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Abstract

Let L be the space of all Lagrangian maps M # T ∗N → N between two

3-manifolds, both oriented and without boundaries, and M being compact.

Let Σ ⊂ L be the discriminantal hypersuface, that is, the set of all maps

whose singularities are not stable under small perturbations. The aim of this

thesis is to classify local invariants of generic elements of L. The locality

means here that the increments of the invariants along generic paths in L

should be defined completely by the equivalence classes of local bifurcations

at Σ.

Local invariants are completely defined by codimension 1 discriminantal

cycles in L, that is, those lying in Σ. In addition, these cycles must be

trivial. Respectively, the main results of this thesis describe the spaces of the

discriminantal cycles, possibly non-trivial: we prove that the dimension of the

space of rational cycles turns out to be 15, and it is 20 in the mod2 case. We

have also been able to establish that the trivial cycles form the subspaces of

codimension at most 1 over Q for any N and at most 2 over Z2 for N = R3.

The codimension estimates come from the number of linearly independent

local geometric invariants we have been able to observe and construct: over

the rationals, they are mostly the numbers of points of the caustics of various

isolated singularity types, while over Z2 we also have a few interesting linking

numbers.

The main tool to obtain our main results is analysis of generic 1- and



2-parameter bifurcations of Lagrangian maps which generalises a rather con-

strained approach taken in [9].

At the end, we investigate the effects on the spaces of discriminantal cycles

and local invariants of an assumption of non-orientability of the source or/and

target manifolds.
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Chapter 0

Introduction

In this thesis we study topological invariants of Lagrangian maps between

3-manifolds from a singularity theory point of view, via degenerations of the

maps. The approach we are following is basically that used by Vassiliev

when he introduced finite-type invariants of knots in [18]. Since then his

interpretation has served as a basis for consideration of invariants of generic

and special generic maps in a range of low dimensions.

Following Vassiliev’s approach, Arnold studied local order 1 invariants

of regular planar curves [5, 6] and planar wave fronts [7]. For the regular

curves, Arnold introduced three Vassiliev-type invariants dual to the three

types of local bifurcations appearing in generic 1-parameter families of planar

curves: triple points, direct self-tangencies and inverse self-tangencies. Later,

two of these invariants were generalised to higher order settings in [14, 15,

19]. However, these cases are the only ones in which going beyond order 1
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invariants has so far been possible.

The next order 1 setting that was considered came in [13] where Goryunov

classified the local invariants of maps of surfaces to R3. Ohmoto and Aicardi

then progressed the study of order 1 invariants further by classifying them for

maps of surfaces to R2 in [16]. Later on, Goryunov and Gallagher considered

in [12] and [9] the Lagrangian analogue of the Ohmoto-Aicardi setting, and

found additional invariants specific to the Lagrangian situation. Another

important result in the area is Yamamoto’s list of order 1 invariants of smooth

maps from 3-manifolds to the plane [21].

The next major development was made by Goryunov in [10] where he

classified the local order 1 invariants of smooth maps between 3-manifolds.

This is of particular interest to us as this thesis provides a Lagrangian analogue

to his work.

Alsaeed and Goryunov considered in [11] local order 1 invariants of fronts

in 3-manifolds. That paper formed a part of Alsaeed’s dissertation [2]. The

considerations were now in the Legendrian setting. This meant a finer clas-

sification of local singularities comparing with that in [10], which made the

task of detecting the invariants more complicated.

Finally, in [9], Gallagher classified local order 1 invariants of Lagrangian

maps between 3-manifolds. Her task was similar to what we are doing in this

thesis, but she simplified the situation substantially by not distinguishing

between certain classes of singularities. This is the last order 1 setting that

has been considered so far and it is this that provides a starting point and the

2



main motivation for this thesis. Comparing with [9], this thesis is based on

the complete classification of local singularities of Lagrangian maps between

3-manifolds, which, on the one hand, introduces further complications but,

on the other hand, delivers richer results.

We recall some of these highlighted results in the next few sections. We

first provide an intrinsic example of how we classify invariants of maps by

looking at the way the finite-type knot invariants were introduced by Vassiliev

in [18]. Afterwards, based on the ideas of Arnold and Vassiliev we provide the

formal definitions required to understand what we mean by ‘local invariants’.

These are necessary to discuss the works by Arnold, Goryunov and Gallagher

that further developed the study of order 1 invariants of maps, all of which

provide background for this thesis.

0.1 Knot invariants

One of the most impressive approaches in looking for topological invariants

of maps was invented by Vassiliev in [18] when he introduced finite-type in-

variants of knots. His invariants are based on the study of the discriminant

in the space of maps of the circle to R3. In general, the discriminant is the

hypersurface in the space of maps which consists of maps with non-stable

singularities. We now recall some of the key points from [18].

Consider the space Ω of all smooth maps from an oriented circle to R3 and

let f : S1 → R3 be a generic smooth map. If the map f is an embedding then
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the image of f is a knot. The complement to the set of all embeddings is the

discriminant Σ ⊂ Ω. This consists of all smooth maps f : S1 → R3 that have

singularities. Here, they may be singularities where f ′ = 0 or when f is not

injective.

Using the discriminants helps us to introduce the idea of equivalence. Two

knots are considered equivalent if they can be joined by a path in Ω that does

not cross the discriminant, Σ.

A generic point of Σ is a map whose image has exactly one singularity,

a double point. So, we define a singular knot as an immersion f : S1 → R3

with no singularities except a finite number of generic double points, that is,

points at which pairs of branches meet at non-zero angles.

The definition of a ‘singular knot’ allows us to co-orient the discriminant

Σ at its generic points. Indeed, a double point of the image may be perturbed

in one of the following two ways:

So, we call the local perturbation on the right positive and on the left negative.

These names also correspond to the sides of Σ in Ω.

Any knot invariant v can be extended to singular knots with one generic

double point by the Vassiliev skein relation (see [8] or [17]):

4



We can use this skein relation recursively to extend our knot invariant to

all singular knots. Following [17], a knot invariant v is said to be a Vassiliev

invariant of order no greater than n if it vanishes on any singular knot with

more than n double points.

We should notice that in this thesis we are considering local order 1 in-

variants, that is, those whose increments in generic 1-parameter families of

maps are completely determined by the type of the local bifurcation of a map.

To demonstrate a level of complications for going beyond order 1, let us draw

a comparison with what local order 1 invariants are for knots. Namely, for

knots, the increment of such an invariant under any crossing change must be

the same as the difference of its values on two non-singular knots differing

just by the fragments shown in the left and right in the figure below. These

two knots are isotopic, hence the difference is zero. Therefore, there are no

local order 1 invariants of knots.

On the other hand, we will see in Chapter 2 that the number of possible

bifurcations in generic 1-parameter families of Lagrangian maps between 3-
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manifolds is 132. Thus, restricting attention to just local order 1 invariants

is a very substantial task in our setting.

0.2 Local invariants

Following Vassiliev’s discriminantal approach we now introduce the notion of

local invariants in a generic setting.

Let Ω be a space of maps, and Σ ⊂ Ω a subset of non-generic maps of our

choice. Consider invariants of generic maps with values in an abelian group

G, that is, maps of the set of connected components of Ω \ Σ to G. We say

an invariant is local of order 1 if every increment of the invariant in a generic

1-parameter family of maps is completely determined by the type of the local

bifurcation of the map. Since no higher order invariants are involved in this

thesis, we call such invariants local. The discriminant Σ must be co-orientable

if, for example, we are working with integer invariants.

Up to a choice of an additive constant (individual for each connected

component of Ω), any local invariant I is defined by its derivative I ′ =
∑
xiXi,

where the Xi are discriminantal strata of codimension 1 in Ω, and the xi are

the increments of I along paths crossing the Xi in the co-orienting direction.

Every discriminantal stratum of codimension 2 in Ω provides an equation

on the increments, which we will call a cyclic equation. A linear combination∑
xiXi, in which the xi satisfy all possible cyclic equations, is a codimension 1

cycle in Ω and is called discriminantal. Given a discriminantal cycle for which

6



similar vanishing holds on loops non-contractible in Ω we can ‘integrate’ it to

an invariant. In such case we call a discriminantal cycle trivial.

With the formal definition of local invariants in hand, we shall now give

a brief overview of invariants of: planar curves, Lagrangian maps between

surfaces and smooth maps between 3-manifolds. Later, we look at Gallagher’s

work on invariants of Lagrangian maps between 3-manifolds in far greater

detail since it provides a starting point for this thesis.

0.3 Planar curves invariants

In [5] and [6] Arnold studied local (order 1) invariants of planar curves. We

now introduce the basic definitions and ideas which allowed him to construct

the three Vassiliev-type invariants that were mentioned earlier.

We define a curve as a smooth immersion of an (oriented) circle into the

plane. Let Ω be the space of all such curves. A generic element of Ω is

a curve whose only singularities are transversal self-intersections. Connected

components of Ω are numbered by the Whitney winding numbers of the curves

[20].

In generic 1-parameter families of planar curves, three events can occur:

triple points, direct self-tangencies (a self-tangency point of an immersed curve

with the tangent vectors pointing in the same direction) and inverse self-

tangencies (tangent vectors pointing in different directions). They are shown

below.
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So, the codimension 1 discriminantal strata in Ω correspond to triple points,

direct self-tangencies and inverse self-tangencies.

In [5] the co-orientations of the three codimension 1 discriminantal strata

are defined. The positive self-tangency moves are exactly those shown in

the diagram above. The co-orientation of the triple point stratum is more

complicated and involves certain non-local information about the curves, and

we prefer to omit it here.

Arnold’s three basic invariants of generic planar curves are:

• St (strangeness): which changes along generic paths in Ω just under

triple point moves, each time by a fixed amount;

• J+: which changes similarly just under direct self-tangency moves;

• J−: which changes similarly just under inverse self-tangency moves.

Arnold has also made a special choice of the ‘constants of integration’ on

different connected components of Ω to guarantee the additivity of his invari-

ants under connected summation of planar curves. Arnold’s normalisation of
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the increments of the invariants under the positive moves and of the values

of the invariants on particular representatives of the connected components

of Ω are given in the table below. We should note that the invariants do not

depend on the curve orientations.

Triple
point
move

Direct
self-
tangency
move

Inverse
self-
tangency
move · · ·

St 1 0 0 0 0 1 2 · · ·
J+ 0 2 0 0 0 -2 -4 · · ·
J− 0 0 2 -1 0 -3 -6 · · ·

As mentioned earlier, two of these invariants have been generalised to

higher order settings in [14], [15] and [19]. However, since these cases are the

only known ones which go beyond order 1 invariants, and since we are only

considering order 1 invariants, we are not quoting these results.

0.4 Lagrangian maps between surfaces

The next order 1 setting whose details are essential for us is the Goryunov-

Gallagher study of local invariants of Lagrangian maps from surfaces to R2

carried out in [12, 9]. Their work provides a Lagrangian analogue to that by

Ohmoto and Aicardi in [16], which studied ordinary smooth maps. We shall

also point out the difference between the two sets of the results showing that

the Lagrangian case has a richer geometry.

We use the symbol # to denote an immersion. Let L = L(M,T ∗R2,R2)
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be the space of all Lagrangian maps M # T ∗R2 → R2 between a fixed surface

M and an oriented plane R2.

The only uni-germ singularities a generic Lagrangian map f : M → R2

may have are Lagrangian folds and pleats. Their generating families of func-

tions are R+-versal deformations of isolated function singularities A2 and

respectively A3 (see Section 1.2). Our notation of points of the caustic C(f)

will follow that of the generating families: A2 for its regular points and A3

for cusps. The only other types of points a generic caustic may have are

transversal self-intersections, A2
2. In fact, there are four types of cusps which

we denote As,σ3 . Here the sign σ = ± stays for the local degree ±1 of the

Lagrangian map, and s = ± indicates which of the two real R-types of the A3

function singularity, either +x4 or −x4, is actually used in the local generating

family.

All singularities of generic caustics are shown in Figure 1. The co-orientation

of the caustic C ⊂ R2 is to the side with a higher number of local pre-images.

This induces the orientations of the local branches, as shown in Figure 1.

This orientation allows to lift the caustic to a Legendrian link in the projec-

tivisation of the cotangent bundle of the plane and consider its Bennequin

invariant, that is, the self-linking number of the caustic [16].

s,σ

2 2
A

2

3
A

s,σ
A

Figure 1: Singularities of generic caustics in R2.
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One of the main results of [12] is

Theorem 0.4.1. The space of rational discriminantal cycles in L(M,T ∗R2,R2)

has rank 8.

This space is spanned by the derivatives of the six invariants:

Id, the number of double points A2
2;

Ics,σ, s, σ = ±, the number of As,σ3 points;

I`, the restriction to the set of Lagrangian maps of the Bennequin invariant

of the critical value sets of generic smooth maps from M to the plane,

defined by Ohmoto and Aicardi in [16],

and two extra discriminantal cycles related to corank 2 bifurcations.

Comparing this result to that of Ohmoto and Aicardi in [16] we see there

are four types of A3 invariants compared to two. This is due to the absence

of the s marking in the non-Lagrangian context. Moreover, the two extra

discriminantal cycles did not appear in [16] since corank 2 bifurcations occur

in generic 1-parameter families of maps only in the Lagrangian setting.

In the space of integer discriminantal cycles in [12] one of the two extra

cycles is actually a non-trivial discriminantal cycle. This was proved in [12]

by constructing a loop in the space L(S2, T ∗R2,R2) which has a non-zero

intersection number with the cycle. This loop in its turn is non-contractible.

The question of whether the other cycle is trivial or not remains open.

Moving to the mod2 analogue of Theorem 0.4.1 we have:
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Theorem 0.4.2. The space of Z2 discriminantal cycles in L(M,T ∗R2,R2)

has rank 9.

We now turn our attention to invariants of maps of one dimenension

higher. First, we introduce the work by Goryunov which considers smooth

maps between 3-manifolds. Afterwards, we consider its Lagrangian version.

0.5 Smooth maps between 3-manifolds

Goryunov studied local (order 1) invariants of ordinary smooth maps between

3-manifolds in [10]. In this section we first look at the paper’s two main results,

and then pay some special attention to mod2 framing invariants.

0.5.1 General information about the invariants

Assume the source manifold M and target N are oriented and without bound-

aries, and M is compact. All possible local singularities of the critical value

set of a generic smooth map are shown in Figure 2.

In [10] Goryunov identified seven local invariants of generic maps:

It, the number of triple points;

Is+ , the number of positive swallowtails;

Is− , the number of negative swallowtails;

Ic+ , the number of intersection points of a positive cuspidal edge with a

smooth sheet;
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− − +

+ −

σ

σ

+

Figure 2: Local singularities of the critical value sets. The encircled values

σ = ± indicate the local degree ±1 of a map at the cuspidal edge. The boxed

signs are the definitions of the signs of the swallowtail points.

Ic− , the number of intersection points of a negative cuspidal edge with a

smooth sheet;

Iχ, half of the Euler characteristic of the critical locus of a mapping;

IΣ2 , the linking number in J1(M,N) of the image of the 1-jet extension of a

map with the set of all corank < 1 1-jets.

In a bit more general sense, these local invariants may be considered up

to additive constants which may be chosen arbitrarily for each connected

component of the space of smooth maps between 3-manifolds. The main

result from [10] is:

Theorem 0.5.1. The space of integer local invariants of maps between two
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oriented 3-dimensional manifolds has rank 7. This space is generated by

(Is+ ± Is−)/2, (Ic+ + Ic−)/2, It, (It + Ic+)/2, Iχ, IΣ2 .

Furthermore, the mod2 analogue of Theorem 0.5.1 with R3 as the target

is:

Theorem 0.5.2. The space of mod2 local invariants of maps from an oriented

3-dimensional manifold to oriented R3 has rank 11.

Thus, in the mod2 setting we have four extra linearly independent in-

variants, in addition to the mod2 reduction of the invariants from Theorem

0.5.1. One of these invariants combines the number of components and the

self-linking of the cuspidal edge of the critical value set. The details will come

in the next subsection.

Finally, in [10] Goryunov obtained a classification of invariants, both over

Z and Z2, assuming that either the source, or target manifold, or both of them

are not oriented. In this thesis we apply a similar analysis to our Lagrangian

version in Chapter 8.

0.5.2 Framing invariants in R3

The mod2 invariant mentioned by the end of the previous subsection is an

invariant of a framed link constructed from the cuspidal edge of the critical

value set according to the following procedure. The framing at a regular
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point of a cuspidal edge depends on the sign of the edge as shown in Figure

3, left. Near swallowtail points the edges are smoothened and the framings

along the two edge branches are joined by adding a half twist of the sign the

same as that of the swallowtail as shown in Figure 3, right. After arbitrarily

orienting the framed link, its writhe ω is calculated as the algebraic number

of crossings of the cores of the components of the link diagram plus the sum

of the algebraic numbers of full rotations done by the framing of each of the

components around its own core. The number of components of the link is

denoted by n.

Figure 3: Making a framed link from cuspidal edges from [10].

Theorem 0.5.3 ([10]). The mod2 invariant Ife = n+ w/2 is local.

Later on, in [1], Aicardi found similar geometric interpretations for two

more linearly independent additional mod2 discriminantal cycles of Theorem

0.5.2. For that, she constructed framed links from the self-intersection sets

and either positive or negative cuspidal edges of the critical value set. We

leave the details of the framing construction along the self-intersection curves

till our Sections 7.2 and 7.3. Denoting by n± and w± the number of the

components and the writhes of the two links, we have
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Theorem 0.5.4 ([1]). The mod2 invariants Idc+ = (n+ + w+)/2 and

Idc− = (n− + w−)/2 are local.

These three framing invariants provide a starting point for some geometric

interpretations of discriminantal cycles in this thesis. Of course, we will be

adapting them to the Lagrangian setting as well as considering certain details

differently. For example, our framing at triple points differs from that in [1].

We now move to the Lagrangian analogue of [10]. Here, the results are

bifurcationally richer comparing to just ordinary smooth maps due to the

presence of stable D4 points.

0.6 Lagrangian maps between 3-manifolds

The study of local (order 1) invariants of smooth maps between 3-manifolds

in [10] was adapted to the Lagrangian setting by Gallagher in [9]. However,

Gallagher did not provide a full classification in [9] since she did not distin-

guish between certain classes of singularities. We now look at the results from

[9] in detail, as well as explain how they were obtained, since they provide

the foundations for the work in this thesis.

Let L = L(M,T ∗N,N) be the space of all Lagrangian maps M # T ∗N →

N between fixed 3-manifolds M and N . Both manifolds are oriented and

without boundaries, and M is compact. We assume f : M → N to be a

generic Lagrangian map and denote its caustic by C(f).

Similar to the 2-dimensional case considered in Section 0.4, C(f) is strati-
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fied according to the singularities of the local generating families of functions.

The caustic has regular part, A2, and we will use its traditional co-orientation

to the side with the greater number of preimages. From [5] we know that

singular strata of C(f) in general are cuspidal edges A3, transversal self-

intersections A2
2, and isolated points A4, D±4 , A3A2 and A3

2. All of them

are shown in Figure 4. Similar to the cusps in the 2-dimensional case, we

introduce distinction of the cuspidal edges Aσ3 , σ = ±, by the local degree

±1 of a Lagrangian map. However, in the 3-dimensional setting considered in

[9], there is no distinction between two real R-forms +x4 and −x4 of the A3

function singularities. We will call this setting special, and all discriminantal

cycles making no distinction between +x4 and −x4 will also be called special.

Formally, this specialisation means that we are enlarging our R+-equivalence

by allowing to multiply the functions by −1. Distinguishing the two types Aσ3

of the cuspidal edges leads to the refinement of the types of isolated singular

points of the caustics according to the sign of the participating edges Aσ3A2,

Aσ4 and D±,σ4 . All these singularities are depicted in Figure 4. All the edges

entering the D4 points there have sign σ.

The main result of [9] is

Theorem 0.6.1. The space of rational special discriminantal cycles in

L(M,T ∗N,N) is 10-dimensional. All these cycles are trivial, and the space

is spanned by the derivatives of the following 10 invariants:

It, the number of triple points A3
2;
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Figure 4: The top row shows A2
2, A3

2, Aσ3 and Aσ3A2 singularities of generic

caustics. The middle row shows the two different types of Aσ4 singularities

whilst the bottom row depicts D+
4 (purse) and D−4 (pyramid) singularities.
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Is± , the numbers of positive and negative swallowtails;

Ic± , the numbers of A±3 A2 points;

Id−± , the numbers of D−,±4 points;

Id+± , the numbers of D+,±
4 points;

Iχ, half of the Euler characteristic of the critical locus of a mapping.

Considering invariants up to an arbitrary choice of an additive constant

for each connected component of the space of maps, we have

Corollary 0.6.2. The dimension of the space of rational special local invari-

ants on L(M,T ∗N,N) is 10. It is spanned by the 10 invariants listed in

Theorem 0.6.1.

The proof of Theorem 0.6.1 given in [9] is based on analysing generic

1-parameter families of Lagrangian maps and studying their interaction in

generic 2-parameter families. In particular, the 1-parameter families allowed

to immediately establish the linear independence of the ten derivatives. We

shall now illustrate some other moments of the proof.

Figure 5 shows caustics of some of the 1-parameter families of maps iden-

tified in [9]. In every case the most degenerate moment corresponds to the

discriminantal hypersurface Σ in the space L(M,T ∗N,N). So, the names of

the bifurcations provide the notation of the components of the discriminantal

hypersurface Σ in L(M,T ∗N,N). Each of these strata is co-oriented in the

direction of the bifurcations shown in Figure 5.
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Figure 5: Examples of 1-parameter bifurcations from [9].

The derivative I ′ =
∑
xiXi of a local invariant I is a trivial codimension

1 cycle in L. That is, their intersection index with any loop in L must be

zero. Therefore, construction of such linear combinations (without an a priori

knowledge of the invariants) splits into two parts:

1. establishing conditions on linear combinations of the codimension 1

strata to be cycles, and

2. checking the triviality of these cycles.

The first part was approached in [9] by analysis of local singularities

and hence does not depend of the choice of M , T ∗N and N (except for

the orientability) and of a particular connected component of L(M,T ∗N,N).
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Analysing generic 2-parameter families of maps produces bifurcation diagrams

like the one shown in Figure 6. This example is produced by a swallowtail

interacting with a smooth A2 sheet.

A
2

T

A
2

TA
−

3

A
4
A

2

A
+

3

A
2

A
4

TA
3

2

Figure 6: A codimension 2 degeneration involving a swallowtail and a smooth

A2 sheet from [9]. At the most degenerate moment, the sheet is tangent to

the self-intersection line at the swallowtail point.

We have already mentioned that each bifurcation diagram gives a cyclic

equation on the increments of the local invariants across the codimension 1

strata. A cyclic equation represents the fact that the total increment of an

invariant along a generic loop in L(M,T ∗N,N) must be zero. For example,

the bifurcation diagram in Figure 6 gives the cyclic equation

ta3
2 + ta+

3 a2 + ta−3 a2 − 2a4a2 = 0.

After analysing all possible 2-parameter families of maps and various re-

ductions, Gallagher obtained 13 linearly independent cyclic equations in 23

unknowns. This meant the solution space must be 10-dimensional. This

proved the first claim of Theorem 0.6.1.
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The second part followed from spotting integral (that is, homotopy free)

interpretations of the ten invariants. This proved Corollary 0.6.2.

The dissertation [9] contains also a mod2 version of Theorem 0.6.1:

Theorem 0.6.3. The space of Z2 special discriminantal cycles in

L(M,T ∗N,N) has rank 16.

Gallagher’s classification provides a starting point for this thesis. In our

case we carry out the analysis in the spirit of [9] but we do not have the special

simplification where A+
3 and A−3 are declared the same. The bifurcations

considered in [9] do cover the range we will analyse, however we introduce

extra splittings of quite a few of them, which in turn makes the situation

more complicated and the results richer. This allows us to substantially refine

Theorems 0.6.1 and 0.6.3 — see Section 2.5.

0.7 Results of the thesis

In this thesis we study the space L = L(M,T ∗N,N) of all Lagrangian maps

M # T ∗N → N between fixed 3-manifolds M and N . Both manifolds are

without boundaries and M is compact. For now, we keep both manifolds

oriented. Comparing to [9], we are now making difference between the A+
3

and A−3 singularities, which also splits many other singularity strata in L

in smaller components. This allows us to obtain a complete description of

the space of discriminantal cycles, and detect new invariants. However, we

must now extract much more details about the bifurcations involved, and the
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volume of the calculations rises very significantly: for example, the number

of codimension 1 bifurcations (that is, the number of the unknowns in the

system of cyclic equations) nearly doubles up to 132 from 68 used in [9].

The two main results of this thesis are Theorem 2.5.1 and Theorem 2.5.3.

The first of them claims that the space of rational discriminantal cycles in

L(M,T ∗N,N) is 15-dimensional. This space turns out to be generated by the

derivatives of fourteen local invariants described in Lemma 2.4.1 and the cycle

I ′15 introduced in Section 2.4. Out of these fourteen local invariants, thirteen

count the numbers of points of isolated singularity types on a caustic and the

last is half of the Euler characteristic of the critical locus of a mapping. At

the moment, the triviality of the cycle I ′15, that is, if there exists a genuine

local invariant I15, is not known. All the elements of our basis of the space of

rational discriminantal cycles are actually integer, and Remark 2.4.2 points

out a way to construct from them another basis, for the space of integer

discriminantal cycles.

Our second result, Theorem 2.5.3, establishes that the space of mod2 dis-

criminantal cycles in L(M,T ∗N,N) is 20-dimensional. This space is generated

by the mod2 reduction of the basis of the space of integer discriminantal cy-

cles, and a further five linearly independent discriminantal cycles introduced

in Remark 2.4.3. For N = R3, we have found geometric interpretations for

three of these five extra cycles by adapting the invariants Ife, Idc+ and Idc−

from [10] and [1]. We have also found that a fourth cycle out of the five is the

derivative of the invariant counting the mod2 degrees of swallowtail points
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in R3.

Finally, we investigate the effects of non-orientability of the source and/or

target manifolds and prove corresponding versions of Theorems 2.5.1 and

2.5.3.

We set the structure of the thesis to be:

Chapter 1: in Section 1.1 we introduce the notion of a local invariant

by recalling some basic definitions from [11] and [12]. Section 1.2 introduces

Lagrangian maps by recalling key definitions, concepts and examples from [3]

and [4]. Finally, we introduce the A, D, E function singularities.

Chapter 2: in Section 2.1 we list the types of singularities a caustic of

a generic Lagrangian map from a 3-manifold to R3 can have. We then list

invariants of generic Lagrangian maps counting the numbers of isolated sin-

gularities of their caustics. Section 2.3 lists all possible bifurcations in generic

1-parameter families of caustics. In order to make it easier for the reader

we have split these bifurcations into two types: corank 1 and corank 2 bifur-

cations. We have further split these types into uni-germs and multi-germs.

In Section 2.4 we find the derivatives of the basic invariants introduced in

Section 2.1. These derivatives are very helpful for our main results, Theo-

rems 2.5.1 and 2.5.3. Finally, in Section 2.6 we analyse all bifurcations in

2-parameter families obtaining cyclic equations which we use to prove Theo-

rems 2.5.1 and 2.5.3. At that moment we state the equations coming from the

D±6 and E±6 bifurcations as Theorem 2.6.2 whose proof is very lengthy and,

therefore, postponed to Chapters 4–6. However, we already use the result of
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this theorem in Chapter 3.

Chapter 3: in this chapter, we derive two reduced versions – over Z

and over Z2 – of the system of all our cyclic equations obtained in Chapter

2. This is done by elimination of all the equations which are either Z- or

Z2-linear combinations of the others. Expressions of the derivatives of the

fourteen integer invariants from Lemma 2.4.1 help us to construct bases of

the solutions spaces, that is, bases of the spaces of the rational, integer and

mod2 discriminantal cycles. This proves Theorems 2.5.1 and 2.5.3.

Chapters 4-6: in these three chapters we prove Theorem 2.6.2, that is,

we obtain the cyclic equations corresponding to the D+
6 , D−6 and E6 isolated

function singularities. The task initally is to analyse how we can represent

the ‘big’ caustics C ⊂ R5 as a collection of 2-parameter bifurcations of 3-

dimensional caustics. In order to fulfill the task we study how various strata

of C are mapped by a generic map π : (R5
α,β,γ,δ,ε, C) → R2. Some of the

information we need is already visible in the principal quasi-homogeneous part

π0 of this map. However, detection of the behaviour of all the strata requires

a more delicate analysis based on consideration of successive approximations

of π by terms of increasing quasi-homogenous degrees. We note that the

calculations of the bifurcation diagrams have already been done in [9], so

we just give a brief overview of how they were obtained for the benefit of the

reader. The main challenge in these chapters is to find our refined decorations

of the strata.

Chapter 7: the main topic of this chapter is a search for Z2 local invari-
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ants which are not just mod2 reductions of the integer. In Remark 2.4.3 we

introduced a further five linearly independent mod2 discriminantal cycles that

along with the mod2 reduction of the basis of the space of integer discriminan-

tal cycles generate the space of mod2 discriminantal cycles in L(M,T ∗N,N).

So, we are now trying to ‘integrate’ some of these five extra cycles, perhaps

modulo the reduced integer cycles. In Sections 7.1, 7.2 and 7.3, for N = R3,

we find geometric interpretations for three of the five cycles based on the

invariants Ife, Idc+ and Idc− from [10] and [1]. Here, we adapt them to the

Lagrangian setting as well as consider certain details of their definitions differ-

ently. For example, we treat triple points in a way different to [1]: we resolve

them and obtain genuine framed links while the links in [1] stayed with the

triple point singularities. In Section 7.4 we construct one more mod2 invari-

ant based on the linking number of two framed links constructed from the

cuspidal edges and self-intersection locus of C. However, this provides an

integral geometric interpretation for a linear combination of discriminantal

cycles whose geometric interpretations are already known. Finally, in Section

7.5 we integrate exactly one of the five extra mod2 cycles to the invariant

counting the mod2 degrees of swallowtail points in R3.

Chapter 8: in the final chapter we look at the effects of non-orientability

of the source and/or target manifolds over Q, Z and Z2. Here, we see in-

variants which count the number of isolated singularity types that only dif-

fer by the signs of the local degrees of maps merge together, whereas some

other invariants completely disappear. Of course, in all cases, the number
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of discriminantal cycles and invariants go down, making the classification of

invariants substantially simpler.
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Chapter 1

Basic Concepts

1.1 Local invariants

We first introduce the notion of local invariants of maps by stating some

general definitions that can be found in [11] or [12].

Let Ω be a space of maps, and Σ ⊂ Ω a subset of non-generic maps of our

choice. Consider invariants of generic maps with values in an abelian group

G, that is, maps of the set of connected components of Ω \ Σ to G.

Definition 1.1.1. We call an invariant local if every increment of the in-

variant in a generic 1-parameter family of maps is completely determined by

the type of the local bifurcation of the map.

The discriminant Σ must be co-orientable if, for example, we are working

with integer invariants.
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Definition 1.1.2. Up to a choice of an additive constant (individual for each

connected component of Ω), any local invariant I is defined by its derivative

I ′ =
∑
xiXi, where the Xi are discriminantal strata of codimension 1 in Ω,

and the xi are the increments of I across them.

