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Abstract

Currently, the mainstream structure testing methods include physical tests via experiments

and numerical simulations. The advantage of physical tests is obvious: the reality can be

fully reflected, which means uncertainties and realistic results can be obtained. However, it

can be time consuming for the preparation and post processing, as well as it is expensive.

Numerical simulations are economic and have simplified operation procedures compared

with physical tests, but it may be time consuming to simulate complex structures and

cannot reflect the reality such as uncertainties in all circumstances. Then, considering the

challenges and the cost of testing the large and complex structures using the physical test,

and in order to avoid such disadvantages, several techniques have been proposed to combine

the advantages of physical tests and numerical simulations. Such techniques are categorised

as the hybrid testing. The basic idea is to place some parts of structures under test with a

numerically simulated system while the rest of structures are physically tested. Dynamically

structured systems (DSS) are a typical example of hybrid testing; by combining real-time

numerical simulation with physical components, it allows dynamic testing of structures with

high accuracy and fidelity, while reducing cost. In this thesis, a comprehensive analysis of

DSS approaches for generic lumped parameter vibration problems is conducted to find

explicit conditions under which DSS is a feasible approach for dynamic testing. At present,

the feasibility analysis of generic vibrating structure is missing. The work presented in
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this thesis is a step towards filling this gap. Analytical conditions for structural properties

such as causality, observability and controllability are derived for a generalised vibration

system represented as a chain of mass-spring-damper systems. The method is based on a

novel recursive representation of transfer functions, which eliminates the need for deriving

fully explicit symbolic expressions. This in turn, allows performing the causality analysis

without the exact knowledge of the structure parameters, meaning that the procedure can

be largely simplified. In addition, it enables the verification of structural properties such

as controllability and observability with the reduced knowledge of the structure compared

to standard approaches. Such generic conditions complement specific examples available

in the literature and provide guidelines for DSS implementation in vibration problems.

Another issue tackled in this thesis is the hybrid testing of the marginally stable structures.

Previous research neglected this kind of structures or designed controllers that are only

valid for specific models, which severely limits their application. This thesis highlights a

systematic flaw of the traditional displacements error based feedback control, which makes

it difficult to achieve synchronisation and prevent drifts of marginally stable structures.

In order to overcome such issues, a novel control architecture is proposed based on the

error between velocities instead of the displacements. This method can prevent instability

and potential drifts during hybrid testing of marginally stable structures. The benefit also

includes the expansion of the applications of DSS to other types of structures.
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Chapter 1

Introduction

At present, the most common structure testing methods for vibrating structures include

physical tests (experiments) and numerical simulations. Physical tests have obvious ad-

vantages, including the reflection of reality, as they are able to capture uncertainties and

disturbances, thus providing realistic results. However, they are time consuming for setting

up and post processing, and usually expensive as well. Numerical simulations are economic

and simpler to run compared with physical tests, but they cannot fully reflect the reality

under all circumstances. Moreover, simulating complex structures is still time consuming.

In order to avoid these disadvantages and combine advantages of both techniques, hybrid

testing is proposed. The basic idea of hybrid testing is to implement some parts of the

structure under test via numerical simulations, while the rest of the structure is physically

tested. Synchronisation between the two parts is then required to make the hybrid tested

structure behave as the original structure. Dynamically substructured systems (DSS) be-

long to the class of hybrid testing techniques [1]. Extra actuators are used to simulate

the response at the interface and the actuator dynamics should be controlled to achieve

the required synchronisation. Current challenges include dealing with the actuator delays
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that can lead to system instability and with the uncertainty that may affect the accuracy

of testing results [2]. Other open challenges include the limited focus of research that on

specific structures, as well as no general solution for marginally stable DSS. All of them

will be discussed below.

The current research about DSS mainly focuses on specific structures, for which decom-

positions and control strategies are designed on a case-by-case basis, and generic structures

are neglected, which leads to inevitable limitations of DSS applications. This thesis is

mainly aimed at filling this gap by developing analyses that are valid for a whole class of

vibrating structures. A benchmark structure is selected to show the proposed procedures

first, but the results are generic and it will be shown that they hold for more complex struc-

tures as well. The main contribution includes establishing generic procedures for feasibility

analysis of DSS, which is aimed to show whether a desired physical decompositions can be

implemented and what controller design is required, as well as providing a novel control

architecture of DSS with marginally stable generic substructures. The feasibility analysis is

composed of series of steps, including the analysis of causality, controllability and observ-

ability. At present, the feasibility analysis of generic vibrating problems is missing. Most

of the available literature has been focused on simple benchmark systems or specific exam-

ples, with only limited exceptions such as [3] where the effect of the interface location on

DSS performance was studied for generic two degree-of-freedom systems. Li [4] performed

causality analysis in DSS, but only limited to specific models as well. As for the control-

lability and observability of generic vibration problems, general results are missing as well.

In this thesis, a frequency domain approach is proposed based on a novel recursive form of

the transfer functions involved in DSS design, which avoids obtaining the fully explicit sym-

bolic expression of such transfer functions, as numerators and denominators of the transfer

functions are not described by detailed polynomials, the recursive form of numerators and
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denominators is used instead. This formulation allows to assess if DSS controllers can be

designed for a generic lumped parameter vibration system without the exact knowledge

of the structure parameters, which is aimed to describe systems by obtaining their generic

properties, thus significantly simplifying the whole procedure. In addition, knowledge of

a reduced set of system parameters is only required for the verification of system control-

lability and observability. Conditions of controllability and observability satisfaction are

analytic and explicit, at odd with the most commonly used purely numeric matrix rank

calculation. In addition, a novel control architecture is proposed to solve the issue of DSS

with marginally stable substructures. In fact, previous research only focused on specific

models and structures, which severely limits wider applications of DSS to other classes of

structures, and control algorithms were based on the minimisation of displacement error.

However, as highlighted in this thesis, displacement error control has an intrinsic issue that

makes it difficult to achieve synchronisation and to prevent drifts when the external excita-

tion is applied. This, in turn, requires the accurate tuning of the controller to achieve the

synchronisation. A novel control architecture is proposed to provide a comprehensive solu-

tion to DSS testing of structures with marginally stable substructures, successfully avoiding

issues of synchronisation and drifts by using the error between velocities and adding an ex-

tra controller. This is a breakthrough for this type of problems, as the current literature

only focuses on specific models and no general solutions are provided. This architecture is

also suitable for all DSS testing with marginally stable structures, including mass split de-

compositions. Therefore, it largely broadens the application of DSS without the limitations

of previous approaches.
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1.1 Aim and Objectives

The main aim of this thesis is to provide generic procedures for feasibility analysis for

generic vibrating structures, which is missing in the current literature. Another goal is the

solution of synchronisation issue when DSS or hybrid testing includes marginally stable

substructures. In order to fulfil such goals, the following objectives are met:

• Propose a novel recursive form of the transfer functions that can avoid obtaining fully

explicit expressions to describe the system dynamics in the frequency domain.

• Analyse causality, controllability and observability of DSS decomposition strategies

to provide generic procedures of feasibility of hybrid testing of generic vibrating struc-

tures.

• Propose a novel control architecture to solve the synchronisation issue when DSS or

hybrid testing includes marginally stable substructures.

1.2 Contributions and Novelty

The main contributions of this thesis include:

• The novel recursive form of the transfer functions is used to describe the dynamics

of structures tested via DSS. The recursion can be used to avoid the calculation of

the detailed transfer functions, which significantly reduces the calculation difficulty,

especially for the complex structures. This form is suitable for different types of struc-

tures, therefore it is helpful to obtain the transfer functions of similar structures with

different degrees of freedom, thus overcoming the drawback of traditional approaches

by avoiding using the detailed system parameters and the degrees of freedom.
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• The conditions of the controllability and observability are made analytically explicit

by using the novel recursive form of the transfer functions, compared with the most

commonly used matrix based approaches. In addition, the causality analysis can

avoid using system parameters, which significantly simplifies the procedure, as the

analysis can be used for the controller design after the decomposition.

• The novel control architecture for the marginally stable DSS is proposed, which solves

a challenging problem by significantly reducing the difficulty of synchronisation be-

tween the numerical substructure and the physical substructure. The available lit-

erature either uses accurate tuning to achieve the synchronisation via complex algo-

rithms, or modifications to the original structure to avoid making one substructure

marginally stable after the decomposition.

• More potential scenarios of applications can be achieved with the help of the proposed

novel control architecture when the marginally stable substructure is included. One

direction of applications is to reduce the degrees of freedom in the physical substruc-

ture, which can simplify the experimental apparatus while the numerical substructure

is marginally stable. This aspect is scarcely considered in the literature and in Chap-

ter 6 a concept is proposed to show a potential application with strong novelty.

1.3 Thesis Structure

This thesis is organised as follows

• Chapter 2 reviews the current literature, with the aim of introducing DSS and other

types of real time hybrid simulation(RTHS), as well as of introducing background

knowledge which will be used for the following analyses.
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• Chapter 3 describes the original benchmark lumped structure which will be used

for decomposition. Structrual properties of the original structure such as causality,

controllability, observability and stability are analysed as well. Such properties will

also be used for the generic feasibility analysis of DSS.

• Chapter 4 carries out a comprehensive analysis of DSS decompositions, aimed at

providing generic procedures for feasibility analysis for generic vibration problems.

• Chapter 5 introduces a novel control architecture for the mass split decomposition,

which is suitable for all of DSS with marginally stable substructures.

• Chapter 6 proposes the concept of a beam split structure, which is aimed to prove that

the novel architecture proposed in Chapter 5 is helpful to broaden the application of

DSS to a larger class of structures.

• Chapter 7 contains some conclusions and suggestions for future work.
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Chapter 2

Literature Review

This chapter reviews the current literature to provide a brief introduction to hybrid testing

and dynamically substructured systems, as well as their applications. In addition, the

background knowledge about control concepts used in the rest of this thesis is introduced.

In the last section of this chapter, the gaps in the current research are summarised in order

to motivate the research direction of this thesis.

2.1 Hybrid Testing and Relative Applications

Challenges and costs of testing large complex structures by experiments are not negligible at

present. To alleviate this problem, several techniques have been proposed in the literature

to replace part of the structure by a numerical simulator and then designing a control

system so that the combination of numerical and physical subsystems behaves in the same

way of the original structure. These techniques are known as hybrid testing. Most of them

are classified as real time hybrid simulation (RTHS) or real time hybrid testing (RTHT).

Generally speaking, the principle is that some parts of structures will be tested numerically

while the rest will be physically tested with the help of extra hardwares such as actuators
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and computers. Silva provided comprehensive guidance for the applications of RTHS [5].

Currently the potential defects of such techniques include the delay of the actuator and

the system robustness [6, 7]. The actuator delay and the system robustness can lead to

the instability of whole system. A number of researches have focused on these issues.

Some approaches use robust control technique to compensate the actuator delay and to

ensure the whole system is robust [8, 9]. Other methods include the adaptive control

technique [10, 11], which is aimed to reduce the modelling difficulty and to adapt to different

input in a certain range. Saturation control technique [12, 13] is also used to avoid the

potential occurrence of system instability, when the maximum power input of the actuator

is considered. In addition, control techniques based on structural dynamics [14, 15] are also

proposed to better reflect the dynamics of structure. Furthermore, the inverse compensation

is applied as the basic principle to measure the delay in an experiment and then control

laws are implemented for its compensation in single degree of freedom [16, 17] and multiple

degree of freedom (MDOF) systems [18]. Predictive methods have been proposed to avoid

the instability caused by delay [19], as the delay is compensated by predicting the future

motion. The Model based control strategy for RTHS provided comprehensive guidance

for the applications of RTHS [20], where the models are expressed in the framework of

structural dynamics. One of the most commonly used applications for these techniques are

related to the verification of the design of large-scale structures, which is helpful to reduce

the costs, as well as the time required in the design stage. For example, Christenson [21]

used RTHS to verify the semi-active control effect of Magneto-rheological (MR) damper in

the building, and the physical structure does not include any components of the original

frames. Zhang [22] optimised control effect of MR damper using real time optimisation

framework and Shan [23] applied an adaptive algorithm to control MR damper. Moreover,

Asai [24] designed a smart base-isolated building, with the help of RTHS. Shaking tables
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and actuators were used in order to better simulate large structures as well [25, 26]. In

addition, the research also expanded into the identification of system parameters, where

the response signals estimate the parameters with the help of RTHS, see for example [27].

Furthermore, Ou [28] explored the possibility of using online updating of the numerical

model parameters, so that this technique can be applied to make RTHS more flexible.

Another important application is to reduce the damage of earthquake with the help of

RTHS. The control strategy is proposed for the semi-active control using MR damper in

order to expand the application of semi-active control to RTHS [29]. Kim [30] combined

RTHS and the semi active control of MR damper to reduce the damage of earthquake.

Mahmoud [31] discovered the damage of the structure with the semirigid partial-strength

steel frames during the earthquake with the help of RTHS, as the investigation has been

applied to the damage of structures with MR damper subjected to seismic loading [32, 33].

Another important application includes the prediction of hydraulics capacity when drilling

[34]. Bonnet [35] and Botelho [36] implemented the multiple decomposition for the test

structure, meaning only some substructures need to be physically tested. When assessing

performance, the mainstream performance index is the standard deviation of relative error

[37, 38]. The comprehensive development overview of RTHS can be seen in [39].

2.2 Introduction to Dynamically Substructured Systems

Dynamically Substructured Systems (DSS) are part of the family of hybrid testing tech-

niques. Hakuno [40] applied DSS to test a cantilever beam with the help of an analog

computer, which was a typical example of DSS applications at the early stage. Other con-

tributions at the early stage include the simplified control algorithm proposed by Leung

[41], Hale [42] applying DSS to complex structures and Nakashima [43] developing DSS

including the introduction of digital servo-mechanism in the hardware and the introduction
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of direct force measurement. In the DSS framework, the original structure is decomposed

into two main substructures, the physical substructure and the numerical substructure,

as shown in figure 2.1. The numerical substructure simulates a subsystem of the original

structure. On the other hand, the physical substructure consists of a physical structure

and of an actuator which is used to simulate the presence of the subsystem that has been

replaced by the numerical substructure. The challenge is then to control the actuator so

that the overall DSS behaves as the original structure [44, 45].

Whole 

Structure

Numerical 

Substructure

Physical 

Substructure

Synchronised

 Signal

+

-

Numerical  Signal

Synchronisation Error

Physical Signal

Ss

Sp

Sn

Decomposition

Controller
Actuator Signal

Numerical External Input

Physical External Input

Figure 2.1: Typical dynamic substructuring layout in the time domain

DSS is a method to achieve the physical test and the numerical test at the same time

by replacing part of a structure with a numerical simulation. Therefore, the cost of test-

ing can be significantly reduced. The difference between the dynamical behaviour of the

original and the substructured structures should be minimised. At present there are two

main approaches to solve such challenge: force control and displacement control. The force

control is aimed at minimising the error between the physical force and the numerical force,

while the displacement control minimises the error between the physical displacement and
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the numerical displacement. In the force control setting, the displacement of the physical

substructure at the interface is measured and transmitted as an input to the numerical

substructure (indicated by synchronised signal Ss in figure 2.1). The simulator used in

the numerical substructure then calculates the force at the interface (numerical signal Sn)

which is compared with the force generated by the actuator situated at the corresponding

interface in the physical substructure (physical signal Sp). A feedback controller is then

designed to minimise the synchronisation error e between the simulated force and the ac-

tuator force, so that the interface becomes transparent and the DSS behaves as the original

system. In the displacement control setting, the role of force and displacement is swapped,

except for the mass split decomposition that will be shown in Chapter 5. The presence

of delays, disturbances and model uncertainties prevents exact cancellation of the error

between numerical and physical signals, therefore feedback control is needed to control

the actuator in order to minimise the synchronisation error. Model-in-the-loop (MIL) and

hardware-in-the-loop (HIL) have some similarities to DSS, such as the actual hardwares in

the testing loop [46, 47]. However, MIL and HIL are mainly used for verifying the subsys-

tems for various types of systems ranging from mechanical systems and electronic systems

[48, 49], rather than achieving the synchronisation between the numerical substructure and

the physical substructure as in DSS.

