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Abstract

A discrete-time risk process is considered where the full distribution of

the claim size X is not completely known to the insurance company. Rather,

it assumes that the distribution of X given Z = ⇣ is F⇣ where Z is some

structural random variable for which a prior is available. The main emphasis

of the paper is the unconditional ruin probability  (u) in this setting where

the premium is either updated according to incoming information about the

claim distribution or computed by the expected value principle. This is in

turn studied via the conditional ruin probability  ⇣(u), for which large de-

viations estimates are available. Rigorous proofs are given only for the case

of the F⇣ forming a scale parameter family, including the classical case of

gamma claims with a gamma prior. However, the analysis readily suggests

what should be the behaviour of  (u) in di↵erent models for the claims.

Keywords: Conjugate prior, credibility premiums, gamma distribution, large

deviations, ruin probability, scale parameter family.

1 Introduction

Consider a discrete time claims surplus process of the form

Sn =
nX

k=1

�
Xk � ⇧k�1

�
, (1.1)

where Xk is the total claim amount encountered in period k and ⇧k�1 the premium
charged at the beginning of that period. In the standard setting where the Xk

are i.i.d. with common distribution F and premium are calculated by the expected
value premium principle ⇧k�1 = (1 + �)EX1 where � > 0 is the safety loading, the
asymptotics of the ruin probability,

 (u) = P(Sn > u for some n),

as function of the initial reserve u is well understood for both light- and heavy-tailed
F , see Theorem 3.1 below. This paper is concerned with the same problem under
more general assumptions. One of our initial motivations was a new line of business
with no statistics available on the claims.
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One of these extensions deals with dependent Xk. More precisely, the setting
is that X1, X2, . . . are i.i.d. with distribution F⇣ given Z = ⇣ for some structural
random variable Z; in Bayesian terms, the distribution of Z is the prior. This
introduces dependence among claims, which we refer to as a Bayesian structure.
The other one is credibility updated premiums,

⇧n = (1 + �)
⇣

n

n+ d
Xn +

d

n+ d
H0

⌘
, (1.2)

where Xn = (X1+ · · ·+Xn)/n and d,H0 are constants. A basic connection between
these two extensions is that if the prior distribution of Z is conjugate, then the Bayes
premium has the form (1.2), see further Section 2 below.

We are thus facing 4 = 2 ⇥ 2 di↵erent situations: claims can be i.i.d. (iid) or
with the Bayesian structure (bayes), and premiums can calculated based on the
classical expected-value-principle (evp) or of credibility type (cred) as in (1.2).

The study of credibility in insurance can be traced back to Mowbray (1914)
and Whitney (1918). For a historical and practical overview of the development
afterwards, we refer to Goulet (1998). In the following we concentrate on the much
smaller part of the credibility literature, namely the part that intersects with ruin
theory.

The earliest of such references may have been Bühlmann (1972), where a Bayesian
component in the Cramér-Lundberg model was introduced; claims arrive according
to a Poisson process with a parameter which is randomized. In this setting, assum-
ing the prior to be conjugate, the ruin probability was studied when the premium is
credibility adjusted continuously according to claim history, similar to the present
paper. In extension hereof, with no assumption on the prior, Dubey (1977) stud-
ied the ruin probability in the same model under three di↵erent experience rating
premiums: the Bayesian premium, the claim statistics premium, and the credibility
premium. Both of these papers consider a model that builds on what we call a
Bayesian structure and others call a mixing model. Others who studied the impact
of mixing on the ruin probability (in a constant premium setting) are Albrecher
et al. (2011) and Dutang et al. (2013).

Another early paper dealing with aspects of similar problems is Asmussen (1999),
who considered the Cramér-Lundberg model in the standard i.i.d. setting, i.e. with-
out Bayesian assumptions. The premium rule was a suitable continuous-time ver-
sion of (1.2) with d = 0, and it was shown that this lead to a considerable reduction
of the ruin probability in the light-tailed case; the heavy-tailed case was left open.

Next, we proceed to references closest to the present work. By means of Monte-
Carlo simulations, Tsai and Parker (2004) studied the impact of credibility rating
probability on the ruin probability in a discrete-time risk model. A more theoretical
approach was considered in a similar framework in Trufin and Loisel (2013), a
paper that we came across at a rather advanced stage of the present research. The
motivation for the credibility premium in Trufin and Loisel (2013) is a portfolio
of size say N selected as a mixture of the N1 bad risks and N2 good risks in the
total population of size N0 = N1 + N2 � N , so that the structural variable Z is a
discrete random variable representing one of the

�
N

N0

�
possible combinations. Their

primary focus was on finite horizon credibility and the impact on the asymptotic
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ruin probability of one particular portfolio was studied, corresponding to what
we call the conditional ruin probability. The unconditional ruin is then simply
a weighted sum over the conditional versions. In the present paper, we intend to
work with a setting that captures continuous prior distributions on Z. In that case,
integration of the conditional ruin formulas to get the unconditional ruin probability
is non-trivial. Therefore, the study of the unconditional ruin for continuous priors
is one of the major contributions of this paper. Some of our main results are only
rigorously stated and proved in a scale-parameter set-up for the claims, introduced
in the next section. A main classical of such is the gamma distribution. However,
the analysis readily suggests what should be the behaviour of the unconditional
ruin probability in di↵erent models for the claims.

The paper is organized as follows. Section 2 contains some preliminaries. Our
main results are stated in Section 3, with the proofs given in Sections 4–7 which
also include a number of examples. Finally, the Appendix contains the proof of a
key auxiliary result and some details on the gamma-gamma case.

2 Bayesian set-up

Recall that Bayesian dependency structure implies that claims X1, X2, . . . are i.i.d.
with distribution F⇣ given Z = ⇣ where Z is the structural random variable. We
write P⇣ for the conditional distribution P( · |Z = ⇣) given Z = ⇣, X(⇣) for a r.v.
with distribution F⇣ , and

µ(⇣) = E⇣X = EX(⇣), �
2(⇣) = Var⇣X = VarX(⇣), (2.1)

µ = Eµ(Z), �2 = E�2(Z), ⌧ 2 = Varµ(Z) . (2.2)

The collective premium is H0 = Eµ(Z), the Bayes premium in period n + 1 is
H

Bayes
n

= (1 + �)E[µ(Z) |X1, . . . , Xn], and the classical credibility premium is given
by (1.2) with d = �

2
/⌧

2. Note, however, that these particular choices of d andH0 are
not crucial for our results and we refer to (1.2) for any 0  d < 1 and H0 > 0 as the
credibility premium. Let further ⇣(a) = logE⇣eaX = logEX(⇣) be the conditional
cumulant function ofX given Z = ⇣ and a

⇤

⇣
= sup{a : ⇣(a) < 1}. The distribution

F⇣ is said to be light-tailed if there is an s > 0 such that
R

1

0 esxF⇣(dx) < 1, and
heavy-tailed if no such s exists and therefore

R
1

0 esxF⇣(dx) = 1 for all s > 0. In
relation to a

⇤

⇣
, then a

⇤

⇣
= 1 if F⇣ is su�ciently light-tailed and on the contrary, one

has a⇤
⇣
= 0 if F⇣ is heavy-tailed.

It is well known (see, e.g., Diaconis and Ylvisaker (1979), Bernardo and Smith
(2009) or Asmussen and Ste↵ensen (2020, Sections II.2-3)) that if F⇣ belongs to a
one-parameter natural exponential family with densities of the form

f⇣(x) = exp{⇣x� (⇣)} (2.3)

w.r.t. some reference measure �(dx) and the prior is conjugate, then the Bayes and
classical credibility premiums coincide. A trivial reparametrization shows that the
same is true if

f⇣(x) = exp{�⇣x� (⇣)} . (2.4)
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In order to have the relation ‘increasing ⇣ means decreasing the risk due to lighter
tails’, we work with the latter parametrization in (2.4).

The same interpretation holds in the scale family class of distributions. This
corresponds to X(⇣) = X(1)/⇣ so that F⇣(x) = F (⇣x) where F (x) = F1(x) is a
distribution function independent of ⇣. That is, ⇣ functions as a scale-parameter.
Translated to the density, we have f⇣(x) = ⇣f(⇣x) where f(x) is the density of
F (x).

