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ABSTRACT: With ever-increasing amounts of data produced by mass spectrometry
(MS) proteomics and metabolomics, and the sheer volume of samples now analyzed, the
need for a common open format possessing both file size efficiency and faster read/write
speeds has become paramount to drive the next generation of data analysis pipelines. The
Proteomics Standards Initiative (PSI) has established a clear and precise extensible
markup language (XML) representation for data interchange, mzML, receiving
substantial uptake; nevertheless, storage and file access efficiency has not been the
main focus. We propose an HDF5 file format “mzMLb” that is optimized for both read/
write speed and storage of the raw mass spectrometry data. We provide an extensive
validation of the write speed, random read speed, and storage size, demonstrating a
flexible format that with or without compression is faster than all existing approaches in
virtually all cases, while with compression is comparable in size to proprietary vendor file
formats. Since our approach uniquely preserves the XML encoding of the metadata, the format implicitly supports future versions of
mzML and is straightforward to implement: mzMLb’s design adheres to both HDF5 and NetCDF4 standard implementations,
which allows it to be easily utilized by third parties due to their widespread programming language support. A reference
implementation within the established ProteoWizard toolkit is provided.
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■ INTRODUCTION

Through an extensive industry-wide collaborative process, in
2008, the Proteomics Standards Initiative (PSI) established a
standardized Extensible Markup Language (XML) representa-
tion for raw data interchange in mass spectrometry (MS),1

“mzML,” further building upon concepts defined in earlier
formats mzData and mzXML.2 mzML is now the pervasive
format for interchange and deposition of raw mass
spectrometry (MS) proteomics and metabolomics data.3

However, to provide a detailed, flexible, consistent, and simple
standard for the sharing of raw MS data, it was designed
around a generic ontology for its representation at the expense
of inefficient storage and file access. Two data types are
contained within raw mass spectrometry (MS) data sets: (a)
numeric data, i.e., mass over charge and spectral/chomato-
graphic intensities; and (b) metadata related to instrument and
experimental settings. mzML encodes these data types within a
rich, schema-linked XML file, where the metadata is accurately
and unambiguously annotated using the PSI-MS controlled
vocabulary4 (CV). However, one of the bottlenecks of mzML’s
design is that it is a text-based XML file format and all numeric
spectrum data are converted into text strings using Base64
encoding.5 Optionally, the numeric data can be zlib6

compressed before encoding, but nevertheless, the sizes of

the output files are still 4- to 18-fold higher than the original
proprietary vendor format.
A number of technologies6−8 have been developed by

various laboratories to address the inherent performance/
practical difficulties of utilizing the mzML format for large-
volume biological sampled, high-throughput data analysis. The
first approach to address the performance and file size issues of
mzML was mz5.6 At the core of mz5 is HDF59 (Hierarchical
Data Format version 5), originally developed by the National
Center for Supercomputing Applications (NCSA) for the
storage and organization of large amounts of data. HDF5 is a
binary format but is similar to XML in the sense that files are
self-describing and allow complex data relationships and
dependencies. An HDF5 file allows multiple data sets to be
stored within it in a hierarchical group structure akin to folders
and files on a file system. The two primary objects represented
in HDF5 files are “groups” and “data sets.” Groups are
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container constructs that are used to hold data sets and other
groups. Data sets are multidimensional arrays of data elements
of a specific type, e.g., integer, floating point, characters, strings,
or a collection of these organized as compound types. Both
objects support metadata in the form of attributes (key-value
pairs) that can be assigned to each object; these attributes can
be of any data type. Using groups, data sets, and attributes,
complex structures with diverse data types can be efficiently
stored and accessed. Each data set can optionally be
subdivided into regular “chunks” to enable more efficient
data access, as chunks can be loaded and stored in HDF5’s
cache implementation for subsequent repeated access. By
changing the chunk size parameter, it is possible to adjust
HDF5 for different applications, e.g., fast random access where
file size does not matter, or larger chunks for an overall smaller
compressed file size.
Compared with mzML, mz5’s implementation in HDF5

