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Abstract: Uncertainty quantification for the experimental estimations of dynamic 14 

characterization functions, including frequency response functions (FRFs) and transmissibility 15 

functions (TFs), is of practical importance in improving the robustness of the real applications 16 

of these functions for system identification and structural health monitoring. Interval analysis 17 

is an appealing tool for dealing with the uncertainties of engineering problems in which only 18 

the bounds of uncertain parameters are available. FRFs and TFs are complex-valued random 19 

variables. However, due to the negligence of the dependencies of complex-valued variables, 20 

the existing complex ratio interval arithmetic operation can be overly conservative. In this study, 21 

the polar representation of complex ratio numbers was extended to complex ratio polar intervals 22 

and a multidimensional parallelepiped (MP) interval model was introduced to accommodate 23 

the dependence between the numerator and the denominator. Based on the explicit expressions 24 

of the MP model through a dependence matrix, two new global extrema searching schemes 25 

with and without the regularization of the uncertainty domain of the MP model were proposed 26 

in order to derive the explicit formulas of the upper and lower bounds of the magnitudes and 27 



2 

phases of the FRFs and TFs. The new schemes were then applied to the uncertainty propagation 1 

for a numerically simulated beam and a bridge subjected to a single excitation. The results 2 

showed that the interval overestimation problem could be significantly alleviated by using the 3 

new complex-valued ratio interval arithmetic operation of the parallelepiped model. 4 
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1 Introduction 1 

As shown in Fig. 1, the input-system-output model is viewed as the most fundamental 2 

component in the structural dynamics [1,2]. Frequency response functions (FRFs) and 3 

transmissibility functions (TFs) are commonly used to characterize the dynamics of a system. 4 

FRFs are mathematical representations of the relationship between inputs and outputs [3], while 5 

TFs are mathematical representations of the output-to-output relationships of a system [4]. As 6 

the most prevalent frequency-domain analysis tools, FRFs and TFs have been successfully 7 

applied in many fields such as structural damage detection [5-7], modal analysis [8-10], 8 

structural model updating [11,12], response reconstruction [13,14] and structural vibration 9 

control [15]. 10 

 11 

 12 

Fig. 1: Vibration-based system illustration composed of input, output, and a system model 13 
 14 

The rationale behind the aforementioned applications is to make inferences about the 15 

parameters involved in a theoretical FRF model or TF model by fitting the theoretical FRF and 16 

TF models to their corresponding experimental models estimated from applied excitations and 17 

response measurements [16,17]. The experimental models of FRFs and TFs are estimated based 18 

on the Fourier transform of a time series, which is inevitably contaminated by different 19 

uncertainty sources such as the measurement noise, the inherent randomness of excitation, the 20 

numerical errors caused by discrete signals, and the variability of environmental conditions [18]. 21 

Therefore, the results of complex ratio functions obtained via deterministic analysis without 22 

considering randomness related to FFT coefficients can deviate substantially from the actual 23 
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values. As a result, quantification of the uncertainty for FRFs and TFs provides a rigorous 1 

solution for improving the robustness of real applications. 2 

Many methods have emerged to quantify the uncertainty in engineering problems. These 3 

methods are generally categorized in two groups [19]: (i) probabilistic methods and (ii) non-4 

probabilistic methods. The probabilistic methods are the most popular and fundamental 5 

methods for uncertainty quantification and propagation [20]. Over the past few years, different 6 

probabilistic approaches have been proposed to investigate the uncertainties of FRFs [21-23] 7 

and TFs [24-26]. However, in the context of limited, insufficient, vague, or ambiguous data, it 8 

is highly non-trivial to obtain the actual probability distribution because the prior estimation of 9 

the joint probability density function of the uncertain parameter values is subjective [27,28]. 10 

When a small number of experimental samples are available, the non-probabilistic convex 11 

model theory requiring to discern the uncertainty bounds instead of the probability distribution 12 

is deemed to be the most robust against data insufficiency since they are more objective with 13 

respect to the data [29,30]. For FFT coefficients, results have shown that for some frequency 14 

points, no regular probabilistic distribution is available even though the samples are sufficient 15 

[31]. In this regard, determining the bounds of a variable is a more straightforward and feasible 16 

alternative for uncertainty quantification than the identification of probability distributions.  17 

Over the past few decades, interval analyses have been successfully applied in structural 18 

dynamics, such as computing the eigenvalue and eigenvector bounds of structures [32,33], 19 

calculation of envelope FRFs based on an interval finite element model [34,35], interval 20 

sensitivity analysis [36], response prediction [37], interval reliability analysis [38,39] and time-21 

variant reliable control [40]. More recently, interval analyses have also gained widespread 22 

interests in inverse problems such as model updating [41] and dynamic load identification 23 

[42,43]. However, the interval quantization of the experimental estimation of FRFs and TFs 24 
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from measurements has not been established systematically, which has been attributed to the 1 

following challenges:  2 

 FRFs and TFs are defined as the ratios of two frequency-domain responses, and they fall 3 

into the category of complex-valued ratio random variables. Although some complex-4 

valued interval arithmetic operations have been proposed by a number of researchers 5 

[44,45], most complex-valued interval representations are somewhat complicated and they 6 

are not convenient for interval arithmetic operations. 7 

 The FFT coefficients involved in FRFs or TFs are dependent. Direct use of the arithmetic 8 

operation rules based on a rectangular interval domain can lead to significant interval 9 

expansion, which affects the accuracy of uncertainty quantification significantly. Over the 10 

past few years, novel dependence analysis techniques such as the multidimensional 11 

ellipsoid model [46], multidimensional parallelepiped (MP) model [47], and copula pair 12 

construction [48] have been established for the non-probabilistic convex model by taking 13 

into account the independent and dependent interval variables in a unified framework. 14 

However, these models are still restricted to treating real-valued cases, and they have not 15 

been successfully applied in the interval analysis of a complex-valued domain. 16 