In Section 6, we will consider examples involving distributions belonging to the
natural exponential family but not to the scale family. More specifically, in these
examples we consider distribution with lighter-than-exponential tails, and ⇣ serves
as a tilting parameter. These may be of less direct actuarial interpretation, but
serve to illustrate some mathematical aspects of the setting. Conversely, in Section
5 we will consider examples that are in the scale family but not in the natural
exponential family. In the latter case, the credibility and Bayes premium no longer
coincides.

Tsai and Parker (2004) argued as follows that a natural choice for the dis-
crete time conditional claim size distribution is gamma. If the single claim size is
exponential(⌫) distributed and there is n claims during the considered time period,
then aggregate claim during that period is gamma(n, ⌫). Hence, the first parame-
ter (the shape parameter) represents claim frequency risk and the second (the rate
or inverse scale parameter) represents claim severity risk during the time periods.
However, unlike Tsai and Parker (2004) who deals with uncertain claim frequency
risk, relating to the above, we assume that the shape parameter is known and
model unknown claim severity. So our main example used for comparison, called
the gamma-gamma case, is where F⇣ is gamma(↵, ⇣) and the conjugate prior on Z

is gamma(↵0, �0). Thus, we have the form (2.4) with

f⇣(x) =
⇣
↵

�(↵)
x
↵�1e�⇣x

, fZ(⇣) =
�
↵0

0

�(↵0)
⇣
↵0�1e��0⇣ .

To ensure VarX < 1, we need to assume ↵0 > 2. Note that the gamma distribution
belongs to both the natural exponential family and the scale family of distributions.
A key fact for the ruin theory to be developed is that in the gamma-gamma case,
the unconditional tail of X is Pareto-like,

P(X > x) =

Z
1

0

P⇣(X > x)P(Z 2 d⇣) ⇠
k

x↵0

, as x ! 1, (2.5)

where k is a suitable constant. For this and further facts related to the gamma-
gamma case, see Appendix A.

3 Ruin theory: statement of results

Using the standard notation, we write f(u) ⇠ g(u) if f(u)/g(u) ! 1 as u ! 1 and
further write f(u) ⇠log g(u) if log f(u)/ log g(u) ! 1 as u ! 1. This convergence
concept, common in large deviations theory, is weaker, but it captures the key
features in many situations where exact asymptotics are out of the hand. We
further write F (x) = 1� F (x) to denote the tail function of the distribution F .
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The iid-evp case is standard, and one has the following result where (i) covers
the light-tailed case, (ii) the heavy-tailed one. See, e.g., Asmussen (2008, pp. 365–
366, 295–298). Let the c.d.f.

FI(x) =
1

µ

Z
x

0

F (y) dy .

denote the integrated tail distribution. We note that the evaluation of C in (i)
requires the Wiener-Hopf factorization of X � (1 + �)µ but this is not a concern
here.

Theorem 3.1. Consider the iid-evp model, X ⇠ F with c.g.f. X(s) = logEesX .
Then:

(i) If a solution R > 0 of X(R) = (1 + �)µR exists and satisfies 0
X
(R) < 1,

then there is a C > 0 such that  (u) ⇠ Ce�Ru
.

(ii) If both F and its integrated tail are subexponential, then

 (u) ⇠
1

�
F I(u). (3.1)

In Theorem 3.1 above, it is assumed that the true mean of the i.i.d. claim
amounts is known. More realistically, the insurance company would form some
beliefs about the distribution of the claim amounts, say F̃ , upon which it bases
its best guess of the mean, µ̃ (this would then be H0). The collective premium of
(1 + �)µ̃ then actually implies a true safety loading of �̃ = (1 + �)µ̃/µ� 1. Note in
particular that the true safety loading is negative if µ̃ < µ/(1+�), and the company
thus faces a risk that the premium fails to even fulfil the net premium condition;
then ruin will be certain, in line with Theorem 3.3 below. The reasoning behind
the prior beliefs in the i.i.d. case is not of interest in the present paper, which is
why we consider µ (the true mean) rather than µ̃ (the guess) in the iid-evp model.

Theorem 3.2. Consider the iid-cred model, X ⇠ F with c.g.f. X(s) = logEesX .
Then:

(i) Let

�X(a) =

Z
1

0

e�t
X

⇣
a
⇥
1� (1 + �)t

⇤⌘
dt.

If a solution R > 0 of �X(R) = 0 exists and satisfies �0(R) < 1, then
 X(u) ⇠log e�Ru.

(ii) If F has a regularly varying tail, F (x) ⇠ L(x)x�↵ for x ! 1 where L(·) is
a slowly varying function and ↵ > 0, then again (3.1) holds with F I(u) ⇠

(↵� 1)L(u)u�(↵�1)
/µ.

Comparing the iid-evp and iid-cred models, the adjustment coe�cient obvi-
ously change character in the light-tailed case, a↵ecting the asymptotic ruin proba-
bility. Nothing can be said in general, though, on which is preferred, as this depends
on the specific claim distribution. However, in the heavy-tailed case, the asymptotic
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ruin probability remains just the same, if µ is known in the iid-evp model, that is.
Part (i) can be proved by minor modifications of arguments in Asmussen (1999) but
is also a special case of Theorem 3.5 below (take the prior as degenerate). Part (ii) is
proved in Section 4; by a minor modification it also applies to the Cramér-Lundberg
model, thereby settling a problem left open in Asmussen (1999).

It remains to consider the Bayesian model of the claims. Here a result of Glynn
and Whitt (1994) (see also Asmussen and Albrecher (2010, Section XIII.1)) will be
extremely useful for analysing the conditional ruin probability  ⇣(u). It basically
says that  ⇣(u) ⇠log e�R⇣u provided one can show

1

n
logE⇣e

aSn ! �⇣(a), (3.2)

where �⇣ is like the cumulant function of a r.v. with negative mean and R⇣ > 0
solves

�⇣(R⇣) = 0. (3.3)

In both models, we have complete results only for the scale family. First, we
state the result in the bayes-evp model. Recall that X(1) corresponds to ⇣ = 1.

Theorem 3.3. Consider the bayes-evp model in the scale family set-up. Assume
that there is a B < 1 and " > 0 such that E

⇥
e"(X(1)�x)

��X(1) > x
⇤
 B for all

x. Let c = EX(1)/((1 + �)H0) and assume that fZ(⇣) is di↵erentiable on [c,1)
with fZ(c) 6= 0. Then  (u) can be written as  ⇠<c +  ⇠�c(u) where  ⇠<c 2 (0, 1) is
constant and  ⇠�c(u) ⇠log u

�1.

Note that the assumption on X(1) in particular holds if the hazard rate is even-
tually bounded away from zero, i.e. if lim inf f1(x)/F 1(x) > 0. As the following
corollary states, the gamma-gamma case satisfies the assumptions of Theorem 3.3.

Corollary 3.4. The ruin probability in the bayes-evp model in the gamma-gamma
case has the asymptotics of Theorem 3.3.

In the bayes-cred model, we have the following intermediate result.

Theorem 3.5. In the bayes-cred model, the relation (3.2) holds with

�⇣(a) =

Z
1

0

e�t
⇣

⇣
a
⇥
1� (1 + �)t

⇤⌘
dt. (3.4)

The proof is given in Appendix B for the sake of completeness, but we acknowl-
edge that it can be found already in Trufin and Loisel (2013). In Section 6, we
provide some further results on the existence of the adjustment coe�cient in this
case. The next theorem is concerned with the unconditional ruin probability in the
bayes-cred model.

Theorem 3.6. Consider the bayes-cred model in the scale family set-up and
assume that R1 exists. Then

 (u) ⇠log Ee�uR1Z =

Z
1

0

e�uR1⇣fZ(⇣) d⇣.
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For the gamma-gamma case, we can specify further:

Corollary 3.7. If the prior density is gamma(↵0, �0) or, more generally, satisfies
fZ(⇣) ⇠ C⇣

↵0�1 as ⇣ # 0 for some ↵0 > 1, then

 (u) ⇠log u
�↵0 .

