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1 Introduction.

One aspect of quantum field theory that has important applications to Nature is the study of
fixed points of the renormalization group functions. These are defined to be the non-trivial zeros
of the β-function. Using the location of a fixed point one can compute the values of the renor-
malization group functions there to produce renormalization scheme independent expressions
known as critical exponents, [1, 2, 3, 4]. These quantities govern the dynamics of the phase
transitions in a material. Indeed accurate measurements of the exponents experimentally as
well as the symmetry properties of a material, can equally guide one to the underlying quantum
field theory or spin model describing the dynamics. One property is that more than one theory
can be a valid description of a phase transition. For instance, both a continuum quantum field
theory as well as a discrete spin model with a common symmetry can be valid tools to provide
numerical exponent estimates. The equivalence of both theoretical techniques at a fixed point
is known as universality, [3, 4]. Away from a phase transition each theory will have different
properties and be inequivalent.

One theory that has risen to the fore in this context in recent years is that of the Ising
Gross-Neveu model, [5, 6]. This is primarily due to the belief that it underpins a particular
phase transition in graphene. This material is made up of a sheet of carbon atoms arranged in
a hexagonal lattice. When the two dimensional sheet is stretched it can undergo a transition
from an electrical conductor to what is termed a Mott-insulating phase. On the theoretical side
the Ising Gross-Neveu model can be supplemented with Quantum Electrodynamics (QED) to
describe aspects of other phase transitions. Equally if the basic or Ising Gross-Neveu model
is endowed with extra symmetries it contributes to the understanding of transitions in other
materials. For example, what is termed the chiral Heisenberg Gross-Neveu model is an extension
of the Gross-Neveu model to include an SU(2) symmetry. It is the effective theory for electrons
on a half-filled honeycomb lattice where there is a phase transition between an anti-ferromagnetic
insulating phase and a semi-metallic one [7, 8, 9]. Its criticality properties were studied in [10].
More recently a variation of this version of the Gross-Neveu model, called the fractionalized
Gross-Neveu model, has been developed, [11]. It has a novel spectrum that differs from those of
other Gross-Neveu models and has an associated SO(3) symmetry. What is clear from this set
of emerging variations of the Gross-Neveu universality class is the common theme of the core
interaction being modified to include a non-abelian symmetry. In this respect it is completely
parallel to the extension of QED to include a non-abelian symmetry that equates to Quantum
Chromodynamics (QCD) or Yang-Mills theory with fermions in the fundamental representation
of the Lie group responsible for colour symmetry. The only difference with the Gross-Neveu class
of theories is in the Lorentz structure of the core interaction. As QCD has been studied at length
using a general Lie group symmetry rather than specifying SU(3) at the outset, which is the
group that governs the strong interactions, it seems sensible to develop a programme to calculate
in the Gross-Neveu model with a parallel non-abelian symmetry. Then the properties of the
various physical applications can be deduced by specifying the appropriate group parameters.

This is the main task here. We will consider a generalized Gross-Neveu universality class
with a non-abelian symmetry and calculate the critical exponents of the theory. This will be
achieved by using the critical point large N formalism pioneered in [12, 13, 14] for the nonlinear
O(N) σ model. Here N would correspond to the number of quark flavours in the analogy with
QCD. The elegance of the approach is such that we can deduce the critical exponents in d
spacetime dimensions as a function of the non-abelian symmetry group Casimirs. The fixed
point associated with the formalism is the Wilson-Fisher fixed point in d-dimensions [3]. As the
exponents are renormalization group invariants their ε expansion near 2 and 4 dimensions, where
ε measures the difference in these values from d, will agree with the perturbative evaluation of
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the same exponents in the respective quantum field theories of the universality class. More
usefully since the dimension of interest for the materials application is three, one can determine
several terms of the 1/N series for each exponent. These provide reasonably accurate estimates
for relatively low N when compared to results from other techniques. However, the benefit
of taking the general non-abelian universality class approach is that estimates will be readily
available if a phase transition with a new symmetry is discovered.

The article is organized as follows. Relevant background concerning the generalized Gross-
Neveu universality class is given in Section 2 together with the basic critical point large N
formalism. Subsequently in section 3 we solve the Schwinger-Dyson equations at criticality
at O(1/N2) to produce the fermion anomalous dimension. Various calculational tools that
are necessary for this are reviewed as well. To provide the groundwork for finding the next
order of this exponent, the anomalous dmension exponent of the bosonic field is determined at
O(1/N2) in Section 4. One of the other basic exponents in critical systems is that relating to
the correlation length behaviour and we determine it at O(1/N2) in Section 5. Equipped with
these results, the large N conformal bootstrap formalism at criticality is applied in Section 6 to
deduce the fermion anomalous dimension at O(1/N3). We review our results in Section 7 and
provide concluding remarks in Section 8.

2 Background.

To begin with we recall the Lagrangian of the chiral Heisenberg Gross-Neveu Yukawa theory is,
[9],

LcHGNY = iψ̄iI∂/ψiI +
1

2
∂µπ̃

a∂µπ̃a + g1π̃
aψ̄iIT aIJψ

iJ +
1

24
g2

2 (π̃aπ̃a)2 . (2.1)

which is renormalizable in four dimensions where the two couplings g1 and g2 are dimensionless.
This is a generalization of the Lagrangian studied in [15] and is in the chiral Heisenberg Gross-
Neveu model universality class. The renormalizability dimension is also termed the critical
dimension of the theory. The scalar-fermion interaction includes the group generator T a of the
Lie algebra and the indices take values in the ranges 1 ≤ i ≤ N , 1 ≤ I ≤ Nc and 1 ≤ a ≤ NA where
N is the number of flavours of massless fermions and Nc and NA are the respective dimensions
of the fundamental and adjoint representations of the symmetry group. We note that in [9] the
specific group considered was SU(2). Within our ultimate critical exponents the generators will
manifest themselves through various colour Casimirs such as CF and CA defined by

T aT a = CF , facdf bcd = CAδ
ab (2.2)

where fabc are the structure constants. The scalar field π̃a plays a subtle role in the construction
of the large N expansion but in four dimensions it corresponds to a fundamental propagating
field. The main aspect of the large N critical point formalism of [12, 13, 14] is that in the
approach to criticality at the Wilson-Fisher fixed point the dynamics are driven by the core
interaction of the universal quantum field theory. For (2.1) this is the cubic interaction together
with the fermion kinetic terms. These two terms determine the canonical dimensions of both
fields by ensuring the action is dimensionless in d-dimensions. In effect the universal Lagrangian
at criticality is