 17 

To address the aforementioned difficulties, we aimed to extend the polar representation of 18 

complex ratio numbers to the case of interval ratio functions using the polar form [49]. As a 19 

result, the division of the complex interval analysis was converted into an interval division of 20 

two correlated magnitudes and an interval subtraction of two correlated angles. Subsequently, 21 

considering the fact that the MP model provided a potential solution for dependency problem, 22 

the MP model [50,51] was introduced in the context of a complex-valued interval ratio analysis 23 

to consider the dependence of the magnitudes (or phases) of the numerator and the denominator 24 

for the first time. Based on the novel expression of the MP model, two new schemes were 25 
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developed to solve the complex-valued ratio interval arithmetic operations: (1) A global 1 

extrema searching strategy in tandem with a regularization method to transform the MP model 2 

into a regular interval model, through which the uncertainty domain then became a 3 

multidimensional cube geometrically, and (2) a global extrema searching scheme for the MP 4 

model directly without the regularization of the uncertainty domain of the MP interval model. 5 

It is worth noting that the upper and lower bounds of the magnitude and phases of the FRFs and 6 

TFs could be derived explicitly for both schemes. 7 

The organization of this paper is as follows. Section 2 formulates the background of this 8 

research. The fundamentals of the regular interval arithmetic as well as the complex-valued 9 

ratio interval variable with a polar form are introduced in Section 3. Section 4 describes the aim 10 

of accommodating the dependences involved in the complex ratio interval variable by 11 

introducing the novel development of MP model. Based on the explicit expressions of a 12 

parallelepiped model with a dependence matrix, two global extrema searching strategies with 13 

and without regularization of the uncertainty domain of the MP interval model were proposed 14 

in order to solve the complex-valued interval ratio arithmetic operation. The theoretical basis 15 

developments described in Section 3 and Section 4 were then utilized to compute the interval 16 

of the FRFs and TFs explicitly, as are discussed in Section 5. Finally, Section 6 describes how 17 

the two case studies were conducted to verify the theoretical developments. 18 

 19 

2 Problem Description 20 

 21 

Fig. 2: Schematic diagram of a simply supported beam subjected to a single input 22 
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 1 

The multi-degree-of-freedom (MDOF) linear dynamical system shown in Fig. 2 was 2 

subjected to a single-input on the -thi  DOF, and the response measurements were available for 3 

the on  measured DOFs. The measurements of the input and outputs were denoted by  if t  4 

and  0 1( ) ( ), ( ), , ( )
o

T

nt y t y t y ty  , respectively. At the frequency k , the discrete Fourier 5 

transforms of the input and output measurements were defined as [52,53]: 6 
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where 2k kf  , 1, 2, , ( 2)k Int N  , 2 1 i , and 2 ( )N t    . In this work, ‘ k ’ or 9 

superscript  k  denotes the -thk  frequency point;  k
iF  and  k

jY  were the discrete Fourier 10 

transforms of the input  if t  and output  jy t  at k , respectively;  i  and j  denote the 11 

-thi  DOF and -thj  DOF of the system.  12 

As a result, the FRF  k
ijH  reflecting the relationship between the input if  and output 13 

iy  was defined as [3]: 14 

      k k k
ij j iH Y F   (2) 15 

The TF  k
ijT  reflecting the relationship between a response jy  and iy  was defined as [4]: 16 

        k k k
ij j iT Y Y     (3) 17 

As seen from Eqs. (2) and (3), both the FRFs and the TFs were complex-valued ratio random 18 

variables composed of both real and imaginary parts. Given some samples of the FFT pairs 19 

   = ,   
k k

k i jF Y  or    = ,   
k k

k i jY Y , which were possibly correlated with each other [54, 55], 20 

this study had the aim of quantifying the uncertainty of the FFT coefficients at different 21 

frequency points based on an MP model, which was subsequently used to explicitly quantify 22 
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the lower and upper bounds of the FRF and TF estimations  k
ijH  and  k

ijT  by developing new 1 

complex ratio interval arithmetic operations. 2 

3 Complex-Valued Ratio Interval Variable with Polar Form 3 

3.1 Fundamentals of the regular interval arithmetic 4 

If x  and x  represent the lower and upper bounds of the interval variable X , then the 5 

standard interval model is given by [30]:  6 

      ,x x x x x x x       (4) 7 

The midpoint Mx  and radius Rx  of  are defined as: 8 

   / 2Mx x x     (5a) 9 

   / 2Rx x x      (5b) 10 

 11 

 12 

Fig. 3: Regular interval model for    ,x x x  and   ,y y y     13 

 14 

Let    ,x x x  and   ,y y y     be real compact intervals as shown in Fig. 3. Without 15 

considering their dependences, the following rules hold for two independent interval variables 16 

X
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[30]: 1 

     , x y x y x y         (6a) 2 

     - , -y x y x y x       (6b) 3 

        min , , , , max , , ,x y y x y x y x y x y x y x y x y x       (6c) 4 

   
 
   1 1

, , , if 0 ,
y

y y x x
x x x

        
  (6d) 5 

3.2 Polar complex intervals 6 

Since FRFs and TFs have the same mathematical structure, for ease of illustration, they 7 

were denoted by a unified complex-valued ratio function  , denoted here using the polar 8 

form: 9 
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where = -1i ； 1  and 2  were two interval variables; the magnitude of   was 1 2  , 11 

and the angle was 1 2  . 12 

 13 

Fig. 4: Illustration of the choice of angles for sectors [49] 14 

 15 
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A polar interval model could be utilized to model the uncertainty of the FFT coefficients. 1 

As shown in Fig. 4, a polar interval model could be uniquely characterized by two real intervals, 2 

i.e., the magnitude and the phase: 3 

   ,     l l l ;   ,     l l l   (8) 4 

where the subscript l  denotes the numerator or denominator.  5 

Since all the angles were defined with modulo 2π, it was valid to adjust the angles by 6 

adding or subtracting 2π to their lower and upper bounds. In this study, the bounds of the angle 7 

interval of the denominator and numerator could be chosen such that:  8 

 
0 4 ; 0 4 ,  for =numerator

0 2 ; 0 2 ,  for =denominator
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  (9) 9 