This is to be compared with part (ii) of Theorem 3.2 and (2.5), which shows
that the Bayesian structure of the claims improves the decay rate of  (u) by one
power of u compared to the i.i.d. case. One heuristic reason for this is the structure
X = V/Y of a Pareto X, where V, Y are independent exponential random variables:
large values of X occur typically as a result of small values of Y rather than large
values of V . In the i.i.d. case each Xn has its own Yn, Vn, i.e. Xn = Vn/Yn where
(Vn)n2N, (Yn)n2N are independent processes of i.i.d. exponential random variables.
Hence, in this case there are many sources of risk, as there is an infinity of Yn’s that
could be large (one for each Xn). Whereas in the Bayesian setting the Xn share the
same Y , that is, Xn = Vn/Y , creating a dependency structure among the (Xn)n2N,
but fewer sources of risks for large values.

4 Proofs for the iid-cred model, part (ii)

For simplicity of notation, write

S
X

n
= X1 + · · ·+Xn, S

⇧
n
= ⇧0 + · · ·+ ⇧n�1,

so that
Sn = S

X

n
� (1 + �)S⇧

n
= Xn + S

X

n�1 � (1 + �)S⇧
n
.

Note that by the LLN, SX

n
/n ! µ and hence also S

⇧
n
/n ! µ.

Proof of lower bound lim inf
u!1

 (u)

F I(u)/�
� 1.

Define �⇤ = (1+ �)(1� ✏
⇤)� (1 + ✏

⇤), where ✏⇤ > 0 is so small that �⇤ > 0. Let eAm

n0

be the event

eAm

n0
=
�
S
X

n
< (1 + ✏

⇤)nµ , S
⇧
n
> (1� ✏

⇤)nµ for all n0  n < m
 
.

Given ✏ > 0, we can choose first n0 such that P eA1

n0
> 1� ✏/2 and next K such that

PA1

n0
> 1 � ✏ where A

m

n0
= eAm

n0
\ {sup

nn0
Sn  K}. If u � K, ruin cannot occur

before n0 on A
m

n0
, and thus

 (u) �
1X

n=n0

P(⌧(u) = n; An�1
n0

), (4.1)

where ⌧(u) = inf{n 2 N|S
X

n
> u+S

⇧
n
} is the time of ruin, i.e.  (u) = P(⌧(u) < 1).

Now on A
n�1
n0

, we have Sk < ��
⇤
kµ for n0  k < n. Thus ruin can not occur at

such k, and hence the r.h.s. of (4.1) is the same as

1X

n=n0

P
�
Xn > u+ (1 + �)S⇧

n
� S

X

n�1;A
n�1
n0

�
.
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But (1 + �)S⇡

n
� S

X

n�1 < �
⇤
nµ on A

n�1
n0

, and therefore this can in turn be bounded
below by

1X

n=n0

P
�
Xn > u+ �

⇤
nµ;An�1

n0

�
= PAn�1

n0

1X

n=n0

P
�
Xn > u+ �

⇤
nµ

�
, (4.2)

using the independence of Xn and A
n�1
n0

. Here the sum is bounded below by

Z
1

n0�1

F (u+ �
⇤
tµ) dt =

1

�⇤
F I(u+ �

⇤(n0 � 1)µ) ⇠
1

�⇤
F I(u).

Using A
n�1
n0

◆ A
1

n0
, it therefore follows from (4.2) that

lim inf
u!1

 (u)

F I(u)/�
�

(1� ✏)�

�⇤
F I(u).

Letting first ✏⇤ # 0 so that �⇤ " � and next ✏ # 0 gives the desired lower bound.

Proof of upper bound lim sup
u!1

 (u)

F I(u)/�
 1.

Let 0 < ⌘ < 1/↵ and define

A1 = {⌧(u) < u
⌘
}, A2 = {Sn > u for some n � u

⌘
},

A3 = {S
⇧
n
> (1� ✏)nµ for all n � u

⌘
},

where for simplicity of notation we have suppressed the dependence of ⌧(u), A1,
A2, A3 on u, ⌘, ✏. The proof is then based on the decomposition

 (u) = P(A1) + P(Ac

1A2) = P(A1) + P(Ac

1A2A3) + P(Ac

1A2A
c

3) (4.3)

and the similar decomposition for the risk process SX

n
�(1+�)(1�✏)nµ, notationally

denoted by tildes, which in view of P( eA3) = 1 and (3.1) takes the form

1

�⇤
F I(u) ⇠ P(e⌧(u) < 1) = P( eA1) + P( eAc

1
eA2), (4.4)

where �⇤ = (1 + �)(1� ✏)� 1. We shall show that

P(A1) = o(FI(u)), P( eA1) = o(FI(u)), (4.5)

P(Ac

3) = o(FI(u)). (4.6)

From this we get

1

�⇤
F I(u) = P( eA2) + o(FI(u)),  (u) = P(A2A3) + o(FI(u)).

But

P(A2A3)  P
�
S
X

n
� (1� ✏)n > u for some n � u

⌘; A3

�

 P
�
S
X

n
� (1� ✏)n > u for some n � u

⌘;
�
= P( eA2),
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so

 (u)  P( eA2) + o(FI(u)) =
1

�⇤
F I(u) + o(FI(u)).

Dividing by F I(u)/� and taking lim sup gives the upper bound with limit �/�⇤

instead of 1. Now just let ✏ # 0 so that �/�⇤ # 1.
For (4.5), (4.6), the proof of (4.5) is the easier one. Indeed, if ⌧(u) = k < u

⌘,
then S

X

k
> u and hence also S

X

u⌘ > u. Hence it su�ces to show that P(SX

u⌘ > u) =
o(FI(u)). To this end, let 0 < p < ↵ be so close to ↵ that p(1 � ⌘) > ↵ � 1. It is
standard by Lp-theory that E(SX

n
)p  n

p
µ
p. Hence by Markov’s inequality

P(A1)  P(SX

u⌘ > u) 
E(SX

u⌘)p

up


µ
p

up�⌘p
= o(u�(↵�1)) = o(FI(u)).

t0

µ(1� ✏)

10

µ

Figure 1: The set B (red)

The key step in the proof of (4.6) is an estimate based on large deviations theory,
for which some familiarity with this area and in particular Mogulski’s theorem
is needed; we refer to Dembo and Zeitouni (2010) for the general mathematical
theory and to Asmussen and Ste↵ensen (2020, Section XIII.4) for an elementary
introduction stressing applications of the type to follow. Define B ⇢ [0, 1]⇥ R as

B =
�
(t, y) : t0  t  1, 0  y  µ(1� ✏1)t

 
,

cf. Fig. 1 and let ⇠n(t) be the C[0, 1] function obtained by linear interpolation
between the points SX

k
/n, k = 0, 1, . . . , n. Let Bn be the event that (t, ⇠n(t)) 2 B

for some t. The most likely way for Bn to occur is by ⇠n to follow the blue-dotted
path, and the probability for this to occur is in the logarithmic sense e�nJ0 where
J0 = t0

⇤(µ(1� ✏1)) with (✓) = logEe✓X the cumulant function of X (defined for
✓ < 0) and ⇤(z) its convex conjugate (strictly positive for z < µ). Thus, for large
n, we have the estimate

P(Bn) = P(SX

k
 µ(1� ✏)k for some nt0  k  n)  e�nJ

, (4.7)

for some arbitrarily chosen J 2 (0, J0).
Given ✏ > 0 such that �⇤ defined by 1+�⇤ = (1+�)(1� ✏) is strictly positive, we

choose ✏1 > 0 and t0 2 (0, 1) such that (1� t0)(1� ✏1) > 1� ✏/2. For n su�ciently
large, we then have on B

c

n
that

S
⇧
n
� ⇧nt0

+ · · ·+ ⇧n �
nt0

nt0 + d
(1� t0)µ(1� ✏1)n > (1� ✏)n
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and hence that Sn  S
X

n
� (1 + �

⇤)nµ. Therefore for u su�ciently large,

P(Ac

3) = P(S⇧
n
 (1� ✏)nµ for some n � u

⌘)



1X

n=u⌘

P(Bn) = O(e�u
⌘
J) = o(F I(u)).

5 Proofs for the bayes-evp model in the gamma-
gamma case

Next we wish to study how the solvency of the insurance company is a↵ected if the
company sticks to the static expected value premium principle, Hn = (1+ �)H0 for
all n, when a Bayesian structure is present in the claims. In this case, we proceed
with the conditional setup as in (3.2) and (5.13) with

Sn =
nX

k=1

�
Xk � (1 + �)H0

�
= �n(1 + �)H0 +

nX

k=1

Xk.