Definition 1.1.3. Every discriminantal stratum of codimension 2 in Ω pro-

vides an equation on the increments, called a cyclic equation.

Example 1.1.4. Figure 7 shows a discriminantal stratum of codimension 2

with its corresponding cyclic equation, −x1 + x2 − x3 = 0.

1

X3

X2

X

Figure 7: Transversal section of a discriminantal stratum of codimension 2 in

Ω.

Definition 1.1.5. A linear combination
∑
xiXi, in which the xi satisfy all

possible cyclic equations, is a codimension 1 cycle in Ω. We call such cycles

discriminantal.

Definition 1.1.6. Given a discriminantal cycle for which similar vanishing

holds on loops non-contractible in Ω we can ‘integrate’ it to an invariant. In

such case we call a discriminantal cycle trivial.

Remark 1.1.7. If we cross a discriminant stratum in the same direction as

its co-orientation we say this is a positive move.
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1.2 Lagrangian maps

We recall a series of standard definitions which may be found, for example,

in [3] or [4].

Definition 1.2.1. A symplectic form on a manifold is a non-degenerate

closed differential 2-form (also called a symplectic structure).

Example 1.2.2. The linear space R2n with coordinates (p1, · · · , pn; q1, · · · , qn)

has the standard symplectic structure ω =
∑
dpi ∧ dqi.

Definition 1.2.3. A Lagrangian submanifold of a symplectic manifold is a

submanifold of maximal dimension on which the symplectic structure vanishes.

Example 1.2.4. In the previous example, q = constant is a Lagrangian

submanifold.

Definition 1.2.5. A Lagrangian fibration E2n � Bn of a symplectic manifold

is a fibration with Lagrangian fibres.

Example 1.2.6. R2n
p,q → Rn

q is a Lagrangian fibration.

There exists a theorem in [3] which states that, locally, any Lagrangian fibra-

tion is the same as the example above.

Definition 1.2.7. Consider an immersed Lagrangian submanifold L in the

space of a Lagrangian fibration E � B. The projection of L to B is called a

Lagrangian map.
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Thus, a Lagrangian map is a triple L # E � B, where the left arrow is

a Lagrangian immersion and the right one a Lagrangian fibration.

Definition 1.2.8. The set of all critical values of a Lagrangian map is called

its caustic.

Definition 1.2.9. A Lagrangian equivalence of two Lagrangian maps is a

symplectomorphism (that is, an isomorphism in the category of symplectic

manifolds) of the total spaces transforming the first Lagrangian fibration to

the second, and the first Lagrangian immersion to the second.

Thus, a Lagrangian equivalence is a commutative (3× 2) diagram

L1 E1 B1

L2 E2 B2

Definition 1.2.10. A Lagrangian singularity is a germ of a Lagrangian map,

considered up to the Lagrangian equivalence.

Now, since in this thesis we are considering Lagrangian maps to 3-manifolds,

a local model for this case is the Lagrangian fibration

R6 → R3, (u, v, w, U, V,W ) 7→ (u, v, w).

The symplectic form here is dU ∧ du+ dV ∧ dv+ dW ∧ dw, where u, v, w and

U, V,W are coordinates respectively on the target and along the fibres of the

fibration. From [3] we have,
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Definition 1.2.11. Any Lagrangian submanifold L ⊂ R6 is defined locally

by a generating family of functions F (x;u, v, w) :

L = {(u, v, w, U, V,W )|∃x ⊂ R3 : Fx = 0, U = Fu, V = Fv,W = Fw}.

Smoothness of L is equivalent to the rank of the matrix (Fx)x,u,v,w of

the second derivatives being maximal, that is, equal to the dimension of x.

The caustic in R3
u,v,w consists of those points (u, v, w) for which the member

F (·;u, v, w) of the generating family has non-Morse critical points.

In terms of local generating families F (x;u, v, w) Lagrangian equivalence

corresponds to the stableR+-equivalence preserving the fibration (x;u, v, w) 7→

(u, v, w) (see [3]). The stability here is in the sense of addition of non-

degenerate quadratic forms in extra x-variables.

Finally, we recall the A, D, E function singularities (see [3]). In a neigh-

bourhood of a simple critical point 0, every function f : (Rn, 0) → (R, 0) is

stably R+-equivalent to one of the following function germs:

Ak Dk E6 E7 E8

±xk+1, k ≥ 1 x2y ± yk−1, k ≥ 4 x3 ± y4 x3 + xy3 x3 + y5
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Chapter 2

Local invariants of Lagrangian

maps between 3-manifolds

We shall consider a parallel to Gallagher’s work in [9], Section 2, where she

listed all singularities of a generic caustic in three dimensions, gave intrinsic

examples of local invariants and introduced the bifurcations in generic 1-

parameter families of caustics. In [9], Gallagher made a significant concession

in the classification of singularities whereas in our setting we are going to

consider the case without any. We borrow the standard notation for the

bifurcations from [9], and use the figures from [10] and [9] edited for our

case. Following this we then list all bifurcations in 2-parameter families from

which we obtain cyclic equations. The main aim of this chapter is to see how

the extra edge decoration s behaves in bifurcations and how this effects the

dimensions of the equation and solution spaces over Q and Z2.
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2.1 Singularities of a generic caustic in three

dimensions

Following [9], the Lagrangian fibration in nearly the whole thesis will be the

cotangent bundle T ∗N → N our target manifold, and we denote by L =

L(M,T ∗N,N) the space of all Lagrangian maps M # T ∗N → N between

fixed 3-manifolds M and N. The source M will always be compact, both

3-manifolds will always be without boundaries, and till Chapter 8 we are

assuming both of them oriented. All our considerations will be local, withN =

R3 taken for the local model, and therefore all our results, except for those

in Chapter 7 obtained specifically for N = R3, are valid for any Lagrangian

fibration over the target.

Let f be a generic Lagrangian map between M and R3, and C(f) its

caustic. We co-orient the regular part of a smooth sheet, A2, of C(f) to the

side where the number of local preimages of a point is greater. From [4],

a generic Lagrangian map from a 3-manifold to R3 has the caustic whose

singularities may locally be the following:

A2
2, transversal intersections of two smooth sheets, Figure 8;

A3
2, transversal intersections of three smooth sheets, Figure 8;

As,σ3 , cuspidal edges, with generating families F (x;u, v, w) = sx4 + vx2 + ux,

Figure 8. The sign σ = ± denotes the local degree ±1 of the Lagrangian
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map. In our case we are differentiating between functions x4 and −x4

by introducing the extra coefficient s = ± in the generating family.

Formally, the two sign options of the x4 coefficient in the generating

families are in different equivalence classes, unlike in [9];

As,σ3 A2, transversal intersections of a cuspidal edge with a smooth sheet, Figure

8. Again, the signs s and σ correspond to the signs of the cuspidal edge;

s,σ

s,σ

Figure 8: The A2
2, A3

2, As,σ3 and As,σ3 A2 stable singularities of generic caustics.

As,σ4 , swallowtails, with the generating family F (x;u, v, w) = x5 + wx3 +

vx2 + ux. The notation s = ±, σ = ± for the swallowtail comes from

the signs of the right cuspidal edge, which can be seen in Figure 9. This

is different to [9] where the notation of the swallowtail came from the

sign of the left cuspidal edge;

D±,σ4 , the central points of the two caustics shown in Figure 10, with the

generating family

F (x, y;u, v, w) = ±x2y + y3 + wy2 + vy + ux. (1)
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s,σσ−s,−

3
A

3
A

Figure 9: As,σ4 singularities.

The sign σ = ± indicates the local degree ±1 of the Lagrangian map

along the cuspidal edges. We should note that as a cuspidal edge passes

through the most degenerate point of D±,σ4 , its decorations switch from

(−, σ) to (+, σ). Hence, the notation s is not needed for D±,σ4 .

−,σ
D

4

+,σ
D

4

Figure 10: The D±,σ4 caustics in R3, the purse and pyramid.

2.2 Examples of invariants of generic Lagrangian

maps

One of the most intrinsic ways to define an invariant of generic Lagrangian

maps is to count the numbers of points of isolated singularity types of their

caustics. In our case we have thirteen such invariants, compared to nine in

[9].
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Examples 2.2.1. The number of isolated singularities of C(f) of a particular

type is a local invariant. We now introduce notations for such invariants:

It, the number of triple points A3
2;

Iswsσ , the numbers of (s, σ)-swallowtails, s, σ = ±;

Icsσ , the numbers of As,σ3 A2 points, s, σ = ±;

Id−σ , the numbers of D−,σ4 points, σ = ±;

Id+σ , the numbers of D+,σ
4 points, σ = ±.

Another obvious invariant is

Iχ, half of the Euler characteristic of the critical locus of a mapping.

2.3 Bifurcations in generic 1-parameter fam-

ilies of caustics

We shall now introduce bifurcations in generic 1-parameter families, which we

will split into two categories: corank 1 and corank 2 bifurcations. The normal

forms may be found, for example, in [4], [22] and [9]. Here we have edited

the normal forms to include the extra decoration sign s = ± in the coefficient

of x4. We depict cuspidal edges by a thicker solid line. The directions of the

bifurcations shown in the figures co-orient the discriminantal strata wherever

the initial and final local caustics differ. Such bifurcations will also be called
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positive. In terms of the normal forms, they correspond to the sign of the

bifurcation parameter λ changing from negative to positive. Respectively, we

will also call the corresponding sides of the strata negative and positive.

2.3.1 Corank 1 bifurcations

First, we shall list the corank 1 bifurcations. Here we are not allowing any of

the critical points to have corank 2, that is no D4 or D5 points.

2.3.1.1 Uni-germs

For corank 1 uni-germs we have the following transformations of the caustics

along with their normal forms. They are depicted in Figure 11. We introduce

the notations e and h in order to distinguish between elliptic and hyperbolic

versions of bifurcations. Again, the decorations s = ± and σ = ± correspond

to the sign of the coefficient of x4 and the sign of the local degree of the

Lagrangian map at the cuspidal edge. The last two decorations in the notation

of A3 uni-germs are the signs of the squares in the coefficient of x2.

As,σ,+,+3 , F = s(x4 + (v2 + w2 − λ)x2 + ux), birth of a flying saucer.

As,σ,+,−3 , F = s(x4 + (v2−w2 +λ)x2 +ux), hyperbolic transformation of an edge.

As,σ,−,−3 , F = s(x4− (v2 +w2 + λ)x2 + ux), death of a compact component of an

edge.
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Aε,e4 , F = x5 +(w2−λ)x3 +vx2 +ux, birth of cuspidal lips. Here ε = sσ with

the product taken along either of the two newborn edges (see Figure 9).

Aε,h4 , F = x5 + (λ−w2)x3 + vx2 + ux, beaks bifurcation on the edge. Again,

ε = sσ.

As,σ,ω5 , F = s(x6− λx4 + vx3 +wx2 + ux). Here s is the sign of x6 and σ is the

local degree of the whole map. Moreover, ω is the writhe of the cuspidal

edge. We denote the sign of the swallowtails born in the bifurcation by

(t, τ). Hence, we have the relation, (t, τ) = writhe · (−s,−σ).

2.3.1.2 Multi-germs

For corank 1 multi-germs we have the following transformations of caustics,

depicted in Figure 12. We use the notation: T for tangency between partic-

ipating components, and e, h to distinguish between elliptic and hyperbolic

versions of bifurcations, as before. We set r to be the number of faces of the

bounded regions to be co-oriented outwards after the bifurcation.

A4,r
2 , r = 2, 3, 4, intersection of four smooth sheets. The pre-bifurcation tetra-

hedral region has 4− r faces co-oriented outwards. Therefore, the r = 2

stratum A4,2
2 is not co-orientable in L by local means.

TA3,r
2 , r = 0, 1, 2, 3, three smooth sheets are pairwise transversal to each other,

but the line of intersection of any two of them is tangent to the third

sheet at the moment of bifurcation.
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3
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3
A

Figure 11: Positive moves in generic 1-parameter bifurcations of caustics of

corank 1 maps.
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TA2,e,r
2 , r = 0, 1, 2, elliptic tangency of two smooth sheets.

TA2,h,r
2 , r = 0, 1, same as above, but hyperbolic. We write r = 1 if the sheets

have the same co-orientation, and r = 0 if the co-orientations are oppo-

site. For r = 1, we fail to locally co-orient the stratum in L.

As,σ3 A2,r
2 , r = 0, 1, 2, cuspidal edge meets the intersection of two smooth sheets.

A2,e;s,σ;s′,σ′

3 , two edges of given signs meet face-to-face. The notation is up to per-

mutation of (s, σ) and (s′, σ′).

A2,h;s,σ;s′,σ′

3 , one of the edges is overtaking the other. The notation assumes that two

As,σ3 A2 points appear after the bifurcation instead of two As
′,σ′

3 A2 points

which the caustic had before. Therefore, the notation is anti-symmetric

with respect to the (s, σ) ↔ (s′, σ′) swap: A2,h;s′,σ′;s,σ
3 = −A2,h;s,σ;s′,σ′

3 .

In particular, such strata are not co-orientable if (s, σ) = (s′, σ′).

As,σ4 Ar2, r = 0, 1, a smooth sheet passes through a swallowtail.

TAs,σ3 Ae,r2 , r = 0, 1, cuspidal edge becomes tangent to a smooth sheet so that

the two local components of the caustic do not intersect before the

bifurcation.

TAs,σ3 Ah,r2 , r = 0, 1, the hyperbolic version of the previous with no A3A2 points

before the bifurcation. For r = 1, the co-orientation of the A2 sheet

is towards the cuspidal edge before the bifurcation. For r = 0, it is

opposite.
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3
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Figure 12: Positive moves in generic 1-parameter families of corank 1 multi-

germs of caustics. 42



2.3.2 Corank 2 bifurcations

Now, we shall examine the corank 2 bifurcations. Here we are allowing the

derivatives of individual maps to have corank 2 at some critical points, that

is D4 and D5 points.

2.3.2.1 Uni-germs

We now use the index q in the sense of quadratic. This word relates to the

features appearing in the normal forms of our singularities.

There are four D±4,q ‘quadratic’ bifurcations induced from the generating

family

F = s(±x2y +
1

3
y3 + ϕ

y2

2
+ vy + ux), (2)

where, ϕ respectively is:

• D−,s,σ4,q : λ− w2 ± v + αu;

• D+,s,σ
4,a : λ− w2 + v + αu, |α| < 1;

• D+,s,σ
4,b : λ− w2 ± v + αu, |α| > 1;

• D+,s,σ
4,c : λ− w2 − v + αu, |α| < 1.

Here α ∈ R is a modulus. The quadraticity is of course in w, and we have

‘three values of q’ in the D+
4 case. Figure 13 provides the illustrations. The

signs s and σ correspond to the majority of the cuspidal edge after the bifur-

cation. The interval of the cuspidal edge between the two D4 points after the
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bifurcation has signs (−s, σ).

The Ds,σ
5 generating family is

F = s(x2y + y4 − (λ± w + au)y3 + wy2 + vy + ux), a ∈ R,

with its illustration provided in Figure 13. The sign σ = ± denotes the local

degree ±1 of the Lagrangian map. We shall use the notation Ds,σ
5 , where to

the left of the D4 points we have the cuspidal edge decorations (−s, σ) and

to the right (s, σ).

2.3.2.2 Multi-germs

Now we list the multi-germ bifurcations with corank 2 points. In each of the

following cases the smooth sheet passes during a positive move through a D4

point from the side with the cuspidal edge (−, σ) to that with (+, σ). Hence

we set that the A+,σ
3 A2 points appear after the bifurcation. Figures 14 and

15 provide the illustrations.

D−,σ4 A+
2 , a smooth sheet passing through a pyramid in the direction of its co-

orientation.

D−,σ4 A−2 , a smooth sheet passing through a pyramid in the direction opposite to

its co-orientation.

D+,σ
4,0 A

+
2 , a smooth sheet passing through a purse so that the number of triple
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4,b
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4,c

+,s,
D

σ
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σ

σ

Figure 13: Positive moves in generic 1-parameter bifurcations of uni-germ

caustics near corank 2 points of the maps.
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points decreases. The sheet is moving in the direction of its co-orientation.

D+,σ
4,0 A

−
2 , a smooth sheet passing through a purse so that the number of triple

points decreases. The sheet is moving in the direction opposite to its

co-orientation.

D+,σ
4,2 A

+
2 , a smooth sheet passing through a purse so that the number of triple

points increases. The sheet is moving in the direction of its co-orientation.

D+,σ
4,2 A

−
2 , a smooth sheet passing through a purse so that the number of triple

points increases. The sheet is moving in the direction opposite to its

co-orientation.

D+,σ
4,r A

+
2 , a smooth sheet passing through a purse so that the triple point passes

from the left to the right if we are looking in the direction of the move-

ment which in this case coincides with the co-orientation of the sheet.

D+,σ
4,r A

−
2 , a smooth sheet passing through a purse so that the triple point passes

from the left to the right if we are looking in the direction of the move-

ment which in this case is opposite to the co-orientation of the sheet.

D+,σ
4,l A

+
2 , a smooth sheet passing through a purse so that the triple point passes

from the right to the left if we are looking in the direction of the move-

ment which in this case coincides with the co-orientation of the sheet.

D+,σ
4,l A

−
2 , a smooth sheet passing through a purse so that the triple point passes

from the right to the left if we are looking in the direction of the move-

ment which is now opposite to the co-orientation of the sheet.
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2.4 Derivatives of the basic invariants

Direct analysis of the illustrations to our lists of bifurcations in generic 1-

parameter families from Section 2.3 yields

Lemma 2.4.1. The derivatives of the 14 invariants introduced in Example

2.2.1 are

I ′t : 2TA3
2 + 2A3A

2
2 + A4A2 + 2D+

4,2A2 − 2D+
4,0A2

I ′sw++
: A

+,e/h
4 + 2A+,+,−

5 + 2A−,−,+5 +D+,−
5 +D−,+5

I ′sw+− : A
−,e/h
4 + 2A−,+,+5 + 2A+,−,−

5 +D+,+
5 +D−,−5

I ′sw−+
: A

−,e/h
4 + 2A+,−,+

5 + 2A−,+,−5 +D+,+
5 +D−,−5

I ′sw−− : A
+,e/h
4 + 2A+,+,+

5 + 2A−,−,−5 +D+,−
5 +D−,+5

I ′c++
: 2TA++

3 A2 + 4A2,e,+,+,+,+
3 + 2A2,e,+,+,+,−

3 + 2A2,e,+,+,−,+
3

+2A2,e,+,+,−,−
3 + 2A2,h,+,+,+,−

3 + 2A2,h,+,+,−,−
3 + 2A2,h,+,+,−,+

3

+A+
4 A2 + 2A+,+,+

5 + 2A+,+,−
5 + 3D−,+4 A2 +D+,+

4,0 A2 +D+,+
4,2 A2

+D+,+
4,l A2 +D+,+

4,r A2 − 2D+,+
5

I ′c+− : 2TA+−
3 A2 + 4A2,e,+,−,+,−

3 + 2A2,e,+,+,+,−
3 + 2A2,e,+,−,−,+

3

+2A2,e,+,−,−,−
3 + 2A2,h,+,−,−,+

3 + 2A2,h,+,−,−,−
3 − 2A2,h,+,+,+,−

3

+A−4 A2 + 2A+,−,+
5 + 2A+,−,−

5 + 3D−,−4 A2 +D+,−
4,0 A2 +D+,−

4,2 A2

+D+,−
4,l A2 +D+,−

4,r A2 − 2D+,−
5
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Figure 14: Positive moves in generic 1-parameter bifurcations of multi-germ

caustics involving corank 2 points of the maps.
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Figure 15: More positive moves in generic 1-parameter bifurcations of multi-

germ caustics involving corank 2 points of the maps.
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I ′c−+
: 2TA−+

3 A2 + 4A2,e,−,+,−,+
3 + 2A2,e,+,+,−,+

3 + 2A2,e,+,−,−,+
3

+2A2,e,−,+,−,−
3 + 2A2,h,−,+,−,−

3 − 2A2,h,+,+,−,+
3 − 2A2,h,+,−,−,+

3

+A−4 A2 + 2A−,+,+5 + 2A−,+,−5 − 3D−,+4 A2 −D+,+
4,0 A2 −D+,+

4,2 A2

−D+,+
4,l A2 −D+,+

4,r A2 − 2D−,+5

I ′c−− : 2TA−−3 A2 + 4A2,e,−,−,−,−
3 + 2A2,e,+,+,−,−

3 + 2A2,e,+,−,−,−
3

+2A2,e,−,+,−,−
3 − 2A2,h,+,+,−,−

3 − 2A2,h,+,−,−,−
3 − 2A2,h,−,+,−,−

3

+A+
4 A2 + 2A−,−,+5 + 2A−,−,−5 − 3D−,−4 A2 −D+,−

4,0 A2 −D+,−
4,2 A2

−D+,−
4,l A2 −D+,−

4,r A2 − 2D−,−5

I ′
d++

: 2D+,+
4,a + 2D+,+

4,b + 2D+,+
4,c −D

+,+
5 −D−,+5

I ′
d+−

: 2D+,−
4,a + 2D+,−

4,b + 2D+,−
4,c −D

+,−
5 −D−,−5

I ′
d−+

: 2D−,+4,q +D+,+
5 +D−,+5

I ′
d−−

: 2D−,−4,q +D+,−
5 +D−,−5

I ′χ : −D+
4,a −D+

4,b −D
+
4,c +D−4,q + Aq3

Here, omission of an index means summation along all possible values of

this index. We also set ε = sσ, so we have Aε4A2 and A
ε,e/h
4 = Aε,e4 +Aε,h4 . Fi-

nally, we set D+
4,q = D+

4,a+D+
4,b+D

+
4,c and Aq3 = A±,±,+,+3 +A±,±,+,−3 +A±,±,−,−3 .

Proof of Lemma 2.4.1. By inspection of the 126 co-orientable bifurca-

tions in Section 2.3. �
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In what follows we will be using the 15th linear combination

I ′15 : A+,+,q
3 − A+,−,q

3 − A−,+,q3 + A−,−,q3 ,

which turns out to be a discriminantal cycle linearly independent from the

14 derivatives.

Remark 2.4.2. There is another set of 15 integer discriminantal cycles which

will be useful for us in the next subsection:

I ′t, I ′sw++
, I ′sw+− , I ′c++

, I ′c+− , I ′
d++
, I ′

d+−
, I ′χ, I ′15,

(I ′sw++
+ I ′sw−−)/2 : A

+,e/h
4 + A+,+,−

5 + A−,−,+5 + A+,+,+
5 + A−,−,−5

+D+,−
5 +D−,+5

(I ′sw+− + I ′sw−+
)/2 : A

−,e/h
4 + A−,+,+5 + A+,−,−

5 + A+,−,+
5 + A−,+,−5

+D+,+
5 +D−,−5

(I ′
d++

+ I ′
d−+

)/2 : D+,+
4,a +D+,+

4,b +D+,+
4,c +D−,+4,q

(I ′t + I ′c++
+ I ′c−+

)/2 : TA3
2 + A±,+3 A2

2 + A±,−3 A2
2 + 2A2,e;+,+;+,+

3 + A2,e;+,+;+,−
3

+2A2,e;+,+;−,+
3 + A2,e;+,+;−,−

3 + A2,e;+,−;−,+
3

+2A2,e;−,+;−,+
3 + A2,e;−,+;−,−

3 + A2,h;+,+;+,−
3

+A2,h;+,+;−,−
3 − A2,h;+,−;−,+

3 + A2,h;−,+;−,−
3 + A+

4 A2

+A−4 A2 + TA+,+
3 A2 + TA−,+3 A2 + A+,+,+

5 + A+,+,−
5

+A−,+,+5 + A−,+,−5 −D+,+
5 −D−,+5 +D+,+

4,2 A2

+D+,−
4,2 A2 −D+,+

4,0 A2 −D+,−
4,0 A2
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(I ′t + I ′c+− + I ′c−−)/2 : TA3
2 + A±,+3 A2

2 + A±,−3 A2
2 + A2,e;+,+;+,−

3

+A2,e;+,+;−,−
3 + 2A2,e;+,−;+,−

3 + A2,e;+,−;−,+
3

+2A2,e;+,−;−,−
3 + A2,e;−,+;−,−

3 + 2A2,e;−,−;−,−
3

−A2,h;+,+;+,−
3 − A2,h;+,+;−,−

3 + A2,h;+,−;−,+
3

−A2,h;−,+;−,−
3 + A+

4 A2 + A−4 A2 + TA+,−
3 A2

+TA−,−3 A2 + A+,−,+
5 + A+,−,−

5 + A−,−,+5

+A−,−,−5 −D+,−
5 −D−,−5 +D+,+

4,2 A2

+D+,−
4,2 A2 −D+,+

4,0 A2 −D+,−
4,0 A2

(((I ′
d++

+ I ′
d−+

+ I ′
d+−

+ Id−−)/2)

+I ′χ + I ′15)/2 : A+,+,q
3 + A−,−,q3 +D−,+4,q +D−,−4,q

Remark 2.4.3. In the Z2 setting, we will need an extension to 20 elements

of the mod2 reduction of the set of the 15 integer cycles from the previous

remark. The extension is by the linear combinations I ′i=16,...,20 at the end of

this list:

I ′t : A4A2

I ′sw++
: A

+,e/h
4 +D+,−

5 +D−,+5

I ′sw+− : A
−,e/h
4 +D+,+

5 +D−,−5

I ′c++
: A+

4 A2 +D−,+4 A2 +D+,+
4,0 A2 +D+,+

4,2 A2 +D+,+
4,l A2 +D+,+

4,r A2

I ′c+− : A−4 A2 +D−,−4 A2 +D+,−
4,0 A2 +D+,−

4,2 A2 +D+,−
4,l A2 +D+,−

4,r A2

I ′
d++

: D+,+
5 +D−,+5
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I ′
d+−

: D+,−
5 +D−,−5

I ′χ : D+
4,a +D+

4,b +D+
4,c +D−4,q + Aq3

I ′15 : A+,+,q
3 + A+,−,q

3 + A−,+,q3 + A−,−,q3

(I ′sw++
+ I ′sw−−)/2 : A

+,e/h
4 + A+,+,−

5 + A−,−,+5 + A+,+,+
5 + A−,−,−5

+D+,−
5 +D−,+5

(I ′sw+− + I ′sw−+
)/2 : A

−,e/h
4 + A−,+,+5 + A+,−,−

5 + A+,−,+
5 + A−,+,−5

+D+,+
5 +D−,−5

(I ′
d++

+ I ′
d−+

)/2 : D+,+
4,a +D+,+

4,b +D+,+
4,c +D−,+4,q

(I ′t + I ′c++
+ I ′c−+

)/2 : TA3
2 + A±,+3 A2

2 + A±,−3 A2
2 + A

2,e/h;+,+;+,−
3

+A
2,e/h;+,+;−,−
3 + A

2,e/h;+,−;−,+
3 + A

2,e/h;−,+;−,−
3

+A+
4 A2 + A−4 A2 + TA±,+3 A2 + A+,+,±

5 + A−,+,±5

+D+,+
5 +D−,+5 +D+,+

4,2 A2 +D+,−
4,2 A2 +D+,+

4,0 A2

+D+,−
4,0 A2

(I ′t + I ′c+− + I ′c−−)/2 : TA3
2 + A±,+3 A2

2 + A±,−3 A2
2 + A

2,e/h;+,+;+,−
3

+A
2,e/h;+,+;−,−
3 + A

2,e/h;+,−;−,+
3 + A

2,e/h;−,+;−,−
3

+A+
4 A2 + A−4 A2 + TA±,−3 A2 + A+,−,±

5 + A−,−,±5

+D+,−
5 +D−,−5 +D+,+

4,2 A2 +D+,−
4,2 A2 +D+,+

4,0 A2

+D+,−
4,0 A2

((I ′
d++

+ I ′
d−+

+ I ′
d+−

+ Id−−)/2)

+I ′χ + I ′15)/2 : A+,+,q
3 + A−,−,q3 +D−,+4,q +D−,−4,q

53



I ′16 : TA2
2 + A−,+,q3 + A−,−,q3 +D+,+

4,b +D+,−
4,b

I ′17 : TA3
2 + TA±,−3 A2 +D−,+4 A2 +D−,−4 A2

+D+,+
4,1 A2 +D+,−

4,1 A2

I ′18 : A
2,e/h;+,+;+,+
3 + A

2,e/h;+,+;+,−
3 + A

2,e/h;+,+;−,+
3

+A
2,e/h;+,+;−,−
3 + A

2,e/h;+,−;+,−
3 + A

2,e/h;+,−;−,+
3

+A
2,e/h;+,−;−,−
3 + A

2,e/h;−,+;−,+
3 + A

2,e/h;−,+;−,−
3

+A
2,e/h;−,−;−,−
3 + A−,+,±5 + A−,−,±5

I ′19 : A4
2 + A±,−3 A2

2 + A
2,e/h;+,−;+,−
3 + A

2,e/h;+,−;−,−
3

+A
2,e/h;−,−;−,−
3

I ′20 : A+
4 A2

Along with the first 15, the last 5 expressions here turn out to be Z2 dis-

criminantal cycles. The set of all 20 is linearly independent over Z2. In

Chapter 7, we will find integral geometric interpretations for 4 elements of

the Z2 span of the 20 which are linearly independent modulo the span of the

first 15.

2.5 Ranks of spaces of the discriminantal cy-

cles

We now formulate the main results of this thesis. Their proofs are given

in Chapter 3. All statements in this section refer to any particular con-

nected component of the space L(M,T ∗N,N). Here, M and N are oriented
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and without boundaries, and M is compact. We introduce the notation

D(M,T ∗N,N ;K) for the space of discriminantal cycles in L(M,T ∗N,N) with

coefficients K = Q, Z, Z2.

Our first main result is:

Theorem 2.5.1. The space D(M,T ∗N,N ;Q) has rank 15. It is spanned by

the 14 derivatives from Lemma 2.4.1 and the cycle

I ′15 : A+,+,q
3 − A+,−,q

3 − A−,+,q3 + A−,−,q3 .

Corollary 2.5.2. The space D(M,T ∗N,N ;Z) has rank 15. It is spanned by

the 15 discriminantal cycles from Remark 2.4.2.

Our second main result is the Z2 analogue of Theorem 2.5.1:

Theorem 2.5.3. The space D(M,T ∗N,N ;Z2) has rank 20. Its basis is

formed by the 20 discriminantal cycles in Remark 2.4.3.

2.6 Bifurcations in 2-parameter families

In this section we consider the bifurcations in 2-parameter families of La-

grangian maps from [9] with the extra decoration s in the notation of bifur-

cations containing cuspidal edges. Each family of bifurcations will give us a

bifurcation diagram, which in turn gives a cyclic equation on the increments

of our local invariants across the codimension 1 strata. We denote the incre-

ment by the lower case version of the stratum notation. If a stratum is non
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co-orientable its increment will be zero over Z and may be non-zero over Z2.

Increments across non co-orientable strata will be put in square brackets.

