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Abstract

We aim to contribute to the problem of finding desingularisations of
codimension-1 holomorphic foliations in arbitrary ambient dimension. To
this end, we prove an alternate characterisation of simple singularities, which
leads to an equivalent condition for the existence of a desingularisation in
the non-dicritical case. We then give some results and conjectures to show
when this condition is satisfied.
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Of making many books there is no end, and much study wearies

the body.

— Ecclesiastes 12:12

He who is certain he knows the ending of things when he is only

beginning them is either extremely wise or extremely foolish; no

matter which is true, he is certainly an unhappy man, for he has

put a knife in the heart of wonder.

— Tad Williams,
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Introduction

Foliations of complex manifolds arise from holomorphic differential forms

on the manifold, where an open submanifold can be written as the disjoint

union of the solutions of the corresponding system of differential equations.

By duality, a foliation also corresponds to a sheaf of holomorphic vector

fields; the open submanifold is the locus where this sheaf is locally free. Its

complement is called the singular locus of the foliation.

Just as with algebraic varieties, we seek a classification of foliations up

to birational equivalence. (See [3]). For varieties, such a classification first

depends on proving the existence of a desingularistion. Desingularisation

of varieties, as well as embedded desingularisation of closed subschemes of

smooth varieties, was first proved by Hironaka in [17]. The method involves a

sequence of blow-ups in smooth centres until we reach simple normal cross-

ings, that is, the scheme is locally isomorphic to a union of co-ordinate

hyperplanes. Various simplifications of the proof have since appeared, in-

cluding by Bierstone and Milman in [2], and by Kollár in [21], although to

date desingularisation has only been proved in characteristic zero.

Similarly, in seeking to classify singular holomorphic foliations on a com-

plex manifold X, one first seeks the existence of a resolution – a sequence of

blow-ups of X such that the pull-back foliation has the best possible singu-

larities, so-called simple singularities, as in Figure 1 below. (In most cases,

it is impossible to resolve the foliation to make it smooth. For example,

blowing up the singularity in Figure 1 gives two singularities of the same

form.)

Existence of resolutions was first proved by Seidenberg in [28], in the

case when dimX = 2. In the case dimX = 3, existence of resolutions

for codimension-1 foliations has been proved by Cano, firstly for the non-

dicritical case (that is, for foliations where the exceptional divisors of any

sequence of blow-ups in smooth centres remain tangent) in [5], and then in

the general case in [7]. Existence of resolutions for foliations by curves on

a 3-fold was proved by Panazzolo and McQuillan in [24]. We note that the

paper of Panazzolo and McQuillan provides an example of a foliation by

curves which cannot be resolved without passing from manifolds to stacks,

so the problem of resolution is in general more difficult for foliations than

for schemes.
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The existence of resolutions of codimension-1 foliations in arbitrary am-

bient dimension is still conjectural; there are however a number of partial

results pertaining to it: By [6, Theorem 16] a resolution to simple singu-

larities exists if all the singularities of the foliation are so-called pre-simple

singularities (which we define in Section 10). From the discussion following

Statement 9 in the same paper we see that such is the case for any foliation

with a holomorphic first integral, a class which by [22] includes any foliation

with singular locus of codimension at least three.

Figure 1: A foliation with simple
singularities

Figure 2: A dicritical foliation

An important tool used in the thesis is the jet space. The space of m-

jets of a manifold or analytic space X is the set of equivalence classes of

germs of holomorphic functions C→ X, with two germs being equivalent if

their corresponding power series have the same truncation to degree m. In

the algebraic setting, the jet space can be constructed as a scheme, whose

closed points are the morphisms Spec(C[t]/(tm+1)) → X. Jet spaces have

been applied to the study of singularities of schemes, for example by Mustaţǎ

in [26]; this motivates us to introduce the jet spaces of foliations. These are

defined in Section 9.1 as those jets of the ambient manifold which pull back

the 1-forms defining the foliation to zero. (The notion of the jet space of a

foliation is new; however in the smooth case it is equal to the jet space of a

directed manifold constructed in [10]).

Using the jet spaces, we can define stronger notions of tangency to a

foliation: A complex subspace of the ambient manifold is strongly tangent

to the foliation if its jet spaces of every order are contained in the jet spaces

of the foliation. As opposed to classical notions of tangency, which deal only
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with the 1-jets (that is, the tangent vectors), or which define tangency as

being contained in a finite union of leaves of the foliation, this definition

allows us to view as tangent non-reduced spaces, and so better consider the

behaviour of the foliation at the singular locus.

The jet spaces of a foliation also allow us to produce a geometrically more

natural definition of simple singularities. These are defined for codimension-

1 foliations in arbitrary ambient dimension in [6], however the definition

is somewhat technical—we therefore present an alternate characterisation,

given in Theorem 10.3 for ambient dimension 2, and Corollary 10.28 in

the higher dimensional case. These results state that in a neighbourhood

of a simple singularity, the foliations has the same geometric structure (as

determined by the jet spaces) as a normal crossings divisor.

Armed with these tools, we return to the problem of the existence of res-

olutions. We restrict to the case of codimension-1 non-dicritical foliations,

in arbitrary ambient dimension. The non-dicriticality condition ensures the

existence of a separatrix, that is, a leaf of the foliation whose analytic clo-

sure passes through the singular locus; assuming mild finiteness conditions,

for example, quasi-compactness of the ambient manifold and algebraicity of

the defining 1-form, we have that there are finitely many separatrices—we

thus define the total separatrix of the foliation to be the maximal (formal)

subscheme supported on their union which is strongly tangent. Having ob-

served that the endpoints of desingularisations of varieties and resolutions

of foliations have isomorphic jets, we are led to prove the following (Theo-

rem 11.15): A non-dicritical foliation admits a resolution to simple singu-

larities if and only if the total separatrix exists and can be resolved to a

normal crossings divisor. (As a formal scheme is not guaranteed to have

a resolution globally, existence is not enough to prove resolvability. We do

however show that if the total separatrix exists the foliation can be resolved

on the level of germs.)

This result serves as a generalisation of results such as [9, Theorem

1], which states that non-dicritical foliations on a 3-fold with certain extra

properties have the same resolution as their set of separatrices, although it

was proved quite independently. The stronger nature of the results in this

thesis comes from our defining of strong tangency, which allows us to replace

the union of separatrices with something potentially non-reduced.

At the end of the thesis we give a conjecture (Conjecture 11.21) on the
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structure of the jet spaces of foliations; assuming this we show that the

total separatrix always exists (Proposition 11.22). We also give a way of

constructing it, which comes with an alternate characterisation of dicritical-

ity, given in terms of the jets (Proposition 12.6).

The thesis is structured as follows: In Section 1 to Section 4, we set out

background material and notation regarding commutative algebra, schemes

and analytic spaces, and coherent sheaves. In these sections we give all the

definitions and results used in the rest of the thesis.

In Section 5 we introduce formal schemes. We take as our definition that

of Yasuda in [32], and show how other categories of formal schemes in the

literature, especially those desccribed by Grothendieck and by McQuillan,

relate to this one. We also state a theorem of Temkin ([31]) regarding

desingularisation of formal schemes.

Section 6 introduces jet spaces, with descriptions of both the algebraic

and analytic constructions. In Section 7 we introduce linear spaces on

manifolds (a generalisation of vector bundles that correspond to coherent

sheaves), and then in Section 8 we introduce foliations, giving attention to

both the vector field and differential form characterisations.

The final four sections form the main body of the thesis. In Section

9 we introduce the jet spaces of a foliation. We also define the notion of

a subscheme being strongly tangent to the foliation (Definition 9.10). In

Section 9.4 we define the separatrices. From here onwards, we consider only

the codimension-1 case.

In Section 10 we prove the alternate characterisation of simple singu-

larities. In Section 11 we define the total separatrix, and use it to prove

results on resolutions. Section 12 gives some results pertaining to dicritical

foliations.

Convention. We denote by N the set of natural numbers {1, 2, 3, . . .}. We

denote by N0 the set N ∪ {0}.
All rings are assumed to be commutative with unit.

All schemes are defined over the field of complex numbers C.

Any manifold X is a complex manifold, with holomorphic tangent sheaf TX ,

holomorphic tangent bundle TX, and sheaf of holomorphic 1-forms Ω1
X .

We denote by m̂n the ideal (x1, . . . , xn) ⊂ C[[x1, . . . , xn]].
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1 Commutative Algebra

1.1 Basic Ring Theory

For a ring R, we denote by Spec(R) the set of prime ideals, which is endowed

with the topology which has closed sets of the form

{p ∈ Spec(R) | p ⊃ I},

for some ideal I ⊂ R.

Proposition 1.1. Let φ : R→ S be a ring homomorphism.

(1) If J is an ideal of S, then φ−1(J) is an ideal of R.

(2) If φ is surjective, and I is an ideal of R, then φ(I) is an ideal of S.

Proof: Trivial.

Definition 1.2. Let R be a ring. The nilradical of R, denoted NR, is the

ideal of nilpotent elements of R, or equivalently the radical of the zero ideal.

We denote by Rred the quotient ring R/NR. The ring R is said to be

reduced if Rred
∼= R.

Proposition 1.3. Let φ : R → S be a ring homomorphism. Then there

is an induced morphism φ̄ : Rred → Sred given by φ̄([x]) = [φ(x)], where

[x] = x+ NR.

Proof: A ring homomorphism maps nilpotent elements of R to nilpotent

elements of S, and so φ̄ is well-defined. The rest of the proof follows natu-

rally.

Proposition 1.4. Let φ : R → S be a surjective ring homomorphism, and

suppose the induced morphism φ̄ : Rred → Sred is injective. Then Kerφ ⊂
NR.

Proof: Let x ∈ Kerφ. Then φ̄([x]) = [φ(x)] = 0, and so [x] = 0, since φ̄ is

injective. Hence x ∈ NR.

1.2 Complete Rings

Definition 1.5. A topological ring is a ring R endowed with a topology

such that both addition and multiplication are continuous.
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Definition 1.6. Let R be a topological ring. R is linearly topologised if

there is a fundamental system of open neighbourhoods of 0 consisting of

ideals.

Such a system is called a basis of open ideals.

Remark 1.7. If a ring R has a descending filtration of ideals (Iλ)λ∈Λ, where

Λ is a poset, then this defines a unique topology on R for which R is linearly

topologised, with the Iλ forming a basis of open ideals.

Definition 1.8. A topological ring R is called separated if it is separated

as a topological space; in particular, if R is a Hausdorff space.

Proposition 1.9. Let R be a linearly topologised ring, with basis of open

ideals (Iλ). Then R is separated if and only if
⋂
Iλ = 0.

Proof: Suppose
⋂
Iλ = 0. By continuity of addition, to proveR is separated

it suffices to show that there are open neighbourhoods separating any x from

0. Let x 6= 0. By assumption, there exists some Iλ which does not contain

x. Then Iλ, x+ Iλ are disjoint open neighbourhoods of 0 and x respectively,

so we are done.

Conversely, suppose there exists some 0 6= x ∈
⋂
Iλ. Any open neigh-

bourhood U of 0 contains some Iλ, and so also contains x. So R is not

separated.

Definition 1.10. Let R be a linearly topologised ring, with basis of open

ideals (Iλ). The completion of R with respect to this basis is the limit

R̂ = lim←−R/Iλ.

We endow R̂ with the linear topology generated by the kernels of the

canonical maps R̂→ R/Iλ.

Definition 1.11. A linearly topologised ring R is said to be complete if the

canonical map R→ R̂ is an isomorphism.

We observe that
ˆ̂
R ∼= R̂, where the second completion is with respect

to the canonical topology from the inverse limit, the ideals in the filtration

being Îλ = Ker(R̂ → R/Iλ), and so the completion of a ring is a complete

ring. We further observe that the kernel of the canonical map R → R̂ is⋂
Iλ, and so any complete ring is separated.

2



Definition 1.12. Let R be a linearly topologised ring, with basis of open

ideals (Iλ), and let M be a topological R-module (that is, a module with

continuous addition and scalar multiplication). The completion of M with

respect to this basis is the limit

M̂ = lim←−M/IλM.

Again there is a canonical map M → M̂ . The module M is said to be

complete with respect to (Iλ) if this map is an isomorphism.

Remark 1.13. Let R be a ring, and I ⊂ R a proper ideal. Then (In)n∈N is

a descending filtration of ideals, and so defines a topology. Completing R,

or any topological R-module, with respect to this basis of ideals is referred

to as completion with respect to I. Similarly, if R is isomorphic to this

completion, we say it is complete with respect to I.

Definition 1.14. A complete local ring is local ring R which is complete

with respect to its unique maximal ideal m.

Proposition 1.15. Let R be a Noetherian complete local ring, and I ⊂ R

a proper ideal. Then R/I is a complete local ring.

Proof: That R/I is local follows from the correspondence theorem for ideals

of quotient rings. As completion with respect to the maximal ideal mR ⊂ R
is exact (by [30, Tag 00MA], as all modules are finitely generated), we have

an exact sequence of R-modules

0→ Î → R̂→ R̂/I → 0.

As R is complete, R̂ = R. Also, Î = I. So R/I is also complete as an

R-module. Hence

R/I ∼= lim←−(R/I)/mn
R(R/I).

As mn
R(R/I) = mn

R/I , we have that R/I is a complete local ring.

1.3 Prorings

Definition 1.16. A proring is a directed projective system of rings (Rλ)λ∈Λ,

where Λ is a poset, with morphisms fλµ : Rµ → Rλ.

3
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Definition 1.17. Let R = (Rλ)λ∈Λ, S = (Sµ)µ∈M be two prorings. A

morphism of prorings R→ S is an element of

Hom(R,S) = lim←−
µ

lim−→
λ

Hom(Rλ, Sµ),

where the latter sets are morphisms of rings.

Such a morphism of prorings f : R → S is defined by a collection of

representative ring homomorphisms fλµ : Rλ → Sµ. Then the diagrams

R S

Rλ Sµ

f

fλµ

commute.

Example 1.18. By indexing a projective system over a singleton set, we

see that every ring is a proring.

Proposition 1.19. The category of prorings has all projective limits.

Proof: This is true of the category of rings, so the result follows by [32,

Proposition 1.2].

Remark 1.20. By [16, Theorem 1], there is an uncountable projective sys-

tem of rings, each of which is countably infinite, such that the projective

limit is the zero ring. Hence the limit of a projective system of rings in

the category of rings may not be isomorphic to its limit in the category of

prorings.

Definition 1.21. A proring is said to be epi if all the morphisms fλµ are

epimorphisms.

For a topological space X we can define a sheaf of prorings. Such a sheaf

can be presented as a projective system of sheaves of rings. Therefore by [32,

Proposition 1.2] the category of sheaves of prorings has projective limits.

4



1.4 Excellent Rings

Definition 1.22. Let R be a ring. The Krull dimension of R, denoted

dimR, is the supremum of the lengths of all chains of prime ideals

p0 ( p1 ( · · · ( pn ⊂ R.

Definition 1.23. Let R be a Noetherian local ring with maximal ideal m,

which has minimal set of generators a1, . . . , an. If dimR = n, it is said to

be a regular local ring.

A Noetherian ring R is said to be a regular ring if the localisation at

every prime ideal is a regular local ring.

Definition 1.24. A ring homomorphism φ : R→ S is regular if:

(1) The functor M 7→M ⊗R S is exact, where M is an R-module. (That

is, φ is flat).

(2) For any prime ideal p ⊂ R, and any finite field extension K of kp,

where kp is the residue field of the localisation Rp, the ring (S ⊗R kp)⊗kp K
is regular.

Definition 1.25. A Noetherian ring R is a G-ring if for every prime ideal

p ⊂ R, the map from the localisation Rp to its completion is regular.

Definition 1.26. A ring R is a J-2 ring if for every finitely generated R-

algebra S, the singular points of Spec(S) (that is, the prime ideals p ⊂ S

for which Sp is not a regular local ring) form a closed subset.

Definition 1.27. Let p, p′ be two prime ideals of a ring R. Then if any two

chains of prime ideals

p = p0 ( p1 ( · · · ( pn = p′

which are saturated, (that is, the chain cannot be extended while keeping

all inclusions strict), have the same length, then R is said to be catenary.

R is universally catenary if all finitely generated R-algebras are catenary

rings.

Definition 1.28. A ring R is quasi-excellent if it is a G-ring and a J-2 ring.

A ring R is excellent if it is quasi-excellent and universally catenary.
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Example 1.29. All fields are excellent rings. Further, all Noetherian com-

plete local rings are excellent. (See [30, Tag 07QW]).

In particular, the power series rings C[[x1, . . . , xn]] and their quotients

are excellent.

Example 1.30. A finitely generated algebra over an excellent ring is excel-

lent. (See [30, Tag 07QW]). In particular, rings of the form C[x1, . . . , xn]/I

are excellent.

1.5 Modules over Rings

Definition 1.31. Let R be a ring, and let (Mi, φji) be directed inverse

system of R-modules indexed by a poset I. The system (Mi, φji) is Mittag-

Leffler if for each i ∈ I, there exists j ≥ i such that for k ≥ j, φki(Mk) =

φji(Mj).

Definition 1.32. Let M be a module over an integral domain R. An

element x ∈ M is a torsion element if there exists r ∈ R \ {0} such that

rx = 0.

M is torsion-free if 0 is the only torsion element.

Remark 1.33. The notion of being torsion-free can be generalised for mod-

ules over arbitrary rings, replacing the condition r = 0 with being a zero-

divisor.

Definition 1.34. Let M be a module over a ring R. The dual module is

M∗ = Hom(M,R).

Let M be a module over a ring R. We define the canonical morphism

jM : M → M∗∗ by jM (x)(f) = f(x). This morphism has kernel Ker jM =⋂
f∈M∗ Ker f .

Definition 1.35. Let M be a module over a ring R. M is torsionless if the

canonical morphism is injective.

M is reflexive if the canonical morphism is an isomorphism.

Proposition 1.36. If R is an integral domain, any torsionless R-module

M is torsion-free.

Proof: Let x ∈M and r ∈ R \ {0} such that rx = 0. Then for all f ∈M∗,
f(rx) = rf(x) = 0. As R is an integral domain, it follows that f(x) = 0,

6
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for all f ∈ M∗. Hence x ∈ Ker jM =
⋂
f∈M∗ Ker f . As M is torsionless, it

follows that x = 0, and we are done.

The converse is not true in general: Viewing Q as a Z-module, we see

that Q is clearly torsion-free, but is not torsionless, as Hom(Q,Z) = 0.

We do however have the following:

Proposition 1.37. Let R be an integral domain. A finitely generated

torsion-free R-module M is torsionless.

Proof: See [15, Proposition 4.5.7].

Definition 1.38. Let R be a ring, and f : M → N a homomorphism of

R-modules. The dual is the homomorphism f∗ : N∗ → M∗ defined by

f∗(φ)(x) = φ(f(x)).

Lemma 1.39. Let f : M → N be a surjective homomorphism of R-modules.

Then the dual f∗ is injective.

Proof: If φ ∈ N∗, and f∗(φ) = 0, then by definition of the dual we have

φ(f(x)) = 0, for all x ∈ M . By surjectivity of f , we have φ(y) = 0, for all

y ∈ N , i.e. φ = 0. So f∗ is injective.

Lemma 1.40. Let f : M → N be a surjective homomorphism of R-modules,

with kernel K. By the previous lemma, we can view N∗ as a submodule of

M∗ via the map f∗. Let φ ∈M∗. Then φ ∈ N∗ if and only if φ(x) = 0, ∀x ∈
K.

Proof: If φ ∈ M∗ lies in N∗, we can factorise it as φ = φ′ ◦ f , for some

φ′ ∈ N∗. Then φ(x) = 0, for all x ∈ K.

Conversely, if φ(x) = 0 for all x ∈ K, then, for x, y ∈ M , we have

φ(x) = φ(y) whenever x−y ∈ K. So f factors through φ, hence φ ∈ N∗.

Lemma 1.41. In the setup of the previous lemma, suppose also that N is

torsionless, and let x ∈ M . Then x ∈ K if and only if φ(x) = 0, ∀φ ∈
f∗(N∗).

Proof: The forward implication holds by the above lemma. Conversely, let

x ∈M be such that φ(x) = 0, for all φ ∈ f∗(N∗). So f(x) ∈
⋂
φ′∈N∗ Kerφ′ =

Ker jN ; as N is torsionless, this implies that f(x) = 0, so x ∈ K.
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2 Schemes and Resolutions

Let X be a scheme over C. We assume that X is of finite type and separated

(and so is locally Noetherian). The structure sheaf of X is the sheaf of

regular functions OX , and so (X,OX) is a locally ringed space.

Recall that X admits an open cover by affine schemes of the form

U = Spec(C[x1, . . . , xn]/I).

Each open subscheme U embeds in Spec(C[x1, . . . , xn]) = An
C, and so we

have local algebraic co-ordinates on X.

Notation 2.1. Let I = (f1, . . . , fr) ⊂ C[x1, . . . , xn] be an ideal. The affine

scheme X = Spec(C[x1, . . . , xn]/I) is also denoted by V(I) or V(f1, . . . , fr).

Remark 2.2. The closed points of X correspond to set

{x ∈ Cn | f1(x) = · · · = fr(x) = 0},

justifying the notation.

Definition 2.3. Let X be a separated scheme of finite type over C. Then

X is a variety if it is reduced and irreducible.

Definition 2.4. Let X a separated scheme of finite type over C. We denote

by Xsing the singular locus of X, that is, the set of points x ∈ X such that

OX,x is not a regular local ring.

Definition 2.5. Let X be a smooth variety. A divisor E =
∑
Ei is an NC

(normal crossings) divisor if, choosing local analytic co-ordinates x1, . . . , xn

in a neighbourhood of any point, E is given by an equation of the form

x1 · · ·xk = 0.

It is simple normal crossings (SNC) if the co-ordinates can be chosen in

a Zariski open neighbourhood, in which case every irreducible component is

smooth.

A Q-divisor
∑
αiEi has (simple) normal crossing support if

∑
Ei is an

(S)NC divisor.
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Definition 2.6. Let E be an NC divisor of X, and let x ∈ E. Then e(E, x)

is the number of components of E through x in some formal neighbourhood

of x.

Example 2.7. Let X = A2 and E = V(y2 − x2 − x3). E is NC, but not

SNC. Although there is one irreducible component, we have e(E, 0) = 2, as

we work in a formal neighbourhood of the origin.

Definition 2.8. Let π : X ′ → X be a birational morphism of schemes.

The exceptional locus exc(π) of π is the locus of X ′ over which π is not an

isomorphism. It is the sum of the exceptional divisors.

Definition 2.9. Let π : X ′ → X be a birational morphism of schemes,

and let Y be a closed subscheme of X. The pre-image π−1(Y ) is called the

total transform of Y . We define the strict transform π∗(Y ) of Y to be the

smallest subscheme satisfying π−1(Y ) = π∗(Y ) ∪ exc(π).

Definition 2.10. Let X be a smooth variety, and Y a closed subscheme

of X. A log resolution, or resolution of singularities, of Y is a projective

birational mapping π : X ′ → X, with X ′ smooth, such that π−1(Y ) =

π∗Y ∪ exc(π) has simple normal crossing support.

Theorem 2.11. [17, Main Theorem II] For any smooth variety X and

closed subscheme Y ⊂ X, there exists a log resolution of Y .