As consequence of the constant premium (1 + �)H0 in the bayes-evp model, two
things can happen. 1) The net profit condition is not satisfied: (1 + �)H0 < E⇣ [X],

which for the scale-family happens when ⇣ < c = E1[X]
(1+�)H0

. Ruin is then certain. 2)

The net profit condition is satisfied: (1+�)H0 � E⇣ [X] when ⇣ � c. Consider (3.2),
reduced for this case to:

1

n
log

�
E⇣ [e

aSn ]
�
= �a(1 + �)H0 + ⇣(a).

Hence, �⇣(a) = �a(1+�)H0+⇣(a), where �⇣(0) = 0, �0

⇣
(0) = �(1+�)H0+E⇣ [X] 

0, and �00

⇣
(a) = 

00

⇣
(a) > 0. So by Glynn and Whitt (1994), when the net premium

condition is satisfied, the adjustment coe�cient R⇣ exists as the solution of

�⇣(R⇣) = �R⇣(1 + �)H0 + ⇣(R⇣) = 0. (5.1)

The proposition next tells us how the adjustment coe�cient acts asymptotically
when ⇣ approaches the threshold c from upwards and when ⇣ goes to infinity.

Proposition 5.1. R⇣ in (5.1) satisfies

R⇣ ! cd(⇣ � c), as ⇣ # c, (5.2)

where d = 2(1 + �)H0/
00

1(0). Futher, if either 1(a) " 1 as a " a
⇤

1, or 1(a) < 1

for all a < 1, then R⇣/⇣ ! 1 as ⇣ " 1.

Proof. In terms of S(⇣) = R⇣/⇣, we can write (5.1) as

1(S(⇣)) = ⇣S(⇣)(1 + �)H0. (5.3)

We first prove the lower bound asymptotic. Criticality of c means that there the
drift is 0, hence

0 = �
0

c
(0) =

1

c

0

1(0/c)� (1 + �)H0,

10



a
⇤

1

Figure 2: Illustration of 1(s) and s 7! ⇣rs.

which leads to

0

1(0) = c(1 + �)H0. (5.4)

By the implicit function theorem, R⇣ and hence S(⇣) is C1 on (c,1). Di↵erenti-
ating both sides of (5.3), we get

S
0(⇣)01(S(⇣)) = (S(⇣) + ⇣S

0(⇣))(1 + �)H0.

Letting ⇣ = c and using 0 = Rc = S(c) together with (5.4) this gives S
0(c)c(1 +

�)H0 = 0 + cS
0(c)(1 + �)H0, a tautology. Thus we need to di↵erentiate once more

and get

S
00(⇣)01(S(⇣)) + S

0(⇣)2001(S(⇣)) = (S 0(⇣) + S
0(⇣) + ⇣S

00(⇣))(1 + �)H0.

Evaluate in ⇣ = c to get

S
00(c)c(1 + �)H0 + S

0(c)2001(0) = (2S 0(c) + cS
00(c))(1 + �)H0.

Rearranging yields

S
0(c) = d where d =

2(1 + �)H0


00

1(0)
. (5.5)

Hence, S(⇣) behaves linearly when ⇣ approaches c, that is (5.2) holds.
For the upper asymptotics, we take another look at (5.3). For a fixed ⇣, S(⇣) is

the point > 0 at which the convex function 1(s) intersects the line s 7! ⇣rs where
r = (1 + �)H0. The claim then immediately follows by graphical inspection (see
Figure 2), which also gives S(⇣) ! a

⇤

1 under the assumptions, i.e. R(⇣) ⇠ a
⇤

1⇣.

Prior to the proof of Theorem 3.3, we need the following lemma.

Lemma 5.2. There is a C� > 0 and A > 0 such that  ⇣(u) � C�e�R⇣u for all u � 0
and all c  ⇣  c+ A. Further,  ⇣(u)  e�R⇣u for all u � 0 and all c  ⇣ < 1.

Proof. The upper bound is just the standard Lundberg inequality. The lower bound
follows by a small modification of the arguments in Asmussen and Albrecher (2010,
p. 93) provided we can show

C� = inf
c⇣c+A

C�(⇣) > 0 where C�(⇣) = inf
x�0

G⇣(x)R
1

x
eR⇣(y�x) G⇣(dy)

. (5.6)

11



where G⇣ is the distribution of Y(⇣) = X(⇣) � (1 + �)H0 = X(1)/⇣ � (1 + �)H0. To
this end, choose A with R⇣/⇣  " for all c  ⇣  c+ A (possible by (5.2)), and let
x⇣ = ⇣(x+ (1 + �)H0). Then

Z
1

x

eR⇣(y�x)
G⇣(dy) = P(Y(⇣) > x)E

⇥
exp

�
R⇣(Y(⇣) � x)

 ��Y(⇣) > x
⇤

= G⇣(x)E
⇥
exp

�
R⇣(X(1) � x⇣)/⇣

 ��X(1) > x⇣

⇤

 G⇣(x)E
⇥
exp

�
✏(X(1) � x⇣)

 ��X(1) > x⇣

⇤
 BG⇣(x).

This gives the result with C� = 1/B, due to the assumption that appears in Theo-
rem 3.3.

Proof of Theorem 3.3. Let again c be the threshold for the net profit condition
to be satisfied. The unconditional ruin probability, described by the law of total
probability, can then be split into a sum,

 (u) =

Z
c

0

 ⇣(u)P(Z 2 d⇣) +

Z
1

c

 ⇣(u)P(Z 2 d⇣). (5.7)

Let the first part with area of integration (0, c) be denoted  ⇣<c(u) and the second
part with area of integration [c,1) be  ⇣�c(u).

Obviously,  ⇣<c(u) is constant as

 ⇣<c =  ⇣<c(u) =

Z
c

0

P(Z 2 d⇣) = P(Z < c).

More interesting is the behaviour of  ⇣�c(u). Recall that in this region, the
adjustment coe�cient (5.10) exists. Therefore, as stated in Lemma 5.2, the condi-
tional ruin probability  ⇣(u) is upward bounded by e�R⇣u for u � 0 and ⇠ � c. The
integral representing  ⇣�c can likewise be upward bounded as follows

Z
1

c

 ⇣(u)P(Z 2 d⇣) 

Z
1

c

e�R⇣uP(Z 2 d⇣) =

Z
1

c

e�R⇣ufZ(⇣)d⇣.

If we take particular notice of the structure of the integral on the right side, namely

I1(u) =

Z
1

c

e!1(⇣)u!2(⇣)d⇣,

where !1(⇣) = �R⇣ and !2(⇣) = fZ(⇣), then we recognise I1(u) as a Laplace in-
tegral, using the terminology of Orszag and Bender (1978, Sections 6.2-6.3). Its
asymptotics can easily be evaluated by Laplace’s method (the needed di↵erentia-
bility properties for !2 hold by assumption and were noted above for !1). We only
intend to sketch the idea here. For a rigorous treatment, we point to the reference
above. Integration by parts yields

Z
1

c

e!1(⇣)u!2(⇣)d⇣ =
h1
u
·
!2(⇣)

!
0

1(⇣)
· e!1(⇣)u

i1
c

�
1

u

Z
1

c

@

@⇣

⇣
!2(⇣)

!
0

1(⇣)

⌘
· e!1(⇣)ud⇣.

12



As !1(⇣),!0

1(⇣),!2(⇣) are presumed to be continuous functions on [c,1), such that
!
0

1(⇣) 6= 0 for all ⇣ � c and !2(c) 6= 0, and it can be shown that

1

u

Z
1

c

@

@⇣

⇣
!2(⇣)

!
0

1(⇣)

⌘
· e!1(⇣)ud⇣ = o

✓h1
u
·
!2(⇣)

!
0

1(⇣)
· e!1(⇣)u

i1
c

◆
.

Hence

I1(u) ⇠
h1
u
·
!2(⇣)

!
0

1(⇣)
· e!1(⇣)u

i1
c

, as u ! 1.

Note that as consequence of Proposition 5.1 we have

!2(⇣)

!
0

1(⇣)
! 0 and e!1(⇣)u ! 0, as ⇣ ! 1. (5.8)

So we arrive at

I1(u) ⇠ lim
⇣#c

�1

u
·
!2(⇣)

!
0

1(⇣)
e!1(⇣)u =

1

u
·
!2(c)

cd
,

where d is specified in Proposition 5.1. This leads to the following logarithmic
limsup inequality:

lim sup
u!1

log( ⇣�c(u))

� log(u)
 1.