yields an average file size reduction of 54% and increases linear
read and write speeds 3−4-fold.6 However, mz5 involves a
complete reimplementation of mzML accomplished through a
complex mapping of mzML tags and binary data to compound
HDF5 data sets that mimic tables in a relational database. This
structure would need to be explicitly altered to accommodate
future versions of mzML. The mapping also precludes a Java
implementation using the HDF5 Java application program-
ming interface (API) as compound structures are extremely
slow to access with this API. Moreover, some implementation
choices are not supported by the Java API at all, specifically the
variable-length nested compound structures mz5 uses to
describe scan precursors.
The mzDB format7 uses an alternative database paradigm,

the lightweight SQLite relational database. mzDB’s main
mechanism of increasing random read performance is in
organizing data in small two-dimensional blocks across
multiple consecutive spectra (i.e., along both the m/z and
retention time axis), enabling a quick reading of XICs. In
comparison with XML formats, mzDB saves 25% of storage
space when compared to mzML, and data access times are
improved by 2-fold or more, depending on the data access
pattern. Due to its unique data indexing and accessing scheme,
three different software libraries have been created to handle
MS data sets, two of which are designed to create and handle
MS data-dependent acquisition (DDA), the first “pwiz-mzDB”
and the second “mzDB-access”. The third instance named
“mzDB-Swath” is specifically designed for the data-independ-
ent acquisition (DIA) MS−SWATH technique. In addition,
mzDB does not compress the text metadata, which is stored in
dedicated “param_tree” fields in XML format with specific
XML schema definitions (XSDs). mzDB also stores raw data
sets uncompressed, but compression can be achieved through
an SQLite extension; however, this extension requires a
commercial license for both compression and decompression,
and comparative results were not presented in the manuscript.
As an alternative, a “compressed fitted” mode is proposed,
which uses Gaussian Mixture Models to determine the
centroid and left/right half width at half-maximum (LHW/
RHW) of each peak for reconstruction. This approach has
significantly better sensitivity to low-intensity and overlapping
peaks than conventional centroiding, but some errors may
result in this process, challenging the use of this approach as a
permanent record of the raw data for sharing and archival. In
summary, mzDB is an excellent format for use as a backend for
processing and visualizing mass spectrometry data, as in the

authors’ recent Proline software package.10 As it is not fully
integrated into ProteoWizard and there is currently no other
mechanism to convert mzDB files back to mzML or other
formats, it is currently less suitable as a data sharing and
archival format; hence, we do not compare it to mzMLb
further in this paper.
The imzML data format11 is predominantly aimed at storing

very large mass spectrometry imaging data sets and does so
through modest modifications to the mzML format. At the
core of this approach is the splitting of XML metadata from the
binary encoded data into separate files (*.imzML for the XML
metadata and *.ibd for the binary data) and linking them
unequivocally using a universally unique identifier (UUID).
imzML also introduces new controlled vocabulary (CV)
parameters designed specifically to facilitate the use of imaging
data. These additional imzML CV parameters, including x/y
position, scan direction/pattern, and pixel size, are stored in
the *.obo file, following the OBO format 1.2 (which is a text-
based format used to describe the CV terms). The approach is
designed to enable easier visualization of the data using third-
party software.
Unlike mz5, mzDB, and imzML, Numpress8 is an encoding

scheme for mzML and not a new or modified file format; its
main focus on improving the file size is based on a novel
method to compress the binary data in the mzML file before
Base64 encoding (note: it does not compress the XML
metadata). It accomplishes this by encoding the three common
numerical data types present in mzML (mass to charge
ratiosm/z, intensities, and retention times) using a variety of
heuristics. The first, Numpress Pic (numPic), is intended for
ion count data (e.g., from time of flight) and simply rounds the
value to the nearest integer for storage in truncation form. The
second, Numpress Slof (numSlof), is for general-intensity data
and involves a log transformation followed by a multiplication
by a scaling factor and then conversion and truncation to an
integer. This ensures an approximately constant relative error;
the authors demonstrate that choosing the threshold to yield a
relative error of <2 × 10−4 did not noticeably affect
downstream analysis results. The third approach, Numpress
Lin (numLin), is intended specifically for m/z values and uses
a fixed-point representation of the value, achieved by
multiplying the data by a scaling factor and rounding to the
nearest integer. Likewise, a relative error of approximately <2 ×
10−9 was deemed not to unduly affect downstream processing.
Taken together, Numpress was shown to reduce mzML file
size by around 61%, or approximately 86% if the Numpress
spectral output was additionally zlib compressed.
In the proposed mzMLb format, we adopt the HDF5

