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Abstract: 

The characteristics of planar defects (no loss of material volume) that arise during industrial plant 
operation are difficult to predict in detail, yet these can affect the performance of NDT used to 
manage plant structural integrity. Inspection modelling is increasingly used to design and assess 
ultrasonic inspections of such plant items. While modelling of smooth planar defects is relatively 
mature and validated, issues have remained in the treatment of rough planar defect species. The 
qualification of ultrasonic inspections for such defects is presently very conservative, owing to the 
uncertainty of the amplitudes of rough surface reflections. Pragmatic solutions include the addition 
of large sensitivity thresholds and more frequent inspection intervals which require more plant 
down-time. In this article, an alternative approach has been developed by the authors to predict the 
expected surface reflection from a rough defect using a theoretical statistical model. Given only the 
frequency, angle of incidence and two statistical parameter values used to characterise the defects, 
the expected reflection amplitude is obtained rapidly for any scattering angle and size of defect, for 
both compression and shear waves. The method is applicable for inspections of isotropic media that 
feature surface reflections such as Pulse-Echo or Pitch-Catch, rather than for tip signal dependent 
techniques such as time-of-flight diffraction. The potential impact for inspection qualification is 
significant with the new model predicting increases of up to 20dB in signal amplitude in comparison 
with models presently used in industry. All mode conversions are included and rigorous validations 
using numerical and experimental methods were performed. The model has been instrumental in 
obtaining new statistically significant results related to the effect of tilt; the expected pulse-echo 
backscattered amplitude for very rough planar defects is independent of tilt angle, with convergence 
obtained for a range of frequencies.    

Section 1: Introduction and application to industry 

The inspection of safety-critical components in the nuclear power industry uses procedures to detect 
defects to a specified threshold of severity. These thresholds are provided by inspection qualification 
documents, which include information related to defect length/through-wall extent (TWE), 
morphology, tilt & skew angles, sizing and location tolerances etc. [1]. Rough surfaces of defects 
affect the scattering of ultrasonic waves and significantly reduce the signal amplitude in the specular 
direction compared with that of a smooth defect [2]. Predictions for the expected amplitudes of 
reflected waves are required to qualify safety-critical inspections by setting amplitude thresholds. 



Although this can be done reliably for smooth cracks, rough defects are more problematic due to 
their unique randomness, so the only recourse in current practice is to adopt very conservative 
assumptions for the expected reflection.  

This article presents a statistical model capable of rapidly predicting the amplitude of waves 
reflected by rough surfaces, and with improvements of the safety margin by up to 20dB compared 
with established models [3]. Figure 1 shows an example in three-dimensional space (3D) for stainless 
steel with typical material parameters 𝐸 = 210	GPa, 𝜌 = 7800	kg/m2, 𝜐 = 0.29	6𝑐8 =
5940	m/s, 𝑐< = 3230m/s>. 

 

Figure 1: Expected reflection amplitude (relative to a smooth defect of the same size, 10mm by 
10mm) vs RMS roughness (measured in incident wavelengths) for normally incident compression 
waves in a 3D Pulse-Echo set-up with centre frequency 10MHz for a fixed value of correlation length 
(half the incident wavelength). The solid red line is the predicted P-P amplitude using the new model 
(2016, [4]), with the solid blue line the prediction using the 1986 model [3].  Dashed lines represent 
the diffuse parts from 1986 and 2016 and the dotted black line represents the coherent field used in 
both models. 

Figure 1 depicts the comparison of a model by Ogilvy from 1986 [3], and the new method presented 
here, to predict the expected reflected signal from a rough surface (10mm by 10mm) for normally 
incident compression waves with centre frequency 10MHz. The two models match well for 
roughness up to 1/10 of the incident wavelength. As roughness increases, the model predictions 
diverge, the reasons for which will be explained in what follows. Note that as roughness increases, 
the solid red curve in Figure 1 flattens (compared with the solid blue curve predicted by [3]), 
indicating that reliable predictions for expected reflection amplitudes may be made for very rough 
defects without knowledge of the precise statistical descriptors of the roughness. 

A study for compression waves using finite element (FE) simulations [2] illustrated the over-
conservatism of the predictions for the total scattered field provided by [3], for the case of normal 
incidence. A comparison of Figure 8 in [3] and Figure 14 in [2] shows that the expected amplitude of 
the industry-adopted model of [3] is overly conservative by at least 20dB once roughness surpasses a 
specific threshold. This result was the motivation for the new theoretical model summarized here 
that includes elastic waves and all mode conversions [4-8].  



Well-established acoustic theories are known for rough surface scattering (see, for example, [9,10]) 
but neglect the phenomenon of mode conversion, which can account for considerable signal 
amplitude reduction. In early influential work, Ogilvy [11-12] used Kirchhoff approximation (KA) 
theory to provide formulae for expected amplitudes for elastic wave scattering. Subsequent 
numerical and theoretical investigations also implemented KA methods for modelling relevant 
elastodynamic scattering problems [2, 13-14]. An important part of the approach is that the total 
scattered field may be considered as a sum of two parts: the coherent contribution and the diffuse 
part. 