Generally, these cyclic equations allow us to glue certain strata together,

since we know that the increments across them are equal. We shall call glued

up strata ‘big strata’. If one of the summands of the big stratum is non co-

orientable, then the increment of any invariant across the big stratum is zero

over Z.

The general approach to the study of bifurcations in families of caustics

was developed in [22]. If a local family of caustics in Rn has p parameters we

can collect it to one big caustic C̃ ⊂ Rn+p. If the family is generic then C̃ is the

caustic of a generic Lagrangian map germ to Rn+p. If the germ is a uni-germ

such a map is stable and C̃ is the caustic of an R+-versal deformation of one

of the Ak, Dk, Ek isolated function singularities with k ≤ n+ p+ 1. In order

to understand all possible p-parameter bifurcations of uni-germ caustics we

must understand all generic maps π : (Rn+p, C̃) 7→ Rp. Here, the critical value

set of π on C̃ is the bifurcation diagram of the corresponding family of caustics

in Rn.

2.6.1 Corank 1 bifurcations

First we consider only corank 1 bifurcations in 2-parameter families, that is,

bifurcations without D4 and D5 points.
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2.6.1.1 Extra A2 component

The first bifurcation type we will consider is when a smooth A2 sheet of C

passes through a point of a codimension 1 bifurcation S in a generic way. We

list the first five bifurcations S in the table below, where the SA2 bifurcation

diagrams are of the form shown in Figure 16 and only differ in decoration

of strata. Here, the vertical coordinate λ is the parameter in the bifurcation

S and the horizontal coordinate µ measures the position of the smooth A2

sheet. These five bifurcations S result in cyclic equations of the form u = v,

which are listed in the table below. Where the cyclic equations allow us to

glue up certain strata together, the big strata are also listed in the table.

µ

λ

S S

U V

Figure 16: Bifurcation diagram of the families SA2 obtained from interaction

of a smooth A2 sheet with a codimension 1 bifurcation S.
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S r cyclic equation big stratum

1. TA3,r
2 2, 3 [a4,2

2 ] = a4,3
2 = a4,4

2 [A4
2]

2. TA2,e,r
2 0, 1, 2 ta3,r+1

2 = ta3,r
2 TA3

2

3. TAs,σ3 Ae,r2 0, 1 as,σ3 a2,r+1
2 = as,σ3 a2,r

2 As,σ3 A2
2

4. As,σ,+,+3 tas,σ3 ae,02 = tas,σ3 ae,12 TAs,σ3 Ae2

As,σ,−,−3 tas,σ3 ah,02 = tas,σ3 ah,12 TAs,σ3 Ah2

5. Aε,e4 as,σ4 a0
2 = a−s,−σ4 a1

2

2.6.1.1.1 Example: Gluing up the As,σ3 A2
2 strata.

We now explain in detail how one of the five bifurcations S produces a bi-

furcation diagram shown in Figure 16. Consider the third row of the table

above, that is, when S = TAs,σ3 Ae,r2 , setting r = 1 and passing a smooth A2

sheet through it. As explained earlier we set the vertical coordinate λ to be

the parameter in the TAs,σ3 Ae,12 bifurcation and the horizontal coordinate µ

measures the position of the smooth A2 sheet, as shown in Figure 17. By in-

spection of Figure 17 we see the As,σ3 A2
2 discriminantal stratum is a parabola

since it follows the parabolic shape of the cuspidal edge in TAs,σ3 Ae,12 . The two

bounded regions corresponding to the two A3A
2
2 bifurcations are best seen at

the central (µ = 0) position of the smooth sheet when λ > 0 : the left has

one face co-oriented outwards, and the right has two of them. Therefore,

U = As,σ3 A2,1
2 and V = As,σ3 A2,2

2 .

A similar analysis can be done for the TAs,σ3 Ae,02 bifurcation. Both results
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λ

µ

µ

µ

Figure 17: A TAs,σ3 Ae,12 bifurcation interacting with a smooth A2 sheet.
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together give us equation 3 in the table above and create the big stratum

As,σ3 A2
2.

2.6.1.1.2 Passing a smooth A2 sheet through As,σ,−5 and A2,e;s,+;s′,−
3 .

Passing a smooth A2 sheet through As,σ,−5 and A2,e;s,+;s′,−
3 yields bifurcation

diagrams different from the previous cases. Therefore we consider As,σ,−5 in de-

tail and state the result in the A2,e;s,+;s′,−
3 case (see [9] or [10] for its bifurcation

diagram).

Similar to the previous case, Figure 18 shows how an As,σ,−5 bifurcation

interacts with a smooth A2 sheet. By inspection of Figure 18 we see that we

will have A4A2 and A3A
2
2 degenerations during the interaction. Recall As,σ,−5

has normal form F = s(x6−λx4 +vx3 +wx2 +ux), and v in this formula is the

horizontal coordinate in the target of our Lagrangian maps, so that the extra

smooth A2 sheet in the figure is v = µ. If we assign weights wx = 1, wu =

5, wv = 3, ww = 4 and wλ = 2 our normal form F becomes quasi-homogeneous

and our parameters have weight wλ = 2 and wµ = 3. Hence, the A4A2 and

A3A
2
2 strata are semicubical parabolas with the equations λ3 = const · µ2, as

shown in Figure 19.

Since we are working with As,σ,−5 we know from the relation (t, τ) = writhe·

(−s,−σ) that the two swallowtails have sign (s, σ). Therefore, the strata in

Figure 19 will have decoration (s, σ). We also know the As,σ,−5 singularity

occurs when λ = 0, hence in Figure 19 it is depicted as a horizontal line.

Finally, the co-orientation of the strata are found by calculating the increment
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µ

µ

µ

λ

s,σ

Figure 18: An As,σ,−5 bifurcation interacting with a smooth A2 sheet.

µ

λ

5

σs,  ,−
A

5

σs,  ,−
A

A
2

2 3

σs,
A A

2

2

4

σs,
A

4

σs,
A A

0

2
A

1

2

3

σs,
A

Figure 19: Bifurcations obtained from interaction of a smooth A2 sheet with

As,σ,−5 .
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of the number of A3A2 points across the strata. Figure 19 yields the cyclic

equation

6. as,σ4 a0
2 = as,σ4 a1

2.

We see that we are able to use equations 5 and 6 to create the big stratum

Aε4A2 = As,σ4 A2 + A−s,−σ4 A2 where ε = sσ.

By similar calculations the interaction of passing a smooth A2 sheet through

A2,e;s,+;s′,−
3 yields the cyclic equation

7. 2as,+3 a2
2 = 2as

′,−
3 a2

2

which allows us to create the big stratum A3A
2
2 over Z.

2.6.1.2 Cubic bifurcations

We now explain in detail an example of obtaining a cubic bifurcation for Aε,e4 .

Afterwards we will state the remaining results without explanation (see [10])

since the calculations for all the different bifurcations S are the same and only

differ by the strata involved in the bifurcation diagram.

The singularity Aε,e4 has generating family F = x5 + (w2 − λ)x3 + vx2 +

ux. Writing w3 instead of w2, we obtain a codimension 2 uni-germ, with

a Lagrangian-versal deformation F = x5 + (w3 + λ1w + λ2)x3 + vx2 + ux.

We know the Aε,e4 strata occurs when the coefficients of x and x2 equal zero
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and the coefficient of x3 has a double root as a polynomial in w, that is, if

4λ3
1 + 27λ2

2 = 0. From Figure 11 we see that at each of the two A4 points two

cuspidal edges of opposite pairs of signs meet. Hence, each swallowtail has

decoration Aε4 with ε = sσ. We detect if the stratum is elliptic or hyperbolic

by comparing our normal form to normal forms of A
ε,e/h
3 in Section 2.3.1.1.

Finally, we co-orient the strata to the side where w3 + λ1w+ λ2 = 0, that

is the coefficient of x3 equaling zero, has the greater number of real roots.

Hence, we obtain the bifurcation diagram in Figure 20, which yields equation

8 in the list below.

1λ

λ2

4
A

ε,        e

4
A

ε,        h

Figure 20: Bifurcation diagram of a cubic analogue of the Aε,e4 bifurcation.

S Equation Big stratum

8. Aε,e4 aε,e4 = aε,h4 A
ε,e/h
4 = Aε,e4 + Aε,h4

9. As,σ,+,±3 as,σ,+,+3 = as,σ,+,−3 = as,σ,−,−3 As,σ,q3 = As,σ,+,+3 + As,σ,+,−3 + As,σ,−,−3

10. TAs,σ3 Ae2 tas,σ3 ae2 = tas,σ3 ah2 TAs,σ3 A2 = TAs,σ3 Ae2 + TAs,σ3 Ah2

11. TA2,e,r
2 , TA2,h,r

2 ta2,e,2
2 = −ta2,e,0

2 = ta2,h,0
2 TA2,opp

2 = TA2,e,2
2 − TA2,e,0

2 + TA2,h,0
2

ta2,e,1
2 = [ta2,h,1

2 ] [TA2,dir
2 ] = TA2,e,1

2 + [TA2,h,1
2 ]
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For the big strata here we have introduced a new notation. We let q stand

for quadratic, dir = direct for the tangency between two sheets with coinciding

co-orientations and opp for similar tangency with opposite co-orientations.

2.6.1.3 Multi-germ families: Non-transversal interactions with a

cuspidal edge

The three codimension 2 events that occur when the plane Π tangent to the

critical point set at its edge point is in a special position with other local

components of C are:

1. the plane Π coincides with the plane tangent to a smooth A2 sheet;

2. the plane Π contains the tangent direction of the line of transversal

intersection of two A2 sheets;

3. the plane Π contains the tangent direction of another cuspidal edge

curve.

Figure 21 gives an example of the bifurcation diagram for the last case, which

we will study in detail (again, see [9] or [10] for the other cases’ bifurcation

diagrams). We can assume our cuspidal edge surface Γ has equation x3 = y2 in

the 3-space. We project it down to the xy-plane by the map (x, y, z) 7→ (x, y).

We also introduce a curve that locally represents the projection of the other

cuspidal edge called C with equation y + αx + β = 0 where α and β are

parameters. We now inspect diagrams in the xy-plane showing how Γ and C

interact for various values of α and β, see Figure 22. It is obvious from Figure
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σ    ,σs,   ;s’   ’

β

α
s,σ

s’,  ’  σ

σ    ,σs,   ;s’   ’

 2A

 2A

s’,  ’
TA

3

 σ

s’,  ’
TA

3

 σ

3
A

2,e;

3
A

2,h;

Figure 21: Codimension 2 degeneration due to special position of a cuspidal

edge with respect to the tangent plane at an edge point.

x x

xx

y

y

C

C

C

C

L

L

L

L
α > 0α < 0

α < 0, β = 0 y α > 0, β = 0

y

Figure 22: Γ and C interacting for various values of α and β in the projected

xy-plane.
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22 that at the following values of α and β we have these bifurcations:

α < 0, β = 0 : A2,e;s,σ;s′,σ′

3

α > 0, β = 0 : A2,h;s,σ;s′,σ′

3

α < 0, β : TAs
′,σ′

3

α > 0, β : TAs
′,σ′

3

In order to determine the shape of the strata we assign weights to our

parameters. The projected surface Γ is quasi-homogeneous if wx = 2 and wy =

3 and therefore, our parameters have weights wα = 1 and wβ = 3. Hence, the

TAs
′,σ′

3 strata will be a cubic curve β = const · α3 and A2,e;s,σ;s′,σ′

3 /A2,h;s,σ;s′,σ′

3

will be the horizontal line β = 0. The signs of the strata follow from the signs

of the cuspidal edges participating. Finally, the co-orientations of the strata

are found by looking at the increments of the number of A3A2 points across

the strata. This yields the cyclic equations 14 shown below.

Respectively cases 1. and 2. give equations 12 and 13.

12. ta2,opp
2 = [ta2,dir

2 ]

13. 2ta3
2 = 2a+,+

3 a2
2

= 2a+,−
3 a2

2

= 2a−,+3 a2
2

= 2a−,−3 a2
2
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14. 2ta+,+
3 a2 = a2,e;+,+;+,+

3 − [a2,h;+,+;+,+
3 ]

= a2,e;+,−;+,+
3 − a2,h;+,−;+,+

3

= a2,e;−,+;+,+
3 − a2,h;−,+;+,+

3

= a2,e;−,−;+,+
3 − a2,h;−,−;+,+

3

2ta+,−
3 a2 = a2,e;+,+;+,−

3 − a2,h;+,+;+,−
3

= a2,e;+,−;+,−
3 − [a2,h;+,−;+,−

3 ]

= a2,e;−,+;+,−
3 − a2,h;−,+;+,−

3

= a2,e;−,−;+,−
3 − a2,h;−,−;+,−

3

2ta−,+3 a2 = a2,e;+,+;−,+
3 − a2,h;+,+;−,+

3

= a2,e;+,−;−,+
3 − a2,h;+,−;−,+

3

= a2,e;−,+;−,+
3 − [a2,h;−,+;−,+

3 ]

= a2,e;−,−;−,+
3 − a2,h;−,−;−,+

3

2ta−,−3 a2 = a2,e;+,+;−,−
3 − a2,h;+,+;−,−

3

= a2,e;+,−;−,−
3 − a2,h;+,−;−,−

3

= a2,e;−,+;−,−
3 − a2,h;−,+;−,−

3

= a2,e;−,−;−,−
3 − [a2,h;−,−;−,−

3 ]

Equation 12 enables us to create the big stratum, [TA2
2] = TA2,opp

2 + [TA2,dir
2 ]

for mod2 invariants only.

2.6.1.4 Multi-germ families: Interaction with a swallowtail

Now let us consider how a swallowtail interacts with other local components

of C. Figure 23 gives an example of its interaction with a cuspidal edge.
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We consider this in detail below, which yields equations 17. Other local

components of C could be a smooth sheet (Figure 24 left, equations 15) or a

transversal intersection of two smooth sheets (Figure 24 right, equations 16).

     σ   ,τ−s,−   ;t   
σ   ,τs,   ;t   

s,σ
t,τ

 2A

 2A

 2A
2

4

σs,
A

4

σs,
A

3

τt,
A3

A
2,e;

3
A

2,h;

Figure 23: Codimension 2 degeneration of a swallowtail interacting with a

cuspidal edge.

We explain in detail how we obtain Figure 23. We let Π be the plane

tangent to the surface at the swallowtail point. We make a coordinate change

so that the cuspidal edge curve C is straight and perpendicular to Π. We

then project the swallowtail in the direction of C to the plane Π. Under

this projection the swallowtail gives a semi-cubical parabola and its bisector.

This semi-cubical parabola and bisector represent the special positions of C

meeting the cuspidal edges and self-intersection set of the swallowtail, which

give the A
2,e/h
3 and A3A

2
2 strata.

The A4A2 bifurcations have been located in Figure 23 from a slightly

different perspective. We keep the same projected plane Π as described before

but this time we are interested in what happens at the origin of the plane,

that is at the projected A4 point. We consider the cuspidal edge surface as
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s,σ s,σ

σ−s,−
σ−s,−

 2A

 2A

A 2

       2    A
 2A  2A

 2A  2A

 2A
2

 2A
24

σs,
A

TA
2

3

4

σs,
A

3

σs,
TA A

4

2

4

σs,
A

4

σs,
A

4

σs,
A

4

σs,
A

3

σs,
A

3

       σ−s,−
A

3 

       σ−s,−
TA

Figure 24: Codimension 2 degenerations of a swallowtail interacting with a

smooth sheet and the transversal intersection of two smooth sheets.

a vertical cylinder that projects to the plane Π as a semi-cubical parabola,

E. We then move E by parallel translations in the plane Π to see how it

goes through the swallowtail point. This produces the extra half branches

shown in Figure 23 that represents the swallowtail point and cuspidal edge

folds meeting.

The decorations of the strata are from the decorations of the cuspidal

edges participating in the bifurcation. Finally, the co-orientations are found

by looking at the increments of the number of A3A2 points across strata.

For the three cases listed before we obtain the cyclic equations:
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15. 2a+,+
4 a2 = ta+,+

3 a2 + ta−,−3 a2 + ta3
2

2a+,−
4 a2 = ta+,−

3 a2 + ta−,+3 a2 + ta3
2

2a−,+4 a2 = ta−,+3 a2 + ta+,−
3 a2 + ta3

2

2a−,−4 a2 = ta−,−3 a2 + ta+,+
3 a2 + ta3

2

16. a−,−3 a2
2 = a+,+

3 a2
2 + [a4

2]

a−,+3 a2
2 = a+,−

3 a2
2 + [a4

2]

a+,−
3 a2

2 = a−,+3 a2
2 + [a4

2]

a+,+
3 a2

2 = a−,−3 a2
2 + [a4

2]

17. 2a+,+
4 a2 = a+,+

3 a2
2 + a2,e;−,−;+,+

3 + [a2,h;+,+;+,+
3 ]

= a+,−
3 a2

2 + a2,e;−,−;+,−
3 + a2,h;+,+;+,−

3

= a−,+3 a2
2 + a2,e;−,−;−,+

3 + a2,h;+,+;−,+
3

= a−,−3 a2
2 + a2,e;−,−;−,−

3 + a2,h;+,+;−,−
3

2a+,−
4 a2 = a+,+

3 a2
2 + a2,e;−,+;+,+

3 + a2,h;+,−;+,+
3

= a+,−
3 a2

2 + a2,e;−,+;+,−
3 + [a2,h;+,−;+,−

3 ]

= a−,+3 a2
2 + a2,e;−,+;−,+

3 + a2,h;+,−;−,+
3

= a−,−3 a2
2 + a2,e;−,+;−,−

3 + a2,h;+,−;−,−
3

2a−,+4 a2 = a+,+
3 a2

2 + a2,e;+,−;+,+
3 + a2,h;−,+;+,+

3

= a+,−
3 a2

2 + a2,e;+,−;+,−
3 + a2,h;−,+;+,−

3

= a−,+3 a2
2 + a2,e;+,−;−,+

3 + [a2,h;−,+;−,+
3 ]

= a−,−3 a2
2 + a2,e;+,−;−,−

3 + a2,h;−,+;−,−
3
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2a−,−4 a2 = a+,+
3 a2

2 + a2,e;+,+;+,+
3 + a2,h;−,−;+,+

3

= a+,−
3 a2

2 + a2,e;+,+;+,−
3 + a2,h;−,−;+,−

3

= a−,+3 a2
2 + a2,e;+,+;−,+

3 + a2,h;−,−;−,+
3

= a−,−3 a2
2 + a2,e;+,+;−,−

3 + [a2,h;−,−;−,−
3 ]

2.6.1.5 Uni-germs of codimension 2

We now consider uni-germs of codimension 2. The three 2-parameter defor-

mations shown in Figure 25 are of generating families induced from versal

deformations of A5, A4 and A3 function singularities. They were obtained in

[10] and have been modified to the Lagrangian setting for our case. As before,

ε = sσ. In particular, in the top diagram we set s = + and therefore ε = σ.

The boxed signs in the bottom row of Figure 25 correspond to the choice of

the signs of the coefficients of v2 and w2 in the generating family.

We now explain how to construct the bifurcation diagram in the top of

Figure 25. Its generating family induced from a versal deformation of A5 is

F =
1

7
x7 +

1

5
(λ1 ± w + αv)x5 +

1

4
λ2x

4 +
1

3
wx3 +

1

2
vx2 + ux,

where α ∈ R. Assigning the weights wx = 1, wλ1 = 2, wλ2 = 3, wu = 4, wv =

5, ww = 6, gives us the principal part

F̃ =
1

7
x7 +

1

5
λ1x

5 +
1

4
λ2x

4 +
1

3
wx3 +

1

2
vx2 + ux,
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Figure 25: Discriminants of the families

1
7
x7 + 1

5
(λ1 ± w + αv)x5 + 1

4
λ2x

4 + 1
3
wx3 + 1

2
vx2 + ux, α ∈ R;

s(1
6
x6 + 1

4
wx4 + 1

3
(±w2 + λ1w + λ2)x3 + 1

2
vx2 + ux);

1
5
x5 + 1

3
vx3 + 1

2
(±v2 + λ1v + λ2 ± w2)x2 + ux.

.
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which is sufficient for our considerations. The equation of the source is

F̃x = 0 =⇒ x6 + λ1x
4 + λ2x

3 + wx2 + vx+ u = 0.

We now compare the coefficients of F̃x to normal forms of certain bifurcations

in order to find an equation of the discriminant in the λ1λ2-plane. In the

following cases we assume that x = t corresponds to the root of maximal

multiplicity at the singularity.

A5 stratum: (x − t)5(x + 5t) = x6 − 15t2x4 + 40t3x3 − 45t4x2 + 24t5x − 5t6.

Equating the coefficients gives us:

(λ1, λ2) = (−15t2, 40t3)

which gives the A5 stratum as a semicubical parabola in the λ1λ2-plane. Now,

decorations of the A5 stratum are found by analysing the integral of (x −

t)5(x + 5t), which shows us we have an A+,σ
5 point for t > 0 and A−,−σ5 for

t < 0. Finally, MAPLE calculations imply that these two bifurcations have

opposite writhe decorations.

A4A2 stratum: (x − t)4(x + 2t)2 = x6 − 6t2x4 + 4t3x3 + 9t4x2 − 12t5x + 4t6.

Equating the coefficients:

(λ1, λ2) = (−6t2, 4t3)

which gives the A4A2 stratum as another semicubical parabola. MAPLE
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calculations show we have opposite signs of s and σ of the cuspidal edges at

A4 for different signs of t. However, since ε = sσ, we decorate both strata

with Aε4A2.

A2
3 stratum: (x−t)3(x+t)3 = x6−3t2x4 +3t4x2−t6. Equating the coefficients:

(λ1, λ2) = (−3t2, 0)

which gives us the A2
3 stratum as the negative λ1-axis. By the symmetry of

the function it is apparent we have opposite signs (s, σ) in A3 for different

signs of t. We also detect the stratum is hyperbolic by comparing our normal

form F to the normal forms in Section 2.3.1.1.

Again, the co-orientations are found by looking at the increments of the

number of A3A2 points across strata. Respectively each row of bifurcation

diagrams in Figure 25 gives the cyclic equations,

18. a2,h;+,σ;−,−σ
3 = a+,σ,ω

5 − a−,−σ,−ω5

19. 2a
ε,e/h
4 = as,σ,ω5 + as,σ,−ω5 − 2tas,σ3 a2

20. as,σ,q3 − a−s,−σ,q3 = [ta2
2]

2.6.2 Corank 2 bifurcations

We now consider bifurcations in 2-parameter families that contain D4 and D5

points.
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2.6.2.1 Uni-germs: D4

Consider the cubic analogues of the quadratic D±4 singularities introduced in

Section 2.3.2,

F = ±x2y +
1

3
y3 +

ϕ

2
y2 + βy + δx (3)

where

ϕ = α3 + αr + t± β + aδ, a ∈ R, a 6= ±1. (4)

Here r, t are parameters that give us an rt-family of caustics in R3
α,β,δ with the

big caustic in R5. According to Section 2.3.2.1 our normal form F produces

three bifurcations:

1. D−4 ;

2. D+
4 when |a| < 1;

3. D+
4 when |a| > 1.

Now, we know a D±4,q singularity occurs when the coefficients of x, y are zero

and the coefficient of y2 has a double root as a polynomial in α, that is, if

4r3 + 27t2 = 0. We co-orient the strata to the side where the number of D4

points of the caustic is greater. The bifurcation diagrams in the rt-plane are

shown in Figure 26: the left is for D−4 , the final two are for D+
4 with the

middle when |a| < 1 and the right when |a| > 1.
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Figure 26: Bifurcations diagrams of the cubic analogues of the quadratic D±4

singularities.

We now explain where the decorations of the strata come from. For all

three cases let the top branch of the bifurcation diagrams have signs s, σ and

recall the generating family

F = ±x2y +
1

3
y3 +

1

2
(α3 + αr + t± β + aδ)y2 + βy + δx.

Setting (r, t) 7→ (r,−t) to examine the symmetry of the bifurcation diagrams,

we see that in order to preserve the generating family we set

F 7→ −F, x 7→ −x, y 7→ −y, α 7→ −α, β 7→ −β, δ 7→ δ.

Since F 7→ −F the sign s changes as t changes from positive to negative. We

also see that since the orientation of the source and target remain the same,

so does the degree σ. Therefore, we conclude that if the upper branch in

Figure 26 has signs s, σ the lower branch will have −s, σ.
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Now, recall the normal forms of the D4 uni-germs in Section 2.3.2,

G = s(±x2y +
1

3
y3 + ϕ

y2

2
+ vy + ux),

where, ϕ respectively is:

• D−,s,σ4,q : λ− w2 ± v + αu;

• D+,s,σ
4,a : λ− w2 + v + αu, |α| < 1;

• D+,s,σ
4,b : λ− w2 ± v + αu, |α| > 1;

• D+,s,σ
4,c : λ− w2 − v + αu, |α| < 1.

Comparing our F with the normal forms of the D4 uni-germs we see that

β = v and δ = u. Hence when we do the transformation β 7→ −β when

considering the symmetry of the bifurcation diagram under the transformation

(r, t) 7→ (r,−t) we are actually changing the sign of v. Therefore for the D+
4

case when |a| < 1 one of the branches will be D+,s,σ
4,a and the other D+,−s,−σ

4,c .

For the D+
4 case when |a| > 1 both branches will be of type D+

4,b since changing

the sign of v does not affect the type of bifurcation.

Respectively the bifurcation diagrams produce the cyclic equations

Equation Big stratum

21. d−,s,σ4,q = d−,−s,σ4,q D−,σ4,q

d+,s,σ
4,a = d+,−s,σ

4,c

d+,s,σ
4,b = d+,−s,σ

4,b D+,σ
4,b
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So far we have only considered D+
4 uni-germs with the condition that

a 6= ±1. We will now remove this constraint by considering (3) stated at the

start of this section where

ϕ = ±α2 ± β ± δ + q(β, δ) + t+ r`(β, δ) + higher quasi-homogeneous terms.

In ϕ, q is a quadratic form that is not divisible by the ±β ± δ, and ` is a

linear form which is not a multiple of the ±β ± δ. Function ϕ, as described

is such that for t = r = 0 its restriction to one of the self-intersection lines

of the purse δ = ±β in α = 0 has a Morse point at the origin and this point

moves along this line off the origin if r 6= 0.

For example, set

ϕ = α2 + β + δ ± β2 + 2rβ + t. (5)

The restriction of ϕ onto β = −δ < 0 = α is ϕ = ±β2 + 2rβ + t. This

restriction gives a self-intersection line in the D+
4 singularity, that is one of

the arms of the ‘V’ self-intersection locus of the purse, corresponding to TA2
2.

Hence, the discriminantal stratum TA2
2 is found by looking at the critical point

set of ϕ on its zero level (that is, a double root in β) which gives r2 = ±t.

Here the sign depends on the sign of ±β2. Now since we are only considering

the case where β < 0 we restrict the discriminantal stratum to β = ∓r < 0.

The bifurcation diagrams for the sign choices of the coefficient of β in (5) are

shown in Figure 27.
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We find the equation of the D4,q stratum by setting β = δ = ψ = 0 and

ψα = 0, giving a discriminantal strata of t = 0.

−

+

4,q
1

4,q
2

4,q
1

4,q
2

t

r

T
2

2
A

+,s,
D

σ +,s,
D

σ

+,s,
D

σ +,s,
D

σ

2

2
AT

Figure 27: Bifurcation diagrams for the sign choices of the coefficient of β in

(5).

Like we did for the other cases of D+
4 uni-germs, we set the right D+

4

branches in Figure 27 to have signs s, σ. Then by studying the symmetry of

the bifurcation diagram under the transformation (r, t) 7→ (−r, t) we see the

other branch will be of the same signs. Again, we see that in order to preserve

the normal form we do the transformation β 7→ −β which results in a change

of sign of v. Therefore one branch will be of type b and the other is a or

c (see previous case for the method). However, due to the symmetry of the

bifurcation diagrams we do not specify which branch is of which type.

We co-orient the strata to the side where the number of D4 points of the

caustic is greater. The TA2
2 stratum does not have co-orientation (we proved

its non co-orientability in equations 11 and 12) and therefore contributes in

the mod2 setting only.
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From Figure 27 we obtain the cyclic equations:

d+,s,σ
4,a − d+,s,σ

4,b + [ta2
2] = 0;

d+,s,σ
4,c − d+,s,σ

4,b + [ta2
2] = 0.

All other sign choices in ϕ (for α2, β, δ) yield the same cyclic equations. Taking

their difference gives us

d+,s,σ
4,a = d+,s,σ

4,c

both over Z and Z2. Therefore, the big strata for any coefficients are

D+,σ
4,a/c = D+,+,σ

4,a +D+,−,σ
4,a +D+,+,σ

4,c +D+,−,σ
4,c

D+,σ
4,b = D+,+,σ

4,b +D+,−,σ
4,b

Hence the last cyclic equations reduce to

22. d+,σ
4,a/c − d

+,σ
4,b + [ta2

2] = 0

2.6.2.2 Uni-germs: D5

In this section we will state the basic idea of how we obtain the bifurcation

diagrams for D5 uni-germs, however we will not repeat all necessary calcula-

tions of certain strata that can be found in [9]. The main aim of this section is

to understand the decorations of the strata which will be explained in detail.
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Consider the R+-miniversal deformation of the D5 function

G = s(x2y +
1

4
y4 +

1

3
αy3 +

1

2
ψy2 + βy + δx).

We introduce the parameters r and t that give us an rt-family of caustics in

R3
α,β,δ with the big caustic in R5

α,β,δ,r,t being the product of the caustic Ds,σ
5

and R. Here ψ|r=t=0 := ψ0(α, β, δ) is kα2, k = const 6= 0, modulo terms of

higher quasi-homogeneous order. We take ψ = kα2 +rα+ t which is sufficient

for our considerations. Taking the resultant of Gx = 0 and Gy = 0 yields the

function

Ψ = y2(y3 + αy2 + ψy + β) +
δ2

4
(6)

which we use to describe all degenerations in G in terms of those in Ψ. For-

mally, the big caustic in R5
α,β,δ,r,t corresponds to those polynomials Ψ which

have either the root y = 0 of multiplicity k > 2 or a root y 6= 0 of multiplicity

k > 1. These two options result in the big caustic and its transversal sections

having respectively Dk or Ak points. We should note we consider the D3

singularity in R5
α,β,δ,r,t as the A3 singularity at the origin x = y = 0.

Consider all degenerations X, that can occur in D5. These strata are in

R4
α,ψ,β,δ and parametrised in terms of Ψ. We are interested in their preimage

X̃ in the space R5
α,β,δ,r,t under the map

(α, β, δ, r, t) 7→ (α, ψ(α, β, δ, r, t), β, δ),
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where the dimension of the preimage is one higher. We then find the critical

value set Y ⊂ R2
r,t of the restriction of the projection π : R5

α,β,δ,r,t → R2
r,t to

X̃, which gives us the discriminantal stratum in the rt-plane.