format9 also used by mz5, which is well-established for high-
volume data applications. However, rather than using a
complex and inflexible mapping between mzML and HDF5,
we propose a simple hybrid format where the numeric data are
stored natively in HDF5 binary while the metadata is preserved
as fully PSI standard mzML and linked to the binary in a
manner similar to imzMLbut stored within the same HDF5
file. Furthermore, we use only core features of HDF5, making
our format compatible with NetCDF412 readers and writers
(including their native Java library). This enables third-party
bioinformatics tool developers to import and export data
written in mzMLb using libraries already available on a wide
variety of platforms and programming languages in a
straightforward way. Taking advantage of the inbuilt HDF5
functionality, we also implement a simple predictive coding
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method that enables efficient lossy compression that results in
file sizes comparable to Numpress but is much easier to
implement. Alternatively, Numpress compressed data can be
stored in mzMLb without modification. We provide a
reference implementation for mzMLb fully integrated into
the popular ProteoWizard toolset, available at https://github.
com/biospi/pwiz. We demonstrate the advantages of mzMLb
using ProteoWizard’s bidirectional mzML, mz5, and Numpress
implementations to provide a fully objective benchmark
comparison.

■ METHODS
The fundamental design of mzMLb is shown in Figure 1, with
the full specification given in the Supporting Information. As

illustrated, an mzMLb HDF5 file is composed of data sets for
different data types (numerical and text-based) contained
within an mzML file. In this example with our ProteoWizard
implementation, the data is stored in four HDF5 data sets:
c h r oma t o g r am s t a r t s c a n t im e s ( c h r oma t o g -
ram_MS_1000595_double); chromatogram intensities (chro-
matogram_MS_1000515_float); spectrum m/z’s (spec-
trum_MS_1000514_double); and spectrum intensities (spec-
trum_MS_1000515_float). These data sets are accompanied
by native HDF5 version mirroring the indexed mzML schema
(e.g., mzML_chromatogramIndex and mzML_chromatogra-
mIndex_idRef). It illustrates how mzMLb utilizes the
advantages of mzML (XML) and proprietary binary vendor
formats by combining the positive values of both approaches
while mitigating the negative traits.
The mzML XML metadata is stored inside a HDF5

character array data set “mzMLb.” This is identical to the
mzML format except for the following: (a) The binary data is
not stored within the <binary> tags; instead, the binary tag
provides attributes for the name of the HDF5 data set

containing the binary data, and the offset within the HDF5
data set where the data is located. This mechanism is also used
in imzML and results in valid mzML. (b) If mzML spectrum
and chromatogram indices are desired (i.e., an <indexed
mzML> block in mzML), they are represented instead by
native HDF5 data sets “mzML_spectrumIndex” and
“mzML_chromatogramIndex,” which are one-dimensional
arrays of 64-bit integers pointing to the start byte of each
spectrum/chromatogram in the mzMLb. In addition, spec-
trum/chromatogram identifiers, spot ID (an identifier for the
spot from which this spectrum was derived, if a matrix-assisted
laser desorption ionization (MALDI) or similar run), and scan
start time indices can be specified as further HDF5 data sets
(see the Supporting Information).
All numerical data that is Base64 encoded in mzML (m/z’s,

intensities, etc.) is instead stored in mzMLb as native HDF5
data sets, either as floating-point (32-bit or 64-bit) or as a
generic byte array if Numpress encoded. As each <binary> tag
in the mzMLb data set specifies the name of the data set
containing the data, each mzMLb implementation has the
freedom to organize the binary data as it wishes. Since offsets
can be specified, data from multiple spectra can also be
colocated within the same HDF5 data set as long as they are of
the same data type. This enables mzMLb to harness efficiency
gains from HDF5 chunk-based random access and caching
schemes and also reduces the file size as data will then be
compressed across spectra (which is not possible in mzML). In
our ProteoWizard reference implementation of mzMLb,
chromatogram and spectrum data are kept apart, but otherwise
all data for specific controlled vocabulary parameters
(CVParam) are stored in the same data set. For example, in
the data set in Figure 1, spectrum intensity values for all
spectra are stored in the data set “spectrum_MS_1000515_-
float.”
We also implemented a simple coding scheme that combines