The coherent field is in the specular direction and for surfaces of the same statistical class, is in 
constant phase [15]. The diffuse field characterizes the rough nature of the surface, being the 
random component of the ultrasonic signal spread over all scattering directions. A schematic 
illustration is shown in Figure 2 for a moderately rough surface. The dominant coherent part of the 
signal is in the specular direction but the non-trivial roughness contributes a diffuse scattered signal, 
spread over all directions. 

 

Figure 2: Schematic illustration of coherent and diffuse parts of a scattered field using a polar plot of 
scattered amplitudes for a plane wave incident on an infinite rough surface at 30°. 

The constant phase of coherent contributions means that Monte Carlo (MC) stochastic methods are 
effective for obtaining statistical predictions for rough surface scattering, since the total and 
coherent fields possess distinct definitions: 
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where N is the number of rough surfaces (or realisations) for a statistical class of roughness in an MC 
study, and the superscripts t, c, sc represent total, coherent and scattered, respectively. The terms 
𝑈A and 𝑈G denote, respectively, the total and coherent amplitudes of the scattered field. The 
corresponding intensities are defined by: 
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Note that the differences in the definitions of the ensemble averages in (1), (2) have a profound 
effect on the contribution of phase to the resulting calculations. As explained by Ogilvy [3,15], 𝑈G 
contains no contribution from the diffuse, or incoherent, part of the scattered signal. In the specular 
direction, the signals have the same phase meaning their sum produces a large value. Away from the 
specular direction, the signals will be of random phase; their sum tends to zero (provided that the 
ensemble average is calculated over a sufficiently large number of surfaces), causing the diffuse 



contribution to vanish if an ensemble average is performed in this way. To derive a realistic 
prediction for the total scattered field, a theoretical expression for the total intensity 𝐼A (which 
includes phase consideration in the ensemble averaging technique) is required.  

As will be explained in Section 2.2, an equation for the coherent amplitude/coherent intensity was 
obtained in the 1980s but the accompanying estimate for the diffuse field was approximated as a 
difference between the coherent field for a rough defect and the specular component for a smooth 
defect of the same size [3]. An underlying assumption was that in the far field, the diffuse field 
scatters equally in all directions, thereby removing angular dependence from the theoretical 
prediction. It was hypothesized that errors would occur for intermediate roughness, but that the 
results should work well in the limits of a smooth surface and an extremely rough surface [3]. Our 
new model shows that even for very rough surfaces, the old approximation was overly conservative.  

Section 2: Inspection set-ups and physical properties 

Inspection qualification is a highly developed formal activity in the UK, implemented in accordance 
with the European Network for Inspection and Qualification (ENIQ) methodology [1], and uses a 
variety of resources for the technical justification part of the qualification: capability evaluation 
exercises, site experience, applicable and validated theoretical models, physical reasoning and test-
piece experimentation.  

The model presented here is designed to be adopted within inspection qualification as an applicable 
theoretical model, having been validated by numerical and experimental methods for appropriate 
ranges of validity [4-7]. The model is versatile, being applicable for a range of inspection set-ups, 
such as pulse-echo (P-E) and pitch-catch, as well as including capability for the inclusion of tilt and 
skew angles. Here, we concentrate on determining expected amplitudes for specular and back-
scattered directions for a range of P-E set-ups that include tilted defects, as illustrated in Figure 3.  

 

Figure 3: Schematic diagrams of inspection set-ups simulated by model. (a) Pitch-catch with 𝜃R 
representing the beam angle. (b) Pulse-echo with 𝜃A representing the tilt angle of the defect. 

As explained in detail in the publications [4-7], the new statistical elastodynamic scattering model 
applies a stationary phase method to the Kirchhoff approximation (KA) displacement term to derive 
expected diffuse intensity formulae for rough surfaces for any scattering direction. This universality 
improves on the estimate for diffuse intensity given in preceding work [3], where the diffuse term 
was calculated as an average over all scattering angles. For the case of very rough surfaces, for which 

(a) (b) 



any specular preference vanishes, the original assumptions [3] produced good qualitative trends, but 
overly conservative quantitative predictions compared with the new approach, which shows a huge 
improvement for medium-to-high roughness (e.g. for 𝜎 > 0.1𝜆8 in Figure 1). 

 

2.1 Quantification of Roughness 

The roughness of a surface is typically characterized by two statistical parameters [15], the standard 
deviation 𝜎, or root mean square (RMS) value, of height relative to a reference surface, and the 
lateral correlation length 𝜆V, which determines the statistical independence of a rough surface’s 
peaks and troughs. The RMS height may be defined formally as: 

𝜎 = W〈ℎQ〉,			〈ℎ〉 = ∫ ℎ	𝑝(ℎ)𝑑ℎ = 0,^
_^ 																																																							(3)                                                      

where 𝑝(ℎ) is a probability density function and 〈 〉 denotes spatial averaging over the surface. A 
correlation function describes the extent to which information about the height at one point on a 
surface determines, on average, the height at another point [16]. In two-dimensional (2D) space, a 
normalized correlation function 𝐶(𝑅) is defined as: 

𝐶(𝑅) =
〈ℎ(𝑥)ℎ(𝑥 + 𝑅)〉

𝜎Q ,																																																																			(4) 

where 𝑥	and	ℎ are defined as in Figure 4, and 𝑅 is the distance between any two points on the 
surface. Note that 𝐶(0) = 1 and usually 𝐶(∞) = 0 so that as 𝑅 increases, 𝐶(𝑅) falls. The correlation 
length 𝜆V is the distance over which 𝐶(𝑅) falls to 1 𝑒h . 