LcHGN = iψ̄∂/ψ + gπ̃aψ̄T aψ − 1

2
π̃aπ̃a . (2.3)

where the quadratic term in π̃a is necessary for large N renormalizability. We will omit the
labels i and I for brevity from now on. We say in effect since at criticality there is no coupling
constant in the sense it is conventionally used in perturbation theory. So the critical point
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universal Lagrangian that we will be the foundation for applying the large N critical point
formalism of [12, 13] is

Luniv = iψ̄∂/ψ + πaψ̄T aψ − 1

2g
πaπa (2.4)

where we have rescaled the scalar field π̃a to introduce πa. This Lagrangian (2.4) is renormal-
izable in d-dimensions in the large N formalism [15, 16, 17, 18] where 1/N is the dimensionless
ordering parameter since the perturbative coupling constant is absent at criticality. Ensuring
that the d-dimensional Lagrangian (2.4) has a dimensionless action means that ψ has canonical
dimension 1

2(d − 1) while that of πa is unity. For (2.4) this implies that g is dimensionless in
two dimensions after eliminating the auxiliary field πa producing

L = iψ̄iI∂/ψiI +
g2

2

(
ψ̄iIT aIJψ

iJ
)2

. (2.5)

This is similar to the Ising Gross-Neveu model discussed in [1] and to see the equivalence, one
takes the abelian limit of (2.5) by replacing the group generators with the unit matrix. This is
completely parallel to taking the abelian limit of QCD to produce QED. The dimensionality of
πa at criticality plays a key role in the connection of the universal theory and the Lagrangian of
(2.1). In the latter both couplings are dimensionless in four dimensions similar to the effective
coupling of the 3-point interaction of (2.4). Therefore (2.4) would be strictly non-renormalizable
in four dimensions and the quadratic term in πa would have a dimensionful coupling which would
be the mass. Instead the standard kinetic term and quartic πa interaction of (2.1) would be
relevant. In other words we term the quartic interaction to be a spectator interaction that would
be active solely in four dimensions. Moreover underlying the first two terms of the universal
Lagrangian (2.4) there are an infinite number of Lorentz scalar operators built from combinations
of πa and its derivatives. A finite subset of these extra operators would become relevant in even
integer dimensions and act as interim spectators in the infinite tower of renormalizable quantum
field theories that connect to the universal theory in the neighbourhood of their respective critical
dimensions.

More concretely we now summarize the key aspects of the large N critical point formalsm
for (2.4). In the approach to the fixed point the propagators have the following asymptotic
behaviour in coordinate space, [20],

ψ(x) ∼ Ax/

(x2)α

[
1 +A′(x2)λ

]
, π(x) ∼ C

(x2)γ

[
1 + C ′(x2)λ

]
(2.6)

where the name of the corresponding field is used. The dimensionless quantities A and C are
the coordinate independent amplitudes that will always occur in the combination y = A2C from
the 3-point interaction. The next to leading order terms in (2.6) that involve the exponent λ are
called the corrections to scaling. Here λ will be identified with the correlation length exponent
ν through 1/ν = 2λ. In addition to the canonical dimension the two fields have anomalous
contributions and the respective full dimensions of ψ and πa are

α = µ + 1
2η , γ = 1 − η − χπ (2.7)

where we use d = 2µ for shorthand, [12], and η and χ are the fermion field and vertex anomalous
dimensions respectively. For applications in condensed matter problems the dimension of πa that
is conventionally used is

ηπ = 4 − 2µ − 2(η + χπ) . (2.8)

When λ corresponds to the correlation length exponent its canonical dimension will then be
taken to be (µ − 1). In this respect the leading and next to leading order terms of (2.6) then
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have different dimensions which is the reason for the second set of independent dimensionless
amplitudes A′ and C ′. Each of the exponents that we will compute as well as y will depend
on N , µ and the Lie group Casimir invariants. The dependence on the former means that each
entity has a Taylor series in powers of 1/N that is formally given by

η(µ) =
∞∑
n=1

ηn(µ)

Nn
, y(µ) =

∞∑
n=1

yn(µ)

Nn
(2.9)

for η and y for example and we will determine the first three terms of η for (2.4).

These general considerations cover the basic formalism for the technique introduced in [12,
13, 14]. To determine all bar η3 we can apply the original method [12, 13] that was used for the
Ising Gross-Neveu universality class in [21, 22, 23, 24, 25, 26]. This required solving the skeleton
Schwinger-Dyson equations for the ψ and πa 2-point functions. So the scaling forms of these are
needed given that (2.6) represents the critical point behaviour of the propagator. However one
definition of the 2-point function is that it is the inverse of the propagator in momentum space
and this mapping can be carried out through the Fourier transform. Using the convention given
in [12, 13] which is

1

(x2)α
=

a(α)

22α

∫
k

eikx

(k2)µ−α
(2.10)

where

a(α) ≡ Γ(µ− α)

Γ(α)
. (2.11)

we transform (2.6) to momentum space carry out the inversion and then apply the inverse Fourier
transform. This results in the coordinate space 2-point function asymptotic scaling forms which
are, [20],

ψ−1(x) ∼ r(α− 1)x/

A(x2)2µ−α+1

[
1−A′s(α− 1)(x2)λ

]
π−1(x) ∼ p(γ)

C(x2)2µ−γ

[
1− C ′q(γ)(x2)λ

]
. (2.12)

The presence of the function a(α) in the Fourier transform produces a complicated dependence
on µ and the exponents, leading to the compact functions

p(γ) =
a(γ − µ)

a(γ)
, r(α) =

αp(α)

(µ− α)

q(γ) =
a(γ − µ+ λ)a(γ − λ)

a(γ − µ)a(γ)
, s(α) =

α(α− µ)q(α)

(α− µ+ λ)(α− λ)
. (2.13)

While the large N conformal bootstrap formalism of [14] has its origins in these asymptotic
scaling functions and was applied to the Ising Gross-Neveu model in [22, 23, 26], the extraction
of an expression for η3 derives from the scaling behaviour of the 3-point function. We defer to
a later section for the required technicalities of that formalism.

3 2-point Schwinger-Dyson equation.

Equipped with the asymptotic scaling forms of the full propagators, (2.6) and (2.12), which
represent the behaviour at criticality, we use them to solve the Schwinger-Dyson equations. In
conventional perturbation theory one systematically renormalizes the divergent n-point Green’s
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functions in a renormalizable theory order by order in perturbation theory. This principle is
respected in the large N technique of [12, 13] except that the ordering of graphs in the n-point
functions is achieved by the variable 1/N which is dimensionless across all spacetime dimensions
unlike the perturbative coupling constant. For (2.4) the first few terms in the respective 2-point
functions of the fields are given in Figure 1 where the dotted line represents the fermion and the
wiggly line denotes the πa field. The two loop graphs are the O(1/N2) corrections to the one
loop ones. The counting of powers of N arise from closed fermion loops giving a factor of N
and the πa field. The expansion of the amplitude variable begins at O(1/N) and this translates
into each πa line in Figure 1 carrying a power of 1/N . One key point worth noting concerns
the lack of dressing of lines with self-energy corrections. Contributions from such graphs are
already accounted for in the inclusion of a non-zero anomalous dimension in the power of the
asymptotic scaling forms.