In similar fashion, from Lemma 5.2 we know that for a given A > 0 the conditional
ruin probability is downward bounded by  ⇣�c(u) � C�e�R⇣u for u � 0 and c 

⇠  c + A, where C� > 0 by assumption. This translates into the inequality for
 ⇣�c(u):

 ⇣�c(u) �

Z
c+A

c

 ⇣(u)P(Z 2 d⇣) � C�

Z
c+A

c

e�R⇣ufZ(⇣)d⇣.

We are again faced with the structure of a Laplace integral,

I2(u) =

Z
c+A

c

e!1(⇣)u!2(⇣)d⇣,

with the same !1(·) and !2(·) as in (??), but with di↵erent area of integration.
Similar arguments lead to

I2(u) ⇠
h1
u
·
!2(⇣)

!
0

1(⇣)
· e!1(⇣)u

ic+A

c

, as u ! 1.

As
!2(c+ A) 2 [0,1), !1(c+ A) < 0 and !

0

1(c+ A) < 0 exists

we have that once again that

I2(u) ⇠
1

u
·
!2(c)

cd
.

This correspondingly yields the logarithmic liminf inequality:

lim inf
u!1

log( ⇣�c(u))

� log(u)
� 1,

which concludes the proof.
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The intuition behind the Laplace’s method is that as !1(⇣) = �R⇣ is mono-
tonically decreasing, it takes on its greatest value in ⇣ = c. So it is only the
neighbourhood of c that contributes to the integral asymptotically.

Now we return to gamma-gamma case with cumulant generating function

⇣(a) = ↵ log
⇣

⇣

⇣ � a

⌘
= �↵ log(1� a/⇣) = 1(a/⇣), for a < ⇣. (5.9)

When F⇣ is gamma, the net premium condition is satisfied if ⇣ � c where c = ↵0�1
(1+�)�0

,

cf. (A.1).

Lemma 5.3. In the gamma-gamma case, (5.1) has solution

R⇣ =
⇣
W0(�c⇣e

�c⇣)

c⇣
+ 1

⌘
⇣, if ⇣ � c. (5.10)

Proof. For the conditional gamma distribution, the cumulant generating function
is given in (5.9), so we can write equation (5.1) as

�R⇣(1 + �)H0 + ↵ log
⇣ 1

1�R⇣/⇣

⌘
= 0.

Rearranging yields �c⇣e�c⇣ = xex, where

c⇣ =
⇣

↵
(1 + �)H0 � 1 and x = �c⇣(1�R⇣/⇣) 2 [0, 1].

The Lambert-W function is defined as the functional inverse of f(w) = wew and
thus gives us

x = W0(�c⇣e
�c⇣).

As explained in Corless et al. (1996), there are two possible branches of the Lambert-
W function, an upper (indexed by 0) and a lower (indexed by -1). As x 2 [0, 1], the
relation xex is described by the upper branch, conversely, as c⇣ � 1, the relation
�c⇣e

�c⇣ is described by the lower, which is why W0 is not the inverse in the latter
case. Substituting back yields the adjustment coe�cient (5.10).

In terms of the terminology and notation of Theorem 3.3, we note that obviously

!1(⇣) = �

⇣
W0(�c⇣e

�c⇣)

c⇣
+ 1

⌘
⇣ and !2(⇣) =

�
↵0

0

�(↵0)
⇣
↵0�1e��0⇣ , (5.11)

satisfies the assumption of Theorem 3.3. Further we have

!
0

1(⇣) = �
W0(�c⇣e

�c⇣)(1� c⇣)

c⇣(W0(�c⇣e
�c⇣) + 1)

� 1.

As a
⇤

1 = 1 and 1(a) ! 1 as a " a
⇤

1, we learn by Proposition 5.1 that !0

1(⇣) ⇠ ⇣

when ⇣ ! 1.
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Now we only need to show that for a gamma(↵, 1) distribution, the hazard rate
is eventually bounded away from zero. To this end, note that

F 1(x) =

Z
1

x

1

�(↵)
y
↵�1e�y dy ⇠

1

�(↵)
x
↵�1e�x

, when x ! 1.

This is asymptotically reflected in the hazard rate as follows,

f1(x)

F 1(x)
⇠ 1, when x ! 1, (5.12)

which concludes proving Corollary 3.4.

Example 1 (Half-normal). Consider the scale family set-up with F⇣ being the
half-normal distribution (the absolute value of a standard normal random variable).
Then F⇣ has density

f⇣(x) = ⇣

r
2

⇡
e�⇣

2
x
2
/2
,

and we have 1(a) = log 2 + a
2
/2 + log�(a) with a

⇤

1 = 1. Note that the hazard
rate has asymptotics

f1(x)

F 1

⇠ x.

As the hazard rate asymptotically behaves like the identity, this ensures the condi-
tion on X(1) in Theorem 3.3. For any prior di↵erentiable on [c,1) with fZ(c) 6= 0,
the asymptotic ruin probability is given by Theorem 3.3.

Example 2 (Inverse Gaussian). Consider the inverse Gaussian(�⇣ , µ⇣) distribution
with density

f⇣(x) =

r
�⇣

2⇡x3
exp

n
�
�⇣

2µ2
⇣

x�
�⇣

2x
+
�⇣

µ⇣

o
.

Note that when �⇣ = �/⇣ and µ⇣ = µ/� for µ,� > 0, the distribution belongs to
the scale family, with c.g.f.

1(a) =
�

µ

⇣
1�

r
1�

2µ2

�
a

⌘
. (5.13)

This is non-steep at a⇤1 = �/2µ2, more precisely with limit 1(a⇤1) = �/µ. The upper
asymptotics of Proposition 5.1 does therefore not hold in this case. Instead, we are
able to solve for R⇣ explicitly. For the inverse Gaussian distribution (5.1) becomes

�R⇣(1 + �)H0 +
�

µ

⇣
1�

s

1�
2µ2

�

R⇣

⇣

⌘
= 0.

Rearranging and solving for roots, easily leads to

R⇣ = 2
�

µ

�
(1 + �)H0⇣ � µ)

�

(1 + �)2H2
0⇣

.
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Note that R⇣ ! 2 �

µ(1+�)H0
, so a potential prior needs to go towards zero quicker than

R⇣ turns flat. Put di↵erently, convergence of the first limit in (5.8) is a criterium
for a potential prior in order for Theorem 3.3 to hold for the inverse Gaussian
distribution.

We further need the existence of ", B > 0 such that

E[e"(X(1)�x)
|X(1) > x]

=
e�"xe�/µ��/✓

⇣
�
⇣
�

q
�

x

⇣
x

✓
� 1

⌘⌘
+ e2�/✓�

⇣
�

q
�

x

⇣
x

✓
+ 1

⌘⌘⌘

�
⇣
�

q
�

x

⇣
x

µ
� 1

⌘⌘
+ e2�/µ�

⇣
�

q
�

x

⇣
x

µ
+ 1

⌘⌘

 B

for all x > 0, where ✓ =
p
�µp

��2"µ2
� µ. Note: JT: Not sure

that I believe this to

be true. Søren, can

you ”gennemskue” if

any " and B satisfy

this criteria? Oth-

erwise, we have no

upwards bound on

the ruin prob

6 Properties of the conditional ruin probability
in the bayes-cred model.

In the bayes-cred model, we have already in Theorem 3.5 stated that the limit
in (3.2) holds with (3.4). In the following we want to study the properties of this
�⇣(a).

Proposition 6.1. (i) �⇣ is convex with �0(0) = ��E⇣X < 0.

(ii) If �⇣(a⇤⇣) > 0 the solution R⇣ 2 (0, a⇤
⇣
] of (5.13) exists and  ⇣(u) ⇠log e�R⇣u

as u ! 1.

(iii) If �⇣(a⇤⇣) < 0 then  ⇣(u) log e�a
⇤
⇣u as u ! 1. Further, if P⇣(X1 > x) ⇠log

exp(�⇣x) where ⇣  a
⇤

⇣
, then  (u) ⇠log exp(�a

⇤

⇣
u).