The correspondence X ∼ Y is:

dimX = 0 : D5 ∼ D5

dimX = 1 : D±4 ∼ D±4,q A4 ∼ A
e/h
4 A3A2 ∼ TA3A2 D3A2 ∼ TD3A2

dimX = 2 : A2
2 ∼ TA2

2 A3 ∼ Aq3

dimX = 3 : A2, the regular part of the caustic, cannot have any critical

values under π as long as we assume our Lagrangian sub-

manifold Gx|r=t=0 = Gy|r=t=0 = 0 smooth (and this is so for

the family we are considering).

Rather than showing all strata on one bifurcation diagram we will build

up a series of bifurcation diagrams in order to make the case easier to analyse.

D5 and D4 strata of the big caustic, Figure 28. The D5 singularity occurs

in R5
α,β,δ,r,t when Ψ has the zero root of multiplicity 5. Here we let Ψ = y5

by setting α = ψ = β = δ = 0. The discriminantal stratum is given by the

critical value set t = 0 in the rt-parameter plane.

Similarly the D4 singularity occurs when Ψ has the zero root of multiplicity

4. This time we let Ψ = y5 + αy4 by setting ψ = β = δ = 0 which implies

kα2 + rα+ t = 0. Calculating the discriminant of the polynomial in α yields
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the critical value set r2−4kt = 0 which is the D±4,q stratum in the rt-parameter

plane.

Since the big caustic is the product of the caustic Ds,σ
5 and R all D5 points

are of the same signs. Therefore the D5 stratum in Figure 28 is Ds,σ
5 . Now,

by looking at the Ds,σ
5 bifurcation in Figure 13 we see it contains a D4,q point

of signs s and σ. We therefore conclude that the D4,q stratum in Figure 28

will have the same decorations as Ds,σ
5 . However we do not include the sign s

in the D−4,q stratum due to equation 21.

We detect if the D4,q branches are of type D+
4,q or D−4,q by looking at the

sign of the double root of α in ψ for each branch and comparing it to the

normal forms of D±4,q uni-germs in Section 2.3.2. We also find if the D+
4,q

branches are of type a or c by comparing our normal form for different values

of k to the normal forms of D+
4,q.

D4,q

−,σ

D4,q

−,σ

k 0 k 0

t

r

> <

5

σ s,
D

5

σ s,
D

4,a

+,s,
D

σ

4,c

+,s,
D

σ

5

σ s,
D

5

σ s,
D

Figure 28: The D5 and D4,q strata.

Finally, co-orientation of the D5 stratum will be explained in the A4 sec-

tion. The D4,q stratum is co-oriented towards the positivity of the discrimi-

nant.
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A4 stratum, Figure 29. Here we require Ψ to have the zero root of multi-

plicity 4. Therefore we parametrise the A4 stratum in R4
α,ψ,β,δ by

Ψ = (y − u)4(y +
u

4
).

Equating the coefficients with (6) gives (α, ψ, β, δ2) = (−15
4
u, 5u2,−5

2
u3, u5).

From this we obtain the surface kα2 + rα + t = 16
45
α2. The critical locus of

projecting this surface to R2
rt is r = −2α(k − 16

45
) with α < 0 and is doubled

in the δ-direction. The discriminantal stratum 2A
e/h
4 is given by the critical

value set r2 − 4t(k − 16
45

) = 0, α < 0 in the rt-parameter plane. Here the

stratum is co-oriented towards the positivity of the discriminant.

Recall that at a positive Ds,σ
5 bifurcation two swallowtails are born with

signs (s,−σ) and (−s, σ). Therefore, our stratum has decoration 2A
−ε,e/h
4

where ε = sσ.

We can now find the co-orientations of the D5 strata in Figure 28 by

looking at the increments of the number of A4 points when crossing the D5

and A
e/h
4 strata.

A3A2 stratum, Figure 30. We require Ψ to now have the zero roots of

multiplicity 3 and 2 so we parametrise the A3A2 stratum in R4
α,ψ,β,δ by

Ψ =
(
y − u

2

)3 (
y +

u

3

)2

.

Equating the coefficients with (6) gives (α, ψ, β, δ2) = (−5
6
u,− 5

36
u2, 5

24
u3,− 1

18
u5).
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σ s,
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5

σ s,
D

5

σ s,
D

5

σ s,
D

A
4

−ε  ,e/h

−ε  ,e/h
A

5

Figure 29: The A4 surface in R5
α,β,δ,r,t. Its edge is the D5 stratum. Projection

to R2
r,t provides the bifurcational strata.

From this we obtain the surface α2(k + 1
5
) + rα + t = 0 with α > 0. Pro-

jecting this surface to R2
rt has critical locus r = −2α(k + 1

5
) and is doubled

in the δ-direction. Hence the discriminantal stratum 2TAs,σ3 A2 is given by

r2 − 4(k + 1
5
)t = 0, α > 0. Its co-orientation follows from the previous case.

Since we know that at a positive Ds,σ
5 bifurcation we lose two As,σ3 A2 points,

our stratum will have decoration 2TAs,σ3 A2.

D3A2 stratum, Figure 31. We require Ψ to have the zero root of multi-

plicity 3 and a non-zero root of multiplicity 2. Therefore we parametrise the

A3A2 singularity in R4
α,ψ,β,δ by

Ψ = y3(y − u)2.
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Figure 30: The TA3A2 stratum.

Equating the coefficients with (6) gives (α, ψ, β, δ) = (−2u, u2, 0, 0) and we

obtain the surface

(k − 1

4
)α2 + rα + t = 0. (7)

Projection of this surface to R2
r,t is a fold map, and its critical value set

TD3A2 is the zero set of the discriminant of the quadratic equation (7) in α:

r2 − 4(k − 1
4
)t = 0. Respectively, the co-orientation of the stratum TD3A2

in Figure 31 is to the side where the discriminant is positive, that is, where

the local caustics have two D3A2 points. (Recall that D3A2 is our alternative

notation for A3A2, and see the TA3A2 bifurcations in Figure 12). According

to Figure 13, our D3A2 = A3A2 points have decoration (−s, σ) as participants

of the Ds,σ
5 bifurcation.

A2
2 stratum, There is no TA2

2 stratum (see [9] for details).
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Figure 31: The TD3A2 stratum.

A3 stratum, Figure 32. In order to understand the decorations of all the

Aq3 strata we first derive the equation of the discriminantal stratum in detail.

The equations of the source are

Gx = s(2xy + δ),

Gy = s(x2 + y3 + αy2 + (kα2 + rα + t)y + β).

Here we have the map (x, y, α) 7→ (α, β, δ) . We calculate the Hessian

 2sy 2sx

2sx s(kα2 + rα + 2ay + 3y2 + t)

 .

The critical point set is

H = 2s2y(kα2 + rα + 2αy + 3y2 + t)− 4s2x2 = 0.
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The previous equation implies that

2s2y(kα2 + rα + 2αy + 3y2 + t) = 4s2x2.

Since we already know that x = 0 we must find the singular points of

y(kα2 + rα + 2αy + 3y2 + t) = 0

that is, of

y

3
(
y +

α

3

)2

+

(
k − 1

3

)(
α +

r

2
(
k − 1

3

))2

+ t− r2

4
(
k − 1

3

)
 = 0.

Therefore the Aq3 stratum is r2 = 4
(
k − 1

3

)
t, while the D±4,q is r2 = 4kt.

This is so because the D±4,q events are described as non-transversalities of the

zero sets of the two factors above, while the Aq3 degenerations correspond

to the zero set of the long factor becoming singular. In particular, the Aq3

transitions occur at y + α
3

= α + r
2(k−1/3)

= 0.

We will now consider in detail the decorations of the A3 bifurcations.

First we will consider whether we have the birth of a flying saucer, hyberbolic

transformation of an edge or the death of a compact component of an edge.

To calculate the type of bifurcation we extend our Hessian matrix by

(
Hx

2
,
Hy

2
) = (−4x, 9y2 + 4αy + ψ)
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Figure 32: The Aq3 and D±4,q strata.

which is the same as extending the Hessian matrix by a row (0, 15y2 + 8αy+

3ψ). We should remind the reader that here and until the end of this section

ψ = kα2 + rα + t.

At A3 points, the rank of this extended matrix must be 1. That is the

same as

H = 0,

y(15y2 + 8αy + 3ψ) = 0,

x(15y2 + 8αy + 3ψ) = 0.

Hence we can plot y(3y2 +2αy+ψ) = 0 together with 15y2 +8αy+3ψ = 0

for an arbitrary point above and below the Aq3 half-branch in order to detect

what type of bifurcation we have and to which side the half-branch is co-

oriented. In the following figures the first equation is shown in red, with the

second in blue. We have two cases, when k > 1/3 and when k < 1/3. In both
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cases we consider r > 0 and r < 0.

k > 1/3, r > 0: This corresponds to the left diagram in Figure 32, right Aq3

bifurcation curve. The plot of the two curves for below the Aq3 half-branch is

shown in Figure 33 and for above in Figure 34. The regions covered by H = 0

twice are shaded. Hence it is apparent here we have an A∗,∗,+,−3 bifurcation.

α

y

Figure 33: y(3y2 + 2αy + ψ) = 0 and 15y2 + 8αy + 3ψ = 0 below the A∗,∗,+,−3

half-branch.

α

y

Figure 34: y(3y2 + 2αy + ψ) = 0 and 15y2 + 8αy + 3ψ = 0 above the A∗,∗,+,−3

half-branch.

k > 1/3, r < 0: Left diagram in Figure 32, left Aq3 bifurcation curve. Fig-

ures 35 and 36 show the curves above and below the bifurcation. From this
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we conclude that we have an A∗,∗,+,+3 bifurcation.

α

y

Figure 35: y(3y2 + 2αy + ψ) = 0 and 15y2 + 8αy + 3ψ = 0 above the A∗,∗,+,+3

half-branch.

α

y

Figure 36: y(3y2 + 2αy + ψ) = 0 and 15y2 + 8αy + 3ψ = 0 below the A∗,∗,+,+3

half-branch.

k < 1/3, r > 0: Two right diagrams in Figure 32, right Aq3 bifurcation

curve. Figures 37, 38 and 39 show the transition of the two curves during
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the bifurcation. Hence we have an A∗,∗,+,−3 bifurcation.

α

y

Figure 37: y(3y2 + 2αy + ψ) = 0 and 15y2 + 8αy + 3ψ = 0 below the A∗,∗,+,−3

half-branch.

α

y

Figure 38: y(3y2 + 2αy + ψ) = 0 and 15y2 + 8αy + 3ψ = 0 at the A∗,∗,+,−3

half-branch.
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α

y

Figure 39: y(3y2 + 2αy + ψ) = 0 and 15y2 + 8αy + 3ψ = 0 above the A∗,∗,+,−3

half-branch.

k < 1/3, r < 0: Two right diagrams in Figure 32, left Aq3 bifurcation curve.

Figures 40, 41 and 42 show the transition of the two curves during the bifur-

cation. Hence we have an A∗,∗,−,−3 bifurcation.
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α

y

Figure 40: y(3y2 + 2αy + ψ) = 0 and 15y2 + 8αy + 3ψ = 0 above the A∗,∗,−,−3

half-branch.

α

y

Figure 41: y(3y2 + 2αy + ψ) = 0 and 15y2 + 8αy + 3ψ = 0 at the A∗,∗,−,−3

half-branch.
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α

y

Figure 42: y(3y2 + 2αy + ψ) = 0 and 15y2 + 8αy + 3ψ = 0 below the A∗,∗,−,−3

half-branch.

We now work out the signs s and σ of the Aq3 strata by comparing the

coefficients of our generating family

G = s(x2y +
1

4
y4 +

1

3
αy3 +

1

2
ψy2 + βy + δx),

to the generating family

F = s(x2y + y4 − λy3 + wy2 + vy + ux)

of Ds,σ
5 from Section 2.3.2.1. Recall the Ds,σ

5 bifurcation shown in Figure 13.

We know the direction of λ there is the direction of the bifurcation, from left

to right. We also know that the direction of v there is into the page away from

the reader, the direction of w is from right to left and the direction of u does
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not matter since the bifurcation is symmetric. Comparison of the coefficients

tells us u ≈ δ, v ≈ β, w ≈ ψ and λ ≈ −α. Hence we know the directions of

α, β, δ and λ.

From

y

3
(
y +

α

3

)2

+

(
k − 1

3

)(
α +

r

2
(
k − 1

3

))2

+ t− r2

4
(
k − 1

3

)
 = 0

at the point of bifurcation we have y = −α
3
, α = − r

2(k− 1
3

)
, t = r2

4(k− 1
3

)
. Since

x = 0 we have u = 0 in F and the signs s and σ of the bifurcation corresponds

to a cuspidal edge in the middle of the Ds,σ
5 bifurcation.

• k > 1/3, r > 0: Here λ > 0, w > 0 =⇒ As,−σ3 .

• k > 1/3, r < 0: Here λ < 0, w > 0 =⇒ As,σ3 .

• k < 1/3, r > 0: Here λ < 0, w > 0 =⇒ As,σ3 .

• k < 1/3, r < 0: Here λ > 0, w > 0 =⇒ As,−σ3 .

Now, summing up the increments across the strata from all the bifurcation

diagrams in this section gives us the following Lemma.

Lemma 2.6.1. The 2-parameter bifurcations of the D5 uni-germs yield the

cyclic equation:

23. 2ds,σ5 + d+,s,σ
4,a/c − d

−,σ
4,q − 2a

−ε,e/h
4 + 2tas,σ3 a2 + as,σ,q3 + as,−σ,q3 = 0 , ε = sσ .
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2.6.2.3 Extra A2 component

We now consider passing a smooth A2 sheet through the corank 2 uni-germs

S listed in Section 2.3.2.1. Here, we borrow the bifurcation diagrams from [9]

and modify them to include the extra s decoration of the strata.

First we consider SA2 where S is one of the four D4,q quadratic singu-

larities listed in Figure 13. The bifurcation diagrams are shown in Figure 43

with the cyclic equations and big strata below. The top and bottom rows of

diagrams differ only by opposite co-orientation of the smooth A2 sheet. The

signs s and σ are inherited from the signs of the cuspidal edge in the D4,q

singularity. Finally, the co-orientations of the strata are found by looking at

the S bifurcations in Figure 13 to see how a smooth sheet interacts with them.
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Figure 43: The bifurcation diagrams for SA2 where S = D±4,q.
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Figure 43 yields the equations:

S equations big stratum

24. D−,σ4,q d−,σ4 a+
2 = d−,σ4 a−2 D−,σ4 A2

25. D+,s,σ
4,a or D+,s,σ

4,c d+,σ
4,2 a

+
2 = d+,σ

4,2 a
−
2 D+,σ

4,2 A2

d+,σ
4,0 a

−
2 = d+,σ

4,0 a
+
2 D+,σ

4,0 A2

26. D+,σ
4,b d+,σ

4,r a
t
2 = d+,σ

4,l a
−t
2

Now consider S = Ds,σ
5 . The bifurcation diagram of Ds,σ

5 A2 is shown in

Figure 44. Note that when s = +, the right horizontal branch has decoration

D
4

−,σ
A

2
A

2
D

+,σ
4

µ

λ
s s

,
A

23

s,
TA

σ
A

24
A

−s,σ

5

σ
D

s,

A
23

TA
   σs,− 5

σ
D

s,
A

2

   σs,−

4
 A

A
2

2

A
2

2

A
2

2

3
A

−s,σ
3

A
−s,σ

3

s,
2A

σ

Figure 44: Bifurcation diagram of passing a smooth A2 sheet through Ds,σ
5 .

D+,σ
4,2 A2 and when s = − it has decoration D+,σ

4,0 A2. We should also note that

the co-orientation of the D4A2 stratum in Figure 44 depends on the sign of

the decoration s in the Ds,σ
5 singularity.
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Here we obtained the bifurcation diagram by setting the horizontal coordi-

nate λ to be the parameter in the Ds,σ
5 bifurcation and the vertical coordinate

µ to measure the position of the smooth A2 sheet. We then determine the

decoration of the strata by looking at the signs (s, σ) of cuspidal edges in the

D5 bifurcation as shown in Figure 13. Again, co-orientations are found by

looking at the increments of the numbers of A3A2 and A3
2 points across the

strata.

From Figure 44 we obtain the cyclic equation:

27. 2a−ε4 a2 + 2as,σ3 a2
2 − 2a−s,σ3 a2

2 − ta
s,σ
3 a2 − tas,−σ3 a2 − sd+,σ

4,2 a2 + sd−,σ4 a2 = 0

2.6.2.4 Interaction of a purse and a pyramid with other local com-

ponents C

In this section we consider the interaction of a purse and a pyramid with other

local components C. Here C will be either a cuspidal edge, two transversal

smooth A2 sheets or a tangent smooth A2 sheet.

For the bifurcations involving a pyramid we take the pyramid as it is shown

in Figure 10 and assume that its ‘top’ edge is a straight flat curve. Let Π

be the tangent plane of this edge. We also assume the additional component

C is a cylinder with its generators perpendicular to Π. Then the bifurcation

diagrams are obtained by parallel translations of C. The bifurcation diagrams

are drawn in the plane Π. They mark the intersections of the distinguished

generator of C with Π when the surface C is in special positions with the
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pyramid.

We obtain bifurcation diagrams for the interaction of a purse with C by

the same method. We take the purse as it is shown in Figure 10 and assume

that its cupidal edge is a straight flat curve. Then we let Π be the tangent

plane containing its cuspidal edge and dividing the purse in Figure 10 into

two diffeomorphic but not necessarily symmetric halves.

In each case the decorations of the strata come from the signs of the

cuspidal edges participating in the bifurcation. The co-orientations are found

by looking at the increment of the number of A3A2 points across the strata.

Of course, symmetric pairs of A
2,e/h
3 branches are co-oriented in opposite ways

due to the symmetry of the pyramid and the purse.

2.6.2.4.1 Extra cuspidal edge

In this section we take for the extra component a cuspidal edge surface, with

the edge curve As,σ3 . The distinguished generator in this case is the cuspidal

edge curve. We have two options to place a cuspidal edge surface relative

to a pyramid. Both of them are shown in Figure 45 with their respective

bifurcation diagram underneath.

Respectively we obtain the cyclic equations,

28. a2,e;s,σ;+,τ
3 − a2,e;s,σ;−,τ

3 + 2a2,h;+,τ ;s,σ
3 − 2a2,h;−,τ ;s,σ

3 − 2d−,τ4 a2 = 0

a2,h;s,σ;+,τ
3 − a2,h;s,σ;−,τ

3 − 2a2,e;s,σ;+,τ
3 + 2a2,e;s,σ;−,τ

3 + 2d−,τ4 a2 = 0
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−
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−
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Figure 45: Bifurcation diagrams for a cuspidal edge surface interacting with

a pyramid.
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Now, consider the interaction of the same cuspidal edge surface with a

purse. Again, we have two options to place it relative to a purse. They are

shown in Figure 46 along with their respective bifurcation diagrams. For each

case, we have three subcases: at the most degenerate moment, the two self-

intersection rays of a purse may be either both to the left side, both to the

right side or to different sides of the plane tangent to the cuspidal surface at

its edge.

From Figure 46 we obtain the cyclic equations,

29. −a2,h;+,τ ;s,σ
3 + 2as,σ3 a2

2 + a2,h;−,τ ;s,σ
3 + 2d+,τ

4,0 a2 = 0

a2,e;s,σ;+,τ
3 − 2as,σ3 a2

2 − a
2,e;s,σ;−,τ
3 − 2d+,τ

4,0 a2 = 0

−a2,h;+,τ ;s,σ
3 − 2as,σ3 a2

2 + a2,h;−,τ ;s,σ
3 + 2d+,τ

4,2 a2 = 0

a2,e;s,σ;+,τ
3 + 2as,σ3 a2

2 − a
2,e;s,σ;−,τ
3 − 2d+,τ

4,2 a2 = 0

−a2,h;+,τ ;s,σ
3 + a2,h;−,τ ;s,σ

3 + 2d+,τ
4,1 a2 = 0

a2,e;s,σ;+,τ
3 − a2,e;s,σ;−,τ

3 − 2d+,τ
4,1 a

−
2 = 0

2.6.2.4.2 Extra A2
2 component

We now take for C a transversal intersection of two smooth sheets and con-

sider how it may meet a pyramid. The distinguished generator here is the

self-intersection curve A2
2. Assuming that the self-intersection curve passes

through the vertex of a pyramid at the most degenerate moment, we obtain

the bifurcation diagram shown in Figure 47. It yields the cyclic equation,
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Figure 46: Bifurcations of a cuspidal surface interacting with a purse.
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2−, σ
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2+, σ
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2
 A

2+, σ
 A
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Figure 47: Bifurcations of a pair of transversal A2 sheets with a pyramid.

30. a+,σ
3 a2

2 − a
−,σ
3 a2

2 = 0.

Equation 30 gives us the big strata Aσ3A
2
2 = A+,σ

3 A2
2 + A−,σ3 A2

2.

Now, consider the interaction of C = A2
2 with a purse. Here we have a

number of configurations due to the relative positions of a purse and the A2

sheets at the most degenerate moment. Assume that at such a moment one of

the four connected components into which the two A2 sheets cut the ambient

space contains both self-intersection rays of the purse and one of its cuspidal

half-branches. Figure 48 shows three examples of bifurcation diagrams out of

up to a possible sixteen. They all give us the cyclic equation

31. a+,σ
3 a2

2 − a
−,σ
3 a2

2 = 0.

In all sixteen possible situations we will have similar components con-
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tributing in the bifurcation diagram. That is,

• two [A4
2] branches contributing zero to the cyclic equation;

• a symmetric pair of TA3
2 branches contributing nothing;

• four D+σ
4,0/1/2A2 branches contributing nothing;

• an As,σ3 A2
2 branch and an A−s,σ3 A2

2 branch, of opposite co-orientations.

Hence the cyclic equation for all sixteen cases is a+,σ
3 a2

2 − a
−,σ
3 a2

2 = 0.

2.6.2.4.3 Tangent A2 component

We let surface C = A2 and consider the tangency of C to a pyramid at the

D4 point. We consider the smooth A2 sheet as a parabolic cylinder. The

distinguished generator of C this time is the line of vertices of the parabolas.

There are two ways to place the parabolic cylinder relative to a pyra-

mid. Both are shown in Figure 49 with their respective bifurcation diagrams

underneath. Both cases provide us with the cyclic equation

32. 3ta+,σ
3 a2 − 3ta−,σ3 a2 − 2d−,σ4 a2 = 0.

We should note that in Figure 49 the parabolic A2 sheet is rather steep. If

we reduce the steepness we will get a series of bifurcation diagrams with the

D−,σ4 A2 curve successively in pairs of the sectors between the other strata.

We should also note that switching the co-orientation of the A2 sheet does
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Figure 48: Three examples of bifurcations of a pair of transversal sheets with

a purse out of up to a possible sixteen.
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Figure 49: Bifurcations of a pyramid and a smooth A2 sheet of a caustic

tangent to the cuspidal edge of the pyramid at the D−4 point.

not affect the result.

Remark. All possible bifurcations of a smooth A2 surface that is tangent to

an edge of the pyramid at its vertex are covered by families of surfaces

δ = kβ +mϕ2 + λ1ϕ+ λ2.

Here

• ϕ, β, δ are the coordinates in the space containing the pyramid used in

the generating family at the start of Section 2.6.2.1;

• k and m are a pair of fixed parameters with their values chosen in a
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generic way;

• λ1 and λ2 are bifurcation parameters.

The TA3A2 strata of the bifurcation diagrams in Figure 49 are formed by

those points (λ1, λ2) for which the edges of the pyramid have double point

intersections with the surfaces. The D−4 A2 strata correspond to the surfaces

passing through the origin, and the TA2
2 strata to tangencies of the surfaces

to regular parts of the pyramid. All options of choosing k and m in a generic

way yield the same equation 32.

Now consider the tangency of a smooth sheet to the purse at the D4 point.

Again, there are two ways to place a steep parabolic A2 sheet relative to a

purse. They are shown in Figure 50 with their respective bifurcation diagrams

underneath. Both bifurcation diagrams give us the cyclic equation
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Figure 50: Bifurcations of a purse and a smooth A2 sheet of a caustic tangent

to the cuspidal edge of the purse at the D+
4 point.
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33. ta−,σ3 a2 − ta+,σ
3 a2 + d+,σ

4,0 a2 + d+,σ
4,2 a2 = 0.

Again, switching the co-orientation of the A2 sheet does not affect the result.

Consideration of the families of surfaces mentioned in the remark about the

pyramid yields the same equation 33 in all the cases.

Finally, consider the tangency of C = A2 to one of the self-intersection

rays at a D+
4 point. We obtain four bifurcation diagrams which are shown in

Figure 51 and the cyclic equations
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Figure 51: Bifurcation diagrams of an A2 sheet of a caustic tangent to a

self-intersection ray of a purse at its D+
4 point.

d+,σ
4,0 a

t
2 − d

+,σ
4,r a

t
2 + ta3

2 = 0

d+,σ
4,0 a

t
2 − d

+,σ
4,l a

t
2 + ta3

2 = 0

d+,σ
4,l a

t
2 − d

+,σ
4,2 a

t
2 + ta3

2 = 0

d+,σ
4,r a

t
2 − d

+,σ
4,2 a

t
2 + ta3

2 = 0
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where t is positive if the A2 sheet is moving in the direction of its co-orientation

and negative otherwise.

The difference of the first equations above gives

d+,σ
4,r a

t
2 = d+,σ

4,l a
t
2

for t = ±. Hence we introduce the big strata

D+,σ
4,1 A2 = D+,σ

4,r A
+
2 +D+,σ

4,r A
−
2 +D+,σ

4,l A
+
2 +D+,σ

4,l A
−
2

This yields the equations (in terms of the big strata)

34. d+,σ
4,0 a2 − d

+,σ
4,1 a2 + ta3

2 = 0

d+,σ
4,1 a2 − d

+,σ
4,2 a2 + ta3

2 = 0

2.6.2.5 D6 and E6 bifurcations

The three remaining big caustics of generic 2-parameter families we must

consider are D+
6 , D−6 and E6. We claim

Theorem 2.6.2. Generic 2-parameter families of 3-dimensional caustics mak-

ing up the big caustics D+
6 , D−6 and E6 provide equations 35-37, 38 and 39-40
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respectively (the E6 equations 39-40 are mod2 only):

35. a2,e;+,σ;+,−σ
3 − a2,e;−,σ;−,−σ

3 + 2a−σ4 a2 + 2aσ4a2 − 2ta+,−σ
3 a2 − 2ta+,σ

3 a2 −

2d+,σ
4,2 a2 + a

−σ,e/h
4 − aσ,e/h4 + d−,σ5 − d+,σ

5 = 0

36. a2,e;+,σ;+,−σ
3 − a2,e;−,σ;−,−σ

3 − ta+,−σ
3 a2 − ta+,σ

3 a2 + ta−,σ3 a2 + ta−,−σ3 a2 −

2d+,σ
4,1 a2 + a

−σ,e/h
4 − aσ,e/h4 + d−,σ5 − d+,σ

5 = 0

37. a2,e;+,σ;+,−σ
3 − a2,e;−,σ;−,−σ

3 − 2a−σ4 a2 − 2aσ4a2 + 2ta−,σ3 a2 + 2ta−,−σ3 a2 −

2d+,σ
4,0 a2 + a

−σ,e/h
4 − aσ,e/h4 + d−,σ5 − d+,σ

5 = 0

38. d+,σ
5 − d−,σ5 + a

−σ,e/h
4 − aσ,e/h4 + a+,σ,+

5 + a+,σ,−
5 − a−,σ,+5 − a−,σ,−5 −

2d−,σ4 a2 + 2a2,h;+,σ;−,σ
3 + [a2,h;+,σ;+,σ

3 ] + [a2,h;−,σ;−,σ
3 ] = 0

39. a
2,e/h;+,σ;+,−σ
3 + a

2,e/h;+,−σ;−,σ
3 = 0

40. a
2,e/h;−,σ;−,−σ
3 + a

2,e/h;−,−σ;+,σ
3 = 0

Since the proof of Theorem 2.6.2 is lengthy we delay it to be the main

subject of Chapters 4, 5 and 6. However, for now we use the equations from

this theorem in Chapter 3.
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Chapter 3

Proofs of Theorems 2.5.1 and

2.5.3

In this chapter we prove our main Theorems 2.5.1 and 2.5.3.

Recall from Section 2.5 that D(M,T ∗N,N ;K) is the space of discriminan-

tal cycles in L(M,T ∗N,N) with coefficients K = Q, Z, Z2. We also introduce

the notation E(M,T ∗N,N ;Q) and E(M,T ∗N,N ;Z2) for the spaces spanned

over Q and Z2 by the cyclic equations 1-40.

In Section 2.3 we introduced 132 elementary codimension 1 strata in

L(M,T ∗N,N). From our analysis in Section 2.6 we have been able to glue

them together, both over Z and Z2, into respectively 57 and 47 big strata.

Proof of Theorem 2.5.1. Table 1 shows a basis of the space E(M,T ∗N,N ;Q).

In all tables in this chapter we are using dots for zero coefficients. The number
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of basic elements (columns) in Table 1 is 42. All of them are linear equations in

57 unknown coefficients of the big strata. Hence the space D(M,T ∗N,N ;Q)

is 15-dimensional. Its basis is shown in Table 2. Lemma 2.4.1 listed thirteen

of its elements counting the numbers of various isolated type singularities of

the caustics, along with the fourteenth responsible for the Euler characteristic

of the critical point set. The fifteenth was not too complicated to spot. This

concludes our proof of Theorem 2.5.1.

Proof of Theorem 2.5.3. Similarly for the Z2 case, Table 3 shows a

basis of the space E(M,T ∗N,N ;Z2). This time we have 27 basic equa-

tions in 47 unknown coefficients of the big Z2 strata. Therefore, the space

D(M,T ∗N,N ;Z2) is 20-dimensional. Its basis is shown in Table 4. The first

fifteen elements are the mod2 reduction of a basis of the space of integer dis-

criminantal cycles listed in Corollary 2.5.2 and repeated in Table Z. The last

five elements are listed at the end of Remark 2.4.3. This concludes our proof

of Theorem 2.5.3.
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Table 1 13 13 14 14 14 14 14 14 14 14 14 14 14 14 15 15 17 17 17 17

TA3
2 2 2 . . . . . . . . . . . . 1 1 . . . .

A
±,+
3 A2

2 −2 . . . . . . . . . . . . . . . . 1 . 1

A
±,−
3 A2

2 . −2 . . . . . . . . . . . . . . 1 . 1 .

A
2,e;+,+;+,+
3 . . . . . . . . . . . . . . . . . . . 1

A
2,e;+,+;+,−
3 . . 1 . . 1 . . . . . . . . . . . . . .

A
2,e;+,+;−,+
3 . . . 1 . . . . 1 . . . . . . . . . . .

A
2,e;+,+;−,−
3 . . . . 1 . . . . . . 1 . . . . . . . .

A
2,e;+,−;+,−
3 . . . . . . . . . . . . . . . . . . 1 .

A
2,e;+,−;−,+
3 . . . . . . 1 . . 1 . . . . . . . . . .

A
2,e;+,−;−,−
3 . . . . . . . 1 . . . . 1 . . . . . . .