It is worth noting that the angle of the numerator should plus 2π if it is less than the angle of 10 

denominator the to avoid negative value of the phase of the complex-valued ratio variable and 11 

ensure it to fall into the interval of [0, 2π]. Therefore, the interval of a complex random variable 12 

was defined as [49]: 13 

       ,= = l
l l l ll l l l e         i ,   (10) 14 

where  l  was called a polar complex interval (or sector), which could also be denoted as 15 

    l l ， . 16 

Since the set of real intervals was closed with respect to subtraction and division, it could 17 

be seen that the division of the two sectors was also a sector: 18 
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If the numerator and the denominator were independent, the magnitude and angle of the ratio 20 

interval variable could be calculated by utilizing the regular interval arithmetic: 21 
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       1 21 2 2 1,               (12b) 1 

where 20  . 2 

However, in most applications, the numerator and the denominator were usually correlated. 3 

Due to the negligence of the dependencies of the complex-valued variables, the resultant 4 

intervals from the interval arithmetic were usually overestimated [51], and one could conclude 5 

this from the following examples. 6 

Example 1    
 

1

2





 

  
 

 : Assume that two variables 1  and 2  are correlated with 7 

2 11   . The intervals are assumed to be    1 2,3   and    2 3,4  . It is easily seen that 8 

the correct interval of   is 
2 3

,
3 4
 
  

, but the result based on Eq. (12a) is 
1

,1
2
 
  

.  9 

Example 2       1 2    : Assume that two variables 1  and 2  are correlated with 10 

2 1

1

2 2

   . The intervals are    1 ,2    and  2 0,
2

     
. Then, the correct interval of 11 

  is 
3

,
2

 
  

, which is different from the result ,2
2

  
  

 from Eq. (12b).  12 

From these two simple examples, it is clear that the interval arithmetic evaluation as an 13 

enclosure of the range over interval variables is dependent on the dependences between the two 14 

interval variables. To improve the accuracy, the MP interval model [50, 51] will be adopted to 15 

quantify the complex ratio interval variables and it will be introduced in the next section. 16 
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4 Complex-Valued Ratio Interval Arithmetic with the MP Model 1 

4.1 Review of the MP interval model [50, 51] 2 

 3 

Fig. 5: Schematic diagram of the two-dimensional MP interval model (2-D case) [51] 4 

 5 

For a two-dimensional case with interval variables X  and Y , the schematic diagram 6 

of the MP model is shown in Fig. 5. In this model, the range of X  and Y  were denoted by 7 

  ,    
M R M Rx x x x x  and   ,    

M R M Ry y y y y , respectively. If X  and Y  were 8 

dependent, the uncertainty domain of the samples could be encompassed by a parallelogram 9 

domain  , while the joint uncertainty domain of X  and Y  constituted a rectangular domain 10 

 s  if X  and Y  were independent with each other. The uncertainty domain in the MP model 11 

was established according to the following principles: (a) The parallelogram   was 12 

circumscribed by the rectangular domain  s , (b) The vertices of the parallelogram were 13 

located on the diagonal lines of  s , (c) The parallelogram degenerated into a rectangular 14 

domain  s , if and only if the interval variables X  and Y  were independent. 15 

From the above principles, it was not difficult to deduce that the shape of the parallelogram 16 

should reflect the dependence between X  and Y . The shape coefficient xy  between X  17 
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and Y  was defined as follows: 1 

 xy yx

b a

b a
   

  


  (13) 2 

where a and b denote the semi-axis length in the directions 

MB  and 


MA , respectively. 3 

It is worth mentioning here that, the MP model adopted in this study is different from the 4 

work by Elishakoff [56]. For MP model used in this study, the minimum-area rectangular 5 

circumscribing all data points should be determined at first, and then the parallelogram can be 6 

formulated automatically according to the principles mentioned in the above by using the 7 

diagonal lines. One advantage of the principles is that the shape of the parallelogram can reflect 8 

the dependence degree between X  and Y , and it is easy to define the dependence coefficient 9 

xy  between X  and Y  based on the diagnonal lines. However, in Elishakoff’s approach 10 

[56], one should seek for an optimal enclosing parallelogram which has one of the edges or 11 

along an edge of the convex hull. In a particular case that is parallel to two specific edges of the 12 

convex hull, and would coincide with above two edges of the convex hull. Following this, one 13 

can choose a parallelogram with at least two adjacent sides of it constitute sides of the convex 14 

hull, not necessarily adjacent. Then one proceeds with reducing the size of the parallelogram 15 

until the other sides of it contain at least one corner of the convex hull. As is indicated in Fig. 16 

6, the four vertices of the parallelogram constructed by this method are not necessarily located 17 

on the diagonal of the circumscribed rectangle, and the shape coefficient and matrix 18 

transformation in MP are not suitable for the Elishakoff’s parallelogram model again. 19 

  20 
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 1 

Fig. 6: Schematic diagram of the interval model constructed by Elishakoff [56] 2 

 3 

 4 

Fig. 7: Some cases between two interval variables for the MP model with different shape 5 

coefficients : (a) 1  ; (b) 1   ; (c) 0 1  ; (d) 1 0    [50,51] 6 

 7 

As is shown in Fig. 7(a) and 7(b), 1   or 1    when the interval variables X  and 8 

Y  had a linear dependence; when the interval variables X  and Y  had positive or negative 9 

dependences, 0 1   or 1 0    (see Fig. 7(c) and 7(d)). The MP model degraded into a 10 

traditional interval model when the intervals were independent with 0  . Subsequently, the 11 
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symmetrical dependence matrix Φ  was defined as [50]: 1 
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Based on the above principles, an explicit expression of the uncertainty domain could be 3 

constructed in the following elementwise inequality: 4 
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where  1,1 T
η , and the matrices Γ  and Η  were defined as: 6 
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Η   (16b) 8 

where   denotes the absolute value of each element in the vector. In the expression,  ,i jΦ  9 

is the element in the i-th row and the j-th column of the dependence matrix Φ . By expanding 10 