0 = π−1 + +
Π1

0 = ψ−1 + +
Σ1

Figure 1: O(1/N2) corrections to the skeleton Schwinger-Dyson 2-point functions.

At leading order the two equations of Figure 1 equate to

0 = r(α− 1) + CF y + O

(
1

N2

)
0 = p(γ) + TFNy + O

(
1

N

)
(3.1)

where we have included the respective group theory factors which derive from the properties of
T a and

Tr
(
T aT b

)
= TF δ

ab . (3.2)

In this coordinate space representation the one loop graphs require no evaluation. This is because
one integrates over the coordinate of the internal vertices. As the one loop graphs have external
vertices the corresponding terms of (3.1) are the products of the propagators. In this leading
order instance any integration has been effected in the derivation of the scaling forms for the full
2-point functions. The algebraic representation of Figure 1 is (3.1) and to O(1/N) it contains
two unknowns. Using (2.9) and the 1/N expansion of r(α− 1) and p(γ) these are η1 and y1 and
moreover at this order they occur linearly. Thus eliminating y1 between the equations of (3.1)
produces

η1 = − 2Γ(2µ− 1)CF
µΓ(1− µ)Γ(µ− 1)Γ2(µ)TF

. (3.3)

At next order the situation is not as straightforward due to the additional graphs of Figure 1
being divergent which necessitates the introduction of renormalization constants. The formalism
for this was provided in [16, 17] and requires the introduction of a regularization which is achieved
through the shift, [12, 13],

χπ → χπ + ∆ (3.4)
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where ∆ is a small parameter. In effect it equates to an analytic regularization of the propagators
and we emphasize that the spacetime dimension d does not play any role in the regularization
in contrast to coupling constant perturbation theory. Consequently the extension of (3.1) to the
next order has to account for this and so the algebraic representation of Figure 1 becomes

0 = r(α− 1) + CF yZ
2
V (x2)χπ+∆ + 1

2CF [2CF − CA]y2Z4
V Σ1(x2)2χπ+2∆ + O

(
1

N3

)
0 = p(γ) + TFNyZ

2
V (x2)χπ+∆ + 1

2TF [2CF − CA]Ny2Z4
V Π1(x2)2χπ+2∆ + O

(
1

N2

)
(3.5)

in coordinate space where ZV is the vertex renormalization constant. It has the Laurent expan-
sion

ZV = 1 +
∞∑
l=1

l∑
n=1

mln

∆n
(3.6)

where the residues are

mln =
∞∑
i=1

mln,i

N i
. (3.7)

after expanding in powers of 1/N . We follow [16, 17] and restrict to the MS scheme. In (3.5) the
x2 dependence arises from the dimensionality of the integrals in the regularized Lagrangian. As
it stands the various factors prevent the limit to criticality from being taken smoothly. Moreover
the factors associated with the one loop graphs of Figure 1 will give contributions at O(1/N2)
from the expansion of (x2)χπ . This will produce problematic logarithms but these are connected
with the simple poles of the values of the two loop graphs denoted by Σ1 and Π1. In particular
they have the formal structure

Σ1 =
K1

∆
+ Σ′1 , Π1 =

L1

∆
+ Π′1 (3.8)

where Σ′1 and Π′1 are finite. They were computed previously in [20] where the explicit d-
dependent values are available. We note our trace conventions at this stage are the same as [20]
and we use 2 × 2 γ-matrices. To adjust for higher dimensional γ-matrix representations one
simply redefines N using

N =
1

2
dγN (3.9)

where dγ is the dimension of the γ-matrix representation.

x y

z

0

α

γ β ≡ a(α)a(β−1)a(γ−1)
(β−1)(γ−1)

x y

0

µ− α

µ− γ + 1µ− β + 1

Figure 2: Uniqueness rule for scalar-fermion vertex for arbitrary exponents α, β and γ.

The key integration tool for evaluating the graphs in [20] is shown in Figure 2 and is termed
uniqueness or conformal integration for the scalar-Yukawa interaction. There are several ways
to establish the relation provided in Figure 2. One is to use Feynman parameters. In that
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derivation the final integration is over a hypergeometric function and it cannot proceed unless
the uniqueness condition of

α + β + γ = 2µ + 1 (3.10)

is fulfilled. Setting this allows the final integration to be completed which produces the factor
on the right side of Figure 2. A more elegant alternative is to apply a conformal transformation
to the integral which is

xµ →
xµ
x2

, yµ →
yµ
y2

, zµ →
zµ
z2

(3.11)

which implies the mapping

(x/− y/) → − y/(x/− y/)x/
x2y2

= − x/(x/− y/)y/
x2y2

(3.12)

for instance. The consequence is that when applied to strings of contracted γ-matrices the
transformation does not alter the initial string of γ-matrices. In the application to the left hand
side of the equation of Figure 2 the exponent of the scalar becomes (2µ+ 1−α−β−γ). Setting
this to zero allows the z-integration to proceed resulting in the expression on the right hand side
after undoing the initial conformal transformation.

With the availability of the counterterm from the vertex renormalization constant the di-
vergences are removed minimally. However ln(x2) terms remain through two contributions in
each Schwinger-Dyson equation. One is from the power of (x2)2∆ in the O(1/N2) correction.
The other arises from the factor (x2)χπ that is present in the one loop graph. Expanding this
in powers of 1/N the O(1/N) term involves ln(x2). To be able to take the x2 → 0 limit safely
means that the as yet undefined χπ 1 has to be suitably chosen. Doing so to ensure there are no
ln(x2) terms in each Schwinger-Dyson equation at O(1/N2) requires

χπ 1 =
(2CF − CA)µ

2(µ− 1)CF
η1 (3.13)

from the explicit values for the residues which satisfy L1 = − 2K1 and implies the same value
results for both equations. This finally renders the algebraic representation of Figure 1 finite as
well as ensuring that it is scale free. Since the two equations have two unknown variables η2

and y2 that appear linearly, eliminating the latter leads to

η2 =

[
(2µ− 1)CF

(µ− 1)
Ψ(µ)− µCA

2(µ− 1)
Ψ(µ) +

(4µ− 1)(2µ− 1)CF
2µ(µ− 1)2

− 3µCA
4(µ− 1)2

]
η2

1

CF
(3.14)

where we use the shorthand

Ψ(µ) = ψ(2µ− 1) − ψ(1) + ψ(2− µ) − ψ(µ) (3.15)

which involves the Euler ψ function defined by ψ(z) = d ln Γ(z)/dz.