A
2,e;−,+;−,+
3 . . . . . . . . . . . . . . . . . 1 . .

A
2,e;−,+;−,−
3 . . . . . . . . . . 1 . . 1 . . . . . .

A
2,e;−,−;−,−
3 . . . . . . . . . . . . . . . . 1 . . .

A
2,h;+,+;+,−
3 . . 1 . . −1 . . . . . . . . . . . . . .

A
2,h;+,+;−,+
3 . . . 1 . . . . −1 . . . . . . . . . . .

A
2,h;+,+;−,−
3 . . . . 1 . . . . . . −1 . . . . 1 . . −1

A
2,h;+,−;−,+
3 . . . . . . 1 . . −1 . . . . . . . 1 −1 .

A
2,h;+,−;−,−
3 . . . . . . . 1 . . . . −1 . . . . . . .

A
2,h;−,+;−,−
3 . . . . . . . . . . 1 . . −1 . . . . . .

A+
4 A2 . . . . . . . . . . . . . . −2 . −2 . . −2

A−
4 A2 . . . . . . . . . . . . . . . −2 . −2 −2 .

TA
+,+
3 A2 . . −2 −2 −2 . . . . . . . . . 1 . . . . .

TA
+,−
3 A2 . . . . . −2 −2 −2 . . . . . . . 1 . . . .

TA
−,+
3 A2 . . . . . . . . −2 −2 −2 . . . . 1 . . . .

TA
−,−
3 A2 . . . . . . . . . . . −2 −2 −2 1 . . . . .

A
+,+,+
5 . . . . . . . . . . . . . . . . . . . .

A
+,+,−
5 . . . . . . . . . . . . . . . . . . . .

A
+,−,+
5 . . . . . . . . . . . . . . . . . . . .

A
+,−,−
5 . . . . . . . . . . . . . . . . . . . .

A
−,+,+
5 . . . . . . . . . . . . . . . . . . . .

A
−,+,−
5 . . . . . . . . . . . . . . . . . . . .

A
−,−,+
5 . . . . . . . . . . . . . . . . . . . .

A
−,−,−
5 . . . . . . . . . . . . . . . . . . . .

A
+,e/h
4 . . . . . . . . . . . . . . . . . . . .

A
−,e/h
4 . . . . . . . . . . . . . . . . . . . .

A
+,+,q
3 . . . . . . . . . . . . . . . . . . . .

A
+,−,q
3 . . . . . . . . . . . . . . . . . . . .

A
−,+,q
3 . . . . . . . . . . . . . . . . . . . .

A
−,−,q
3 . . . . . . . . . . . . . . . . . . . .

D
−,±,+
4,q . . . . . . . . . . . . . . . . . . . .

D
−,±,−
4,q . . . . . . . . . . . . . . . . . . . .

D
+,±,+
4,a/c

. . . . . . . . . . . . . . . . . . . .

D
+,±,−
4,a/c

. . . . . . . . . . . . . . . . . . . .

D
+,±,+
4,b

. . . . . . . . . . . . . . . . . . . .

D
+,±,−
4,b

. . . . . . . . . . . . . . . . . . . .

D
+,+
5 . . . . . . . . . . . . . . . . . . . .

D
+,−
5 . . . . . . . . . . . . . . . . . . . .

D
−,+
5 . . . . . . . . . . . . . . . . . . . .

D
−,−
5 . . . . . . . . . . . . . . . . . . . .

D
−,+
4 A2 . . . . . . . . . . . . . . . . . . . .

D
−,−
4 A2 . . . . . . . . . . . . . . . . . . . .

D
+,+
4,2 A2 . . . . . . . . . . . . . . . . . . . .

D
+,−
4,2 A2 . . . . . . . . . . . . . . . . . . . .

D
+,+
4,1 A2 . . . . . . . . . . . . . . . . . . . .

D
+,−
4,1 A2 . . . . . . . . . . . . . . . . . . . .

D
+,+
4,0 A2 . . . . . . . . . . . . . . . . . . . .

D
+,−
4,0 A2 . . . . . . . . . . . . . . . . . . . .



Table 1 cont. 18 18 18 18 19 19 20 22 22 23 23 23 23 27 27 27 27 28 28 29 29 35

TA3
2 . . . . . . . . . . . . . . . . . . . . . .

A
±,+
3 A2

2 . . . . . . . . . . . . . . . . . . . . . .

A
±,−
3 A2

2 . . . . . . . . . . . . . . . . . . . . . .

A
2,e;+,+;+,+
3 . . . . . . . . . . . . . . . . . . . . . .

A
2,e;+,+;+,−
3 . . . . . . . . . . . . . . . . . 1 1 . . 1

A
2,e;+,+;−,+
3 . . . . . . . . . . . . . . . . . . . . . .

A
2,e;+,+;−,−
3 . . . . . . . . . . . . . . . . . −1 . . . .

A
2,e;+,−;+,−
3 . . . . . . . . . . . . . . . . . . . . . .

A
2,e;+,−;−,+
3 . . . . . . . . . . . . . . . . . . −1 . . .

A
2,e;+,−;−,−
3 . . . . . . . . . . . . . . . . . . . . . .

A
2,e;−,+;−,+
3 . . . . . . . . . . . . . . . . . . . . . .

A
2,e;−,+;−,−
3 . . . . . . . . . . . . . . . . . . . . . −1

A
2,e;−,−;−,−
3 . . . . . . . . . . . . . . . . . . . . . .

A
2,h;+,+;+,−
3 . . . . . . . . . . . . . . . . . −2 2 1 −1 .

A
2,h;+,+;−,+
3 . . . . . . . . . . . . . . . . . . . . . .

A
2,h;+,+;−,−
3 1 1 . . . . . . . . . . . . . . . 2 . −1 . .

A
2,h;+,−;−,+
3 . . 1 1 . . . . . . . . . . . . . . 2 . −1 .

A
2,h;+,−;−,−
3 . . . . . . . . . . . . . . . . . . . . . .

A
2,h;−,+;−,−
3 . . . . . . . . . . . . . . . . . . . . . .

A+
4 A2 . . . . . . . . . . . . . . 2 2 . . . . . 2

A−
4 A2 . . . . . . . . . . . . . 2 . . 2 . . . . 2

TA
+,+
3 A2 . . . . −2 . . . . 2 . . . −1 −1 . . . . . . −2

TA
+,−
3 A2 . . . . . −2 . . . . 2 . . −1 −1 . . . . . . −2

TA
−,+
3 A2 . . . . . . . . . . . 2 . . . −1 −1 . . . . .

TA
−,−
3 A2 . . . . . . . . . . . . 2 . . −1 −1 . . . . .

A
+,+,+
5 −1 . . . 1 . . . . . . . . . . . . . . . . .

A
+,+,−
5 . −1 . . 1 . . . . . . . . . . . . . . . . .

A
+,−,+
5 . . −1 . . 1 . . . . . . . . . . . . . . . .

A
+,−,−
5 . . . −1 . 1 . . . . . . . . . . . . . . . .

A
−,+,+
5 . . . 1 . . . . . . . . . . . . . . . . . .

A
−,+,−
5 . . 1 . . . . . . . . . . . . . . . . . . .

A
−,−,+
5 . 1 . . . . . . . . . . . . . . . . . . . .

A
−,−,−
5 1 . . . . . . . . . . . . . . . . . . . . .

A
+,e/h
4 . . . . −2 . . . . . −2 −2 . . . . . . . . . −1

A
−,e/h
4 . . . . . −2 . . . −2 . . −2 . . . . . . . . 1

A
+,+,q
3 . . . . . . 1 . . 1 1 . . . . . . . . . . .

A
+,−,q
3 . . . . . . . . . 1 1 . . . . . . . . . . .

A
−,+,q
3 . . . . . . . . . . . 1 1 . . . . . . . . .

A
−,−,q
3 . . . . . . −1 . . . . 1 1 . . . . . . . . .

D
−,±,+
4,q . . . . . . . . . −1 . −1 . . . . . . . . . .

D
−,±,−
4,q . . . . . . . . . . −1 . −1 . . . . . . . . .

D
+,±,+
4,a/c

. . . . . . . 1 . 1 . 1 . . . . . . . . . .

D
+,±,−
4,a/c

. . . . . . . . 1 . 1 . 1 . . . . . . . . .

D
+,±,+
4,b

. . . . . . . −1 . . . . . . . . . . . . . .

D
+,±,−
4,b

. . . . . . . . −1 . . . . . . . . . . . . .

D
+,+
5 . . . . . . . . . 2 . . . . . . . . . . . −1

D
+,−
5 . . . . . . . . . . 2 . . . . . . . . . . .

D
−,+
5 . . . . . . . . . . . 2 . . . . . . . . . 1

D
−,−
5 . . . . . . . . . . . . 2 . . . . . . . . .

D
−,+
4 A2 . . . . . . . . . . . . . 1 . −1 . . −2 . . .

D
−,−
4 A2 . . . . . . . . . . . . . . 1 . −1 −2 . . . .

D
+,+
4,2 A2 . . . . . . . . . . . . . −1 . . . . . . . −2

D
+,−
4,2 A2 . . . . . . . . . . . . . . −1 . . . . . . .

D
+,+
4,1 A2 . . . . . . . . . . . . . . . . . . . . 2 .

D
+,−
4,1 A2 . . . . . . . . . . . . . . . . . . . 2 . .

D
+,+
4,0 A2 . . . . . . . . . . . . . . . 1 . . . . . .

D
+,−
4,0 A2 . . . . . . . . . . . . . . . . 1 . . . . .



Table 2 t sw++ sw+− sw−+ sw−− c++ c+− c−+ c−− d++ d+− d−+ d−− χ 15

TA3
2 2 . . . . . . . . . . . . . .

A
±,+
3 A2

2 2 . . . . . . . . . . . . . .

A
±,−
3 A2

2 2 . . . . . . . . . . . . . .

A
2,e;+,+;+,+
3 . . . . . 4 . . . . . . . . .

A
2,e;+,+;+,−
3 . . . . . 2 2 . . . . . . . .

A
2,e;+,+;−,+
3 . . . . . 2 . 2 . . . . . . .

A
2,e;+,+;−,−
3 . . . . . 2 . . 2 . . . . . .

A
2,e;+,−;+,−
3 . . . . . . 4 . . . . . . . .

A
2,e;+,−;−,+
3 . . . . . . 2 2 . . . . . . .

A
2,e;+,−;−,−
3 . . . . . . 2 . 2 . . . . . .

A
2,e;−,+;−,+
3 . . . . . . . 4 . . . . . . .

A
2,e;−,+;−,−
3 . . . . . . . 2 2 . . . . . .

A
2,e;−,−;−,−
3 . . . . . . . . 4 . . . . . .

A
2,h;+,+;+,−
3 . . . . . 2 −2 . . . . . . . .

A
2,h;+,+;−,+
3 . . . . . 2 . −2 . . . . . . .

A
2,h;+,+;−,−
3 . . . . . 2 . . −2 . . . . . .

A
2,h;+,−;−,+
3 . . . . . . 2 −2 . . . . . . .

A
2,h;+,−;−,−
3 . . . . . . 2 . −2 . . . . . .

A
2,h;−,+;−,−
3 . . . . . . . 2 −2 . . . . . .

A+
4 A2 1 . . . . 1 . . 1 . . . . . .

A−
4 A2 1 . . . . . 1 1 . . . . . . .

TA
+,+
3 A2 . . . . . 2 . . . . . . . . .

TA
+,−
3 A2 . . . . . . 2 . . . . . . . .

TA
−,+
3 A2 . . . . . . . 2 . . . . . . .

TA
−,−
3 A2 . . . . . . . . 2 . . . . . .

A
+,+,+
5 . . . . 2 2 . . . . . . . . .

A
+,+,−
5 . 2 . . . 2 . . . . . . . . .

A
+,−,+
5 . . . 2 . . 2 . . . . . . . .

A
+,−,−
5 . . 2 . . . 2 . . . . . . . .

A
−,+,+
5 . . 2 . . . . 2 . . . . . . .

A
−,+,−
5 . . . 2 . . . 2 . . . . . . .

A
−,−,+
5 . 2 . . . . . . 2 . . . . . .

A
−,−,−
5 . . . . 2 . . . 2 . . . . . .

A
+,e/h
4 . 1 . . 1 . . . . . . . . . .

A
−,e/h
4 . . 1 1 . . . . . . . . . . .

A
+,+,q
3 . . . . . . . . . . . . . 1 1

A
+,−,q
3 . . . . . . . . . . . . . 1 −1

A
−,+,q
3 . . . . . . . . . . . . . 1 −1

A
−,−,q
3 . . . . . . . . . . . . . 1 1

D
−,±,+
4,q . . . . . . . . . . . 2 . 1 .

D
−,±,−
4,q . . . . . . . . . . . . 2 1 .

D
+,±,+
4,a/c

. . . . . . . . . 2 . . . −1 .

D
+,±,−
4,a/c

. . . . . . . . . . 2 . . −1 .

D
+,±,+
4,b

. . . . . . . . . 2 . . . −1 .

D
+,±,−
4,b

. . . . . . . . . . 2 . . −1 .

D
+,+
5 . . 1 1 . −2 . . . −1 . 1 . . .

D
+,−
5 . 1 . . 1 . −2 . . . −1 . 1 . .

D
−,+
5 . 1 . . 1 . . −2 . −1 . 1 . . .

D
−,−
5 . . 1 1 . . . . −2 . −1 . 1 . .

D
−,+
4 A2 . . . . . 3 . −3 . . . . . . .

D
−,−
4 A2 . . . . . . 3 . −3 . . . . . .

D
+,+
4,2 A2 2 . . . . 1 . −1 . . . . . . .

D
+,−
4,2 A2 2 . . . . . 1 . −1 . . . . . .

D
+,+
4,1 A2 . . . . . 1 . −1 . . . . . . .

D
+,−
4,1 A2 . . . . . . 1 . −1 . . . . . .

D
+,+
4,0 A2 −2 . . . . 1 . −1 . . . . . . .

D
+,−
4,0 A2 −2 . . . . . 1 . −1 . . . . . .



Table 3 15 16 17 17 17 18 18 20 20 22 22 23 23 27 27

A4
2 . 1 . . . . . . . . . . . . .

TA2
2 . . . . . . . 1 1 1 1 . . . .

TA3
2 1 . . . . . . . . . . . . . .

A
±,+
3 A2

2 . 1 1 1 . . . . . . . . . . .

A
±,−
3 A2

2 . 1 . . 1 . . . . . . . . . .

A
2,e/h;+,+;+,+
3 . . 1 . . . . . . . . . . . .

A
2,e/h;+,+;+,−
3 . . . . . . . . . . . . . . .

A
2,e/h;+,+;−,+
3 . . . 1 . . . . . . . . . . .

A
2,e/h;+,+;−,−
3 . . 1 . 1 1 . . . . . . . . .

A
2,e/h;+,−;+,−
3 . . . . . . . . . . . . . . .

A
2,e/h;+,−;−,+
3 . . . . . . 1 . . . . . . . .

A
2,e/h;+,−;−,−
3 . . . . . . . . . . . . . . .

A
2,e/h;−,+;−,+
3 . . . . . . . . . . . . . . .

A
2,e/h;−,+;−,−
3 . . . 1 . . . . . . . . . . .

A
2,e/h;−,−;−,−
3 . . . . 1 . . . . . . . . . .

A+
4 A2 . . . . . . . . . . . . . . .

A−
4 A2 . . . . . . . . . . . . . . .

TA
±,+
3 A2 1 . . . . . . . . . . . . 1 1

TA
±,−
3 A2 1 . . . . . . . . . . . . 1 1

A
+,+,±
5 . . . . . 1 . . . . . . . . .

A
+,−,±
5 . . . . . . 1 . . . . . . . .

A
−,+,±
5 . . . . . . 1 . . . . . . . .

A
−,−,±
5 . . . . . 1 . . . . . . . . .

A
+,e/h
4 . . . . . . . . . . . . . . .

A
−,e/h
4 . . . . . . . . . . . . . . .

A
+,+,q
3 . . . . . . . 1 . . . 1 1 . .

A
+,−,q
3 . . . . . . . . 1 . . 1 1 . .

A
−,+,q
3 . . . . . . . . 1 . . . . . .

A
−,−,q
3 . . . . . . . 1 . . . . . . .

D
−,±,+
4,q . . . . . . . . . . . 1 . . .

D
−,±,−
4,q . . . . . . . . . . . . 1 . .

D
+,±,+
4,a/c

. . . . . . . . . 1 . 1 . . .

D
+,±,−
4,a/c

. . . . . . . . . . 1 . 1 . .

D
+,±,+
4,b

. . . . . . . . . 1 . . . . .

D
+,±,−
4,b

. . . . . . . . . . 1 . . . .

D
+,+
5 . . . . . . . . . . . . . . .

D
+,−
5 . . . . . . . . . . . . . . .

D
−,+
5 . . . . . . . . . . . . . . .

D
−,−
5 . . . . . . . . . . . . . . .

D
−,+
4 A2 . . . . . . . . . . . . . 1 .

D
−,−
4 A2 . . . . . . . . . . . . . . 1

D
+,+
4,2 A2 . . . . . . . . . . . . . 1 .

D
+,−
4,2 A2 . . . . . . . . . . . . . . 1

D
+,+
4,1 A2 . . . . . . . . . . . . . . .

D
+,−
4,1 A2 . . . . . . . . . . . . . . .

D
+,+
4,0 A2 . . . . . . . . . . . . . . .

D
+,−
4,0 A2 . . . . . . . . . . . . . . .
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Table 3 cont. 27 27 28 28 28 28 28 28 34 34 35 35

A4
2 . . . . . . . . . . . .

TA2
2 . . . . . . . . . . . .

TA3
2 . . . . . . . . 1 1 . .

A
±,+
3 A2

2 . . . . . . . . . . . .

A
±,−
3 A2

2 . . . . . . . . . . . .

A
2,e/h;+,+;+,+
3 . . . . . 1 . . . . . .

A
2,e/h;+,+;+,−
3 . . . . . . 1 . . . 1 1

A
2,e/h;+,+;−,+
3 . . 1 . . 1 . . . . . .

A
2,e/h;+,+;−,−
3 . . . . . . . . . . . .

A
2,e/h;+,−;+,−
3 . . . . . . . 1 . . . .

A
2,e/h;+,−;−,+
3 . . . 1 . . 1 . . . . .

A
2,e/h;+,−;−,−
3 . . . . 1 . . 1 . . . .

A
2,e/h;−,+;−,+
3 . . 1 . . . . . . . . .

A
2,e/h;−,+;−,−
3 . . . 1 . . . . . . 1 1

A
2,e/h;−,−;−,−
3 . . . . 1 . . . . . . .

A+
4 A2 . . . . . . . . . . . .

A−
4 A2 . . . . . . . . . . . .

TA
±,+
3 A2 1 1 . . . . . . . . . .

TA
±,−
3 A2 1 1 . . . . . . . . . .

A
+,+,±
5 . . . . . . . . . . . .

A
+,−,±
5 . . . . . . . . . . . .

A
−,+,±
5 . . . . . . . . . . . .

A
−,−,±
5 . . . . . . . . . . . .

A
+,e/h
4 . . . . . . . . . . 1 1

A
−,e/h
4 . . . . . . . . . . 1 1

A
+,+,q
3 . . . . . . . . . . . .

A
+,−,q
3 . . . . . . . . . . . .

A
−,+,q
3 . . . . . . . . . . . .

A
−,−,q
3 . . . . . . . . . . . .

D
−,±,+
4,q . . . . . . . . . . . .

D
−,±,−
4,q . . . . . . . . . . . .

D
+,±,+
4,a/c

. . . . . . . . . . . .

D
+,±,−
4,a/c

. . . . . . . . . . . .

D
+,±,+
4,b

. . . . . . . . . . . .

D
+,±,−
4,b

. . . . . . . . . . . .

D
+,+
5 . . . . . . . . . . 1 .

D
+,−
5 . . . . . . . . . . . 1

D
−,+
5 . . . . . . . . . . 1 .

D
−,−
5 . . . . . . . . . . . 1

D
−,+
4 A2 1 . . . . . . . . . . .

D
−,−
4 A2 . 1 . . . . . . . . . .

D
+,+
4,2 A2 . . . . . . . . . . . .

D
+,−
4,2 A2 . . . . . . . . . . . .

D
+,+
4,1 A2 . . . . . . . . 1 . . .

D
+,−
4,1 A2 . . . . . . . . . 1 . .

D
+,+
4,0 A2 1 . . . . . . . 1 . . .

D
+,−
4,0 A2 . 1 . . . . . . . 1 . .
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Table Z t sw++ sw+− c++ c+− d++ d+− χ 15 (sw++ + sw−−)/2 (sw+− + sw−+)/2

TA3
2 2 . . . . . . . . . .

A
±,+
3 A2

2 2 . . . . . . . . . .

A
±,−
3 A2

2 2 . . . . . . . . . .

A
2,e;+,+;+,+
3 . . . 4 . . . . . . .

A
2,e;+,+;+,−
3 . . . 2 2 . . . . . .

A
2,e;+,+;−,+
3 . . . 2 . . . . . . .

A
2,e;+,+;−,−
3 . . . 2 . . . . . . .

A
2,e;+,−;+,−
3 . . . . 4 . . . . . .

A
2,e;+,−;−,+
3 . . . . 2 . . . . . .

A
2,e;+,−;−,−
3 . . . . 2 . . . . . .

A
2,e;−,+;−,+
3 . . . . . . . . . . .

A
2,e;−,+;−,−
3 . . . . . . . . . . .

A
2,e;−,−;−,−
3 . . . . . . . . . . .

A
2,h;+,+;+,−
3 . . . 2 −2 . . . . . .

A
2,h;+,+;−,+
3 . . . 2 . . . . . . .

A
2,h;+,+;−,−
3 . . . 2 . . . . . . .

A
2,h;+,−;−,+
3 . . . . 2 . . . . . .

A
2,h;+,−;−,−
3 . . . . 2 . . . . . .

A
2,h;−,+;−,−
3 . . . . . . . . . . .

A+
4 A2 1 . . 1 . . . . . . .

A−
4 A2 1 . . . 1 . . . . . .

TA
+,+
3 A2 . . . 2 . . . . . . .

TA
+,−
3 A2 . . . . 2 . . . . . .

TA
−,+
3 A2 . . . . . . . . . . .

TA
−,−
3 A2 . . . . . . . . . . .

A
+,+,+
5 . . . 2 . . . . . 1 .

A
+,+,−
5 . 2 . 2 . . . . . 1 .

A
+,−,+
5 . . . . 2 . . . . . 1

A
+,−,−
5 . . 2 . 2 . . . . . 1

A
−,+,+
5 . . 2 . . . . . . . 1

A
−,+,−
5 . . . . . . . . . . 1

A
−,−,+
5 . 2 . . . . . . . 1 .

A
−,−,−
5 . . . . . . . . . 1 .

A
+,e/h
4 . 1 . . . . . . . 1 .

A
−,e/h
4 . . 1 . . . . . . . 1

A
+,+,q
3 . . . . . . . 1 1 . .

A
+,−,q
3 . . . . . . . 1 −1 . .

A
−,+,q
3 . . . . . . . 1 −1 . .

A
−,−,q
3 . . . . . . . 1 1 . .

D
−,±,+
4,q . . . . . . . 1 . . .

D
−,±,−
4,q . . . . . . . 1 . . .

D
+,±,+
4,a/c

. . . . . 2 . −1 . . .

D
+,±,−
4,a/c

. . . . . . 2 −1 . . .

D
+,±,+
4,b

. . . . . 2 . −1 . . .

D
+,±,−
4,b

. . . . . . 2 −1 . . .

D
+,+
5 . . 1 −2 . −1 . . . . 1

D
+,−
5 . 1 . . −2 . −1 . . 1 .

D
−,+
5 . 1 . . . −1 . . . 1 .

D
−,−
5 . . 1 . . . −1 . . . 1

D
−,+
4 A2 . . . 3 . . . . . . .

D
−,−
4 A2 . . . . 3 . . . . . .

D
+,+
4,2 A2 2 . . 1 . . . . . . .

D
+,−
4,2 A2 2 . . . 1 . . . . . .

D
+,+
4,1 A2 . . . 1 . . . . . . .

D
+,−
4,1 A2 . . . . 1 . . . . . .

D
+,+
4,0 A2 −2 . . 1 . . . . . . .

D
+,−
4,0 A2 −2 . . . 1 . . . . . .



Table Z cont. (d++ + d−+)/2 (t + c++ + c−+)/2 (t + c+− + c−−)/2 (((d++ + d−+ + d+− + d−−)/2) + χ + 15)/2

TA3
2 . 1 1 .

A
±,+
3 A2

2 . 1 1 .

A
±,−
3 A2

2 . 1 1 .

A
2,e;+,+;+,+
3 . 2 . .

A
2,e;+,+;+,−
3 . 1 1 .

A
2,e;+,+;−,+
3 . 2 . .

A
2,e;+,+;−,−
3 . 1 1 .

A
2,e;+,−;+,−
3 . . 2 .

A
2,e;+,−;−,+
3 . 1 1 .

A
2,e;+,−;−,−
3 . . 2 .

A
2,e;−,+;−,+
3 . 2 . .

A
2,e;−,+;−,−
3 . 1 1 .

A
2,e;−,−;−,−
3 . . 2 .

A
2,h;+,+;+,−
3 . 1 −1 .

A
2,h;+,+;−,+
3 . . . .

A
2,h;+,+;−,−
3 . 1 −1 .

A
2,h;+,−;−,+
3 . −1 1 .

A
2,h;+,−;−,−
3 . . . .

A
2,h;−,+;−,−
3 . 1 −1 .

A+
4 A2 . 1 1 .

A−
4 A2 . 1 1 .

TA
+,+
3 A2 . 1 . .

TA
+,−
3 A2 . . 1 .

TA
−,+
3 A2 . 1 . .

TA
−,−
3 A2 . . 1 .

A
+,+,+
5 . 1 . .

A
+,+,−
5 . 1 . .

A
+,−,+
5 . . 1 .

A
+,−,−
5 . . 1 .

A
−,+,+
5 . 1 . .

A
−,+,−
5 . 1 . .

A
−,−,+
5 . . 1 .

A
−,−,−
5 . . 1 .

A
+,e/h
4 . . . .

A
−,e/h
4 . . . .

A
+,+,q
3 . . . 1

A
+,−,q
3 . . . .

A
−,+,q
3 . . . .

A
−,−,q
3 . . . 1

D
−,±,+
4,q 1 . . 1

D
−,±,−
4,q . . . 1

D
+,±,+
4,a/c

1 . . .

D
+,±,−
4,a/c

. . . .

D
+,±,+
4,b

1 . . .

D
+,±,−
4,b

. . . .

D
+,+
5 . −1 . .

D
+,−
5 . . −1 .

D
−,+
5 . −1 . .

D
−,−
5 . . −1 .

D
−,+
4 A2 . . . .

D
−,−
4 A2 . . . .

D
+,+
4,2 A2 . 1 1 .

D
+,−
4,2 A2 . 1 1 .

D
+,+
4,1 A2 . . . .

D
+,−
4,1 A2 . . . .

D
+,+
4,0 A2 . −1 −1 .

D
+,−
4,0 A2 . −1 −1 .



Table 4 t sw++ sw+− c++ c+− d++ d+− χ 15 (sw++ + sw−−)/2 (sw+− + sw−+)/2

A4
2 . . . . . . . . . . .

TA2
2 . . . . . . . . . . .

TA3
2 . . . . . . . . . . .

A
±,+
3 A2

2 . . . . . . . . . . .

A
±,−
3 A2

2 . . . . . . . . . . .

A
2,e/h;+,+;+,+
3 . . . . . . . . . . .

A
2,e/h;+,+;+,−
3 . . . . . . . . . . .

A
2,e/h;+,+;−,+
3 . . . . . . . . . . .

A
2,e/h;+,+;−,−
3 . . . . . . . . . . .

A
2,e/h;+,−;+,−
3 . . . . . . . . . . .

A
2,e/h;+,−;−,+
3 . . . . . . . . . . .

A
2,e/h;+,−;−,−
3 . . . . . . . . . . .

A
2,e/h;−,+;−,+
3 . . . . . . . . . . .

A
2,e/h;−,+;−,−
3 . . . . . . . . . . .

A
2,e/h;−,−;−,−
3 . . . . . . . . . . .

A+
4 A2 1 . . 1 . . . . . . .

A−
4 A2 1 . . . 1 . . . . . .

TA
±,+
3 A2 . . . . . . . . . . .

TA
±,−
3 A2 . . . . . . . . . . .

A
+,+,±
5 . . . . . . . . . 1 .

A
+,−,±
5 . . . . . . . . . . 1

A
−,+,±
5 . . . . . . . . . . 1

A
−,−,±
5 . . . . . . . . . 1 .

A
+,e/h
4 . 1 . . . . . . . 1 .

A
−,e/h
4 . . 1 . . . . . . . 1

A
+,+,q
3 . . . . . . . 1 1 . .

A
+,−,q
3 . . . . . . . 1 1 . .

A
−,+,q
3 . . . . . . . 1 1 . .

A
−,−,q
3 . . . . . . . 1 1 . .

D
−,±,+
4,q . . . . . . . 1 . . .

D
−,±,−
4,q . . . . . . . 1 . . .

D
+,±,+
4,a/c

. . . . . . . 1 . . .

D
+,±,−
4,a/c

. . . . . . . 1 . . .

D
+,±,+
4,b

. . . . . . . 1 . . .

D
+,±,−
4,b

. . . . . . . 1 . . .

D
+,+
5 . . 1 . . 1 . . . . 1

D
+,−
5 . 1 . . . . 1 . . 1 .

D
−,+
5 . 1 . . . 1 . . . 1 .

D
−,−
5 . . 1 . . . 1 . . . 1

D
−,+
4 A2 . . . 1 . . . . . . .

D
−,−
4 A2 . . . . 1 . . . . . .

D
+,+
4,2 A2 . . . 1 . . . . . . .

D
+,−
4,2 A2 . . . . 1 . . . . . .

D
+,+
4,1 A2 . . . 1 . . . . . . .

D
+,−
4,1 A2 . . . . 1 . . . . . .

D
+,+
4,0 A2 . . . 1 . . . . . . .

D
+,−
4,0 A2 . . . . 1 . . . . . .
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Table 4 cont. (d++ + d−+)/2 (t + c++ + c−+)/2 (t + c+− + c−−)/2 (((d++ + d−+ + d+− + d−−)/2) + χ + 15)/2 16 17 18 19 20

A4
2 . . . . . . . 1 .

TA2
2 . . . . 1 . . . .

TA3
2 . 1 1 . . 1 . . .

A
±,+
3 A2

2 . 1 1 . . . . . .

A
±,−
3 A2

2 . 1 1 . . . . 1 .

A
2,e/h;+,+;+,+
3 . . . . . . 1 . .

A
2,e/h;+,+;+,−
3 . 1 1 . . . 1 . .

A
2,e/h;+,+;−,+
3 . . . . . . 1 . .

A
2,e/h;+,+;−,−
3 . 1 1 . . . 1 . .

A
2,e/h;+,−;+,−
3 . . . . . . 1 1 .