Eq. (15), the description of the parallelogram turned out to be: 11 
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  (17) 12 

Based on Eq. (17), the coordinates of the four vertices of this parallelogram (Nodes A, B, C, 13 

and D in Fig. 5) could be derived as [51]: 14 

 

1 1 1 1
, ; ,

1 1 1 1

1 1 1 1
, ; ,

1 1 1 1

M R M R M R M R

M R M R M R M R

A x x y y B x x y y

C x x y y D x x y y

   
   

   
   

       
               

         
               

  (18) 15 

Given some samples of  nX  and  nY   1,2, ,  mn N , the MP model quantifying the domain 16 

of the uncertain variables could be constructed efficiently. The procedure for building the MP 17 
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model for the 2-D case is summarized as follows: 1 

 The marginal intervals   ,    
M R M Rx x x x x  and   ,    

M R M Ry y y y y  were obtained. 2 

 A minimum-area parallelogram enveloping all the samples     ,n nX Y  1,2, ,  mn N  was 3 

established. 4 

 The dependence matrix Φ  was constructed using Eq. (13). 5 

 The shape matrix C ΗΓΦ  was constructed based on the obtained marginal intervals and 6 

the dependence matrix Φ . 7 

 The uncertainty domains of X  and Y  were created from the coordinates of the four 8 

vertices of this parallelogram (Nodes A, B, C, and D in Fig. 5). 9 

4.2 Two schemes for the complex ratio interval arithmetic operations 10 

Based on the explicit expression of the MP model in terms of the dependence matrix, two 11 

schemes were proposed, as described in this section, including the global extrema searching 12 

strategy with regularization of the uncertainty domain as well as another strategy without 13 

regularization of the uncertainty domain. Since the interval analysis was used to estimate the 14 

lower and upper bounds of the function, the interval arithmetic could be transformed to compute 15 

the maximum and the minimum of  ,
y

f x y
x

  and  ,g x y y x  . 16 
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4.2.1 The scheme with regularization of the uncertainty domain 1 

 2 

Fig. 8: Regularization of the uncertainty domain: (a) translation and compression 3 

transformation; (b) normalization transformation [51]. 4 

 5 

As is shown in Fig. 8, the regularization of the uncertainty domain was achieved through 6 

two stages [51]. 7 

(i) Translation and compression transformation 8 

As is shown in Fig. 8(a), after the translation and scaling transformations, a new interval vector 9 

was obtained: 10 

 

-1
0

=
0

MR

R M

x x xx

y y y y

                  
  (19) 11 

After matrix transformation, the uncertainty domain became  ' 1 1 '   Φ Γ η with 12 

 1,1
Tη . 13 

(ii) Normalization transformation 14 

As shown in Fig. 8(b), the domain was transformed into a standard multidimensional cuboid 15 
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with the midpoints of 0  and the semi-lengths of 1  by introducing a new vector δ : 1 
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where    = -1,1 x  and  = -1,1  y . As a result, the following expression could be obtained 3 

from Eqs. (19) and (20): 4 
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As a result, the regular interval operations considering the dependences of the variables could 7 

be achieved, as follows [51]: 8 
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      +
1 1
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  (22b) 10 

where    = -1,1 x  and  = -1,1  y . 11 

Since many effective methods had been previously developed for dealing with the regular 12 

interval model, they could be directly applied to the MP model after regularization. The 13 

subsequent uncertainty propagation analysis would become straightforward. However, by using 14 

Eq. (22a), interval overestimation occurred due to the multiple occurrences of  x  and  y  in 15 

the expressions. The multiple occurrences of  x  and  y  were regarded as multiple 16 

independent variables and this phenomenon induced the inherent defect of classic interval 17 

arithmetic. 18 
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To avoid interval overestimation, the interval arithmetic 
 
 
y

x
 was transformed to 1 

compute the maximum and the minimum of the function  , x yf  in terms of  x  and  y : 2 

          , , -1,1 ; -1,1
1
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The global maximum and minimum of  , x yf  with respect to  x ,  y  were given by: 4 
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Solving the above equations led to: 6 
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  (25) 7 

It is worth noting that: 8 

      2 2 2

2 2

, , ,
0; 0; 0

x y x y x y

x x y y

f f f
A B C

     

   

  
     

  
  (26) 9 

where A, B and C denote the second-order partial derivatives of  , x yf  with respect to   x  10 

and  y . Eq.(26) satisfies 2 0AC B  , indicating that this was an optimization problem in a 11 

bounded domain. Therefore, the obtained extrema (which possibly did not exist) of 
y

x
 had to 12 

be further compared with the values at the boundaries (the square in Fig. 8). It was not difficult 13 

to prove that  , x yf  was a monotonic function at the boundaries, and the maximum and 14 
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minimum values at the boundaries occurred at four vertices. Therefore, 
 
 
y

x
 could be 1 

evaluated as: 2 

 
 
           ˆ ˆ ˆ ˆmin 1, 1 , , ,max 1, 1 , ,x y x y

y
f f f f

x
          

  (27) 3 

where  ˆ ˆ, x yf  could be obtained by substituting Eq. (25) into Eq. (23);  1, 1 f  were the 4 

results estimated at four vertices. 5 

Similarly, the interval arithmetic    y x  shown in Eq. (22b) could be transformed to 6 

compute the maximum and the minimum of the function  ˆ ˆ, x yg  in terms of  x  and  y : 7 

   + , [-1,1]; [-1,1]
1
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  (28) 8 

The global maximum and minimum of  , x yg  with respect to  x ,  y  were given by the 9 

following equations: 10 
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   (29) 11 