9



3 Complex Spaces

Definition 3.1. A locally ringed space (X,OX) is called a C-space if all the

rings in the sheaf are C-algebras, and OX,x/mX,x
∼= C, as C-algebras, for all

x ∈ X.

Let U ⊂ Cn be open, and f1, . . . , fk : U → C holomorphic functions. Let

X = V(f1, . . . , fk) = {x ∈ U | f1(x) = · · · = fk(x) = 0}.

Define a sheaf of rings on X by

OX = OU/(f1, . . . , fk)|X .

The ringed space (X,OX) is a C-space, called a local model space.

Definition 3.2. A complex analytic space, or complex space, is a C-space

(X,OX) locally isomorphic to a local model space, where the underlying

topological space X is assumed to be Hausdorff.

Let (X,OX), (Y,OY ) be ringed spaces, and φ : X → Y a continuous

map of the underlying topological spaces. Then for V ⊂ Y open, we define

a presheaf φ∗OX on Y (indeed a sheaf) by

φ∗OX(V ) = O(φ−1(V )).

Definition 3.3. Let (X,OX), (Y,OY ) be complex spaces. A holomorphic

map φ : X → Y is a morphism of locally ringed spaces, i.e. a pair (φ, φ̃),

where φ : X → Y is a continuous map of the underlying topological spaces,

and φ̃ : OY → φ∗OX is a morphism of sheaves of C-algebras.

Definition 3.4. Let S be a complex space. A complex space over S is a

pair (X,φ), where X is a complex space and φ : X → S is holomorphic.

If (X,φ) and (Y, φ′) are complex spaces over S, a morphism ψ : X → Y

in the category of complex spaces over S is a holomorphic map satisfying

φ′ ◦ ψ = φ.

Example 3.5. Any complex manifold is a complex space, as each point has

a neighbourhood isomorphic to the trivial local model, defined by the zero

ideal.
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Example 3.6. Any scheme of finite type over C has an associated complex

space with the same set of closed points, formed by considering the gener-

ating polynomials as holomorphic functions. The topology of the complex

space is the Hausdorff topology generated by the Euclidean topology on

the charts; it is a refinement of the Zariski topology on the scheme. The

structure sheaf is also extended to include all holomorphic functions.

Remark 3.7. We can define normal crossings space (and all the associated

definitions) for complex spaces in the same way as for schemes. Resolution

of singularities also holds in this category (see [17, Main Theorem II]).
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4 Coherent Sheaves

Let (X,OX) be a ringed space. We may assume that it is a locally ringed

space, that is, all the stalks OX,x are local rings. Let F be a sheaf of OX -

modules.

Definition 4.1. The sheaf F is locally free if for every point x ∈ X there

is an open neighbourhood U 3 x and a set I such that

F|U ∼=
⊕
i∈I

OX |U .

Remark 4.2. If I is finite, its cardinality is constant on connected compo-

nents of X, and is called the rank of the sheaf.

Definition 4.3. The sheaf F is finitely generated if for every point x ∈
X there is an open neighbourhood U 3 x such that there is a surjective

morphism On
X |U → F|U .

F is coherent if it is finitely generated, and for every open U ⊂ X and

every p ∈ N, every homomorphism Op
X |U → F|U has a finitely generated

kernel.

We now assume that X is either a scheme of finite type over C or a

complex space. In this case, the structure sheaf OX is a coherent sheaf

of modules over itself. (For the analytic case, this comes from the Oka

coherence theorem. For the case of locally Noetherian schemes, see [30, Tag

01XZ]). In this setting, locally free sheaves of finite rank are coherent.

Proposition 4.4. Let (X,OX) be a scheme over C or complex space which

is reduced, and let F be a coherent sheaf of OX-modules. Then F is locally

free outside an analytic subset of X.

Proof: Let x ∈ X. We define the rank of F at x by

rankFx = dimk(x)(Fx ⊗OX,x k(x)),

where k(x) is the residue field of OX,x. This is upper semicontinuous (see [14,

Example 12.7.2] for the scheme case; the same argument, using Nakayama’s

lemma, holds in general), and so there exists an open set U ⊂ X where it

is constant. Then F|U is a coherent sheaf of constant rank, so it is locally

free.
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Remark 4.5. The analytic subset is called the singular locus of the sheaf

F , denoted SingF .

Definition 4.6. Let (X,OX) be a ringed space, and F a sheaf of OX -

modules. F is torsion-free if for all x ∈ X, Fx is a torsion-free OX,x-module.

If E is a subsheaf of F , it is called saturated if the quotient sheaf F/E is

torsion-free.

Definition 4.7. Let (X,OX) be a ringed space, and F a sheaf of OX -

modules. We define the torsion subsheaf Tor(F) ⊂ F to be the sheaf gen-

erated by the torsion elements.

Definition 4.8. Let (X,OX) be a ringed space, and F a sheaf of OX -

modules. The dual of F is the sheaf F∗ = Hom OX (F ,OX).

Proposition 4.9. [25, Corollary 92] Let (X,OX) be a ringed space, and F
a sheaf of OX-modules. For any x ∈ X, (F∗)x ∼= (Fx)∗.

As with modules over a ring, there is a canonical morphism F → F∗∗.

Definition 4.10. A sheaf of OX -modules F is reflexive if the canonical

morphism F → F∗∗ is an isomorphism.

Example 4.11. All locally free sheaves of finite rank are reflexive. (See [25,

Proposition 74]).

Definition 4.12. Let (X,OX) be a complex space, and F a sheaf of OX -

modules.

F is normal if for any open U ⊂ X and any analytic subset A ⊂ U

of codimension at least 2, the restriction map F(U) → F(U \ A) is an

isomorphism.

Lemma 4.13. [27, Lemma II.1.1.16] Let F be a reflexive sheaf, and E ⊂ F
a saturated subsheaf. Then E is normal.

Proposition 4.14. Let (X,OX) be a ringed space. Then the functorial

mapping F 7→ Fx, where F a sheaf of OX-modules, is exact.

Proof: See [30, Tag 01AG].

Corollary 4.15. Let (X,OX) be a ringed space, and F a sheaf of OX-

modules. Let E ⊂ F be a subsheaf, and let x ∈ X. Then (F/E )x ∼= Fx/Ex.

13

https://stacks.math.columbia.edu/tag/01AG


Proof: The sequence

0→ E → F → F/E → 0

is exact, and hence by Proposition 4.14, the sequence

0→ Ex → Fx → (F/E )x → 0

is exact. The result follows.

Corollary 4.16. Let F be a coherent sheaf of OX-modules. Then for each

x ∈ X, Fx is a finitely generated OX,x-module.

Proof: Fix x ∈ X. As F is coherent, it is finitely generated, and so there

is an open neighbourhood U 3 x and an exact sequence

On
x |U → F|U → 0.

By Proposition 4.14, there is an exact sequence of stalks

On
X,x → Fx → 0.

It follows that Fx is finitely generated.
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5 Formal Schemes

We now introduce formal schemes. In the literature, several different classes

of objects go by this name. The first, which we call classical formal schemes,

were introduced by Grothendieck in [13]. This is the most commonly used

case in the literature, but is quite restrictive. We therefore take as our

definition of formal scheme that introduced by Yasuda in [32]; this is suffi-

ciently general, and indeed includes most other cases of formal schemes as

subcategories.

We start by introducing these formal schemes, following Yasuda’s pa-

per. We then introduce formal schemes as defined via the functor of points,

classical formal schemes, and McQuillan formal schemes (a generalisation of

classical formal schemes introduced by McQuillan in [23]), and look at the

relations between these categories.

5.1 Formal Schemes via Prorings

Definition 5.1. Let X be a topological space. We say that X is quasi-

separated if the intersection of any two quasi-compact open subsets is quasi-

compact.

We say that X is qsqc if it is quasi-separated and quasi-compact.

A qsqc basis is a basis of open subsets, all of which are qsqc.

Any scheme has a qsqc basis. An affine scheme, or any Noetherian

topological space, is qsqc.

Definition 5.2. An admissible system of schemes is a directed inductive

system (Xλ)λ∈Λ of schemes such that every morphismXλ → Xµ is a bijective

closed immersion.

Definition 5.3. A proring R = (Rλ)λ∈Λ is admissible if every morphism

Rλ → Rµ is surjective, and induces an isomorphism (Rλ)red → (Rµ)red.

Equivalently, R is admissible if (Spec(Rλ))λ∈Λ is an admissible system

of schemes.

An admissible proring R has an associated reduced ring Rred = (Rλ)red,

for any λ ∈ Λ.

Definition 5.4. A locally admissibly proringed space is a pair (X,OX),

where X is a topological space with a qsqc basis B, OX is a sheaf of prorings
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such that OX(U) is admissible for all U ∈ B, and for each x ∈ X the stalk

OXred,x, where OXred
is the sheaf of rings defined on B by U 7→ (OX(U))red,

is a local ring.

Definition 5.5. Let R = (Rλ)λ be an admissible proring. We define the

formal spectrum of R to be the locally admissibly proringed space Spf(R),

which as a topological space is equal to Spec(Rred) = Spec(Rλ), for all λ,

and whose structure sheaf is

OSpf(R) = lim←−OSpec(Rλ),

where the limit is taken in the category of sheaves of prorings.

Definition 5.6. A formal scheme is a locally admissibly proringed space

locally isomorphic to the formal spectrum of an admissible proring.

A formal scheme which is isomorphic to a formal spectrum is called

affine.

Example 5.7. Any ring R can be viewed as a proring, in which case it will

be admissible, with Spf(R) = Spec(R). Thus any scheme can be viewed as

a formal scheme.

Remark 5.8. To distinguish from strict formal schemes (i.e. formal schemes

which are not schemes), schemes are sometimes called ordinary schemes.

Proposition 5.9. [32, Corollary 2.14] The category of affine formal schemes

is equivalent to the dual category of the category of admissible prorings.

An affine formal scheme X corresponds to an admissible system of affine

schemes (Xλ)λ∈Λ. As such, we can view X as the limit X = lim−→Xλ. A

general formal scheme which is qsqc can also be viewed as the limit of an

admissible system of schemes (see [32, Proposition 3.32]). We therefore

sometimes write formal schemes in this limit notation.

Definition 5.10. Let X = lim−→Xλ be an affine formal scheme. X is count-

ably indexed if the indexing set Λ can be taken to be countable (say Λ = N).

If X is a general formal scheme, we say it is locally countably indexed if

it admits a cover by countably indexed affine formal schemes.

Remark 5.11. In [32], the term gentle is used in place of locally countably

indexed.
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Definition 5.12. An admissibile proringR = (Rλ)λ is called pro-Noetherian

if every Rλ is Noetherian.

A formal scheme X is called locally ind-Noetherian if every x ∈ X admits

an affine neighbourhood Spf(R) ⊂ X, where R is pro-Noetherian.

Definition 5.13. Let X = lim−→Xλ and Y = lim−→Yµ be formal schemes. We

say that X ⊂ Y if for all λ ∈ Λ there exists µ ∈M such that Xλ ⊂ Yµ.

Remark 5.14. Note that this is a more general notion than that of a formal

subscheme in [32], as we do not take into account the topologies on the formal

schemes.

Proposition 5.15. Let (Xα)α∈A be an inductive system of formal schemes,

all of which have the same underlying topological space. Then the direct limit

lim−→Xα exists as a formal scheme.

Proof: We focus on the affine case. Then by duality we have a projective

system ((Rλ)λ∈Λα)α∈A of admissible prorings, with surjective morphisms

between them. The projective limit R of this system exists as a proring; it

remains to show that this is admissible. Now every ring Rλ that appears in

the system has the same reduction. Every admissible proring is epi, so by

[32, Lemma 1.17] all the morphisms Rλ → Rµ representing the morphisms

in the projective system are epimorphisms, and so induce isomorphims on

the reduced rings. So R is admissible, as required.

The general case can be proved by gluing affine formal schemes.

5.2 Formal Schemes via the Functor of Points

We denote by F the category of contravariant functors from schemes to sets.

We have as full subcategories FZar, the category of Zariski sheaves, and Fét,

the category of étale sheaves.

For every formal scheme X, there is an associated contravariant functor

FX ∈ F, defined by FX(Y ) = Hom(Y,X), where the morphisms are of

formal schemes.

Theorem 5.16. [32, Theorem 4.3] The functorial mapping X 7→ FX on

formal schemes is fully faithful.

If we write X = lim−→Xλ, then FX is isomorphic to the inductive limit of

the FXλ in FZar or Fét. Thus our notion of formal scheme corresponds to

that used in [1, Section 7.11].
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5.3 Formal Schemes via Complete Rings

Definition 5.17. A locally topologically ringed space is a pair (X,OX),

where X is a topological space, and OX is a sheaf of topological rings whose

stalks OX,x are local rings.

Definition 5.18. Let R be topological ring which is linearly topologised,

complete and separated.

R is admissible if there exists an open ideal I ⊂ R such that every

neighbourhood of 0 contains In for some n ∈ N. Such an ideal is called an

ideal of definition.

R is weakly admissible if there exists an open ideal I ⊂ R such that

limn→∞ f
n = 0, for all f ∈ I. Such an ideal is called a weak ideal of

definition.

Remark 5.19. The collection of all (weak) ideals of definition forms a

fundamental system of neighbourhoods of 0.

Remark 5.20. Any ring with the discrete topology is admissible, with the

zero ideal being an ideal of definition.

Any ideal of definition is a weak ideal of definition. So any admissible

ring is weakly admissible.

Lemma 5.21. Let R be a (weakly) admissible ring, and let (Iλ)λ∈Λ be the

collection of all (weak) ideals of definition. Then for every λ ∈ Λ, the image

of the morphism Spec(R/Iλ) → Spec(R) is the set of open prime ideals of

R.

Proof: As R is complete, we have R ∼= lim←−R/Iλ, and the topology is the

limit topology of discrete topologies. Thus any prime ideal in the image of

the map Spec(R/Iλ) → Spec(R) is the pre-image of a prime ideal of R/Iλ

under the quotient map, and so is open.

Conversely, let p ∈ Spec(R) be an open prime ideal. As an open neigh-

bourhood of 0, it contains some (weak) ideal of definition Iµ. Now for any

f ∈ Iλ, we have limn→∞ f
n = 0, and so fn ∈ Iµ for sufficiently large n.

Hence

Iλ ⊂
√
Iµ ⊂

√
p = p.

The result follows.
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Definition 5.22. Let R be a (weakly) admissible ring, and let (Iλ)λ∈Λ

be the collection of all (weak) ideals of definition. We define the formal

spectrum of R to be the locally topologically ringed space Spf(R), which as

a topological space comprises the open prime ideals of R with the subspace

topology from Spec(R), or equivalently is equal to Spec(R/Iλ), and has the

structure sheaf

OSpf(R) = lim←−OSpec(R/Iλ).

Definition 5.23. A classical formal scheme is a locally topologically ringed

space X locally isomorphic to the formal spectrum of an admissible ring.

A McQuillan formal scheme is a locally topologically ringed space X

locally isomorphic to the formal spectrum of a weakly admissible ring.

A classical (respectively, McQuillan) formal scheme which is isomorphic

to a formal spectrum is called affine.

Remark 5.24. Any scheme is a classical formal scheme.

Any classical formal scheme is a McQuillan formal scheme.

For any proring R = (Rλ)λ, we define R̂ to be the limit R̂ = lim←−Rλ
in the category of rings, and endow it with the linear topology for which

(Ker(R̂→ Rλ)) forms a basis of ideals. Then R̂ is a complete ring.

Conversely, if S is a complete ring with (Iλ) the collection of open ideals,

then P(S) = (S/Iλ)λ is an epi proring.

The mappings R 7→ R̂ and S 7→P(S) are both functorial, and we have

P̂(S) ∼= S for any complete ring S.

Definition 5.25. A proring R is called mild if R ∼= P(S) for some complete

ring S.

Proposition 5.26. Any classical or McQuillan formal scheme X corre-

sponds to a unique formal scheme.

Proof: Without loss of generality, we may assume that X is an affine Mc-

Quillan formal scheme. Then X = Spf(S), for a weakly admissible ring

S. Let (Iλ) be the collection of all ideals of definition. Let R = P(S) =

(S/Iλ)λ. Then R is a uniquely determined proring. By construction, each

of the Spec(S/Iλ) has the same underlying topological space, so it follows

that R is an admissible proring, and so defines an affine formal scheme.
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Proposition 5.27. Let X be a locally countably indexed formal scheme.

Then X corresponds to a unique McQuillan formal scheme Y . If X is

further assumed to be locally ind-Noetherian, then Y is a classical formal

scheme.

Proof: We may assume that X is affine. Then X corresponds to an admis-

sible proring R = (Rn)n∈N. As the indexing set is countable, all the natural

maps R̂→ Rn are surjective. As R is by definition epi, by [32, Proposition

5.3], R is mild. Hence R̂ is a uniquely determined complete ring.

Set In = Ker(R̂ → Rn). Then the (In) form a basis of open ideals.

Let x ∈ In. This corresponds to a sequence (xm)m∈N, with xm ∈ Rm,

fmp(xp) = xm, for p ≥ m, and xk = 0 for k ≤ n. So for m ≥ n, we have

xm ∈ Ker fmn. As fmn induces an isomorphism on the reduced rings, we

can apply Proposition 1.4 to see that xm is nilpotent, for all m ≥ n. Hence

xN ∈ IK , for some K ∈ N and for sufficiently large N . It follows that In is

a weak ideal of definition for R̂, and so R̂ is weakly admissible. It therefore

corresponds to an affine McQuillan formal scheme Y .

If X is locally ind-Noetherian, then in the affine case we have that R is

pro-Noetherian. As R is mild we have R = P(R̂); applying [32, Proposition

6.6] we see that R̂ is admissible. Hence Y is a classical formal scheme.

Example 5.28. Let X be a smooth variety, and Z ⊂ X be a closed reduced

subscheme given by the ideal sheaf I. For n ∈ N, let Zn be the scheme given

by the ideal sheaf In. The formal scheme X̂Z = lim−→Zn is called the formal

completion of X along Z.

The formal completion is a classical formal scheme. In the affine case,

with X = Spec(R) and Z = Spec(R/I), then X̂Z = Spf(lim←−R/I
n).

Definition 5.29. Let X be a classical (respectively, McQuillan) formal

scheme with affine cover
⋃

Spf(Rα). A closed formal subscheme Z ⊂ X

is the classical (respectively, McQuillan) formal scheme with affine cover⋃
Spf(Rα/Iα), where the Iα are closed ideals forming a coherent sheaf.

Proposition 5.30. Let P be a point in a smooth variety X, and let Z =

lim−→Zn be a formal scheme with Zn ⊂ Pn+1, for all n ∈ N. Then Z is a

closed formal subscheme of X̂P .

Proof: We choose co-ordinates locally on X so that P = 0. We let R =

C[x1, . . . , xn], and denote by m the ideal (x1, . . . , xn) ⊂ R. Then Pn =
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Spec(R/mn), and so X̂P = Spf(C[[x1, . . . , xn]]). We write Zn = Spec(R/In),

and Â = lim←−R/In, so that Z = Spf(Â).

Moving into the category of rings, we have the following diagram:

...
...

...

Ker f3 R/m4 R/I3

Ker f2 R/m3 R/I2

Ker f1 R/m2 R/I1

f3

φ32

f2

φ21

f1

The surjections correspond to the inclusions of schemes. If i ≥ j, we define

φij = φi,i−1 ◦ · · · ◦ φj+1,j .

If x ∈ Ker fi, then by commutativity fj(φij(x)) = 0, for j < i; hence

φij(Ker fi) is an ideal of R/mj+1 contained in Ker fj . If k ≥ i > j, then

φkj(Ker fk) = φij(φki(Ker fk)) ⊂ φij(Ker fi). So (φkj(Ker fk))
∞
k=j+1 is a

decreasing sequence of ideals in R/mj+1, and therefore stabilises by the Ar-

tinian property. So the sequence (· · · → Ker fi → · · · ) satisfies the Mittag-

Leffler property.

Taking the projective limits of the above diagram, we have, for each

m ∈ N, the diagram

lim←−Ker fi C[[x1, . . . , xn]] Â

Ker fm R/mm+1 R/Im

f

ρm ψm

fm

That the map f is indeed surjective comes from [30, Tag 0598]. We

therefore have that Ker f = lim←−Ker fi, and so Ker f =
⋂∞
j=1 ρ

−1
j (Ker fj),

which is a closed ideal of C[[x1, . . . , xn]]. The result follows.

Remark 5.31. We expect that an analogue of this result can be proved

with P replaced by a reduced subscheme of arbitrary dimension. However,

the given proof does not generalise to this case.

Example 5.32. We use the notation of Proposition 5.30. Let g1, . . . , gr ∈
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C[[x1, . . . , xn]]. Let In = mn+1 + (gn1 , . . . , g
n
r ), where the superscripts denote

truncation to order n. Then Ker fn = (gn1 , . . . , g
n
r )/mn+1.

Let G ∈ Ker f . Then Gn ∈ Ker fn, so Gn = hn1,ng
n
1 + · · · + hnr,ng

n
r =

(h1,ng1+· · ·+hr,ngr)n, for some hi,n ∈ C[[x1, . . . , xn]]. As (Gn)m = Gm,m <

n, we can assume that hmi,n = hmi,m, and hence that the hi are independent

of n. So Ker f ⊂ (g1, . . . , gr). The other inclusion is trivial, so we have

Z = lim−→ Spec(R/In) = Spf(C[[x1, . . . , xn]]/(g1, . . . , gr)).

Remark 5.33. Thus for formal power series g1, . . . , gr ∈ C[[x1, . . . , xn]] we

can define the formal scheme

V(g1, . . . , gr) = Spf(C[[x1, . . . , xn]]/(g1, . . . , gr)),

which is a closed formal subscheme, and has the expected kernel when

we move to complete rings. Furthermore, any closed formal subscheme of

Spf(C[[x1, . . . , xn]]) is isomorphic to a formal scheme of this form.

Definition 5.34. A classical (respectively, McQuillan) formal scheme is

called (quasi-) excellent if it admits an open affine cover by formal spectra

of (quasi-) excellent rings.

Remark 5.35. We can similarly define (quasi-) excellent schemes. However,

all schemes of finite type over a field are excellent (see Example 1.30), so

this property is superfluous in our setting.

As with schemes and complex spaces, we can define normal crossings

divisors of formal schemes. We have the following:

Theorem 5.36. [31, Theorem 1.1.9, Theorem 1.1.13]

Let X be a quasi-compact, quasi-excellent classical formal scheme, and

Z ⊂ X a closed formal subscheme. Then there is a sequence of blow-ups

f : X ′ → X with X ′ smooth, such that f−1(Z) has simple normal crossings

support.

Remark 5.37. In this setting, we say that Z has a desingularisation.
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6 Jet Spaces

We present two ways of looking at the jets of a space: firstly the algebraic

setting, where, following [11], we define the jet scheme and the arc scheme,

and secondly the analytic setting, where we view jets as equivalence classes

of holomorphic maps. We then show their equivalence in terms of closed

points. Following this, we define the jet space of a formal scheme, and then

give a third way of construting the jet space, which has some advantages in

calculations.

6.1 Algebraic Jets

Definition 6.1. Let X be a scheme of finite type over C, and m ∈ N0. The

scheme of m-jets of X is the scheme Jm(X) which, if it exists, satisfies for

every C-algebra A the functorial relation

Hom(Spec(A), Jm(X)) ∼= Hom(Spec(A[t]/(tm+1)), X).