2.3 Applications of DSS

Various control techniques have been successfully used to test dynamical systems in dif-

ferent domains. For example, in the railway industry Stoten and colleagues have tested

a pantograph using a DSS approach where only the pantograph is physical, whereas the

electric cable is simulated [50, 51]. The benefit is that it can largely simplify the mech-

anism simulating the movement of electric cable when the cable touches the pantograph.
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Similarly, models of motorcycles have been tested using DSS techniques, see for example

[52] and [44]. In addition, Wallace [53], Neild [54], Bursi [55], Tu [56] and Terkovics [3]

discussed the effect of decomposition on marginally stable structures, as the key is to find

the stable region and then different algorithms are used to accurately tune the actuators

for the purpose of eliminating the error between the displacements in the marginally stable

substructure and the stable substructure. The focus was on the actuator compensation

delay which can lead to system instability, and the controller was designed to eliminate

the error and compensate the delay. However, the main limitation of such methods that

they require much information about the structure and a detailed analysis to ensure the

effectiveness of DSS substructuring. In addition, accurate tuning is required to achieve

the best performance of controller, otherwise the effect can be really limited, which lead

to significant limitations in real applications. In order to avoid such issue in the analysis,

some researchers changed the original test structure to ensure stability after decomposition.

For example, an extra spring and damper in the original system were added in [7] to let

all substructures be stable after the decomposition. In addition, the similar substructur-

ing techniques have also been recently proposed to understand vibration and uncertainty

propagation in complex structures in presence of limited knowledge about the structures

themselves [57]. Other applications include the use of sliding mode control in DSS [58], the

use of neural network control in DSS [59], the application to rotational structures in order

to simulate the helicopter rotor blade [60] and DSS application to analyse the soil-structure

interaction [61]. Nonlinear structures have also been analysed using the integration method

[62], as a similar research being carried out to design protective devices for bridge structures

[63] and flexible frames [64]. Applications also include the mechanics analyses of artificial

disc in the biomechanics of the implanted and adjacent spinal segments [65] and the mod-

elling of flexible structures [66]. Control of multiple actuators was also implemented using
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polynomial fitting [67]. Like in RTHS, the effect of actuator delay has also been researched

quite extensively [68, 69], as well as in the nonlinear system [70]. The performance assess-

ment of the most representative underdamped system was also carried out in [71]. In the

automotive industry, DSS is also helpful to measure the performance at the development

stage [72], as well as for the development of rail vehicles [73, 74]. In addition, the applica-

tion includes the identification of parametric variation in vibrating structures [75] and the

test of complex structures using shaking tables.

Another application of dynamic substructuring is on the evaluation of frequency re-

sponse, instead of the time domain response. A comprehensive review of dynamic sub-

structuring techniques can be found in [45]. In this case the aim is to find out the char-

acteristics of frequency response function (FRF) on substructures and components. Hong

used dynamic substructuring to analyse the characterisation of rail track in order to avoid

serious accidents [76]. The rail track can be tested from different layers and with the help

of dynamic substructuring the analysis of frequency response of coupled track structures

can be performed more clearly, which is helpful to avoid the difficulty of finding out the

cause of cracks and defects. Allen used dynamic substructuring to aid the design of NASA

rocket launcher [77]. The whole structure consisted of the rocket and its launcher. The

interface was the touch plane between rocket and launcher and it is fixed, compared with

the flexible interface in reality. The purpose was to measure the mode shapes of the whole

structures. With the help of numerical simulation combined with actual measurement of

natural frequencies the mode shapes were close to the results obtained by finite element

method (FEM), but the analysis was more effective and efficient. Mayes developed the ap-

plications of dynamic substructuring to find out the frequency response of the transmission

structures, instead of using FEM. This approach is helpful for experiments on rotational

structures such as wind turbines [78, 79]. Model reduction is also used for complex struc-
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tures in order to simplify the testing procedure [80], as well as for reducing the calculation

cost for the continuous structure [81]. Random uncertainties in dynamic substructuring

were modelled with the nonparametric approach in [82]. Inverse dynamic substructuring is

also used when the substructure is difficult to be tested, as the method is based on the hy-

brid assembly in the frequency domain [83, 84], and has been used to predict the dynamics

of mobile machine tool [85]. The effect of damping of the interface was also considered in

[86]. In addition, DSS can be applied to vehicle development, see for example [87] where

the authors proposed a DSS framework for a variety of experiments on vehicle structures.

This series of analyses and experiments include noise measurement, frequency response of

decoupled structures etc. It was shown that DSS helps to improve the level of noise, vibra-

tion and harshness (NVH), as well as the structure design. A comprehensive analysis on

the gear noise propagation in the automotive was carried out in [88] and the crankshaft was

also optimised to improve the ride comfort in [89]. In addition, uncertainty propagation

has also been considered in FRF analysis [90, 91, 92].

2.4 Structural Properties of Dynamical Systems

This section is the brief introduction of the background knowledge about structural prop-

erties of dynamical syatems, which will be used in the following chapters to perform the

relevant analyses.

2.4.1 Causality

A dynamical system called causal when the system outputs only depend on the current and

previous value of inputs and not on the future inputs [93]. From a physical prospective, a

causal system means that the system is implementable.

Mathematically, a transfer function of the impulse response of a causal system has a region
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of convergence (ROC) lying on the right hand side (RHS) of the complex plane. Here, ROC

is defined as the range of variation of σ such that

∫ ∞
0
|h(t)|e−σtdt ≤ ∞ (2.1)

where h(t) is the impulse response of the system under study.

The Laplace transform of h(t) is defined as

H(s) =

∫ ∞
0

h(t)e−stdt (2.2)

and H(s) can be rearranged as

H(s) =
ans

n + an−1s
n−1 + · · ·+ a0

bmsm + bn−1sm−1 + · · ·+ b0
=

(s+ zn) . . . (s+ zi) . . . (s+ z0)

(s+ pm) . . . (s+ pi) . . . (s+ p0)
(2.3)

where −zi are zeros and −pi are poles.

Let us then assume that −pj is the rightmost pole. Then ROC can be represented by

σ = Re[s] > Re[−pj ] (2.4)

Most of the transfer functions describing mechanical systems are rational except infinite

dimensional systems [94] and systems with time delay [95], and for a rational transfer

function of mechanical system ROC is on the real part of the rightmost poles. The degree

of numerator and denominator of the rational transfer function should be also checked to

assess causality. If the degree of the numerator is less than the degree of the denominator the

system is strictly proper, or the degree of numerator is equal to the degree of denominator

the system is bi-proper [96]. Bi-proper systems are causal and proper systems are strictly
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causal (outputs only depend on past inputs). Therefore, causality verification of DSS can

be converted to the testing of relative degrees of the relevant transfer functions. This is the

approach used in the rest of the thesis to assess if a given strategy is feasible.

If any of the signal used a DSS decomposition is non causal with respect to some

of the inputs, then such decomposition can not be physically implemented and should

be discarded. However, an alternative decomposition of the same original structure may

involve only causal signals. Therefore, the first step of the approach proposed in this thesis

is aimed at obtaining conditions for which a given DSS decomposition involves only causal

signals and can be physically implemented. An example of such analysis has been performed

by Li [4] and Gawthrop [97], but only for a specific dynamical system.

2.4.2 Controllability and Observability

Once all the signals required for DSS decomposition have been proven to be causal, the

next step is to check if the dynamical system under control has the structural properties

of controllability and observability. A system is called controllable if an external input can

move the internal states of the system from any initial state to any other final state in a finite

time interval. Similarly, a system is observable if its initial state can be determined based

on the sequence of inputs and output signals [98]. Such structural properties are sufficient

conditions to ensure that a stabilising controller can be designed. Note that observability

and controllability are not necessary conditions. In fact, a stabilising controller can still be

designed in presence of unobservable/uncontrollable states as long as these latter are stable.

However, such weaker conditions can only be studied on a case by case basis, therefore they

are not useful to develop the generic framework considered in this thesis.

A traditional result of control theory states that a linear dynamical system is control-

lable and observable if there are no pole-zero cancellations between the numerator and the
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denominator of the transfer function describing the system behaviour [99]. Such analyti-

cal test will then be applied in Chapter 4 to obtain conditions under which a given DSS

decomposition is feasible and can be implemented.

2.4.3 System Stability

The system stability is the important part for the control design. Consider a linear time

invariant (LTI) system with natural response x(t). If

lim
t→∞

x(t) = 0 (2.5)

then the system is stable, if

lim
t→∞

x(t) = x(∞) 6= 0 (2.6)

the system is marginally stable, and if

lim
t→∞
|x(t)| =∞ (2.7)

the system is unstable.

Stability can be studied in the frequency domain by looking at the position of poles in

transfer functions. If any of −pi in Equation (2.3) are located on the right half of complex

plane, the system is unstable. If all of −pi are located on the left half of complex plane,

the system is stable. If any of −pi are located in the imaginary axis and the rest of −pi

are not located on the right hand side then the system is marginally stable [100]. In this

thesis systems with repeated poles at the origin are defined as marginally stable system.

Therefore, stability analysis of DSS decomposition strategies will be performed by analysing

the location of the poles of the transfer functions involved in such decomposition.
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2.5 Control Techniques and DSS Control Design

2.5.1 General Framework of Combined Feedforward-Feedback Control

Techniques

After the verification of the structural properties of a given decomposition, control tech-

niques will be used to eliminate the error between the numerical and physical substructure.

Stoten, Hyde [101] and Tu [44] analysed DSS based on some existing models such as the

half model of motorcycle and its full model, and then the physical substructure and the

numerical substructure were selected after the decomposition. Klerk [45] analysed the con-

ditions for decomposition of a broad range of dynamical substructing and Stoten applied

it to DSS. Therefore, the general framework shown in Figure 2.2 was proposed in order to

achieve the applications of control techniques to DSS.

Figure 2.2: General framework of DSS, taken from
[101]

This general framework is based on the single input and single output (SISO) system and

can be applied to multiple input and multiple output (MIMO) system by adding additional

control gains. System
∑

1 and system
∑

2 are included after the decomposition. System∑
1 and system

∑
2 can either be the physical system or the numerical system. In the

physical substructure, the physical signal is entirely or partly excited by the actuator.
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In this framework, d is a disturbance applied to the system and z1, z2 can either be the

numerical or the physical signals, meaning the error between them should be minimised.

Input u is signal of the actuator, which typically is the voltage or the current of an electric

actuator. The response of the system shown in Figure 2.2 can be described in the frequency

domain as

• System
∑

1:

z1(s) = G0(s)d(s)−G1(s)u(s) (2.8)

• System
∑

2:

z2(s) = G2(s)u(s) (2.9)

• Error:

e = z1 − z2 = G0(s)d(s)− [G1(s) +G2(s)]u(s) (2.10)

where G0, G1 G2 are the transfer functions for two systems, Kd is the feedforward

control gain relating to the disturbance d and Ke is the feedback control gain relating

to the error e.

Typical linear hybrid controller (feedforward plus feedback) design techniques used for

eliminating the synchronisation error in DSS applications include linear substructing control

(LSC) and minimal control with error feedback (MCEF)[102]. In this thesis LSC will be

described in the next subsection.

Linear Substructuring Controller (LSC)

Typically, the control technique used for driving the actuator is based on the linear feed-

forward plus feedback system. Linear Substructuring Controller (LSC) was developed by
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Stoten in [101]. Nonlinear substructructuring controller (NLSC) was also developed from

LSC [103]. LSC is based on the general framework introduced above and the controller has

the form

u(s) = Kd(s)d(s) +Ke(s)e(s) (2.11)

By plugging (2.11) into (2.10), one obtains

e(s) = G0(s)d(s)− [G1(s) +G2(s)]u(s)

= Gd(s)d(s)−Gu(s)u(s)

= [I +Gu(s)Ke(s)]
−1[Gd(s)−Gu(s)Kd(s)]d(s)

(2.12)

Given that the control goal is ensuring e→ 0, the control gain Kd is set to

Kd(s) =
Gd(s)

Gu(s)
(2.13)

if Gu is a non-minimum phase and non-singular. Which means, parameter variations in∑
1 may be unstable due to the inverted dynamics, as seen from the open-loop solution

of Equation (2.13). Therefore, closed-loop stability and robustness must be guaranteed

via appropriate synthesis of Ke to obtain desirable roots of the multiple inputs multiple

outputs (MIMO) closed-loop characteristic equation

I +Gu(s)Ke(s) = 0 (2.14)
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There are many methods to solve Ke in the above equation. For the simplicity, root locus

based synthesis is commonly used in LSC design, and will be the main approach used for

the examples in Chapter 5.

Minimal Control with Error Feedback (MCEF)

Minimal Control with Error Feedback (MCEF) is an adaptive controller proposed in [102].

The mathematical description of the controller is listed as follows

u(t) = Kdd(t) +Kee(t) (2.15)

where

Kd = α

∫ t

0
ye(t)d(t)dt+ βye(t)d(t) (2.16)

Ke = α

∫ t

0
ye(t)e(t)dt+ βye(t)e(t) (2.17)

Kd and Ke are adaptive gains, with α and β being adaptive weights and ye(t) being

proportional to the error e(t). Adaptive control it will not be used in this thesis as the

focus is on the feasibility of control design, rather than optimisation of performance.

2.5.2 H2 and H∞ Controller

Feedback controllers are commonly used and can also be used to synchronise numerical and

physical signals in the DSS framework. A typical feedback control block diagram for DSS

is shown in Figure 2.3, where P (s) is the control plant and K(s) is the feedback controller

that is used to drive the actuator in the physical substructure of DSS. In order to compen-

sate for unknown disturbances, H2 control has been used in [104] and H∞ control has been

used in [105].
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P (s)
Disturbance d

Actuator Voltage 

Objective Signal

U
State x

w

K
Figure 2.3: General feedback control block diagram

Briefly, the H∞ controller design process can be summarised as follows. Let us consider

the state space form of control plant P (s)


ẋ = Ax+B11d+B12U

w = C1x+D11d+D12U

(2.18)

where d is the disturbance and w is the objective signal that should be minimised in DSS,

for example, the synchronisation error e(t). U is the voltage of actuator and w represents

the measurable output states.

Then the state feedback of controller K can be written as

U = Kx (2.19)

Therefore, the state space form of the closed loop G(s) can be summarised as


ẋcl = Aclxcl +Bcld

w = Cclxcl +Dcld

(2.20)
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where



xcl = x

Acl = A+B12K

Bcl = B11

Ccl = C1 +D12K

Dcl = D11

(2.21)

The goal of a H2 controller is to minimise the gain between the H2 norm of d and the

H2 norm of w, i.e.