4 πa critical exponent at O(1/N2).

Having established the fermion critical exponent at O(1/N2) the next stage in the large N
formalism is to determine the same quantity for the boson field. In this instance from the
definition (2.7) this requires the vertex anomalous dimension at O(1/N2). While χπ 1 followed
as a corollary to ensuring the 2-point function was finite in the approach to criticality, in order to
proceed to the next order to find χπ 2 by the same method is too intractable. Indeed evaluating
the analogous exponent in other models has not been achieved that way. Instead a more direct
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Figure 3: O(1/N) corrections to vertex function.

approach suffices which is to examine the scaling behaviour of the 3-point vertex in the critical
limit. In other words the O(1/N2) graphs illustrated in Figures 3 and 4 are computed.

In practical terms the diagrams are more straightforward to evaluate in momentum space
than in coordinate space. This is primarily due to simplifications in the application of the
uniqueness rule of [20]. However one can connect the values of graphs in both the coordinate
and momentum space evaluations through the Fourier transform (2.10). Underlying this one
needs to use the momentum space forms of the asymptotic scaling functions which are

ψ(p) ∼ Ãp/

(p2)µ−α+1
, π(p) ∼ C̃

(p2)µ−γ
(4.1)

where we have new momentum independent amplitudes Ã and C̃ with the associated variable
ỹ = Ã2C̃. The explicit value for the latter can be related to the known expansion of y either
via the Fourier transform relation of (2.6) and (4.1) or by repeating the exercise of the previous
section by setting up the formalism in momentum space at the outset. Both approaches lead to
the same expression for ỹ to O(1/N2) as well as η2 as a check. In relation to this momentum
space 2-point function approach the asymptotic scaling forms of the 2-point functions are

ψ−1(p) ∼ p/

Ã(p2)α−µ
, π−1(p) ∼ 1

C̃(p2)γ−µ
. (4.2)

It is the inverse Fourier transform of these that produce the leading terms of (2.12).

+ + +

+ + +

Figure 4: O(1/N2) corrections to vertex function.
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With (4.1) it is straightforward to evaluate the graph of Figure 3 and determine an expression
for χπ 1 from the scaling behaviour. It is equivalent to (3.13). The key point is that the same
procedure of [16, 17] can now be applied to determine χπ 2. This requires in part the evaluation
of the O(1/N2) corrections illustrated in Figure 4 where the fermions can be routed around the
closed loop in both directions. The values of the diagrams in the absence of any group theory
considerations were given in [21]. With the presence of the group generator in the vertex of
(2.4), obtaining the associated group factor of each graph is straightforward in most cases using
(2.2) for example and the definition of the Lie algebra which in our conventions is

[T a, T b] = ifabcT c . (4.3)

However for the graphs where there is a closed fermion loop with four πa fields attached a higher
group Casimir is present. In particular the group factor associated with each graph will contain
the fully symmetric rank 4 tensor

dabcdF =
1

6
Tr
(
T aT (bT cT d)

)
(4.4)

among others. To treat these so called light-by-light graphs we have used the color.h routine
that accompanies the symbolic manipulation language Form, [27, 28]. The package allows one
to manipulate group theory factors associated with Feynman graphs and write them in terms of
Casimirs. It is based on the comprehensive analysis provided in [29]. However, rather than use
color.h to determine the group factor solely for these light-by-light graphs we have applied it
to all the graphs treated throughout this article for consistency. We note that the rank 3 fully
symmetric colour tensor dabc given by

dabc =
1

2
Tr
(
T aT (bT c)

)
(4.5)

also occurs in graphs that contain dabcdF . In the final expressions for the exponents, however,
these are absent as a result of a cancellation between graphs where the fermions are routed
around the closed loop in different directions. In addition to the O(1/N2) corrections of Figure
4 there are contributions to χπ 2 from the graph of Figure 3. These arise from the correction to
the variable ỹ which is ỹ2 as well as the parts from the 1/N expansion of the exponents of the
propagators in (4.1). In addition one has to include the vertex renormalization constant ZV in
the O(1/N) graph as this cancels the subgraph divergences in the first three graphs of the first
row in Figure 4. This cancellation is necessary in order to ensure the approach to criticality is
smooth. Assemblying all these components allows us to deduce the vertex critical exponent at
the next order which is

χπ 2 =

[
µ(2µ− 1)

(µ− 1)3
C2
F −

µ(7µ− 2)

4(µ− 1)3
CFCA −

µ2(2µ2 − 6µ+ 1)

12(µ− 1)3
C2
A −

µ2(2µ− 1)

(µ− 1)2

dabcdF dabcdF

NAT 2
F

+
µ(CA − 2CF )(CAµ− 2(2µ− 1)CF )

4(µ− 1)2
Ψ(µ)− µ2(C2

AT
2
FNA − 24dabcdF dabcdF )

8(µ− 1)NAT 2
F

Θ(µ)

]
η2

1

C2
F

(4.6)

where
Θ(µ) = ψ′(µ) − ψ′(1) . (4.7)

and the contributions from the light-by-light graphs is evident.

10



5 Correlation length exponent at O(1/N2).

Having established the dimensions of the two fields at O(1/N2) using the leading term of the
asymptotic forms of the propagators in the approach to criticality, it is possible to study the
corrections to scaling. These are contained in both (2.6) and (2.12) corresponding to the terms
involving the coordinate independent additional dimensionless parameters A′ and C ′. The extra
exponent λ can be regarded as any exponent but to access the correlation length exponent ν we
set λ = 1/(2ν) which has the canonical dimension of (µ− 1). To determine the 1/N corrections
in d-dimensions to this exponent requires a consistency equation that extends (3.1) and (3.5).
To find λ1 we substitute the various asymptotic scaling functions into the Schwinger-Dyson
equations for the 2-point function which produces the representation

0 = r(α− 1)
[
1−A′s(α− 1)(x2)λ

]
+ CF yZ

2
V (x2)χπ+∆

[
1 +

(
A′ + C ′

)
(x2)λ

]
+ 1

2CF [2CF − CA]y2(x2)2χπ+2∆
[
Σ1 +

(
Σ1AA

′ + Σ1CC
′) (x2)λ

]
+ O

(
1

N3

)
(5.1)

and

0 = p(γ)
[
1− C ′q(γ)(x2)λ

]
+ TFNyZ

2
V (x2)χπ+∆

[
1 + 2A′(x2)λ

]
− 1

2TF [2CF − CA]Ny2(x2)2χπ+2∆
[
Π1 +

(
Π1AA

′ + Π1CC
′) (x2)λ

]
+ O

(
1

N2

)
(5.2)

where we have omitted the factor of Z4
V in the respective O(1/N2) and O(1/N) correction terms.

The counterterms from these only come into effect at the next order.