If m > p, and Jm(X) and Jp(X) both exist, the truncation morphism

A[t]/(tm+1)→ A[t]/(tp+1) induces a map

Hom(Spec(A[t]/(tm+1)), X)→ Hom(Spec(A[t]/(tp+1)), X),

and thence a (canonical) projection πm,p : Jm(X) → Jp(X). Where the

maps are defined, we have πm,p ◦ πq,m = πq,p.

J0(X) = X, and so we have projections πm = πm,0 : Jm(X)→ X.

J1(X) is canonically isomorphic to the tangent bundle TX.

Lemma 6.2. If U ⊂ X is an open set, and Jm(X) exists, then Jm(U) exists,

and equals π−1
m (U).

Proof: For A a C-algebra, let ιA : Spec(A)→ Spec(A[t]/(tm+1)) be induced

by the truncation map. If a morphism f : Spec(A[t]/(tm+1)) → X factors

through U , then f ◦ ιA does; conversely, we can cover a general open set

with affine open subsets, and so assume U = Spec(R). If f ◦ ιA factors

through U , we have a ring homomorphism R→ A and so a homomorphism

R → A[t]/(tm+1); hence f factors through U . The result follows from the

definition of the jet scheme.
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Proposition 6.3. For every scheme X of finite type over C, and every

m ∈ N0, Jm(X) exists, is a scheme of finite type over C, and is unique up

to a canonical isomorphism.

Proof: Suppose that X is affine: We can then present it in the form

X = V(I) ⊂ An, where I = (f1, . . . , fr). Now for a C-algebra A, a

morphism Spec(A[t]/(tm+1)) → X corresponds to a ring homomorphism

φ : C[x1, . . . , xn]/I → A[t]/(tm+1). This map is determined by setting

ui = φ(xi) =
∑m

j=0 aijt
j such that fl(u1, . . . , un) = 0 for each l. Equat-

ing co-efficients, this gives a system of polynomial constraints gl,p on the

aij , depending on the fl; we can then define

Jm(X) = V(gl,p | 1 ≤ l ≤ r, 0 ≤ p ≤ m) ⊂ A(m+1)n.

Now suppose X is arbitrary (of finite type), with open affine cover

X = U1 ∪ · · · ∪ Ur. For each i, the jet scheme Jm(Ui) exists, and we have

the projection πim : Jm(Ui) → Ui. Now by Lemma 6.2, for each i and j,

(πim)−1(Ui ∩Uj) and (πjm)−1(Ui ∩Uj) both give the jet scheme Jm(Ui ∩Uj),
and so are canonically isomorphic. We can then construct Jm(X) by gluing

the jet schemes of the affine charts along these isomorphims; the projections

also glue to give the projection πm : Jm(X)→ X.

Showing that Jm(X) has the required properties is then straightforward;

uniqueness comes from the universal property.

Definition 6.4. Let X be a scheme, m ∈ N0 and x ∈ X. The scheme of m-

jets of X above x is the fibre of Jm(X) above x, denoted Jm(X,x). Suppose

x lies in an affine open subset U = Spec(A), where A = C[x1, . . . , xn]/I. It

then corresponds to a maximal ideal mx ⊂ A, where by the Nullstellensatz,

mx = (x1−a1, . . . , xn−an). We can identify Jm(X,x) with Jm(Spec(A), x),

this latter defined by morphisms A → C[t]/(tm+1), xi 7→
∑
aijt

j , setting

ai0 = ai.

Definition 6.5. Let X be a scheme of finite type over C, and m ∈ N0. The

m-jets of X are the closed points of the scheme of m-jets

Jm(X)(C) = Hom(Spec(C[t]/(tm+1)), X).

Remark 6.6. By abuse of notation, we sometimes write Jm(X) for Jm(X)(C).
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Let X ⊂ An be an affine scheme. Then Jm(X) ⊂ Jm(An) = A(m+1)n.

We have a system of algebraic co-ordinates (aij | 1 ≤ i ≤ n, 0 ≤ j ≤ m) on

the jet space, as in the proof of Proposition 6.3.

If n = 2, we write aj for a1j and bj for a2j .

Example 6.7. Let C = V(xy) ⊂ A2. The jet spaces Jm(C, 0) are the union

of the co-ordinate hyperplanes

a1 = a2 = · · · = am−1 = 0, a1 = · · · = am−2 = b1 = 0,

. . . , a1 = b1 = · · · = bm−2 = 0, b1 = · · · = bm−1 = 0.

Indeed, as in the proof of Proposition 6.3, we set x =
∑
ait

i, y =
∑
bit

i.

Equating co-efficients so that xy ∈ (tm+1), we have J2(C, 0) = V(a1b1).

Also, we have J1(C, 0) = A2.

If the result holds for m, the extra equation to define the (m + 1)-jets,

that is, the co-efficient of tm+1 in the new co-ordinates, is

(m+ 1)(a1bm + a2bm−1 + · · ·+ am−1b2 + amb1).

Each string of equalities kills every summand except bj+1am−j , 0 ≤ j ≤
m − 1, and so is appended by either bj+1 = 0 or am−j = 0. Replacing m

with m+ 1, we see that this gives the equations of the next jet space, so the

result follows by induction.

Remark 6.8. The mapping X 7→ Jm(X) is functorial: For any morphism

f : X → Y , and any m ∈ N, there is an induced morphism fm : Jm(X) →
Jm(Y ) given by τ 7→ f ◦ τ .

If p < m, the diagram

Jm(X) Jm(Y )

Jp(X) Jp(Y )

fm

πXm,p πYm,p

fp

commutes.

Taking X to be a closed subscheme of Y , and f the inclusion map, we

see that Jm(X) ⊂ Jm(Y ).
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Proposition 6.9. Let (Yi)i∈I be closed subschemes of a scheme X of finite

type over C. Then Jm(
⋂
i∈I Yi) =

⋂
i∈I Jm(Yi) for each m.

Proof: First note that, for each i ∈ I,
⋂
i∈I Yi is a closed subscheme of

Yi. Applying Jm to the inclusion map we get an inclusion Jm(
⋂
i∈I Yi) →

Jm(Yi). So we have Jm(
⋂
i∈I Yi) ⊂

⋂
i∈I Jm(Yi).

Conversely, consider a point τ ∈
⋂
i∈I Jm(Yi). For each i ∈ I, τ ∈

Jm(Yi), and so it corresponds to a morphism Spec(C[t]/(tm+1)) → Yi. We

then see that τ corresponds to a single morphism Spec(C[t]/(tm+1)) →⋂
i∈I Yi, and therefore x ∈ Jm(

⋂
i∈I Yi).

Definition 6.10. Let X be a scheme of finite type over C. The scheme of

arcs of X is the projective limit J∞(X) = lim←− Jm(X) of the jet spaces.

As the truncation morphisms πm,p : Jm(X) → Jp(X) are all affine,

J∞(X) exists as a scheme over C, though not in general of finite type. It

comes with canonical projection morphisms ρm : J∞(X)→ Jm(X) for each

m ∈ N0.

Lemma 6.11. If X is a smooth scheme, the projections ρm : J∞(X) →
Jm(X) are all surjective.

Proof: If X = An, then Jm(X) = A(m+1)n, and the jet truncations πm,p are

co-ordinate projections, hence are all surjective. A general smooth scheme is

locally isomorphic to An, so again the jet truncation maps are all surjective.

J∞(X) is then the limit of a projective system with surjective morphisms,

so the canonical maps ρm are surjective.

Definition 6.12. Lat X be a scheme of finite type over C. The arcs of X

are the closed point of the scheme of arcs

J∞(X)(C) = Hom(Spec(C[[t]]), X).

Remark 6.13. For any morphism f : X → Y of schemes of finite type,

there is an induced morphism f∞ : J∞(X)→ J∞(Y ).

If m ∈ N0, the diagram

J∞(X) J∞(Y )

Jm(X) Jm(Y )

f∞

ρXm ρYm

fm
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commutes.

Definition 6.14. A subset D ⊂ J∞(X) is called thin if D ⊂ J∞(Y ), where

Y ⊂ X is a closed subset not containing any irreducible component of X.

Definition 6.15. A subset Y of a topological space X is constructible if it

is the finite union of subsets which are locally closed, that is, they are the

intersection of an open subset and a closed subset.

Definition 6.16. A subset C ⊂ J∞(X) is called a cylinder if it is of the form

C = ρ−1
m (S), for some m ∈ N0 and some constructible subset S ⊂ Jm(X).

Lemma 6.17. [11, Lemma 5.1] If C ⊂ J∞(X) is a cylinder, then C is thin

if and only if it is contained in J∞(Xsing).

Proposition 6.18. Let f : X → Y be a proper birational morphism of

smooth varieties. Then for each m ∈ N, the induced morphism fm :

Jm(X)→ Jm(Y ) is surjective.

Proof: Let Z ⊂ Y be the smallest closed subset such that f |X\f−1(Z) :

X \f−1(Z)→ Y \Z is an isomorphism. Let τ ∈ Jm(Y ). As Y is smooth, the

fibre ρ−1
m (τ) ⊂ J∞(Y ) is non-empty; it is a cylinder, and so by Lemma 6.17

is not thin. In particular, ρ−1
m (τ) 6⊂ J∞(Z). We can then choose an arc

γ ∈ J∞(Y ) \ J∞(Z) such that ρm(γ) = τ .

By [11, Proposition 3.2], f∞ induces a bijection

J∞(X) \ J∞(f−1(Z))→ J∞(Y ) \ J∞(Z),

so we have an arc γ′ ∈ J∞(X) such that f∞(γ′) = γ. By commutativity, we

have

τ = ρYm(f∞(γ′)) = fm(ρXm(γ′)),

and the result follows.

Remark 6.19. This is not true in general. Consider the map f : A1 →
A1, x 7→ x3. The induced morphism f1 : J1(A1) → J1(A1) is given by

(a0, a1) 7→ (a3
0, 3a

2
0a1), which is not surjective, as on the fibre above 0 it is

constantly zero.

Proposition 6.20 (Change of Variables). Let W ⊂ X be a closed sub-

scheme, and π : X ′ → X a morphism of schemes. For each m ∈ N,

Jm(π−1(W )) = π−1
m (Jm(W )).
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Proof: Let τ ∈ Jm(π−1(W )). This corresponds to a morphism

Spec(C[t]/(tm+1)) → X ′ with image in π−1(W ). Hence π ◦ τ ∈ Jm(W ),

so τ ∈ π−1
m (Jm(W )).

Conversely, let τ ∈ π−1
m (Jm(W )). Then π◦τ ∈ Jm(W ), so corresponds to

a morphism Spec(C[t]/(tm1)) → X with image in W . Hence τ corresponds

to a morphism with image in π−1(W ), and so τ ∈ Jm(π−1(W )).

Keeping the notation of the proposition, we have the following corollaries:

Corollary 6.21. πm(Jm(W )) ⊂ Jm(π(W )), with equality if πm is surjective.

Corollary 6.22. π−1
m (Jm(W )|C) = Jm(π−1(W ))|π−1(C), where C ⊂W is a

closed subscheme.

6.2 Analytic Jets

Let X be a complex space, and x ∈ X. The space of analytic m-jets of X

above x, Janm (X,x), can then be defined as the set of germs of holomorphic

maps f : (C, 0)→ (X,x) modulo the equivalence relation f ∼ g if f (i)(0) =

g(i)(0) for all 0 ≤ i ≤ m. We define Janm (X) =
⋃
x∈X J

an
m (X,x).

Proposition 6.23 (Jet GAGA). Suppose X is a scheme of finite type over

C. Then Jm(X)(C) ∼= Janm (X).

Proof: Let f ∈ Janm (X). As f is a germ, we can assume its image lies in an

open affine set ofX, which has local co-ordinates x1, . . . , xn. The equivalence

relation on the germs means we can define the jet by assigning to each

co-ordinate xi an element of C[t]/(tm+1), and these truncated polynomials

must satisfy the defining equations of the affine chart. Thus the vector of

co-efficients of these polynomials lies in Jm(X)(C).

Conversely an element of Jm(X)(C) corresponds to a ring homomor-

phism φ : C[x1, . . . , xn]/I → C[t]/(tm+1), with each xi mapped to a trun-

cated polynomial of order m. It can thus be presented as a representative of

the equivalence class of germs of holomorphic maps that define the analytic

jets.

6.3 Jets of Formal Schemes

Proposition 6.24. Let X = lim−→Xλ be a formal scheme. Then for each

m ∈ N and x ∈ X, Jm(X,x) =
⋃
λ∈Λ Jm(Xλ, x).
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Proof: As eachXλ is a subscheme ofX, we clearly have the union
⋃
λ Jm(Xλ, x) ⊂

Jm(X,x).

Conversely, let τ : Spec(C[t]/(tm+1))→ X be an m-jet. We may assume

that τ factors through an affine subset U ⊂ X, where U = Spf((Rλ)). By du-

ality, τ then corresponds to an element of lim−→λ
Hom(Rλ,C[t]/(tm+1)), which

in turn corresponds to a a collection of morphisms Spec(C[t]/(tm+1)) →
Spec(Rλ). As Jm(Spec(Rλ)) = Jm(Xλ)|U , the result follows.

Now suppose X = lim−→Yµ is another presentation, and let τ ∈ Jm(Xλ, x).

Then τ maps into one of the Xµ: that is, τ ∈ Jm(Xµ). It follows that the

jets of X are independent of the limit presentation.

Corollary 6.25. Let X = lim−→Xλ be a direct limit of formal schemes. Then

for each m ∈ N and x ∈ X, Jm(X,x) =
⋃
λ∈Λ Jm(Xλ, x).

The algebraic and analytic constructions of the jet space can also be

applied to complex spaces and formal schemes defined by formal power se-

ries, so we have full generalisation. (As such, we will now only consider the

algebraic setting.) In particular, the change of variables formula still holds

in these cases.

Proposition 6.26. Let X be a complex space (not necessarily algebraic),

and let x ∈ X. Then for each m ∈ N, the fibre of the jet space Jm(X,x) is

an affine scheme.

Proof: By applying a linear shift of co-ordinates, we may assume x = 0;

this induces an affine isomorphism on the jet fibres by Proposition 6.20.

Suppose that, in these shifted co-ordinates, X is locally given as X =

V(g1, . . . , gk), gi ∈ C[[x1, . . . , xn]]. Then

Jm(V(g1, . . . , gk), 0) = Jm(V(gm1 , . . . , g
m
k ), 0),

where gmi denotes the truncation to degree m. These spaces are affine

schemes.

Example 6.27. Let X be a smooth variety, Z ⊂ X a closed subscheme,

and z ∈ Z. Consider the formal completion X̂Z along Z. Then Jm(X̂Z , z) =

Jm(X, z).

Indeed, X̂Z is the formal direct limit of the schemes Zi, so by Propo-

sition 6.24, Jm(X̂Z , z) =
⋃
i∈N Jm(Zi, z). As Zi has degree ≥ i, its jets of

lower orders are the full affine space, equal to Jm(X, z).
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Lemma 6.28. Let X be a smooth variety, and let Y1, Y2 be two formal

subschemes of X with the same underlying topological space. Suppose that

Jm(Y1) ⊂ Jm(Y2), for all m ∈ N. Then Y1 ⊂ Y2.

Proof: Let πXm be the truncation map Jm(X) → X. Then πXm |Yi = πYim :

Jm(Yi)→ Yi. We have πXm(Jm(Y1)) ⊂ πXm(Jm(Y2)), and so, as Y1 and Y2 have

the same underlying topological space, we have πY1m (Jm(Y1)) ⊂ πY2m (Jm(Y2)).

This holds for all m ∈ N, so Y1 ⊂ Y2.

Theorem 6.29. Let X = lim−→Xλ be a formal scheme such that for each

λ ∈ Λ, (Xλ)red = {P} ⊂ Y , where Y is a smooth variety. Then X is

countably indexed, is a quasi-excellent classical formal scheme, and is a

closed formal subscheme of Ŷ{P}. In particular X has a desingularisation.

Proof: We choose co-ordinates such that P = 0. Let

Xλ = Spec(C[x1, . . . , xn]/(gλ,1, . . . , gλ,kλ)).

By Proposition 6.26, Jm(Xλ) = Jm(V(gmλ,1, . . . , g
m
λ,kλ

)), where the super-

script denotes truncation to order m.

The ideals Iλ corresponding to the Xλ form a descending chain; quotient-

ing each by mm+1, where m denotes the ideal (x1, . . . , xn) ⊂ C[x1, . . . , xn],

gives a descending chain that stabilises, and which yields the same jets.

So, for all m ∈ N, there exists λm ∈ Λ such that Jm(Xµ) = Jm(Xλm),

for all µ ≥ λm. Therefore for all m ∈ N, there exists km ∈ Λ such that

Jk(X) = Jk(Xkm), for all k ≤ m.

We define Sm(X) to be the smallest scheme supported at P such that

Jk(X) ⊂ Jk(Sm(X)) for all k ≤ m. We define S (X) = lim−→Sm(X). From

these definitions, we have Sm(X) ⊂ Xkm for all m, and hence S (X) ⊂ X.

Therefore Jm(S (X)) ⊂ Jm(X), for all m. The other inclusion holds by

definition, so we have equality. It follows from Lemma 6.28 that S (X) = X,

and so X is countably indexed.

That X is a classical formal scheme follows from Proposition 5.27. For

each m ∈ N, Sm(X) ⊂ Pm+1, and so X satisfies the conditions of Propo-

sition 5.30. So X is a closed formal subscheme of Ŷ{P}; by the proof of

Proposition 5.30, X is the formal spectrum of a quotient of a power series

ring, and so is excellent.
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Corollary 6.30. The result of Proposition 6.26 also holds if X is a formal

scheme.

Proof: Take an affine open neighbourhood U 3 x. We can write U as

U = lim−→Zλ, where the Zλ are affine schemes all with the same support, and

so we can embed U as a formal subscheme of some smooth affine variety Y .

By Theorem 6.29, U ∩ Ŷ{x} is a closed formal subscheme of Ŷ{x}, and so is

isomorphic to V(g1, . . . , gr), for some gi ∈ C[[x1, . . . , xn]].

By the same argument as in Proposition 6.26,

Jm(V(g1, . . . , gk), 0) = Jm(V(gm1 , . . . , g
m
k ), 0),

where gmi denotes the truncation to degree m. We then have, using an

appropriate change of co-ordinates,

Jm(X,x) = Jm(U, x) = Jm(U ∩ Ŷ{x}, x) ∼= Jm(V(g1, . . . , gk), 0),

which is an affine scheme.

Proposition 6.31. Let f : X → Y be a (formal) isomorphism of com-

plex spaces. Then the induced isomorphisms Jm(X,x) → Jm(Y, f(x)) are

algebraic.

Proof: We choose appropriate co-ordinates such that f(0) = 0. Then the

induced map fm|0 : Jm(X, 0)→ Jm(Y, 0) is the same as that induced by the

truncation fm, and so is algebraic.

As all the jet fibres are algebraic, we can apply this construction at every

point, and hence get the result.

6.4 Jets by Formal Derivatives

We can construct the jet space a third way, compatible with the algebraic

and analytic constructions:

Let W ⊂ Spec(C[x1, . . . , xn]) be an affine algebraic set defined by poly-

nomials f1, . . . , fr. We have Jm(W ) ⊂ A(m+1)n; denote the co-ordinates of

this affine space by x
(j)
i , 1 ≤ i ≤ n, 0 ≤ j ≤ m, where x

(0)
i = xi. We can

then define a derivation D on the space, sending x
(j)
i to x

(j+1)
i , and setting

x
(m+1)
i = 0.
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Jm(W ) is then defined by fk, f
′
k, . . . , f

(m)
k , 1 ≤ k ≤ r, where the formal

derivative is with respect to the derivation D. We sometimes write Djfk

for f
(j)
k . We obtain the definition of the jet scheme given in Section 6.1 by

setting x
(j)
i 7→ aij .

Suppose we have a morphism of schemes π : X ′ → X, and a subscheme

W = V(f1, . . . , fr) ⊂ X. For each m ∈ N, there is an induced map πm :

Jm(X ′) → Jm(X). How πm pulls back Djxi is induced from how it pulls

back xi.

Using this contruction of the jet space, π−1
m (Jm(W )) = π−1

m (V(Djfi)),

and Jm(π−1(W )) = V(Dj(π∗fi). By the chain rule, these two sets are equal,

and we reprove the change of variables formula.
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7 Linear Spaces on Manifolds

Let X be a complex manifold. There is a one-to-one correspondence between

rank r vector bundles on X and locally free sheaves of rank r on X: If

π : E → X is a vector bundle, then its sheaf of sections E , given by

E (U) = {σ : U → E | π ◦ σ = idU , σ holomorphic}.

is locally free; conversely any locally free sheaf is the sheaf of sections of

some vector bundle.

We now seek to generalise this equivalence.

Throughout the sequel, let S be a complex space.

If αC, µC are the addition and multiplication maps on C, R = S × C
becomes a ring under the operations idS ×αC, idS ×µC on R×S R.

Definition 7.1. A linear space L is a unitary S × C-module, that is, a

complex space over S with operations + : L ×S L → L, · : (S × C) ×S L =

C× L→ L satisfying the module axioms.

Remark 7.2. If S is a complex manifold, then any vector bundle over S is

a linear space.

Definition 7.3. Let (L,+, ·), (L′,+′, ·′) be linear spaces over S. A homo-

morphism of linear spaces is a holomorphic map ξ : L → L′ such that the

diagrams

L×S L L′ ×S L′ C× L C× L′

L L′ L L′

ξ×Sξ

+L +L′

id×ξ

·L ·L′

ξ ξ

commute.

Proposition 7.4. Let L be a linear space over S, with given map p : L→ S;

let (T, ξ) be a complex space over S. Then L×S T is a linear space over T .

Proof: L ×S T exists and is a complex space ([12, Prop 0.28]); projecting

onto the second co-ordinate gives a complex space over T . To endow the

space with module structure, we need operations

(L×S T )×T (L×S T ) = L×S L×S T → L×S T ;
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(T × C)×T (L×S T ) = L× C× T → L×S T ;

it is clear then that the linear operations on L carry over to L×S T , making

it into a linear space.

Corollary 7.5. The fibres Ls of L are vector spaces over C; homomorphisms

induce maps ξs : Ls → L′s which are linear maps.

Proof: Let T be the singleton subset {s} of S, with ξ the inclusion. Then

T is a complex space over S. The fibre Ls is then the space L×S T , a linear

space over T . By definition we can only add up elements of a linear space

if they are in the same fibre; as Ls has only fibre, any two elements can

be added (and any can be multiplied by complex scalars), so Ls is a vector

space. As linear space homomorphisms commute with addition and scalar

multiplication, the pullbacks to the fibres will be linear.

Definition 7.6. Let L,L′ be two linear spaces over S, with given maps

p : L → S and p′ : L′ → S respectively. Let U ⊂ S be open. We define

LU = p−1(U) and L′U = p′−1(U). We can then define Hom S(L,L′)(U) =

HomU (LU , L
′
U ), the set of homomorphisms; this gives a sheaf of OS-modules

on S.

Theorem 7.7 (Duality Theorem). Let L be a linear space over a complex

space S. The sheaf of linear forms on L, LS(L) = Hom S(L, S × C), is

a coherent sheaf of OS-modules. The functor L from the category of lin-

ear spaces over S to the category of coherent sheaves of OS-modules is an

antiequivalence.