A
2,e/h;+,−;−,+
3 . 1 1 . . . 1 . .

A
2,e/h;+,−;−,−
3 . . . . . . 1 1 .

A
2,e/h;−,+;−,+
3 . . . . . . 1 . .

A
2,e/h;−,+;−,−
3 . 1 1 . . . 1 . .

A
2,e/h;−,−;−,−
3 . . . . . . 1 1 .

A+
4 A2 . 1 1 . . . . . 1

A−
4 A2 . 1 1 . . . . . .

TA
±,+
3 A2 . 1 . . . . . . .

TA
±,−
3 A2 . . 1 . . 1 . . .

A
+,+,±
5 . 1 . . . . . . .

A
+,−,±
5 . . 1 . . . . . .

A
−,+,±
5 . 1 . . . . 1 . .

A
−,−,±
5 . . 1 . . . 1 . .

A
+,e/h
4 . . . . . . . . .

A
−,e/h
4 . . . . . . . . .

A
+,+,q
3 . . . 1 . . . . .

A
+,−,q
3 . . . . . . . . .

A
−,+,q
3 . . . . 1 . . . .

A
−,−,q
3 . . . 1 1 . . . .

D
−,±,+
4,q 1 . . 1 . . . . .

D
−,±,−
4,q . . . 1 . . . . .

D
+,±,+
4,a/c

1 . . . . . . . .

D
+,±,−
4,a/c

. . . . . . . . .

D
+,±,+
4,b

1 . . . 1 . . . .

D
+,±,−
4,b

. . . . 1 . . . .

D
+,+
5 . 1 . . . . . . .

D
+,−
5 . . 1 . . . . . .

D
−,+
5 . 1 . . . . . . .

D
−,−
5 . . 1 . . . . . .

D
−,+
4 A2 . . . . . 1 . . .

D
−,−
4 A2 . . . . . 1 . . .

D
+,+
4,2 A2 . 1 1 . . . . . .

D
+,−
4,2 A2 . 1 1 . . . . . .

D
+,+
4,1 A2 . . . . . 1 . . .

D
+,−
4,1 A2 . . . . . 1 . . .

D
+,+
4,0 A2 . 1 1 . . . . . .

D
+,−
4,0 A2 . 1 1 . . . . . .
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Chapter 4

D+
6 bifurcations

The aim of this chapter is to prove the D+
6 part of Theorem 2.6.2. Thus, we

are going to derive cyclic equations 35-37.

So, we now consider D+
6 bifurcations in detail. The main aim of this

section is to understand the decorations of the strata that come from the D+
6

caustic, C(D+
6 ). Since for our case we are considering the decoration s as well

as σ, this chapter provides richer results than its parallel in [9], giving us 6

cyclic equations compared to 2.

Consider the R+-miniversal deformation of the D+
6 function singularity

F = x2y +
1

5
y5 +

1

4
αy4 +

1

3
βy3 +

1

2
γy2 + δy + εx (8)

= x2y + εx+ p(y)

where α, β, γ, δ, ε ∈ R are independent parameters.
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Similar to Section 2.6.2.2 analysis of (8) yields the function

Ψ := y2p′(y) +
ε2

4
= y2(y4 + αy3 + βy2 + γy + δ) +

ε2

4
(9)

where we fix the weights of the variables as wy = 1, wα = 1, wβ = 2, wγ = 3,

wδ = 4 and wε = 3. Here, we use (9) to describe all degenerations in F

in terms of those in Ψ (see Section 2.6.2.2 or [9] for the derivation of this

function). This time the big caustic C(D+
6 ) ⊂ R5

α,β,γ,δ,ε corresponds to those

polynomials Ψ which have either the root y = 0 of multiplicity k > 2 or a root

y 6= 0 of multiplicity k > 1. Again this results in C(D+
6 ) and its transversal

sections having respectively Dk or Ak points. We should note we consider the

D3 singularity as the A3 singularity at the origin x = y = 0.

Our task is now to analyse how we can represent C(D+
6 ) as a collection

of 2-parameter bifurcations of 3-dimensional caustics. The corresponding bi-

furcation diagram in the parameter plane will be denoted B(D+
6 ). In order

to fulfill the task we study the generic map π : (R5
α,β,γ,δ,ε, C(D+

6 )) → R2 by

consideration of its two approximations by projections.

First we introduce the straight projection which is the principal part of

the generic mapping π. It is defined as

πs : (R5
α,β,γ,δ,ε)→ R2

A,B; (α, β, γ, δ, ε) 7→ (A,B) = (α, β).

Next is the tilted projection where we introduce terms of the next quasi-
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homogeneous degree. This is

πt : (R5
α,β,γ,δ,ε)→ R2

A,B; (α, β, γ, δ, ε) 7→ (A,B) = (α, β + Cγ + Eε)

where C and E are arbitrary real coefficients.

In the rest of this chapter we analyse the contributions of different strata

of C(D+
6 ) to the diagram Bs(D+

6 ) visible under the straight projection. If

necessary we shall also analyse various tilted projections.

4.1 1-dimensional strata in C(D+
6 ) and their

straight projection

First we analyse the 1-dimensional strata of the D+
6 caustic and their straight

projection. Here we introduce parametrisations of the strata in C(D+
6 ) based

on the multiplicity options for the roots of Ψ that were mentioned before:

• D5: Ψ = y5(y − u);

• D4A2: Ψ = y4(y − u)2;

• D3A3: Ψ = y3(y − u)3;

• A5: Ψ = (y − u)5(y + u
5
). However, the stratum is empty in C(D+

6 ) due

to the positive sign of ε2/4 in (9);

• A4A2: Ψ = (y − u)4(y + u
2
)2;
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• A2
3: Ψ = (y−u)3(y+u)3 is also empty in C(D+

6 ) due to the same reason

as before.

Here u ∈ R and u 6= 0. In the last three cases the way the coefficients of u

are chosen makes the coefficient of y in the expansion of Ψ zero.

In order to calculate the discriminantal strata in Bs(D+
6 ) we first equate

the coefficients of the parametrisations above with those in (9) in order to find

the strata in C(D+
6 ). Then we obtain the discriminantal strata in Bs(D+

6 ) from

the image of the map πs, (A,B) = (α, β). However, since these calculations

have already been done in [9] we will just state the discriminantal strata.

The images of the 1-dimensional strata in Bs(D+
6 ) are:

• D5: B = 0;

• D4A2: A2 = 4B;

• D3A3: A2 = 3B;

• A5: Empty in C(D+
6 ) and hence in Bs(D+

6 );

• A4A2: A2 = 4B;

• A2
3: Empty in C(D+

6 ) and hence in Bs(D+
6 ).

All these strata are shown in Figure 52 below.

We find the decoration s of the D5 stratum by considering the principal

part x2y + αy4 of (8) at the origin. When α = A is positive we are on the

right side of Figure 52 and so the right half-branch has decoration D+
5 . Similar

126



,

3
A

3
D

3
A

3

D
5

+,σ

D
5

−,σ

4

 +

A
2

D A
4
A

2 4

 +

A
2

D A
4
A

2

A

B

,

D

Figure 52: The part of Bs(D+
6 ) coming from the 1-dimensional strata of

C(D+
6 ).

analysis shows the left half-branch has decoration D−5 . Now, the symmetry

of the bifurcation diagram under the transformation

(A,B) 7→ (−A,B)

lifts to the symmetry

(x, y, α, β, γ, δ, ε) 7→ (x,−y,−α, β,−γ, δ,−ε), F 7→ −F

of the family (8). This tells us that the source R3
x,y,γ and the target R3

γ,δ,ε

have the same orientations for both D5 half-branches, and so we choose them

to have sign σ.

We now consider the co-orientation of the D5 stratum. When we cross the

D5 stratum in the positive direction, as seen in Figure 13, we are changing

the sign of the y3 coefficient (that is the coefficient β = B) from positive to
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negative. Therefore, when B is negative we are on the positive side of the D5

stratum. Hence, the D5 stratum in Figure 52 is co-oriented downwards.

Finally, the choice between plus and minus for the D±4 A2 stratum is done

by considering the principal part x2y + βy3 of (8) at the origin. When the

coefficient of y3 is positive we have D+
4 A2, and since β = B is always positive

we have D+
4 A2 for the whole of the stratum.

The decorations and co-orientations of the other strata in Figure 52 will

be discussed later in Section 4.3 when we examine tilted projections of 2-

dimensional strata in C(D+
6 ).

4.2 2-dimensional strata in C(D+
6 ) and their

straight projection

We now parametrise the 2-dimensional strata in C(D+
6 ):

• A4: Ψ = (y − u)4(y2 + vy + w) with w = uv
4

;

• D4: Ψ = y4(y2 + uy + v);

• D3A2: Ψ = y3(y − u)2(y − v);

• A3
2: Ψ = (y3 + uy2 + v)2;

• A3A2: Ψ = (y − u)3(y − v)2(y − w) with 3vw + 2uw + uv = 0.

Here, the additional relations in the first and last cases exist due to the con-

straint of the coefficient of y in Ψ being zero.
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Similar to Section 4.1 and following the calculations in [9] we state that

the critical value sets of the map πs on the strata from the previous list are:

• A4: the critical value set of the πs on the stratum A4 ⊂ C(D+
6 ) is the

stratum A
e/h
4 ⊂ Bs(D+

6 ) with the equation B = 3
8
A2;

• D4: here πs maps the closure of the stratum D4 ⊂ C(D+
6 ) isomorphically

onto R2
A,B and hence its critical value set is empty. Therefore the strata

D±4,q ⊂ Bs(D+
6 ) are empty;

• D3A2: the stratum D3A2 ⊂ C(D+
6 ) is mapped by πs onto R2

A,B so that

‘half’ of the plane is covered twice, while the other half is not covered

at all. These halves are separated by the image of the cuspidal curve

D3A3 with the lower half being doubly covered (see Figure 52);

• A3
2: the whole stratum A3

2 ⊂ C(D+
6 ) is sent by πs to A2 = 4B, that is,

the stratum D4A2 ⊂ Bs(D+
6 ) (the same as A4A2 under this projection);

• A3A2: the stratum A3A2 ⊂ C(D+
6 ) is a surface that under the projection

πs has a double curve in its critical point set due to two A3A2 points

coming together. However, we see that πs has no critical points on the

open stratum A3A2 ⊂ C(D+
6 ). Another result from [9] of particular

interest is that the TA3A2 strata coincide with the A4A2 strata for the

straight projection.

This means we now must consider the tilted projection of the A3
2 stra-

tum since under the straight projection its whole image is 1-dimensional,
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and, moreover, this image coincides with the strata D4A2 and A4A2 obtained

earlier. Coincidence of the last two strata also confirms that the πs is not

sufficiently generic. Due to the reasons above the A3A2 stratum will also be

subject to tilting considerations.

4.3 Tilting the 2-dimensional strata

4.3.1 The A3
2 stratum

We are considering the tilted projection of the stratum A3
2 ⊂ C(D+

6 ) since its

critical value set under πs coincides with that of D4A2 and A4A2.

Recall we parametrised the A3
2 stratum by Ψ = (y3 +uy2 +v)2. Here, only

those regions of the uv-plane in which the polynomial q = y3 + uy2 + v has

three real roots correspond to real A3
2 points. In [9] it was found that this

occurs when Ψ = y4(y + u)2 and Ψ = (y + 2u
3

)4(y − u
3
)2 which are the D4A2

and A4A2 strata of C(D+
6 ).

By equating the coefficients of the parametrised A3
2 stratum with (9) we

obtain Figure 53 in 3-dimensions with ε = ±2v = ±γ. Here the α-axis is the

D+
4 A2 stratum (not the D−4 A2 stratum since the D+

6 caustic has A3
2 points

next to it) and the two cubic curves are A4A2.

We now consider the possible images under the tilting map

πt : (R5
α,β,γ,δ,ε)→ R2

A,B; (α, β, γ, δ, ε) 7→ (A,B) = (α, β + Cγ + Eε)
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γ

ε

α

Figure 53: Projection of the A3
2 stratum of C(D+

6 ) ⊂ R5
α,β,γ,δ,ε to the αγε-

space. The image of the A3
2 consists of the regions of the planes ε = ±γ

between the D4A2 line γ = 0 and the A4A2 curves γ = − 4
27
u3.

for various values of arbitrary real coefficients C and E. The calculations of

the discriminantal strata are found in [9] and so will not be repeated here.

Our main area of interest is to see what happens to the two A4A2 strata

for different values of C and E. Topologically, when considering the tilted

projections, we are roughly looking at the surface in Figure 53 from the ε-

direction, the γ-direction or the −ε-direction which are shown respectively in

Figures 54, 55 and 56.

In all three figures the co-orientation of the D+,σ
4 A2 stratum is to the right

for reasons that will be explained at the end of this section. We leave the

consideration of the decorations of the A4A2 strata to Section 4.3.2.

In Figure 54 we co-orient the two A4A2 strata towards the D+,σ
4 A2 stratum

due to this being the region where the two triple points exist, as shown in

Figure 53. Hence, we know the D+,σ
4 A2 stratum is of type D+,σ

4,2 A2 since
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Figure 54: The bifurcation diagram coming from the tilted projection of the

stratum A3
2 for (C,E) = (2, 1). The D4A2 and A4A2 strata here split those

in Figure 52.

crossing the stratum in the positive direction creates two triple points (as

seen in Figures 14 and 15).

In Figure 55 the D+
4 A2 half-branches are of type D+,σ

4,1 A2 since there are

triple points on either side due to the positions of the A4A2 strata. The

co-orientations of the A4A2 strata are towards the D+,σ
4,1 A2 stratum.

Again, in Figure 56 the co-orientations of the A4A2 strata are towards the

D+,σ
4 A2 stratum due to this being the region where the two triple points exist.

Hence, the D+,σ
4 A2 stratum is of type D+,σ

4,0 A2 since crossing the stratum in

the positive direction loses two triple points (as seen in Figure 14).

We now explain why the D+,σ
4 A2 stratum is co-oriented to the right in Figures
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54, 55 and 56. Consider the uv-plane parametrising D3A2, that is,

Ψ = y3(y + u)2(y + v).

Comparing the coefficients of Ψ with those of (9) we have

α = 2u+ v

β = u2 + 2uv

γ = u2v.

Here, the u-axis parametrises D4A2, that is when v = 0, so that the positive

direction of the u-axis corresponds to the orientation of the parabola shown

in Figure 57.

B

α

u

Figure 57: D4A2 orientation in R2
α,B.

We wish to co-orient the D4A2 stratum towards the region with A+
3 A2

points since after a positive D4A2 bifurcation there are A+
3 A2 points present,

as seen in Figures 14 and 15. We know the sign of γ tells the D+
3 and D−3

singularities apart: the sign being negative means we have D+
3 . Hence, the
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region of D+
3 A2 (that is, A+

3 A2) points on the uv-plane is v < 0, except for

the v-axis itself.

The determinant of the Jacobian of the map (u, v) 7→ (α, β) on the u-axis

is ∣∣∣∣∣∣∣
2 1

2u+ 2v 2u

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
v=0

=

∣∣∣∣∣∣∣
2 1

2u 2u

∣∣∣∣∣∣∣ = 2u.

Hence the map (u, v) 7→ (α, β) sends the orientation of the source plane

to that of the target plane near the positive u-semi-axis, and reverses the

orientation near the negative u-semi-axis. Therefore, the D+
3 A2 region v < 0

which was on the right of the u-axis will be mapped to the right of the oriented

parabola in Figure 57 when u > 0, and to the left of this parabola when u < 0.

4.3.2 The A3A2 stratum

In [9] the A3A2 stratum was parametrised by Ψ = (y − u)3(y − v)2(y − w)

where u, v, w where subject to the relations

q1 = 3vw + 2uw + uv = 0 and q2 = ε2 − 4u3v2w = 0
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and there were the following expressions for the coefficients of Ψ

α = −w − 2v − 3u

β = 2vw + v2 + 3uw + 6uv + 3u2

γ = −v2w − 6uvw − 3uv2 − 3u2w − 6u2v − u3 (10)

δ = 3uv2w + 6u2vw + 3u2v2 + u3w + 2u3v

Like what was done in [9] we consider the A3A2 stratum of C(D+
6 ) ⊂

R5
α,β,γ,δ,ε as parametrised by the surface S = {q1 = q2 = 0} ⊂ R4

u,v,w,ε, and

look for critical points of πt|A3A2 as critical points on S of πt composed with

the parametrisation map, that is, of

(u, v, w, ε) 7→ (α, β, γ, δ, ε) 7→ (A,B) = (α, β + Cγ + Eε),

where C and E are arbitrary real constants.

In order to visualise the discriminantal strata for D+
6 we start with the

projection S ′ ⊂ R3
u,w,ε of our surface S parametrising the closure of the stra-

tum A3A2 ⊂ C(D+
6 ). Here, S projects onto S ′ bijectively due to the conditions

q1 = 0 and q2 = 0. We see that S ′ has no points with uw < 0, covers the

uw > 0 region twice and contains the u- and w-axes, as shown in Figure 58.

According to [9], the following strata of C(D+
6 ) and critical curves show

up on S ′ in Figure 58:

• D5, u = v = 0 = ε, the w-axis;

136



• D3A3, v = w = 0 = ε, the u-axis;

• A4A2, u = w;

• TA3A2, the pre-images of the TA3A2 strata of Bt(D+
6 ).

As stated previously the TA3A2 strata coincide with the A4A2 strata for

the straight projection. However in the tilted projection the TA3A2 have

quadratic tangency on S ′ with A4A2 (the sides depend on the signs of (C±E)).

We will now provide illustrations for the various cases. Firstly, Figure 58

illustrates the situation for when C = 2 and E = 1.
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Figure 58: The strata on the surface S ′ ⊂ R3
u,w,ε parametrising the strata in

the closure of the stratum A3A2 in Bt(D+
6 ) when C = 2 and E = 1.

Let us now find the decorations of strata in Figure 58 in detail. The

decorations of D5 can be calculated from work previously done in Figure 52.

137



Since for D5 we have u = 0, v = 0 and w 6= 0 we have Ψ = y5(y − w).

This gives us A = −w. Hence, the positive A-semi-axis in Figure 52 is the

negative w-semi-axis in Figure 58. The same holds for the other half of the

D5 stratum.

Next we have the D3A3 stratum which is the u-axis. We have Ψ = y3(y−

u)3, which corresponds in (8) to the principal part x2y − u3y2 at the origin.

From this we can see the sign s decorating D3 will be the sign of the coefficient

of −y2, which is the sign of u. Hence for positive u we have D+
3 A3 and for

negative u we have D−3 A3. We also know the degree σ of D3 will be the same

as for D5 from Figure 13. Therefore both D3A3 half-branches have decoration

Dσ
3 . The sign s and degree σ of A3 in D3A3 will be explained later.

It is now possible to find the decorations of all the other strata. We shall

start from the negative w-ray, at D+,σ
5 and travel up to the negative u-ray,

D−,σ3 A3, following the red path as shown in Figure 58.

According to the D5 transition in Figure 13 two A3A2 points merging at

D+,σ
5 are A+,σ

3 A2. Therefore both TA3A2 strata next to the D+,σ
5 in Figure 58

are TA+,σ
3 A2. Next as we carry on, we will arrive at swallowtail and smooth

sheet intersections. As we move through these strata, our A+,σ
3 points switch

signs to A−,−σ3 , hence giving the strata the decoration Aσ4A2. Finally we will

arrive at D−,−σ3 A−,−σ3 since our A3 point has decorations (−,−σ).

It is possible to repeat the process with the blue path shown in the upper
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left octant in Figure 58. However, a quicker way is to look at the symmetry

(u, v, w) 7→ (−u,−v,−w). (11)

This transformation lifts to the symmetry

(x, y, α, β, γ, δ, ε) 7→ (x,−y,−α, β,−γ, δ,−ε), F 7→ −F

of the family (8). This tells us that the source R3
x,y,γ and the target R3

γ,δ,ε

have the same orientations and so σ is preserved. However, due to F 7→ −F

the sign s changes.

We now explain how the surface S ′ ⊂ R3
u,w,ε is mapped, via the stratum

A3A2 ⊂ C(D+
6 ) by πt to the AB-plane. Consider, for example, its quarter

S ′+ within the octant where all the u,w, ε are non-negative. According to

(10) the boundary of S ′+ formed by the positive w- and u-rays is mapped

to respectively the negative A-ray and the left half of the parabola D3A3 in

Figure 59. The image of S ′+ covers the small sector of the AB-plane between

these two branches, and the only singularities this covering has are folds along

the A4A2 and TA3A2 curves on S ′+. These folds give us the two strata of

Bt(D+
6 ) shown in Figure 59. Similar considerations for the other quarters of

S ′ explain the rest of the strata in Figure 59. The strata there are co-oriented

to the sides on which the folding of S ′ has more pre-images.

The previous strata calculated from tilting the A3
2 stratum for (C,E) =

(2, 1) (see Figure 54) are also contained in Figure 59. Of course, it then
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follows that the co-orientations of the A4A2 strata (towards the nearest D4A2

branches) are already known from Section 4.3.1.

Now, the decorations of the A
e/h
4 strata in Figure 59 can be calculated by

balancing the increments of the numbers of swallowtail points generated by

crossing the D−,σ5 and D+,σ
5 strata.
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Figure 59: Part of the bifurcation diagram Bt(D+
6 ) when C = 2 and E = 1.

Positions of the A4A2 and D4A2 curves follow Figure 54.

It was proved in [9] that the higher dimensional strata of the D+
6 caustic

do not contribute to the bifurcation diagrams. Therefore, Figure 59 yields

the cyclic equation

35. a2,e;+,σ;+,−σ
3 − a2,e;−,σ;−,−σ

3 + 2a−σ4 a2 + 2aσ4a2 − 2ta+,−σ
3 a2 − 2ta+,σ

3 a2 −

2d+,σ
4,2 a2 + a

−σ,e/h
4 − aσ,e/h4 + d−,σ5 − d+,σ

5 = 0
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where we consider the D3A3 strata as A2
3. Here we detect this stratum is el-

liptic by comparing our normal form F to the normal forms in Section 2.3.1.1.

The next topologically different option for the strata on the surface S ′ may

be achieved by taking C = 1 and E = 2 which is illustrated in Figure 60.
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Figure 60: The surface S ′ for C = 1 and E = 2.

The strata in Figure 60 have:

• The same positions and decorations of the D5, D3A3 and A4A2 strata

as in Figure 58;

• One of the two TA3A2 strata in each octant change position relative to

the A4A2 stratum compared to Figure 58. Due to this switch the moved

TA3A2 strata change their signs s and σ.

Now, the surface S ′ is mapped via πt down to the AB-plane creating
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Bt(D+
6 ) shown in Figure 61. This time the previous strata calculated from

tilting the A3
2 stratum for (C,E) = (0, 1) (see Figure 55) are also contained

in the figure.
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Figure 61: The bifurcation diagram Bt(D+
6 ) when C = 1 and E = 2, with the

contribution from Figure 55.

Again, strata are co-oriented to the sides on which the folding has more

pre-images. Figure 61 yields the cyclic equation

36. a2,e;+,σ;+,−σ
3 − a2,e;−,σ;−,−σ

3 − ta+,−σ
3 a2 − ta+,σ

3 a2 + ta−,σ3 a2 + ta−,−σ3 a2 −

2d+,σ
4,1 a2 + a

−σ,e/h
4 − aσ,e/h4 + d−,σ5 − d+,σ

5 = 0.

The last topologically different option for the strata on the surface S ′ may

be achieved by taking C = −2 and E = −2 which is illustrated in Figure 62.
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Figure 62: The surface S ′ for C = −2 and E = −1.

Here the strata in Figure 62 have:

• The same positions and decorations of the D5, D3A3 and A4A2 strata

as in Figure 58 and 60;

• Both TA3A2 strata in each octant change position relative to the A4A2

stratum compared to Figure 58. Due to this move both decorations s

and σ of TA3A2 change.

The surface S ′ is mapped via πt down to the AB-plane creating Bt(D+
6 )

shown in Figure 63. This time the previous strata calculated from tilting the

A3
2 stratum for (C,E) = (−2,−1) (see Figure 56) are contained in the figure.

Now, Figure 63 yields the cyclic equation

37. a2,e;+,σ;+,−σ
3 − a2,e;−,σ;−,−σ

3 − 2a−σ4 a2 − 2aσ4a2 + 2ta−,σ3 a2 + 2ta−,−σ3 a2 −

2d+,σ
4,0 a2 + a

−σ,e/h
4 − aσ,e/h4 + d−,σ5 − d+,σ

5 = 0.
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Figure 63: The bifurcation diagram Bt(D+
6 ) when C = −2 and E = −1, with

the contribution from Figure 56.

This concludes our proof of the D+
6 part of Theorem 2.6.2.
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Chapter 5

D−6 bifurcations

We now turn our attention to proving the D−6 part of Theorem 2.6.2, that is,

deriving equation 38.

Similar to Chapter 4, we consider D−6 bifurcations and obtain the deco-

rations of the strata that come from the D−6 caustic, C(D−6 ). This time the

R+-miniversal deformation of the D−6 function singularity is

F = −x2y +
1

5
y5 +

1

4
αy4 +

1

3
βy3 +

1

2
γy2 + δy + εx (12)

= −x2y + εx+ p(y)

where α, β, γ, δ, ε ∈ R are independent parameters. Here, this family only

differs from the D+
6 family by the sign of the x2y term.
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Like in Section 4 analysis of (12) yields the function

Ψ := y2p′(y)− ε2

4
= y2(y4 + αy3 + βy2 + γy + δ)− ε2

4
(13)

which we use to describe all degenerations in F . We should notice that this

Ψ only differs from the one in the D+
6 case by the sign of the ε2 term.

5.1 1-dimensional strata in C(D−6 ) and their

straight projection

We now analyse the 1-dimensional strata of C(D−6 ) and their straight projec-

tion. We introduce the parametrisations of the strata in C(D−6 ) based on the

multiplicity options for the roots of Ψ from Section 4:

• D5 with Ψ = y5(y − u);

• D4A2 with Ψ = y4(y − u)2;

• D3A3 with Ψ = y3(y − u)3;

• A5 with Ψ = (y − u)5(y + u
5
);

• A4A2 with Ψ = (y − u)4(y + u
2
)2. However, the stratum is empty in

C(D−6 ) due to the negative sign of ε2/4 in (13);

• A2
3 with Ψ = (y − u)3(y + u)3 and ε2 = 4u6.
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Here u ∈ R and u 6= 0. Again, in the last three cases the way the coefficients

of u are chosen makes the coefficient of y in the expansion of Ψ zero.

The images of these strata under the mapping

πs : (R5
α,β,γ,δ,ε)→ R2

A,B; (α, β, γ, δ, ε) 7→ (A,B) = (α, β)

are listed below and shown in Figure 64:

• D5: B = 0;

• D4A2: A2 = 4B;

• D3A3: A2 = 3B;

• 2A5: 64B = 25A2. Here, the stratum is doubled in the ε-direction in

C(D−6 );

• A4A2: Empty in C(D−6 ) and hence in Bs(D−6 );

• 2A2
3: A = 0, B ≤ 0. Again, the stratum is doubled in the ε-direction

in C(D−6 ).

From Ψ we immediately see that all our observations done in Section 4.1

about the decorations of the D5 stratum as well as the degree signs σ of

the D≥3 strata stay true for D−6 . Hence, in Figure 64 the decorations of the

D5 stratum are inherited from the D+
6 case due to the expressions (8) and

(12) only differing by the sign of the ε2 term. Since ε equals zero in the

stratification of D5 this change of sign has no affect between the two cases.
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Figure 64: The part of Bs(D−6 ) coming from the 1-dimensional strata of

C(D−6 ).

We now turn our attention to the co-orientation of the D5 stratum. For

the D−6 case, when we cross the D5 stratum in the positive direction, as seen in

Figure 13, we are changing the sign of the y3 coefficient (that is the coefficient

β = B) from negative to positive. Therefore, the D5 stratum in Figure 64 is

co-oriented upwards.

The choice between plus and minus for the D±4 A2 stratum is done by

considering the principal part −x2y + βy3 of (12) at the origin. When the

coefficient of y3 is positive we have D−4 A2 and since β = B is always positive

we have D−4 A2 for the whole of the stratum. Again, its co-orientation is

inherited from the D+
6 case.

The decorations and co-orientations of the other strata in Figure 64 will

be discussed later in Section 5.2 when we examine the straight projections of
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2-dimensional strata in C(D−6 ).

5.2 2-dimensional strata in C(D−6 ) and their

straight projection

We now parametrise the 2-dimensional strata in C(D−6 ):

• A4: Ψ = (y − u)4(y2 + vy + uv
4

) with ε2 + u5v = 0;

• D4: Ψ = y4(y2 + uy + v);

• D3A2: Ψ = y3(y − u)2(y − v);

• A3
2: Ψ = (y3 + uy2 + v)2;

• A3A2: Ψ = (y − u)3(y − v)2(y − w) with 3vw + 2uw + uv = 0.

The critical value sets of the map πs on the strata from this list are (see

Figure 65):

• A4: this is very similar with the D+
6 situation except u and v now

have opposite signs to each other. Here, the critical value set of the πs

on the stratum A4 ⊂ C(D−6 ) is the stratum A
e/h
4 ⊂ Bs(D−6 ) with the

equation B = 3
8
A2. Respectively, the decoration of A

e/h
4 will follow from

the analysis of the decorations of A4 which will be done later in this

section;
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• D4: There is no difference with the D+
6 situation. That is, πs maps the

closure of the stratum D4 ⊂ C(D−6 ) isomorphically onto R2
A,B and hence

its critical value set is empty. Therefore the strata D±4,q ⊂ Bs(D−6 ) are

empty;

• D3A2: similarly to the D+
6 case, the stratum D3A2 ⊂ C(D−6 ) is mapped

by πs onto R2
A,B so that ‘half’ of the plane is covered twice, while the

other half is not covered at all. These halves are separated by the image

of the cuspidal curve D3A3 with the lower half being doubly covered;

• A3
2: empty in C(D−6 ) and hence in Bs(D−6 );

• A3A2: the stratum A3A2 ⊂ C(D−6 ) is mapped by πs so that there are no

critical points on the open stratum A3A2 ⊂ C(D−6 ). Moreover, according

to [9], such critical points will not appear even when we consider a

generic projection instead of πs. Therefore, the TA3A2 stratum in our

planar bifurcation diagrams of D−6 is empty, and there is no need to

consider tilted projections of A3A2 ⊂ C(D−6 ) like we did for the D+
6

case.

The bifurcation diagram produced from the straight projection of the strata

in C(D−6 ) is shown in Figure 65. We remark that there is no need to consider

tilted projections for the D−6 case, unlike in D+
6 . This is due to the images of

all strata being different which confirms that πs is sufficiently generic.
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Figure 65: The part of Bs(D−6 ) coming from the 1-dimensional strata of C(D−6 )

and A4.

We now analyse the decorations and co-orientations of the strata in detail.