Unlike the computation of η1 we have included the two loop graphs of Figure 1 where the
correction to scaling is included. These are denoted by Σ′1φ and Π′1φ where φ indicates that the
insertion is on either a ψ or πa line according to whether it is A or C respectively. The reason
why these all have to be included in principle resides in the leading order N dependence of the
2-point scaling functions. For the two key combinations that appear in the correction to scaling
Schwinger-Dyson equation we note that this dependence is, [22, 24],

r(α− 1)s(α− 1) = O(1) , p(γ)q(γ) = O

(
1

N

)
. (5.3)

In fact the constant of proportionality of the latter is the combination (λ1 − η1 − χπ 1). As η1

and χπ 1 are both available this leaves λ1 as the unknown we seek. These terms will form part of
the consistency equation that determines λ to O(1/N2) and emerges from decoupling the (x2)λ

terms in (5.1) and (5.2) which follows on dimensional grounds. The resulting two equations are

0 = − r(α− 1)s(α− 1)A′ + CF yZ
2
V (x2)χπ+∆ [A′ + C ′

]
+ 1

2 [2CF − CA]y2(x2)2χπ+2∆ [Σ1AA
′ + Σ1CC

′] + O

(
1

N3

)
. (5.4)

and

0 = − p(γ)q(γ)C ′ + TFNyZ
2
V (x2)χπ+∆A′

− 1
2CF [2CF − CA]Ny2(x2)2χπ+2∆ [Π1AA

′ + Π1CC
′] + O

(
1

N2

)
. (5.5)

Alternatively the relevant terms that produce an expression for λ1 with respect to the large N
expansion due to (5.3) can be written as a matrix M where

M =

(
− r(α− 1)s(α− 1) CF y

TFNy − p(γ)q(γ) − 1
2CF [2CF − CA]Ny2Π′1C

)
. (5.6)
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Examining the (2, 2) element both terms are the same order in 1/N as y is O(1/N). Setting
detM = 0 produces the consistency equation for λ1 which can be solved to give

λ1 = − (2µ− 1)η1 . (5.7)

+ +

+ +

+ +

+

Figure 5: Higher order graphs for corrections to the πa Schwinger-Dyson 2-point function needed
for λ2.

To proceed to the next stage and find λ2 the higher order 1/N correction graphs have
to be added in to the two Schwinger-Dyson equations that produced the O(1/N) consistency
equations. However the ones we neglected to determine (5.7), since their N dependence in the
determinant is an order lower that the contribution from Π′1C , now have to be included. These
are Σ′1A, Σ′1C and Π′1A while the graph corresponding to Π′1C has to be expanded to the next
order in 1/N since there is N dependence in the propagator exponents. To ease the extraction
of the expansion of the consistency equation determinant we formally set

Π′1C = Π′1C1 + Π′1C2

1

N
+ O

(
1

N2

)
(5.8)

to clarify this. The main work however resides in including the final contributions to find λ2

which are illustrated in Figure 5. While the individual d-dependent values have been recorded
in [25] for instance, we have had to append the respective group theory factors. Again we have
used the Form color.h routine due to the presence of the light-by-light diagrams. Repeating
the exercise of setting the determinant of the consistency equations to zero at the next order in
1/N produces the expression

λ2 =

[[
µ(3µ2 − 6µ+ 2)C2

ACF
6TF

+ 4µ
dabcdF dabcdF CF

T 3
FNA

]
1

(µ− 1)(µ− 2)2η1

12



−
[

1

24
µ2(2µ− 3)C2

A + 2µ2(2µ− 3)
dabcdF dabcdF

T 2
FNA

]
[Ψ2(µ) + Φ(µ)]

(µ− 1)(µ− 2)

+
[
−(2µ− 1)2(µ+ 1)(µ− 1)(µ− 2)2C2

F + µ(2µ− 1)(µ− 1)(µ− 2)2CFCA

+
1

24
µ2(µ− 1)(6µ2 − 21µ+ 20)C2

A − µ2(3µ− 5)(2µ− 5)
dabcdF dabcdF

T 2
FNA

]

× Ψ(µ)

(µ− 1)2(µ− 2)2

+

[
−3

2
µ2(2µ+ 1)(µ− 2)C2

F +
3

4
µ2(2µ+ 5)(µ− 2)CFCA −

11

8
µ2(µ− 2)C2

A

+ 3µ2(5µ− 7)
dabcdF dabcdF

T 2
FNA

]
Θ(µ)

(µ− 1)(µ− 2)
+

3µ(2µ− 1)

4(µ− 1)2
CFCA

+
(2µ− 1)2(2µ3 − 4µ2 − 2µ+ 1)

2µ(µ− 1)2
C2
F −

µ2(8µ4 − 42µ3 + 85µ2 − 75µ+ 20)

48(µ− 1)3(µ− 2)2
C2
A

− µ2(4µ4 − 18µ3 + 26µ2 − 15µ+ 7)

2(µ− 1)3(µ− 2)2

dabcdF dabcdF

T 2
FNA

]
η2

1

C2
F

. (5.9)

We have introduced the additional shorthand notation

Φ(µ) = ψ′(2µ− 1) − ψ′(2− µ) − ψ′(µ) + ψ′(1) . (5.10)

Essential in determining this was the values of η2 and χπ 2.

+ + +

+

Figure 6: Primitive graphs which determine η3 in the large N conformal bootstrap method.

6 Large N conformal bootstrap.

The final part of our study follows a different tack by applying the large N conformal bootstrap
programme developed in [14], based on the early insights of [30, 31, 32, 33, 34]. In general
terms the focus is initially directed towards the 3-point vertex of (2.4) and its behaviour in the

13



critical region. The fields will still obey the asymptotic scaling forms of (2.12) but in treating the
Green’s functions in the bootstrap formalism not only are there no self-energy corrections on the
propagators but there are no vertex corrections. In effect the primitive graphs are the building
blocks and are illustrated in Figure 6. In that figure the dotted vertices do not correspond to
the vertex of the Lagrangian (2.4). Instead they denote the presence of a Polyakov conformal
triangle [30] which includes all vertex corrections at criticality. It is defined in Figure 7 for the
general Yukawa type interaction that includes the one of (2.4). The external exponents αi are
general and are determined from the underlying theory. For example α1 = α2 = α and α3 = γ
for (2.4). The values of the internal indices ai are the solution to the simultaneous equations

a1 + a2 + α3 = 2µ + 1

a2 + a3 + α1 = 2µ + 1

a3 + a1 + α2 = 2µ + 1 . (6.1)

They ensure that the internal vertices of the triangle graph in Figure 7 are all unique unlike
the vertex on the left side of the equation for (2.4). The calculational benefit of regarding the
full vertex correction as a conformal triangle is that applying a conformal transformation, (3.11)
and (3.12), the graphs of Figure 6 are reduced to 2-point ones which are easier to evaluate.