Proof: The outline of the proof is given in [12, Theorem 1.6]. See the

references there for the full details.

As a result of the antiequivalence, kernels and cokernels exist in the

category of linear spaces over S, and are unique up to isomorphism.

Proposition 7.8. Let ξ : L → L′ be a morphism of linear spaces over S.

Then Ker ξ = {x ∈ L | ξ(x) = 0}.

Proof: The set described is the equaliser of ξ and the zero map L → L′,

which exists as a complex subspace of L by [12, Prop 0.33]. Linearity of ξ

implies that it is a linear subspace, and thus is a kernel in the category of

linear spaces.
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Now let F be a coherent sheaf of OS-modules. Then we have an exact

sequence

Om
S

η−→ On
S → F → 0.

The transpose of η defines a homomorphism

ξ : S × Cn → S × Cm.

We define V(F) = Ker ξ—this is the linear space corresponding to the co-

herent sheaf F under the antiequivalence. We have the following canonical

isomorphisms:

F ∼= L(V(F)),

L ∼= V(L(L)),

Hom OS (F ,F ′) ∼= Hom S(V(F ′),V(F)),

Hom S(L,L′) ∼= Hom OS (L(L′),L(L)).

If ξ : L→ L′ is a morphism of linear spaces over S, and η : L(L′)→ L(L)

is the associated map of sheaves, then Ker ξ = V(Coker η), and Coker ξ =

V(Ker η).

Example 7.9. Let X be a complex manifold, let E be a vector bundle of

finite rank over X, and let E be the sheaf of sections of E. Then L(E) ∼= E ∗.

In particular, if TX is the tangent bundle, then L(TX) ∼= Ω1
X , the sheaf

of 1-forms.

Lemma 7.10. Let X be a complex manifold. Then there is a one-to-one

correspondence between linear subspaces of TX and quotient sheaves of Ω1
X .

Proof: Let L ⊂ TX be a linear subspace. By the duality theorem, there

is a sheaf of modules L(L) corresponding to L, and a morphism of sheaves

Ω1
X → L(L) corresponding to the inclusion L → TX, and given by the

suitable restriction of the linear forms. This morphism is surjective; the

sheaf L(L) is thus isomorphic to the quotient sheaf Ω1
X/K , where K is the

kernel sheaf of the morphism.

Conversely, any quotient sheaf Q of Ω1
X is a coherent analytic sheaf on

M , so corresponds to a linear space V(Q) over X; by the isomorphisms
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given in Theorem 7.7, the quotient map corresponds to an injective homo-

morphism of linear spaces V(Q) → V(Ω1
X) = TX. Thus V(Q) may be

thought of as a linear subspace of TX.

The one-to-one correspondence comes from the antiequivalence in the

duality theorem.

Definition 7.11. Let S be an irreducible complex space. A linear space

L over S is said to be irreducible (as a linear space), if, whenever we write

L = L′ ∪ L′′, for L′, L′′ linear spaces over S, then either L = L′ or L = L′′.

Otherwise L is reducible (as a linear space).

Remark 7.12. If L is irreducible as a complex space, then it will be irre-

ducible as a linear space, but the converse is not true in general, as in the

following:

Example 7.13. Consider L = V(xy), which can be viewed as a linear space

over A1. Clearly it is reducible as a complex space. However, as any linear

subspace must contain the y = 0 component, a subspace containing more

than this must be the whole space by linearity. Hence L is irreducible as a

linear space.

Definition 7.14. The support of a linear space L over an irreducible com-

plex space S is the closure of {x ∈ S | Lx 6= 0}, denoted suppL. It is an

analytic subset.

Remark 7.15. We similary define the support of a sheaf. We have suppL(Q) =

suppQ, and suppV(E ) = supp E .

Proposition 7.16. Let L be a linear space over S. Then L is reducible as

a linear space if and only if there is a non-zero, non-isomorphic surjective

morphism of linear spaces L→ Q, such that dim suppQ < dimS.

Proof: Suppose L is reducible, with decomposition L =
⋃
i∈I Li. Now one

of the Li must have lower-dimensional support; if not we can write L as

L = L′ ∪L′′, where L′ and L′′ both have all of S as their support. Then for

each x ∈ S, L′x = Lx or L′′x = Lx; the set of x ∈ S satisfying one of these

conditions is an analytic set, so we have the union of two analytic subsets

being the whole of S, and therefore one of them equalling S—so L′ = L or

L′′ = L, a contradiction.
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The canonical map L → Li taken by quotienting out the other compo-

nents satisfies the conditions of the proposition.

Conversely, suppose we have a surjective map q : L → Q, with

dim suppQ < dimS. Let π : Q→ S be the projection onto the base space.

Let U = Q\π−1(suppQ), the zero section outside the support. U is then the

whole zero section of Q. Now as q is continuous, q−1(U) ⊂ q−1(U) = Ker q;

as q is assumed to be non-zero, the linear closure L′ of q−1(U) is then a

proper linear subspace of L.

We define a linear space L′′ with the same support as Q, equal to

q−1(suppQ) above the support. L′′ is a proper linear subspace of L, and we

have L = L′ ∪ L′′. So L is reducible.

Proposition 7.17. Let (X,OX) be a complex manifold, and let F be a

coherent sheaf of OX-modules. Then F has torsion if and only if there is a

subsheaf E ⊂ F such that dim supp E < dimX.

Proof: See discussion following [18, Definition 1.1.4].

Proposition 7.18. Let (X,OX) be a complex manifold. Then there is a

one-to-one correspondence between torsion-free coherent sheaves on X and

irreducible linear spaces over X with full support.

Proof: Let F be a torsion-free sheaf on X, and let L = V(F) be the

associated linear space under duality. Then supp(L) = supp(F) = X. Let Q

be a linear space such that there exists a non-zero non-isomorphic surjection

L→ Q. Then L(Q) is a proper subsheaf of F . As F is torsion-free, we have

dim suppL(Q) = dimX; it follows that L is irreducible.

Conversely, let L be an irreducible linear space on X with full support,

and let F = L(L) be the associated sheaf. Let E ⊂ F be a non-zero proper

subsheaf. Then there is a non-zero non-isomorphic surjection L → V(E ).

As L is irreducible, dim suppV(E ) = dimX; as F has full support it follows

that it is torsion-free.
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8 Foliations

Throughout this section we let X be a complex manifold.

8.1 Foliations by Vector Fields

Definition 8.1. A subsheaf F ⊂ TX is called a foliation if it is saturated

and is integrable, that is, [F ,F ] ⊂ F , where the Lie bracket is defined on

the sections of the sheaf.

Remark 8.2. The condition of being saturated is not preserved under many

operations, for example pullback. Hence we sometimes deal with unsatu-

rated foliations. If F is an unsaturated foliation, we define its saturation

sat(F) to be the smallest saturated sheaf containing it. It is the kernel of

the morphism

TX → TX/F → (TX/F)/Tor(TX/F).

Definition 8.3. Let F be a foliation on X. The singular locus of F , denoted

Sing(F), is the singular locus of F as a coherent sheaf, that is, the locus of

points of X around which F is not locally free. It is a complex subspace of

X of codimension at least 2.

Remark 8.4. Let F be a foliation on X, and let A = SingF . The tangent

sheaf TX is reflexive, and so the saturation property gives that F is normal

(see Lemma 4.13). As F is saturated, we also have that A has codimension

at least 2, and so for all open U ⊂ X, we have F(U) ∼= F(U \ A). So the

global behaviour of F is defined by its behaviour on the smooth locus.

Theorem 8.5 (Frobenius). Let F be a smooth dimension-r foliation on

X (that is, F is locally free of rank r). Thus F corresponds to a rank r

vector subbundle E ⊂ TX. Then X can be written as the disjoint union of

connected submanifolds (Lα), where TxLα = Ex, for all x ∈ X, and locally

at each point x ∈ X, there is a system of local holomorphic co-ordinates

x1, . . . , xn on an open neighbourhood U 3 x, such that the components of

U ∩ Lα can be written as

xr+1 = µr+1, . . . , xn = µn,

with the µi constant.
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Definition 8.6. The Lα in Frobenius’ theorem are called the leaves of the

foliation.

Definition 8.7. Let X be a vector field on a complex manifold X. An

integral curve of X is a holomorphic map α : U → X, where U ⊂ C is an

open domain, such that α′(t) = X (α(t)), for all t ∈ U .

The subsheaf of TX defined by a vector field X is clearly integrable, and

so defines a foliation F if it is also saturated. On the smooth locus of F ,

the leaves of the foliation are the integral curves of X .

Definition 8.8. Let X be a vector field on a complex manifold X. A flow

of X is a holomorphic function φ : U → X, where U ⊂ X × C is an open

subset such that for each x ∈ X, U ∩ {x}×C is an open domain containing

0, such that for all x ∈ X, the function φ(x, ) is an integral curve of X .

8.2 Foliations by 1-forms

Theorem 8.9. Let X be a complex manifold. Then there is a one-to-one

correspondence between torsion free quotient sheaves of the sheaf of 1-forms

Ω = Ω1
X and saturated subsheaves of the tangent sheaf T = TX .

Proof: We prove the statement, equivalent by definition of saturatedness,

that there is a one-to-one correspondence between saturated subsheaves of

T and saturated subsheaves of Ω. To this end, we define a map

F : {saturated subsheaves of Ω} → {saturated subsheaves of T },

F (K ) = (Ω/K )∗.

Let K be a saturated subsheaf of Ω, and Q the quotient sheaf. Then

we have an exact sequence

0→ K → Ω
q−→ Q → 0.

Fix x ∈ X; we now consider the stalks at x and get a sequence of OX,x-

modules,

0→ Kx → Ωx
qx−→ Qx → 0.

By Proposition 4.14 this sequence is exact. We also have that Qx is torsion-

free.
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By Lemma 1.39, the dual q∗x of the quotient map qx is an injection from

Q∗x into Ω∗x, and so we now have another exact sequence:

0→ Q∗x
q∗x−→ Ω∗x → Ω∗x/Q

∗
x → 0.

We also have, by Lemma 1.40, that if τ ∈ Ω∗x, then τ ∈ Q∗x if and only

if τ(ω) = 0, for all ω ∈ Kx.

Now let τ̄ ∈ Ω∗x/Q
∗
x and f ∈ OX,x \ {0} be such that f τ̄ = 0. Then

0 = f τ̄ = fτ ⇒ fτ ∈ Q∗x. Therefore

(fτ)(ω) = fτ(ω) = 0, ∀ω ∈ Kx ⇒ τ(ω) = 0, ∀ω ∈ Kx.

So τ ∈ Q∗x, hence τ̄ = 0. So Ω∗x/Q
∗
x = (Ω∗/Q∗)x is torsion-free. As x was

arbitrary, it follows that the sheaf Ω∗/Q∗ is torsion-free, so Q∗ is a saturated

subsheaf of Ω∗ = T . Hence the map F is well-defined.

Now suppose K ,K ′ are two saturated subsheaves of Ω, with quotient

sheaves Q,Q′, and such that F (K ) = F (K ′) (that is, Q∗ = Q′∗). As

K ,K ′ are saturated subsheaves of Ω, they are normal, as Ω is reflexive

(Lemma 4.13). Outside of an analytic set A ⊂ X, Q and Q′ are both

locally free, so reflexive. By the torsion-free property, A has codimension at

least 2. We then have, restricting to X \A,

Q∗ = Q′∗ ⇒ Q∗∗ = Q′∗∗ ⇒ Q = Q′ ⇒ K = K ′.

Now for U ⊂ X any open set, this, along with the normality of K and

K ′, gives us

K (U) ∼= K (U \A) = K ′(U \A) ∼= K ′(U).

So K ∼= K ′ on all X, hence the map F is injective.

We now define a map

G : {saturated subsheaves of T } → {saturated subsheaves of Ω},

G(F) = (T /F)∗.

By the same argument, G is also well-defined and injective.

Let K be a saturated subsheaf of Ω, and Q the quotient sheaf. Fix

a point x ∈ X. Q is a torsion-free coherent sheaf, and so Qx is a finitely
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generated torsion-free module over an integral domain by Corollary 4.16, and

is therefore torsionless by Proposition 1.37. We can then apply Lemma 1.41

with M = Ωx and N = Qx to see that for ω ∈ Ωx, ω ∈ Kx if and only if

τ(ω) = 0, for all τ ∈ Q∗x.

Applying Lemma 1.40 with M = Tx and N = (T /Q∗)x, we have that

ω ∈ (T /Q∗)∗x if and only if τ(ω) = 0, for all τ ∈ Q∗x.

As x was arbitrary, we have that K = (T /Q∗)∗ = G(F (K )), and so G◦
F is the identity map. It follows from set-theoretic arguments that the other

composition is also the identity, so we have the one-to-one correspondence

required.

We can now redefine a foliation in terms of differential forms: If F ⊂ TX
is a foliation, we can take the kernel of the quotient sheaf of Ω1

X given

by the theorem, and define that also as a foliation. It remains to give an

integrability condition in this case.

Definition 8.10. Let G ⊂ Ω1
X be a saturated subsheaf. On some open

subset U ⊂ X, this is generated by 1-forms ω1, . . . , ωr, which generate an

ideal in Ω(U), the ring of all differential forms. G is said to be integrable if

this ideal is closed under the exterior derivative.

Lemma 8.11. Let G ⊂ Ω1
X be a saturated subsheaf. Then G is integrable

if and only if the subsheaf F ⊂ TX it corresponds to by Theorem 8.9 is

integrable.

Proof: Take an open U ⊂ X. As G is normal, we can restrict to the case

where G|U is locally free. G(U) is the annihilator of F(U) by Lemmas 1.39,

1.40, and 1.41, so the result holds by [29, Proposition 7.14].

Thus any foliation F is defined uniquely by a saturated subsheaf of the

sheaf of 1-forms Ω, and so the foliation is locally defined as the integrable

distribution of vector fields annihilated by a collection of 1-forms. A foliation

can be given equivalently in either the vector field or 1-form presentations,

as convenient.

Furthermore, by Lemma 7.10 and Proposition 7.18 F corresponds uniquely

to an irreducible linear subspace LF ⊂ TX, which has full support. If F is

given by 1-forms

ωl =
∑

bil(x1, . . . , xn)dxi,
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then LF is given by the equations∑
bil(f1(0), . . . , fn(0))f ′i(0),

where fi are the components of the germs of holomorphic maps f : C→ X

which define the tangent vectors.

Outside the singular locus SingF of the foliation, the associated linear

space is a smooth distribution, so by Frobenius’ theorem we can write X \
SingF as a disjoint union of locally parallel submanifolds; these are called

the leaves of the foliation. The fibres of the linear space are the tangent

spaces of the leaves.

8.3 Codimension-1 Foliations

We briefly restrict to the case of codimension-1 foliations, where we have

the following results.

Lemma 8.12. Let G ⊂ Ω1
X be a saturated subsheaf given locally by ω. Then

G is integrable if and only if ω ∧ dω = 0.

Proof: By normality of G we can choose an open set U such that ω does

not vanish on U ; we extend to a basis ω, dx2, . . . , dxn of Ω1(U).

If G is integrable, then we have dω = ω ∧ α for some 1-form α. Hence

dω ∧ ω = 0 by skew-symmetry of the wedge product.

Conversely, suppose dω ∧ ω = 0. We have as a basis for Ω2(U)

{ω ∧ dxi} ∪ {dxj ∧ dxk}.

We write

dω =
∑

biω ∧ dxi +
∑

cjkdxj ∧ dxk.

As dω ∧ ω = 0, we have ∑
cjkdxj ∧ dxk ∧ ω = 0,

and thus cjk = 0. We therefore have

dω = ω ∧ (
∑

bidxi).
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Remark 8.13. In the literature which is concerned exclusively with codimension-

1 foliations, this characterisation is often given as the definition of integra-

bility.

Lemma 8.14. Let G ⊂ Ω1
X be an integrable subsheaf given locally by ω =

b1dx1 + · · · + bndxn, where the bi are holomorphic. Then G is saturated if

and only if gcd(b1, . . . , bn) = 1.

Proof: Suppose gcd(b1, . . . , bn) = f 6= 1. Then we can write ω = fω′,

where ω′ is not a section of G. Hence G is unsaturated by definition.

Now suppose G is unsaturated. Then there exists a 1-form η, which is

not a multiple of ω, and holomorphic functions f, g such that fω = gη.

Then g divides fbi, for each 1 ≤ i ≤ n.

Suppose gcd(b1, . . . , bn) = 1. Then g divides gcd(fb1, . . . , fbn) = f , that

is, there exists a holomorphic function h such that f = gh. Then η = hω, a

contradiction.

Corollary 8.15. Let G ⊂ Ω1
X be a sheaf given locally by ω = b1dx1 + · · ·+

bndxn, where the bi are holomorphic. Then G is integrable if and only if its

saturation is.

Proof: Let f = gcd(b1, . . . , bn). Then ω = fω′, where ω′ generates a satu-

rated subsheaf. Now

ω ∧ dω = (fω′) ∧ d(fω′) = (fω′) ∧ df ∧ ω′ + (fω′) ∧ (fdω′) = f2ω′ ∧ dω′;

as f is holomorphic and non-zero, this implies that ω′ ∧ dω′ = 0 if and only

if ω ∧ dω = 0. The result follows.

Lemma 8.16. Let G ⊂ Ω1
X be a foliation given locally by ω = b1dx1 + · · ·+

bndxn, where the bi are holomorphic. Then Sing G = V(b1, . . . , bn).

Proof: Let x ∈ X \ V(b1, . . . , bn). Then ω does not vanish at x, so by

continuity does not vanish in an open neighbourhood U of x. In this neigh-

bourhood ω defines a line bundle, and so U is contained in the smooth locus

of the foliation.

Conversely, suppose x ∈ V(b1, . . . , bn). Let LF be the linear space as-

sociated to the foliation. Then the fibre (LF )x = An, which is of higher

dimension than the general fibre. So x ∈ SingF .
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Corollary 8.17. Let G ⊂ Ω1
X be an integrable subsheaf given locally by

ω = b1dx1 + · · · + bndxn, where the bi are holomorphic. Then Sing G has

codimension 2 in X if and only if G is saturated.

Proof: If G is saturated, then the singular locus has codimension 2 by stan-

dard results. If not, then f = gcd(b1, . . . , bn) 6= 1, and V(f) is a component

of the singular locus of codimension 1.

8.4 Pullback Foliations

Proposition 8.18. Let f : X → Y be a holomorphic map of complex mani-

folds. Then a foliation F on Y pulls back to a (possibly unsaturated) foliation

on X.

Proof: Suppose on some open set V ⊂ Y the foliation is given by 1-forms

ω1, . . . , ωr. These pull back to 1-forms f∗ω1, . . . , f
∗ωr on f−1(V ). It remains

to show that these generate an ideal closed under the exterior derivative.

Indeed,

df∗ωj = f∗(dωj) = f∗(
∑

ωi ∧ ηi) =
∑

f∗(ωi ∧ ηi) =
∑

(f∗ωi) ∧ (f∗ηi),

proving the result.

We call this foliation f−1(F).

Definition 8.19. Let F be a foliation on X, and V ⊂ X a reduced, irre-

ducible complex subspace. The restriction F|V of F to V is the pullback of

F along the inclusion map ι : V → X.

Definition 8.20. Let X and Y be manifolds, and F a foliation on X. Let

G be the pullback of F along the projection X × Y → X. Then G is called

the cylinder over F .

Example 8.21. Let X = An, and F be given by the form ω = f1dx1 +

· · ·+ fkdxk, k < n, where the fi are functions of x1, . . . , xk only. Then F is

the cylinder over the foliation of Ak given by ω.

8.5 Normal Forms

Let F be a foliation on a smooth surface X with an isolated singularity at

a point P . We can choose a system of holomorphic co-ordinates on X such
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that P is the origin of the co-ordinate chart. In a neighbourhood of the

origin, the foliation is descibed by a single vector field X , which is unique

up to a factor. We can write X in the form

X = (ax+ by + · · · ) ∂
∂x

+ (cx+ dy + · · · ) ∂
∂y
,

where a, b, c, d ∈ C. The linear part of X is the vector field (ax + by) ∂
∂x +

(cx+ dy) ∂∂y .

Let λ1, λ2 be the eigenvalues of the linear part of X , that is, the eigen-

values of the matrix
(
a b
c d

)
. Depending on these eigenvalues, we can take a

system of formal co-ordinates at the origin so that the 1-form ω generating

F can be written in a standard form, called a formal normal form. As we

now consider a formal neighbourhood, we may assume that X = A2.

We first define the following:

Definition 8.22. A ordered tuple of complex numbers λ = (λ1, . . . , λn) ∈
Cn is called resonant if there is a tuple of non-negative integers α = (α1, . . . , αn),

with |α| =
∑
αi ≥ 2, such that for some j ∈ {1, . . . , n}, λj =

∑n
i=1 αiλi.

We call λ a resonant tuple; |α| is called the order of the resonance.

Lemma 8.23. Let p, q ∈ C∗, such that p
q ,

q
p ∈ Q

+ \ N. Then the pair (p, q)

is non-resonant.

Proof: Suppose there exists α, β ∈ N0 such that αp + βq = p. Then (α −
1)p+ βq = 0. If β = 0, α = 1, and (1, 0) is not a resonant pair.

If β 6= 0, then α−1
β = − q

p < 0, and hence α = 0. Therefore β = p
q /∈ Z,

a contradiction. The other resonance relation fails to hold by a similar

argument.

Definition 8.24. A formal vector field is a derivation on C[[x1, . . . , xn]]. It

can equivalently be thought of as a tuple in C[[x1, . . . , xn]]n.

Remark 8.25. All holomorphic vector fields are formal vector fields.

Definition 8.26. Two formal vector fields F, F ′ are said to be formally

equivalent if there exists an algebra isomorphism H : C[[x1, . . . , xn]] →
C[[x1, . . . , xn]] such that H∗(x)F (x) = F ′(H(x)), for all x ∈ Cn, where

H∗ is the Jacobian matrix ( ∂hi∂xj
).
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Proposition 8.27 (Poincaré Linearisation Theorem). Let X be a vector

field defining a foliation on the plane. (We can assume without loss of gen-

erality that there is an isoated singularity at the origin). If the eigenvalues

of the linear part form a non-resonant pair, then X is formally equivalent to

its linear part. In particular, the formal normal form of the corresponding

1-form ω has linear co-efficients.

Proof: See [19, Sections 4B-4C].

Proposition 8.28. [19, Theorem 4.23] Let X be a vector field defining a fo-

liation on the plane, whose linear part is non-zero but has two zero eigenval-

ues. Then the formal normal form of ω is ω = ydy−(p(x)+yq(x))dx, ord p ≥
2, ord q ≥ 1.

Proposition 8.29. Let X be a vector field defining a foliation on the plane

with a resonance among its eigenvalues, at least one of which is non-zero.

Let λ be the ratio of the eigenvalues. Then we have the following formal

normal forms:

λ = 0 : ω = (x(1 + νyl))dy − yl+1dx, ν ∈ C, l ∈ N.

λ = −p
q
∈ Q− : ω = −λy(1 + g2(xpyq))dx+ x(1 + g1(xpyq))dy, gi ∈ m̂1.