data truncation, a linear prediction method, and use of HDF5’s
inbuilt “shuffle” filter to improve the results of a subsequent
compression step. The aim of this approach is to exploit the
way numerical floating-point data is represented in binary
natively on modern computing hardware, resulting in much
better compression ratios. The method is lossy but like
Numpress is designed only to add relative error at very small
parts-per-million that does not affect downstream processing.
Compared to Numpress, it is much easier to implement by
third-party developers as the encoding and decoding can be
implemented in a single line of code.
To fully appreciate its function and implementation, a basic

understanding of how decimal real numbers are represented as
binary floating-point numbers is required. A number in double-
precision (64-bit) or single-precision (32-bit) binary floating-
point13 format consists of three parts: a sign, an exponent, and
a mantissa, as represented in Figure 2. The sign bit represents a
negative or positive number if set or unset, respectively (blue
binary bit in Figure 2). The exponent bits represent the scale of
the number and hence specify the location of the decimal point
within the number (orange binary bits in Figure 2). Finally, the
mantissa (green binary bits in Figure 2) expresses the fractional
part of the numberthe number of bits in the mantissa hence
gives you the number of significant figures. Having more bits in
the exponent (11 bits in double precision compared to 8 bits in
single precision) allows you to represent a wider range of
numbers, whereas more bits in the mantissa (e.g., there are 52
bits in double precision vs 23 bits in single precision) allows

Figure 1. mzMLb internal data structure. All data is stored using
standard HDF5 constructs, PSI-standard mzML is maintained, and
full XML metadata is stored, along with binary data in separate HDF5
data sets. Storage of the chromatogram and spectral data (scan start
times, m/z’s, and intensities) is flexible and self-described in terms of
floating-point precision and layout, relying simply on the data set
name and offset being specified within the <binary> tag for each
chromatogram and spectrum in the mzML XML metadata.
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more precision. If full precision is not required, then a large
number of bits are stored unnecessarily, resulting in
unnecessary memory and storage use. This is the case for a
significant amount of the numerical data stored in conventional
mzML files.
We exploit this fact by implementing a simple lossy

truncation scheme based on reducing the numbers of mantissa
bits used in the floating-point format to represent m/z and
intensity values by zeroing insignificant bits, with an example
shown in Table 1. Here, we can see that we do not observe an
appreciable drop in the parts-per-million accuracy of the
decimal number until after we remove 21 bits from the
mantissa, and it can be seen how zeroing more and more bits
increases the error as we pass the single-precision (23 bits)
mantissa level.
To translate our truncation approach into improved zlib14

compression, it is necessary to employ HDF5 byte shuffling. In
most formats, floating-point numbers are stored consecutively

on disk, so zeroed mantissa bits appear in short bursts, as
shown in Figure 2b. The HDF5 shuffle filter rearranges the
byte ordering of the data so that it is stored transversely rather
than longitudinally, as shown in Figure 2c. This leads to large
numbers of consecutive zeros that can be compressed
extremely well.
Moreover, further gains are possible by transforming the

data so that consecutive values or sets of values are identical, as
zlib is designed to compress away repeated patterns. Toward
this goal, the mz5 format uses a “delta” prediction scheme that
stores the difference between consecutive data points, rather
than the data points themselves. This results in floating-point
bit patterns (Figure 2) that are less likely to change between
consecutive data points and hence are more likely to be
compressed. We present an improved technique termed
“mzLinear” that extends this approach to a linear extrapolation
predicting each data point from the two previous data points,
with only the error between the prediction and the actual value

Figure 2. (a) Visual representation of IEEE 754 double-precision (64-bit) floating-point format and IEEE 754 single-precision (32-bit) floating-
point format; zeros are represented by empty boxes and ones are populated. (b) Array of floating-point numbers stored conventionally; yellow
bytes can be compressed. (c) Same array truncated and stored using the HDF5 shuffle filter leads to higher compressibility. The pink arrows
represent the order in which data is compressed; by reshuffling the order, a higher compression ratio can be achieved.