α3

α1 α2

= f(αi, ai)

α1 α2

α3

a2 a1

a3

Figure 7: Polyakov conformal triangle for a scalar Yukawa interaction.

The graphs of Figure 6, however, are the lowest order contributions to the full vertex function
that we will denote by V (ȳ, α, γ; δ, δ′) where the last two arguments are regularizing parameters.
These are required in the derivation of one of the two consistency equations defining the large
N bootstrap formalsm, [14, 30, 31, 32]. The first equation represents Figure 6 and is

1 = V (ȳ, α, γ; 0, 0) (6.2)

where ȳ is similar to the early amplitude combination y but includes the normalization of the
Polyakov conformal triangle of Figure 7. Indeed (6.2) is responsible for determining the terms
in the 1/N expansion of ȳ once the first few orders of η have been reproduced in this formalism.
This is because the explicit expressions are necessary to extract η3 from the third order term of
the second bootstrap equation which is

TFNr(α− 1)

CF p(γ)
=

[
1 + 2χπ

∂
∂δ′V (ȳ, α, γ; δ, δ′)

]
[
1 + 2χπ

∂
∂δV (ȳ, α, γ; δ, δ′)

]
∣∣∣∣∣∣
δ=δ′=0

. (6.3)

We note briefly that the regularizations δ and δ′ that appear here arise because of singularities
in the 2-point Schwinger-Dyson equations when all the vertices are replaced by conformal tri-
angles. In other words it was recognised in the original work of [33] that in the absence of any
regularization the 2-point functions with dressed vertices would be finite overall. However each
of the contributing diagrams were individually divergent. To accommodate this, and similar to
the introduction of ∆ earlier, the vertex anomalous dimension has to be continued in a parallel
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way to (3.4). This is illustrated in Figure 8 for the leading order contribution to V (ȳ, α, γ; δ, δ′)
where we have set

χπ = 2∆̃π (6.4)

for shorthand. This figure indicates the values of the exponents of the internal lines of the
Polyakov triangle. Moreover the appearance of both δ and δ′ on the external legs of the graph
on the left hand side indicate the addition of the regularizations to the exponents of the respective
fields. This is reflected internally in the conformal triangles in the right hand graph as each of
the vertices have to be unique even when there is a regularization.

α+ ∆̃π − δ′ γ α+ ∆̃π

γ + ∆̃π − δ′ α+ ∆̃π

+ δ′
α+ ∆̃π γ + ∆̃π

α α

γ + ∆̃π + δ

α+ ∆̃π − δ α+ ∆̃π − δ

0

x y

=

2δ

2δ′

Figure 8: Regularized one loop contribution to the vertex bootstrap equations.

Given the form of (6.3) we can rederive η2 from knowledge of the value of the graph of
Figure 8. This was determined in [26], using the technique given in [14], for the Ising Gross-
Neveu model as a function of the exponents of that theory and that result can be translated to
(2.4). If we expand V (ȳ, α, γ; δ, δ′) in large N in the same notation as (2.9) then to the order
that will eventually be necessary to evaluate η3 we recall, [26],

V1 = − Q3

∆̃π(∆̃π − δ)(∆̃π − δ′)
exp[F (δ, δ′, ∆̃π)] (6.5)

with

Q = − a2(α− 1)a(γ)

(α− 1)2Γ(µ)
(6.6)

and

F (δ, δ′, ∆̃π) =

[
5Bγ − 2Bα−1 − 3B0 −

2

(α− 1)

]
∆̃π − [Bγ −B0] δ

+

[
B0 −Bα−1 −

1

(α− 1)

]
δ′ +

[
Cα−1 −

1

(α− 1)

]
δδ′

+

[
Cγ + C0 − 2Cα−1 +

2

(α− 1)2

]
∆̃πδ

+
1

2

[
1

(α− 1)2
− Cα−1 − C0

]
δ′

2

+

[
C0 − Cγ − 2Cα−1 +

2

(α− 1)2

]
∆̃πδ

′ − 1

2
[Cγ + C0] δ2
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+

[
Cα−1 −

7

2
Cγ −

3

2
C0 −

1

(α− 1)2

]
∆̃2
π + O

(
∆̃3
π, δ

3, δ′
3
)

(6.7)

where the order symbol indicates that terms cubic in any combination of the parameters are
neglected. The functions Bz and Cz are defined by, [14],

Bz = ψ(µ− z) + ψ(z) , B0 = ψ(1) + ψ(µ)

Cz = ψ′(z) − ψ′(µ− z) , C0 = ψ′(µ) − ψ′(1) (6.8)

in terms of the Euler ψ function. With (6.7) and setting V = V1/N in (6.2) and (6.3) it is
straightforward to expand both bootstrap equations to O(1/N) and verify the earlier expressions
for η1 and η2.

Having established the formalism reproduces available results the extension to the next order
to find η3 requires several steps. The first is to compute the next term in the 1/N expansion of
(6.7) as that will contribute to the O(1/N2) part of (6.3). However contributions from all the
graphs of Figure 6 bar the one loop one have to be determined and included as they correspond
to V2. The relevant parts of these graphs were calculated in [26]. By this we mean that a
computational shortcut was used akin to that used in [14]. From examining the terms in the
formal Taylor expansion of (6.3) in powers of 1/N the part involving V2 occurs in the combination[

∂

∂δ′
V2(y, α, γ; δ, δ′) − ∂

∂δ
V2(y, α, γ; δ, δ′)

]∣∣∣∣
δ=δ′=0

. (6.9)

In [26] the contribution to (6.9) from each of the higher order correction graphs in Figure 6 were
determined. Indeed in most cases only the value for the difference in derivatives could be found.
Appending the group theory values from the color.h routine allows us to finally extract η3. We
find

η3 =

[
(2µ− 1)(35µ3 − 43µ2 + 16µ− 2)

4µ2(µ− 1)4
C2
F −

µ2(43µ2 − 35µ+ 6)

8µ2(µ− 1)4
CFCA

− µ4(4µ3 − 5µ2 − 9µ− 14)

48µ2(µ− 1)4
C2
A −

µ4(4µ3 − 2µ2 − 3µ+ 10)

4µ2(µ− 1)4

dabcdF dabcdF

T 2
FNA

+

[
1

2
(11µ− 3)(2µ− 1)2 − 1

4
µ(19µ− 2)(2µ− 1)CFCA −

1

24
µ3(2µ2 − 6µ− 23)C2

A

− µ3(2µ2 − 3µ+ 4)dabcdF dabcdF

2T 2
FNA

]
Ψ(µ)

µ(µ− 1)3
+

3(2CF − 4µCF + µCA)2

8(µ− 1)2
Ψ2(µ)

+
(2CF − 4µCF + µCA)2

8(µ− 1)2
Φ(µ)