λ = r ∈ N, r ≥ 2 : ω = ydx− (rx+ ayr)dy, a ∈ C.

Proof: See [19, Proposition 4.29] and [3, Section 1.1].
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9 Jet Spaces of Foliations

Throughout, we let X be a complex manifold.

9.1 Basic Definitions

Definition 9.1. Let F be a foliation on X, given by 1-forms ω1, . . . , ωr.

The jet space of F is defined as

Jm(F) = {τ ∈ Jm(X) | τ∗(ωl) = 0, 1 ≤ l ≤ r}.

If on some open subset of X we have local co-ordinates x1, . . . , xn, then,

following the construction of the jet space of an affine scheme (see Propo-

sition 6.3), we define a morphism τ : Spec(C[t]/(tm+1)) → X by setting

xi =
∑m

j=0 aijt
j , and by pullback we have the differential dxi mapped

to
∑m

j=1 jaijt
j−1dt. The jet space Jm(F) is again defined as the vanish-

ing locus of the polynomial constraints imposed on the aij to ensure that

τ∗(ω) ∈ (tm)dt for each of the 1-forms ω defining the foliation, noting that

as tm+1 = 0, we have tmdt = 0. We thus see that Jm(F) is a subscheme of

Jm(X).

As Jm(F) ⊂ Jm(X), we can look at its fibres Jm(F , x) = Jm(X,x) ∩
Jm(F), again constructed in the same way as with jet spaces of schemes.

As in the case of schemes, we can define the jet spaces of foliations by

formal derivatives: if F is a foliation given by 1-forms ωl =
∑
bildxi, 1 ≤ l ≤

r, then, identifying dxi with x′i, these correspond to forms
∑
bilDxi on the

tangent bundle, whereD is the derivation in Section 6.4; we also call these ωl.

Then Jm(F) is defined by the vanishing of ωl, Dωl, . . . , D
m−1ωl, 1 ≤ l ≤ r.

Proposition 9.2 (Change of Variables for Foliations). Let f : X → Y be

a map of complex manifolds, and F a foliation on Y . Then Jm(f−1(F)) =

f−1
m (Jm(F)).

Proof: Let τ : Spec(C[t]/(tm+1)) → X ∈ Jm(f−1(F)). Then τ∗(f∗ωl) = 0

for each of the ωl generating F . Then (f ◦ τ)∗(ωl) = 0, and so fm(τ) ∈
Jm(F). Hence τ ∈ f−1

m (Jm(F)).

Conversely, let τ ∈ f−1
m (Jm(F)). Then f ◦τ ∈ Jm(F), and so τ∗(f∗ωl) =

(f ◦ τ)∗(ωl) = 0, and hence τ ∈ Jm(f−1(F)).
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In the case that f is smooth, the above result can be reproved using the

chain rule, using the same arguments as in Section 6.4.

Corollary 9.3. The fibres of the jet spaces of foliations, and the morphisms

between them induced by (formal) isomorphisms of the ambient space, are

algebraic. In particular, formally equivalent vector fields yield isomorphic

jets.

Proof: If F is a foliation on X, then Jm(F , x) ⊂ Jm(X,x). The result then

follows using the same arguments as in Propositions 6.26 and 6.31.

Lemma 9.4. Let F be a foliation given by 1-forms ω1, . . . , ωr, each of

which has an algebraic first integral: that is, for each l, ωl = dgl for

some polynomial gl. Then for any point x ∈ V(g1, . . . , gr), Jm(F , x) =

Jm(V(g1, . . . , gr), x).

Proof: Jm(V({gl}l)) = V({gl, Dgl, . . . , Dmgl}l), and

Jm(F) = V({Dgl, . . . , Dmgl}l),

since ωl = dgl and therefore corresponds to Dgl. Cutting out the equation

for gl in the jet scheme of the foliation gives the result.

Proposition 9.5. Let F be a foliation on X, and V be a reduced, irreducible

complex subspace. Set G = F|V . Then Jm(G) = Jm(F) ∩ Jm(V ), for all m.

Proof: By definition of G, and the change of variables formula for foliations,

we have

Jm(G) = ι−1
m (Jm(F)) ⊂ Jm(F),

where ι : V → X is the inclusion; hence Jm(G) ⊂ Jm(F) ∩ Jm(V ).

Conversely, let τ : Spec(C[t]/(tm+1)) → V be a jet in Jm(F) ∩ Jm(V ).

Then ι ◦ τ is a defined composition of maps. Suppose F is defined by the

1-forms ω1, . . . , ωr. Then G is defined by ι∗ω1, . . . , ι
∗ωr. Then, for each

1 ≤ l ≤ r,
τ∗(ι∗ωl) = (ι ◦ τ)∗(ωl) = τ∗(ωl) = 0.

So τ ∈ Jm(G).

48



9.2 Motivating Examples

We now let X = A2, and consider foliations F given by a 1-form ω and

having a single singular point at the origin. To calculate the m-jets above

the origin (the singular point), we set

x = a1t+ a2t
2 + · · ·+ amt

m; y = b1t+ b2t
2 + · · ·+ bmt

m,

and so

dx = (a1 + 2a2t+ · · ·+mamt
m−1)dt; dy = (b1 + 2b2t+ · · ·+mbmt

m−1)dt.

By equating co-efficients, we find the ai, bi such that the image of ω under

this morphism lies in (tm)dt.

Example 9.6. The foliation F1, given by ω1 = ydx+xdy, has a first integral

xy. Let C = V(xy). Then by Lemma 9.4, for each m, Jm(F1, 0) = Jm(C, 0).

These jets were calculated in Example 6.7.

The foliation F2 given by ω2 = ydx− x2dy has the same jets above the

origin, so the jets are not sufficient to determine the foliation.

Example 9.7. Let F be the foliation given by ω = ydx− (x+ y)dy. Com-

puting the jet spaces, we have that Jm(F , 0) is given as the union of sets

b1 = b2 = · · · = bm−1 = 0,

b1 = b2 = · · · = bm−2 = a1 = 0, . . . ,

b1 = · · · = bm−1
2

= a1 = · · · = am−1
2

= 0,

if m is odd, and by

b1 = b2 = · · · = bm−1 = 0,

b1 = b2 = · · · = bm−2 = a1 = 0, . . . ,

b1 = · · · = bm
2

= a1 = · · · = am−2
2

= 0,

if m is even.

Indeed, from the equations J2(F , 0) = V(b1), J3(F , 0) = V(b1, a2b1 −
a1b2− 3b1b2), so the assertion holds here. If m is odd, the extra equation to
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define the (m+ 1)-jets is

(m− 1)(amb1 − a1bm) + · · ·+ 2(am+3
2
bm−1

2
−

am−1
2
bm+3

2
)− (m+ 1)(b1bm + · · ·+ bm+1

2
bm+3

2
)− m+ 1

2
b2m+1

2

.

The string of equalites b1 = · · · = bj = a1 = · · · = ak = 0, k = m −
1− j for a component of the lower order jets (henceforth denoted by {j, k}),
for j ≤ m−3

2 , causes all but the term ak+1bj+1 to vanish—so the string of

equalities can be extended to either {j + 1, k} or {j, k + 1}. The string

{m−1
2 , m−1

2 } causes all but the term b2m+1
2

to vanish, so it can be extended

to {m+1
2 , m−1

2 }. Replacing m by m+ 1 gives the equations for an even order

jet space.

If m is even, the extra equation is

(m− 1)(amb1 − a1bm) + · · ·+ am+2
2
bm

2
−

am
2
bm+2

2
− (m+ 1)(b1bm + · · ·+ bm

2
bm+2

2
).

The string of equalities {j, k} causes all but the term ak+1bj+1 to vanish,

so it can be extended to either {j+1, k} or {j, k+1}. Replacing m by m+1

gives the equations for an odd order jet space. The whole result follows by

induction.

Let C̃ = V(y2). By simple calculation, we see that Jm(C̃, 0) =

V(b1, . . . , bm−1
2

), if m is odd, and Jm(C̃, 0) = V(b1, . . . , bm
2

), if m is even.

Comparing with the jets calculated in Example 6.7, we have

Jm(F , 0) = Jm(V(y2), 0) ∩ Jm(V(xy), 0) = Jm(V(y2, xy), 0)

—the jets of the x-axis with a double point at the origin.

Lemma 9.8. Consider the affine space A2n, with co-ordinates a1, . . . , an,

b1, . . . , bn. Denote by [i, j] the class of polynomials µ(aibj − ajbi), for some

µ ∈ C∗. Then if ai and bi are not both zero, [i, j] = 0, [i, k] = 0⇒ [j, k] = 0,

1 ≤ i, j, k ≤ n.

Proof: We have the relations aibj − ajbi = 0, aibk − akbi = 0. If ai = 0,

then we have aj = ak = 0, and the result holds. Similarly the result holds

if bi = 0. We then assume ai, bi 6= 0. Then aj = 0 if and only if bj = 0, and
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ak = 0 if and only if bk = 0; in either case the result holds.

Now suppose none of the terms equals zero. We have
bj
bi

=
aj
ai
, bkbi = ak

ai
.

Rearranging we get bk
bj

= ak
aj

, which implies that ajbk − akbj = 0.

Example 9.9. Let F be the foliation given by ω = ydx−xdy. This has jet

spaces Jm(F , 0) given as the union of the sets

[1, 2] = [1, 3] = · · · = [1,m− 1] = 0, a1 = b1 = [2, 3] = · · · = [2,m− 2] = 0,

. . . , a1 = · · · = am−3
2

= b1 = · · · = bm−3
2

=

[
m− 1

2
,
m+ 1

2

]
= 0,

if m is odd, and by

[1, 2] = [1, 3] = · · · = [1,m− 1] = 0,

a1 = b1 = [2, 3] = · · · = [2,m− 2] = 0, . . . ,

a1 = · · · = am−4
2

= b1 = · · · = bm−4
2

=

[
m− 2

2
,
m

2

]
=

[
m− 2

2
,
m+ 2

2

]
= 0,

if m is even and m ≥ 4. J2(F , 0) = A4.

Indeed, we see from the equations that J3(F , 0) = V([1, 2]), J4(F , 0) =

V([1, 2], [1, 3]). If m is odd, the extra equation to define the (m+ 1)-jets is

[1,m] + [2,m− 1] + · · ·+
[
m− 1

2
,
m+ 3

2

]
;

by the previous proposition (assuming ai, bi are non-zero unless stated oth-

erwise), the string of equalities for each component is appended by [j,m +

1 − j] = 0, 1 ≤ j ≤ m−1
2 . Replacing m by m + 1 gives the equation for an

even order jet space.

If m even, the extra equation is

[1,m] + [2,m− 1] + · · ·+
[
m

2
,
m+ 2

2

]
;

again we append the equation [j,m+ 1− j] = 0 to the strings of equalities,

1 ≤ j ≤ m−2
2 , and we get the extra equation a1 = · · · = am−2

2
= b1 = · · · =

bm−2
2

= [m2 ,
m+2

2 ] = 0. Replacing m by m+ 1 gives the equation for an odd

order jet space, and so we have the whole result by induction.

We have Jm(F , 0) =
⋃
λ∈C Jm(V(x(y − λx), 0). So there are foliations
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where a whole family of subschemes are needed to describe the jets at the

singularity.

9.3 Tangent Schemes

Definition 9.10. Let F be a foliation on a complex manifold X, and C ⊂ X
a complex subspace.

C is weakly tangent to F if J1(C) ⊂ J1(F).

C is strongly tangent to F if Jm(C) ⊂ Jm(F), for all m ∈ N.

C is fully tangent to F if Jm(C) = Jm(F)|C , for all m ∈ N.

A complex subspace C ⊂ X is a solution for the foliation F if locally its

defining equations g1, . . . , gk solve all the 1-forms ω1, . . . , ωr that determine

F ; that is, ωl|C ∈ (dg1, . . . , dgk)|C ⊂ Ω1
X |C for each l.

If F is a codimension-1 foliation given by ω, and C = V(f) is a hypersur-

face, C is an integral hypersurface for F if ω∧df = fη, for some holomorphic

2-form η.

Remark 9.11. The notion of C being weakly tangent is the simplest con-

ception of tangency: It is simply that the tangent vectors of C are tangent

to the foliation. This, along with notions of a solution or an integral hy-

persurface, is classical; in the literature one of these three will be given a

the definition for tangency to a foliation. (We note that the definition of

a solution given above is more general than that found elsewhere, where a

solution is generally required to be a disjoint union of finitely many leaves.)

However, these notions fail to encapsulate the behaviour of the foliation

at the the singular locus. To rectify this, we introduce the notion of being

strongly tangent, or indeed fully tangent. This allows us to consider the

tangency of subspaces with non-reduced structure. We discuss the relations

between these notions in the following paragraphs, showing that, when C is

reduced, they co-incide over the smooth locus of the foliation.

Remark 9.12. We can also define all these notions of tangency if C is in-

stead a formal subscheme of X. (A formal scheme C = lim−→Yλ can be viewed

as a subscheme of a complex manifold X if we identify each Yλ with its asso-

ciated complex space, and take the formal direct limit of complex subspaces

of X). For a formal scheme to be a solution or integral hypersurface, we

assume it is given by some collection of formal power series.
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Example 9.13. Let X = A2, ω = ydx + xdy. The leaves of the resultant

foliation are of the form xy = a; these are clearly solutions, and integral

hypersurfaces, for the foliation. All points of the plane are also strongly

tangent.

Tangent schemes need not be reduced: let C be the origin counted with

multiplicity 2—this is defined by the equations x2, xy, y2. As d(xy) = ydx+

xdy, we see that C is indeed a solution of the foliation.

However the origin counted with multiplicity 3 is not: This is defined by

x3, x2y, xy2, y3, and so the space of 2-jets is all of A4, which is not contained

in J2(F , 0), as calculated in Example 9.6.

It follows from the definitions that all notions of tangency (as described in

Definition 9.10) are locally defined. Furthermore, if C ⊂ X is weakly tangent

(respectively, strongly tangent, respectively, a solution), then any subspace

of C is also weakly tangent (respectively, strongly tangent, respectively, a

solution). As the definitions of a solution or integral hypersurface are given

with reference to the defining equations, we see that these properties are

preserved by taking closures.

Proposition 9.14. All notions of tangency are invariant under co-ordinate

changes.

Proof: Let F be a foliation on X, let π : X ′ → X be a surjective map,

with X ′ smooth, and suppose C ⊂ X is strongly tangent to F . So Jm(C) ⊂
Jm(F), for all m ∈ N. Then by Propositions 6.20 and 9.2,

Jm(π−1(C)) = π−1
m (Jm(C)) ⊂ π−1

m (Jm(F)) = Jm(π−1(F)),

for all m ∈ N. So π−1(C) is strongly tangent to π−1(F). A similar argument

holds if C is weakly tangent or fully tangent.

Now suppose C = V(g1, . . . , gk) is a solution for F . For each ωl defining

F , we have

π∗ωl|π−1(C) = π∗(ωl|C) = π∗((fidg1 + · · ·+ fkdgk)|C),

where the fi are holomorphic. This in turn equals

(π∗f1π
∗dg1 + · · ·+ π∗fkπ

∗dgk)|π−1(C) ∈ (d(g1 ◦ π), . . . , d(gk ◦ π))|π−1(C).

53



So π−1(C) is a solution for π−1(F).

Suppose F is codimension-1, and given by ω, and let C = V(f) be an

integral hypersurface. Then ω ∧ df = fη, for some holomorphic 2-form η.

Then

π∗ω ∧ d(f ◦ π) = π∗ω ∧ π∗df = π∗(ω ∧ df) = π∗(fη) = (f ◦ π)π∗η.

So π−1(C) is an integral hypersurface for π−1(F).

Corollary 9.15. Suppose π : X ′ → X is a proper birational morphism (for

example, a sequence of blow-ups in smooth centres), and suppose, for some

C ⊂ X, that π−1(C) is strongly tangent (respectively, weakly tangent, respec-

tively, fully tangent) to π−1(F). Then C is strongly tangent (respectively,

weakly tangent, respectively, fully tangent) to F .

Similarly, if C ⊂ X ′ is strongly tangent (respectively, weakly tangent,

respectively, fully tangent) to π−1(F), then π(C) is strongly tangent (respec-

tively, weakly tangent, respectively, fully tangent) to F .

Proof: Suppose first that π−1(C) is strongly tangent to π−1(F). Then for

all m ∈ N, Jm(π−1(C)) ⊂ Jm(π−1(F)). By Propositions 6.20 and 9.2 we

then have π−1
m (Jm(C)) ⊂ π−1

m (Jm(F)). By Proposition 6.18, πm is surjective,

and so Jm(C) ⊂ Jm(F), for all m ∈ N; that is, C is strongly tangent to F .

In the second case, if C is strongly tangent to π−1(F), then for all

m ∈ N, Jm(C) ⊂ Jm(π−1(F)) = π−1
m (Jm(F)), and hence πm(Jm(C)) ⊂

πm(π−1
m (Jm(F))). By Proposition 6.18, πm is surjective, and so by Corol-

lary 6.21 we have Jm(π(C)) ⊂ Jm(F), for all m ∈ N. So π(C) is strongly

tangent to F .

The cases for weakly tangent and fully tangent are proved in the same

way.

Proposition 9.16. Let F be a codimension-1 foliation on X. A union

of integral hypersurfaces is also an integral hypersurface. The irreducible

components of an integral hypersurface are integral hypersurfaces.

Proof: Suppose F is given by ω, and V(f) and V(g) are integral hypersur-

faces. Then ω ∧ df = fη1, ω ∧ dg = gη2. So

ω∧d(fg) = ω∧(gdf+fdg) = gω∧df+fω∧dg = gfη1 +fgη2 = fg(η1 +η2).
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Therefore V(fg) = V(f) ∪V(g) is an integral hypersurface.

Conversely, if S is an integral hypersurface with multiple components,

denote one of them by V(f), so that S = V(fg); we can assume f and g are

coprime. Then we have ω∧(gdf+fdg) = fgη, and so gω∧df = f(gη−ω∧dg).

Now g | (fω ∧ dg), and by coprimality of f and g, g | ω ∧ dg. Hence

ω ∧ df = f(η − 1
gω ∧ dg), where the latter is holomorphic. So V(f) is an

integral hypersurface.

Proposition 9.17. The union of weakly tangent schemes to a foliation F
is weakly tangent to F .

Proof: Let C1, C2 be two weakly tangent schemes. If they are disjoint, then

clearly their union is weakly tangent. If not, we notice that for x ∈ C1 ∩C2,

J1(C1 ∪ C2, x) = J1(C1, x) + J1(C2, x), where the addition is addition of

spaces of tangent vectors. As J1(Ci, x) ⊂ J1(F , x), i = 1, 2, it follows that

J1(C1 ∪ C2, x) ⊂ J1(F , x). Hence C1 ∪ C2 is weakly tangent.

Remark 9.18. Note that this does not hold for strongly tangent schemes:

Let X = A2, F be given by ω = ydx − xdy, C1 = V(xy), and C2 =

V(y − x). C1 and C2 are both strongly tangent, but C1 ∪ C2 is not: It has

x = t+ t2 + t3, y = t+ 2t2 + t3 as a 3-jet over the origin, which does not lie

in J3(F , 0), by the calculations in Example 9.9.

We now look at equivalences between the notions of tangency. First off,

clearly anything fully tangent is strongly tangent, and anything strongly

tangent is weakly tangent.

Lemma 9.19. Let F be a foliation on X and C ⊂ X a reduced solution for

F . Then C is strongly tangent to F .

Proof: Let gr(x1, . . . , xn), r = 1, . . . , k be the defining equations of C in

a local co-ordinate system, and (aij) ∈ Jm(C), that is, (aij) is a tuple of

complex numbers defining the morphism τ : SpecC[t]/(tm+1) → C ⊂ X.

Then gr ◦ τ = gr(
∑m

j=0 a1jt
j , . . . ,

∑m
j=0 anjt

j) ∈ (tm+1), and τ∗dgr = d(gr ◦
τ) = 0 ∈ ΩSpecC[t]/(tm+1). As C is a solution for F , all the 1-forms ωl

determining F satisfy ωl|C ∈ (dg1, . . . , dgk)|C , hence ωl|C pulls back to 0

too. As Im(τ) ⊂ C, and the inclusion C → X is a monomorphism, it follows

that τ∗ωl = 0, and hence (aij) ∈ Jm(F).
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Proposition 9.20. Let F be a foliation on X, let U ⊂ X be the smooth

locus of the foliation, and let C ⊂ X be a reduced subspace. Then:

(1) C ∩ U is weakly tangent to F if and only if it is strongly tangent if

and only if it is a solution if and only if it is contained in a disjoint union

of finitely many leaves;

(2) If C is of leaf dimension and C is weakly tangent to F , then C ∩ U
is fully tangent (and a solution);

(3) If F is codimension 1, and C is a hypersurface, then C ∩ U is an

integral hypersurface if and only if it is a solution.

Proof: We start by looking at the case where F is smooth (so U = X),

and is given by dx1, . . . , dxk. We note that the leaves of the foliation are

reduced, irreducible solutions, and so are strongly tangent.

(1) A disjoint union of finitely many leaves is a strongly tangent solution,

so if C is contained in a disjoint union of finitely many leaves, it too is a

strongly tangent solution. By definition, anything strongly tangent is weakly

tangent.

Suppose C is weakly tangent and irreducible. As the foliation satisfies

the conditions of Lemma 9.4, we have J1(C, x) ⊂ J1(F , x) = J1(Lx, x), for

each x ∈ C∩U , and where Lx is the unique leaf through x. So every tangent

vector of C is a tangent vector of one of the leaves. However, as C is reduced

and irreducible, these vectors must all be tangent to the same leaf, and so C

is contained in one of the leaves. Therefore any weakly tangent subscheme

is contained in a disjoint union of finitely many leaves.

Now suppose C is weakly tangent to F (but not necessarily irreducible).

Let g1, . . . , gs be the generators of C. By definition, J1(C) ⊂ J1(F), and so

(dx1, . . . , dxk) ⊂ (g1, . . . , gs, dg1, . . . , dgs).

Restricting to C yields

(dx1, . . . , dxk)|C ⊂ (dg1, . . . , dgs)|C .

So C is a solution for F .

Suppose now that C is a solution for F . It is reduced, and so is strongly

tangent by Lemma 9.19, and hence weakly tangent.

(2) If C is of leaf dimension, each component of C ∩ U must be equal
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to one of the leaves, and so be a solution. Therefore, C itself is a solution.

Further, the leaves are fully tangent, as the foliation satisfies the conditions

of Lemma 9.4.

(3) Suppose we are in the codimension-1 case (so F is generated by

dx1), and let V(f) be a reduced integral hypersurface for F . Then we have

dx1 ∧ df = fη for some 2-form η, hence f divides ∂f
∂xi

for i > 1. Therefore,

as f is represented as a power series, ∂f
∂xi

= 0, i > 1, and so f is dependent

only on x1. Hence V(f) is a disjoint union of leaves, so is a solution.

By part (2), a reduced hypersurface which is a solution is a union of

leaves, and hence an integral hypersurface, as each leaf is an integral hyper-

surface.

Now for the general case, the foliation restricted to its smooth locus

is locally isomorphic to a smooth foliation in the given co-ordinates; the

result follows from the local nature of the tangency definitions, and Propo-

sition 9.14.

Corollary 9.21. Reduced integral hypersurfaces of codimension-1 foliations

are weakly tangent.