 

Figure 4: A schematic rough surface illustrating the statistical roughness parameters 𝜎 and 𝜆V in 2D-
space. Note that the height above the mean surface 𝑧 = 0 is a function of the lateral variable 𝑥, and 
that the incident and scattering angles of a plane wave are 𝜃R,	𝜃<. 

Note that we follow previous literature [6,7] in using two-dimensional space in this article to 
investigate a wider range of parameters owing to the increased computational efficiency; the 
equivalent definitions and expressions are provided in 3-dimensional space in [4,5]. In addition, the 
mechanisms that determine the limits of validity for KA are equivalent in 2D and 3D [17] and quasi-
2D cracks are common in practice, for example in welds [18]. 

We follow the literature in choosing Gaussian distributions for both height and correlation functions: 
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As noted by Ogilvy [3], both statistical and experimental studies identified classes of rough surfaces 
for which distributions are close to Gaussian. Fatigue and corrosion measurements [18-20] have also 
supported this conjecture and recently, Choi et al. [21] identified specific regimes for which Gaussian 
distributions approximate real rough surfaces well. 

 

2.2 Coherent and diffuse fields 

The total intensity is the sum of coherent and diffuse parts: 

𝐼A = 𝐼G + 𝐼r.																																																																																										(6)	

An important expression, widely used in industry, to estimate the coherent contribution for a rough 
surface defined by 𝜎 is [3,22]: 

𝐼G = 𝐼t< exp6−𝑔vw>,							𝑔vw = 6𝑘v cos 𝜃R + 𝑘w sin𝜃<>
Q𝜎Q,																																         (7)                                 

where 𝛼 and 𝛽 indicate, respectively, the incident and scattered wave-types. As usual, 𝑘v, 𝑘w are 
wavenumbers. The intensities 𝐼G and 𝐼t< represent, respectively, a rough surface’s coherent part and 
the analogous smooth surface (i.e. same angle of incidence and length) scattering intensity. The 
expression for 𝐼G in (7) provides accurate predictions but our breakthrough is in deriving a 
theoretical expression for 𝐼r. It is well known that as roughness increases, the diffuse field 𝐼r  begins 
to dominate [14,15]. The new formula for the expected diffuse intensity, and hence to evaluate the 
total intensity via (6), is 
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where 𝐹vw  is termed the elastodynamic factor which, along with the phase term 𝐴vw, depends on 
incident and scattering angles and material parameters. The full expressions and derivations for 
these roughness-independent terms are provided in [4] and [7]. The sum in (8) is such that 𝑀 is a 
relatively small integer (𝑀 = 20 is more than sufficient for the range of validity where the model 
applies). Although the formula (8) is more complicated than the coherent formula (7), its 
computation also takes less than 1 second on a standard computer. The user requires the following 
inputs to obtain the diffuse field: 

• Length of defect, 𝐿 
• Angle of incidence, 𝜃R 
• Scattering angle, 𝜃< 
• RMS height, 𝜎 (embedded within 𝑔vw)  
• Correlation length, 𝜆V 
• Material parameters 
• Wave-type (shear or compression) 
• Transmit-receive locations (D is the distance from defect to receiver) 

Comparing this list with the inputs required for (7), there is only one different parameter: the 
correlation length. The complexity of (8) is embedded within 𝐹vw, which uses a Stationary Phase 
Approximation (to remove surface-specific dependence) of the Reflection derived using KA (SPARK); 



the result is a theoretical ensemble average formula. The procedure is explained in detail for 
compression waves in [4], and for shear waves, in [7]. We limit ourselves here to identify ranges of 
physical parameter and roughness values for which the method may be applied and has been 
validated. We also note that formula (8) is specific to a Gaussian correlation function (5); similar 
expressions may be derived for alternative correlation function definitions. 

 

2.3 Ranges of validity for 2D SPARK 

Defects ranging from 4mm to 8mm have been extensively investigated for the 2D case for incident 
compression [4,5] and shear [6,7] waves, for frequencies ranging from 2MHz to 10MHz. Our 
validations have concentrated on two materials, aluminium (E=70GPa, ρ=2700kg/m3, ν=0.33; 
cp=6200m/s, cs=3120m/s) and stainless steel (E=210GPa, ρ=7800kg/m3, ν=0.29; cp=5940m/s, 
cs=3230m/s). In most cases, the crack length 𝐿 ≥ 5𝜆R�G, ensuring that tip diffraction signals (which are 
not taken into account by KA) are negligible and do not affect the validation of the new model’s 
reflection predictions. Experiments using a CNC-milled (computer numerical control) aluminium block 
were performed for compression [4] and shear [7] incidence for corrugated rough surfaces, but most 
validations were carried out using the high-fidelity finite element software Pogo [23].  

The range of validity for the SPARK model is intrinsically linked to the range of validity for KA with 
which the scattering of an individual surface may be modelled. The recent results provided by [4,5] 
for compression waves, and [6,7] for shear waves are used to complete Table 1 that summarizes the 
validation work carried out for 2D cases. The SPARK model is also applicable to the 3D case, as 
explained in [4] but 2D examples are featured here to cover a larger range of parameter values.  