A4: Consider the surface V = {ε2 + u5v = 0} ⊂ R3
u,v,ε that parametrises

the stratum A4 ⊂ C(D−6 ) which is then projected down to the AB-plane by

πs. According to [9], the following strata of C(D−6 ) and critical curves show

up on V , as illustrated in Figure 66:

• Ae/h4 : v = 0, the u-axis;

• D5: u = 0, the v-axis;

• A5: v = −4u
5
.
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Figure 66: The strata on the surface V ⊂ R3
u,v,ε parametrising the strata in

the closure of the stratum A4 in C(D−6 ).

We examine the decorations of the strata in Figure 66. For D5 we have

u = 0 and therefore Ψ = y5(y + v). This gives us A = v. Hence, the positive

A-semi-axis, D+,σ
5 , in Figure 64 is the positive v-semi-axis in Figure 66. The

same holds for the other half of the D5 stratum.

We will now start at the negative v-ray, D−,σ5 , and follow the blue path

up to the positive u-ray in order to determine the decorations of all the other

strata.

According to the D5 transition in Figure 13 the two swallowtail points

created at D−,σ5 have decorations A+,σ
4 and A−,−σ4 . Next, we are able to

determine the decorations in the two A5 strata in Figure 66 by considering

the symmetry

(u, v, ε) 7→ (u, v,−ε). (14)
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This transformation lifts to the symmetry

(x, y, α, β, γ, δ, ε) 7→ (−x, y, α, β, γ, δ,−ε), F 7→ F

of the family (12). This tells us that both the source R3
x,y,γ and the target

R3
γ,δ,ε change their orientation and so σ is preserved. However, the change

of orientation of the target changes the writhe decoration. Due to F 7→

F the sign s stays the same. Therefore the A5 strata will have the same

decorations s and σ but different signs of the writhe. Now recall from Section

2.3.1.1 the relation writhe · (t, τ) = (−s,−σ) for the decorations of the (t, τ)-

swallowtails born in the As,σ,ω5 bifurcation. From this we see that the A−,−σ4

point mentioned before is born from an Aω,ωσ,ω5 bifurcation. Likewise, the

A+,σ
4 point is born from Aω,ωσ,−ω5 . Now, on the parametrising surface V in

Figure 66 we have the same kind of A4 points on either side of the A5 strata.

Hence, the A
e/h
4 stratum has decoration A

σ,e/h
4 .

Similarly, we can repeat this process with the red path shown and find

the decorations of strata in the upper right octant of Figure 66. However,

analysing the symmetry as we did in (11), Section 4.3.2, provides the same

results quicker.

Now, the surface V in Figure 66 is mapped via πs down to the AB-plane

creating Bs(D−6 ) in Figure 67.

153



D
5

+,σ

D
5

−,σ

A
σ

4
A

4

−σ

5
A

ω,ωσ,ω ω,ωσ,−ω

5
A

5
A

−ω,ωσ,ω −ω,ωσ,−ω

5
A

A

B

, ,

,e/h ,e/h

Figure 67: The bifurcation diagram Bs(D−6 ) for the surface V .

In Figure 67 we know the D5 stratum is co-oriented upwards from previous

considerations in Section 5.1. All the other strata are co-oriented towards the

creation of swallowtail points.

A3A2: Take Ψ = (y − u)3(y − v)2(y − w) with u, v, w subject to the rela-

tions

q1 = 3vw + 2uw + uv = 0 and q2 = e2 + 4u3v2w = 0,

and with the expressions for the coefficients of Ψ the same as equations (10).

Like in [9] we consider theA3A2 stratum of C(D−6 ) ⊂ R5
α,β,γ,δ,ε as parametrised

by the surface S = {q1 = q2 = 0} ⊂ R4
u,v,w,ε, and look for critical points of

πs|A3A2 as critical points on S of πs composed with the parametrisation map,

that is, of

(u, v, w, ε) 7→ (α, β, γ, δ, ε) 7→ (A,B).
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It should be recalled that since there are no TA3A2 strata mapped under the

straight projection there is no need to consider tilted projections of A3A2 ⊂

C(D−6 ) like we did for the D+
6 case.

We have that

• D3A3: v, w = 0, the u-axis;

• D5: u, v = 0, the w-axis;

• D4A2: u,w = 0, the v-axis;

• A5: u = v.

The equation q1 = 0 defines a cone C in the uvw-space which contains

all three coordinate axes, and the rest of C is situated in the six coordinate

octants (those in which not all of the three coordinates are of the same signs).

The equation q2 = 0 defines a double cover of those four of these six parts of

C where uw < 0. Out of these four:

1) the pieces {u > 0, v > 0, w < 0} and {u < 0, v < 0, w > 0} project

injectively onto the w = 0 plane, and therefore are parametrised by the

1st and 3rd quadrants of the uv-plane;

2) the pieces {u < 0, v > 0, w > 0} and {u > 0, v < 0, w < 0} project

injectively onto the u = 0 plane, and therefore are parametrised by the

1st and 3rd quadrants of the vw-plane.
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We denote the corresponding closures of the double covers of these two pairs

of regions by S1 and S2, and consider them as surfaces in R3
u,v,ε and R3

v,w,ε

respectively. These two surfaces should be joined along the v-axis to represent

the surface S = {q1 = q2 = 0} in R4
u,v,w,ε. We depict S1 in Figure 68 and S2

in Figure 70.
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Figure 68: The surface S1 over the uv-plane.

In Figure 68 the degree signs σ in Dσ
4A2 and Dσ

3A3 are inherited from the

D+
6 case. We also know the choice between plus and minus for the D±4 A2

stratum from previous considerations in Section 5.1.

Next we have the D3A3 stratum which is the u-axis. Here Ψ = y3(y−u)3,

which corresponds in (12) to the principal part −x2y − u3y2 at the origin.

The sign s decorating D3 will be the sign of the coefficient of −y2, which

corresponds to the sign of u. Hence we have D+
3 A3 for positive u and D−3 A3

for negative u. The sign s and degree σ of A3 in D3A3 will be found later.
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We now find the decorations of the other strata. We start from the pos-

itive v-ray, at D−,σ4 A2 and travel up to the positive u-ray, D+,σ
3 A3, following

the blue path as shown in Figure 68. We know from the positive D−,σ4 A2

transition in Figure 14 that A+,σ
3 A2 points are created after the bifurcation.

Using this and applying the symmetry (14) we determine our A5 strata have

decorations A+,σ,ω
5 and A+,σ,−ω

5 . As we move through these strata, our A+,σ
3

points keep their decorations. Finally we arrive at D+,σ
3 A+,σ

3 since our A3

point has decorations (+, σ).

We now remark that comparing the decorations of the A5 strata in Figures

66 and 68 tells us that the writhe ω = +. Hence, we set ω = + in the rest of

the bifurcation diagrams in this section and in the overall cyclic equation.

The surface S1 from Figure 68 that parametrised A3A2 is mapped via πs

down to the AB-plane creating the part of Bs(D−6 ) in Figure 69.
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Figure 69: The bifurcation diagram Bs(D−6 ) for the surface S1.

In Figure 69 the co-orientation of the D3A3 stratum will be determined

later.

Similarly, we will now examine the decorations of the strata on the surface
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S2 in Figure 70.
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Figure 70: The surface S2 over the vw-plane. The A3 decorations of the A3A2

points from the blue half of the surface are (−, σ), and from the red are (+, σ).

In Figure 70 the D−,σ4 A2 stratum is the v-axis. We can also show that the

positive A-semi-axis, Ds,σ
5 , in Figure 64 is the negative w-semi-axis in Figure

70. The opposite also holds for the other half of the D5 stratum.

In order to find the decorations of the A2
3 strata we first show how the

surface S2 is mapped via πs down to the AB-plane, creating Bs(D−6 ) in Figure

71.

Now, according to the D−,σ4 A2 transition in Figure 15, A−,σ3 A2 points occur

before the bifurcation and A+,σ
3 A2 points occur afterwards. Therefore, due to

the co-orientation of the D−,σ4 A2 stratum in the AB-plane we have that the

A3 decorations of the A3A2 points from the blue half of the surface in Figure

70 are (−, σ), and from the red are (+, σ). We also know that the A2
3 strata

are hyperbolic since there are A3A2 points before and after the bifurcation.
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Figure 71: The bifurcation diagram Bs(D−6 ) for the surface S2.

Finally, the decorations s and σ of the two hyperbolic cuspidal edges meeting

are found from the blue folding meeting the red one at their vertices on the

negative B-ray in Figure 71. At each of these two junctions, two A3 points

participate: A−,σ3 from the left and A+,σ
3 from the right.

D3A2: Take Ψ = y3(y − u)2(y − v). The strata of C(D−6 ) that occur on the

uv-plane parametrising D3A2 are

• D5: u = 0, the v-axis;

• D4A2: v = 0, the u-axis;

• D3A3: u = v,

where Figure 72 provides the illustration.

159



D
4

−,σ

A
2

D
4

−,σ

A
2

D
3

−,σ

A
3

−,σ

u

D
3

+,σ

A
3

+,σ

5

D
5

−,σ

D
5

+,σ

v

2

1

6

4

3

Figure 72: Strata of C(D−6 ) that occur on the uv-plane parametrising D3A2.

All the decorations of strata in Figure 72 have been considered in other

cases and so we will not repeat explanations for them here.

The uv-plane that parametrised D3A2 in Figure 72 is mapped via πs down

to the AB-plane creating Bs(D−6 ) in Figure 73.
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Figure 73: The bifurcation diagram Bs(D−6 ).

In order to determine the co-orientation of the D3A3 stratum in Figure 73

we consider it as A2
3. We know from Figures 69 and 73 that there must be
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A3A2 points either side of the A2
3 stratum and so it is hyperbolic. Finally for

D+,σ
3 A+,σ

3 we have A2,h;+,σ;+,σ
3 , which is non-co-orientable. The same is true

for the D−,σ3 A−,σ3 stratum.

5.3 Complete bifurcation diagram for D−6

We now combine all the strata for D−6 into one complete bifurcation diagram,

Figure 74.
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Figure 74: The complete bifurcation diagram Bs(D−6 ).

This yields the cyclic equation for D−6

38. d+,σ
5 − d−,σ5 + a

−σ,e/h
4 − aσ,e/h4 + a+,σ,+

5 + a+,σ,−
5 − a−,σ,+5 − a−,σ,−5 −

2d−,σ4 a2 + 2a2,h;+,σ;−,σ
3 + [a2,h;+,σ;+,σ

3 ] + [a2,h;−,σ;−,σ
3 ] = 0.

This concludes our proof of the D−6 part of Theorem 2.6.2.
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Chapter 6

E6 bifurcations

We are now proving the E6 part of Theorem 2.6.2, that is, deriving cyclic

equations 39 and 40. Our aim is to understand the decorations of the strata

that come from the E6 caustic, C(E6).

Since for our setting we are considering the decoration s as well as σ, we

have two types of E6 bifurcations to consider compared to one in the parallel

case in [9] (see [4]). We introduce them by considering the R+-miniversal

deformation of the Es
6 isolated function singularity

F = s(
1

3
x3 + αxy2 + βxy + γx+

1

4
y4 +

1

2
δy2 + εy) (15)

where α, β, γ, δ, ε ∈ R are independent parameters. This family is quasi-

homogeneous, and we fix the weights of the variables as

wx = 4, wy = 3, wα = 2, wβ = 5, wγ = 8, wδ = 6, wε = 9.
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Similar to Chapters 4 and 5 we analyse how we can represent C(Es
6) as

a collection of 2-parameter bifurcations of caustics in three dimensions. The

corresponding bifurcation diagram in the parameter plane will be denoted

by B(Es
6). Again, our method is to study successive approximations of the

generic map

π : (R5
α,β,γ,δ,ε, C(Es

6))→ R2.

This time taking the lowest weight part of such π gives us the straight

projection

π0 : (R5
α,β,γ,δ,ε)→ R2

A,B; (α, β, γ, δ, ε) 7→ (A,B) = (α, β).

The tilted projections are denoted by πk where k is how much higher

the weights of the additional monomials participating in the maps may be

comparing with the weights of the components of the principal part π0. For

example the projection

π1 : (R5
α,β,γ,δ,ε)→ R2

A,B; (α, β, γ, δ, ε) 7→ (α, β + dδ)

depends on one extra real parameter d 6= 0.

The bifurcation diagrams Bk(Es
6) produced from the πk projections serve

as successive approximations to the bifurcation diagram B(Es
6) of the generic

map π. We remark that once certain strata of the B(Es
6) appear in a suffi-

ciently generic way in certain Bk(Es
6), their contributions to the cyclic equa-
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tions stay the same for higher k.

Lemma 6.0.1. It is not necessary to consider co-orientations of strata in

C(Es
6).

Proof. Recall the equation and solution spaces over Q from Section 3. The

rank of the solution space over Q, shown in Table 2, is 15. For 14 of its gener-

ators we know invariants whose derivatives they are. Therefore, they satisfy

any cyclic equation over the integers we may be able to obtain from E±6 bi-

furcations. The fifteenth generator is a linear combination of the Aq3 strata

which, according to Section 5.3 of [9], do not appear in B(E±6 ). Therefore,

this last generator also satisfies any possible E±6 cyclic equation. On the other

hand, Table 1 is a table of 32 linearly independent cyclic equations in 47 un-

knowns, and its equations have been obtained without any E6 considerations.

Thus, any E±6 integer cyclic equation must be a rational linear combination

of the Table 1 equations. �

Hence, we will only be considering mod2 coefficients for Es
6.

According to [9], Chapter 5, all contributions to B(Es
6) are from the clo-

sures of the A3 and A3
2 strata. Therefore, we consider the closures of these

strata in detail for the rest of this chapter. We remark that in the closure

of the A3 stratum particular attention is required for the A4, D4 and A3A2

strata. Since there are two types of E6 bifurcation we will first turn our

attention to the E+
6 case, and the E−6 equations will easily follow from that.
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6.1 E+
6 bifurcations

6.1.1 Stratification of C(E+
6 )

For theD±6 cases in Chapters 4 and 5 we managed to describe all degenerations

in the versal families in terms of the new families of functions in just one

variable. There, various strata of the caustics corresponded to real roots of

Ψ of various multiplicities. However, this approach cannot be used for the

E+
6 case. In [9] the parametrisations of the strata in C(E6) where constructed

by using the general singularity theory approach to finding adjacencies of a

uni-germ of an isolated function singularity Z to various (multi-)singularities

Y . However, since our main task is to understand the decorations of the

strata that come from C(E+
6 ) and not to calculate the discriminantal strata

themselves we borrow the parametrisations of strata from [9].

6.1.1.1 The A3 stratum in C(E+
6 )

The closure of the 3-dimensional stratum A3 ⊂ C(E+
6 ) can be parametrised

by the base R3
u,v,w of the family of functions

G =
1

3
x3 + ux2 + vx2y + wxy2 +

1

4
y4

introduced in [9] and shown in Figure 75.
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Figure 75: The function family G parametrising the stratum A3 ⊂ C(E+
6 ).

The parametrisation of the A3 stratum obtained in [9] is:

α = −v2 + w (16)

β =
4

3
v5 − 2uv + 2w2v − 10

3
v3w

γ = −u2 + v2w3 − 2uv2w − 7

3
v4w2 +

4

3
uv4 +

16

9
v6w − 4

9
v8

δ = −2uw − 3w2v2 + 4v4w − 4

3
v6 + 4uv2

ε = −8

3
v7w − 2w2uv +

16

27
v9 + 2u2v − 2w3v3 +

16

3
uv3w

−8

3
uv5 + 4v5w2

6.1.1.1.1 2-dimensional strata in the closure of the A3 stratum in

C(E+
6 )

The parametrisation (16) includes parametrisations of three of the 2-dimensional

strata in C(E+
6 ) (the other 2-dimensional strata will show up later). Their

parametrisations are listed below:
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2-dimensional strata Parametrisations of the strata in C(E+
6 )

D4 α = v

(u = 0) β = −2uv

γ = u2v

δ = −3u2

ε = 2u3

A4 α = −v2 + w

(u = w2) β = 4
3
v5 − 10

3
v3w

γ = −w3v2 − w4 + 16
9
v6w − v4w2 − 4

9
v8

δ = −4
3
v6 + 4v4w + v2w2 − 2w3

ε = 2
27
v(8v8 − 36v6w + 18v4w2 + 45v2w3)

According to [9], we find the stratum A3A2 within the parameter space of

(16), as the surface

−12w2uv2 − 16v6u− 40v2w4 − 9v6w2 − 16uw3 + 33v4w3 (17)

+27v2u2 + 42v4wu+ 16w5 = 0.
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6.1.1.1.2 1-dimensional strata in the closure of the A3 stratum in

C(E+
6 )

According to [9], there are six 1-dimensional strata (one of them has two

components) within the parametrisation (16):

1-dimensional strata Parametrisations of

the strata in C(E+
6 )

A5 α = w

β = 0

γ = −w4

δ = −2w3

ε = 0

D5 α = −v2

(u = w = 0) β = 4
3
v5

γ = −4
9
v8

δ = −4
3
v6

ε = 16
27
v9

D5 α = −1
4
v2(

u = 0, w = 3
4
v2
)

β = − 1
24
v5

γ = − 1
576
v8

δ = − 1
48
v6

ε = − 1
864
v9
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1-dimensional strata Parametrisations of

the strata in C(E+
6 )

D4A2 α = 0

(w = v2, u = 0) β = 0

γ = 0

δ = −1
3
v6

ε = − 2
27
v9

A4A2 α = 1
2

(
1 +
√

5
)
v2(

u = w2, w = 1
2
v2
(
3 +
√

5
))

β = −1
3

(
11 + 5

√
5
)
v5

γ = −8
9

(
38 + 17

√
5
)
v8

δ = −1
6

(
59 + 27

√
5
)
v6

ε = 2
27

(
422 + 189

√
5
)
v9

A4A2 α = 1
2

(
1−
√

5
)
v2(

u = w2, w = 1
2
v2
(
3−
√

5
))

β = −1
3

(
11− 5

√
5
)
v5

γ = −8
9

(
38− 17

√
5
)
v8

δ = −1
6

(
59− 27

√
5
)
v6

ε = 2
27

(
422− 189

√
5
)
v9

A2
3 α = 0

β = 0

γ = −u2

δ = 0

ε = 0
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6.1.1.2 The A3
2 stratum in C(E+

6 )

According to [9], the 2-dimensional stratum A3
2 ⊂ C(E+

6 ) has two components.

The first of them is obtained from the family of functions

G =
1

3
+ vy2 + wy3 +

1

4
y4

shown in Figure 76. The co-ordinate change y := y + w transforms it to a

wv

1_
3

4
_1

x

y

Figure 76: The function family G parametrising the stratum A3
2 ⊂ C(E+

6 ).

subfamily of the family (15) setting the parameters of the latter to be

α = 0 (18)

β = 0

γ = 0

δ = 2v − 3w2

ε = 2w3 − 2vw.
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Here, the image of this parametrisation is the 4δ3 + 27ε2 ≤ 0 region of the

δε-plane in R5
α,β,γ,δ,ε. The boundary 4δ3 + 27ε2 = 0 of the image is the D4A2

stratum.

As for the second A3
2 component, MAPLE calculations in [9] showed that

its image under the projection to R3
α,β,δ satisfies the equation

3β2 + 4α2δ + 4α5 = 0.

We will depict this surface and the strata contained in it later in Section 6.1.3.

6.1.2 The closure of the A3 stratum in C(E+
6 )

We now visualise the closure of the A3 stratum in Figure 77. We should note

that in order to make the diagram less complicated, some of the 1-dimensional

strata are not shown as curves but are represented by their endpoints on the

boundary of the cube.

We explain the decorations of the strata in Figure 77. We know from

Figure 75 that the D4 stratum is on the u = 0 plane. Now, looking at the

principal part shown in Figure 75 for u 6= 0 we can collect the square to give

u(x+ w
2u
y2)2+(1

4
− w2

4u
)y4. Therefore, if w 6= 0 and u is very small the coefficient

of y4 has the sign of (−u), which means we have A−,σ3 points for u > 0 and

A+,σ
3 points for u < 0. Here we are setting the second decoration of A3 to be

σ.

The decoration of D+
4 in D4A2, indicating that D4 is a purse, is due to
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Figure 77: Two views of the R3
u,v,w parametrising the stratum A3 ⊂ C(E+

6 ).

The 2-dimensional strata are: D4 = {u = 0}, A4 = {u = w2} and A3A2 from

(17).
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[9], Section 5.3.1. The decoration σ in D+
4 is due to the previous choice of

σ. However, we do not know if the points are of type D+,σ
4,0 A2, D+,σ

4,1 A2, or

D+,σ
4,2 A2. This will be found in the tilted projection section later and for now

we just omit the second lower decoration.

One of the D5 strata is on the v-axis, when the principal part of the D5

normal form at the origin is vx2y+ y4

4
. Here, the s-decoration of D5 is the sign

of the coefficient of y4 and therefore we have D+,σ
5 . Again, the σ decoration

is inherited from the neighbouring D+,σ
4 points. Since the other D5 stratum

has the same image under (16) we know both D5 strata must have the same

decorations.

Now, the A4 stratum is on the w2 = u surface. In order to be consistent

with previous considerations notice that the 0 < u < w2 region contains A−,σ3

points. Therefore for u > w2 we have A+,−σ
3 . Hence, we know from Section

2.3.1.2, Figure 12, that the A4A2 points have decoration A−σ4 A2 where the

decoration is the product of the signs s and σ due to equations 5 and 6.

The decorations s and σ of the A5 singularities are inherited from those

of the A3 points in the neighbouring A3A2 strata. That is, of the A3 points

in the regions just above the A5 points in Figure 77, left. Therefore, we have

A−,σ5 for w > 0 and A+,−σ
5 for w < 0. We should note we are omitting the

decoration ω from our A5 strata due to equations 18 and 19 gluing up certain

strata over Z2.

Finally, we consider the decorations of the A2
3 stratum. We know from [9],

Section 5.3.4, that the stratum is A2,h
3 . However, according to equation 14
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we have glued up the elliptic and hyperbolic cases over Z2. In the u > w2

region we have A+,−σ
3 points and for u < 0 we have A+,σ

3 points. Therefore,

we see from Section 2.3.1.2, Figure 12, that the stratum must be decorated

as A
2,e/h;+,σ:+,−σ
3 .

6.1.2.1 The straight projection of the A3 stratum

We now analyse the straight projection of the 1-dimensional strata of C(E+
6 )

listed in Section 6.1.1.1.2. We obtain the discriminantal strata in B0(E+
6 )

from the images of the map

π0 : (R5
α,β,γ,δ,ε)→ R2

A,B; (α, β, γ, δ, ε) 7→ (A,B) = (α, β),

which are listed below and depicted in Figure 78:

• A5: B = 0;

• D5: 9B2 = −16A5 (both D5 strata in C(E+
6 ) are mapped to this stratum

in B0(E+
6 ));

• A4A2: 9B2 = (22 + 10
√

5)A5 (the dashed curve in Figure 78);

• A4A2: 9B2 = (22− 10
√

5)A5;

• D4A2: the origin A = B = 0;

• A2
3: again, the origin A = B = 0.
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Figure 78: The strata of B0(E+
6 ) coming from the 1-dimensional strata of

C(E+
6 ).

The decorations of the D+,σ
5 and A−σ4 A2 strata in Figure 78 are inherited

from Figure 77. We also know the A5 singularities occur when A = α = w

from Section 6.1.1. Therefore, it is apparent from Figure 77 that for the

positive A-ray in Figure 78 we have A−,σ5 and for the negative A-ray we have

A+,−σ
5 .

It is visible from Figure 78 that the D+,σ
5 and A−σ4 A2 strata do not con-

tribute to the E+
6 cyclic equations since we are working mod2. Therefore, the

contribution of 1-dimensional strata from the closure of the A3 stratum under

the straight projection to any E+
6 cyclic equation is

a+,−σ
5 + a−,σ5 .

According to equations 14 and 18 this is equal to a
2,e/h;+,−σ;−,σ
3 over Z2.

Hence, we have the result:
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Lemma 6.1.1. The contribution of the closure of 1-dimensional strata from

the closure of the stratum A3 ⊂ C(E+
6 ) under the straight projection to any

E+
6 cyclic equation over Z2 is a

2,e/h;+,−σ;−,σ
3 .

6.1.2.2 Tilted projections of strata in the closure of the A3 stratum

We now turn our attention to tilted projections of some strata contained in

the closure of the A3 stratum. It is necessary to consider tilted projections

since some of the 1-dimensional strata in Section 6.1.2, such as D4A2 and A2
3

behave poorly under π0 and are mapped by it just to the origin A = B = 0.

This shows that the projection π0 was not sufficiently generic. Moreover, it

was noticed in [9] that the straight projection was not sufficient to under-

stand what happens with 2-dimensional strata. Hence we now consider tilted

projections for the closures of the A4, D4 and A3A2 strata like in [9].

Like in Section 6.1.2, we assume that in the space R3
u,v,w of Figure 77

parametrising the closure of the stratum A3 ⊂ C(E+
6 ), the region u < 0

corresponds to A+,σ
3 points, the region 0 < u < w2 corresponds to A−,σ3 points

and the u > w2 region corresponds to A+,−σ
3 . This setting implies that all D±4

points are D±,σ4 , and all D5 bifurcations are D+,σ
5 .
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6.1.2.2.1 The A4 stratum in C(E+
6 )

Recall from Section 6.1.1.1.1 that a parametrisation of the 2-dimensional stra-

tum A4 ⊂ C(E+
6 ) is:

α = −v2 + w

β =
4

3
v5 − 10

3
v3w

γ = −w3v2 − w4 +
16

9
v6w − v4w2 − 4

9
v8

δ = −4

3
v6 + 4v4w + v2w2 − 2w3

ε =
2

27
v(8v8 − 36v6w + 18v4w2 + 45v2w3)

It is convenient to denote this parametrisation pA4 . From [9] we know we are

required to approximate the generic map π by

π3 : (R5
α,β,γ,δ,ε)→ R2

A,B; (α, β, γ, δ, ε) 7→ (A,B) = (α, β + dδ + gγ)

in order to see all relevant discriminantal strata in B(E+
6 ). Therefore we

obtain the composition map

π3 ◦ pA4 : (R2
v,w)→ R2

A,B; (v, w) 7→ (A,B) = (α, β + dδ + gγ).

The critical point set of π3 is

vw

(
v + d(w − 2v2) + g

(
w2 + wv2 − 2

3
v4

))
= 0
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where the factors correspond in C(E+
6 ) to the A5, D5 and A

e/h
4 strata. Now,

the discriminantal strata in B3(E+
6 ) are obtained from the images of the com-

position map π3 ◦ pA4 and are borrowed from [9]:

• A5: B = −2dA3 − gA4;

• D5: B2 ∼ −16
9
A5;

• Ae/h4 : B = −2dA3 −
(
g + 5

3
d3
)
A4.

We now have the choice to set d to be positive or negative. If we set d to be

positive, the map π3 ◦ pA4 folds the vw-plane like in Figure 79. As was shown

in [9], Section 5.3.2, if we consider changing d to be negative then Figure

79, right, is reflected in the horizontal axis with all the strata decorations

following their half-branches, with the only change being the decoration ω in

the A5 strata becomes −ω. However, since we are working over Z2 we do not

take the writhe decoration ω into consideration for our case. Therefore the

d < 0 option yields the same cyclic equation.

The decorations of the D5 and A5 strata in Figure 79 follow Figure 77.

From previous considerations in Section 6.1.2 we know we have A3 points of

type A−,σ3 and A+,−σ
3 either side of the A4 stratum when we consider it as a

surface in R3
u,v,w (see Figure 77). Therefore, the A

e/h
4 strata in Figure 79 are

A
−σ,e/h
4 .

We see from Figure 79 that the D+,σ
5 and A

−σ,e/h
4 strata do not contribute

to the E+
6 cyclic equations since we are working mod2. Therefore, the contri-
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Figure 79: The folding of the vw-plane by π3 ◦ pA4 when d > 0, producing

part of B3(E+
6 ) on the right.

bution of the A4 closure to any mod2 E+
6 cyclic equation is

a+,−σ
5 + a−,σ5 .

Lemma 6.1.2. The contribution of the closure of the A4 stratum to any E+
6

cyclic equation over Z2 is the same as the contribution of all 1-dimensional

strata from the closure of the A3 stratum under the straight projection, con-

sidered in Section 6.1.2.

6.1.2.2.2 The D4 stratum in C(E+
6 )

We now recall a relation between two parametrisations of the D4 ⊂ C(E+
6 )

used in [9]. The parametrisations are illustrated in Figure 80. The first, non-

injective, is that by the plane u = 0 from Figure 77, and the second is a

179



natural injective version. These two function families are related by the pleat

map

(s, t) =

(
w − v2,

2

3
v3 − vw

)
. (19)

3
_
3

1_1

1_
4

x

y y
4
1_

x

w

v

t

s

Figure 80: Two function families parametrising the stratum D4 ⊂ C(E+
6 ).

We obtain a parametrisation of the D4 stratum in terms of s and t by

taking the function family in Figure 80, right, and eliminating the y3 term by

the co-ordinate change y := y + t. Comparing the coefficients of the result to

(15) we obtain:

α = s

β = −2st

γ = st2

δ = −3t2

ε = 2t3
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We denote this parametrisation pD4 .

Now, for the closure of the D4 stratum it is sufficient to consider the tilted

projection

π1 : (R5
α,β,γ,δ,ε)→ R2

A,B; (α, β, γ, δ, ε) 7→ (A,B) = (α, β + dδ)

in order to detect all the strata. Hence, we obtain the composition map

π1 ◦ pD4 : (s, t) 7→ (A,B) = (α, β + dδ) = (s,−2st− 3dt2).

This composition is a fold map. Its critical point set D+
4,q is s+3dt = 0 and

we show it in Figure 81 (cf. [9]). We also show there how the strata contained

in the closure of the D4 stratum are mapped by (19) from the vw-plane to the

st-plane if d > 0. All the decorations of the D4 and D5 singularities follow

Figure 77. We should note that in Figure 81 we see how the two D5 strata

from the vw-plane are mapped to one stratum in the st-plane.

The discriminantal strata in B1(E+
6 ) delivered by the critical values of the

map π1 ◦ pD4 are shown in Figure 82.

MAPLE calculations show that both half-branches of the D+,±,σ
4,q strata are

of type D+,±,σ
4,a . We are using here the big stratum D+,±,σ

4,a obtained in Section

2.6.2.1. The second lower decorations in D+,σ
4 A2 follow from [9], Section 5.3.1.

We see from Figure 82 that the D5 and D4,q strata do not contribute to

any E+
6 cyclic equation mod2. Hence, we have the result:
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Figure 81: Mapping R2
v,w to R2

s,t for d > 0. The shaded regions represent D−,σ4

points and the non-shaded regions D+,σ
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B

A

A  ,
 +,σ

24,2 
A

24,1 
D D

 +,σ

5

4,a
D

+,±,σ

4,a

5
D

D

D
+,σ

+,σ

+,±,σ

Figure 82: The part of B1(E+
6 ) coming from the closure of the stratum D4 ⊂

C(E+
6 ).
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Lemma 6.1.3. The contribution of the closure of the stratum D4 ⊂ C(E+
6 )

to any E+
6 cyclic equation over Z2 is

d+,σ
4,1 a2 + d+,σ

4,2 a2.