Proof: From the proposition, a reduced integral hypersurface is a solution

over the smooth locus, and so is weakly tangent over the smooth locus. It

is also weakly tangent over the singular locus, as for x ∈ SingF , J1(F , x) =

J1(X,x), so we are done.

Non-reduced integral hypersurfaces also exist: If V(f) is an integral

hypersurface, so is V(f r), r ∈ N. (Set f = g in the proof of the first part of

Proposition 9.16). We can also thicken single components.

Conversely, if V(f r) is an integral hypersurface, so is V(f):

ω ∧ d(f r) = f rη ⇒ rf r−1ω ∧ df = f rη ⇒ ω ∧ df = f
1

r
η.

Corollary 9.22. If C ⊂ X is reduced, irreducible subspace, which is weakly

tangent to F and of the same dimension as the leaves, then C is a solution.

Proof: By the proposition, C∩U is a solution, where U is the smooth locus;

as C is reduced and irreducible, it is the closure of C ∩ U , and so is itself a

solution.
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Proposition 9.23. Let F be a foliation given by 1-forms ω1, . . . , ωr, and

F ′ the unsaturated foliation given by fω1, . . . , fωr, for some holomorphic

function f . If C = V(g1, . . . , gk) is tangent to F , for any of the notions of

tangency given in Definition 9.10, then C ′ = V(fg1, . . . , fgk) is tangent to

F ′.

Proof: If C is a solution for F , then ωl|C ∈ (dg1, . . . , dgk)|C , for all l. Hence

(fωl)|C ∈ (fdg1, . . . , fdgr)|C = (d(fg1), . . . , d(fgk))|C ,

and (fωl)|V(f) = 0 ∈ (d(fg1), . . . , d(fgk))|V(f); so C ′ is a solution for F ′.
In codimension 1, if C = V(g) is an integral hypersurface for F , then

ω ∧ dg = gη, and hence

fω ∧ d(fg) = fω ∧ (gdf + fdg) = fgω ∧ df + f2gη = fg(ω ∧ df + fη).

So C ′ is an integral hypersurface for F ′.
Now suppose C is strongly tangent to F . We can work pointwise: We

choose a point x ∈ C —without loss of generality, we may assume f(x) = 0;

otherwise, the local nature of the jet space construction makes the result

trivial.

We work with the derivative description of the jets. By our hypothesis,

we have for all m

V(ωl, Dωl, . . . , D
m−1ωl)|x ⊃ V(gj , Dgj , . . . , D

mgj)|x = V(Dgj , . . . , D
mgj)|x,

1 ≤ l ≤ r, 1 ≤ j ≤ k.

Now, by the product rule, and in analogy with the jets ofV(xy), Jm(F ′, x)

is the union of the sets cut out by the equations

Df = · · · = Dm−1f = 0, Df = · · · = Dm−2f = ωl = 0, . . . ,

Df = ωl = · · · = Dm−3ωl = 0, ωl = Dωl = · · · = Dm−2ωl = 0,

each restricted to the point x, where 1 ≤ l ≤ r.
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Similarly, Jm(C ′, x) is the union of the sets cut out by the equations

Df = · · · = Dm−1f = 0, Df = · · · = Dm−2f = Dgj = 0, . . . ,

Df = Dgj = · · · = Dm−2gj = 0, Dgj = · · · = Dm−1gj = 0,

each restricted to the point x, where 1 ≤ j ≤ k. From the hypothesis, we

see that Jm(C ′, x) ⊂ Jm(F ′, x), so we are done.

The cases for weak tangency and full tangency use the same argument.

Corollary 9.24. Let X = lim−→Xλ be a direct limit of formal schemes. If

each Xλ is strongly tangent to a foliation F , then X is also strongly tangent

to F .

Proof: Jm(X,x) =
⋃
λ∈Λ Jm(Xλ, x) ⊂ Jm(F , x), by strong tangency of the

Xλ. Hence X is strongly tangent.

9.4 Separatrices and Dicriticality

Definition 9.25. Let F be a singular foliation on a manifold X. A separa-

trix is a reduced, irreducible complex subspace of X, of dimension equal to

that of the leaves of F , which intersects the singular locus and is strongly

tangent to the foliation.

Remark 9.26. A separatrix is in fact the closure of a leaf of the foliation

that extends holomorphically through the singular locus, and so is a solution

for the foliation. In the codimension 1 case, it is an integral hypersurface.

Remark 9.27. In the literature, separatrices are only defined for codimension-

1 foliations, as either the holomorphic closure of a leaf through the singular

locus, or as a reduced, irreducible integral hypersurface intersecting the sin-

gular locus. By Lemma 9.19 and Corollary 9.22, we can relax the require-

ment that a separatrix be strongly tangent to requiring only weak tangency,

and so in the codimension-1 case these definitions are all equivalent.

Remark 9.28. We also allow for formal separatrices, which are formal sub-

schemes of X strongly tangent to the foliation (and which are reduced,

irreducible, of leaf dimension, and which intersect the singular locus).
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Example 9.29. Consider the foliations on X = A2 given by the following

1-forms:

(1) ω = ydx+ xdy. This has separatrices {x = 0} and {y = 0}.
(2) ω = ydx− xdy. Here every line through the origin is a separatrix.

(3) ω = ydx−(x+y)dy. The only separatrix is {y = 0}. The other leaves

of the foliation cannot be extended holomorphically through the origin, so

do not satisfy the definition.

(4) ω = (y − x)dx − x2dy. This has one convergent separatrix, {x =

0}. It also has a formal separatrix, given by the formal power series y =∑∞
k=0 k!xk+1.

We now give some results on the existence of separatrices. We henceforth

assume that X is quasi-compact, and the foliation is codimension-1, and

generated by an algebraic 1-form. (So in particular the singular locus has

finitely many irreducible components.)

Theorem 9.30. [4] Suppose dimX = 2. Then any foliation on X has a

separatrix.

The same is not true in higher dimensions: Let X = A3, and, for m ≥ 2,

let Fm be the foliation given by

ωm = (xmy − zm+1)dx+ (ymz − xm+1)dy + (zmx− ym+1)dz.

Then none of the foliations Fm have any separatrices at the origin. (See

[20]).

To proceed, we introduce the following notion:

Definition 9.31. A codimension-1 foliation F on X is said to be dicritical

if there exists a sequence of blow-ups in smooth centres, where the centre of

each blow-up is contained in the singular locus, after which a component of

the exceptional divisor is transversal to the transformed foliation (that is, is

not an exceptional divisor).

Otherwise F is called non-dicritical.

Example 9.32. Let F be the foliation on A2 given by ω = ydx − xdy.

Then F is dicritical. Indeed, blowing up at the origin we get the form

−x2dv, which describes a foliation whose saturation is transversal to the

exceptional divisor.
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Proposition 9.33. [8, Theorem 4] Let F be a germ of a codimension-1

foliation on An. Then F is dicritical at 0 if and only if there exist a germ of

an irreducible surface Z, which is not tangent to F , and an infinite collection

of germs of distinct curves ((Γi, xi))i∈N such that:

(a) Each Γi is tangent to F , and contained in Z;

(b) Each xi is contained in SingF , with limxi = 0;

(c) For each i ∈ N, (Γi, xi) 6= (SingF , xi).

Remark 9.34. By taking n = 2, we see that a foliation on a surface is

dicritical if and only if it has infinitely many separatrices. In this case, the

germs of a countable subset of the separatrices can be taken as the Γi in the

proposition.

Example 9.35. The foliations Fm on A3 defined above are dicritical. In-

deed, blowing up at the origin we get the form

xm+2((umv − 1)du+ (vm − um+1)dv).

The exceptional divisor is seen to be transversal to the saturated foliation.

Theorem 9.36. [8, Theorem 5] Any non-dicritical foliation has a separa-

trix.

In [8] the theorem is given in terms of germs. However, if the germ of

the foliation has a germ of a separatrix, then expanding from a formal to an

open neighbourhood of the origin, we see that the hypersurface will still be

a separatrix to the full foliation.

Definition 9.37. Let F be a codimension-1 foliation on X. A hypersurface

V ⊂ X is said to be truly transversal to F if it is smooth, reduced and

irreducible; if it is not tangent to F ; and if the restriction foliation F|V is

saturated.

The condition that the restriction foliation is saturated means that V

does not contain any codimension-2 component of the singular locus, and

its intersection with any leaf has codimension at least 2. By taking hyper-

surfaces of sufficiently high degree, a truly transversal hypersurface can be

found through every point x ∈ X.

Proposition 9.38. A non-dicritical foliation on a quasi-compact manifold

has only finitely many separatrices.
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Proof: Suppose F has infinitely many separatrices (Lα)α∈A. We first as-

sume the Lα pass through a point x ∈ SingF .

Let V ⊂ X be a truly transversal hypersurface passing through x. As

each Lα is the closure of a leaf of F , Lα ∩ V is a leaf of F|V ; moreover

(Lα ∩ V )∩ (SingF ∩ V ) 6= ∅, and so each Lα ∩ V is a separatrix of F|V . (If

any of the Lα is a formal separatrix, then Lα ∩ V is a formal separatrix of

F|V . So F|V is a foliation with infinitely many separatrices on a manifold

of lower dimension.

We apply this procedure recursively, and get a surface W ⊂ X, not

tangent to F , such that F|W has infinitely many separatrices. Therefore

F|W is dicritical, and hence F is dicritical by [8, Proposition 5].

If the Lα cannot be taken to all pass through the same point, then they

pass through a sequence of points in the singular locus converging to a limit.

Take a non-tangent, irreducible hypersurface V containing these points. (It

need not be truly transversal). The intersections Lα ∩ V are separatrices

of F|V . Applying the procedure recursively to get a surface, we see that F
satisfies Case (V) of [8, Section 2.1]. By [8, Theorem 4], F is dicritical.
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10 Singularities of Codimension 1 Foliations

We now consider the case where X is a quasi-compact complex manifold,

and F is a codimension-1 foliation on X given by an algebraic 1-form. We

study the behaviour of the singular loci. In particular, we seek the best pos-

sible singularities, in order to provide an endpoint for a resolution process.

(Achieving a smooth foliation by repeated blowing up is often impossible.

For example, if F is the foliation of A2 given by ω = ydx+xdy, blowing up

at the origin yields a foliation with two singularities of the same type.)

In this section we introduce reduced and simple singularities, which turn

out to be the optimal singularities required. We use the jet spaces to char-

acterise their behaviour. We then state the known results about existence

of resolutions.

10.1 Preliminaries

Example 10.1. Let C = V(x1 · · ·xn) ⊂ An, n ≥ 2, and suppose m ≥ n.

Then, setting xi =
∑
aijt

j , we have

Jm(C, 0) =
⋃

j1+···+jn=m−n+1

⋂
1≤i≤n,1≤j≤ji

{aij = 0}.

Proof: We prove by induction on n. The base case n = 2 is proved in

Example 6.7.

For n ≥ 3 and m ≥ n, the co-efficient of tm, which vanishes for jets of

order m and higher, is

yn−1an,m−n+1 + ynan,m−n + yn+1an,m−n−1 + · · ·+ ym−1an,1,

where yj is the co-efficient of tj obtained from y = x1 · · ·xn−1. (Note that

y1 = · · · = yn−2 = 0.)

Then Jm(C, 0) is given by the union of the sets cut out by the equations

an,1 = an,2 = · · · = an,m−n+1 = 0, an,1 = · · · = an,m−n = yn−1 = 0, . . . ,

an,1 = yn−1 = yn = · · · = ym−2 = 0, yn−1 = yn = · · · = ym−1 = 0,

by the same argument as in Example 6.7.
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By the induction hypothesis, the equations yn−1 = · · · = yp = 0 give⋃
{a11 = · · · = a1j1 = · · · = an−1,1 = · · · = an−1,jn−1 = 0},

with the union taken over indices with j1+· · · jn−1 = p−(n−1)+1 = p−n+2.

Now we have jn = m − 1 − p, and so j1 + · · · + jn = m − n + 1, as

required.

Now let x = (x1, . . . , xn) be a non-zero point of C; let I be the set of

indices of its non-zero entries. Let C ′ = V(
∏
i/∈I xi). Then Jm(C, x) =

Jm(C ′, 0).

10.2 The 2-dimensional Case

Definition 10.2. Let F be a foliation on a smooth surface with an iso-

lated singularity at a point P , which can be taken to be the origin of some

co-ordinate chart. Let X be a vector field describing the foliation in a neigh-

bourhood of the origin; let λ1, λ2 be the eigenvalues of the linear part of X .

If one of these eigenvalues, λ2 say, is non-zero, and the ratio λ = λ1
λ2

is not

a positive rational number, then the singularity is said to be reduced.

If in addition, λ /∈ (−∞, 0], the foliation is said to be in the Poincaré

domain.

If λ ∈ (−∞, 0), the foliation is said to be in the Siegel domain.

If λ = 0, the singularity is called a saddle-node.

Theorem 10.3. Let F be a foliation on a smooth surface X given locally

by a 1-form ω. Then a singular point P is reduced if and only if Jm(F , P ) is

isomorphic to Jm(V(xy), 0), for all m ∈ N. If the singular point is reduced,

then choosing formal co-ordinates at P , the separatrices of F are given by

x = 0 and y = 0, and their union is fully tangent.

Proof: As all the singularities are isolated, we consider each in turn, and

may assume that P = 0 in some co-ordinate system. We restrict to a neigh-

bourhood of 0 on which the foliation is given by a vector field X , whose linear

part has eigenvalues λ1, λ2. Then, taking a formal co-ordinate system at 0,

we write ω in one of the formal normal forms from Section 8.5. Throughout

the proof, though we are using formal co-ordinate changes, we can assume

the induced isomorphisms on the jet fibres converge by Corollary 9.3.

(A) The reduced cases. Here we may assume that λ2 6= 0; let λ = λ1
λ2

.
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Case 1: λ ∈ C \ ((−∞, 0] ∪Q+) (Poincaré domain): ω = ydx− λxdy.

We set x =
∑
ait

i, y =
∑
bit

i, dx = (
∑
iait

i−1)dt, dy = (
∑
ibit

i−1)dt,

as in the examples in Section 9.2. Expanding out ydx − λxdy = 0, we see

that the co-efficient of tk (which vanishes for jets of order k+ 1 and higher)

is
∑k

j=1(k − j + 1 − jλ)bjak+1−j . Since λ /∈ Q+, none of the co-efficients

in these sums vanishes; we then see that the result holds in this case, from

Example 10.1.

Case 2.1: λ ∈ R− \ Q− (Siegel domain): ω = ydx − λxdy. Same proof

as above.

Case 2.2: λ = −p
q ∈ Q

−, p, q ∈ N coprime (Siegel domain):

ω = −λy(1 + g2(xpyq))dx+ x(1 + g1(xpyq))dy, gi ∈ m̂1.

We start by noting that for foliations given by 1-forms of the form

xmyndy, where m ≥ 1,m+n ≥ 2, the co-efficient of tk is zero for k < m+n.

By symmetry, a similar result holds for the 1-forms xmyndx. Now in this

case, we have ω = xdy − λydx+
∑
ωl, where the ωl are of the above forms.

Let k be the smallest integer where the ωl contribute a non-zero co-efficient

for tk. Then for m ≤ k, the m-jets of the foliation above the origin are equal

to Jm(V(xy), 0).

Let K ≥ k, and suppose the result holds for jets of lower order. Then we

have the relations b1 = · · · = bj = a1 = · · · = aK−1−j = 0 for 0 ≤ j ≤ K−1.

Every summand in the co-efficient of tK contributed by the ωl is of the

form rai1 · · · aimbj1 · · · bjnar or rai1 · · · aimbj1 · · · bjnbr, where the sum of the

indices equals K. The equalities from the lower order jets necessarily cause

these contributions to vanish: If such a summand is not annihilated by one

of the strings of equalities, it must have b terms only of index ≥ j + 1 and

a terms only of index ≥ K − j, contradicting that the sum of the indices is

K. Therefore they do not affect the equations of the (K + 1)-jets, and so

we have JK+1(F , 0) = JK+1(V(xy), 0); the result follows by induction.

Case 3: λ = 0 (saddle-node): ω = (x(1 + νyl))dy − yl+1dx, ν ∈ C, l ∈ N.

Noting that the equation xdy = 0 gives the same jets above the origin

as xy = 0 (setting λ = 0 in Case 1), this case reduces to the one above, so

we are done.

For the result on the separatrices, see [3, Section 1.1]. The union of the

separatrices is C = V(xy), and so Jm(C, 0) = Jm(F , 0). Other points of C

are in the smooth locus of the foliation, and so C is fully tangent.

(B) The non-reduced cases.
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Case 4.1: The linear part of X is zero: ω = p(x, y)dx+q(x, y)dy, ord p ≥
2, ord q ≥ 2.

We see that J2(F , 0) = A4, and so is not isomorphic to J2(V(xy), 0).

Case 4.2: λ1 = λ2 = 0, but the linear part of X is non-zero (cuspidal

case): ω = ydy − (p(x) + yq(x))dx, ord p ≥ 2, ord q ≥ 1.

Then J2(F , 0) = V(b1) ⊂ A4, which has one fewer component than

J2(V(xy, 0)), so there is no isomorphism.

Henceforth we assume λ2 6= 0.

Case 5: λ1 = λ2: ω = ydx− xdy or ω = ydx− (x+ y)dy, as in this case,

X is linearisable, that is, formally equivalent to a linear vector field.

We have calculated the jets at the origin in these cases (Examples 9.9

and 9.7), and we see there is no isomorphism to Jm(V(xy), 0).

Case 6: λ1
λ2
, λ2λ1 /∈ Z: ω = ydx− λxdy, λ = λ1

λ2
, since by Lemma 8.23, the

pair (λ1, λ2) is non-resonant, so X is linearisable.

Jm(F , 0) is cut out by the equations
∑K

j=1(K− j+1− jλ)bjaK+1−j , 1 ≤
K ≤ m−1. For m < λ1+λ2, none of the co-efficients in these sums vanishes,

so we have Jm(F , 0) = Jm(V(xy), 0). For the jets of order m = λ1 +λ2, the

extra defining equation has a co-efficient of 0 for the bλ2aλ1 term, hence, as

for the order below, there is a component given by

b1 = · · · = bλ2−1 = a1 = · · · = aλ1−1 = 0,

which is of higher dimension than Jm(V(xy), 0), so there is no isomorphism.

Case 7: λ1
λ2

= r ∈ Z, r ≥ 2: ω = ydx− (rx+ ayr)dy, a ∈ C.

If a = 0, we are in the same case as above in terms of jets.

Let a 6= 0. We blow up the singularity. On the chart x = yt, we

get ω = y(ydt − ((r − 1)t + ayr−1)dy), which is of the same form. So we

take r iterated blow-ups. On one chart we have x = yrt. Then we have

ω = yr(ydt− ady), which gives a smooth (unsaturated) foliation with fully

tangent curve through the origin V(yr+1), by Proposition 9.23 applied to

the leaf V(y).

On the other charts, we have x = yju, 0 ≤ j ≤ r − 1, which gives

ω = yj(ydu− ((r − j)u+ ayr−j)dy), followed by y = ut. This gives

ω = uj+1tj(((1− r + j)t− aur−j−1tr−j+1)du− ((r − j)u+ aur−jtr−j)dt).

The linear part has ratio of eigenvalues 1−r+j
r−j ≤ 0, so the saturation is
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reduced. Therefore the unsaturated foliation has fully tangent curve through

the origin V(uj+2tj+1), by Proposition 9.23 applied to V(ut), which is fully

tangent by the argument for reduced foliations above.

Blowing back down, we see that the original foliation has fully tangent

curve C = V(yr+1, xy), by Corollary 9.15. Now Jr+1(V(yr+1), 0) = V(b1),

and so Jr+1(F , 0) = Jr+1(C, 0) = Jr+1(V(yr+1, 0) ∩ Jr+1(V(xy), 0) has one

fewer irreducible component than Jr+1(V(xy), 0), by Example 6.7, so there

is no isomorphism.

By reversing the roles of λ1 and λ2, the case where λ1
λ2

is the reciprocal

of a natural number reduces to the case above, and we are done.

10.3 The Higher Dimensional Case

When looking at singularities of higher dimensional foliations, we first in-

troduce the following concepts.

Definition 10.4. Let f : X → Y be a holomorphic map of complex man-

ifolds, and define the sheaf Ω1
X|Y to be the cokernel of the induced map

df : f∗Ω1
Y → Ω1

X . The dual of this sheaf is called the relative tangent sheaf

of f .

Definition 10.5. Let F be a foliation on a complex manifold X given

locally by a 1-form ω, (so in particular ω generates a saturated sheaf, and

ω∧dω = 0), and let x ∈ X. The dimensional type τ(F , x) is the codimension

in TxX of DF (x) = {X (x) | ω(X ) = 0}, where X is a germ of a vector field

at x.

Remark 10.6. The space DF (x) can also be defined for foliations F of

higher codimension.

Proposition 10.7. Let F be a codimension-1 foliation on X, and let x ∈ X.

The dimension type τ(F , x) is the minimal number of formal co-ordinates

needed to write a generator ω of the foliation in a neighbourhood of x.

Remark 10.8. This result is used without proof in many papers, including

[6]. We give a proof below, making use of the following lemma.

Lemma 10.9. Let F be a codimension-1 foliation on X, and let x ∈ X.

Then in a neighbourhood of x, F is the cylinder over a foliation on a τ(F , x)-

dimensional submanifold of X.
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Proof of Lemma 10.9: Let r = dimDF (x). We use induction on r. If r = 0,

then we write F as the trivial cylinder over itself, and there is nothing to

prove.

Suppose r ≥ 1. Then there is a holomorphic vector field X in a neigh-

bourhood of x which is tangent to F and does not vanish at x. We can choose

holomorphic co-ordinates (x1, . . . , xn) at x such that x = (0, . . . , 0) ∈ Cn and

X = ∂
∂x1

. Let π : Cn → C be the projection onto the first co-ordinate.

Let F ′ ⊂ F be the subsheaf of vector fields also tangent to the fibres of

π. The leaves of F containing the integral curves of X intersect the fibres of

π transversally, so F ′ is saturated. As both F and the relative tangent sheaf

of π are integrable, so is F ′. The flow generated by X maps the smooth

part of F to itself; by normality, this extends to all of F . The fibres of π

are also mapped to each other by X , and so F ′ is invariant under the flow

of X . Thus F is a cylinder over F|π−1(0).

Now as F ′ is a subsheaf of F , we have DF|π−1(0)
(0) = DF ′(0) ⊂ DF (0).

DF ′(0) does not contain X ; by the cylindrical structure of F , all the vector

fields in DF can be written as the sum of a multiple of X and a vector field

tangent to the restriction. Hence dimDF ′(0) = r − 1.

By induction, F|π−1(0) is a cylinder over a foliation on a submanifold of

π−1(0) of dimension (n− 1)− (r− 1) = n− r. As F itself is a cylinder over

this foliation, we have the result.

Proof of Proposition 10.7: Let t be the minimum number of formal co-

ordinates needed to write ω. By the lemma, we have t ≤ n − r = τ(F , x).

Indeed, the flows φ1, . . . , φr of the vector fields ∂
∂z1

, . . . , ∂
∂zr

tangent to F
map ω to itself, because of the cylindrical structure, so ω(φi,t(z) = ω(z).