Table 1. Effect of Changing the Number of Bits Representing the Mantissa in a Floating-Point Number and the Associated
Errora

aThe mantissa of a double-precision (64-bit) floating-point number (52 bits in the mantissa) and the mantissa of a single-precision (32-bit)
floating-point number (23 bits in the mantissa) both are highlighted in green accordingly.
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stored. As there is often a quadratic relationship across m/z
values (for example, since there is a quadratic relationship
between time-of-flight and m/z for a standard time-of-flight
analyzer), the aim of mzLinear is to result in an approximately
constant prediction error across the m/z range, which will
compress extremely well. In comparison, delta prediction on
quadratic data would lead to prediction errors that rise linearly
with m/z. The technique and equation to calculate the stored
error Δh is depicted in Figure 3, with the plot showing a
numerical series of m/z values exhibiting a quadratic
relationship and how the prediction error Δh remains constant
for each value.
To demonstrate mzMLb across a broad spectrum of

proteomics and metabolomics data sets used in different
laboratories, we selected a wide variety of MS techniques and
instruments from varying vendors. The data sets are depicted
in the Supporting Information Table S1; files 1−4 are from ref
8, data files 5−8 are from ref 15, 9 is from ref 16, 10 is from ref
17 11 is from ref 18, and finally 12 is from ref 19. We tested
mzMLb across different MS types, including SWATH-DIA,
DDA, and selected reaction monitoring (SRM) data, and from
the major vendors including Thermo, Agilent, Sciex, and
Waters. Our implementation of mzMLb has been integrated

into the open-source cross-platform ProteoWizard software
libraries and tools and is available from https://github.com/
biospi/pwiz. Hence, the proprietary raw vendor files can be
directly converted into mzMLb using the “msconvert” tool.

■ RESULTS

We first analyze the performance and generalizability of our
truncated mzLinear coding method for m/z accuracy. Figure 4
shows the effects of the change of mantissa on the data set,
“AgilentQToF”; it can be seen that increasing truncation
decreases the file size while having minimal effect on accuracy.
The effectiveness of the mzLinear prediction clearly improves
the zlib compression rates significantly across the range of
possible truncations, as it is able to exploit the quadratic nature
of the m/z to time-of-flight relationship.
The procedure was performed on all data sets tested, and the

mantissa values were chosen such that the error induced by
truncation would be less than or comparable to Numpress’
default values of <2 × 10−4 and <2 × 10−9 relative errors for
the intensities and m/z values, respectively, which according
to8 are small enough so as to have no effect on the output of
results on the downstream of a given workflow. The result of

Figure 3. mzLinear; linear predictor implemented in mzMLb, where m/zn = yn and the index in = xn, both h0 = 0 and h1 = 0 as the first value are
stored in the new array and a linear equation can always be derived to intersect the first two points. However, for the rest of the data points, hn+2,
where n = 0, 1, 2, ..., N − 2, is calculated by a linear predictor equation based on the previous two points and N is the total number of m/z values.

Figure 4. mzMLb; mantissa truncation of the AgilentQToF data file, with truncation error and file size for both mzLinear enabled and disabled.

Journal of Proteome Research pubs.acs.org/jpr Article

https://dx.doi.org/10.1021/acs.jproteome.0c00192
J. Proteome Res. 2021, 20, 172−183

176

http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.0c00192/suppl_file/pr0c00192_si_001.pdf
https://github.com/biospi/pwiz
https://github.com/biospi/pwiz
https://pubs.acs.org/doi/10.1021/acs.jproteome.0c00192?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.0c00192?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.0c00192?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.0c00192?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.0c00192?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.0c00192?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.0c00192?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.0c00192?fig=fig4&ref=pdf
pubs.acs.org/jpr?ref=pdf
https://dx.doi.org/10.1021/acs.jproteome.0c00192?ref=pdf


the relative errors can be seen in the Supporting Information,
Table S2, where mzMLb produces higher compression ratios
and hence smaller file sizes.
Since mzMLb’s truncation relative error is always less than

that of Numpress, the validation that Numpress does not
noticeably affect downstream processing8 also8 applies to
mzML. Moreover, we expand this validation by compressing
the AgilentQToF and QExactive data files (shown in Table S1)
and processing these files through a Mascot peptide search and
protein inference workflow, the results of which can be seen in
Figure 5. For the case of the AgilentQToF data, we found that
Numpress was unable to produce exactly the peptide and
protein lists as the original uncompressed data file. However,
mzMLb was able to produce the same search and inference
results for both the peptide/protein list as the original. Here,
we can see that the relationship between the peptide E-values
of both mzMLb and Numpress against the original data set;
mzMLb gives an injective mapping (a straight line) vs the