Wave-type Crack 
length 

(mm) 

Incident 
angles (°) 

Scattering 
angles (°) 

𝜆V 

(𝜆R�G) 

𝜎 

(𝜆R�G) 

𝜆V 

(mm) 

𝜎 

(mm) 

𝜆V
𝜎  

Compression ≥ 6 −45 ≤ 𝜃 ≤ 45 −80 ≤ 𝜃 ≤ 80 1/4 
to 1 

1/64 
to 1/2 

0.15 
to 2.4 

0.01 to 
1.2 

>1 

Shear ≥ 4 −20 ≤ 𝜃 ≤ 20 −60 ≤ 𝜃 ≤ 60 1/4 
to 2 

1/64 
to 1/2 

0.15 
to 2.5 

0.005 
to 0.64 

>4 

Table 1: Summary of defect lengths, incident and scattering angles, roughness parameters validated 
for aluminium and stainless steel.  

The most important column in Table 1 is highlighted; the thresholds of validity for KA and therefore 
equation (8), using the ratio of roughness parameters, differ for compression and shear wave 
incidence [6,7]. Provided that the inequalities 𝜆V ∕ 𝜎 > 1 for compression incidence and 𝜆V ∕ 𝜎 > 4 
for shear waves are satisfied, KA and the SPARK ensemble average formulae are valid for the cases we 
have investigated. Other results in the literature such as the longitudinal cases [14,18], investigated 
using scattering matrix methods, are consistent with Table 1.  

Section 3: Monte Carlo studies of Gaussian rough surfaces  

The validation procedure for the 2D SPARK model involves generating datasets of rough surfaces 
characterized by a specified pair (𝜆V, 𝜎) to run Monte Carlo analysis. Typically, 200-400 realisations 
were generated for FE simulations, using the standard weighted moving average method [15]. The 



details of the FE methods are provided in [4-7]. Key parameter settings are summarized in Table 2, 
with the specified values corresponding to the examples of Figures 5-8 shown here. 

 

 

Material Distance D 

(mm) 

Incident 
angle (°) 

Defect 
length 
(mm) 

Centre 
Frequency 
(MHz) 

Wave-type Mesh size 

(mm) 

Number 
of 
surfaces 

Stainless 
steel 

50 0 8 5 compression 0.025 200 

Table 2: Summary of the parameters required for FE Monte Carlo analysis. The specified values were 
used for the illustrative examples of Figures 5-8. 

Following the literature [5,6], the KA is deemed valid provided that the mean amplitude/intensity in 
the backscattered direction, obtained from the FE and KA methods, differs by ≤ 1dB. An individual FE 
simulation takes around 3 minutes and for low roughness cases, 200 realisations is more than 
sufficient for convergence when validating the FE models with the KA predictions. Previous reports 
[14] used 50 realisations to demonstrate convergence for roughness within the range of validity for 
KA. For roughness values close to the upper limit of KA validity, 400 FE surfaces were analysed here; 
this is consistent with previous literature [2] in which explanations for the necessity of increasing the 
number of simulations is provided.  

An example is illustrated in Figures 5-7 for 𝜆V = 𝜆8/2 = 0.59mm, 𝜎 = 𝜆8/8 = 0.15mm, with 𝜆V ∕ 𝜎 =
4, a case for which KA and SPARK are valid (see Table 1).  

 

Figure 5: (a) FE scattered signal for an individual realisation with 𝜆V = 𝜆8/2 = 0.59mm, 𝜎 = 𝜆8/8 = 
0.15mm for normally incident 5MHz compression waves. (b) Normalised reflection amplitude (relative 
to a smooth 8mm defect) vs. scattering angle for both KA and FE models for the defect in (a).  

The scattering from one of the 200 surfaces is depicted in Figure 5(a) with the scattered field 
generated using Pogo [23]. The direction of the incident wave is shown by the arrow in the top right 
corner. The reflected P-P and P-S waves are also labelled and the colour gradients represent the 
displacement amplitude at a moment in time after they have reflected from the defect. Receivers 
were located in the far field and the associated reflection amplitude spectrum for this specific case is 
illustrated in Figure 5(b), along with the smooth defect’s signal used to normalize amplitudes to a 

(a) (b) 



unit scale. There is very good agreement between the FE and KA models. The ensemble average of 
the backscattered amplitude over the full dataset of 200 surfaces, calculated using equation (1), is 
shown in Figure 6. Again, there is very little difference between the two approaches, with the mean 
amplitude being 40% of the smooth defect’s signal. 

  

Figure 6: Mean total amplitude (relative to smooth 8mm defect) versus scattering angle for KA and 
FE models for 200 surfaces with 𝜆V = 𝜆8/2 = 0.59mm, 𝜎 = 𝜆8/8 = 0.15mm insonified by normally 
incident 5MHz compression waves. 

In addition, it appears that signal levels from rough defects at normal incidence are appreciably 
lower than for smooth defects, but reach higher levels in non-specular directions. This observation is 
consistent with experimental measurements made by Toft [24] for a set of larger defects (25mm).  