‖G‖2 =
‖w‖2
‖d‖2

< γ (2.22)

where γ is the target performance index which is set in order to reduce the effect of the

disturbance d on the output w. In Equation (2.22) the H2 norm is defined as

‖w‖2 =
(∫ ∞

0
‖w‖2dt

)1/2

(2.23)

Then the controller K and performance index γ can be obtained by using the linear

matrix inequalities (LMI) or Riccati equations [106]. The details of LMI based procedure

is described below, as this is the approach used for the mechanical examples in Chapter 4.

For the case with state feedback controller, Equation (2.24) can be solved by following the

procedure below.
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Let us assume that there exist three matrices Z, R and X such that

trZ < γ2

 Z C1X +D12R

(C1X +D12R)T X

 > 0

AX +XAT +B12R+ (B12R)T +B11B
T
11 < 0

(2.24)

Such LMI can be solved for any value of γ in MATLAB by using the relative toolbox, for

example, by using the function h2syns.

The H2 controller gain K can then be obtained as

K = RX−1 (2.25)

The goal of a H∞ controller is to minimise the gain between the `2 norm of d and the

`2 norm of w.

‖G‖∞ = sup |G(s)| = sup

{
‖w‖2
‖d‖2

}
< γ (2.26)

where γ is the performance index which is set in order to reduce the effect of disturbance

on the output w.

Then the controller K and performance index γ can be obtained by using the linear

matrix inequalities(LMI) or Riccati equations [107]. The details of LMI based procedure

are briefly described below

H∞ control synthesis can be converted to the LMI optimisation problem

min(γ)
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
AclXcl + (AclXcl)

T Bcl (CclXcl)
T

BT
cl −I DT

cl

CclXcl Dcl −γ2I

 < 0

Xcl > 0

(2.27)

where Xcl is the unknown variable.

For the system with state feedback controller, Equation (2.27) can be solved by calcu-

lating the following inequality


AX∗ +B12U1 + (AX∗ +B12U1)

T B11 (C1X
∗ +D12U1)

T

BT
11 −I DT

11

C1X
∗ +D12U1 D11 −γ2I

 < 0

X > 0

(2.28)

with U1 and X as unknowns. Such LMI can be solved in MATLAB by using the relative

toolbox. The state feedback control gain can then be calculated as

K = U1X
∗−1 (2.29)

2.6 Research Gaps

Currently most of the literature on DSS mainly focused on specific models, and a rigorous

framework to study the feasibility of such hybrid testing approach for generic vibration

problems is missing, as the analysis does not depend on the certain system parameters

and degrees of freedom, which is beneficial for a range of structures, especially for those
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with different degrees of freedom. In addition, delay is also a common issue in DSS and

hybrid testing applications, however, there is no generic analytical approach to deal with

it. Given the research direction of this thesis, which is aimed at establishing the generic

procedures of DSS, no discussion of delay is included in this thesis. One main objective of

this thesis is to fill this gap by using a novel recursive expression for transfer functions. The

generic feasibility analysis of DSS will be established in Chapter 4, including the analysis

of causality, controllability and observability. Such an analysis will make the conditions

of generic feasibility explicit and there is no need to focus on specific models anymore, in

contrast to current approaches.

Another gap in the current literature is related to robust techniques for DSS or RTHS

with marginally stable substructures, with limited exceptions that only focused on specific

models. In order to solve this problem, a novel control architecture will be proposed

in Chapter 5 to provide a comprehensive solution of generic DSS with marginally stable

substructures, with the help of novel recursive transfer functions. This solution significantly

broadens the scope of structures that can be hybrid tested using DSS by allowing testing

of marginally stable structures. In addition, unlike other approaches that require accurate

tuning to achieve the synchronisation, this proposed solution will provide complete freedom

to design the needed controllers to achieve synchronisation and no accurate tuning will be

required as well.
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Chapter 3

Benchmark Structure and its

Structural Properties

This chapter is to introduce the generic benchmark structure and its structural properties

including causality, controllability, observability and stability. Such knowledge is the prepa-

ration of the following analyses that will be used to analyse the feasibility of the decomposed

structures (Chapter 4) and to reveal the difficulty of achieving the synchronisation of DSS

with marginally stable substructures (Chapter 5). Such content will be in the following

chapters.

3.1 Original Structure

The generic lumped parameter vibration model considered in this thesis can schematically

be represented as chain of n spring-damper-mass systems as shown in Figure 3.1. This

model is selected for the comprehensive guidance of generalised DSS. It is worth noting that,

despite its simplicity, such representation can describe a wide range of vibration problems

[3, 44, 52]. Therefore, it is still a very useful benchmark structure, as its mathematical
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model will still be helpful to explore other types of structures, considering the mathematical

similarities among discretely distributed structures. Results obtained for this benchmark

system are easily generalisable to other complex structures, as will be shown in Chapter

4. Previously, analyses mainly focused on specific models, meaning conclusions are only

suitable for particular models and no conclusions can be drawn about other structures. In

order to overcome this shortfall, a generic procedure is introduced in this chapter. All of

analyses are generic in the sense of not requiring detailed knowledge about the system, and

the same procedures can be applied to different types of structures. Therefore it is suitable

to derive general conclusions about DSS design for generic vibrating structures. Here, the

disturbance d(t) is applied as displacement of the support at one end of the structure,

whereas an external force F (t) is applied to the other end. Such force will represent,

for example, the action of the actuator used in substructures. A semi-implicit form for

the generalised transfer function and the degree of relative coefficients will be obtained

in this chapter to analyse the aspects of feasibility such as causality, controllability and

observability with minimal knowledge of system parameters, which significantly simplifies

such analysis.

m1
… …mi mn−1

yn−1

kn−1

cn−1

mn

kn

cn

ynyi

ki

ci

k1

c1

y1

F

F

F

d

Figure 3.1: Schematics for a generic lumped parameter vibration problem.
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3.2 Mathematical Description

The equations of motion describing the behaviour of the system shown in Figure 3.1 (some-

times referred to as emulated system in the DSS literature [44]) can be obtained by imposing

force balance at each mass

mnÿn = −kn(yn − yn−1)− cn(ẏn − ẏn−1)− F

mn−1ÿn−1 = −kn−1(yn−1 − yn−2)− cn−1(ẏn−1 − ẏn−2) + kn(yn − yn−1) + cn(ẏn − ẏn−1)

i = n− 1

...

miÿi = −ki(yi − yi−1)− ci(ẏi − ẏi−1) + ki+1(yi+1 − yi) + ci+1(ẏi+1 − ẏi)

2 ≤ i ≤ n− 1

m1ÿ1 = −k1(y1 − d)− c1(ẏ1 − ḋ) + k2(y2 − y1) + c2(ẏ2 − ẏ1)
(3.1)

where mi is the i-th mass, ci the i-th damping coefficient, ki is the i-th spring stiffness, yi

the displacement of the i-th mass and the dot indicates time derivative. The displacement

of the support is indicated as y0 = d and is considered unknown. An equivalent expression

in the frequency domain can then be written as

yi(s) =
Numi(s)

Deni(s)
yi−1(s)−

Num1i(s)

Den1i(s)
F (s) (3.2)

where Numi(s) and Deni(s) represent, respectively, the numerator and the denominator

of the transfer function between the position of the i-th and (i − 1)-th masses. Similarly

Num1i(s) and Den1i(s) refer to the transfer function between the position of the i-th mass

and the applied force F . All of numerators and denominators will use the recursive form

in order to reduce the complexity of calculations in the following.
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The linearity of the system dynamics (3.1) allows studying the influence of the distur-

bance d and the force F independently, thanks to the superposition principle. For example,

the transfer function between i-th mass displacement yi and the disturbance d can be

written as

yi
d

=
y1
d

y2
y1
. . .

yi
yi−1

=
Numd

i

Den1
=


Deni+1

∏i
1 (cis+ ki)

Den1
i ≤ n− 1∏i

1(cis+ ki)

Den1
i = n

(3.3)

where

Deni =



mns
2 + cns+ kn i = n

(mns
2 + cns+ kn)[mn−1s

2 + (cn−1 + cn)s+ kn−1 + kn]...

− (cns+ kn)
2 i = n− 1

[mis
2 + (ci + ci+1)s+ ki + ki+1]Deni+1 − (cis+ ki)

2Deni+2 i ≤ n− 2

(3.4)

A similar procedure can also be applied to derive the transfer functions between the

i-th displacements yi and the external force F , which read

yi
F

=
yn
F

yn−1
yn

. . .
yi
yi+1

= −Num
F
i

Den1n
=


−
∏n
i=2(cis+ ki)

Den1n
i = 1

−
Den1i−1

∏n
i+1 (ci+1s+ ki+1)

Den1n
1 < i ≤ n

(3.5)

where
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Den1i =



m1s
2 + (c1 + c2)s+ k1 + k2 i = 1

[m1s
2 + (c1 + c2)s+ k1 + k2][m2s

2 + (c2 + c3)s+ k2 + k3]

− (c2s+ k2)
2 i = 2

[mis
2 + (ci + ci+1)s+ ki + ki+1]Den1i−1 − (cis+ ki)

2Den1i−2 2 < i ≤ n− 1

(mns
2 + cns+ kn)Den1n−1 − (cns+ kn)

2Den1n−2 i = n

(3.6)

and Den1n is equal to Den1. The degree of the numerators and the denominators is sum-

marised in Table 3.1 for reference, based on the assumption that there are no poles and

zeros cancellations. Note that observability and controllability are not necessary conditions.

Such structural properties are sufficient conditions to ensure that a stabilising controller

can be designed. In fact, a stabilising controller can still be designed in presence of un-

observable/uncontrollable states as long as these latter are stable. However, such weaker

conditions can only be studied on a case by case basis, therefore they are not useful to

develop the generic framework considered in this thesis.

Table 3.1: Degrees of numerators and denominators for the transfer functions between
input displacements and force.

Index i ∠Numi ∠Deni ∠Num1i ∠Den1i

n n 2 2n− 2 2n
n− 1 n+ 1 4 2n− 3 2n− 2
n− 2 n+ 2 6 2n− 4 2n− 4

...
...

...
...

...
i 2n− i 2n− 2i+ 2 n+ i− 2 2i
...

...
...

...
...

1 2n− 1 2n n− 1 2
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3.3 Causality

For DSS, the first property that needs to be checked before designing any controller is

causality. Based on the knowledge introduced in Chapter 2, if any of the signal used a DSS

decomposition is non causal with respect to some of the inputs, then such decomposition

can not be physically implemented and should be discarded. However, an alternative de-

composition of the same original structure may involve only causal signals. Therefore, the

first step of the approach proposed in this thesis is aimed at obtaining conditions for which

a given DSS decomposition involves only causal signals and can be physically implemented.

From Table 3.1 it can be seen that the original structure is causal, because the degree of

numerators is less than the degree of denominators when the system inputs are d and F .

3.4 Controllability and Observability

A traditional result of control theory states that a linear dynamical system is controllable

and observable if there are no pole-zero cancellations between the numerator and the de-

nominator of the transfer function describing the system behaviour [99]. The proof of

controllability and observability for the original structure is reported in this section, as it

will form the basis for DSS analysis. Let us assume that the following conditions hold



(cns+ kn) ⊥ mns
2 + cns+ kn

(cis+ ki) ⊥ mis
2 + (ci + ci+1)s+ ki + ki+1 i ≤ n− 1

(ci+1s+ ki+1) ⊥ mis
2 + (ci + ci+1)s+ ki + ki+1

(cjs+ kj) ⊥ Deni j = 1, . . . , n− i+ 1; i ≤ n

(3.7)

where A(s) ⊥ B(s) indicates that the polynomials A(s) and B(s) do not share any common

root.
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From a physical point of view, most of the conditions listed in Equation (3.7) are satisfied if

none of the mass, spring or damping coefficients are zero in the original structure. Moreover,

if the system is underdamped all conditions are automatically satisfied.

An induction procedure can then be performed to show that under such hypotheses there

are no common roots between any denominator and numerator of the transfer functions

considered in DSS design. In fact, the constraints listed in Equation (3.7) imply that the

first two denominators Denn and Denn−1 in Equation (3.4) do not have any common root.

Let us then assume that two adjacent denominators Denn−i+1 and Denn−i do not share

any common root. Equation (3.4) implies that for any index j between i + 1 and n, the

following relations hold

Denn−i−1 = K1(n−i−1)Denn−i −K2(n−i−1)Denn−i+1 (3.8)

Denn−i−2 = K1(n−i−2)Denn−i−1 −K2(n−i−2)Denn−i (3.9)
...

Denn−j+1 = K1(n−j+1)Denn−j+2 −K2(n−j+1)Denn−j+3

=

 j∏
q=i+2

K1(n−q+1) − b1(j)

Denn−i

−

K2(n−i−1)

j∏
q=i+3

K1(n−q+1) − b2(j)

Denn−i+1 i+ 3 ≤ j ≤ n (3.10)
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where

K1(n−j+1) = mn−j+1s
2 + (cn−j+1 + cn−j+2)s+ kn−j+1 + kn−j+2 (3.11)

K2(n−j+1) = (cn−j+2s+ kn−j+2)
2 (3.12)

b1(i+2) = 0 (3.13)

b1(i+3) = K2(n−i−2) (3.14)

b1(j) = K1(n−j+1)b1(j−1) +K2(n−j+1)

j−2∏
q=i+2

K1(n−q+1) −K2(n−j+1)b1(j−2)

i+ 4 ≤ j ≤ n

(3.15)

b2(i+2) = b2(i+3) = 0 (3.16)

b2(i+4) = K2(n−i−1)K2(n−i−3) (3.17)

b2(j) = K1(n−j+1)b2(j−1) +K2(n−j+1)K2(n−i−1)

j−2∏
q=i+3

K1(n−q+1) −K2(n−j+1)b2(j−2)

i+ 5 ≤ j ≤ n

(3.18)

The degrees of the polynomials b1 and b2 are reported in Table 3.2 for reference.

Let us then proceed with a proof by contradiction. To this end, note that if Denn−j+1

and Denn−i−1 have common roots, then Equation (3.10) can be rearranged as

Denn−j+1 = A ·Denn−i−1 (3.19)

When A is a constant or a polynomial, all roots of Denn−i−1 are included in the roots of

Denn−j+1. On the other hand, if A is a ratio of polynomials and its denominator share

some roots with Denn−i−1, then some roots of Denn−i−1 are not included in the roots of
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Table 3.2: Degrees of polynomials b1(j) and b2(j).

Index j ∠b1(j) ∠b2(j)

i+2 0 0
i+3 2 0
i+4 4 4
i+5 6 6
...

...
...

j 2j-2i-4 (j ≥ i+ 2) 2j-2i-4 (j ≥ i+ 4)
...