Eq. (29) indicates that the equation had no solution, implying that  , x yg   it was a 12 

monotonic function. Therefore, the interval of    y x  could be obtained through 13 

optimization at four vertices: 14 

          min 1, 1 ,max 1, 1y x g g          (30) 15 
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4.2.2 The scheme without regularization of the uncertainty domain 1 

 2 

Fig. 9: Explicit expressions of the four sides of the MP model. 3 

 4 

By revisiting the MP model without regularization of uncertainty domain shown in Fig. 9, 5 

the opposite sides of the parallelogram are in parallel. The expressions of the four lines 6 

including  and CD AB BC AD, ,  are given by: 7 

 1 1CDy k x b  ; 1 2ABy k x b  ; 2 3BCy k x b  ; 2 4ADy k x b    (31) 8 

where 1k  denotes the slope of lines CD and AB; and 2k  denotes the slope of lines BC and 9 

AD; 1b  , 2b  , 3b   and 4b   represent the corresponding vertical intercepts. Assume that the 10 

coordinates of the vertices are denoted by  ,A AA x y ,  ,B BB x y ,  ,C CC x y  and  ,D DD x y , 11 

then the slopes 1k  and 2k  of four sides of the MP interval model can be expressed as:  12 
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It is worth mentioning here that Mx  and My  denote the midpoints of interval variables X  1 

and Y , respectively. As a result, the intercepts of the four sides of the MP interval model 2 

shown in Fig. 9 are given by: 3 
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Based on the explicit expressions of Eqs. (32) and (33), the interval arithmetic is transformed 8 

to compute the maximum and the minimum of four lines  and CD AB BC AD, , . One can prove 9 

that the interval operation can be achieved as: 10 
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min , , , ,
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  (34b) 12 

The proofs are referred to Appendix A.  13 

 14 

It is noted that the MP model is only a first rough approach to address dependencies 15 

between intervals, being used for illustrative purpose in the presentation of our method. For 16 

more complex and nonlinear problems we refer to model order reduction to facilitate the 17 

applicability of the MP model in those cases as well. Alternatively, for full scale analysis, more 18 

advanced dependency models can be implemented in our approach. For example, complicated 19 

dependence structures can be accommodated through copula pair construction approaches as 20 



23 

proposed by Faes and Moens in [48], where dependencies between intervals within an FE model 1 

are described in this manner. In [57] an error term is proposed to collect the contributions of 2 

nonlinear effects to account for nonlinear dependencies. Those are readily available for tailored 3 

implementation in dependence on the specific problem. 4 

 5 

5 Uncertainty Quantification for FRFs and TFs based on new Schemes 6 

In the context of interval analysis for FRF and TFs, the FFT coefficients    = ,   
k k

k i jF Y  7 

or    = ,   
k k

k i jY Y  could be expressed using a polar form as: 8 

      
=

k
ik k

i iF e  i ;      
=

k
ik k

i iY e  i ;      
= 

k
jk k

j jY e i   (35) 9 

where   k
i  and   k

i  denote the magnitude and the phase of  k
iF , respectively;   k

i  and  10 

  k
i  denote the magnitude and angle of  k

iY , respectively. 11 

The polar interval model introduced in Section 3 could be utilized to model the uncertainty 12 

of the FFT coefficients.  k
iF ,  k

iY  and  k
jY  could be uniquely characterized by the real 13 

intervals of      ,        
k k k

i i i ,      ,        
k k k

i i i ,      ,        
k k k

i i i ,      ,        
k k k

i i i ,  14 

     ,        
k k k

j j j  and      ,        
k k k

j j j .  As a result, the intervals of the FRFs and TFs 15 

were denoted by: 16 
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  (36b) 18 

The intervals of the divisions of the FRFs and TFs    k k
j i    

     and    k k
j i    

     could be 19 

determined with Eq. (27) or Eq. (34a), while the subtractions    k k
j i         and 20 
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   k k
j i         could be obtained using Eq. (30) or Eq. (34b). The procedures for computing 1 

the interval for the experimental estimation of the FRFs using the scheme with or without 2 

regularization of the uncertainty domain are summarized in Table 1. These procedures could be 3 

easily extended to the interval analysis for the TFs. However, these procedures have been 4 

omitted here for the purpose of simplicity. 5 

 6 

Table 1: Interval analysis for the FRFs using the schemes with and without regularization of 7 

the uncertainty domain 8 

Step Procedures  
1 Acquire the time histories of input  if t  and output ( )jy t of the dynamical system  

2 Use Fourier transform for the time histories to obtain the samples of 
   [ , ]k k T

i jF Y   

3 Decide the marginal intervals of  [ ]k
i ,  [ ]k

i ,  [ ]k
i  and  [ ]k

i  according to 
the upper and lower bounds of the magnitude and angle intervals 

 
 

    
 
4 

Analyze the interval of FRF within a specific frequency band 
1 2

[ , ]k k  :   

FOR 1 2:k k k   

  Generate the two-dimensional parallelogram model circumscribed by the 
rectangular domain; 

 Compute the shape coefficients of  [ ]k
i &  [ ]k

i ,  [ ]k
i &  [ ]k

i ;  
 Calculate    ] [ ][ k k

j i   according to Eq. (27) or Eq. (34a);  

  Calculate    [ ] ][k k
j i   according to Eq. (30) or Eq. (34b);   

END FOR 
 9 

6 Case Studies 10 

6.1 Numerical study of a simply supported beam 11 

Simulated data of a simply supported beam, as shown in Fig. 2, was processed to illustrate 12 

the accuracy of the proposed interval analysis schemes for experimentally estimated FRFs and 13 

TFs. The length was 3 m and the cross section was   mm  mm width  height100 20  , the Young’s 14 

modulus was =  Pa10E 7 10 , the density was 3=  kg m2760 , and the damping ratios for the first 15 

two modes were 1 2 1%    for the Rayleigh damping model. Random excitation was applied 16 
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at sensor 2, as shown in Fig. 2. The response measurements were assumed to be contaminated 1 

by Gaussian white noise. We know that signal-to-noise-ratio (SNR) is defined as the ratio of 2 

the noise-free signal power to the noise power expressed in dB. The SNR level of this example 3 

was assumed to be 50 dB in this study. The time histories were generated to verify the proposed 4 

approaches. One hundred realizations, each with a duration of 50s were generated for both the 5 

noise-free and noise-contaminated scenarios with a sampling time interval 0.02st  . The FFT 6 

coefficients were calculated for each realization of the input and output. The interval analysis 7 

for the FRFs and TFs could be conducted by following the procedures shown in Table 1. 8 