Section 3.1: Conversion of expected intensity to expected amplitude 

In order to compare Monte Carlo results with the SPARK prediction, the intensity values are required. 
Comparing equations (1) and (2), the ensemble average for amplitude is the mean of the moduli of 
the individual displacements, whilst the analogous intensity value is the mean of the squares. This 
latter value is compared with the predicted value obtained from the sum of equations (7) and (8) to 
give equation (6) to assess the validity of the SPARK model.      

 



Figure 7: Mean total intensity and amplitude (relative to smooth 8mm defect) on dB scale versus 
scattering angle for KA and FE models for 200 surfaces with 𝜆V = 𝜆8/2 = 0.59mm, 𝜎 = 𝜆8/8 = 
0.15mm insonified by normally incident 5MHz compression waves. 

However, in practice, amplitude measurements are taken on a dB scale. Figure 7 illustrates the 
conversion of the results displayed in Figure 6 to the dB scale, plus the analogous intensity curves. The 
standard conversion formulae are: 

𝐼A(dB) = 10 logMV(𝐼A),					𝑈A(dB) = 20 logMV(𝑈A) = 10 logMV(𝑈A)Q .																									(9) 

Therefore, the theoretical prediction of 𝐼A obtained from (6)-(8) is converted to dB using equation (9), 
producing the black dashed line in Figure 7. If the same formulae are applied to the FE mean intensity 
and the FE mean amplitude (shown in Figure 6), we obtain the dotted blue and red curves, 
respectively. Note the very close match between the intensity curve and the SPARK prediction. The 
amplitude curve, though, shows deviation from the other two, emphasizing that the square of the 
mean, (𝑈A)Q, is not equal to the mean of the squares 𝐼A and that there is not a straightforward 
conversion between the ensemble averages for amplitude and intensity, i.e. 
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However, to derive meaningful confidence bands for the predicted intensity/amplitude values on a dB 
scale, the mean and standard deviation are calculated directly on the log scale, by first converting the 
original individual normalized amplitude values (i.e. between 0 and 1) with 20 logMV(|𝑢F<G(𝜃<G)|	). This 
produces identical values for the amplitude and intensity for each individual realization on the log 
scale after application of the conversion formulae given in (9). The solid red and dashed blue curves 
in Figure 7 show this, as well as a notable difference between these curves and the SPARK prediction.  
Figure 8 illustrates how to convert the theoretical prediction for intensity to a prediction for practical 
amplitude measurements. 

 

Figure 8: Expected reflection amplitude (relative to a smooth defect of the same size, 8mm) vs RMS 
roughness (measured in incident wavelengths) for normally incident compression waves in a Pulse-
Echo set-up with centre frequency 5MHz. The solid red line is the predicted P-P intensity using the 
SPARK model, with the dashed and dotted red lines representing the coherent and diffuse parts. The 



solid blue line shows the MC amplitude mean calculated directly in dB (the converted mean is dashed 
blue), with the confidence bands (±2 standard deviations) denoted by black dot-dashed curves. 

Once the coherent part of the scattered field is no longer dominant, the curves for theoretical 
intensity and amplitude deviate but with a maximum difference of 2.5dB for all frequencies and 
roughness values considered. Therefore, a simple and safe conversion for 𝜎 > 0.1𝜆R�G	would be: 

𝑈r�A = 10 logMV(𝐼A) − 2.5,                                                                        (11) 

where 𝐼A is obtained from equations (6-8) and would be obtained rapidly for a given set of 
parameter values. Note that the confidence bands (based on MC KA data for 4000 surfaces for each 
roughness), cover ±2 standard deviations. The lower confidence band in Figure 8 has a minimum 
value -26dB, considerably higher than the conservative estimates for the actual scattering amplitude 
from the model of [3]. 

Section 4: Validation using realistic thermally fatigued surfaces  

The new intensity formulae provide quick and accurate predictions for the ultrasonic response 
scattered by a rough defect generated using Gaussian height and correlation distributions. The model 
is also effective when applied to realistic rough surfaces. Twenty thermally fatigued stainless steel 
304L samples (provided and scanned courtesy of Rolls-Royce) were tested with the SPARK model. An 
example is shown in Figure 9, with a photograph and the reproduced contour plot of the measured 
dataset (scanned using an Alicona optical microscope). The samples were obtained via specimen 
separation or 50% load drop, with the resulting datasets processed and statistically characterised.  

 

                                    

Figure 9: 304L stainless steel thermally fatigued sample (courtesy of Rolls-Royce) with reproduced 
contour plot (in mm) and an extracted 4mm rough defect with 𝜆V = 0.25mm, 𝜎 = 0.03mm. 



The values obtained for (𝜆V, 𝜎) for fatigue in steel are consistent with previous literature [2,21]. Values 
from 0.01 up to 0.5mm were reported for RMS height 𝜎 in A533B samples by [2], and [21] reported 
an average correlation length of 0.563mm in A533B.  

More than 800 1D 304L samples of length 4mm (as magnified in Figure 9) were evaluated here, with 
ranges of:  

0.1mm ≤ 𝜆V ≤ 1.8mm,			0.02mm ≤ 𝜎 ≤ 0.1mm. 

However, more than 60% of the samples were such that 0.1mm ≤ 𝜆V ≤ 0.6mm, with accompanying 
𝜎 values such that the resultant ratios 𝜆V ∕ 𝜎 ranged from around 5 to 20. In Figures 10 and 11, we 
present results for 140 surfaces with 𝜆V = 0.25mm and 𝜎 varying from 0.02 to 0.045mm. Numerical 
validations for these realistic rough surfaces were performed using shear wave incidence with the 
parameter values given in Table 3. 