Proof. In (i), convexity is clear either because � is a limit of convex functions or
by direct inspection: ⇣

�
exp

�
a[1� (1 + �)z]

 �
is convex for any z, hence so is any

mixture. That �0(0) = ��EX < 0 follows from simple calculus. Part (ii) then
follows since if �⇣(a⇤⇣) � 0, the existence and uniqueness of R⇣ 2 (0, a⇤

⇣
) is clear.

For (iii), let S
b

n
= Sn + nb where 0 < ��⇣(a⇤⇣)/a

⇤

⇣
< b < ��⇣(a⇤⇣)/a

⇤

⇣
+ ✏ as

�⇣(a⇤⇣) < 0. Then

1

n
log

�
EeaSb

n
�
! �

b

⇣
(a) = �⇣(a) + ab when n ! 1.

By convexity of �⇣ argued in (i), �⇣(a⇤⇣) > �
0

⇣
(0)a⇤

⇣
. The function �b

⇣
must also be

convex with
�
b

⇣

0

(0) = �
0

⇣
(0) + b < �

0

⇣
(0)� �⇣(a

⇤

⇣
)/a⇤

⇣
+ " < 0,

for " small enough. Further, by construction of b, lima"a⇤⇣
�
b

⇣
(a) � 0. Hence a

solution R
b

⇣
2 (0, a⇤

⇣
] of �b

⇣
(Rb

⇣
) = 0 exists. All other conditions of Glynn and Whitt

(1994) are clear, and so we can conclude that

 ⇣(u)   
b

⇣
(u) ⇠log e�R

b
⇣u.
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The upper bound now follows by letting ✏ # 0 since then R
b

⇣
! a

⇤

⇣
.

If we further assume that P(X1 > x) ⇠log exp(�⇣x), then

 (u) � P(X1 > (1 + �)H0 + u) ⇠log exp(�⇣((1 + �)H0 + u))

⇠log exp(�⇣u) � exp(�a
⇤

⇣
u).

Remark 6.2. The assumption P⇣(X1 > x) ⇠log exp(�⇣x) is equivalent to P⇣(X1 >

x) = exp
�
�⇣x(1+o(1))

 
which holds in particularly when the distribution function

takes on the shape P⇣(X1 > x) = exp(�⇣x)x↵
L(x) where ↵ 2 R and L(x) is slowly

varying.

Corollary 6.3. If a⇤
⇣
= 1 and F⇣ has unbounded support, then �⇣(a) " 1 as a " a

⇤

⇣
.

In particular, the adjustment coe�cient exists.

Proof. The unbounded support implies that ⇣(a)/a " 1 as a " a
⇤

⇣
. Split the

domain of integration in (3.4) into two; (0, z0) og (z0,1) with z0 = 1/(1 + �), i.e.
�⇣(a) = I1(a) + I2(a) where

I1(a) =

Z
z0

0

e�t
⇣

⇣
a
⇥
1� (1 + �)t

⇤⌘
dt, I2(a)

Z
1

z0

e�t
⇣

⇣
a
⇥
1� (1 + �)t

⇤⌘
dt.

Due to monotone convergence, using that 1 � (1 + �)z > 0 for z 2 (0, z0), we get
I1(a)/a ! 1 as a ! 1, in particular I1(a) ! 1. Further by convexity of ⇣ and

0

⇣
(0) = µ(⇣) > 0,

I2(a) > �
0

⇣
(0)a⌘, where ⌘ =

Z
1

z0

e�z
⇥
(1 + �)z � 1

⇤
dz > 0.

Putting these estimates together gives �⇣(a) " 1.

The corollary above has the implication, that if �⇣(a) " 1 then the adjustment
coe�cient must exist.

Example 3 (Truncated exponential). Consider the case where the reference mea-
sure �(dx) in (2.3) is uniform on (0,1). Then the normalisation function is

(⇣) = log
⇣Z 1

0

exp(�⇣x)dx
⌘
= log

⇣1� e�⇣

⇣

⌘
, �1 < ⇣ < 1.

For ⇣ > 0, F⇣ becomes the exponential(⇣) distribution truncated to having support
(0, 1). The prior has kernel

fZ(⇣; s1, s2) /
⇣

⇣

1� e�⇣

⌘s1

e
s2⇣ ,

for ⇣ 2 R and suitable parameters (s1, s2) 2 {R+
⇥ R+ : s2 < s1}. The conditional

cumulant generating function is

⇣(a) = (⇣ + a)� (⇣) = log
⇣

⇣

⇣ + a
·
exp(⇣ + a)� 1

exp(⇣)� 1

⌘
. (6.1)
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The form of ⇣(a) implicates that �⇣(a) in (3.2) cannot be found explicitly. However,
a
⇤

⇣
= 1 and 

0

⇣
(0) < 0, ⇣(a) ⇠ a ! 1 as a ! 1, so by convexity R⇣ always

exists. To get an idea on the shape of �⇣(a), see Figure 3 (left panel).
Solving numerically for the adjustment coe�cient, R⇣ , as a function of ⇣ leads to

Figure 3 (right panel). Here we observe that the adjustment coe�cient is smallest
for numerically low values of ⇣. Intuitively, for ⇣ ! �1 the truncated exponential
distribution will tend to the degenerate distribution in 0. As the claim size then is
constant, all risk is eliminated and, consequently, the ruin probability is 0. Similarly,
when ⇣ ! 1, the truncated exponential distribution will tend to the degenerate
distribution in 1, also yielding a ruin probability of 0. Hence, R⇣ does not vary
monotonically from 0 to 1 as in the gamma-gamma case, but has a minimum at
some ⇣⇤.
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Figure 3: Left panel: The function �1(a) for the exponential truncated distribution
and � = 0.1, 0.5, 2 from top to bottom. Right panel: R⇣ as function of ⇣ for � = 0.5.

Example 4 (Rayleigh). Consider the case where the reference measure is Rayleigh,
i.e. �(dx) = xe�x

2
/2 dx. The exponentially tilted distributed is then

f⇣(x) = x exp(�x
2
/2� ⇣x� (⇣)),

where

(⇣) = log
⇣Z 1

0

x exp(�x
2
/2� ⇣x)dx

⌘
= log

�
1 +

p
2⇡⇣ exp(⇣2/2)(�(⇣)� 1)

�
,

using integration by parts and square completion. The prior is then of shape

fZ(⇣; s1, s2) /
exp(�s1⇣)

(1 +
p
2⇡⇣ exp(⇣2/2)(�(⇣)� 1))s2

, for ⇣ 2 R and s1, s2 2 R+.

The conditional cumulant generating function can be expressed in terms of the
normalisation function,

⇣(a) = (⇣ + a)� (⇣)

= log

✓
1 +

p
2⇡(⇣ + a)e(⇣+a)2/2(�(⇣ + a)� 1)

1 +
p
2⇡⇣e⇣2/2(�(⇣)� 1)

◆
.

(6.2)
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For conditionally Rayleigh distributed claim sizes, the limit function in (3.2) can
be rewritten as

�⇣(a) = � log(1 +
p
2⇡⇣e⇣

2
/2(�(⇣)� 1) +

1

a(1 + �)
exp

⇣
�

a+ ⇣

a(1 + �)

⌘
⇥

Z
⇣+a

�1

exp
⇣

y

a(1 + �)

⌘
log(1 +

p
2⇡yey

2
/2(�(y)� 1)dy.

(6.3)

In the left panel of Figure 4, �1(a) is depicted for di↵erent values of �. As
⇣(a) for the Rayleigh distribution has a

⇤

⇣
= 1 and the Rayleigh distribution has

unbounded support, Corollary 6.3 states that an adjustment coe�cient will exist.
Figure 4, right panel, shows R⇣ solved numerically. As for the truncated exponential
case, there is a minimum at some ⇣⇤ with R⇣⇤ > 0, and similar remarks as there
apply.
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Figure 4: Left panel: The function �1(a) for the Rayleigh distribution and � =
0.1, 0.5, 2 from top to bottom. Right panel: R⇣ as function of ⇣ for � = 0.5.

7 Proofs for and examples in the bayes-cred model

Lemma 7.1. As � ! 1, it holds that E
⇥
e��(1�✏)Z ; Z  B

⇤
⇠log Ee��Z. Further

Ee��(1±✏)Z
⇠ (1 +O(✏))Ee��Z for 0 < ✏ < 1/2.