original peptide E-value, whereas the Numpress results are
unable to produce the same injective relationship. The
discontinuity of the Numpress results can be further illustrated
by observing the peptides in the shaded regions of Figure 5c;
the peptides highlighted in the enclosed box α represent the
peptides that were present in both the original file and mzMLb
but failed to be found in Numpress, whereas the peptides
enclosed in the β region are peptides that were found in
Numpress results but were not present in both the original and
mzMLb results. The number of peptides deviating from the
original file can be seen in Figure 5a; here, we see that
Numpress did not perform quite as well as mzMLb as there are
a small number of peptide score values deviating from the
original data set. In Figure 5b,d, we can see the results of the
same procedure on the QExactive file; here, we can see that
mzMLb again produces an injective relationship with the
original data set, i.e., producing the same results as the
unmodified data set. Numpress in Figure 5b performs much

Figure 5. Mascot peptide PSM search results of the original data set against both Numpress and mzMLb compression for AgilentQToF and
QExactive datafiles. The top two plots show the number of peptides found in Numpress and mzMLb against the original data with the x-axis
representing the deviation (ΔS) of the peptide score from the original. (a) For the Agilent file, here were can clearly see a number of peptide scores
deviating from the original score for the Numpress case. (b) Results for the QExactive file, where the number of peptides deviating in the Numpress
case is much less when compared to the number of matching peptides. In both cases, mzMLb outperforms Numpress and has virtually no peptides
deviating from the original. The bottom two plots show the relative E-value performance of both mzMLb and Numpress against the original data
set, with (c) depicting the results for Agilent and (d) for the QExactive data file.
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better with an extremely low number of peptides showing ΔS
deviation. However, Numpress is still unable to produce
exactly the same results as the original in the Mascot pipeline.
It does, however, perform better than the AgilentQToF case
and demonstrates that the lossy compression method
employed in Numpress is more susceptible to different vendor
data files, whereas the mzMLb truncation scheme is more
robust to data file vendor variation and able to reproduce the
same results as an unmodified data file. We thus take the most
conservative truncation values from Table S2 (AgilentQToF
truncation values) and apply them as the mzMLb defaults.
The HDF5 binary data set chunk size can have a significant

impact on access speed and file size. For the AgilentQToF file,
Figure 6 compares mzML with zlib, mzML with Numpress +
zlib, and mz5 with zlib, to mzMLb across a range of chunk
sizes. Figure 6a demonstrates write performance on a Linux
workstation; Dell T5810, Intel Xeon CPU E5-1650 v3, with 32
GB RAM and 3 TB HDD running Ubuntu Linux v18.04. To
produce these results, we ran ProteoWizard msconvert 10

times converting the files from vendor format while recording
the write duration. However, modern operating systems
including the Linux kernel employ a sophisticated file and
memory caching system; to mitigate this mechanism
accelerating the multiple writes and reads of the data files
being tested, we cleared the Linux memory cache after every
invocation of msconvert. It can be seen for lower chunking
values, mzMLb (with both mzLinear ON/OFF) outperforms
the other formats, and only starts to slow for a chunk size of
around 512−1024 kb. Figure 6b shows the relative
compression of the files as the chunking size increases (again
for both mzLinear on/off). It can be seen that at 1024 kb the
benefit of increasing the chunking size for compression of data
is that it quickly plateaus while the writing speed deteriorates.
The file sizes of mzMLb with mzLinear perform 77% better
than mzML + zlib, 25% smaller than mzMLb + Numpress +
zlib, and produce a 56% increase in compression when
compared to mz5 + zlib.