...
...

n 2n-2i-4 2n-2i-4

Denn−j+1. Note that Equation (3.10) can be rewritten as

Denn−j+1 = K1(n−i−1)

 j∏
q=i+3

K1(n−q+1) −
b1(j)

K1(n−i−1)

Denn−i

−K2(n−i−1)

 j∏
q=i+3

K1(n−q+1) −
b2(j)

K2(n−i−1)

Denn−i+1 (3.20)

which, once combined with Equation (3.8) and Equation (3.19), implies

A =

j∏
q=i+3

K1(n−q+1) −
b1(j)

K1(n−i−1)
=

j∏
q=i+3

K1(n−q+1) −
b2(j)

K2(n−i−1)
(3.21)

which, in turn, implies

b1(j)

K1(n−i−1)
=

b2(j)

K2(n−i−1)
(3.22)

It is obvious that Equation (3.22) is trivially not satified for j = i + 3 due to (3.15)-

(3.18), hence the following proof will focus on Equation (3.22) for j > i + 3. To this end,
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note that given generic non-zero polynomials X,Y, a1, a2, T the relation

X

Y
=
TX + a1
TY + a2

(3.23)

holds if and only if

a1
a2

=
X

Y
(3.24)

Let us then rewrite Equation (3.22) as

b1(j)

b2(j)
=
K1(n−i−1)

K2(n−i−1)
(3.25)

and use Equations (3.15) and (3.18) to express b1(j) and b2(j) as

b1(j) = TX + a1, b2(j) = TY + a2 (3.26)

where

T = K2(n−j+1)

j−2∏
q=i+3

K1(n−k+1) (3.27)

X = K1(n−i−1) (3.28)

Y = K2(n−i−1) (3.29)

a1 = K1(n−j+1)b1(j−1) −K2(n−j+1)b1(j−2) (3.30)

a2 = K1(n−j+1)b2(j−1) −K2(n−j+1)b2(j−2) (3.31)
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Therefore, (3.25) holds if and only if

K1(n−j+1)b1(j−1) −K2(n−j+1)b1(j−2)

K1(n−j+1)b2(j−1) −K2(n−j+1)b2(j−2)
=
K1(n−i−1)

K2(n−i−1)
(3.32)

or, by rearranging the terms in a more convenient form, if

K1(n−j+1)

K2(n−j+1)
=
K2(n−i−1)b1(j−1) −K1(n−i−1)b2(j−1)

K2(n−i−1)b1(j−2) −K1(n−i−1)b2(j−2)
(3.33)

However, according to Equation (3.11)-(3.12) and Table 3.2, the left hand side is a

ratio of second order polynomials, whereas the right hand side is a ratio of polynomials

of different degrees. Therefore Equation (3.33) can not hold and the proof is concluded.

This means that an underdamped original system is automatically controllable and ob-

servable. For other types of systems, controllability and observability can be analysed by

verifying Equation (3.7). In addition, this method avoids obtaining the analytical solution

of Denn−i+1 where the total number of coefficients in b1(j) and b2(j) are the Fibonacci

numbers.

Such analytical test will then be applied to obtain conditions under which a given DSS

decomposition is feasible and can be implemented.

3.5 Stability

The original structure is a typical mass spring and damper system, which is asymptotically

stable due to the presence of non-zero damping. However, it is useful to conduct the

formal stability analysis, as it will form the basis for the stability analysis of decomposed

structures in the following chapters. Indeed, for the decomposed structures, stability can

not be assumed a priori, due to the presence of an active element at the interface and the

possible structural difference from the original system. In this section a formal stability
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analysis of the original structure will be carried out anyway.

In order to prepare for the following stability analysis of the decomposed structures, the

denominator in Equation (3.3) can be rearranged as

Deni =

n∏
q=i

(mqs
2 + cqs+ kq) + ri i ≤ n− 1 (3.34)

where ri is the implicit form of the rest of the coefficients in Deni and it contains the

common factor s2. To prove this, let us start from Denn−1. Equation (3.4) implies

Denn−1 = (mn−1s
2 + cn−1s+ kn−1)(mns

2 + cns+ kn) + (cns+ kn)mns
2

=
n∏

q=n−1
(mqs

2 + cqs+ kq) + rn−1
(3.35)

Therefore, Equation (3.34) is satisfied when i = n− 1 and then it can also be satisfied

when i = n− 2.

Then let us now assume that Equation (3.34) is satisfied when i = j + 1 and i = j, i.e.

Denj+1 =
n∏

q=j+1

(mqs
2 + cqs+ kq) + rj+1 (3.36)

Denj =

n∏
q=j

(mqs
2 + cqs+ kq) + rj (3.37)
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where both rj+1 and rj include the common factor s2. Then Equation (3.4) implies

Denj−1 = [mj−1s
2 + (cj−1 + cj)s+ kj−1 + kj ]Denj − (cjs+ kj)

2Denj+1

= (mj−1s
2 + cj−1s+ kj−1)Denj + (cjs+ kj)Denj − (cjs+ kj)

2Denj+1

= (mj−1s
2 + cj−1s+ kj−1)Denj

+ (cjs+ kj)(mjs
2 + cjs+ kj)

n∏
q=j+1

(mqs
2 + cqs+ kq) + (cjs+ kj)rj

− (cjs+ kj)
2[

n∏
q=j+1

(mqs
2 + cqs+ kq) + rj+1]

= (mj−1s
2 + cj−1s+ kj−1)Denj

+ (cjs+ kj)mjs
2

n∏
q=j+1

(mqs
2 + cqs+ kq) + (cjs+ kj)[rj − (cjs+ kj)rj+1]

=

n∏
q=j−1

(mqs
2 + cqs+ kq) + (mj−1s

2 + cj−1s+ kj−1)rj

+ (cjs+ kj)mjs
2

n∏
q=j+1

(mqs
2 + cqs+ kq) + (cjs+ kj)[rj − (cjs+ kj)rj+1]

=
n∏

q=j−1
(mqs

2 + cqs+ kq) + rj−1

(3.38)

where

rj−1 = (mj−1s
2 + cj−1s+ kj−1)rj + (cjs+ kj)mjs

2
n∏

q=j+1

(mqs
2 + cqs+ kq)+

+ (cjs+ kj)[rj − (cjs+ kj)rj+1]

(3.39)

Therefore, rj−1 also has the common factor s2, meaning the proof is complete and

Equation (3.34) is satisfied. The proof provided in Appendix A shows that a polynomial

with a even maximum degree and all unconditionally positive coefficients can only have
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negative real roots, purely imaginary roots or conjugated complex roots with negative real

parts. Therefore, it is necessary to prove that all coefficients in (cjs+kj)[rj−(cjs+kj)rj+1]

are unconditionally positive. Note that this condition is already satisfied for rn−2 and rn−3.

To use induction, let us then assume that rj−1 are unconditionally positive. Then rj−2 can

be expressed as

rj−2 = (mj−2s
2 + cj−2s+ kj−2)rj−1 + (cj−1s+ kj−1)mj−1s

2
n∏
q=j

(mqs
2 + cqs+ kq)

+ (cj−1s+ kj−1)[rj−1 − (cj−1s+ kj−1)rj ]

= (mj−2s
2 + cj−2s+ kj−2)rj−1 + (cj−1s+ kj−1)mj−1s

2
n∏
q=j

(mqs
2 + cqs+ kq)

+ (cj−1s+ kj−1){(mj−1s
2 + cj−1s+ kj−1)rj + (cjs+ kj)mjs

2
n∏

q=j+1

(mqs
2 + cqs+ kq)

+ (cjs+ kj)[rj − (cjs+ kj)rj+1]− (cj−1s+ kj−1)rj}

= (mj−2s
2 + cj−2s+ kj−2)rj−1 + (cj−1s+ kj−1)mj−1s

2
n∏
q=j

(mqs
2 + cqs+ kq)

+ (cj−1s+ kj−1){mj−1s
2rj + (cjs+ kj)mjs

2
n∏

q=j+1

(mqs
2 + cqs+ kq)

+ (cjs+ kj)[rj − (cjs+ kj)rj+1]}

(3.40)

where

(cj−1s+ kj−1)[rj−1 − (cj−1s+ kj−1)rj ] =

(cj−1s+ kj−1){mj−1s
2rj + (cjs+ kj)mjs

2
n∏

q=j+1

(mqs
2 + cqs+ kq)

+ (cjs+ kj)[rj − (cjs+ kj)rj+1]} (3.41)
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Therefore, all the coefficients of (cj−1s+ kj−1)[rj−1− (cj−1s+ kj−1)rj ] are unconditionally

positive, and this implies that the coefficients of rj−2 are unconditionally positive as well.

Therefore, by induction, all coefficients in rj are unconditionally positive for each index j,

as well as all coefficients in each Denj . It can also be observed that the maximum degree for

Denj is 2j, while the maximum degree for rj is 2j − 1. Moreover, in Denj the coefficients

of odd degree terms are functions of the damping coefficients ci only. Therefore, the proof

provided in Appendix A can be exploited to show that Denj can only admit negative real

roots, complex roots with negative real parts and purely imaginary roots. However, for

Denj to admit purely imaginary roots, at least some of the odd degree terms should be

zero, but this would imply that some of the damping coefficients ci are equal to zero, which

is in conflict with the condition that all system parameters are strictly positive. Therefore,

Denj can only have negative real roots or conjugated complex roots with negative real

parts, indicating that the original system is asymptotically stable. Equation (3.38) will

play a key role in Chapter 4 to analyse the stability for different substructures, as well as

to understand the challenges associated to DSS testing of structures in Chapter 5, where

the substructuring interface is placed across a mass.
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Chapter 4

Control Design Feasibility for

Structural Decompositions without

Mass Split

In this chapter an analysis of the structural properties of decomposition strategies without

the mass split will be carried out. Here “mass split” indicates a decomposition where the

DSS interface is placed across a mass. The purpose is to derive analytical conditions for

application of DSS to generic vibration problems. The benchmark structure shown in

Figure 3.1 is selected, as results for such structure are easily generalised to more complex

structures (see examples in section 4.5.2). The analysis is based on properties such as

causality, controllability and observability. Therefore, proposed approach is generic and

other generalised structures can use these procedures as the reference, and the procedure

proposed in this chapter can be applied to other types of structures to obtain similar results.
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4.1 Types of DSS Decomposition

In a DSS framework the original system shown in Figure 3.1 is split into two substructures,

a physical substructure implemented in hardware and a numerical substructure which is

numerically simulated. However, different choices can be made on what substructure should

be simulated, where the interface between the two substructures should be placed and

whether force or position control should be used. Different choices give raise to different

feasibility conditions, which are discussed in the rest of the chapter.

For the sake of reference, in this chapter the decomposition shown in Figure 4.1a will

be called Type 1 decomposition, whereas the scheme shown in Figure 4.1b will be referred

to as Type 2 decomposition. The difference between these two options lies in the location of

the interface between numerical and physical substructures; in the first type the interface

is placed right after the l-th mass, whereas in the second type the interface is placed after

the spring-damper connected to the l-th mass.

Once the location of the interface has been finalised, each substructure can be tested

either numerically or physically, and force or position control can be used to synchronise

the two substructures. Therefore in total eight potential DSS decomposition approaches

will be analysed in this chapter.

4.2 Stability Analysis

Obviously, for Type 1 decomposition both substructures are similar to the original struc-

ture, which means both substructures are asymptotically stable. However, for Type 2

decomposition substructure B is different from the original structure because the leftmost

mass is not linked to a support via a spring and damper on its left side. Therefore, its

stability should be carried out separately. In all cases S1 and S2 are inputs for substructure
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Figure 4.1: Potential choices of location of substructuring interface: a) Type 1 decompo-
sition where the interface is right after mass l and b) Type 2 decomposition where the
interface is located after the spring-mass damper system connected to mass l.

A and substructure B respectively. Then let us assume that S2 is a force input, hence the

generalised equation of motion for substructure B can be written as

yi
F

=
yl+1

F

yl+2

yl+1
. . .

yi
yi−1

=

NumF
i

Den′l+1

=



Den′i+1

Den′l+1

i = l + 1

Den′i+1

∏i
l+2 (cis+ ki)

Den′l+1

l + 1 < i ≤ n− 1∏i
l+2(cis+ ki)

Den′l+1

i = n

(4.1)
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where

Den′i =



mns
2 + cns+ kn i = n

[mn−1s
2 + (cn−1 + cn)s+ kn−1 + kn](mns

2 + cns+ kn)

− (cns+ kn)
2 i = n− 1

...

[mis
2 + (ci + ci+1)s+ ki + ki+1]Den

′
i+1

− (ci+1s+ ki+1)
2Den′i+2 l + 2 ≤ i ≤ n− 2

(ml+1s
2 + cl+2s+ kl+2)Den

′
l+2 − (cl+2s+ kl+2)

2Den′l+3 i = l + 1

(4.2)

Note that Equation (4.2), apart from the last denominator, is identical to Equation

(3.4). Following the same procedure leading to Equation (3.34), Equation (4.2) can be

rearranged as

Den′l+1 = ml+1s
2

n∏
q=l+2

(mqs
2 + cqs+ kq) + r′l+1 (4.3)

where r′l+1 also includes the common factor s2.

Therefore, all coefficients in Den′l include the common factor s2, indicating that sub-

structure B is marginally stable, according to the proposed stability analysis shown in

Chapter 3. In the following causality analysis Den2 is used to describe the characteristic

equation of substructure B in Type 2 decomposition, in view of its marginal stability.

An example of marginally stable response is shown in Figure 4.2 where four-mass-

system with parameters as in Table 4.1 is tested with a sinusoidal external physical force

Fp(t) = 0.003sin(6πt) which is used to excite the bottom of 4th mass. Note that marginal

stability may induce a drift in the response.
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Table 4.1: Numerical values of parameters used for example of substructure B response

Index Mass mi Stiffness ki Damping ci

1 380kg N/A N/A
2 350kg 700N/m 250Ns/m
3 320kg 600N/m 240Ns/m
4 290kg 500N/m 230Ns/m
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Figure 4.2: Displacement of fourth mass with Type 2 decomposition
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4.3 DSS Decomposition: Causality Analysis

In this section, a causality analysis for the eight cases considered in this chapter is per-

formed. Each case is discussed in a separate subsection to improve clarity.

4.3.1 Force Control, Physical substructure A, Type 1 Decomposition

The general scheme for Type 1 decomposition is shown in Figure 4.1a and the control

diagram is same as in Figure 2.1. In this section we consider the case

S1 = Sp = Fp, S2 = Ss = yl, Sn = Fn (4.4)

i.e. the substructure A is a physical substructure and the physical displacement of the

interface is passed to the numerical substructure as an input. The goal of the DSS control

is therefore to minimise the error between the numerical force Fn at the interface and the

physical force Fp that the actuator exerts on the physical substructure.

The equation of motion describing mass displacements in the physical substructure can

be written as

yi =
Numd

i

Dend
d−

Num
Fp

i

DenFp

Fp 1 ≤ i ≤ l (4.5)

Note that Equations (3.3)-(3.5) and Table 3.1 imply

byic =
b2l − ic
b2lc

d− bl + i− 2c
b2lc

Fp (4.6)

bylc =
blc
b2lc

d− b2l − 2c
b2lc

Fp (4.7)

where byic means its maximum degree by obtaining the maximum degree of the relative
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transfer functions.

Therefore, all the transfer functions related to quantities to be measured at the interface

are causal. Note that for simplicity, all the degrees considered in this analysis are the

maximum degrees and no pole-zero cancellations are taken into account. However, the

same result holds even in presence of pole-zero cancellations, as the relative degree of the

transfer functions is preserved also in such cases.

