparisons 

with well-established methods are conducted for validation purposes. 

 

5.1 Comparison with Jackson and Mosleh’s method 

In Jackson and Mosleh’s research [39], they proposed a Bayesian approach for system reliability evaluation 

addressing simultaneously collected test data. 

Example 2 Jackson and Mosleh’s case in [39] 

Jackson and Mosleh presented a fault tree model with 3 sensors and 6 components as shown in Fig. 8. The 

available information includes the sensor detected time-to-failure 

   *
1 2 3 1 2 2 3, , 113.54, 113.54, 78.69S S SE E E E t t t t       and the PDFs of time-to-failure of the 6 components. 

We validate our method by calculating the system likelihood function and comparing the derived results with those 

presented in [39]. 

or

and
and C6

C4

C5

S1

S3C1

C3C2

S2

or

 

Fig. 8  Jackson and Mosleh’s example in [39] 
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Step 1 The overall likelihood is decomposed as the product of EEL functions and IEL functions in Eq. (25). 

       1 2 3 1 2 3 2 3, , | ,L E E E L E E E L E L E       (25) 

where the EEL node set U : S2, S3 and the IEL node set V : S1. 

Step 2 Using Eq. (21), the two EEL functions are derived as 
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     (26) 

Step 3 Using Eq. (22), the IEL function is derived as 
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  (27) 

Step 3 Draw the inferential diagram shown in Fig. 9 to generate the implicit evidence presented in Eq. (28). 

       2 1 2 1 3 1 3 10, 0, 1, 0S S S S S S S SF t f t F t f t          (28) 
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Fig. 9  Inferential diagram for example 2 

After compiling the explicit evidence into Eq.(26), the EEL functions are calculated as 

    *
2

*
2 2 2 2 3 2 3 1: 113.54 1 |S

t t
L E t t F F F F f


           

3
3 3 5: 78.69 | S

S

t t
L E t f


    (29) 

By substituting both explicit evidence and implicit evidence into Eq. (27), the IEL function is calculated as  

     
1

*
1 1 2 2 2 3 3 6 4 4 6: 113.54 | : 113.54, : 78.69 1 1 | S

S S S

t t
L E t E t t E t F f F f


            (30) 

Step 5 The overall likelihood is constructed by multiplying each individual EEL function and IEL function as 
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        * 31 2
1 2 3 6 4 4 6 2 3 2 3 1 5, , 1 1 | 1 |S t tt t t t

L E E E F f F f F F F F f f  
                  (31) 

This result is equivalent to that presented by Jackson and Mosleh in [39]. 

 

5.2 Comparison with Graves and Hamada’s method 

Graves and Hamada [41] presented a method to evaluate the likelihood when simultaneous failure data appears. 

Their method is performed by listing of all possible events consistent with the system configuration. We validate 

our proposed work by revisiting their case study examples. 

Example 3 Graves and Hamada’s case in [41] 

Fig. 10 shows an event tree model of a prototypical system, where “O” stands for an “OR” gate; “A” stands 

for an “AND” gate. Given the simultaneously collected data 

   
0 01 012 012

*
1 2 3 1 2 3, , : 100, : 100, : 100S S S SE E E E E t E t E t t      , we use the proposed method to derive its 

likelihood function. 

N0G0=O S0

N01G01=O S01 N02 N03

N011 N012G012=A S012

N0121 N0122 N0123  

Fig. 10  Jackson and Mosleh’s example in [41] 

Step 1 The system likelihood is decomposed as the product of EEL functions and IEL functions as Eq. (32) 

       1 2 3 3 2 3 1 2, , | |L E E E L E L E E L E E        (32) 

where the EEL node set U : S0 and the IEL node set V : S01, S0. 
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Step 2 Using Eq. (21), the EEL function is expressed as 

 3 0121L E F           (33) 

Step 3 Using Eq. (22), the two IEL functions are expressed as 
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      (34) 
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       (35) 