Proof. Choose 0 < A < B < 1 with P(A < Z  B) > 0. Then the first statement
follows from

Ee��Z
� e��AP(A < Z  B) , E

⇥
e��(1�✏)Z ; Z  B

⇤
 e��B

. (7.1)

For the second, we may assume B > 4A and get

E
⇥
e��(1�✏)Z ; Z  B

⇤
 e✏�BE

⇥
e��Z ; Z  B

⇤
 e✏�BEe��Z

and, for � >???,

E
⇥
e��(1�✏)Z ; Z > B

⇤
 e��B/2

 e�2�A = o
�
Ee��Z

�
(7.2)

where the last step in (7.2) follows from (7.1). Combining these estimates give

lim sup
�!1

Ee��(1�✏)Z

Ee��Z
 1 + ✏B .
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Noting that Ee��(1�✏)Z
� Ee��Z completes the proof for Ee��(1�✏)Z . The one for

Ee��(1+✏)Z follows by replacing � by �(1 + ✏)/(1� ✏).

Proof of Theorem 3.6. Let  H

⇣
(u) be the ruin probability when H0 in the credibility

premium (1.2) is replaced by H. The scale parameter property of ⇣ is reflected in

the conditional ruin probability as  0
⇣
(u) =  

0
1(⇣u) and  ⇣(u) =  

H0/⇣

1 (⇣u).
Then obviously  H

⇣
(u)   

0
⇣
(u) for all H � 0 and u > 0. Further, for a given

0 < ✏ < R1, Corollary 7.3 and (7.3) implies that there exists an u+ < 1 such that

log 0
1(u)  �(R1 � ✏)u,

for u � u+. Therefore we can find C+ < 1 such that

 
0
1(u)  C+e

�(R1�✏)u
,

for all u � 0. We then get

 (u) =

Z
1

0

 ⇣(u)fZ(⇣) d⇣ 

Z
1

0

 
0
1(⇣u)fZ(⇣) d⇣



Z
1

0

C+e
�(R1�✏)u⇣

fZ(⇣) d⇣ ⇠log Ee�uR1Z ,

where we used Lemma 7.1 in the last step.
Regarding the lower bound, we first note that  H0/⇣

1 (u) �  
H0

1 (u) =  1(u) for
all ⇣ 2 (0, 1) and u � 0. Hence

 (u) �

Z 1

0

 ⇣(u)fZ(⇣) d⇣ =

Z 1

0

 
⇣H0

1 (⇣u)fZ(⇣) d⇣ �

Z 1

0

 1(⇣u)fZ(⇣) d⇣.

Similarly as above, we can find C� > 0 such that  1(u) � C�e�(R1+✏)u for all u � 0,
and so

 (u) � C�

Z 1

0

e�(R1+✏)u⇣
fZ(⇣) d⇣ ⇠log Ee�(R1+✏)uZ

⇠log Ee�uR1Z ,

where we used Lemma 7.1 twice.

We now return to our key example with F⇣ being gamma(↵, ⇣). The cumulant
generating function is then given by (5.9), and therefore ↵

⇤

⇣
= ⇣ < 1. First

we study the existence of an adjustment coe�cient. Recall for the following that
� = �

R
1

0 e�y log(y) dy is Euler’s constant.

Proposition 7.2. It holds that

�⇣(a
⇤

⇣
) = lim

a"a⇤⇣
�⇣(a) = ↵(� � log(1 + �)),

�
0

⇣
(a⇤

⇣
�) = lim

a"a⇤⇣
�
0(a) =

↵

1 + �

Z
1

0

1

y
e�y dy � 1 = 1.
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Proof. For the gamma-case, the limit in (3.2) is

�⇣(a) = ↵

Z
1

0

e�y log

✓
⇣

⇣ � a(1� (1 + �)y)

◆
dy.

Evaluating in a
⇤

⇣
= ⇣ yields

�⇣(⇣) = �↵

Z
1

0

e�y log
�
(1 + �)y

�
dy = ↵

⇣Z 1

0

e�y log(y) dy � log(1 + �)
⌘

where we recognise the integral expression as �. The rest of the proof is easy
calculus.
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Figure 5: The function �1(�) for 0  �  1, ↵ = 1 and � = 0.4, 0.781, 1.5 from top
to bottom.

The situation is illustrated in Figure 5 for ⇣ = 1. That �0

⇣
(1�) = 1 is not

visible at the given resolution, but is confirmed by a zooming in omitted here, and
actually, this feature is unimportant for the following. It follows that �⇣(a⇤⇣) > 0 if
and only if log(1 + �) < �, i.e. � < e� � 1 = 0.781 . . ..

Corollary 7.3. If � < e� � 1, then a solution R⇣ 2 (0, ⇣) of (5.13) exists and
 ⇣(u) ⇠log e�R⇣u as u ! 1. If � > e� � 1, then  ⇣(u) ⇠log e

�⇣u.

Proof. Follows from Proposition 6.1, since P⇣(X1 > x) ⇠log exp(�⇣x) as

log(P(X1 > x)

log(exp(�⇣x))
=

log(
R

1

x

⇣
↵

�(↵)y
↵�1 exp(�⇣y)dy)

�⇣x

= 1�
↵� 1

⇣x
! 1, as x ! 1,

using the L’Hospital’s rule.

The gamma distribution belongs to the scale family where ⇣ simply acts as a
scale parameter, cf. (5.9). This relation between the cumulant generating functions
for a general ⇣ and ⇣ = 1 implies �⇣(a) = �1(a/⇣) or equivalently �⇣(⇣a) = �1(a).
So �1(R1) = 0 entails �⇣(⇣R1) = 0 and thus

R⇣ = ⇣R1, (7.3)
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provided the adjustment coe�cient exists. The gamma-gamma case obviously sat-
isfies the conditions of Theorem 3.6, which for a gamma(↵0, �0) prior gives that

 (u) ⇠log E[e�uR1Z ] ⇠log
1

u↵0

,

which provides the arguments for Corollary 3.7

Example 5 (Half-normal). Now return to the half-normal distribution in Example
1. By Corollary 6.3, R1 always exists and so Theorem 3.6 applies.

If the prior density is taken as fZ(⇣) = f⇣0(⇣) = ⇣0

p
2/⇡e�⇣

2
⇣
2

0
/2 for some ⇣0, we

have fZ(⇣) ! ⇣0

p
2/⇡ as ⇣ # 0. Up to constant, this is the same as for a gamma

distribution with ↵ = 1, and we can conclude that  (u) ⇠log 1/u.

Example 6 (Inverse Gaussian). For the inverse Gamma distribution, we recall that
1(a) given by (5.13) is non-steep at a⇤1 = �/2µ2. This gives �1(a) = 1 for a > a

⇤

1

and < 1 for a  a
⇤

1. Thus, R1 will exists if and only if

0   1(a
⇤

1) =

Z
1

0

e�t
�

µ

⇣
1�

p
1� [1� (1 + �)t]

⌘
dt

=
�

µ

Z
1

0

e�t
�
1�

p
1 + �

p
t
�
dt =

�

µ

�
1�

p
1 + ��(3/2)

�
,

meaning �  4/⇡ � 1 = 0.273 . . .. Equality is, however, excluded for Theorem 3.6
to apply since 01(a

⇤) = 1 violates the conditions of Glynn and Whitt (1994).
When the inverse Gaussian (�, µ) distribution is instead used as prior, inspection

of (5.13) shows that Ee�aZ
⇠log exp

�
�
p

2�µ2a/µ
 
. Thus if the F⇣ satisfy the

assumptions of Theorem 3.6, we can conclude that  (u) ⇠log e�C
p
u where C =p

2�µ2R1/µ.

Example 7. Consider the lognormal(µ, �2) distribution. This family fits into the
scale family set-up corresponding to ⇣ = e�µ but due to all exponential moments
being infinite, we can not use it to model claim sizes. When using it as prior,
Corollary 2.3 of AJRN gives Ee�aZ

⇠log e�(log a)2/2�2

and thus  (u) ⇠log e
�(log u)2/2�2

.
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A Calculations for the gamma-gamma model

The conjugate prior is likewise gamma(↵0, �0) leading to posterior gamma(↵n, �n)
given X1, . . . , Xn with parameters

↵n = ↵0 + n↵, �n = �0 +
nX

i=1

Xi.