Figure 6. Chunk size optimization with mzLinear enabled; (a) mzMLb write benchmark times with varying chunk sizes, (b) file size with and
without mzMLb enabled with varying sizes of HDF5 chunking, (c) random read benchmarks for singular spectrum access for full chunking size
range, and (d) random read benchmarks for sequential block spectrum access for full chunking size range, with the default chunking size of 1024
highlighted in red.
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To evaluate the read performance of mzMLb, we created a C
++ program readBench, which utilizes the PreoteoWizard API
and its libraries to ensure the ability to read all file formats
consistently under the same software implementation. This
command line tool is available from https://github.com/
biospi/pwiz. Here, two scenarios were considered, the first
accessing a spectrum for the data set 10 000 times at random.
The second involved the random reading of 10 sequential
spectra selected 1000 times at random, thus giving 10 000 total
spectrum accesses. These were also performed 10 times for
each data point. The results are depicted in Figure 6c,d; in
both cases, mzMLb outperforms the other file formats while
maintaining a smaller file size. Beyond 1024 kb chunk size, the
random read time drastically increases.
Subsequently, we ran the random read benchmarks again

but this time without zlib compression to evaluate use cases
where fast access times are paramount and file size is not
important. In this test, we include mzMLb in both a lossless
and lossy scenario. Here, we introduced the HDF5 BLOSC
(http://blosc.org/) plugin to the validation. The aim of

BLOSC is to perform modest but extremely fast decom-
pression/compression so that the resulting read/write times
are faster than using no compression at all as less data needs to
be physically written to disk. It accomplishes this by: utilizing a
blocking technique that reduces activity on the system memory
bus; transmitting data to the CPU processor cache faster than
the traditional, noncompressed, direct memory fetch approach
via a memcpy operating system call; and leveraging SIMD
instructions (SSE2 and AVX2 for modern CPUs) and
multithreading capabilities present in multicore processors.
BLOSC has a number of different optimized compression
techniques including BloscLZ, LZ4, LZ4HC, Snappy, Zlib, and
Zstd. Throughout these tests, we used BLOSC with LZ4HC
compression, as we found it to be the most effective in terms of
read and write speeds when dealing with MS data sets.
In Figure 7, we depict the results of our high-throughput

results (utilizing the same data set as in Figure 6) designed to
seek out the optimum solution for the fastest access to MS
data, in two categories: lossless file formats (Figure 7a,b) and
lossy file formats (Figure 7c,d). In both cases, we consider both

Figure 7. mzMLb; random read benchmarks for both: singular and block sequential, for uncompressed data with and without truncation and
Numpress enabled; (a) lossless single-spectrum access, (b) lossless block-sequential access, (c) lossy single-spectrum access, and (d) lossy block-
sequential access, with the default chunking size of 1024 highlighted in red.
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random single-spectra access (Figure 7a,c) and random block-
sequential access (Figure 7b,d). We can see that in the case of
lossless compression (Figure 7a,b) mzMLb performs better
than both mzML and mz5 in both single and block-sequential
data access. Moreover, when we utilize mzMLb with BLOSC

LZ4HC compression, we can see that it significantly
outperforms both mzML and mz5 at virtually all chunking
sizes and particularly performs well at around 1024 kb chunks
for both single and block-sequential scans. In the case of lossy
data sets (Figure 7c,d), we can see that Numpress has a

Figure 8. Summary data showing file sizes for all data sets using the three formats: mzML, mz5, and mzMLb with six different compression
combinations spanning both lossless and lossy configurations. Uncompressed data files are also depicted here along with mzMLb BLOSC,
demonstrating that fast access read times can be achieved without sacrificing the file size. The original vendor file sizes are represented by the
horizontal dashed line.
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significant positive impact on random read times for both
single and block-sequential data access. Notably, Numpress
when coupled with a chunking size in the vicinity of the
optimal value performs better when contained within mzMLb
rather than mzML. Nevertheless, when we utilize both mzMLb
with mzLinear and BLOSC LZ4HC compression, we observe
that mzMLb is significantly faster than Numpress in block-
sequential data access and is comparable to Numpress within
mzMLb for random single-spectra access.
In Figures 8 and S1 (including different types of instru-

ments), we compare the file size and write performance of our
new mzMLb file format against vendor raw file, mzML, mz5,
and Numpress within both mzML and mzMLb. All results are
the average of 10 runs. Here, we also used the optimum
mzMLb chunking size of 1024 kb derived from both Figures 5
and 6, which allows mzMLb to possess both a significant
compression ratio of the file size and increased performance in
both reading and writing of the mass spectrometry file.
Depicted in Figure 8, the colors of the markers represent the
different file formats; more specifically, the red represents mz5
files, the gray the mzML files, the blue mzMLb files, and finally
the orange the mzMLb files with BLOSC. The shape of the
markers represents the different filters applied during the
conversion process, e.g., a solid triangle represents data sets
without compression, a solid diamond data sets with zlib
applied, and a yellow asterisk data sets with mzLinear,
truncation, zlib applied, etc. From these results, it can be
seen that in all cases, the resulting mzMLb files were
significantly smaller than mzML and a similar size to the
vendor raw file. Moreover, from Figures 8 and S1, mzMLb can
easily be tailored to different use cases (e.g., maximum
compression for archiving; lower compression but faster access
times for processing, both the yellow asterisk and the solid
circle markers (Figure 8), representing mzLinear + trunc + zlib
and Numpress + zlib, respectively) to maximize the desired
performance metric.
We also demonstrate the ability of mzMLb to seamlessly