Step 4 Draw the inferential diagram shown in Fig. 11 to generate the implicit evidence presented in Eq. (36). 
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Fig. 11  Inferential diagram for example 3 

After compiling the explicit evidence into Eq. (33), the EEL function is calculated as 

  *
012 012

012

*
3 0121 0122 0123: 100 1 |

S
S S t t

L E t t F F F


         (37) 

By substituting both explicit evidence and implicit evidence into Eq. (34) and Eq. (35), two IEL functions are 

calculated as  

 
01 012 012 01

*
2 3 011: 100 | : 100 |

SS S S t tL E t E t t f            (38)

    
0 01 0

1 2 02 03: 100 | : 100 1 1 |
SS S t tL E t E t F F           (39) 

Step 5 The overall likelihood is constructed by multiplying each individual EEL and IEL as 
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       *
0 01 012

1 2 3 02 03 011 0121 0122 0123, , 1 1 | | 1 |
S S S

t t t t t t
L E E E F F f F F F  

          (40) 

This result is equivalent to that presented by Graves and Hamada in [41] 

 

5.3 Comparison with Pan and Yontay’s method  

Pan and Yontay [53] developed a d-separation-based approach for the multi-level system using incomplete 

data. Their approach is efficient in reliability prediction for hierarchical BN models. We address their case by our 

method. 

Example 4 Pan and Yontay’s case in [53] 

Fig. 12 shows a hierarchical BN model, which could be considered as an extension of the traditional FTA and ET. 

Given the observed data  5 1 0 0

*
1 2 3: 16, : 51, : 80

SC S S tE E t E t E t t      and other basic pre-settings (refer [53] 

for details), the task here is to construct the system likelihood function. 

S0

S1 C6

C4 C5S3C1

C2 C3

S2

 

Fig. 12  Pan and Yontay’s example 

Step 1 The system likelihood is decomposed as the product of EEL functions and IEL functions in Eq. (41). 

       1 2 3 1 2 3 1 2, , | ,L E E E L E L E L E E E       (41) 

where the EEL node set 5 1: ,C SU , and the IEL node set 0: SV . 

Step 2 Using Eq. (21), the EEL functions are expressed as 
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   (43) 

Step 3 Using Eq. (22), the IEL is expressed as  
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(44) 

Step 4 Draw the inferential diagram shown in Fig. 13 to generate the implicit evidence presented in Eq. (45). 

       
1 0 1 0 5 0 5 0

* * * *1, 0, 1, 0S S S S C S C SF t f t F t f t          (45) 
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Fig. 13  Inferential diagram for example 4 

After compiling the explicit evidence into Eq. (42) and (43), EEL functions are calculated as 

 
5 5 5

1 : 16; |
CC C t tL E t f          (46) 
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2 : 51 |
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            (47) 

By substituting both explicit evidence and implicit evidence into Eq. (44), the IEL is calculated as 
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Step 5 The overall likelihood is constructed by multiplying each individual EEL and IEL function as 
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 (49) 

The result is equivalent to that presented by Pan and Yontay in [53]. 

 

6 Application example 

In this section, We carry out a practical application example in which the problem is difficult to be solved by 

existing methods. 

 

6.1 Model description and parameter settings 

Example 5 Fig. 14 shows the system configuration of a Harmonic Gear Drive (HGD) device, which is widely used 

in various engineering fields [54], [55]. The HGD comprises two main parts i.e. the wave generation subsystem and 

the gear transmission subsystem and can be further decomposed into 5 components. This HGD is still in a prototype 

phase and its reliability characteristics have not been sufficiently discovered yet. Our aim is to use dependent failure 

time data to assess its reliability taking the model uncertainty into account. In particular, the working mechanism of 

the wave generation subsystem is well-studied and hence its configuration is fully specified in this BN model. 