The FRF corresponding to the fifth floor and the first floor (  
2,1
kH ) at  rad/skw =12.2  was 9 

observed in detail by taking the ratio of  
1

kX  to  
1

kF  directly without averaging, smoothing, 10 

windowing, etc. The marginal intervals of the magnitudes and angles could be obtained as11 

   2[ ]= 0.5744,21.91 k ,    1[ ]= 0.1266,3.586 k ,    2[ ]= 0.04081,6.243 k , and    1[ ]= 0.3952,12.1 k  12 

according to the samples of the FFT coefficients. The MP model of  
2[ ] k  and  

1[ ] k , as well 13 

as  
2[ ] k  and  

1[ ] k  could be generated by circumscribing all of the samples. The shape 14 

coefficient of  
2[ ] k  and  

1[ ] k  was equal to 0.73 k , while the shape coefficient of  
2[ ] k  15 

and  
1[ ] k  was equal to 0.32 k . The parallelograms fitting the measured data in the two-16 

dimensional spaces are illustrated in Fig. 10(a) and 10(b). It could be observed that the 17 

parallelograms were thin and long, implying that both the pairs of random variables     2 1,k k   18 

and     2 1,k k   were significantly correlated with each other. The parallelepiped model had 19 

good fitting for the 100 samples. Based on this uncertainty domain, uncertainty quantitation 20 

could then be carried out for the FRFs at different frequency points. Fig. 11(a) displays the 21 

intervals of the magnitude of  
2,1
kH  (i.e.,    

1 2[ ] [ ] k k ) which was computed according to Eq. 22 

(27) and Eq. (34a) within the frequency band of [0,25]Hz. Fig. 11(b) shows the intervals of the 23 
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angles of  
2,1
kH  (i.e.,    

1 2[ ] [ ] k k ) that were achieved using Eqs. (30) and (34b). For the 1 

comparison purpose, the intervals of    
1 2[ ] [ ] k k  and    

1 2[ ] [ ] k k  without considering the 2 

dependence degree computed using Eqs. (6d) and (6b) were also determined, as shown in Fig. 3 

11(a) and (b). The figure also includes the result of    
1 2[ ] [ ] k k  that was computed using 4 

Eq.(22a) as well as the results of    
1 2[ ] [ ] k k  that were computed using Eq. (22b), which were 5 

originally derived in [51]. 6 

 7 

(a)     2 1,k k   at  rad/sk 12.2   8 

 9 
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(b)     2 1,k k   at  rad/sk 12.2   1 

Fig. 10: The samples of the FFT coefficients and the MP models of     2 1,k k   and 2 

    2 1,k k   at  rad/sk 12.2   3 

 4 

(a) 5 

 6 

(b) 7 

Fig. 11: The intervals of the magnitude and the angles of  
2,1
kH  within [0,25] Hz: (a) 8 

   
1 2[ ] [ ] k k ; (b)    

1 2[ ] [ ] k k  9 
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 1 

The intervals of the TFs  
2,5

kT  within [0,25] Hz that were produced by taking the ratio 2 

between  
5

kX  and  
2

kX  were also observed in detail. The parallelograms that fit the measured 3 

data at in the 2-D spaces are illustrated in Fig. 12(a) and (b). The intervals of    
5 2[ ] [ ] k k  that 4 

were determined by accommodating their dependence based on the MP model and without 5 

considering the dependence are compared in Fig. 13(a). The lower and upper bounds of 6 

   
5 2[ ] [ ] k k  that accommodated the dependence based on the MP model are compared in Fig. 7 

13(b), along with those without consideration of the dependencies. In these figures, the results 8 

achieved by resorting to the regularization scheme and those without regularization of the 9 

uncertainty domain are denoted by red and blue dotted lines, respectively, while the results 10 

without consideration of the dependence (i.e., Eqs. (6b) and (6d)) are denoted by black solid 11 

lines. 12 

 13 

(a)     5 2, k k  at  rad/sk 10.28   14 
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 1 

(b)     5 2, k k  at  rad/sk 10.28   2 

Fig. 12: The FFT samples as well as MP models of     5 2, k k  and     5 2, k k  at 3 

 rad/sk 10.28   4 

 5 

(a) 6 
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 1 

(b) 2 

Fig. 13: The intervals of the magnitude and angles of  
2,5

kT  within [0,25] Hz: (a) the interval 3 

of    
5 2[ ] [ ] k k ; (b) the interval of    

5 2[ ] [ ] k k  4 

 5 

Through the foregoing analysis, for either FRFs or TFs with large independence, the regular 6 

interval models were both likely to construct a too-large uncertainty domain, resulting in an 7 

ultra-conservative uncertainty quantification analysis. The parallelepiped model, however, 8 

could handle both dependent and independent variables, and it could thus be used construct a 9 

more compact uncertainty domain, resulting in more reasonable uncertainty analysis results. 10 

Furthermore, the results showed that the intervals of the magnitude obtained with Eqs. (27) and 11 

(34a) were the narrowest and they were contained in the results of the regular interval model 12 

without considering the dependences (Eq. (6d)). 13 

6.2 Application to the uncertainty quantification of the field-testing data of a bridge 14 

This section describes how the performance of the complex interval ratio arithmetic operations 15 

with the MP model was further evaluated by using the field test measurement for a bridge [58]. 16 

Due to the efforts of the researchers from the Los Alamos National Laboratory, the vibration 17 
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test data for a benchmark problem were available at http://ext.lanl.gov/projects/damage_id/. 1 