Material Distance D 
(mm) 

Incident 
angle (°) 

Defect 
length 
(mm) 

Centre 
Frequency 
(MHz) 

Wave-type Mesh size 
(mm) 

𝜆R�G 

(mm) 

Stainless 
steel 304L 

40 -5 4 5 shear 0.025 0.646 

Table 3: Parameters used in FE and KA simulations for validation of SPARK method using a set of 140 
thermally fatigued samples in 304L. 

Figure 10(a) shows the reflection amplitude spectrum for a single 4mm defect on the dB scale. The 
total amplitude for both KA (solid red) and FE (dashed blue) are shown for 5MHz shear waves incident 
at −5°, along with the normalization result for a smooth defect (normally incident 5MHz shear). There 
is good agreement between the KA and FE results near the specular angle (−5°) but the agreement 
deteriorates at exterior scattering angles, as a result of tip signals that KA does not account for [15].  

 

Figure 10: (a) Scattering spectrum for shear-shear mode for thermally fatigued 4mm defect (5MHz) 
for angle of incidence 𝜃R = −5°. (b) Spatially averaged amplitude spectrum of part (a) with each 
average calculated over ±3° for each 𝜃< plotted at 1° intervals. 

Another notable feature of Figure 10(a) is the collection of sharp dips which arise due to interference. 
In practice, in a scanned inspection, multiple angles are used for detection within the spread of a beam 
and this will mitigate sharp dips in intensity. Therefore, the worst case value in practice is highly likely 

(a) (b) 



to be better than that shown in Figure 10(a). In order to reveal more realistic predictions for a single 
realisation, our method includes the capability for obtaining a spatial average in the time (FE) and 
frequency (KA) domains by computing the mean over a specified range of scattered angle increments 
for any scattering direction. Figure 10(b) illustrates the case for the spatial average calculated over 
values ±3° either side of the plotted scattering angle. The dips in amplitude at around -15°, 5°, 12°, 
35° etc. in Figure 10(a) have all been smoothed in Figure 10(b), which presents a more realistic set of 
results for a field engineer conducting a component inspection.  

Figure 11 illustrates a MC validation of the SPARK predictions based on 140 surfaces characterized by 
𝜆V = 0.25mm, 0.019mm ≤ 𝜎 ≤ 0.045mm, and ratio 5.5 ≤ 𝜆V ∕ 𝜎 ≤ 13.5, which satisfy the 
condition for KA and SPARK validity for shear waves in Table 1. As expected, the agreement is 
extremely good between the SPARK prediction for the total intensity 𝐼A (solid black curve) and the MC 
result for the mean intensity converted to dB using equation (9). For completeness, we include the 
spatially averaged mean amplitudes for KA (solid red) and FE (dashed blue), which are calculated by 
finding the means after the individual amplitudes have been converted to dB. Since 𝜎 < 0.1𝜆R�G, note 
that the specular prediction for intensity matches that of the MC amplitudes on the dB scale so the 
2.5dB correction in equation (11) would not be applied in this case. 

 

 

Figure 11: SPARK 𝐼A, mean total intensity (MC converted into dB) and mean total amplitudes 
(spatially averaged) for 140 thermal fatigue 304L samples; 5MHz shear waves incident at 𝜃R = −5°. 

Section 5: Effect of defect tilt on backscattered signal from rough defects 

Modelling is most valuable when it reveals important and statistically significant effects for application 
in practice. The SPARK scattering intensity predictions are particularly useful since a variety of 
parameters and set-ups can be investigated efficiently. We present a case study for the effect of tilt 
on the backscattered signal for rough defects. Referring to Figure 3(b), a preliminary study was 
conducted for frequency, tilt angle and roughness settings. As tilt angle 𝜃A increases from 0 to 15°, 
once a certain roughness threshold has been reached, SPARK predicts that the backscattered signal 
converges regardless of 𝜃A value.  

An example is shown in Figure 12 for two frequencies (2.5MHz and 5MHz) for compression waves. The 
roughness values (in mm) are identical for each frequency and the pairs of curves for each of 
5°, 10°, 15° (denoted by blue, red and black curves respectively) were obtained using SPARK. All curves 



are normalized with respect to the normally incident backscattered reflection for a smooth defect 
(with 0 tilt) of the same length, 8mm. The 2.5MHz predictions are indicated by the dashed curves, 
which start to converge at 𝜎 = 0.4mm, the upper end of KA roughness validity for 5MHz. The 
convergence for the 5MHz cases is clear and the 2.5MHz predictions indicate the same trend. Note 
that a broader amplitude peak for the lower frequency produces a significantly higher backscattered 
signal for 𝜃A = 5°. All other curves feature the characteristic increase to a peak backscattered 
amplitude before flattening. 

 

Figure 12: SPARK predictions of backscattered total intensity for tilted rough defects insonified by 
2.5MHz and 5MHz compression waves. Fixed 𝜆V = 0.594mm, with 𝜎 plotted on the horizontal axis. 
Tilt angles are 5°, 10°, 15° (blue, red, black curves) with 2.5MHz denoted by dashed lines. Intensity is 
normalized with respect to the 0 tilt case for a smooth 8mm defect. 