Comparatively, the gear transmission subsystem is newly developed so that its reliability dependence on other parts 

of the system needs to be investigated. For mathematical convenience, we use the BN shown in Fig. 15 to model 

the HGD device (more details regarding the HGD device refer [54], [55]). Note that this BN contains a hybrid 

structure as an intra-level connection (from S1 → S2), which means that most existing methods cannot be applied. 
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HGD

Wave 
generation 

system

Gear 
transmission 

system

System 
level

Subsystem 
level

Component 
level

Flexspline Circular splineWave generator Convex gearDirect current motor  

Fig. 14  Harmonic Gear Drive (HGD) device 

 

S0

S1

C4 C5C3C1

S2

C2

Determined model structure

Undetermined model structure

 

Fig. 15  BN model representing the HGD device 

For detailed parameter specifications, the lifetime distributions of three components C1, C2, C4 are modeled as 

Exponential distributions with parameters λ1 λ2 λ4 respectively. Weibull models are adopted for C3, C5. To imitate a 

non-informative scenario, we assign uniform prior distributions to all unknown lifetime model parameters in Table 

1 and CPT parameters in Table 2. In total, 10 independent reliability tests are conducted to collect the failure time 

data. For each individual test, three sensors are installed to monitor the working states and record the failure time 

and hence produce three dependent data points. The mixed dataset representing all available data is summarized in 

Table 3. 
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Table 1  Lifetime model parameter settings 

Component Life time model Parameter Prior distribution 

C1 Exponential λ1 Uniform(0,0.03) 

C2 Exponential λ2 Uniform(0.05,0.15) 

C3 Weibull 
β3 Uniform(2.5,3) 

η3 Uniform(110,140) 

C4 Exponential λ2 Uniform(0,0.007) 

C5 Weibull 
β5 Uniform(2,2.5) 

η5 Uniform(40,60) 
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(50) 

Table 2  Prior distributions for CPT parameters 

CPT 

Parameter 

Prior 

distribution 

CPT 

Parameter 

Prior 

distribution 

CPT 

Parameter 

Prior 

distribution 

p00 Unif(0.75, 1) p000 Unif(0.75, 1) p110 Unif(0.25, 0.5)

p10 Unif(0.25, 0.5) p100 Unif(0.5, 0.75) p101 Unif(0.25, 0.5)

p01 Unif(0.25, 0.5) p010 Unif(0.5, 0.75) p011 Unif(0.25, 0.5)

p11 Unif(0, 0.25) p001 Unif(0.5, 0.57) p111 Unif(0, 0.25) 

Table 3  Failure time records 

Test # 

Dependent data 
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1 61 60 58 

2 42 41 41 

3 63 63 63 

4 55 53 50 

5 76 76 72 

6 67 67 66 

7 83 75 75 
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8 88 77 74 

9 57 50 49 

10 60 59 59 

 

6.2 Parameter estimation and reliability analysis 

By introducing the notions of EEL and IEL function, the likelihood contributions of each individual evidence 

can be identified. The EEL function of component 4 is given as 

    4 4

4 4 4
Ct

C CL t f t e
          (51) 

As the IEL function is dependent on both explicit evidence and implicit evidence, the expressions of two IEL 

functions are consequently case-based. We give the general form of the two IEL functions as Eq. (52) and (53). 
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    (53) 

where        
1 1 2 3S C C CF t F t F t F t . The overall likelihood is calculated from a multiplication of all likelihood 

contributions from both independent and dependent evidence as Eq. (54) 
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 t t t      (54) 
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With the given prior distributions, the posterior distribution of unknown parameters are estimated using the MCMC 

algorithm in the software OpenBUGS. 