The bridge had seven independent spans, with each span consisting of a concrete deck 2 

supported by six steel beams. The roadway in each span was approximately 7.3-m wide and 3 

15.2-m long. The concrete deck and the girders below the bridge were equipped with 31 sensors 4 

in total. This field test of the bridge was conducted on the bridge to study various issues related 5 

to bridge structural integrity, and the plan for the inputs (driving points A and B) and outputs 6 

(accelerometers) in forced vibration testing is shown in Fig. 14 [58]. The sampling rate of the 7 

acceleration data was 128Hz. In this study, only 30 non-overlapping sequences, with each one 8 

lasting 16s, were used for interval analysis, while the remaining measurements were not used. 9 

The FFT coefficients could be calculated accordingly for each sequence. Each segment could 10 

be viewed as a random realization and one segment could be employed to obtain the upper and 11 

lower bounds of the magnitude and angle intervals. 12 

 13 

Fig. 14: Positions of the accelerometers and driving points of the bridge (redrawn according 14 

to [58]) 15 

 16 

The uncertainty domain according to the upper and lower bounds of the magnitude and 17 

angle intervals could be determined according to the FFT samples. The 2-D parallelogram 18 
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model of the magnitudes as well as the angles could be generated by circumscribing the samples. 1 

Based on all the marginal intervals and shape coefficients, the whole uncertainty domains of 2 

the magnitudes and angles at different frequency points could be created one by one. By 3 

analyzing the measurements acquired from different sensors, the following analyses were 4 

conducted: 5 

 FRF      
2,5 5 2=k k kH X F : The parallelograms fitting the samples of the magnitude and the 6 

angles of  
2,5
kH  at  rad/sk 39.625   in the 2-D space are illustrated in Fig. 15(a) and (b). 7 

The marginal intervals were equal to   3 3
2[ ]= 0.487 10 ,0.9109 10     

k , 8 

  3 3
5[ ]= 0.8744 10 ,1.475 10     
k ,    2[ ]= 1.974,3.165 k ,    5[ ]= 7.977,9.298 k . The shape 9 

coefficients of     2 5, k k  and     2 5, k k  were equal to 0.66 k  and 0.73 k , 10 

respectively. The shape coefficients along the frequency band [5,25Hz] are shown in Fig. 11 

16. The uncertainty propagation analysis results based on the aforementioned non-12 

probabilistic convex models are shown in Fig. 17. Furthermore, Fig. 17(a) displays the 13 

intervals of the magnitude (i.e.,    
5 2[ ] [ ] k k ) computed according to Eqs. (27) and (34a), 14 

while Fig. 17(b) shows the intervals of the angles of (i.e.,    
5 2[ ] [ ] k k ) that were achieved 15 

using Eqs. (30) and (34b).  16 
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 1 

(a)     2 5, k k  at 39.625 k  2 

 3 

(b)     2 5, k k  at  rad/sk 39.625   4 

Fig. 15: The parallelepiped models of     2 5, k k  and     2 5, k k  at  rad/sk 39.625   5 

established based on their samples 6 
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 1 

Fig. 16: The shape coefficients     2 5, k k  and     2 5, k k  within the frequency band of 2 

[5,25] Hz 3 
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 1 

(b) 2 

Fig. 17: The intervals of the magnitude and the angles of  
2,5
kH  of the bridge within[5,25] Hz: 3 

(a)    
5 2[ ] [ ] k k ; (b)    

5 2[ ] [ ] k k  4 

 5 

 TF      
1,5 5 1=k k kT X X : The parallelograms of the magnitude and angles of  

1,5
kT  at 6 

39.25 k  in the two-dimensional spaces are illustrated in Figs. 18(a) and (b) with the 7 

fittings of the samples. The marginal intervals were equal to8 

  3 3
1[ ]= 0.8899 10 ,1.531 10     

k ,   3 3
5[ ]= 0.753 10 ,1.288 10     

k ,    1[ ]= 1.74,2.953 k  and 9 

   5[ ]= 1.88,3.042 k , while the shape coefficient of     1 5, k k  was equal to 0.89   and 10 

that of     1 5, k k  was equal to 0.90  . The shape coefficients along the frequency band 11 

[5,25] Hz are shown in Fig. 19. The intervals of the magnitude (    
5 1[ ] [ ] k k ) that were 12 

achieved using different schemes are displayed in Fig. 20(a), while the intervals of the 13 

angles (    
5 1[ ] [ ] k k ) that were computed using different schemes are shown in Fig. 20(b). 14 
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 1 

(a)     1 5, k k  at  rad/sk 39.25   2 

 3 

(b)     1 5, k k  at  rad/sk 39.25   4 

Fig. 18: The parallelepiped models of     1 5, k k  and     1 5, k k  established based on their 5 

samples at  rad/sk 39.25   6 
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 1 

Fig. 19: The shape coefficients     1 5, k k  and     1 5, k k  within the frequency band [5, 25] 2 

Hz 3 
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 1 

(b) 2 

Fig. 20: Intervals of the magnitude and the angles of  
1,5

kT  of the bridge within [5, 25] Hz: (a) 3 

   
5 1[ ] [ ] k k ; (b)    

5 1[ ] [ ] k k  4 

 5 

The following conclusions could be obtained by observing Figs. 15-20: 6 

 The dependences between each pair of magnitudes or angles for both the FRFs and TFs 7 

could not be ignored for most of the frequency points. 8 

 The uncertainty domain obtained from the parallelepiped model was significantly narrower 9 

than that obtained with the regular interval model. Thus, proper consideration for the 10 

dependence was of vital importance in improving the robustness of applications. The 11 

calculation results were not as conservative as those produced by the regular interval 12 

models were because the parallelepiped model constructed a more compact domain of 13 

uncertainty. 14 

 The intervals of the magnitude and angles obtained with the new schemes with or without 15 

regulating the uncertainty domain of the MP models agreed well with each other. They 16 
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were contained by the results of the regular interval model without considering the 1 

dependences. 2 

 The multiple occurrences of x   and  y  in the division (i.e., (22a)) were regarded as 3 

multiple independent variables, which would result in interval overestimation. The interval 4 

arithmetic that was transformed to compute the maximum and the minimum of  ,x yf    5 

could alleviate the interval expansion effectively. 6 

 Fig.20(b) shows some over-conservative approximation of the phase angles, in particular 7 

for larger frequencies. However, this over-estimation is acceptable since the influence of 8 

the phase angles on the results of our approach is negligible. Further, since all angles are 9 

defined modulo 2π, results for angles greater than 2π are irrelevant. As is shown in Eqs.(7), 10 