Also d(φi,t(zj)) = dzj .

Hence the co-efficient functions of ω =
∑n

i=1 fidzi only depend on

zr+1, . . . , zn. Finally, ω( ∂
∂zi

) = 0, i = 1, . . . , r, and so fj = 0, j = 1, . . . , r.

If z1, . . . , zn is a system of co-ordinates at x, and ω can be written in

terms of just the first t co-ordinates, then ∂
∂zt+1

, . . . , ∂
∂zn

annihilate ω at x.

So r ≥ n− t.

Proposition 10.10. Let F be a codimension-1 foliation on X, defined by

ω, and let x ∈ X. Then τ(F , x) = 1 if and only if x ∈ X \ Sing(F).

Proof: If τ(F , x) = 1, then by Proposition 10.7 there are co-ordinates in a

neighbourhood of x such that ω is given only in terms of the first co-ordinate
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x1. There is only one such form yielding a saturated sheaf, namely dx1, and

so the foliation around x is smooth.

Conversely, if x is a smooth point of the foliation, then by Frobenius’

theorem F is given by the form dx1 in some neighbourhood of x, and so

τ(F , x) = 1.

Example 10.11. Let X = A3, and let F be given by ω = yzdx + xzdy +

xydz. The singular locus is the union of the three co-ordinate axes. The form

ω is annihilated only by the vector fields in the span of x ∂
∂x−y

∂
∂y , x

∂
∂x−z

∂
∂z .

All these vector fields vanish at the origin, so we have τ(F , 0) = 3.

We now consider the singular point p = (0, 0, 1). We see that DF (p) is

spanned by ∂
∂z , and so τ(F , p) = 2. By symmetry, all other points of the

singular locus have dimensional type 2. The points of the smooth locus have

dimensional type 1.

Let F be a codimension 1 foliation on a complex manifold X, let x ∈ X
be a point with dimensional type t = τ(F , x), and let E be a normal crossings

divisor of X through x with each component tangent to F .

Proposition 10.12. In this setting, E has at most t components through

x.

Proof: In a neighbourhood of x, F is a cylinder over a foliation on a t-

dimensional subspace of X. As each component of E is tangent to F , E

is a cylinder over an SNC divisor of this subspace, and so has at most t

components.

Taking appropriate holomorphic co-ordinates at x, as in [6, Section 4],

there is a subset A ⊂ {1, . . . , t} such that we can write E = V(
∏
i∈A xi),

and the foliation is generated by

ω =

(∏
i∈A

xi

)∑
i∈A

bi
dxi
xi

+
∑

i∈{1,...,t}\A

bidxi

 ,

where bi = bi(x1, . . . , xt) are germs of holomorphic functions without com-

mon factor. Indeed, as the dimensional type is t at x, we can write ω in

the first t co-ordinate as ω =
∑

i∈A fidxi +
∑

i/∈A fidxi. As the components

of E are tangent, we have xi | fj , for all i ∈ A and all j 6= i. Setting

bi = fi∏
j∈A,j 6=i xj

yields the result.
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Proposition 10.13. Let F be a foliation on X, and let E be an SNC divisor

with each component tangent to F . Then E itself is a solution for F .

Proof: We choose holomorphic co-ordinates so E and F are given in the

form above. If E = V(
∏
i∈A xi), then for each component V(xi) of E, we

have ω|xi=0 = bid(
∏
i∈A xi)|xi=0, and the result follows.

It follows from Lemma 9.19 that E is strongly tangent.

Lemma 10.14. Let F be a foliation on X given by ω and let C ⊂ X be a

smooth irreducible hypersurface. Suppose for some point x ∈ C, Jm(C, x) ⊂
Jm(F , x), for all m. Then C is a solution for F .

Proof: We choose a co-ordinate system around x so that x = 0 and C =

V(x1). We write ω = b1dx1 + · · ·+ btdxt, for holomorphic functions bi. If C

is not a solution, then there exists i > 1 such that x1 does not divide bi.

Using the derivation description of the jet spaces (see Section 6.4 and

Section 9.1), we have that Jm(F , 0) = V(ω,Dω, . . . ,Dm−1ω, x1, . . . , xn). As

ω is not a multiple of x1, for high enough m, Dmω has summands containing

no xk terms for k > 1, and no Djx1 terms, contradicting that

V(x1, Dx1, . . . , D
mx1, x2, . . . , xn) ⊂ Jm(F , 0), ∀m.

Corollary 10.15. The same result holds if C is an SNC divisor with smooth

components.

Proof: Each component of C satisfies the conditions of the above lemma, so

is a solution for F . As C is SNC, it too is a solution by Proposition 10.13.

Definition 10.16. [6, Section 4] Let F be a codimension-1 foliation on a

complex manifoldX, let x ∈ X be a point with dimensional type t = τ(F , x),

and let E be a normal crossings divisor of X through x with each component

tangent to F . We write the generator of the foliation in the form

ω =

(∏
i∈A

xi

)∑
i∈A

bi
dxi
xi

+
∑

i∈{1,...,t}\A

bidxi

 ,

with the bi holomorphic.
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The adapted order is ν(F , E;x) = min{ordx bi}.
The adapted multiplicity µ(F , E;x) is the order at x of the ideal gener-

ated by

{bi}i∈A ∪ {xjbi}i/∈A,j=1,...,n,

that is, the minimum of the orders at x of all the functions in the ideal.

Remark 10.17. As composition with an invertible holomorphic function

does not change the order, the adapted order and adapted multiplicity are

independent of the normal form chosen.

Definition 10.18. [6, Definition 4] In the above situation, x ∈ SingF is a

pre-simple singularity of F adapted to E if and only if one of the following

occurs:

ν(F , E;x) = 0;

ν(F , E;x) = µ(F , E;x) = 1, and for some i ∈ A, the linear part of bi

does not depend only on {xi | i ∈ A}.

Proposition 10.19. [6, Proposition 12] Let x ∈ SingF be a pre-simple sin-

gularity (that is, pre-simple adapted to some SNC divisor E), with τ(F , x) =

t. Then in a formal co-ordinate system x1, . . . , xn at x, F is locally generated

by a 1-form in one of the following normal forms:

(A): ω = x1 · · ·xt(
∑t

i=1 λi
dxi
xi

), λi ∈ C∗;
(B): ω = x1 · · ·xt(

∑k
i=1 pi

dxi
xi

+ Ψ(xp11 · · ·x
pk
k )
∑t

i=2 λi
dxi
xi

), where 1 ≤
k ≤ t, 1 ≤ p1, . . . , pk ∈ N (we can assume them to have no common factor),

λi ∈ C, with λk+1, . . . , λt ∈ C∗, and Ψ ∈ m̂1, which we can assume to be

non-vanishing except at 0;

(C): ω = x2 · · ·xt(dx1 − x1
∑k

i=2 pi
dxi
xi

+ xp22 · · ·x
pk
k

∑t
i=2 λi

dxi
xi

), where

k ≥ 2, p2, . . . , pk ∈ N, and λi ∈ C, with λk+1, . . . , λt ∈ C∗.

These three cases are mutually exclusive; case (A) can be seen as case

(B) with k = 0.

In cases (A) and (B), we can take E = V(x1 · · ·xt); in case (C), we can

take E = V(x2 · · ·xt).
A 1-form ω in one of these normal forms is said to be of the form (A),

(respectively, (B) or (C)). A singular point x of a foliation F is said to be

of the form (A), (respectively, (B) or (C)), if in a neighbourhood of x, F is

generated by such a 1-form.
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Definition 10.20. A pre-simple singularity is simple if we are in the case

(A) or (B) above, and the tuple (λk+1, . . . , λt) is non-resonant in the sense

that for all maps φ : {k+1, . . . , t} → N0, not constantly zero,
∑t

j=k+1 φ(j)λj

6= 0.

Remark 10.21. If dimX = 2, then simple singularities correspond to re-

duced singularities.

Notation 10.22. Let In denote the set {(i, j) ∈ Z2 | 1 ≤ i < j ≤ n}.
For k < n, let Ink denote In \ {(1, k + 1), . . . , (1, n)}.

Let F be a foliation with a pre-simple singularity at the point x, with

τ(F , x) = t, and let U be an open (or formal) neighbourhood of the point on

which the foliation is given by one of the normal forms in Proposition 10.19

(written in the first t co-ordinates). Then, in cases (A) and (B), SingF∩U =⋃
(i,j)∈It{xi = xj = 0}, and in case (C), SingF∩U =

⋃
(i,j)∈Itk

{xi = xj = 0}.
If y ∈ SingF , we denote the number of the first t co-ordinates which

equal zero by z(y).

Lemma 10.23. Let F be a foliation with a pre-simple singularity of type (A)

or (B) at the point x, with τ(F , x) = t, and let U be an open (or formal)

neighbourhood of the point on which the foliation is given by one of the

normal forms in Proposition 10.19. Let y ∈ SingF . Then τ(F , y) = z(y).

Proof: Let ω be the 1-form generating F near x. If yi 6= 0, then ∂
∂xi

annihilates the 1-form at y. Thus τ(F , y) ≤ z(y). However, y lies in an SNC

divisor E with e(E, y) = z(y), hence the result holds by Proposition 10.12.

Definition 10.24. Let F be a foliation given locally by the 1-form ω =

b1(x1, . . . , xt)dx1 + · · ·+ bt(x1, . . . , xt)dxt. For a fixed point y = (y1, . . . , yt),

we define the 1-form

ωiy = b1(x1, . . . , yi, . . . , xt)dx1 + · · ·+ bi−1(x1, . . . , yi, . . . , xt)dxi−1+

bi+1(x1, . . . , yi, . . . , xt)dxi+1 + · · ·+ bt(x1, . . . , yi, . . . , xt)dxt;

denote by F iy the foliation generated by ωiy. Extra indices are added recur-

sively: ω
(i,j)
y = (ωiy)

j
y, etcetera, and the same for F (i,j)

y
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Lemma 10.25. Let F be a foliation given by ω, with a pre-simple singu-

larity at the point x, with τ(F , x) = t, and let U be an open (or formal)

neighbourhood of the point on which the foliation is given by one of the nor-

mal forms in Proposition 10.19. Let y ∈ SingF , and let I ⊂ {1, . . . , t} be

the list of indices of non-zero co-ordinates of y. Then F is generated in a

neighbourhood of y by ωIy.

Proof: If i ∈ I, then ∂
∂xi

annihilates ω at y. Then by the proof of Lemma 10.9,

in a neighbourhood of y, F is a cylinder over F|{xi=yi|i∈I}. This foliation is

given by the form ωIy .

Theorem 10.26. Let F be a codimension-1 foliation on X, and let x ∈
SingF be pre-simple singularity with τ(F , x) = t. Then x is a simple sin-

gularity if and only if there is an open (or formal) neighbourhood U 3
x such that in a local co-ordinate system on U , x = 0, SingF ∩ U ⊂
SingV(x1 · · ·xt), and Jm(F , y) is isomorphic to Jm(V(x1 · · ·xt), y) for all

y ∈ SingF ∩ U and all m ∈ N0.

Proof: First, by Proposition 10.19 we can choose a neighbourhood U of x

on which, by a formal co-ordinate change, we can write the generator ω in

one of the above normal forms, and say x = 0 and that the singular locus is

in the right form. Again, Corollary 9.3 says that the induced isomorphism

on the jet fibres converges.

In calculating the jets, we set xi =
∑
aijt

j , and so dxi = (
∑
jaijt

j−1)dt,

and we equate co-efficients to get the co-efficient of tj .

Now let us suppose x is a simple singularity. We have the following cases:

(A): The co-efficient that vanishes for jets of order m or higher at the

origin can be calculated as

∑
{(i1,...,it)|i1+···+it=m}

 t∑
j=1

λjij

 a1,i1a2,i2 · · · at,it .

By non-resonance of the λi, none of the co-efficients in the sum vanishes;

hence we have Jm(F , 0) = Jm(V(x1 · · ·xt), 0).

Now let y be some other singular point, lying in U , with τ(F , y) = s,

and with I the list of indices of its non-zero co-ordinates. Then Jm(F , y) =

Jm(FIy , 0). As ωIy =
∏

1≤i≤t,i/∈I xi(
∑

1≤i≤t,i/∈I λi
dxi
xi

) is also of the form (A),
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with the λi non-resonant, this in turn is isomorphic to Jm(V(x1 · · ·xs), 0) ∼=
Jm(V(x1 · · ·xt), y).

(B): We write ω = ω′ + Ψω′′. For m < p1 + · · ·+ pk + t− 1, (where the

notation is the same as in Proposition 10.19), the jets of order m are given

solely by the ω′ term. Write ω′ = xk+1 · · ·xtη, where η = p1x2 · · ·xkdx1 +

· · · + pkx1 · · ·xk−1dxk. This is of the form (A), and the tuple (p1, . . . , pk)

is non-resonant. Letting G denote the foliation generated by η, we have

Jm(G, 0) = Jm(V(x1 · · ·xk), 0), and hence Jm(F , 0) = Jm(V(x1 · · ·xt), 0) by

Proposition 9.23.

So for low order, Jm(F , 0) = {a11 = · · · = a1j1 = a21 = · · · = a2j2 =

· · · = at1 = · · · = atjt = 0 | j1 + · · ·+ jt = m− t+ 1}. Suppose this holds for

all orders m ≤ K. Now every summand in the co-efficient of tK contributed

by the Ψω′′ term is the product of p1 + · · · pk + t − 1 terms of the form

aij , where the sum of the second indices equals K. The equalities from the

lower order jets cause these terms to vanish; else there is a summand with

ai terms only of order > ji, contradicting that the sum of the indices is K.

Hence by induction, Jm(F , 0) = Jm(V(x1 · · ·xt), 0) for all m.

Again let y be some other singular point, lying in U , with τ(F , y) = s,

and with I the list of indices of its non-zero co-ordinates. Then Jm(F , y) =

Jm(FIy , 0). If I ⊃ {1, . . . , k}, then

ωIy =
∏

k+1≤i≤t,i/∈I

xi

 ∑
k+1≤i≤t,i/∈I

λi
dxi
xi


is of the form (A), with the λi non-resonant. Otherwise

ωIy =
∏

1≤i≤t,i/∈I

xi

 ∑
1≤i≤k,i/∈I

pi
dxi
xi

+

Ψ

 ∏
1≤i≤k,i/∈I

xpii
∏

1≤i≤t,i∈I
ypii

 ∑
2≤i≤t,i/∈I

λi
dxi
xi


is of the form (B). In either case, we have Jm(F , y) ∼= Jm(V(x1 · · ·xs), 0) ∼=
Jm(V(x1 · · ·xt), y).

Conversely, suppose that x is a pre-simple singularity that is not simple.

We again have the following cases:
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(A): Non-simplicity means that the tuple (λ1, . . . , λt) is resonant: Let

(r1, . . . , rt) be a tuple of non-negative integers (not all zero), such that∑t
i=1 riλi = 0. (We can choose the ri so that their sum is minimal among

all such tuples). Let K = r1 + · · ·+ rt.

Again, the co-efficient that vanishes for jets of order m or higher at the

origin is ∑
{(i1,...,it)|i1+···+it=m}

 t∑
j=1

λjij

 a1,i1a2,i2 · · · at,it .

For m < K, none of the co-efficients in the sum vanishes; hence we have

Jm(F , 0) = Jm(V(x1 · · ·xt), 0). For the jets of order K, the extra defining

equation has a co-efficient of 0 for the a1,r1a2,r2 · · · at,rt term, hence, as for

the order below, there is a component given by

a11 = · · · = a1,r1−1 = a21 = · · · = a2,r2−1 = · · · = at1 = · · · = at,rt−1 = 0,

which is of higher dimension than JK(V(x1 · · ·xt), 0), so there is no isomor-

phism.

(B): We have k < t − 1, otherwise the non-resonance condition on the

λi is trivial, and the singularity is automatically simple. Consider the point

y = (y1, . . . , yk, 0, . . . , 0), where yi 6= 0 for all i = 1, . . . , k. This is a singular

point with dimensional type t − k, and I = (1, . . . , k). The 1-form ωIy is of

the form (A) and is resonant. So we have

Jm(F , y) = Jm(FIy , 0) � Jm(V(x1 · · ·xt−k), 0) ∼= Jm(V(x1 · · ·xt), y)

for some m ∈ N.

(C): The point y = (0, 0, y3, . . . , yt), where yi 6= 0 for all i = 3, . . . , t, is a

singular point of dimensional type 2, about which the foliation is given by

ωIy for I = (3, . . . , t). Now ωIy = x2dx1 − (p2x1 − λ2
∏k
i=3 y

pi
i x

p2
2 )dx2, which

by Theorem 10.3, Case 7, does not yield jet spaces isomorphic to those of

an SNC divisor. The result follows.

Theorem 10.27. Let F be a codimension-1 foliation on X, and let x ∈
SingF be a singularity with τ(F , x) = t which is not pre-simple. Then

there exists a natural number m such that Jm(F , x) is not isomorphic to

Jm(V(x1 · · ·xt), 0).
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Proof: That x is not a pre-simple singularity means that for any SNC

divisor E ⊂ X, either E is not tangent to F , or x is not pre-simple adapted

to E.

Suppose there is a divisor E with t components through x and tangent

to F . Non-pre-simplicity implies that ν(F , E;x) ≥ 1, which means that the

unadapted order ν(F , ∅;x) ≥ t. Hence the co-efficients of the pullback of ω

under the map xi =
∑
aijs

j are zero for all k ≤ t, and so Jt(F , x) = Atn,

and there is no isomorphism to Jt(V(x1 · · ·xt), 0).

Now suppose our divisor E has t − 1 components: We can write it as

E = V(x1 · · ·xt−1). There are three cases for non-pre-simplicity:

(i) ν(F , E;x) ≥ 2;

(ii) µ(F , E;x) ≥ 2.

In both these cases we have ν(F , ∅;x) ≥ t, and so there is no isomorphism

as in the first case.

(iii) ν(F , E;x) = µ(F , E;x) = 1, and for all i = 1, . . . , t − 1, the linear

part of bi is independent of xt. Some of these linear parts are non-zero;

denote them by l1, . . . , ls (relabelling co-ordinates if necessary). Then the

equation defining the t-jets is

a1,1 · · · at−1,1

(
l1

(∑
ai,jt

j
)

+ · · ·+ ls

(∑
ai,jt

j
))

= 0.

This is either zero, or else gives t components in t − 1 variables—in either

case, there is no isomorphism to Jt(V(x1 · · ·xt), 0), which is SNC (see Ex-

ample 10.1).

Now suppose that the only SNC divisors tangent to F through x have

at most t − 2 components. If we have Jm(F , x) ∼= Jm(V(x1 · · ·xt), 0), then

by Corollary 10.15, the pre-image of V(x1 · · ·xt) under the isomorphism is

a solution for F , a contradiction.

Combining Theorems 10.26 and 10.27, we have:

Corollary 10.28. Let F be a codimension-1 foliation on X, and let x ∈
SingF be singularity with τ(F , x) = t. Then x is a simple singularity if

and only if there is an open (or formal) neighbourhood U 3 x such that in

a local co-ordinate system on U , x = 0, SingF ∩U ⊂ SingV(x1 · · ·xt), and

Jm(F , y) is isomorphic to Jm(V(x1 · · ·xt), y) for all y ∈ SingF ∩ U and all

m ∈ N0.
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Moreover, if x is simple, SingF ∩ U = SingV(x1 · · ·xt), and the union

of the separatrices of F at x is given by V(x1 · · ·xt), which is fully tangent

in U .

Remark 10.29. If we were to define simple singularities by the jet condi-

tion of Corollary 10.28, we could not then recover the normal forms from

Proposition 10.19. Indeed, if F1 and F2 are two foliations on X with the

same singular locus, and such that each singular point of either foliation is a

simple singularity, then we have Jm(F1, x) ∼= Jm(F2, x) for each x ∈ X and

each m ∈ N, and yet the global jet spaces are not isomorphic if the foliations

are given by different normal forms.

Definition 10.30. Let F be a singular codimension-1 foliation on X. A

resolution of singularities for F is a sequence of blow-ups f : X ′ → X, where

X ′ is a manifold and sat(f−1(F)) has only simple singularities.

Theorem 10.31. Let F be a singular codimension-1 foliation on X. Then

F is known to have a resolution of singularities in the following cases:

dimX = 2 [28];

dimX = 3 [7];

Remark 10.32. Resolution of singularities, along with the appropriate no-

tion of simple singularities, for codimension-2 foliations on a threefold (in

the category of stacks) have been defined and proved to exist in [24].
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11 Jets and Separatrices of Non-dicritical Codi-

mension 1 Foliations

Throughout this section, we assume that X is a quasi-compact complex

manifold, and that F is a codimension-1 foliation on X given by an algebraic

1-form. Unless stated otherwise, we assume that F is non-dicritical. In this

case, F has finitely many separatrices by Proposition 9.38

In this section, we begin by introducing the notion of the total sepa-

ratrix of a foliation F . We then prove a series of results culminating in

Theorem 11.15: that the existence of a desingularisation of the total sep-

aratrix is equivalent to the existence of a resolution of the foliation itself.

We then give some results and conjectures pertaining to the existence and

uniqueness of the total separatrix.

Definition 11.1. Let F be a foliation on X, and let Z be the union of the

separatrices of F . We define

C (F) = {Y ⊂ X | supp(Y ) = Z, Y is strongly tangent to F},

where the elements of C (F) are formal subschemes of X.

Remark 11.2. C (F) 6= ∅ if and only if Z itself is strongly tangent to F .

Lemma 11.3. If C (F) 6= ∅, then it has a maximal element.

Proof: By Corollary 9.24, all ascending chains of strongly tangent formal

subschemes through the singular locus have a strongly tangent upper bound,

namely, the direct limit; the result follows by Zorn’s lemma.

Definition 11.4. Such a formal scheme, if it exists, is called the total sep-

aratrix of F . It is the maximal strongly tangent formal scheme passing

through the singular locus.

A non-dicritical foliation with a total separatrix is called totally separable.

Lemma 11.5. If there exists a scheme C supported on the union Z of the

separatrices of F which is fully tangent to F , then C is the total separatrix.

Proof: As C is fully tangent and supported on Z, we have Jm(C) =

Jm(F)|Z , for all m ∈ N. For any scheme S supported on Z and strongly

tangent to F , we have for all m ∈ N that Jm(S) ⊂ Jm(F)|Z , and therefore
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Jm(S) ⊂ Jm(C), for all m ∈ N. As S and C have the same support, we have

that S ⊂ C by Lemma 6.28, and so C is maximal among all such schemes.

Therefore C serves as a total separatrix for F .

Example 11.6. If a foliation has a first integral, that is, it is generated by

a form ω = df for some function f , then it has total separatrix V(f). (See

Lemma 9.4). In particular, the total separatrix need not be irreducible.

Example 11.7. The foliation of the plane generated by ω = ydx−(x+y)dy

has total separatrix V(xy, y2). (See Example 9.7). So the total separatrix

need not be reduced.

Example 11.8. The foliation of the plane given by ω = (y − x)dx − x2dy

has total separatrix V(xy −
∑∞

m=0m!xm+2). So the total separatrix need

not be an ordinary scheme.

Lemma 11.9. Let S ⊂ X be a scheme. Let π : X ′ → X be a surjective

morphism of schemes, with S′ = π−1(S). Let Z ⊂ X ′ be a scheme with the

same support as S′, such that S′ is a strict subscheme of Z. Then S is a

strict subscheme of π(Z).