     0, | | , ,E L E p p pθ θ θ        (55)  

where the distribution parameters vector θ = (λ1 λ2, β3, η3, λ4, β5, η5) and the CPT parameters vector p = (p00, p10, p01, 

p11, p000, p001, p010, p100, p110, p101, p011, p111) 

 

6.3 Results and discussion 

A total of 105 samples are generated from the joint posterior distribution with the first half 5104 samples for 

burn-in. The remaining samples are thinned by selecting every 5th observation to reduce the autocorrelation 

between adjacent samples. To ensure the generated posterior samples converge to the target distribution, we 

employ the Raftery–Lewis (RL) diagnostic to determine when the MCMC samples converge to stationary posterior 

distributions. It is found all unknown parameters approach to their stationary state after 5104 iterations. The 

estimation results are presented in Table 4 and Table 5. 

Table 4  Statistics of the posterior samples for distribution parameters 

Parameter Mean SD 2.5% 25% Median 75% 97.5% 

λ1 0.0243 0.004348 0.01415 0.02164 0.02524 0.02784 0.02979 

λ2 0.09985 0.0285 0.05244 0.07563 0.09998 0.1242 0.1475 

β3 2.716 0.1387 2.51 2.597 2.702 2.827 2.98 

η3 115.7 5.392 110.1 111.6 114.0 118.1 130.0 

λ4 0.006194 6.951E-4 0.00442 0.005841 0.006382 0.006733 0.006976 

β5 2.275 0.1429 2.017 2.155 2.291 2.399 2.49 

η5 53.28 4.787 42.62 50.04 54.09 57.34 59.73 

Table 5  Statistics of the posterior samples for CPT parameters 

Parameter Mean SD 2.5% 25% Median 75% 97.5% 

p00 0.9383 0.05445 0.7949 0.9109 0.9544 0.9808 0.9983 
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p10 0.3796 0.09546 0.2559 0.304 0.3599 0.4355 0.6123 

p01 0.4637 0.1399 0.2585 0.3414 0.4488 0.5735 0.7302 

p11 0.08539 0.0642 0.002799 0.0312 0.072 0.1281 0.2302 

p000 0.9215 0.06185 0.7774 0.8815 0.9368 0.9725 0.9975 

p100 0.6818 0.05547 0.5396 0.6509 0.6962 0.7254 0.7476 

p010 
0.6189 0.07158 0.5064 0.556 0.6154 0.6798 0.7432 

p001 
0.6321 0.07221 0.5067 0.57 0.6366 0.695 0.7446 

p110 
0.3344 0.06422 0.2527 0.2802 0.3197 0.3787 0.4775 

p101 
0.3327 0.0619 0.2527 0.2805 0.3201 0.3746 0.4721 

p011 
0.3744 0.0714 0.2573 0.3133 0.3739 0.436 0.4936 

p111 
0.1058 0.07049 0.004039 0.04449 0.09629 0.1633 0.2393 

The evaluated distribution parameters in Table 4 can be further used to predict the reliability for a node of 

interest, meanwhile, the evaluated CPT parameters in Table 5 can help us assess how composing components 

affecting the working state of higher-level nodes. For example, it is observed that the mean of p01 = 0.3796 < p10 = 

0.4637 suggesting subsystem 1 plays a more important role than subsystem 2 for the functioning of the whole system. 

Besides the discovery of the reliability relationship between inter-level nodes, the proposed method is capable of 

capturing the intra-level dependence. It is found the mean of p011 = 0.3744 > p110 = 0.3344 and the mean of p011 = 

0.3744 > p101 = 0.3327, which indicates the subsystem S1 has more effect on the working state of subsystem S2 

compared with the two components C4 and C5. Comparably, existing studies can barely catch this dependence as 

their methodologies are not applied to a BN with hybrid structures. The proposed method can efficiently extract the 

dependence information embedded within the simultaneously collected data set and produce valuable estimation 

results. By exploiting this information, the dependencies among multi-level nodes are progressively revealed. 