Similarly, the equations of motion for the numerical substructure read

yj =
Numyl

j

Denyl
yl =

Numyl
j

Denyl

(
Numd

l

Dend
d−

Num
Fp

l

DenFp

)
l + 1 ≤ j ≤ n (4.8)

Thanks to Table 3.1, the degree of numerators and denominators of such transfer functions

can then be written as

byjc =
b2n− j − lc
b2(n− l)c

yl (4.9)

=
b2n− j − lc
b2(n− l)c

(
blc
b2lc

d− b2l − 2c
b2lc

Fp

)
=
b2n− jc
b2nc

d− b2n− j + l − 2c
b2nc

Fp (4.10)

and therefore all the transfer functions involved in calculating mass displacements in the

numerical substructure are causal if either the interface displacement yl is passed as an input

(Equation (4.9)) or the combination of physical force Fp and disturbance d are passed as

inputs (Equation (4.10)).

On the other hand, the numerical force Fn at the interface also needs to be simulated to

compute the synchronisation error which will be fed to the DSS controller. Such numerical
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force can be calculated as

Fn =(cl+1s+ kl+1)(yl − yl+1) = (cl+1s+ kl+1)

(
1−

Numyl
l+1

Denyl

)
yl (4.11)

=(cl+1s+ kl+1)

(
1−

Numyl
l+1

Denyl

)(
Numd

l

Dend
d−

Num
Fp

l

DenFp

Fp

)
(4.12)

Once again, Table 3.1 implies that the relative degrees of such transfer functions are

bFnc =
b2n− 2l + 1c
b2(n− l)c

yl (4.13)

=
b2n− l + 1c
b2nc

d− b2n− 1c
b2nc

Fp (4.14)

Equation (4.13) implies that the numerical force Fn can not be estimated in a causal way

if information on yl only is passed to the numerical substructure. On the other hand, Fn

can be obtained in a causal way if information about Fp and d is provided, as indicated by

Equation (4.14).

4.3.2 Force Control, Numerical substructure A, Type 1 Decomposition

Let us now consider the case where the role of physical and numerical substructure is

swapped compared to the section 4.3.1, i.e.

S1 = Ss = yl, S2 = Sp = Fp, Sn = Fn (4.15)

In this case, the lack of the spring-damper at the numerical interface prevents the possibility

of simulating Fn in a causal way and therefore force control within such decomposition

strategy can not be physically implemented.
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4.3.3 Position control, Physical Substructure A, Type 1 Decomposition

In this section the case where

S1 = Sp = ypl , S2 = Ss = Fp, Sn = ynl (4.16)

is considered. This situation is similar to the one considered in section 4.3.1 but with the

role of force and position at the interface swapped. In this case, the position actuator used

in position control can not independently set the position of the mass ml in a causal way,

therefore this approach is deemed infeasible.

4.3.4 Position Control, Numerical Substructure A, Type 1 Decomposi-

tion

The case analysed in this subsection refers to the same schematics of section 4.3.2, but

again with the role of force and position at the interface swapped, i.e.

S1 = Ss = Fp, S2 = Sp = ypl , Sn = ynl (4.17)

The equations of motion for the physical substructure can be written as

yj =
Numyl

j

Denyl
ypl i+ 1 ≤ j ≤ n (4.18)

where ypl is the physical displacement of the l-th mass, Numyl
j and Denyl represent the

numerator and the denominator of the transfer function relating to input ypl and output yj

respectively According to Table 3.1, the following relation holds

byjc =
b2n− j − lc
b2(n− l)c

ypl (4.19)
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On the other hand, the equation of motion for the numerical substructure reads

yni =
Numd

i

Dend
d−

Num
Fp

i

DenFp

Fp 1 ≤ i ≤ l (4.20)

and therefore

byni c =
b2l − ic
b2lc

d− bl + i− 2c
b2lc

Fp =
b2l − ic
b2lc

d− b2n− l + i− 1c
b2nc

ypl (4.21)

bynl c =
blc
b2lc

d− b2n− 1c
b2nc

ypl (4.22)

where yni is the numerical displacement of i-th mass in the bottom part. Hence, all the

transfer functions involved in the substructuring procedures are causal in this scenario.

It is worth noting that the decomposition described in this section is feasible only if the

physical force Fp is directly measured. In fact, if one tries to estimate it from measurements

of displacements at the interface, namely

Fp = (cl+1s+ kl+1)(y
p
l − yl+1) = (cl+1s+ kl+1)

(
1−

Numyl
l

Denyl

)
ypl (4.23)

then such estimation is not causal.

4.3.5 Force Control, Physical Substructure A, Type 2 Decomposition

For Type 2 decomposition, the schematics of Figure 4.1b and Figure 2.1b are used. The

case considered in this section corresponds to

S1 = Sp = Fp, S2 = Ss = yl, Sn = Fn (4.24)
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Similar to the case discussed in subsection 4.3.2 above, the numerical force at the inter-

face can not be estimated in a causal manner, making this decomposition strategy not

implementable.

4.3.6 Force Control, Numerical Substructure A, Type 2 Decomposition

In this scenario, the original structure is decomposed as shown in Figure 4.1b with

S1 = Ss = yl+1, S2 = Sp = Fp, Sn = Fn (4.25)

The equation of motion for the physical substructure can then be written as

yj =
Num

Fp

j

Den2Fp

Fp l + 1 ≤ j ≤ n (4.26)

and therefore

byjc =
b2n− j − l − 1c
b2(n− l)c

Fp (4.27)

and the physical substructure is causal, as expected.

Similarly, the displacements of the masses in the numerical substructure can be de-

scribed as

yi =
Numd

i

Dend
d−

Num
yl+1

i

Denyl+1

yl+1 1 ≤ i ≤ l (4.28)

which implies

byic =
b2l − ic
b2lc

d− bl + i− 1c
b2lc

yl+1 (4.29)
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and therefore all the displacements in the numerical substructure can be simulated using

causal transfer functions.

On the other hand, the numerical force Fn can be expressed as

Fn = (cl+1s+ kl+1)(yl − yl+1) = (cl+1s+ kl+1)

[
Numd

l

Dend
d−

(
Num

yl+1

l

Denyl+1

+ 1

)
yl+1

]
(4.30)

which implies

bFnc =
bl + 1c
b2lc

d− b2l + 1c
b2lc

yl+1 =
bl + 1c
b2lc

d− b2n− 1c
b2nc

Fp (4.31)

Therefore, the numerical force Fn can not be estimated based on the physical displace-

ment yl+1 and the disturbance d. However, this causality issue can be avoided if direct

measurements of the physical force Fp is available, as suggested by Equation (4.31).

It is worth noting that in the scenario considered here, substructure B may drift as

shown in Figure 4.2.

4.3.7 Position Control, Physical Substructure A, Type 2 Decomposition

The setup is similar to the one considered in section 4.3.5, but with the role of force and

displacement swapped, i.e.

S1 = Sp = ypl+1, S2 = Ss = Fp, Sn = ynl+1 (4.32)

In this case, the equation of motion for the physical substructure reads

yi =
Numd

i

Dend
d−

Num
yl+1

i

Denyl+1

yl+1 1 ≤ i ≤ l (4.33)
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which implies

byic =
b2l − ic
b2lc

d− bl + i− 1c
b2lc

yl+1 (4.34)

and therefore all the transfer functions related to displacements are causal. On the other

hand, the physical force can be expressed as

Fp = (cl+1s+ kl+1)(yl − yl+1) = (cl+1s+ kl+1)

[
Numd

l

Dend
d−

(
Num

yl+1

l

Denyl+1

+ 1

)
yl+1

]
(4.35)

with

bFpc =
bl + 1c
b2lc

d− b2l + 1c
b2lc

yl+1 (4.36)

Therefore, the physical force can not be estimated in a causal way from d and yi+1 and

needs to be measured directly. Similarly, the equations of motion describing the numerical

substructure read

yj =
Num

Fp

j

Den2Fp

Fp i+ 1 ≤ j ≤ n (4.37)

which implies that no causality problems arise, in fact

byjc =
b2n− j − l − 1c
b2(n− l)c

Fp =
b2n− jc
b2nc

d− b2n− j + lc
b2nc

yl+1 (4.38)
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4.3.8 Position Control, Numerical Substructure A, Type 2 Decomposi-

tion

The decomposition considered in this section is similar to the one discussed in section 4.3.6,

but with the role of force and displacement at the interface swapped, i.e.

S1 = Ss = Fp, S2 = Sp = ypl+1, Sn = ynl+1 (4.39)

However, similar to section 4.3.5, it is not possible to write down a causal expression for

the force at the interface, therefore this decomposition is deemed infeasible as well.

4.3.9 Summary of Causality Analysis

The summary of the results obtained in this section is reported in Table 4.2, showing that

only three out of eight decomposition strategies admit a strictly causal implementation

with no potential (physical) drifts. Note that in Type 1 decomposition, Fp can either be

measured or estimated for the force control while it can only be measured for the position

control. In Type 2 decomposition, Fn can only be estimated through Fp for the force

control, although substructure B is marginally stable, and it should avoid being physically

tested for the safety reason. In addition, Fp can only be measured for the position control

in Type 2 decomposition.

Table 4.2: Summary of causality analysis

DSS Force Control Force Control Position Control Position Control
type (A physical) (A numerical) (A physical) (A numerical)

Type 1 X × × X
Type 2 × X (Drift) X ×

56



4.4 DSS Decomposition: Structural Properties

In this section the structural properties of controllability and observability of the various

DSS decomposition strategies discussed in section 4.1 will be derived to show which strategy

is controllable and observable. As mentioned in section 3.1 and 3.3, a frequency domain

approach will be taken. Therefore, the analysis of structural properties reduces to obtaining

conditions under which no pole-zero cancellations occur in the transfer functions used for

control purposes.

Only strategies deemed feasible according to the analysis of section 4.3 are considered here.

The main focus in this section is ensuring that all the signals used by the DSS controller,

and in particular the synchronisation error e(t), are observable and controllable, so that

the controller can effectively synchronise the two substructures.

Let us then start with the case of force control with physical substructure A in Type

1 decomposition (section 4.3.1). In the numerical substructure B, yl plays the role of the

disturbance d in the original system, therefore

yl+1 =
Numyl

l+1

Denyl
yl (4.40)

Fn = (cl+1s+ kl+1)(yl − yl+1) = (cl+1s+ kl+1)

(
1−

Numyl
l+1

Denyl

)
yl (4.41)

and the synchronisation error can be expressed as

e = Fp − Fn = Gu(s)u− (cl+1s+ kl+1)

(
1−

Numyl
l+1

Denyl

)
yl (4.42)

where Gu(s) is the transfer function of the actuator (usually assumed to be a first order

system). Note that all the transfer functions considered here are a subset of the transfer

functions considered in Chapter 3, therefore no pole-zero cancellation occur and the system
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is completely observable and controllable.

Similarly, for the case of position control with numerical substructure A in Type 1

decomposition (section 4.3.4), the equations relative to controller signals can be written as

ynl =
Numd

l

Dend
d−

Num
Fp

l

DenFp

Fp (4.43)

e = ypl − y
n
l = Gu(s)u−

Numd
l

Dend
d+

Num
Fp

l

DenFp

Fp (4.44)

The same methods discussed in Chapter 3 can then be applied, yielding that the system is

fully controllable and observable if

 (cls+ kl) ⊥ mls
2 + cls+ kl

(cjs+ kj) ⊥ Dend j = 1, . . . , l;
(4.45)

are satisfied in addition to (3.7). These additional constraints are introduced because the

denominator Dend in (4.43)-(4.44) considers only the masses up to l, therefore conditions

analogous to the first and the last expressions in (3.7) are needed.

Finally, for the case of position control with physical substructure A in Type 2 decom-

position (section 4.3.7) the relevant equations read

ynl+1 =
Num

Fp

l+1

Den2Fp

Fp (4.46)

e = ypl+1 − y
n
l+1 = Gu(s)u−

Num
Fp

l+1

Den2Fp

Fp (4.47)

Once again, such equations are a subset of the ones considered in section 3.2, therefore also

this decomposition strategy is fully controllable and observable. In summary, all the causal

DSS decompositions identified in section 4.3 are fully controllable and observable.
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4.5 Numerical Examples

For the sake of completeness, in this section three different models are simulated to show

the performance that can be obtained when using the DSS decompositions deemed feasible

according to the analysis described above.

4.5.1 Benchmark System

For this purpose a system composed of four masses is considered, at first, before progress-

ing to a more complex example in section 4.5.2 the corresponding DSS decomposition is

obtained by assigning two masses to the physical system and two masses to the numerical

system. The numerical parameters used for simulation are reported in Table 5.1. The

natural frequencies are 0.0882Hz, 0.2382Hz, 0.3629Hz and 0.4455Hz, respectively. The

Table 4.3: Numerical values of parameters used for simulation examples

Index Mass mi Stiffness ki Damping ci

1 500kg 1200N/m 300Ns/m
2 470kg 1100N/m 290Ns/m
3 440kg 1000N/m 280Ns/m
4 410kg 900N/m 270Ns/m

disturbance d(t) is a chirp signal, in which its amplitude is 1mm, the frequency increases

from 0Hz to 0.5Hz over 45s and then is maintained constant for further 15s, which is

shown in Figure 4.3. For each case, the synchronisation controller in charge of minimising

the error e(t) is designed according to the H2 control design strategy, with e(t) being also

the feedback input. The detailed procedure and calculations used to design such controller

follow the step which is discussed in section 2.5.
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Figure 4.3: Disturbance d in the benchmark system.

In Type 1 decomposition the physical substructure sits in substructure B and the pro-

cedure sketched in Section 2.5.2 can be used to obtain the following controller

K(s) =
9.2934× 108(s+ 4599)(s+ 10)(s+ 3.793)(s+ 3.571)

(s+ 1.009× 106)(s2 + 0.07173s+ 0.3054)

× (s+ 0.0001047)(s− 0.000104)(s2 + 1.272s+ 4.241)

(s2 + 0.619s+ 2.255)(s2 + 1.447s+ 5.227)(s2 + 2.147s+ 7.773)

(4.48)

As reported in Figure 4.4. In this case, perfect synchronisation is achieved between the

numerical force Fn and the physical force Fp.
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Figure 4.4: Results obtained for DSS with force control in the Type 1 decomposition with
physical substructure A.

Similarly, the position control in Type 1 decomposition, where the physical substructure

now sits in substructure A. The controller is listed as follows

K(s) =
1.0709× 1011(s+ 10)(s+ 3.793)

(s+ 109)(s2 + 0.08107s+ 0.3072)(s2 + 0.6203s+ 2.241)

×(s2 + 0.2534s+ 0.8867)(s2 + 1.655s+ 5.626)(s2 + 533.4s+ 1.425× 105)

(s2 + 1.447s+ 5.21)(s2 + 2.153s+ 7.813)

(4.49)

In this case, almost perfect synchronisation is achieved, with a negligible error between

physical displacement yp and numerical displacement yn, as the results are reported in

Figure 4.5.
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Figure 4.5: Results obtained for DSS with position control in the Type 1 decomposition
with physical substructure A.