integrate new mzML features without any implementation
changes. The PSI is currently developing a set of
recommendations for encoding data-independent acquisition
and ion mobility data in mzML, which include the merging of
the set of ion mobility spectra at each retention time to
substantially reduce the repetition of metadata. ProteoWizard
already implements this feature through msconvert switch “
combineIonMobilitySpectra.” We demonstrate mzML and
mzMLb conversion with and without this switch using an
extremely large data set acquired using the recent Bruker
diaPASEF technique;20 the results of which are shown in
Figure S2. Here, we see that even without combining ion
mobility spectra, mzMLb is more effective at storing this type
of data because mzMLb compresses the metadata and
compresses the numerical data for multiple spectra in the
same chunk. When utilizing the switch, the file size is again
decreased.

■ CONCLUSIONS
We demonstrate that using a hybrid file format based on
storing XML metadata together with native binary data within
a HDF5 file, it is possible to improve the data reading/writing
speed of raw MS data as well as preserve all related metadata in
PSI-compliant mzML in an implicitly future-proof way. The
mzMLb file format can be tailored for different applications by
changing the chunk size parameter, i.e., it is possible to adjust

the format for fast access where file size does not matter, e.g.,
visualization and processing, or a smaller compressed file size
with slower reading/writing times for data archival. As a chunk
can contain more than one spectrum of data, compression can
occur across spectra, which is not possible in mzML.
Our ProteoWizard implementation allows mzMLb parame-

ters to be set for the specific needs of each researcher. We have
derived and validated a conservative default value for
truncation that does not affect downstream analyses and
show that a chunk size of 1024 kb is a good compromise for
most applications, providing competitive results across a wide
array of data sets. Given the wide range of use cases for mass
spectrometry and the broad variety of instrumentation, an
interesting future development would be the automatic
optimization of mzMLb parameters for each new data set.
For example, we would expect that optimal truncation depends
on the mass accuracy of the instrument, while the density of
the peak pattern for a spectrum would affect the optimal chunk
size for Orbitrap instruments, but perhaps not for time-of-flight
instruments as these tend to record background counts outside
of the peak areas also.
As mzMLb utilizes HDF5, we are able to leverage

transparent mechanisms for random data access, caching,
partial reading or writing, and error checksums and are easily
extendable through plugins to support additional filters and
compression algorithms. HDF5 also allows the user to add
extra information to the data file while still maintaining PSI
compatibility, simply by adding extra HDF5 groups and data
sets. This allows the user to store other data within the file side
by side with the mzMLb data, for example, a version of the
data optimized for fast visualization21 or a blocked layout like
mzDB optimized for fast extraction of XICs.
The design principles in mzMLb could be used to create a

performant HDF5 implementation of PSI’s in-progress
mzSpecLib format for spectral libraries22 (http://psidev.info/
mzSpecLib). Existing PSI standard formats mzIdentML,
mzQuantML, and mzTab for identification and quantification
results could also be trivially encapsulated in HDF5, although
optimum compression of numerical data would require an
extended mapping as these formats do not utilize Base64
encoded data constructs.
As we use the standard features of HDF5, mzMLb is also bit-

for-bit compatible with NetCDF4 (which has native Java
libraries). This enables it to be easily implemented by third-
party processing software, as both HDF5 and NetCDF4 are
widely supported across common programming languages
including Java. As of v4.5.0, NetCDF also has support to allow
mzMLb files to be randomly accessed remotely over the
internet (the HDF5 Group has also recently delivered their
own implementation of this functionality too), opening up the
potential for public repositories to provide new tools for users
to efficiently query and visualize their raw data archives.
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