Another interesting thing is that the CPT parameter p00 has a non-zero value which indicates a failure chance 

for S0 when both S1 and S2 are functioning well. These findings are also applied to p000 indicating that S2 has a failure 

chance when all its direct predecessor nodes S1, C4, C5 are functioning well. This is impossible to occur in a 
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deterministic reliability model such as a RBD or a FT. However, for a BN model, its variability allows the inclusion 

of such uncertainty. This means that, there must be some undiscovered physical factors affecting the reliability of 

S0 and S2 besides the presented nodes and further investigation should be taken into consideration to reduce such 

uncertainty. 

For the system reliability analysis, Eq. (20) is adopted to calculate the reliability for a node of interest for a 

given time-point. We calculate the reliability of all nodes for every 10 time units and present the reliability curves 

changing over time in Fig. 16. A radar map is employed to give quantitative comparisons of reliability for all nodes 

at three time-points (i.e. t = 0, 10, 100) as shown in Fig. 17. 

 

Fig. 16  Reliability predictions for the HGD 

 
Fig. 17  Radar map of the predicted reliability for all nodes 
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Fig. 18  Reliability changes over time for S1 (left) and S2 (right) 

 
Fig. 19  Reliability changes over time for C4 (left) and C5 (right) 

Another benefit of our approach is that it can be used to estimate the parameters of both observed and 

unobserved nodes. We show the updated reliability curves of the S1 (unobserved node), S2 (observed node) in Fig. 

18, and C4 (observed node), C5 (unobserved node) in Fig. 19 respectively. This has profound meanings in practical 

engineering since the installation of sensors to many crucial components is sometimes intractable. Benefiting from 

a successful multi-source information extraction & aggregation, we can compensate for the inadequate information 

of a vital component and update our prior belief on this component even without explicit evidence. The proposed 

method is essentially analytic for system reliability analysis and it requires many assumptions for engineering use. 

For demonstration purpose, we adopt Exponential & Weibull distributions to model the failure time data in this 

application example. However, these assumptions are quite strong and should be carefully reviewed in other 

engineering cases. Also, numerical simulation errors and convergence performance of the generated Markov Chain 
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should not be overlooked. 

 

7 Conclusions and future works 

This paper proposed a full Bayesian approach for system reliability evaluation in the presence of dependent 

data. A likelihood decomposition method is developed to separate the overall joint likelihood into several 

conditionally independent likelihoods. The concepts of Explicit Evidence-based Likelihood and Implicit Evidence-

based Likelihood are established to distinguish different contributions of outer source information in the likelihood 

construction. An inferential diagram is further developed as an intuitive tool to generate the implicit evidence. The 

application field of our approach is not only limited to deterministic system models such as fault tree models or 

event trees but also includes hierarchical BNs and a BN with hybrid structure, which promises a brighter engineering 

application prospect. 

Several numerical cases and a practical engineering case are demonstrated to validate the proposed method 

and to show its superiority. The estimation results show that our approach is capable of capturing the dependence 

information embedded within the simultaneously collected test data and then can progressively reveal the 

dependencies between inter-level nodes and intra-level nodes. Another benefit of our approach is that it could be 

used to estimate the parameters of unobserved nodes. This is meaningful in practical engineering since collecting 

data from all crucial components is not always accessible. This approach helps us in providing a better 

understanding of the nature of dependent evidence in system reliability analysis. 

The proposed method is developed for a static Bayesian model with continuous lifetime data. Extending it to 

a dynamic BN with heterogeneous data is in the consideration for our future works. The challenges mainly comes 

from the construction of inferential diagrams as the procedure is time-consuming, even intractable, given time-

dependent structure and/or evidences. Moreover, as the accumulation of multi-source information continuously 
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grows in practical engineering cases, the presence of imprecise conflicting information is not rare. In this situation, 

establishing a coherent reliability approach taking the imprecise and/or inconsistent information into account can 

significantly benefit the reliability assessment of complex systems and hence produce trustworthy results with less 

uncertainty. To meet this demand, developing a comprehensive Bayesian approach for complex systems with both 

imprecise and inconsistent information could be another research interest for our future works. 
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