In the following, let

�(b) =

Z
1

0

t
b�1 exp(�t) dt , �(b, z) =

Z
z

0

t
b�1 exp(�t) dt, �(b, z) = �(b)��(b, z)

be the Gamma function, and the lower resp. upper incomplete Gamma function.
The mean and variance as function of the unknown claim parameter are

µ(⇣) = ↵/⇣, �
2(⇣) = ↵/⇣

2
.

The collective premium is then

H0 = E[X] = E
h
↵

Z

i
= ↵

Z
1

0

1

⇣

�
↵0

0

�(↵0)
⇣
↵0�1e��0⇣ d⇣ =

↵�0

↵0 � 1
. (A.1)

Similarly, we can find

�
2 = E

h
↵

Z2

i
=

↵�
2
0

(↵0 � 1)(↵0 � 2)
,

⌧
2 = Var

h
↵

Z

i
= �

2
� µ

2

=
↵
2
�
2
0

(↵0 � 1)(↵0 � 2)
�

↵
2
0�

2
0

(↵� 1)2
=

↵
2
�
2
0

(↵0 � 1)2(↵0 � 2)
,

and so d = �
2
/⌧

2 = (↵0 � 1)/↵ in (1.2). That the Bayes and credibility premiums
coincide is then confirmed since the posterior mean of Z is ↵n/�n and the posterior
mean of X therefore

↵�n

↵n � 1
=
↵(�0 + nXn)

↵0 + n↵� 1
=

n

n+ d
Xn +

d

n+ d
H0, (A.2)

where d = (↵0 � 1)/↵.
Using again (A.1), we get the tail of the unconditional distribution of X as

P(X > x) =

Z
1

0

P(X > x | Z = ⇣)fZ(⇣) d⇣

=

Z
1

0

�(↵, ⇣x)

�(↵)

�
↵0

0

�(↵0)
⇣
↵0�1e��0⇣ d⇣.

Asymptotically �(↵, ⇣x) ⇠ (⇣x)↵�1E(�⇣x), and therefore

P(X > x) ⇠
�
↵0

0 x
↵�1

�(↵0)�(↵)

Z
1

0

⇣
↵0+↵�2e�(�0+x)⇣ d⇣

= k
x
↵�1

(x+ �0)↵0+↵�1
⇠

k

x↵0

.
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for an appropriate k > 0. That is, X has a Pareto-like tail, and this gives im-
mediately that an adjustment coe�cient can not exist in the unconditional model
since

 (u) � P(X1 �H0 > u) ⇠
k

u↵0

.

This estimate may seen quite conservative, but Theorem 3.5 shows that it actually
gives the correct order of magnitude u

�↵0 of  (u).

B Proof of Theorem 3.5

We shall need the following lemma:

Lemma B.1. (a) For n 2 N and d > 0, there is a constant �d such that

nX

k=1

1

k + d
= log

⇣
n+ d

1 + d

⌘
+ �d +O(1/n). (B.1)

(b) For N  j  n
nX

k=j

1

k + d
= log(n/j) +O(1/N), (B.2)

where O(1/N) is uniform in n, j.

Proof. Part (a) is standard for d = 0 (or more generally d 2 N), where �1 = � =
�
R

1

0 log(x)e�xdx = 0.5772 . . . is Euler’s constant. For a general d, let

�n,d =
n�1X

j=1

Z
j+1

j

⇣ 1

j + d
�

1

x+ d

⌘
dx , �d =

1X

j=1

Z
j+1

j

⇣ 1

j + d
�

1

x+ d

⌘
dx.

Then �n,d ! �d which is well-defined since the terms are O(1/j2). This also gives
�d,n = �d +O(1/n).

We can then evaluate the sum in (a) as follows,

nX

k=1

1

k + d
=

Z
n

1

⇣ 1

x+ d

⌘
dx+ �n,d +

1

n+ d
= log

⇣
n+ d

1 + d

⌘
+ �d +O(1/n).

For the sum in (b), assume that j � N and consider

nX

k=j

1

k + d
=

nX

k=1

1

k + d
�

j�1X

k=1

1

k + d

= log
⇣
n+ d

d+ 1

⌘
+ �d +O(1/n)�

⇣
log

⇣
j + d� 1

d+ 1

⌘
+ �d +O(1/j)

⌘

= log
⇣

n+ d

j + d� 1

⌘
+O(1/N),
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where

log
⇣

n+ d

j + d� 1

⌘
= log

⇣
n(1 + d/n)

j(1 + d/j � 1/j)

⌘

= log
⇣
n

j

⌘
+ log(1 + d/n)� log(1 + j/n) = log

⇣
n

j

⌘
+O(1/N).

Proof of Theorem 3.5. The claim surplus can be written out explicitly as

Sn =
nX

k=1

(Xk � ⇧k�1) =
nX

k=1

Xn � (1 + �)
n�1X

k=0

h 1

k + d

kX

j=1

Xj +
d

k + d
µ

i

=
nX

k=1

Xn � (1 + �)
n�1X

j=1

Xj

⇣n�1X

k=j

1

k + d

⌘
� (1 + �)µd

n�1X

k=0

1

k + d
,

which for a fixed N by independence of the Xj wih j < N and j � N gives that

1

n
logE⇣e

aSn =
1

n
logE⇣e

aXn +
1

n
logE⇣e

aB
0
n,N +

1

n
logE⇣e

aB
00
n,N +

1

n
log eaAn , (B.3)

where

An = �(1 + �)µd
n�1X

k=0

1

k + d

B
0

n,N
=

N�1X

j=1

Xj

n
1� (1 + �)

⇣n�1X

k=j

1

k + d

⌘o
,

B
00

n,N
=

n�1X

j=N

Xj

n
1� (1 + �)

⇣n�1X

k=j

1

k + d

⌘o
.

Here the last term in (B.3) is o(1) since An = O(log n) and the first equals
⇣(a)/n ! 0. Also

1

n
logE⇣e

aB
0
n,N 

1

n
logE⇣E{a(X1 + · · ·+XN�1)} =

(N � 1)⇣(a)

n
! 0.

Thus we only are left with studying the third term in (B.3), which by Lemma B.1,
(b) we can write as

1

n
logE⇣


E
n
a

⇣n�1X

j=N

Xj

⇥
1� (1 + �)

�
log((n� 1)/j) +O(1/N)

�⇤⌘o�

=
1

n

n�1X

j=N

⇣

⇣
a
⇥
1� (1 + �)

�
log((n� 1)/j) +O(1/N)

�⇤⌘

=
1

n

n�1X

j=N

⇣

⇣
a
⇥
1� (1 + �) log((n� 1)/j)

⇤⌘
+Rn,N ,

26



where by a suitable version of Taylor’s approximation

|Rn,N |  sup
ba+O(1/N)


0

⇣
(b)a(1 + �)O(1/N).

But X � 0 implies that ⇣(b) � ✓b for some ✓ and hence by convexity 
0

⇣
(b) is

bounded as b ! �1. This implies that Rn,N is another O(1/N) term. Furthermore

1

n

���
N�1X

j=1

⇣

⇣
a
⇥
1� (1 + �) log((n� 1)/j)

⇤⌘��� 
(N � 1)⇣(a)

n
! 0.

and a Riemann sum approximation gives
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⇤⌘

!

Z 1

0

⇣

⇣
a(1� (1 + �) log(1/x)

⌘
dx = �⇣(a) ,

where we substituted t = log(1/x) in the last step.
Putting the above estimates together, we get

lim sup
n!1

���
1

n
logE⇣e

aSn � �⇣(a)
��� = lim sup

n!1

���
1

n
logE⇣e

aB
00
n � �⇣(a)

���

= lim sup
n!1

���
1

n

⇣N�1X

j=1

+
n�1X

j=N

⌘
⇣

⇣
a
⇥
1� (1 + �) log((n� 1)/j)

⇤⌘

+Rn,N � �⇣(a)
��� = lim sup

n!1

|Rn,N | = O(1/N) .

Letting N ! 1 completes the proof.
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List of Corrections

Note: JT: Not sure that I believe this to be true. Søren, can you ”gen-
nemskue” if any " and B satisfy this criteria? Otherwise, we have no
upwards bound on the ruin prob . . . . . . . . . . . . . . . . . . . . 16
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