The predicted convergence of backscattered amplitudes appears independent of tilt angle and arises 
for typical NDE centre frequencies, 2.5, 5 and 10MHz. Validation analysis was conducted using MC 
methods for both KA (4000 surfaces) and FE (400 surfaces). The parameter settings for these 
investigations are summarized in Table 4.  

Wave type Frequency 
(MHz) 

Tilt angle 
(°) 

Range of 
𝜆V (mm) 

Range of  
𝜎 (mm) 

No. of 
surfaces 
KA 

No. of 
surfaces 
FE 

Material 

Compression 2.5,5,10 0,5,10,15 0.3-0.6 0.01-0.4 4000 400 Stainless 
steel 

Shear 2.5,5,10 0,5,10,15 0.32-0.65 0.005-0.21 4000 400 Stainless 
steel 

Table 4: Parameters used for MC validation of tilt angle convergence of backscattered signals in 
Pulse-Echo inspection set-ups. 

For critical values of 𝜎, i.e. those values for which SPARK predicted convergence regardless of 𝜃A, 
additional FE simulations were run over 400 realisations, since the error between KA and FE results 
increases for higher values of roughness and tilt angle.  



Examples for both compression and shear incidence are illustrated in Figure 13. The spatially 
averaged amplitudes (explained in Section 4) are plotted versus 𝜎 for fixed correlation length for 
10MHz compression waves in Figure 13(a), and for 5MHz shear waves in Figure 13(b). Once again, 
confidence bands of ±2 standard deviations are denoted by dashed black curves (upper for 5° and 
lower for 15°) and the results for 0 tilt (dashed red) are included for reference. The FE results for 
𝜆R�G

5h , 𝜆R�G 4h , 𝜆R�G 3h  are plotted with markers, Ο,+,× for 5°, 10°, 15° respectively.  

 

 

 

Figure 13: MC (4000 surfaces) KA backscattered amplitude (relative to smooth 8mm defect) 
scattered by tilted defects (5°, 10°, 15°) with 0 tilt shown by dashed red curve. Confidence bands of 
2 standard deviations are also included. (a) Incident 10MHz compression waves for 𝜆V = 0.297mm. 
(b) Incident 5MHz shear waves for 𝜆V = 0.646mm. FE results for 400 realisations are also shown for 

each tilt angle (using markers) for 𝜎 = 𝜆R�G
5h , 𝜆R�G 4h , 𝜆R�G 3h . 

The results of Figure 13 indicate that the convergence is observed for both the KA and FE numerical 
experiments, for multiple frequencies and for both compression and shear waves. These 
observations are consistent with experimental studies on the effect of misorientation carried out by 
Toft [24] for 25mm brittle fracture faces. For shear and compression wave incidence, and RMS 
values of up to one quarter of a wavelength, measurements were made showing that moderate 
detectability was maintained in the backscattered direction for misorientations up to 50° [23].  

Section 6: Concluding remarks and outlook 

We have presented a new analytical approach (SPARK) based on a stationary phase treatment of the 
reflected part of the scattered field, derived using Kirchhoff Approximation, for a rough planar defect. 
The statistical model predicts the expected scattering amplitude in under 1 second (on a standard 
computer), and shows significant improvement over models originally derived in the 1980s [3]. All the 
mathematical details are available in the publications [4-8] and here we have summarized relevant 
ranges of applicability and validated cases. The examples presented include realistic thermally 
fatigued samples in 304L stainless steel, and cover compression and shear wave incidence, including 
all mode conversions. The dimensions of the featured defects are such that the effect of tips has 
minimal effect, ensuring that the validation of SPARK using numerical and experimental methods was 
optimized.  

(b) (a) 



The model is very versatile and can be deployed for a variety of applications and defect descriptions 
of desired industrial interest beyond the case studies presented in this article. The SPARK model for 
reflected signals from isotropic media may be coded by interested readers using the equations in this 
article and [4-8]; it is intended that a user-friendly code will be developed by the authors to be suitable 
for application in technical justification within inspection qualification.  

One of the great assets of the model is its speed which enables large scale, statistically significant 
studies to be performed. A case study was included here showing that for defects representative of 
those that can occur in plant, the tilt angle is likely to have little effect on expected reflection 
amplitude for medium-to-high roughness cases. This is consistent with experimental observations 
recorded by [24]. Tilt angles up to ±15° display this property for Pulse-Echo shear and compression 
incidence for centre frequencies ranging from 2.5MHz to 10MHz. Therefore rough defects can be 
detected at a predictable,  but moderate, signal amplitude regardless of tilt. We have also shown that 
for settings where defects are expected to be very rough, reliable predictions, with known confidence 
bounds, may be made for the expected reflection amplitudes without precise knowledge of the 
surface profile or RMS height.  

Acknowledgements 

The authors gratefully acknowledge the support of the EPSRC through the Grant reference number 
EP/P01951X/1 and our industrial partners: Rolls-Royce, EDF Energy, Jacobs Engineering, National 
Nuclear Laboratory and BAE Systems. PH acknowledges the support of the EPSRC through the 
Fellowship reference number EP/M020207/1. The authors also express their gratitude to Professor 
Will Daniels and Dr Tim Skinner for discussions and their very helpful comments and suggestions. 