Proof: The scheme S′ is the fibre product S′ = S×XX ′. Clearly S ⊂ π(Z);

if there is equality, then the diagram

Z X ′

S X

π

commutes, and so by the universal property of fibre products, Z ∼= S′, a

contradiction. The conclusion of the lemma follows.

Lemma 11.10. Consider the function f : D → C, z 7→ zλ, for some λ ∈ C
with Reλ ≥ 0, and where D ⊂ C is an open domain on which the function

is well-defined, with 0 ∈ D̄. (For example, D can be taken as a slitted disc

∆ \ [0, 1].) If Reλ > 0, then limz→0 f(z) = 0. If Reλ = 0, then the limit is

undefined.

Proof: We write λ = a+ bi, a, b ∈ R, a ≥ 0, and the variable z as z = reiθ.

Then zλ = rarbieaiθe−θb. The limit as z tends to zero is the limit as r tends

to zero: The θ terms are non-zero and so do not contribute, and the term
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rbi = eb ln ri is non-zero but has no limit as r → 0. Therefore we consider

the ra term. If a > 0, then limr→0 r
a = 0, and so the limit for z is also zero.

If a = 0, then limr→0 r
a = 1; the limit for z is thus undefined.

Proposition 11.11. Pre-simple singularities of types (A) and (B) that are

not simple are dicritical.

Proof: We consider type (A) first. By a suitable choice of formal co-

ordinates, the foliation is given locally about the singular point by

ω = λ1x2 · · ·xtdx1 + λ2x1x3 · · ·xtdx2 + · · ·+ λtx1 · · ·xt−1dxt,

where there is a resonance relation
∑t

i=1 riλi = 0, ri ∈ N0.

Claim: Without loss of generality, we may assume that there is at least

one i ∈ {1, . . . , t} with Reλi > 0, and at least one with Reλi < 0.

Indeed, if all the real parts have the same sign, then as the resonance

relation also holds for the real parts, we must have ri = 0 whenever Reλi 6= 0.

The other λi have non-zero imaginary part, and as the imaginary parts also

satisfy the resonance relation, there must be at least one with Imλi > 0 and

at least one with Imλi < 0. As we can divide ω through by
√
−1, the claim

is proved.

Now ω has solutions of the form xλ11 · · ·x
λt
t = µ, µ ∈ C. Take a fixed

µ 6= 0. By the claim, we can re-arrange the equation so that on both sides,

the xλii terms have Reλi ≥ 0, with at least one strictly positive term. By

Lemma 11.10’s results on limits, it follows that the origin lies on this leaf.

As µ was arbitrary, we have that every leaf of the foliation passes through

the origin, and so is a separatrix. Therefore the foliation is dicritical about

the singularity.

For type (B), we note that the foliation is of type (A) around a compo-

nent of the singular locus, so we are done.

Proposition 11.12. Let F be a foliation, and let x be a singular point with

τ(F , x) = t, which is adapted to an SNC divisor E with t components but

not pre-simple. Then there are non-reduced schemes supported on E that

are strongly tangent to F in a neighbourhood of x.

Proof: In a neighbourhood of x, choose holomorphic co-ordinates so that

x = 0 and the components of the divisor are given by xi = 0. F is given by
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the 1-form

ω = x2 · · ·xtb1dx1 + x1x3 · · ·xtb2dx2 + · · ·+ x1 · · ·xt−1btdxt,

where bi = bi(x1, . . . , xt) are holomorphic functions of order at least 1. (See

Proposition 10.12.) We now blow up at the origin: For j = 1, . . . , t, the map

is given in the corresponding chart by xi = xjvi, i 6= j.

In the jth chart, the pre-image foliation is given by the form

xt−1
j

t∏
i=1,i 6=j

vi

∑
i 6=j

xjbi
dvi
vi

+ (b1 + · · ·+ bt)dxj

 ,

where bi = bi(xjv1, . . . , xjvj−1, xj , xjvj+1, . . . , xjvt). As the order of each bi

is at least 1, in the new co-ordinates we can factor out a further copy of xj .

It is clear that V(xj) is a solution for the transformed foliation, as is V(vi)

for all i 6= j—they are therefore strongly tangent by Lemma 9.19. These hy-

perplanes form the components of an SNC divisor, so by Propositions 10.13

and 9.23, we therefore have that V(v1 · · · vj−1x
t+1
j vj+1 · · · vt) is strongly tan-

gent to the transformed foliation. Blowing back down each chart by replac-

ing vi with xi
xj

, we see by Corollary 9.15 that V(x2
1x2 · · ·xt, . . . , x1 · · ·xt−1x

2
t )

is strongly tangent to F .

Lemma 11.13. Suppose a foliation F has total separatrix E, an NC divisor.

Then for each point x ∈ SingF , e(E, x) = τ(F , x) (where e(E, x) is the

number of local components of E through x).

Proof: Suppose not. Let τ(F , x) = t, and choose holomorphic co-ordinates

about x so that F is given by ω = b1dx1 + · · ·+ btdxt, where bi are holomor-

phic, and that x1 = 0, . . . , xk = 0, are the components of E through x. By

Proposition 10.12, we have e(E, x) ≤ τ(F , x), and so here we have k < t.

For 1 ≤ i ≤ k, we can write bi = x1 · · · x̂i · · ·xkb′i, where the hat denotes

omission; for i > k we can write bi = x1 · · ·xkb′i. Thus the vector fields

x2b
′
1

∂

∂x2
− x1b

′
2

∂

∂x1
, . . . , xkb

′
1

∂

∂xk
− x1b

′
k

∂

∂x1
,

b′1
∂

∂xk+1
− x1b

′
k+1

∂

∂x1
, . . . , b′1

∂

∂xt
− x1b

′
t

∂

∂x1
,

∂

∂xt+1
, . . . ,

∂

∂dxn

annihilate ω at x. As the dimensional type is t, we conclude that b′1(x) = 0.
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Using a different collection of vector fields, we also have that b′i(x) = 0, for

all i ∈ {2, . . . , k}, and hence ord bi ≥ 1, 1 ≤ i ≤ k.

We now blow up at x, with the charts given by xi = xjvi, i = 1, . . . , t.

If j ≤ k, then in the jth chart, the pre-image foliation is given by the

form

xk−1
j

 k∑
i=1,i 6=j

v1 · · · vj−1xjvj+1 · · · vkb′i
(
dvi
vi

+
dxj
xj

)
+

v1 · · · vj−1vj+1 · · · vkb′jdxj +
t∑

i=k+1

v1 · · · vj−1xjvj+1 · · · vkb′i(xjdvi + vidxj)

)
.

As the order of each bi, 1 ≤ i ≤ k, is at least 1, in the new co-ordinates we

can factor out a further copy of xj . It is clear that V(xj) is a solution of the

transformed foliation, and hence strongly tangent by Lemma 9.19, as isV(vi)

for all i 6= j, i ≤ k. By Propositions 10.13 and 9.23, we therefore have that

V(v1 · · · vj−1x
k+1
j vj+1 · · · vk) is strongly tangent to the transformed foliation.

If j > k, then in the jth chart, the pre-image foliation is given by the

form

xkj

(
k∑
i=1

v1 · · · vkb′i
(
dvi
vi

+
dxj
xj

)
+

t∑
i=k+1,i 6=j

v1 · · · vkb′i(xjdvi + vidxj) + v1 · · · vkb′jdxj

 .

Again we see that V(v1), . . . ,V(vk) are strongly tangent to the trans-

formed foliation; so is V(xj), as we can factor out a copy of xj from each

of the bi, 1 ≤ i ≤ k. Thus by Propositions 10.13 and 9.23 V(v1 · · · vkxk+1
j )

is strongly tangent to the transformed foliation. Blowing back down each

chart, we see by Corollary 9.15 that

V(x2
1x2 · · ·xk, . . . , x1 · · ·xk−1x

2
k, x1 · · ·xkxk+1, . . . , x1 · · ·xkxt)

is strongly tangent to F , thus contradicting maximality of E.

Proposition 11.14. A foliation F has all singularities being simple if and

only if it is totally separable, and its total separatrix is a normal crossings

divisor.
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Proof: Suppose all singularities are simple. Then by Theorem 10.3 (for

dimX = 2) and Corollary 10.28 (for dimX ≥ 3), at each singular point

x, there exists an SNC divisor Ex, whose components are the separatrices,

and which is fully tangent on a neighbourhood of x. The Ex can be glued

together to give an NC divisor C, which is fully tangent to F . Thus C is

the total separatrix.

Conversely, if the total separatrix C exists and is NC, then by

Lemma 11.13, the number of local components of C through a singular

point x is τ(F , x). Proposition 11.12 excludes the case that x is non-pre-

simple; Proposition 11.11 excludes the case that x is pre-simple of type (A)

or (B) but not simple. Suppose x is pre-simple of type (C). Then there

exists a point y in a neighbourhood of x with τ(F , y) = 2 and e(C, y) = 1,

(see the proof of Theorem 10.26). This is a contradiction to Lemma 11.13,

so we have the result.

Theorem 11.15. Let F be a non-dicritical codimension-1 foliation on X.

Then F admits a resolution to simple (or reduced, if dimX = 2) singularities

if and only if F is totally separable, and its total separatrix C admits a

resolution to a normal crossings support divisor. In this case, the resolutions

can be assumed to be the same map.

Proof: Suppose C exists, and admits a log resolution π : X ′ → X. Let

F̂ = sat(π−1(F)). Suppose F̂ is given locally by the form ω, so that π−1(F)

is given by fω, for some holomorphic function f . If π−1(C) is given by the

function g, we let Ĉ be the complex space defined by g
f . (This is indeed

holomorphic, as f defines the non-reduced structure from the exceptional

divisors. We can recover π−1(C) from Ĉ by adding in the exceptional divi-

sors.)

Now Ĉ is SNC, and is strongly tangent to F̂ (by Proposition 10.13, as

each component is a separatrix and hence strongly tangent). Moreover, Ĉ is

the total separatrix. Indeed, if there exists a larger strongly tangent scheme

supported on Ĉ, then by Proposition 9.23, adding in the exceptional divisors

of π yields a scheme strongly tangent to π−1(F) and strictly larger than

π−1(C); by Corollary 9.15 blowing down yields a scheme strongly tangent

to F and strictly larger than C by Lemma 11.9, a contradiction.

Therefore by Proposition 11.14, F̂ has all singularities simple, so π is a

resolution of singularities for F .
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Conversely, suppose there is a resolution π : X ′ → X such that F̂ =

sat(π−1(F)) has only simple singularities. By Proposition 11.14, F̂ is to-

tally separable, and its total separatrix E is NC and fully tangent. By

Proposition 9.23, adding in the exceptional divisors of π yields a scheme

fully tangent to π−1(F); blowing down yields a scheme C, which is fully

tangent to F by Corollary 9.15, and hence the total separatrix for F by

Lemma 11.5, and which is resolved by π.

Corollary 11.16. If F admits a resolution, then its total separatrix is fully

tangent.

Definition 11.17. Let F be a codimension-1 foliation on X given by ω,

and suppose in the some co-ordinate chart we have 0 ∈ SingF . The germ

of F at 0, denoted F0, is given by writing ω in the germs of the co-ordinate

functions at 0. It is defined on the formal completion X̂0.

By choosing appropriate co-ordinates, we can define the germ of F at any

singular point. Now suppose F is totally separable, with total separatrix C,

and let P ∈ SingF . Then C∩X̂P is the total separatrix for the germ FP . It

satisfies the hypotheses of Theorem 6.29, and so admits a desingularisation.

By Theorem 11.15, FP can be desingularised (as a sheaf on the formal

completion).

Proposition 11.18. Let F be a non-dicritical codimension-1 foliation on

X. If F is totally separable, then its total separatrix C is fully tangent.

Proof: Choose a point P ∈ SingF . Then C ∩ X̂P is the total separatrix for

the germ FP . FP can then by desingularised, so by Corollary 11.16, C ∩ X̂P

is fully tangent to FP . Then for all m ∈ N

Jm(C,P ) = Jm(C ∩ X̂P , P ) = Jm(FP , P ) = Jm(F , P ).

As this holds for any singular point P , and C is clearly fully tangent over

the smooth locus, it follows that C is fully tangent to F .

Corollary 11.19. If F is totally separable, then the total separatrix is

unique.

Proof: Suppose C,C ′ are two candidates for the total separatrix. They are

both fully tangent, and both have the same support. Then for any x ∈
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C,m ∈ N, Jm(C, x) = Jm(F , x) = Jm(C ′, x). It follows from Lemma 6.28

that C = C ′.

It then remains to show whether the total separatrix indeed exists. By

Remark 11.2 and Lemma 11.3, this is equivalent to the union Z of the

separatrices of F being strongly tangent.

We introduce the following notation:

Notation 11.20. Let F be a non-dicritical codimension-1 foliation on X.

We denote by V(F) the set of hypersurfaces V ⊂ X which are truly transver-

sal to F . (See Definition 9.37).

We then have the following conjecture:

Conjecture 11.21. Let F be a non-dicritical codimension-1 foliation on

X, and let Z be the union of its separatrices. Then for each m ∈ N,⋃
V ∈V(F) Jm(Z) ∩ Jm(V ) is dense in Jm(Z).

Assuming Conjecture 11.21, we have the following:

Proposition 11.22. Let F be a non-dicritical codimension-1 foliation on

X, and let Z be the union of its separatrices. Then Z is strongly tangent to

F . In particular, F is totally separable.

Proof: We use induction on the dimension of X. If dimX ≤ 3, the result

holds by Theorems 10.31 and 11.15. Now assume dimX = n, and that the

result holds for foliations on manifolds of lower dimension. Let V be a truly

transversal hypersurface. Then Z ∩ V is a union of leaves of the foliation

F|V on V . By hypothesis, the union of all separatrices of F|V is strongly

tangent, and so any union of separatrices is strongly tangent. As leaves

which are not separatrices are disjoint, we have

Jm(Z) ∩ Jm(V ) = Jm(Z ∩ V ) ⊂ Jm(F|V ) = Jm(F) ∩ Jm(V ),

for each m ∈ N. Hence
⋃
V ∈V(F) Jm(Z) ∩ Jm(V ) ⊂ Jm(F). By Con-

jecture 11.21, we can take the closure on both sides, and have Jm(Z) ⊂
Jm(F).

Remark 11.23. A priori, we cannot assume that the total separatrix is

locally countably indexed, so total separability is not enough to prove desin-

gularisation.
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12 Dicritical Foliations

Let X be a quasi-compact complex manifold of dimension n, and let F be a

codimension-1 foliation on X given by an algebraic 1-form. In this section

we also allow for dicritical foliations.

Lemma 12.1. Let Y be a formal scheme supported on a point P ∈ X, and

let r ∈ N. Suppose that Jk(Y, P ) = Akn for all k ≤ r. Then P r+1 ⊂ Y .

Proof: Suppose Y is an ordinary scheme, and consider the intersection of

all schemes satisfying the condition on the jets. This is contained in Y .

P r+1 also satisfies the condition; by looking at the generators we see that

any proper subscheme of P r+1 does not. Therefore P r+1 is equal to the

intersection, and is contained in Y .

Now suppose Y = lim−→Yλ. By the proof of Theorem 6.29, one of the Yλ

satisfies the condition on the jets; hence P r+1 ⊂ Yλ ⊂ Y .

Proposition 12.2. Let Y be a formal scheme supported on a smooth hy-

persurface H ⊂ X, and let r ∈ N. Suppose that Jk(Y, x) = Akn for all k ≤ r
and all x ∈ H. Then Hr+1 ⊂ Y .

Proof: Let x ∈ H. Then for k ≤ r, Jk(Y ∩ X̂x, x) = Jk(Y, x)∩ Jk(X̂x, x) =

Akn. Then Y ∩X̂x satisfies the assumptions of Lemma 12.1, and so contains

xr+1. This holds for every point x ∈ H, so it follows that Y contains

Hr+1.

Lemma 12.3. Let F be a foliation, and suppose there is a fully tangent

formal scheme Y supported on the singular locus. Then for any sequence of

blow-ups π : X ′ → X, π−1(F) has a fully tangent formal scheme supported

on its singular locus.

Proof: By Proposition 9.14, π−1(Y ) is fully tangent to π−1(F), and is sup-

ported on its singular locus.

Assuming Conjecture 11.21, we have the following:

Proposition 12.4. Let F be a foliation on X. Then F is non-dicritical if

and only if there is a (unique) fully tangent formal scheme Y supported on

the singular locus Σ = SingF .
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Proof: Suppose F is non-dicritical. Then by Proposition 11.22, F admits a

total separatrix C, which by Proposition 11.18 is fully tangent. Then C∩X̂Σ

is fully tangent and supported on the singular locus.

If Y is another fully tangent formal scheme supported on Σ, then for

each m ∈ N and x ∈ Y , Jm(Y, x) = Jm(F , x) = Jm(C ∩ X̂Σ, x). As they

have the same support, it follows that Y = C ∩ X̂Σ.

Now suppose F is dicritical. Then there is a sequence of blow-ups π :

X ′ → X such that one of the exceptional divisors of π is transversal to the

leaves of sat(G), where G = π−1(F). On the smooth locus of sat(G) we

can write a generator as dx2 in some co-ordinate chart; as the exceptional

divisor is transversal to this, we can choose holomorphic co-ordinates on

some open set U ⊂ X ′, contained in the smooth locus of sat(G), such that

the underlying reduced scheme of the divisor is V(x1). Hence G is given by

the 1-form xr1dx2, for some r ∈ N.

Suppose there is a fully tangent formal scheme Y supported on SingF .

Then by Lemma 12.3, there is a formal scheme Y ′ fully tangent to G|U and

supported on H = V(x1). Now for k ≤ r, Jk(Y ′, x) = Akn, for all x ∈ H. So

by Proposition 12.2, Hr+1 = V(xr+1
1 ) ⊂ Y ′. However, Hr+1 is not strongly

tangent to G: The 2r + 1-jet given by x1 = t2, x2 = t, x3 = · · · = xn = 0 is

a jet in J2r+1(V(xr+1), 0) but not in J2r+1(G, 0). This is a contradiction, so

the formal scheme Y does not exist.

A candidate for the formal scheme Y in Proposition 12.4 can be con-

structed as follows:

Let F be a foliation on X with singular locus Σ. We define Sm(F)

to be the smallest formal subscheme supported on Σ such that Jk(F , x) ⊂
Jk(Sm(F), x) for all k ≤ m and all x ∈ Σ. We define the hull of jets to

be the formal scheme S (F) = lim−→Sm(F). As Sm(F) ⊂ Σm+1, we have

S (F) ⊂ X̂Σ.

Proposition 12.5. S (F) is the smallest formal scheme supported on Σ

such that Jk(F , x) ⊂ Jk(S (F), x) for all k ∈ N and all x ∈ Σ.

Proof: Let Y be another such formal scheme. For each m ∈ N, we have

Jk(F , x) ⊂ Jk(Y, x) for all k ≤ m and all x ∈ Σ. Hence Sm(F) ⊂ Y , for all

m ∈ N, and so S (F) ⊂ Y .
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We can then reformulate Proposition 12.4 as follows (again assuming

Conjecture 11.21):

Proposition 12.6. Let F be a foliation on X with singular locus Σ. Then

F is dicritical if and only if S (F) is not strongly tangent to F .

Proof: If F is dicritical, then by Proposition 12.4 there is no formal scheme

supported on Σ which is fully tangent. In particular, S (F) is not fully

tangent, and hence not strongly tangent.

Conversely, if S (F) is not strongly tangent, then by Proposition 12.5,

any formal scheme Y supported on Σ with Jm(F , x) ⊂ Jm(Y, x) for all

m ∈ N and all x ∈ Σ is not strongly tangent, and hence none of them is

fully tangent. By Proposition 12.4, F is dicritical.

If S (F) is strongly tangent, then F is non-dicritical. We have S (F) =

C ∩ X̂Σ, where C is the total separatrix. The codimension-1 components of

S (F) are the germs of the separatrices, so if we start with S (F) we can

reconstruct the total separatrix by taking the union with those separatrices

which are ordinary schemes.

Proposition 12.7. Let F be a dicritical foliation on X which has a res-

olution to simple singularities. Then there is a family of strongly tangent

subschemes (Cα)α∈A of X such that Jm(F , x) =
⋃
α∈A Jm(Cα, x), for all

m ∈ N and all x ∈ SingF .

Proof: We can take π to be a partial resolution of F , such that G =

sat(π−1(F)) is non-dicritical. Then G has a resolution to simple singularities

(by completing the resolution of F), and so by Theorem 11.15 is totally sep-

arable, with fully tangent total separatrix. Let D be the exceptional divisor

of π. As F is dicritical, at least one of the components of D is transversal

to the leaves of G.

For each x ∈ D, let Lx be either the unique leaf of G through x, or the

total separatrix of G, as appropriate. Then for each m ∈ N, Jm(G, x) =

Jm(Lx, x). So by Proposition 9.23, Jm(π−1(F), x) = Jm(Lx ∪D,x). Using

Corollary 9.15 we blow back down to get Jm(F , x) =
⋃
Jm(π(Lx ∪ D), x),

which yields the result.

Example 12.8. Let X = A2, and let F be given by ω = y2dx−x2dy. This

has a single dicritical singularity at the origin. The leaves of the foliation

88



are {x = 0}, {y = 0}, {y = x}, and {xy+ kx− ky = 0}, k ∈ C∗, all of which

are separatrices.

We blow up at the origin. In the first chart we set y = xv, and get a new

foliation given by x2((v2 − v)dx − xdv). This has two singularities: (0, 0),

which is reduced, and (0, 1), which is again dicritical.

We blow up this second singularity. In one chart we set v−1 = xt, which

leaves us with x4(t2dx − dt). The saturation of this foliation is smooth,

and has leaves V(t) and V(xt + kt + 1), k ∈ C. In the other chart we set

x = (v− 1)s, which gives (v− 1)4s2(vds+ sdv), the saturation of which has

a single simple singularity.

So the jets of the unsaturated foliation along the exceptional divisor are

of the form Jm(V(x4(xt+ kt+ 1)), (0,−1/k)) and Jm(V(x4t), (0, 0)) in one

chart, and Jm(V(v(v − 1)4s3), (0, 1)) in the other. Blowing down, the jets

are of the form Jm(V(x3v(v − 1))) and Jm(V(x3(xv + kv − k))).

In the second chart of the initial blow-up, we set x = yb to get the

form y2((b − b2)dy + ydb). This also has two singularities: (0, 0), which is

reduced, and corresponds to the reduced singularity in the first chart, and

(1, 0), which is dicritical. Applying the same method as before, we see that

the jets are of the form Jm(V(b(b− 1)y3)) and Jm(V(y3(yb+ kb− k))).

Blowing down again, we have

Jm(F , 0) = Jm(V(x2y − xy2), 0)∪⋃
k∈C∗

Jm(V(x2(xy + kx− ky), y2(xy + kx− ky)), 0).
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morphes. Annales de l’institut Fourier, 42:49–72, 1992.

[9] G. Cuzzuol, R. Mol. Second type foliations of codimension one.

arXiv:math/1708.00708, 2017.

[10] S. Diverio. Jet differentials, holomorphic Morse inequalities and hyper-

bolicity. PhD thesis, Dipartimento di Matematica, Sapienza Università
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