Finally, results for position control in Type 2 decomposition with numerical substructure

A are reported in Figure 4.6, as the controller is provided below

K(s) =
9.7305× 1012(s+ 0.8566)(s+ 10)

(s+ 9.902× 107)(s+ 9.829× 105)(s+ 2.814)

× (s2 + 0.651s+ 2.194)(s2 + 3.312s+ 5.248)(s2 + 1.369s+ 12.96)

(s2 + 0.4609s+ 1.395)(s2 + 0.6768s+ 2.115)(s2 + 1.612s+ 6.121)

(4.50)

In this case, some error at the turning points of displacement is present. This is due to

limited actuation power and, potentially, a non optimal choice of poles for the closed loop

system. This is in accordance with the analysis of section 4.3 where Type 2 decomposition

was shown to be harder to control due to the potential drifts in the numerical substructure,

as substructure B is marginally stable and the solution to such problem will be introduced

in Chapter 5.
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Figure 4.6: Results obtained for DSS with position control in the Type 2 decomposition
with numerical substructure A.

4.5.2 Complex Structure

In order to show that the outcomes of the analysis presented in this chapter are suitable

for complex structures, a structure with the stronger coupling between DoF is selected and

shown in Figure 4.7. The top structure is the conversion to the chain structure while the

bottom structure is the actual structure that can represent the building frames in reality.
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Figure 4.7: Complex benchmark structure: a) sketch of the structure; b) Equivalent Math-
ematical Model
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The equations of motion can be obtained by force balance and read



m4ÿ4 = −k34(y4 − y3)− c34(ẏ4 − ẏ3)− k24(y4 − y2)− c24(ẏ4 − ẏ2)

m3ÿ3 = k34(y4 − y3) + c34(ẏ4 − ẏ3)− k23(y3 − y2)− k13(y3 − y1)− c13(ẏ3 − ẏ1)

m2ÿ2 = k24(y4 − y2) + c24(ẏ4 − ẏ2) + k23(y3 − y2)− k12(y2 − y1)− c12(ẏ2 − ẏ1)

m1ÿ1 = k13(y3 − y1) + c13(ẏ3 − ẏ1) + k12(y2 − y1) + c12(ẏ2 − ẏ1)

− k11(y1 − d)− c11(ẏ1 − ḋ)

(4.51)

Parameters are same as in the previous example, with k34, k13, k12 and k11 being respec-

tively, set equal to k4, k3, k2 and k1. The damping coefficients have been matched as well.

In addition, k24 = 800N/m, k23 = 500N/m and c24 = 260Ns/m. The disturbance d(t) is

a chirp signal in which the frequency increases from 0Hz to 0.7Hz over 50s and then is

maintained constant for further 30s, which is shown in Figure 4.8. Note that the natural

frequencies of the system are 0.1102Hz, 0.3595Hz, 0.4036Hz and 0.4852Hz. Therefore, the

selected chirp signal excites all the resonant modes of the structure. Type 1 decomposition

0 20 40 60 80

Time(s)

-1

-0.5

0

0.5

1

D
is

p
la

c
e

m
e

n
t(

m
m

)

Figure 4.8: Disturbnce d in the complex structure

is implemented by placing the interface at the top of m1, therefore force and position con-
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trol will be included. H2 controller are then designed to eliminate the error between forces

or displacements. The result of force control is shown in Figure 4.9, with the controller as

listed below

K(s) =
1.4101× 106(s+ 3.684)(s2 + 0.002657s+ 1.534× 10−5)

(s2 + 0.1155s+ 0.4773)(s2 + 1.517s+ 5.154)

×(s2 + 1.856s+ 6.01)(s2 + 1.231s+ 6.374)

(s2 + 1.224s+ 6.405)(s2 + 2.593s+ 9.28)

(4.52)

and the result of position control is shown in Figure 4.10, as the controller is listed as

follows

K(s) =
2.2243× 1012(s+ 1.112× 104)(s+ 20)(s2 + 0.3835s+ 1.377)

(s+ 2× 109)(s2 + 0.1242s+ 0.4791)(s2 + 1.516s+ 5.15)

×(s2 + 2.112s+ 6.961)(s2 + 1.218s+ 6.357)

(s2 + 1.224s+ 6.405)(s2 + 2.589s+ 9.246)

(4.53)

From both figures it can be clearly observed that signals are well synchronised and the

responses are close to those in the original structure, in accordance with the results of

section 4.5.
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Figure 4.9: Results obtained for complex structure with force control in the Type 1 decom-
position.
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Figure 4.10: Results obtained for complex structure with position control in the Type 1
decomposition.
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Chapter 5

Novel Control Architecture for Mass

Split Decomposition

Literature covering the topic of DSS or hybrid testing with marginally stable substructures

is scarce, as this is a challenging task. Moreover, even the limited available research requires

accurate tuning and complex algorithms to achieve DSS synchronisation, with ad-hoc ap-

proaches suitable only for specific models. In order to provide a more generic and easier

solution, a mass split decomposition is considered in this chapter as a benchmark system

for a marginally stable substructure. The benefit of mass split decomposition is that part of

the component can be physically tested while the remainder can be numerically simulated,

which is helpful in structural dynamics and other aspects such as the design of vehicle.

This chapter discusses the issues arising when designing a control strategy for DSS with

marginally stable substructure, the shortfalls of current techniques are highlighted and a

novel architecture is proposed to overcome such shortfalls.
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5.1 Structural Decomposition

The original structure considered in this chapter is same as the one shown in Figure 3.1.

After the decomposition, l-th mass is split into two substructures, resulting in the structure

shown in Figure 5.1 . Then the following conditions hold


ml1 +ml2 = ml

ml1ml2 6= 0

(5.1)

The difference is that, in this case, at odds with previous examples, the synchronised signal

can only be the internal force, which means both S1 and S2 are forces (which are equal in

traditional DSS), and the error can only between displacements and their derivatives.
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mn
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cl

k11
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y1

Disturbance

… …

yj

kj

cj
mj

…

Substructure BSubstructure A

S1 S2

ml1

yl1 yl2

ml2

Figure 5.1: Schematics for DSS decomposition for a generic lumped parameter vibration
problem, where the interface is placed across mass l.

5.2 Control Design Challenges and Proposed Methodology

In this section the control challenges introduced by the marginal stability of substructure

B are discussed and then a control architecture to address these challenges is proposed.

5.2.1 Time Domain Analysis

As proved by the analysis in Chapter 4, the original system and substructure A are sta-

ble, while substructure B is only marginally stable. Therefore, the transfer functions in
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substructure A and substructure B can be rearranged as

yl1(s) =

(
A1(1)

s+ a1(1)
+

A1(2)

s+ a1(2)
+ · · ·+

A1(2l)

s+ a1(2l)

)
d−

−
(

A2(1)

s+ a1(1)
+

A2(2)

s+ a1(2)
+ · · ·+

A2(2l)

s+ a1(2l)

)
F

yl2(s) =

(
B1

s
+
B2

s2
+

B3

s+ a2(3)
+ · · ·+

B2(n−l+1)

s+ a2[2(n−1+1)]

)
F

(5.2)

where a1(i) and a2(i) have negative real parts.

According to (5.2) yl1(s) always shows a bounded response for bounded inputs, whereas

the first two terms in (5.2) imply that unbounded responses can be exhibited by substructure

B even in presence of bounded inputs given thatB1 andB2 are not zero. In the time domain,

this implies that the response of substructure B can include an offset and a drift, i.e.

yl1 = y∗1(t)

yl2 = y∗2(t) + C1t+ C2

(5.3)

where y∗1(t) and y∗2(t) are the components of the time domain response due to the external

excitation, and C1 and C2 depend on the terms B1 and B2 in equation (5.2)

It can be observed that yl2 exhibits a linear drift and become unbounded
(
when F is

bounded and stable or marginally stable (poles at the imaginary axis but not at the origin)
)
,

while y∗2(t) is always bounded. Moreover, when F has poles at the origin or unstable, yl2

may also exhibit nonlinear drifts. It should also be noted that if F is unbounded, then yl1

will be unbounded and nonlinear drifts may also be included. It is also worth noting that

velocities in substructure B may drift, except when F is stable or has poles on the imaginary

axis but not at the origin. Accelerations in both substructures are always bounded if F is

bounded, as well as displacements and velocities in substructure A.
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5.2.2 Challenges using Traditional Control Framework with Displace-

ments as Synchronised Signal

As demonstrated in section 5.2.1, all displacements in substructure B can drift and become

unbounded even for bounded inputs, hence it is dangerous to physically test substructure

B in practice, although this is possible in theory. Therefore, it is beneficial to have sub-

structure B tested numerically, to avoid potential damage to the physical substructure.

When substructure B only has single degree of freedom and a carefully tuned controller is

designed [54, 56, 108], substructure B can be physically tested, but this does not generalise

to systems with multiple DoF. According to this approach, yl2 and its derivatives are the

numerical signals, whereas, yl1 and its derivatives are the physical signals. In a successful

DSS decomposition, yl2 and its derivatives should be equal to yl1 and its derivatives. The

error based feedback controller shown in Figure 5.2 is a natural choice to attept achieving

synchronisation, where K(s) is the feedback controller which adjusts the magnitude of the

internal force F in order to minimise the error e(t).

Physical 

Substructure

Numerical 

Substructure

+

-

Numerical  Signal

Synchronisation Error

Physical Signal

Sp

Sn

Disturbance d

e

K(s)
Internal Force F

S1

S2

(optional)d

Figure 5.2: Traditional feedback control plant for mass split models
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In traditional DSS position control design [56] the synchronisation error refers to po-

sitions at the interface, i.e. e(t) = yl1(t) − yl2(t). However, the presence of a marginally

stable system (substructure B in this case) implies that the error e can be unbounded due

to the terms C1 and C2 in (5.2), and two cases need to be considered. In the first case, the

controller K(s) is unable to eliminate the divergence of error e - i.e. it does not contain

a term s2 at the numerator - and therefore the internal force F will become unbounded

as well, inducing drifts or divergence in both yl1 and yl2. Clearly, in this case the DSS

closed-loop performance is very different from the original original structure, which always

shows bounded response to bounded disturbances d. Moreover, an unbounded yl1 and F

will lead to damage in the experimental apparatus used in substructure A. Another option

is to design the controller K(s) so that it is able to eliminate the divergence of e - i.e. it

contains a term s2 at the numerator - and therefore the internal force F is bounded. How-

ever, due to the term C1 in (5.3), yl2 can still be drifting unbounded. The same procedure

can be used to show that the same issues arise whenever position-related signals are used

as controller inputs. Therefore, the strategy of synchronising positions that is at the root of

the most of DSS position control strategies is not suitable in presence of a marginally stable

substructure, such as in the mass-split case considered here. In this situation, no control

strategy can make the DSS closed-loop response equal to the original system response for

every combination of initial conditions and disturbances.

5.2.3 Proposed Control Architecture

In order to overcome this drawback, the following solution is proposed in this thesis: replace

displacements with velocities in e(t) and add a local stabilising controller to substructure

B. In fact, according to Equation (5.3), velocities at the interface can be written as

73



ẏl1 = ẏ∗1(t)

ẏl2 = ẏ∗2(t) + C1

(5.4)

Note that, at odd with (5.3), all the quantities in (5.4) are bounded when F is stable

or marginally stable (poles on the imaginary axis but not at the origin), therefore the con-

troller only needs to eliminate the offset C1 and ensure that the forced responses ẏ∗1 and ẏ∗2

converge towards each other. This can be easily achieved by having a common factor s in

the numerator of the feedback controller transfer function, for example. This is a much sim-

pler control design task, as the controller does not have to deal with potentially unbounded

drifts in neither F (t) nor e(t). Note also that a similar principle can be applied to syn-

chronise the error between accelerations, as ÿl2 is stable, therefore, the acceleration based

synchronisation is similar to the standard DSS or hybrid testing. However, using acceler-

ation as synchronised signal means that all signals including accelerations, velocities and

displacements should be monitored compared with the proposed velocity synchronisation,

which only requires to monitor velocities and displacements. Therefore, the first proposed

modification to the control strategy depicted in Figure 5.2 is the replacement of position

with velocity when calculating the synchronisation error e(t), i.e. setting e(t) = ẏ1(t)−ẏ2(t).

After having replaced positions with velocities and having designed a controller based

on this synchronisation error, the DSS behaviour can still differ from the original system

response if C1 is still present due to non-zero initial conditions in substructure B. In fact,

in this case the controller response reads

F (s) = K(s)e(s) = K(s) (ẏl1(s)− ẏl2(s)) (5.5)

with ẏl1 and ẏl2 as in (5.4). Standard DSS controller design strategies will then derive

K(s) so that the forced responses ẏ∗1 and ẏ∗2 converge to each other. Indeed, techniques
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such as Linear Substructuring Control (LSC, see [101]) are based on basically inverting the

dynamics of the system to be controlled, therefore the controller will have a factor s at

the numerator, indicating that the constant C1 would be neglected. This implies that, if

C1 is not zero then a drift in yl2 would still occur. In fact, controller K(s) is aimed at

eliminating the error between velocities, and any minor offset in the cancellation of this

error may translate to position drifts on a long timescale.

One way to solve this issue is to use other signals such as the combination of displace-

ments and their derivatives, as well as the disturbance, instead of the error e as the input

for the feedback controller. However, this would require a radical change in the control de-

sign approach used for these systems. Therefore, the methodology proposed here is based

on relaxing the constraint |S1| = |S2|, i.e. on allowing the numerical force to be different

from the physical force generated by the actuator in the physical substructure. Relaxing

this constraint makes substructure A and substructure B partially decoupled, enabling ac-

curate control in absence of potential drifts, as will be shown for the benchmark example

considered in the next section. The resulting control architecture is shown in Figure 5.3,

where an additional local controller K2(s) is added in the numerical substructure to make

it asymptotically stable. The action of such controller is then simply added to the output of

the original velocity-based DSS controller. The numerator of K2(s) should be set as small

as possible to ensure minimal effect on substructure B when e is equal to zero. Note that

this architecture leaves complete freedom to the designer in terms of choosing the preferred

control design for both the local stabilising controller and the overall DSS synchronisation

controller, and does not require any accurate tuning to achieve synchronisation.
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Figure 5.3: Proposed feedback control scheme with extra stabiliser for marginally stable
DSS

Another, even simpler, alternative for solving the problem of potential drifts is based

on the observation that the occurrence of the problematic case (C1, C2) 6= (0, 0) is due to

the initial conditions of the numerical system not being zero. However, very often, setting

values for such initial conditions is under complete control of the user performing hybrid

testing. Therefore, whenever possible, the initial conditions of substructure B should be set

to zero so that the additional local stabilising controller may become superfluous (although

its presence still makes the control architecture more robust).

5.3 Numerical Example

In this section a five mass-spring-damper system is used to both highlight the challenges re-

lated to DSS control of marginally stable structures and to demonstrate the effectiveness of
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the control architecture proposed in section 5.2. Parameters used for simulation are listed in

Table 5.1, corresponding to natural frequencies fn = (0.0730, 0.1965, 0.3073, 0.3941, 0.4514)

Hz. The disturbance d(t) is a chirp signal in which the frequency increases from 0Hz to

0.5Hz over 45s and then is maintained constant for further 35s, which is similar to the

signal shown in Figure 4.3. The amplitude of the disturbance is fixed to 1mm.