References 

[1] C Curtis, A Walker and I Atkinson, `Inspection Qualification and NDE Reliability’, Proceedings of 
58th Annual Conference of the British Institute of Non-Destructive Testing-NDT, 2019.  

[2] J Pettit, A Walker and M J S Lowe, `Improved Detection of Rough Defects for Ultrasonic 
Nondestructive Evaluation Inspections Based on Finite Element Modeling of Elastic Wave Scattering’, 
IEEE Trans UFFC, Vol 62, No 10, pp 1797-1808, 2015. 

[3] J A Ogilvy, `Theoretical comparison of ultrasonic signal amplitudes from smooth and rough 
defects’. NDT International, Vol 19, No 6, pp 371-385, 1986. 

[4] F Shi, M J S Lowe, X Xi and R V Craster, `Diffuse scattered field of elastic waves from randomly 
rough surfaces using an analytical Kirchhoff theory’, J. Mech. Phys. Solids, Vol 92, pp 260–277, 2016. 

[5] F Shi, W Choi, M J S Lowe, E A Skelton and R V Craster, `The validity of Kirchhoff theory for 
scattering of elastic waves from rough surfaces’, Proc. Roy. Soc. A, Vol 471, 20140977, 2015. 

[6] S G Haslinger, M J S Lowe, P Huthwaite, R V Craster and F Shi, `Appraising Kirchhoff 
approximation theory for the scattering of elastic shear waves by randomly rough defects’, Journal 
of Sound and Vibration, Vol 460, 114872, 2019. 

[7] S G Haslinger, M J S Lowe, P Huthwaite, R V Craster and F Shi, `Elastic shear wave scattering by 
randomly rough surfaces’, J. Mech. Phys. Solids, Vol 137, 103852, 2020. 

[8] F Shi, M J S. Lowe and R V Craster, `Diffusely scattered and transmitted elastic waves by random 
rough solid-solid interfaces using an elastodynamic Kirchhoff approximation’, Phys. Rev. B, Vol 95,  
No 21, 214305, 2017. 



[9] F G Bass and I M Fuks, Wave Scattering from Statistically Rough Surfaces, Oxford, UK: Pergamon 
Press, 1979. 

[10] E I Thorsos, `The validity of the Kirchhoff approximation for rough surface scattering using a 
Gaussian roughness spectrum’, JASA, Vol 83, No 1, pp 78-92, 1988. 

[11] J A Ogilvy, `Model for the ultrasonic inspection of rough defects’, Ultrasonics, Vol 27, No 2, pp 
69–79, 1989. 

[12] J A Ogilvy and I D Culverwell, `Elastic model for simulating ultrasonic inspection of smooth and 
rough defects’, Ultrasonics, Vol 29, pp 490-496, 1991. 

[13] S F Burch, N Collett, R K Chapman and M W Toft, `Experimental validation of the TRANGLE and 
related NDT codes for modelling the ultrasonic inspection of rough cracks’, Insight, Vol 46, No 2, pp 
74–76, 2004. 

[14] J Zhang, B W Drinkwater and P D Wilcox, `Longitudinal Wave Scattering From Rough Crack-Like 
Defects’, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol 58, No 10, pp  
2171-2180, 2011. 

[15] J A Ogilvy, Theory of Wave Scattering from Random Rough Surfaces, CRC Press, 1991. 

[16] J A Ogilvy and J R Foster, `Rough surfaces: Gaussian or exponential statistics?’, Journal of Physics 
D: Applied Physics, Vol 22, pp 1243-1251, 1989. 

[17] R A Roberts, `The effect of crack morphology on ultrasonic response’, AIP Conference 
Proceedings, Vol 1430, No 1, American Institute of Physics, 2012. 

[18] J Zhang, B W Drinkwater and P D Wilcox, `Effect of roughness on imaging and sizing rough crack-
like defects using ultrasonic arrays’, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency 
Control, Vol 59, No 5, pp 939-948, 2012. 

[19] P Nagy and L Adler, `Surface roughness induced attenuation of reflected and transmitted 
ultrasonic waves’, JASA, Vol 82, No 1, pp 193-197, 1987. 

[20] M Stone, `Statistical analysis methods for corrosion mapping inspection data’, Insight, Vol 53, 
No 2, pp 76-81, 2011. 

[21] W Choi, F Shi, M J S. Lowe, E A Skelton, R V Craster and W L Daniels, `Rough surface 
reconstruction of real surfaces for numerical simulations of ultrasonic wave scattering’, NDT & E  
International, Vol 98, pp 27-36, 2018. 

[22] M de Billy, F C Tenoudji, G Quentin, K Lewis and L Adler, `Ultrasonic evaluation of geometrical 
and surface parameters of rough defects in solids’, J. NonD. Eval., Vol 1, No 4, pp 249-261, 1980. 

[23] P Huthwaite, `Accelerated finite element elastodynamic simulations using the GPU’, Journal of 
Computational Physics, Vol 257, pp 687-707, 2014.  

[24] M Toft, `Experimental studies of ultrasonic reflection from various types of misoriented defect’, 
Proceedings of 21st Annual Conference of the British Institute of Non-Destructive Testing-NDT, 1986. 

 