(10) and (35), they are determined by the results from the interval [0,2π]. 11 

  12 

7 Conclusion 13 

A new non-probabilistic approach was developed for complex-valued ratio interval 14 

arithmetic. This approach was then applied to the uncertainty quantification for the FRFs and 15 

TFs. To avoid the complexity of the rectangular representation, the polar representation of the 16 

complex ratio numbers was extended to the complex ratio polar intervals. To avoid the interval 17 

overestimation problem due to the negligence of the dependencies of the complex-valued 18 

variables, an MP interval model was introduced to accommodate the dependence between the 19 

numerator and the denominator. Based on the explicit expressions of the MP model with a 20 

dependence matrix, two global extrema searching schemes with and without regularization of 21 

the uncertainty domain of the MP model were proposed to solve the complex-valued interval 22 

ratio arithmetic. The upper and lower bounds of the magnitudes and phases of the FRFs and 23 

TFs were determined using explicit expressions. The theoretical findings of this study were 24 



40 

verified using the synthesis data for a simply supported beam and the forced vibration testing 1 

data for a bridge. The results showed that the intervals obtained using the new schemes 2 

proposed in this study were the narrowest and that these intervals were contained in the results 3 

of the regular interval model without considering the dependences. This development enlarged 4 

the capabilities of the FRFs and TFs with the expectation of robust analyses in the areas of 5 

inverse problems such as modal analysis, damage detection, and model updating. 6 

 7 
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 14 

Appendix A:  15 

Let    ,x x x  and   ,y y y     be real compact intervals;  be one of the basic operations 16 

‘addition’, ‘subtraction’, ‘multiplication’ and ‘division’, respectively, for real numbers, that is 17 

 /;  . Then we have the corresponding operations for intervals    x y :  18 

        min , maxx y x y x y         (A1) 19 

Fig. 9 can be decomposed into three areas, i.e., Area (1), Area (2) and Area (3), and one can 20 

search the minimum and maximum values of the MP model as follows:  21 

(1) Subtraction  22 

For 0  , the range of y x  is given by:  23 

 In Area (1) of Fig. 9 where  ,D Ax x x   24 
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1 1 1 1min( ) min 1 , 1

min ,

D A

D D E E

y x k x b k x b

y x y x

     

  
  (A2a) 1 

 
    2 4 2 4max( ) max 1 , 1

max( , )

D A

D D A A

y x k x b k x b

y x y x

     

  
  (A2b) 2 

 In Area (2) of Fig. 9 where  ,A Cx x x  3 

 
    
 

1 1 1 1min( ) min 1 , 1

min ,

A C

E E C C

y x k x b k x b

y x y x

     

  
  (A3a) 4 

 
    
 

1 2 1 2max( ) max 1 , 1

max ,

A C

A A F F

y x k x b k x b

y x y x

     

  
  (A3b) 5 

 For Area (3) of Fig. 9 where  ,C Bx x x  6 

 
    
 

2 3 2 3min( ) min 1 , 1

min ,

C B

C C B B

y x k x b k x b

y x y x

     

  
  (A4a) 7 

 
    
 

1 2 1 2max( ) min 1 , 1

min ,

C B

F F B B

y x k x b k x b

y x y x

     

  
  (A4b) 8 

Synthesizing the above formula,    y x  is equal to:  9 

 
     

 
min , , , , , ,

max , , , , ,

A A B B C C D D E E F F

A A B B C C D D E E F F

y x y x y x y x y x y x y x

x y x y x y x y x y x y

       
      

  (A5) 10 

It is worth noting that  11 

 
   
   

min , max ,

min , max ,

C C D D E E C C D D

A A B B F F A A B B

y x y x y x y x y x

y x y x y x y x y x

      

      
  (A6) 12 

As a result, Eq.(5) reduces to  13 

 
     

 
min , , , ,

max , , ,

A A B B C C D D

A A B B C C D D

y x y x y x y x y x

x y x y x y x y

     
    

  (A7) 14 

For 0   , the result of    y x   is completely the same as those of 0   , and the 15 

procedures are omitted here.  16 
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(2) Division 1 

For 0  ，the range of 
y

x
 is given by:  2 

 In Area (1) of Fig. 9 where  ,D Ax x x :  3 

 

1 1 4 4
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 In Area (2) of Fig. 9 where where  ,A Cx x x :  6 
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1 1 2 2
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E C A F
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 For Area (3) of Fig. 9 where  ,C Bx x x :  9 
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Synthesizing the above formula for 0  , 
 
 
y

x
 is equal to:  1 

 
 
 

min , , , , , ,max , , , , ,C CA B D E F A B D E F

A B C D E F A B C D E F

y y yy y y y y y y y y y

x x x x x x x x x x x x x

    
     
     

  (A11) 2 

It is worth noting that  3 
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C CD E D

C D E C D

A B F A B

A B F A B

y yy y y

x x x x x
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x x x x x

   
    

   
   

    
   

  (A12) 4 

As a result, Eq.(A11) can be simplified as  5 

 
 
 

min , , , ,max , , ,C CA B D A B D

A B C D A B C D

y y yy y y y y y

x x x x x x x x x

    
     
     

  (A13) 6 

For 0   , the formula is completely the same as those of 0   , thus the procedures are 7 

omitted here for the purpose of simplicity.  8 

  9 
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