+

[
(2µ− 1)(µ+ 1)C2

F −
1

2
µ(5µ− 1)CFCA −

1

24
µ2(µ− 4)C2

A + µ2(µ+ 8)
dabcdF dabcdF

T 2
FNA

]

×
[
Θ(µ) +

1

(µ− 1)2

]
1

4(µ− 1)2

−
[
C2
A − 24

dabcdF dabcdF

NAT 2
F

] [
Θ(µ) +

1

(µ− 1)2

]
[2Ψ(µ) + Ξ(µ)]

µ2

16(µ− 1)

]
η3

1

C2
F

. (6.10)

Again the pieces arising from the light-by-light graphs can be clearly identified. In addition to
the Euler ψ function and its derivatives a new function arises which is related to the function
I(µ) defined in [14]. It corresponds to the derivative of a two loop self-energy graph where a
regularizing exponent of one of the propagators is differentiated. In [35] I(µ) was expressed as
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an 4F3 hypergeometric function where the differentiation manifests itself as derivatives of the
parameter arguments of the hypergeometric function. Here we have set

I(µ) = − 2

3(µ− 1)
+ Ξ(µ) (6.11)

so that Ξ(µ) has an ε expansion involving multiple zeta values, [14, 35, 36]. For instance,

Ξ(1− ε) =
2

3
ζ3ε

2 + ζ4ε
3 +

13

3
ζ5ε

4 + O(ε5) . (6.12)

In strictly three dimensions, [14],

I( 3
2) = 2 ln 2 +

3ψ′′( 1
2)

2π2
(6.13)

and the expansion around three dimensions is known up to ten terms [37].

7 Results.

We focus in this section on general aspects of the critical exponents of (2.4) that we have
determined. One of the main reasons for considering a generalized universality class was the fact
that known results for specific models could be extracted as well as be of use where a different Lie
group underlies the physics problem. To assist with that we have collected electronic expressions
in an attached data file. One aspect of the results that needs to be stated is that we have checked
that the d-dimensional exponents are in agreement with several models where the results were
determined directly. For instance, the original Ising Gross-Neveu model of [1] corresponds to
the abelian limit of the symmetry group by specifying

CF = 1 , TF = 1 , dabcdF dabcdF = 1 , CA = 0 (7.1)

while the Mott insulating phase [8, 9] that corresponds to taking the symmetry group to be
SU(2) takes the values

CF =
3

4
, TF =

1

2
, dabcdF dabcdF =

5

64
, CA = 2 . (7.2)

For the more recent application of (2.4) to the fractionalized Gross-Neveu model discussed in
[11] the respective values are

CF = 2 , TF = 2 , dabcdF dabcdF =
20

3
, CA = 2 . (7.3)

For each of these cases the ε expansion of the exponents near four dimensions with d = 4 − 2ε
are in full agreement with known three and four loop perturbative results, [11, 15, 38, 39, 40, 41,
42, 43]. In the case of the Ising Gross-Neveu model exponents these also are in accord with two
dimensional perturbation theory, [44, 45, 46, 47, 48, 49, 50]. Moreover taking the limits for the
three cases, all the large N exponents agree with previous work, [19, 20, 21, 22, 23, 24, 25, 43, 51].

One advantage of the arbitrary group approach in d-dimensions means that the structure of
the exponents can be studied in various representations. For example if we restrict the fermions
to be in the adjoint representation A whence CF = CA and TF = CA. In that case we find

η
adj
2 =

[
(13µ2 − 12µ+ 2)

4µ[µ− 1]2
+

(3µ− 2)

2[µ− 1]
Ψ(µ)

] (
η

adj
1

)2
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χ
adj
π 1 =

µ

2[µ− 1]
η

adj
1

χ
adj
π 2 =

[[
3µ2

[µ− 1]

dabcdA dabcdA

C4
ANA

− µ2

8[µ− 1]

]
Θ(µ) +

µ(3µ− 2)

4[µ− 1]2
Ψ(µ)

− µ(µ+ 1)(µ− 3)

6[µ− 1]2
− µ2(2µ− 1)

[µ− 1]2
dabcdA dabcdA

C4
ANA

] (
η

adj
1

)2

λ
adj
2 =

[[
1

6
µ(3µ2 − 6µ+ 2) + 4µ

dabcdA dabcdA

C4
ANA

]
1

[µ− 1][µ− 2]2η
adj
1

−
[

1

24
µ2(2µ− 3) + 2µ2(2µ− 3)

dabcdA dabcdA

C4
ANA

]
[Ψ2(µ) + Φ(µ)]

[µ− 1][µ− 2]

−
[

1

24
(µ− 1)(96µ5 − 438µ4 + 549µ3 + 4µ2 − 288µ+ 96)

+ µ2(3µ− 5)(2µ− 5)
dabcdA dabcdA

C4
ANA

]
Ψ(µ)

[µ− 1]2[µ− 2]2

+

[
3µ2(5µ− 7)

dabcdA dabcdA

C4
ANA

− 1

8
µ2(µ− 2)(12µ− 7)

]
Θ(µ)

[µ− 1][µ− 2]

+
(192µ8 − 1544µ7 + 4770µ6 − 6865µ5 + 3951µ4 + 724µ3 − 1896µ2 + 768µ− 96)

48µ[µ− 1]3[µ− 2]2

− µ2(4µ4 − 18µ3 + 26µ2 − 15µ+ 7)

2[µ− 1]3[µ− 2]2
dabcdA dabcdA

C4
ANA

] (
η

adj
1

)2

η
adj
3 =

[
(3µ− 2)2

8[µ− 1]2

[
Φ(µ) + 3Ψ2(µ)

]
− µ2(2µ− 1)(µ2 − 1)

2[µ− 1]4
dabcdA dabcdA

C4
ANA

− (8µ7 − 10µ6 − 17µ5 − 1184µ4 + 2448µ3 − 1704µ2 + 480µ− 48)

96µ2[µ− 1]4

−
[

1

12
(µ5 − 3µ4 − 160µ3 + 267µ2 − 132µ+ 18)

+
1

2
µ3(2µ+ 1)(µ− 2)

dabcdA dabcdA

C4
ANA

]
Ψ(µ)

µ[µ− 1]3

+

[
1

4
µ2(µ+ 8)

dabcdA dabcdA

C4
ANA

− 1

96
(µ3 + 8µ2 − 36µ+ 24)

]
Θ(µ)

[µ− 1]2

− µ2

8[µ− 1]

[
1− 24

dabcdA dabcdA

C4
ANA

]
Θ(µ)Ψ(µ)− µ2Ξ(µ)

16[µ− 1]3

[
1− 24

dabcdA dabcdA

C4
ANA

]

− µ2

16[µ− 1]