Table 5.1: Numerical values of parameters used for simulation examples

Index Mass mi Stiffness ki Damping ci

1 500kg 1200N/m 300Ns/m
2 470kg 1100N/m 290Ns/m
3 440kg 1000N/m 280Ns/m
4 410kg 900N/m 270Ns/m
5 380kg 800N/m 260Ns/m

The third mass will be split into two masses and parameters are listed as follows


m31 = 0.6m3 = 264kg

m32 = 0.4m3 = 176kg

(5.6)

At the start, the initial conditions in both substructures are different. In substructure B

the initial conditions of the leftmost mass are not equal to zero, while in substructure A

the initial conditions for m31 are not equal to zero as well, i.e.



y31 = 1mm

ẏ31 = 0.7mm/s

y32 = 0.5mm

ẏ31 = 0.2mm/s

(5.7)
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At first the linear substructring controller (LSC) [52] is used to control the whole system

with e = ẏ31−ẏ32. LSC is a feedforward plus feedback control scheme introduced in Chapter

2, where the control input reads u(s) = Kd(s)d(s) +Ke(s)e(s). To design the feedforward

gain Kd(s) and the feedback gain Ke(s), the error and the actuator dynamics are written

as

e(s) = Gd(s)d(s)−G2F
′(s) = Gd(s)d(s)−Guu(s) (5.8)

F (s) = S1(s) =
b

s+ a
u(s) (5.9)

For the purpose of the numerical example considered here, the actuator dynamics param-

eters were set to a = b = 10. The feedforward gain then reads [52]

Kd(s) =
Gd(s)

Gu(s)

=
4.1464s2(s+ 10)(s+ 4)(s+ 3.793)

(s2 + 0.05669s+ 0.2106)(s2 + 0.4385s+ 1.525)(s2 + 1.081s+ 3.74)

× (s+ 3.571)(s2 + 0.9769s+ 3.052)(s2 + 2.534s+ 8.311)

(s2 + 1.781s+ 6.162)(s2 + 2.262s+ 7.969)
(5.10)

whereas the feedback gain Ke = 10 was determined using root loci methods. Note that, as

shown in Figure 5.4 the displacement in substructure B grows unbounded, as the traditional

controller is not able to eliminate the divergence of displacements and the offset of velocities

in marginally stable substructures, in accordance with the analysis of section 5.2.

LSC is then used to control S1 while a proportional integral (PI) controller is added

to stabilise the substructure B and control S2, as well as eliminating the offset between

displacements. In this case, the proportional gain was set to kp = 50, whereas the integral

gain was set to kI = 25. Note that this choice of parameters ensure that the amplitude

response of the controller K2 is much smaller than the amplitude of the frequency response
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Figure 5.4: Velocities (a) and displacements (b) at the interface obtained with the tradi-
tional control architecture of Figure 5.2 with e = ẏ31 − ẏ32 and non-zero initial conditions.
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of substructure B, therefore the dynamic response of this latter is minimally influenced

by the controller. Figure 5.5 shows that the proposed control architecture is capable of

synchronising the DSS decomposition. In addition, exact tuning of the PI gains is not

required and any stabilising PI controller provides very similar results. It is also advised to

use small gains to minimise the effect of the PI controller on the response of substructure

B in closed-loop, as demonstrated in the simulation.

Finally in substructure B all initial conditions are set to zero while in substructure A

remains the same. Only LSC is used to eliminate the error. Figure 5.6 shows that the

response is convergent in this case.

These results highlight that, when substructure B has non-zero initial conditions, a tra-

ditional DSS control design approach is not capable of eliminating the drift in substructure

B. The proposed control architecture addresses such issue by adding an extra stabilising

local controller in substructure B only, which makes the overall closed-loop response close

to the original system response, with a minimal extra effort due to the tuning of the ad-

ditional controller. Note that, in all cases, non-zero initial conditions for substructure A

do not affect synchronisation performance, as substructure A is asymptotically stable. On

the other hand, initial conditions for substructure B play a key role. In fact, if the users

have the power of setting all such conditions to zero before starting the hybrid testing, then

the additional local controller K2(s) of Figure 5.3 may not not needed, as the response of

substructure B can track the response of the original system by using the DSS controller

K(s) only.
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Figure 5.5: Velocities (a) and displacements (b) at the interface obtained with the proposed
control architecture of Figure 5.3 with e = ẏ31 − ẏ32, non-zero initial conditions and a
stabilising PI local controller for substructure B.

81



0 20 40 60 80

Time(s)

-1.5

-1

-0.5

0

0.5

1

V
e
lo

c
it
y
(m

m
/s

)

m32(numerical)

m31(physical)

original

(a)

0 20 40 60 80

Time(s)

-1.5

-1

-0.5

0

0.5

1

1.5

D
is

p
la

c
e
m

e
n
t(

m
m

)

m32(numerical)

m31(physical)

original

(b)

Figure 5.6: Velocities (a) and displacements (b) at the interface obtained with the tradi-
tional control architecture of Figure 5.2 with e = ẏ31− ẏ32, when the user can set the initial
conditions of substructure B to zero.
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Chapter 6

DSS Testing of Supported Beam with

Beam Split

As introduced in Chapter 5, the proposed novel control architecture can significantly reduce

the difficulty of DSS synchronisation when a marginally stable substructure is included. In

order to expand the applications of the proposed control architecture to more complex

structures, a rigid beam is selected for the demonstration in this chapter. A novel decom-

position aimed at reducing the required degrees of freedom in the physical substructure is

introduced, to show how potential applications can be tackled with the proposed control

architecture.

6.1 Beam Structure and Its Decomposition

The structure considered in this chapter is a rigid beam supported at its ends by two elastic

supports represented by mass-spring-damper systems. Such structure is shown in Figure

6.1. It is considered as a concept demonstration, aimed at showing that DSS can be applied

to a broader family of structures and decomposition strategies, thanks to the novel control
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architecture proposed in Chapter 5. The beam will be decomposed at its centre of gravity,

with the left part tested physically and the right part tested numerically. Moreover, in the

physical substructure the rotational degree will be removed to simplify experimental setup,

although the goal of DSS will be to make the interface move as if the rotational degree of

freedom is present. Note that the right substructure is a marginally stable system like the

one considered in Chapter 5. Although a similar decomposition was proposed in [109], the

main focus there was on the finite element model (FEM).
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Figure 6.1: Beam structure(top) and its decomposition with beam split(bottom)
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The equation of motion of the original system can be written as



m3ÿ3 = −k1(y3 − θl1 − y1)− c1(ẏ3 − θ̇l1 − ẏ1)− k2(y3 + θl2 − y2)− c2(ẏ3 + θ̇l2 − ẏ2)

Iθ̈ = k1(y3 − θl1 − y1)l1 + c1(ẏ3 − θ̇l1 − ẏ1)l1 − k2(y3 + θl2 − y2)l2 − c2(ẏ3 + θ̇l2 − ẏ2)l2

m1ÿ1 = k1(y3 − θl1 − y1) + c1(ẏ3 − θ̇l1 − ẏ1)− k11(y1 − d1)− c11(ẏ1 − ḋ1)

m2ÿ2 = k2(y3 + θl2 − y2) + c2(ẏ3 + θ̇l2 − ẏ2)− k22(y2 − d2)− c22(ẏ2 − ḋ2)

(6.1)

where d1 and d2 are disturbances acting at the supports, y1, y2 and y3 are the vertical

displacement of m1, m2 and m3, respectively and θ is the rotational angle of the beam.

The equation of motion for the decomposed structure can be written as



m′32ÿ32 = −k2[y32 + θ1(l2 − l/2)− y2]− c2[ẏ32 + θ̇1(l2 − l/2)− ẏ2]− F

I1θ̈ = −k2[y32 + θ1(l2 − l/2)− y2](l2 − l/2)

− c2[ẏ32 + θ̇1(l2 − l/2)− ẏ2](l2− l/2) + Fl/2

m′31ÿ1 = −k1(y31 − y1)− c1(ẏ31 − ẏ1) + F

m1ÿ1 = k1(y31 − y1) + c1(ẏ31 − ẏ1)− k11(y1 − d1)− c11(ẏ1 − ḋ1)

m2ÿ2 = k2[y32 + θ1(l2 − l/2)− y2] + c2[ẏ32 + θ̇1(l2 − l/2)− ẏ2]

− k22(y2 − d2)− c22(ẏ2 − ḋ2)

(6.2)

where I1 is the moment of inertia of m′32, y31 and y32 are the vertical displacement of m′31

and m′32 respectively.
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Table 6.1: Numerical values of parameters used for simulation

Description Symbols Value

Mass of original beam m3 400kg
Moment of inertia of original beam I 66.67kgm2

Mass of left split mass m′31 200kg
Mass of right split mass m′32 200kg
Moment of inertia of right split beam I1 16.67kgm2

Mass of left sprung mass m1 30kg
Mass of left sprung mass m2 30kg
Stiffness of left upper spring k1 1600N/m
Stiffness of right upper spring k2 1500N/m
Stiffness of left lower spring k11 700N/m
Stiffness of right lower spring k22 800N/m
Damping of left upper damper c1 80Ns/m
Damping of right upper damper c2 80Ns/m
Damping of left lower damper c11 50Ns/m
Damping of right lower damper c22 50Ns/m
Half of the original beam length l 1m
Distance from left support to centroid of beam l1 0.6m
Distance from left support to centroid of beam l2 0.7m
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6.2 Controller Design and Numerical Results

The values of parameters used for simulation are listed in Table 6.1, corresponding to

the natural frequencies of the original systems fn=(0.2382, 0.2794, 1.4417, 1.4547)Hz and

the motion of centre of gravity (situated at the DSS interface) is targeted signal for the

synchronisation, thus


ẏ′32 = ẏ32 −

θ̇1l

2

e = ẏ31 − ẏ′32

(6.3)

where the synchronisation error e(t) has been defined in terms of velocity, in accordance

with the analysis of Chapter 5.

For the purpose of the numerical simulations discussed below, d1 is a swept sinusoidal

wave whose frequency increases from 0Hz to 2Hz during he first 50 seconds, with a constant

amplitude of 8mm which is shown in Figure 6.2a. As for d2, the frequency increases from

0 Hz to 1.8 Hz during the first 45 seconds, with a constant amplitude of 10mm which is

shown in Figure 6.2b. Note that in this case the goal is to make the vertical displacement

of the physical substructure behave as if the rotational freedom was still present.

In the setup considered here, the traditional LSC control procedure would provide a

non-causal controller. Therefore, an H∞ controller was designed to minimise the syn-

chronisation error e(t), to ensure the output is bounded, meaning the state space form is

required as described in Chapter 2, with the objective function defined ||e||2
||d1||2+||d2||2 . Then

the controller can be obtained by using MATLAB and the calculation can refer to Chapter

2, as factors such as sensitivity, weighting factors and uncertainty are not considered at this

stage. Note that the details of the controller are listed in appendix B.
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Figure 6.2: Disturbance d1 (a) and disturbance d2 (b) .
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Figure 6.3: Velocities (a) and displacements (b) of beam system based on single H∞ control
objective for error elimination.

89



Figure 6.3 shows the behaviour of the decomposed structure. Both displacements

and velocities can be synchronised and there is no drift of displacement in the numerical

substructure. However, the overall response of the decomposed structure is significantly

different from the response of the original structure, in particular there is a phase difference

in the response of both velocities and displacements, and amplitudes are different compared

with the original response. This is due to the controlled force F overreacting in the effort

of minimising e(t).

In order to overcome this issue and reduce the amplitudes, the internal force F is also

targeted for the minimisation by defining the control objective ||e||2+||F ||2
||d1||2+||d2||2 . The results

shown in Figure 6.4 demonstrate that the physical substructure response is close to the

original system, while the numerical substructure response is not synchronised with the

physical substructure. Once again, the details of the controller are listed in appendix B.

In order to solve the synchronisation issue an extra stabiliser can be added according

to the novel control architecture proposed in section 5.2. A proportional integral derivative

(PID) controller is therefore added in the numerical substructure, with the velocity error

as the input, and the proportional gain kp = 200, the integral gain kI = 20 and the

derivative gain kd = 10, resulting in a control architecture similar to Figure 5.3. Figure

6.5 shows that synchronisation of displacements can be achieved by adding an extra local

controller and both substructures respond as in the original beam, proving that the concept

is implementable in reality. However, the velocity tracking in the numerical substructure at

the high frequency range is not as good as it is at the lower frequency range. Solving this

issue is beyond the scope of this thesis, with suggestions on how to achieve this discussed

in Chapter 2.
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Figure 6.4: Velocities (a) and displacements (b) of beam system based on double H∞
control objective for error elimination and minimal control effort.
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Figure 6.5: Velocities (a) and displacements (b) of beam system based on double H∞
control objective for error elimination and minimal control effort with extra PID controller.
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Chapter 7

Conclusions and Future Work

The main aim of this thesis was to derive generic conditions for feasibility of control design

in DSS hybrid testing, including decomposition strategies that have received little atten-

tion in the literature so far. In particular, a generic procedure for DSS control design has

been proposed by analysing the generic vibrating structure and relative properties of DSS

decomposition strategies, which helps to analyse the different structures based on standard

steps. The key is the recursive form of generalised transfer functions of the generic vibrat-

ing structure. In fact, it is usually difficult to obtain the fully explicit symbolic expression

of the transfer functions needed for DSS control design, but the proposed recursive form

allows for a simplified analysis. For example, the relative degree of numerators and de-

nominators can be easily obtained thanks to this formulation, thus the causality analysis

can be performed for different DSS decompositions without using any system parameters.

Controllability and observability analysis can be made by proving that in each transfer

function there are no common roots between the numerators and the denominators. The

proof was completed with the help of the implicit expressions for the coefficients in the

transfer functions. For underdamped original structures it is shown that they are always
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controllable and observable, whereas some extra conditions need to be satisfied for other

types of structures. For DSS, extra explicit conditions have been proposed, in addition to

those derived for the original structure.

Another major contribution of this thesis is the proposal of a control architecture for

DSS testing of structures where the interface splits a mass, a problem that has been largely

neglected by the literature. In fact, DSS or hybrid testing with split mass substructures

often does not provide satisfactory performance. Researchers developed different controllers

to try to solve this problem, but these controllers are only suitable for the specific models

they were considering, with significant limitations on real world application. In addition,

the vast majority of researches available in the literature focused on the synchronisation

of displacements. In this thesis the inherent shortcoming of the traditional positional-error

based controller is revealed by showing that, when choosing displacement as signal to be

synchronised, the error can be unbounded. This fact, in turn, makes it difficult to achieve

satisfactory synchronisation and this issue cannot be solved within the traditional control

framework. Furthermore, the analysis presented in this thesis also reveals that the velocities

in both substructures are bounded, meaning that, compared with the synchronisation of

displacements, it is much easier to achieve the synchronisation of velocities. Using velocities

to calculate the synchronisation error ensures the elimination of displacement drifts in the

marginally stable substructure, although an extra controller might be required to achieve

asymptotic stability. The comprehensive guidance to control the mass split structures

observed here provides an efficient solution to this type of problems, without requiring

researchers to focus on the specific models anymore.