[
1− 24

dabcdA dabcdA

C4
ANA

]
Ξ(µ)Θ(µ)

] (
η

adj
1

)3
(7.4)

where dabcdA is the adjoint version of the fully symmetric rank 4 Casimir. These exponents
simplify substantially in three dimensions since

λ|d=3 = 1 − 16

3π2N
+

[
96
dabcdA dabcdA

C4
ANA

+
5248

π2
− 432

]
1

27π2N2

η|d=3 =
8

3π2N
+

1216

27π4N2

+
[
[9072ζ3 − 864π2 ln 2][C4

ANA − 24dabcdA dabcdA ]

18



+ [25920π2 − 435456]dabcdA dabcdA

+ [151072− 8760π2]C4
ANA

] 1

243π6C4
ANAN3

. (7.5)

The group valued coefficient of the terms involving ζ3 and π2 ln 2, which derive from I( 3
2), has

an interesting combination of Casimirs. Indeed there might be instances of this factor being
zero for certain Lie groups. However, we have computed the value of (C4

ANA − 24dabcdA dabcdA ) for
all the classical and exceptional Lie groups and found that it is always non-zero.

8 Discussion.

As the Ising Gross-Neveu universality class is central to a number of phase transitions in various
materials, we have examined a generalized version of the underlying quantum field theory that
incorporates the respective condensed matter systems. The key aspect is that the core interaction
is endowed with a non-abelian symmetry that has a parallel in gauge theories. There the gauge
interaction of QED is extended from an abelian to a non-abelian one to produce QCD by the
inclusion of the generators of a Lie group thereby endowing QED with a colour symmetry. The
similar extension of the Ising Gross-Neveu model is simpler in some respects. One obvious
one is the absence of gauge symmetry. A benefit, however, is that considering (2.4) at the
outset means results for specific phase transitions can be quickly deduced by specifying the
Lie group. Indeed if a phase transition were discovered in a material that was in the same
universality class as the Ising Gross-Neveu model but possessed a new symmetry other than
the specific examples we have noted here, then information on the exponents can readily be
deduced from our results. Throughout we have focussed on the application of the critical point
large N technique developed in [12, 13, 14] to determine d-dimensional critical exponents. The
advantage of this is that results are available for the renormalization group functions of the four
dimensional quantum field theories in the same universality class too. By the same token the
large N exponents contain a wealth of information on the structure of the same functions. For
instance, coefficients in the anomalous dimension beyond the first few known loop orders can
be accessed at successive orders in 1/N . This is particularly useful in that our O(1/N2) and
O(1/N3) exponents can reveal where the new colour group Casimirs, such as dabcdF dabcdF , appear.
In indicating the parallel of the QED to QCD generalization, examining the large N O(1/N2)
exponents in this universality class, albeit with a simpler vertex structure, does provide useful
insight into what to expect in the calculation of critical exponents in QCD at O(1/N2). We
have to qualify this comment by noting that while there are similarities, in the QCD large N
critical exponent computation for ν for instance, there will be more graphs to consider than
those of Figure 5. This is because in (2.4) Feynman diagrams with subgraphs involving three πa

lines connecting to a fermion loop are zero after taking the γ-matrix trace. In QCD this would
not be the case due to each vertex adding an extra γ-matrix to the trace. While such graphs
remain to be computed the associated group theory factor that would result should not involve
any Casimir higher than dabcdF dabcdF .

Acknowledgements. This work was fully supported by a DFG Mercator Fellowship and in
part with the STFC Consolidated ST/T000988/1. The graphs were drawn with the Axodraw
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[9] I.F. Herbut, V. Juric̆ić & O. Vafek, Phys. Rev. B80 (2009), 075432.

[10] L. Janssen & I.F. Herbut, Phys. Rev. B89 (2014), 205403.

[11] U.F.P. Seifert, X.-Y. Dong, S. Chulliparambil, M. Vojta, H.-H. Tu and L. Janssen, Phys.
Rev. Lett. 125 (2020), 257202.

[12] A.N. Vasil’ev, Y.M. Pismak & J.R. Honkonen, Theor. Math. Phys. 46 (1981), 104.

[13] A.N. Vasil’ev, Y.M. Pismak & J.R. Honkonen, Theor. Math. Phys. 47 (1981), 465.

[14] A.N. Vasil’ev, Y.M. Pismak & J.R. Honkonen, Theor. Math. Phys. 50 (1982), 127.

[15] J. Zinn-Justin, Nucl. Phys. B367 (1991), 105.

[16] A.N. Vasil’ev & M.Yu. Nalimov, Theor. Math. Phys. 55 (1983), 423.

[17] A.N. Vasil’ev & M.Yu. Nalimov, Theor. Math. Phys. 56 (1983), 643.

[18] B. Rosenstein, B.J. Warr & S.H. Park, Phys. Rev. Lett. 62 (1989), 1433.

[19] B. Rosenstein, B. Warr & S.H. Park, Phys. Rept. 205 (1991), 59.

[20] J.A. Gracey, Int. J. Mod. Phys. A06 (1991), 395; Int. J. Mod. Phys. A6 (1991), 2755(E).

[21] J.A. Gracey, Phys. Lett. B297 (1992), 293.
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[23] A.N. Vasil’ev, S.É. Derkachov, N.A. Kivel & A.S. Stepanenko, Theor. Math. Phys. 94
(1993), 127.

[24] A.N. Vasil’ev & A.S. Stepanenko, Theor. Math. Phys. 97 (1993), 1349.

[25] J.A. Gracey, Int. J. Mod. Phys. A09 (1994), 567.

[26] J.A. Gracey, Int. J. Mod. Phys. A09 (1994), 727.

[27] J.A.M. Vermaseren, math-ph/0010025.

[28] M. Tentyukov & J.A.M. Vermaseren, Comput. Phys. Commun. 181 (2010), 1419.

20



[29] T. van Ritbergen, A.N. Schellekens & J.A.M. Vermaseren, Int. J. Mod. Phys. A14 (1999),
41.

[30] A.M. Polyakov, Sov. Phys. JETP 28 (1969), 533.

[31] A.M. Polyakov, JETP Lett. 12 (1970), 381.

[32] G. Parisi & L. Peliti, Lett. Nuovo Cim. 2 (1971), 627.

[33] M. d’Eramo, L. Peliti & G. Parisi, Lett. Nuovo Cim. 2 (1971), 878.

[34] G. Parisi, Lett. Nuovo Cim. 4 (1972), 777.

[35] D.J. Broadhurst, J.A. Gracey & D. Kreimer, Z. Phys. C75 (1997), 559.

[36] I. Bierenbaum, & S. Weinzierl, Eur. Phys. J. C32 (2003), 67.

[37] D.J. Broadhurst & A.V. Kotikov, Phys. Lett. B441 (1998), 345.
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