For the future work the focus can be on the physical tests to more complex structures,

as the concept of beam split proposed in Chapter 6 can be experimentally validated at

first. The proposed results in this thesis also open the possibility for further work in this
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area. For example, extension to nonlinear systems such as beam split with large angular

displacement, can be investigated to study how nonlinearity can affect the performance

of DSS controllers. In addition, the proposed extension to traditional DSS control design

can also enable more complex components to be tested, for example, MR dampers, would

be interesting given the wide use of such components in the construction and automotive

industry. Furthermore, the use of the H∞ control framework as in Chapter 6 enables

control designers to obtain a priori bounds on the transmission of disturbances across the

feedback loop. Therefore, the combination of using H∞ controllers in nonlinear systems

can be implemented. Many scenarios can be included, for example, the design of a building

equipped with MR damper to resist the unknown input with the help of DSS, which is

helpful to reduce the structural damage during earthquakes. Moreover, a vehicle equipped

with MR damper can be designed with the help of DSS, in order to improve the handling

and comfort on different terrains. Other potential scenarios include the application of the

proposed control architecture to other types of structures, apart from the beam shown in

Chapter 6. More complex models with marginally stable substructures and the reduction

of degrees of freedom can be tested at a significantly reduced level of difficulty. Finite

element models can also be selected as another potential application, to accurately analyse

the structure with complex boundary conditions, especially when the marginally stable

substructure is included. In addition, delay is also another interesting direction for future

research, as there is no generic approach to analyse the effect of delay on DSS behaviour.

Ideally, potential applications and analysis approaches should start from the simple systems

to develop and test the methodology and then gradually scale it to a generic approach to

simplify the analysis of complex systems. Moreover, as shown in Equation (3.34), analytical

solutions for individual natural frequencies are relatively straightforward to obtain and the

recursive formulation show how characteristic polynomials are multiplied. Therefore it
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would be interesting to explore if this allows for an analytical derivation of the natural

frequencies of the whole system. This would in turn enable the analysis of how the system

parameters and degrees of freedom affect the DSS natural frequencies, which would be

helpful to better design test rigs.
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Appendix A

Distribution of Roots for Polynomials

with Even Maximum Degree and

Positive Coefficients

The aim of this appendix is to prove that polynomials with even degrees and unconditionally

positive coefficients only admit roots with negative real parts and purely imaginary roots.

This proof is used in Chapter 3 to show that the original whole system and substructure

A are asymptotically stable and that substructure B is marginally stable.

Let us then consider a polynomial P (s) with a maximum even degree 2n and positive

coefficients

P (s) = a2ns
2n + a2n−1s

2n−1 + · · ·+ ais
i + · · ·+ a0 (A.1)

ai > 0, 0 ≤ i ≤ 2n (A.2)
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No positive or zero real roots for P (s) exist, as can be easily shown by direct substitu-

tion. Therefore, the roots of P (s) can only include negative real roots, imaginary roots and

complex roots. Moreover, a polynomial with a even maximum degree should have an even

number of real roots, an even number of conjugated imaginary roots, an even number of

conjugated complex roots, or a combination of these three possibilities.

The following proof is composed of two parts. In the first part it is demonstrated that: i)

if P (s) admits complex roots with positive real parts then its coefficients are not uncondi-

tionally positive, and ii) if P (s) does not admit complex roots with positive real parts then

its coefficients are unconditionally positive. These implications are then used in the second

part of the proof to prove, exploiting the contraposition principle, that polynomials P (s)

with even degree and unconditionally positive coefficients only admit roots with negative

real part and, potentially, purely imaginary roots.

Let us then start the proof by considering the case where P (s) only admits conjugated

imaginary roots only, i.e.

P (s) =
n∏
q=1

(a2(q)s
2 + a0(q)), a2(q) > 0, a0(q) > 0 (A.3)

Therefore, it is obvious that after the expansion the coefficients of odd degree terms s2j−1

are equal to zero and all the others are positive. This contradicts the positivity of coeffi-

cients of P (s), therefore P (s) can not admit only purely imaginary roots.

admit is when P (s) only admits negative real roots and conjugated complex roots with

negative real parts, i.e.

P (s) =

n∏
q=1

(a2(q)s
2 + a1(q)s+ a0(q)) (A.4)
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where 
a2(q) > 0

a1(q) > 0

a0(q) > 0

(A.5)

Induction can be used to show that all coefficients in P (s) are unconditionally positive.

This condition is already satisfied when n = 1. Let us then assume that this condition is

also satisfied when n = j thus

P (s) = a2js
2j + a2j−1s

2j−1 + · · ·+ ais
i + · · ·+ a0 (A.6)

where

ai > 0, 0 ≤ i ≤ 2j (A.7)

Then when n = j + 1 the following condition holds

P (s) = (a2(j+1)s
2 + a1(j+1)s+ a0(j+1))(a2js

2j + a2j−1s
2j−1 + · · ·+ ais

i + · · ·+ a0)

= a2j+2s
2j+2 + a2j+1s

2j+1 + a′2js
2j + · · ·+ a′is

i + · · ·+ a′0

(A.8)

where



a2j+2 = a2(j+1)a2j > 0

a2j+1 = a2(j+1)a2j−1 + a1(j+1)a2j > 0

a′i = a2(j+1)ai−2 + a1(j+1)ai−1 + a0(j+1)ai > 0 2 ≤ i ≤ 2j

a′1 = a1(j+1)a0 + a0(j+1)a1 > 0

a′0 = a0(j+1)a0 > 0

(A.9)
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Therefore, if P (s) only admits negative real roots and conjugated complex roots with neg-

ative real parts, then all of its coefficients are unconditionally positive.

If P (s) only admits imaginary roots, conjugated complex roots with negative real parts

and negative real roots, the following equation holds

P (s) =

j∏
q=1

(a2(q)s
2 + a0(q))

j1∏
q=1

(a′2(q)s
2 + a′1(q)s+ a′0(q))

= a2j+2j1s
2j+2j1 + a2j+2j1−1s

2j+2j1−1 + · · ·+ ais
i + · · ·+ a0

(A.10)



a2(q) > 0

a0(q) > 0

a′2(q) > 0

a′1(q) > 0

a′0(q) > 0

(A.11)

Then a similar induction procedure can be used to show that all the coefficients ai are

unconditionally positive.

Another case is that when P (s) only admits conjugated complex roots with positive real

parts. In this situation the following equation holds

P (s) =

n∏
q=1

(a2(q)s
2 − a1(q)s+ a0(q)) (A.12)
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where 

a2(q) > 0

a1(q) > 0

a0(q) > 0

a21(q) − 4a2(q)a0(q) < 0

(A.13)

then the induction can be used to show that in the expanded form of P (s), the coefficients

for si are always negative when i is odd, and the coefficients for si are always positive when

i is even, thus

P (s) = a2ns
2n − a2n−1s2n−1 + · · ·+ (−1)iaisi + · · ·+ a0 (A.14)

where

ai > 0, 0 ≤ i ≤ 2n (A.15)

In fact, this condition is already satisfied for n = 1 and n = 2. let us then assume that this

condition is also satisfied when n = j, thus

P (s) = a2js
2j − a2j−1s2j−1 + · · ·+ (−1)iaisi + · · ·+ a0 (A.16)

where

ai > 0, 0 ≤ i ≤ 2j (A.17)
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Then for n = j + 1 the following condition holds

P (s) = (a2(j+1)s
2 − a1(j+1)s+ a0(j+1))(a2js

2j − a2j−1s2j−1 + (−1)iaisi + · · ·+ a0)

= a2j+2s
2j+2 − a2j+1s

2j+1 + a′2j + · · ·+ a′is
i + · · ·+ a′0

(A.18)

where



a2j+2 = a2(j+1)a2j

a2j+1 = a2(j+1)a2j−1 + a1(j+1)a2j

a′i = (−1)i−2a2(j+1)ai−2 + (−1)ia1(j+1)ai−1 + (−1)ia0(j+1)ai 2 ≤ i ≤ 2j

a′1 = −(a1(j+1)a0 + a0(j+1)a1)

a′0 = a0(j+1)a0

(A.19)

Therefore, a′i are always negative for odd values of i and a′i are always positive for even

values of i. This contradicts the positivity of coefficients of P (s), therefore P (s) can not

admit roots with only positive real parts.

Finally if P (s) admits negative real roots, conjugated complex roots with negative real

parts and conjugated complex roots with positive real parts, then

P (s) =

j∏
q=1

(a2(q)s
2 + a1(q)s+ a0(q))

j1∏
q=1

(a′2(q)s
2 − a′1(q)s+ a′0(q))

= (a2js
2j + a2j−1s

2j−1 + · · ·+ ais
i + · · ·+ a0)

× (a′2j1s
2j1 − a′2j1−1s

2j1−1 + · · ·+ (−1)ia′isi + · · ·+ a′0)

= a′′2j+2j−1s
2(j+j1) + a′′2j+2j1−1s

2(j+j1)−1 + · · ·+ a′′i s
i + · · ·+ a′′0

(A.20)
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where



ai > 0, 0 ≤ i ≤ j

a′i > 0, 0 ≤ i ≤ j1

(a′1(q))
2 − 4a′2(q)a

′
0(q) < 0

a′′2j+2j1 = a2ja
′
2j1

a′′0 = a0a
′
0

(A.21)

and if j ≤ j1


a′′i =

i−2j∑
q=0

(−1)qai−qa′q, 2j ≤ i ≤ 2j + 2j1 − 1

a′′i =
i∑

q=0

(−1)i−qaqa′i−q, 0 ≤ i ≤ 2j

(A.22)

if j > j1


a′′i =

i−2j1∑
q=0

(−1)i−qaqa′i−q, 2j1 ≤ i ≤ 2j + 2j1 − 1

a′′i =

i∑
q=0

(−1)qai−qa′q, 0 ≤ i ≤ 2j1

(A.23)

Therefore, apart from a′′2j+2j1
and a′′0, other coefficients are not always positive. The same

conclusion applies when P (s) includes purely imaginary roots, negative real roots and com-

plex roots with positive real parts and when P (s) only includes purely imaginary roots and

complex roots with positive real parts.

In summary, two main conclusions can be drawn from the conditions above. The first
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one is that if P (s) does not include complex roots with positive real parts then its coef-

ficients are unconditionally positive. The second conclusion is that if P (s) does include

complex roots with positive real parts then its coefficients are not unconditionally positive.

Then the law of contraposition - stating that a conditional statement implies that its con-

trapositive holds as well - can be used to show that two additional conditions hold. The

first one is that if the coefficients of P (s) are not unconditionally positive then P (s) ad-

mits complex roots with positive real parts. The second condition is that if the coefficients

of P (s) are unconditionally positive then P (s) does not include any complex root with

positive real part. All together, these conditions imply that a polynomial P (s) with even

degree and unconditionally positive coefficients only admits negative real roots, complex

roots with negative real parts and purely imaginary roots. The proof is therefore complete.
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Appendix B

Controllers for Beam Split Model

The details of the controllers used in Chapter 6 are provided. The transfer function form

of the controller K with the objective function min ||e||2
||d1||2+||d2||2 is listed as follows

KT (s) =



84514(s+50)(s−0.1125)(s+0.002163)(s2+2.636s+11.31)(s2+5.258s+21.49)
(s+156)(s+1)(s2+2.175s+9.42)(s2+4.746s+22)(s2+194.1s+2.974×104)

64778(s+50)(s+0.00199)(s+0.001721)(s2+2.636s+11.31)(s2+8.433s+32.48)
(s+156)(s+1)(s2+2.175s+9.42)(s2+4.746s+22)(s2+194.1s+2.974×104)

2.3357×105(s+50)(s+0.04051)(s+0.001235)(s2+2.636s+11.31)(s2+5.206s+21.54)
(s+156)(s+1)(s2+2.175s+9.42)(s2+4.746s+22)(s2+194.1s+2.974×104)

1.5553×105(s+50)(s+0.002199)(s+0.001782)(s2+2.636s+11.31)(s2+8.432s+32.48)
(s+156)(s+1)(s2+2.175s+9.42)(s2+4.746s+22)(s2+194.1s+2.974×104)

1.1435×105(s+50)(s−0.05434)(s+0.002371)(s2+2.636s+11.31)(s2+5.929s+26.52)
(s+156)(s+1)(s2+2.175s+9.42)(s2+4.746s+22)(s2+194.1s+2.974×104)

2.5453×109(s+155.9)(s+50)(s+0.00214)
(s+1.094×108)(s+156)(s+1)

×

× (s+0.001647)(s2+2.636s+11.31)(s2+31.78s+754.1)
(s2+2.175s+9.42)(s2+4.746s+22)(s2+194.1s+2.974×104)

2.2155×106(s+50)(s2+0.00388s+3.774×10−6)(s2+3.101s+10.02)(s2+4.91s+22.44)
(s+156)(s+1)(s2+2.175s+9.42)(s2+4.746s+22)(s2+194.1s+2.974×104)

1.1852×106(s+50)(s2+0.00388s+3.789×10−6)(s2+7.351s+21.15)(s2+4.91s+22.44)
(s+156)(s+1)(s2+2.175s+9.42)(s2+4.746s+22)(s2+194.1s+2.974×104)

1.7234×106(s+50)(s+0.002007)(s+0.001874)(s2+3.623s+14.01)(s2+4.91s+22.44)
(s+156)(s+1)(s2+2.175s+9.42)(s2+4.746s+22)(s2+194.1s+2.974×104)

1.1187×1010(s+195.2)(s+50)(s2+0.00388s+3.767×10−6)(s2+4.91s+22.44)(s2−9.057s+855.6)
(s+9.582×107)(s+156)(s+1)(s2+2.175s+9.42)(s2+4.746s+22)(s2+194.1s+2.974×104)


(B.1)
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And then the transfer function form of the controller K with the objective function

min ||e||
2+||F ||2

||d1||2+||d2||2 is listed as follows

KT (s) =



7.3123×10−4(s+0.01744)(s+0.002171)(s2+5.394s+22.33)
(s+1)(s+0.01555)(s+0.008409)(s2+4.91s+22.44)

3.5418×10−4(s+2.761×104)(s2+0.003954s+4.156×10−6)(s2+9.86s+44.13)
(s+2.672×104)(s+1)(s+0.01555)(s+0.008409)(s2+4.91s+22.44)

1.7191×10−3(s−0.001712)(s+0.0007492)(s2+5.404s+22.34)
(s+1)(s+0.01555)(s+0.008409)(s2+4.91s+22.44)

8.4994×10−4(s+2.761×104)(s2+0.003912s+4.071×10−6)(s2+9.861s+44.13)
(s+2.672×104)(s+1)(s+0.01555)(s+0.008409(s2+4.91s+22.44)

8.7835×10−4(s+2.762×104)(s+0.01018)(s+0.002381)(s2+5.835s+27.87)
(s+2.672×104)(s+1)(s+0.01555)(s+0.008409)(s2+4.91s+22.44)

0.79066(s−6.162)(s2+0.003944s+4.137×10−6)(s2+10.04s+106.9)
(s+2.672×104)(s+1)(s+0.01555)(s+0.008409)(s2+4.91s+22.44)

3.4855×10−3(s+16.37)(s+2.559)(s2+0.003926s+4.091×10−6)
(s+1)(s+0.01555)(s+0.008409)(s2+2.636s+11.31)

0.054529(s+2.287×104)(s+2.169)(s−0.3411)(s2+0.003926s+4.091×10−6)
(s+2.339×104)(s+1)(s+0.01555)(s+0.008409)(s2+2.636s+11.31)

0.013629(s+1.816×104)(s+4.183)(s−1.776)(s2+0.003926s+4.091×10−6)
(s+2.339×104)(s+1)(s+0.01555)(s+0.008409)(s2+2.636s+11.31)

71.357(s+0.604)(s2+0.003926s+4.091×10−6)(s2+7.297s+83.69)
(s+1)(s+0.01555)(s+0.008409)(s2+2.636s+11.31)



(B.2)
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