6.1.2.2.3 The A3A2 stratum in C(E+
6 )

Recall (17) from Section 6.1.1.1.1, that is, the equation of the A3A2 surface is

−12w2uv2 − 16v6u− 40v2w4 − 9v6w2 − 16uw3 + 33v4w3 + 27v2u2

+42v4wu+ 16w5 = 0.

To understand the contribution of this surface to the critical value set of the

generic map π, we first approximate π by the tilted projection of the lowest

weight:

π1 : (α, β, γ, δ, ε) 7→ (A,B) = (α, β + dδ)

where the parameters α, β, δ are given by (16).

Here, we are looking for TA3A2 strata as critical values of π1 on the open

A3A2 stratum. The corresponding critical points have been detected in [9]

and are described by the following formulas:

i) v = −2dw + 5d3w2 − 133
4
d5w3 + · · · , u = 4w

27d2
+ 5w2

27
− 229

108
d2w3 + · · ·

ii) v = −6dw + 27d3w2 − 8667
4
d5w3 + · · · , u = w2 − 225

4
d2w3 + · · ·

iii) w = v2 − 2dv3 + 9d2v4 + · · · , u = −dv5 + 8d2v6 + · · ·
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These strata emerge respectively from the A2
3, A5 and D4A2 strata in Figure

77. The six TA3A2 half-branches are represented by the grey circles in Figure

83 for d > 0.

5

D5

D5

D5

A4 2D

A4 2D

A23

ï2

0

2

ï2

2
v

0
0

u

w

D
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ï2
2

0

w

2

0
u

ï2 2

0
v

ï2

D5

D5 A4 2D

A A24

A A24
A A24

A5

A4 2D

D5

A A24 A5

A23

Figure 83: The R3
u,v,w parametrising the stratum A3 ⊂ C(E+

6 ) with the emerg-

ing TA3A2 strata denoted by grey circles for d > 0. The grey circles will be

reflected in the v = 0 plane for d < 0.

Recall that in Figure 77 the region u < 0 corresponds to A+,σ
3 points,

the region 0 < u < w2 corresponds to A−,σ3 points and the u > w2 region

corresponds to A+,−σ
3 . This implies that two of the half-branches in Figure

83 are TA+,σ
3 A2, two are TA−,σ3 A2 and the final two are TA+,−σ

3 A2. Coming

in pairs, these strata do not contribute to any mod2 E+
6 cyclic equation.
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Next, we approximate the generic map π by the tilted projection

π3 : (R5
α,β,γ,δ,ε)→ R2

A,B; (α, β, γ, δ, ε) 7→ (A,B) = (α, β + dδ + gγ)

where the parameters α, β, δ are given by (16). Here our aim is to understand

the A2
3 stratum in B(E+

6 ).

Recall that the A2
3 stratum in Figure 77 corresponds to the u-axis in R3

u,v,w.

Also recall from Section 6.1.1.1.2 that a parametrisation of the A2
3 stratum is:

α = 0

β = 0

γ = −u2

δ = 0

ε = 0.

So, its π3-image is the stratum A2
3 ⊂ B3(E+

6 ) with equation (A,B) =

(0,−gu2). This is depicted in Figure 84.

B

A

B

A

g>0 g<0

2,e/h;+,    +,−
3

                 σ;        σ
A

2,e/h;+,    +,−
3

                 σ;        σ
A

Figure 84: The stratum A2
3 ⊂ B3(E+

6 ).
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The decorations of the A2
3 bifurcation follow from Figure 77, Section 6.1.2.

Therefore, our A2
3 stratum is A

2,e/h;+,σ;+,−σ
3 .

Lemma 6.1.4. The contribution of the closure of the stratum A3A2 ⊂ C(E+
6 )

to any mod2 E+
6 cyclic equation over Z2 is a

2,e/h;+,σ;+,−σ
3 .

6.1.3 The closure of the A3
2 stratum in C(E+

6 )

Recall from Section 6.1.1.2 that the A3
2 stratum has two components. The

image of the projection of the first A3
2 component is the 4δ3 + 27ε2 < 0

region of the δε-plane in R5
α,β,γ,δ,ε and is bounded by the D4A2 stratum. The

image of the projection of the second A3
2 component is the part of the surface

3β2 + 4α2δ+ 4α5 = 0 which is shown in bold in Figure 85. We also show part

of the image of the projection of both A3
2 components to R4

α,β,δ,ε in Figure 86.

The surface in Figure 85 is a Whitney umbrella. Only its highlighted part

corresponds to genuine triple points of the caustic whilst the remaining part

is due to a pair of points in a triplet being complex.

In Figure 86 we can see the image of the first parametrisation of A3
2 which

is the region on the δε-plane bounded by the D4A2 half-branches.

Now, the decorations of the D4A2 strata in Figure 86 follow from previous

considerations in Section 6.1.2.2.2. For a mod2 cyclic equation, we do not

need to consider any projection to the discriminantal plane: we just need

to know the numbers of half-branches of the strata, and this information is

contained in Figure 86.
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2
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− − no triple points here

δ

α

triple points here

folded

Figure 85: The image of the projection of the stratum A3
2 ⊂ C(E+

6 ) to R3
α,β,δ.

The black discs mark the A4A2 half-branches in C(E+
6 ). Here we are not

concerned about their decorations since the A4A2 strata have already been

considered in Section 6.1.2. These A4A2 strata bound the regions of triple

points.
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Figure 86: The result of the introduction of an extra parameter ε, in the

α ≥ 0 part of Figure 85.

We know direct from Figure 86 that the contribution of the A3
2 closure to

any E+
6 cyclic equation is

d+,σ
4,1 a2 + ta3

2 + d+,σ
4,2 a2

which is zero due to equation 34 when in the Z2 setting.

Lemma 6.1.5. The total contribution of the closure of the stratum D4 ⊂

C(E+
6 ) considered in Lemma 6.1.3 and of the closure of the stratum A3

2 ⊂

C(E+
6 ) to any E+

6 cyclic equation over Z2 is zero.
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6.1.4 The E+
6 cyclic equation

MAPLE calculations in [9] show that the generic mapping π has no critical

points on the open strata A2
2 and A3 of C(E+

6 ). Therefore the strata TA2
2 and

Aq3 in B(E+
6 ) are empty.

Summing up the results from Lemmas 6.1.1, 6.1.2, 6.1.3, 6.1.4 and 6.1.5

we obtain a cyclic equation for E+
6 over Z2,

39. a
2,e/h;+,σ;+,−σ
3 + a

2,e/h;+,−σ;−,σ
3 = 0.

6.2 E−6 equations

We now consider the cyclic equation that comes from C(E−6 ). Due to (15) the

only difference between the E+
6 and E−6 cyclic equations is that all the terms

switch their s-decorations to the opposite. Hence modifying equation 39 we

obtain the following E−6 cyclic equation over Z2,

40. a
2,e/h;−,σ;−,−σ
3 + a

2,e/h;−,−σ;+,σ
3 = 0.

This concludes our proof of the E6 part of Theorem 2.6.2.
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Chapter 7

Geometric interpretations of

additional mod2 discriminantal

cycles

In Remark 2.4.3 we introduced five basic mod2 linear combinations I ′16, . . . , I
′
20

of the codimension 1 strata. According to Theorem 2.5.3, they generate the

space of mod2 discriminantal cycles with the help of the mod2 reduction of

the basis of the space of integer discriminantal cycles.

We will now show that certain linear combinations involving non-trivially

these five discriminantal cycles (and some of the other fifteen) are dual to

invariants having an integral geometric interpretation when we assume the

target manifold N is R3. So, we devote this chapter to construction of four

such local invariants.
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The five mod2 discriminantal cycles in question are:

I ′16 : TA2
2 + A−,+,q3 + A−,−,q3 +D+,+

4,b +D+,−
4,b

I ′17 : TA3
2 + TA±,−3 A2 +D−,+4 A2 +D−,−4 A2 +D+,+

4,1 A2 +D+,−
4,1 A2

I ′18 : A
2,e/h;+,+;+,+
3 + A

2,e/h;+,+;+,−
3 + A

2,e/h;+,+;−,+
3 + A

2,e/h;+,+;−,−
3

+A
2,e/h;+,−;+,−
3 + A

2,e/h;+,−;−,+
3 + A

2,e/h;+,−;−,−
3 + A

2,e/h;−,+;−,+
3

+A
2,e/h;−,+;−,−
3 + A

2,e/h;−,−;−,−
3 + A−,+,±5 + A−,−,±5

I ′19 : A4
2 + A±,−3 A2

2 + A
2,e/h;+,−;+,−
3 + A

2,e/h;+,−;−,−
3 + A

2,e/h;−,−;−,−
3

I ′20 : A+
4 A2.

Three of the interpretations of the mod2 cycles that we found are based on

the number of components and the self-linking number of one of three framed

links constructed from the cuspidal edge and self-intersection locus of C. In

this chapter we are using two standard symbols: � for the framing directed

towards the reader and ⊗ for the framing looking away from the reader. We

will depict the cuspidal edges in the diagrams by solid black lines, and the

framing by red dashed lines. We show the self-intersection locus of caustics

by a dashed black line. If the framing of a link component is blackboard, then

we will not show the framing.

The fourth interpretation of a mod2 cycle is a sum of the mod2 degrees of

swallowtail points of a caustic.

We will also consider a fifth local invariant, the mod2 linking number of

the two framed links constructed from the cuspidal edges and self-intersection

locus of C. However, the derivative of this invariant turns out to be a linear
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combination of the derivatives of already known invariants.

In our proof of each theorem in this chapter about a particular invariant

I, our aim will be to check that the increments xi of the invariant across the

strata Xi in our standard expression of the derivative I ′ =
∑
xiXi are exactly

those claimed in the theorem.

7.1 The number of components and self-linking

of the cuspidal edge (Ife)

A mod2 invariant combining the number of components and the self-linking

of the cuspidal edge of the critical value set of an ordinary generic map of a

3-manifold to R3 was introduced in [10]. We will now define its analogue in

a generic Lagrangian situation which involves an additional step due to the

stable presence of D4 points.

Like in [10] we start with a construction of a framed link from cuspidal

edges of C. The way we introduce the framing at a regular point of a cuspidal

edge depends only on the sign σ of the edge and is illustrated by the transversal

sections shown in Figure 87.

The sign s will play no role in this construction. However, for the sake

of continuity, we shall still keep the decoration in the bifurcations. Near

swallowtails, we smoothen the cuspidal edge and join the framings along the

two branches by adding a half-twist of the sign coinciding with the sign σ of

the swallowtail. We also smoothen the cuspidal edges at D±4 points to obtain
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Figure 87: Making a framed link from the cuspidal edges. Here the decorations

correspond to σ only.

the framed links shown in Figure 88.

D
4

+,+

D
4

−,+

D
4

+,−

D
4

−,−

Figure 88: Framed link at D±,σ4 .

We arbitrarily orient our framed link, and calculate its writhe w as the

algebraic number of crossings of the cores of the components in the link di-

agram obtained plus the sum of the algebraic numbers of full rotations done

by the framing of each of the components around its own core. Since the

number of crossings of two different components in a link diagram is even,

the quantity w mod4 does not depend on the orientations of the components.

We denote the number of components of our link by n.
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Theorem 7.1.1. The mod2 invariant Ife = n+w/2 is local. It is dual to the

cycle

A
2,e/h
3 + Aq3 + A

e/h
4 + A±,−,±5 +D5.

We note that omission of an index means summation along all possible

values of this index. Also, we are not concerned if the quantity (w/2) mod2

is integer or half-integer since its increments are integer which is sufficient for

our considerations.

Recalling the expressions for our 20 basic discriminantal cycles from Table

4, we have

I ′fe = I ′15 + I ′18 + I ′sw++
+ I ′(sw+−+sw−+)/2.

In order to prove Theorem 7.1.1 as well as the other theorems in this

chapter we first introduce a few useful definitions and results. Following the

terminology used for the Kaufmann bracket polynomial in [17] we introduce

Definition 7.1.2. For ribbon links, we call the replacement of a crossing

with the A-move, and its replacement with the B-move. All three

fragments are assumed to be blackboard ribbons.

Lemma 7.1.3. (AB Lemma). The move A changes the quantity (n +

w/2)mod2 by 1/2 and the move B by −1/2.

Definition 7.1.4. For ribbon links, we call the replacement of a crossing

with the C-move. It is the result of the two-step compositions (−A)B

and (−B)A. Again, the fragments are assumed to be blackboard ribbons.
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The AB Lemma implies

Lemma 7.1.5. (C Lemma). The C-move changes the quantity (n+w/2)mod2

by 1.

Proof of Lemma 7.1.3 (AB Lemma). In order to prove Lemma 7.1.3 (AB

Lemma) we first examine the A-move, which is shown in Figure 89.

2
1

1
2

34

4 3

Figure 89: A-move.

The rest of the link diagram is outside the disk and connects points 1, 2, 3

and 4 by arcs which we will call external. These are shown in blue in the later

diagrams. We show the external arcs in a simplified way as they can actually

have crossings with one another as well as with other link components. We

have several combinatorial cases.

• Assume the external arcs are 14 and 23 (see Figure 90). Then the move

preserves the number of the components. Assume the orientations of the

only components involved are as in Figure 90. We see the external arc 14

has been reversed. We can show this does not effect (w/2)mod2 outside

the disk by closing the external arcs with chords 14 and 23 as depicted
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in Figure 91. The modified link diagrams in Figure 91 differ only by the

reorientation of the left component and we know reorientation of a link

component does not effect (w/2)mod2. So, the only contribution to the

increment of (w/2)mod2 comes from inside the disk. Finally, we see the

writhe inside the disk increases by 1. Hence, (w/2)mod2 increases by

1/2 and so, the quantity (n+ w/2)mod2 changes by 1/2.

Figure 90: The A-move with external arcs 14 and 23.

Figure 91: Closing the external arcs 14 and 23.

• Assume the external arcs are 12 and 34 (see Figure 92). The move

produces two components from one. We choose orientation of the initial

component, and orient the final ones so that the external arcs keep

their orientations. We see the writhe inside the disk decreases by 1,

so (w/2)mod2 changes by −1/2. Hence, the quantity (n + w/2)mod2
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changes by 1/2.

Figure 92: The A-move with external arcs 12 and 34.

• Assume the external arcs are 13 and 24 (see Figure 93). The move pro-

duces one component from two. This time we choose an orientation of

the final component, and orient the two initial so that the external arcs

keep their orientations. We see the writhe inside the disk decreases by

1, so (w/2)mod2 changes by −1/2. Hence, the quantity (n+w/2)mod2

changes by 1/2.

Figure 93: The A-move with external arcs 13 and 24.

Thus the A-move always changes the (n+ w/2)mod2 by 1/2mod2.
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Now, the B-move is the change crossing followed by the A-move. At the first

step here ∆(n+ w/2) = ∆(w/2) = 1mod2, and at the second ∆(n+ w/2) =

1/2. Hence the total increment is 3/2 = −1/2mod2, as claimed. �

Corollary 7.1.6. (Six ends Corollary). Consider a local transformation of

a link shown in Figure 94, where the fragments are assumed to be blackboard

ribbons. The transformation changes the quantity (n+ w/2)mod2 by one.

Figure 94: The six ends move.

Proof of Corollary 7.1.6. (Six ends Corollary). Figure 95 represents

the move of Figure 94 as a sequences of the elementary moves. By the AB

and C Lemmas, the quantity (n+ w/2)mod2 changes by 1.
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−B

−A

C

Figure 95: Decomposition of the six ends move.

�

Corollary 7.1.7. (Eight ends Corollary). Consider a local transformation

of a link shown in Figure 96, where the fragments are assumed to be blackboard

ribbons. The transformation does not change the quantity (n+ w/2)mod2.

Figure 96: The eight ends move.

Proof of Corollary 7.1.7. (Eight ends Corollary). Figure 97 represents

the move of Figure 96 as a sequences of the elementary moves. By the AB

and C Lemmas, the quantity (n+ w/2)mod2 does not change.
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−A

A

B
A

−B −B

C

Figure 97: Decomposition of the eight ends move.

�

The result of Lemma 7.1.5 (C Lemma) will help us to prove Theorem 7.1.1.

The results from Corollaries 7.1.6 and 7.1.7 will be used later, for study of

other link invariants.
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Proof of Theorem 7.1.1. In all the bifurcations considered below, the ori-

entations of all surviving local link components are the same before and after

the transition. It is obvious that the following bifurcations from Figures 11,

12 and 13 contribute increment 1 to the invariant Ife:

• A2,e/h
3 : ∆n = 0, ∆w/2 = 1;

• As,σ,+,+3 : ∆n = 1, ∆w/2 = 0;

• As,σ,+,−3 : according to the C Lemma;

• As,σ,−,−3 : ∆n = 1, ∆w/2 = 0;

• Ae4: ∆n = 1, ∆w/2 = 0;

• Ah4 : according to the C Lemma;

• As,σ,ω5 : ∆n = 0. In general for As,σ,ω5 we have ∆w = ω−ωσ = ω(1− σ),

since two swallowtails are created with the sign opposite to ω, each

contributing −ωσ/2 to the change in writhe. Hence when σ = −,

∆w mod4 = 2 and ∆w/2 = 1. Therefore, as,−,±5 = 1. Similarly for

As,+,±5 , ∆w mod4 = 0, ∆w/2 = 0 =⇒ as,+,±5 = 0;

• Ds,+
5 : ∆n = 0, ∆w/2 = 1. After the bifurcation two swallowtails are

created, of opposite signs, that is, σ and−σ. These swallowtails produce

half twists of opposite signs, so they do not contribute to any change

in writhe. However, we see that the only local crossing involved in the
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bifurcation switches during the transition, thus changing the writhe by

±2. Hence ds,+5 = 1;

• Ds,−
5 : ∆n = 0, ∆w/2 = 1. Analysis similar to Ds,+

5 tells us the swallow-

tails do not contribute to the writhe change. And again, the only local

crossing involved in the bifurcation switches during the transition, thus

changing the writhe by ±2. Hence ds,−5 = 1.

The D+,s,σ
4,a/b/c and D−,s,σ4,q bifurcations do not contribute to Ife since the

framed links before and after the transitions are clearly isotopic (cf. Figures

13 and 88). It is obvious why all other bifurcations do not contribute and

hence, no explanation for them is given. �
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7.2 Framed link formed by positive cuspidal

edges and self-intersection lines (Idc+)

In [1] Aicardi introduced two mod2 invariants combining the number of com-

ponents and the self-linking of self-intersection sets and cuspidal edges of the

critical value set of an ordinary generic map of a 3-manifold to R3. Like in

Section 7.1 we now define their analogue in a generic Lagrangian situation.

We also adjust Aicardi’s treatment of triple points.

Following [1] we first look at the framed link L+ formed from positive cusp-

idal edges (σ = +) and self-intersection lines. The way this link is constructed

is as follows.

• Framing the edges As,+3 stays as it was in Section 7.1 (Figure 98).

Figure 98: Framing of As,+3 .

• The framing of A2
2 segments is defined as shown in Figure 99.
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Figure 99: Framing of A2
2.

We now postulate the behaviour of L+ near points of isolated singularity

types.

• The link L+ at an As,+3 A2 junction is shown in Figure 100. At As,−3 A2,

the link will of course not include the edge component.

Figure 100: L+ at As,+3 A2 points.

• The link L+ at a σ = + swallowtail is shown in Figure 101. This is a

junction of the self intersection and edge parts. The local writhe of the

framing is 1/4. At a σ = − swallowtail the fragment shown in Figure

101 should be reflected from the right to the left, and the local writhe

of the framing will be −1/4.
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Figure 101: L+ at As,+4 .

• Unlike what was done in [1], we now postulate the way to canonically

resolve triple points so that L+ would be a genuine link. For this, we

think about a caustic being locally an arrangement of three coordinate

planes of an orthogonal system of coordinates. See Figure 102, left. We

assume that the coorientations of these planes are given by the standard

unit vectors i, j, k so that taking them exactly in this order we get the

right orientation of R3. The i-, j- and k-self-intersection lines are framed

respectively by the vectors j+k, k+i and i+j. We deform these lines (off

the planes) slightly and continuously near the origin, and keeping their

framings unchanged. Namely, we move the i- j- and k-lines respectively

in the directions of the vectors k − j, i− k and j − i. The general rule

here is that each of these vectors is the cross-product (framing of the

plane perpendicular to the line)×(framing of the line). For example

i × (j + k) = k − j. The result of the whole local deformation of the

cores is shown in Figure 102, right.
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i

j

i

j

k k

Figure 102: Resolution of a triple point A3
2.

Remark 7.2.1. Figure 102 shows that if each of the three local self-

intersection branches is oriented in the direction of the co-orientation

of its transversal A2 sheet, then the signs of the crossings after the res-

olution are +,+,+. Therefore, if we orient exactly one of the branches

in the opposite way, the signs become +,−,−. Reversing the orientation

of exactly two branches gives us also +,−,−. And reversing all three

we have +,+,+.

• We now look at the L+ near D±4 points. We smooth out the D−4 point

as shown in Figure 103. Hence, L+ of D−,+4 is shown in Figure 104. The

contribution of D−,−4 to our framed link is empty, since we have there

no positive cuspidal edges or self-intersections.
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Figure 103: Smoothening of a D−4 point.

Figure 104: L+ at D−,+4 .

• The rule for smoothening the L+ at D+,+
4 points is shown in Figure 105.

The framed link L+ for D+,−
4 is similar to D+,+

4 but with the cuspidal

edge component removed.

Figure 105: L+ at D+,+
4 .
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We now introduce the new invariant,

Idc+ = n+ +
(w+ + t)

2

where n+ is the number of components of the link L+, w+ is the writhe of L+

and t is the number of triple points of the caustic.

Theorem 7.2.2. The mod2 invariant Idc+ is dual to the cycle

A4
2 + TA2

2 + A±,+3 A2
2 + TA3A2 + A

2,e/h;±,+;±,−
3 + A

2,e/h;±,−;±,−
3 + A

±,e/h
4

+A±,−,±5 + A±,+,q3 +D+,±,±
4,a/c .

We should note that due to workingmod2 we have the symmetryA
2,e/h;s,σ;s′,σ′

3 =

A
2,e/h;s′,σ′;s,σ
3 . Hence in Theorem 7.2.2, A

2,e/h;±,+;±,−
3 is a sum of eight elemen-

tary strata while A
2,e/h;±,−;±,−
3 is a sum of six. The same also applies for the

theorems later in this chapter.

Recalling the expressions for our 20 basic discriminantal cycles from Table

4, we have

I ′dc+ = I ′15 + I ′16 + I ′17 + I ′19 + I ′χ + I ′
d+−

+ I ′c++
+ I ′c+− + I ′(sw+++sw−−)/2

+I ′(sw+−+sw−+)/2 + I ′(t+c+++c−+)/2 + I ′
(((d+−+d−−)/2)+((d+++d−+)/2)+χ+15)/2

.

Proof of Theorem 7.2.2.

We first consider bifurcations where contributions of triple points are zero.
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• D+
4,a (line 2 of Figure 13):

D+,s,+
4,a : ∆w+/2 = 0, ∆n+ = 1 =⇒ d+,s,+

4,a = 1;

D+,s,−
4,a : ∆w+/2 = 0, ∆n+ = 1 =⇒ d+,s,−

4,a = 1;

• D+
4,b (line 3 of Figure 13):

D+,s,+
4,b : ∆w+/2 = 0, ∆n+ = 0 =⇒ d+,s,+

4,b = 0;

D+,s,−
4,b : ∆w+/2 = 0, ∆n+ = 0 =⇒ d+,s,−

4,b = 0;

• D+
4,c (line 4 of Figure 13):

D+,s,+
4,c : Due to the Six ends Corollary, transforming the left link to the

right one changes the quantity (n+ w/2)mod2 by 1 =⇒ d+,s,+
4,c = 1;

209



D+,s,−
4,c : We know directly from the C Lemma that the transformation

of the link changes the quantity (n+ w/2)mod2 by 1 =⇒ d+,s,−
4,c = 1;

• D−4,q (line 1 of Figure 13):

D−,s,+4,q : Its link contribution is the same as in the case of Ife. Hence

d−,s,+4,q = 0;

D−,s,−4,q : Its link contribution is empty =⇒ d−,s,−4,q = 0;

• D5 (line 5 of Figure 13):

Ds,+
5 : ∆w+/2 = 1mod2, ∆n+ = 1 =⇒ ds,+5 = 0;

Ds,−
5 : ∆w+/2 = 0, ∆n+ = 0 =⇒ ds,−5 = 0;
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• Aq3 (lines 1, 2 and 3 of Figure 11):

As,+,+,+3 : ∆w+/2 = 0, ∆n+ = 1 =⇒ as,+,+,+3 = 1;

As,+,+,−3 : According to the C Lemma as,+,+,−3 = 1;

As,+,−,−3 : ∆w+/2 = 0, ∆n+ = 1 =⇒ as,+,−,−3 = 1;

As,−,+,+3 , As,−,+,−3 and As,−,−,−3 : We have no local components in the

framed link before and after the bifurcation. Therefore,

as,−,+,+3 = as,−,+,−3 = as,−,−,−3 = 0;

• Aε,e4 (line 4 of Figure 11): At the bifurcation, two swallowtails of oppo-

site signs, σ and −σ, are created, hence with the total zero contribution

to the writhe. However, ∆(n+) = 1. Therefore, aε,e4 = 1;
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• Aε,h4 (line 5 of Figure 11): Similar to L+ ofAs,+,+,−3 . Hence, the C Lemma

implies aε,h4 = 1;

• A5 (line 6 of Figure 11):

As,+,+5 : We have ∆w+/2 = 0, ∆n+ = 0 =⇒ as,+,+5 = 0.

As,+,−5 : The link transition is the mirror image of the previous one, hence

as,+,−5 = 0.
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As,−,+5 : ∆w+/2 = 0, ∆n+ = 1 =⇒ as,−,+5 = 1.

As,−,−5 : ∆w+/2 = 0, ∆n+ = 1 =⇒ as,−,−5 = 1.

• A4
2 (line 1 of Figure 12): Here, in the ‘big’ triangle the ‘medians’ go (at

the crossings a, b, c) above its sides before the bifurcation and under

after. We do not need to consider the triple points resolved, since

any triplet of sheets meet after the bifurcation the same way as be-

fore. Hence, the resolution of each triple point stays the same. We see,

∆w+/2 = 1mod2 due to the changes at the crossings a, b and c, and

∆n+ = 0. Hence, a4
2 = 1;
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a

bc

a

b c

• TA2,e
2 (line 3, left of Figure 12): ∆w+/2 = 0, ∆n+ = 1 =⇒ ta2,e

2 = 1;

• TA2,h
2 (line 3, right of Figure 12): Its link is similar to L+ of D+,s,−

4,c . The

C Lemma implies ta2,h
2 = 1;

• A2,e
3 (line 5 of Figure 12):

A2,e;s,+;s′,+
3 : We have ∆n+ = 1. It is obvious that ∆w+/2 = 1 due to the

change of the edge crossing and the newborn component of L+ having

writhe 0. Therefore, a2,e;s,+;s′,+
3 = 0;
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A2,e;s,+;s′,−
3 : ∆n+ = 1, ∆w+/2 = 0 =⇒ a2,e;s,+;s′,−

3 = 1;

A2,e;s,−;s′,−
3 : ∆n+ = 1, ∆w+/2 = 0 =⇒ a2,e;s,−;s′,−

3 = 1;

• A2,h
3 (line 6, left of Figure 12):

A2,h;s,+;s′,+
3 : Here we are looking at the bifurcation from inside the cus-

pidal edge surfaces.
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A simplified version of the link contribution is shown below. Applying

the Eight ends Corollary we know transforming the left diagram to the

right one does not change the quantity (n+w/2)mod2 =⇒ a2,h;s,+;s′,+
3 =

0;

A2,h;s,+;s′,−
3 :

A simplified version of the link contribution is shown below. From the

Six ends Corollary we know transforming the left link fragment to the

right one changes the quantity (n+w/2)mod2 by 1 =⇒ a2,h;s,+;s′,−
3 = 1;
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A2,h;s,−;s′,−
3 : The local transformation of L+ here is similar to that for

D+,s,−
4,c . By the C Lemma a2,h;s,−;s′,−

3 = 1;

• TA3A
e
2 (line 7, left of Figure 12):

TAs,+3 Ae2: ∆w+/2 = 0, ∆n+ = 1 =⇒ tas,+3 Ae2 = 1;

TAs,−3 Ae2: The local framed link transformation is that of TAs,+3 Ae2 with

the cuspidal edge removed. ∆w+/2 = 0, ∆n+ = 1 =⇒ tas,−3 Ae2 = 1;

• TA3A
h
2 (line 7, right of Figure 12):

TAs,+3 Ah2 :

A simplified version of the link contribution is shown below. We should

note this is the same as Figure 94 viewed from the back. Hence the Six

ends Collary shows tas,+3 Ah2 = 1;
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TAs,−3 Ah2 : Its link contribution is similar to TAs,+3 Ah2 but with the re-

moval of the cuspidal edge. The C Lemma implies tas,−3 ah2 = 1;

We now consider bifurcations with contributions from triple points.

• TA3
2 (line 2 of Figure 12): We consider the four options of how the sheets

are co-oriented separately.

TA3,0
2 : This is when all three A2 sheets are co-oriented ‘inside the bub-

ble’ after the bifurcation. The framed link with the triple points resolved

is shown below. We assign arbitrary directions to the branches and we

should note that changing the orientation of any branch does not effect

the mod4 increment of the local writhe. We see ∆w+ = 6 and ∆t = 2.

So, we have ∆(w+ + t)/2 = 0mod2 and ∆n+ = 0. Hence ta3,0
2 = 0.

+

+

+

+
+

+

Alternative explanation: We assume that all the A2 sheets are co-

oriented inside the bubble. Therefore the orientations of all self-intersection

branches are consistent with the co-orientations of the sheets at the

lower triple point, and are opposite to the co-orientations of the sheets

at the upper triple point. So, we have three positive crossings instead of
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each triple point (see Remark 7.2.1) giving us ∆w+ = 6. Since ∆t = 2

we have ∆(w+ + t)/2 = 0mod2 and ∆n+ = 0. Thus ta3,0
2 = 0.

TA3,1
2 : Here the co-orientation of the A2 sheets are exactly as in Figure

12. ∆w+ = −2 and ∆t = 2. So, we have ∆(w+ + t)/2 = 0mod2 and

∆n+ = 0. Hence ta3,1
2 = 0.

+

−

+

−

−

−

Alternative explanation: Comparing with the TA3,0
2 case, for TA3,1

2

we are now changing the co-orientation of one of the sheets but still

keeping the orientations of the branches. According to Remark 7.2.1,

this provides one positive and two negative crossings instead of each

of the triple points, giving us ∆w+ = −2. Since ∆t = 2 we have

∆(w+ + t)/2 = 0mod2. Together with ∆n+ = 0 this implies that

ta3,1
2 = 0.

TA3,2
2 : Its link contribution will be the same as TA3,1

2 .

TA3,3
2 : Its link contribution will be the same as TA3,0

2 .
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• A3A
2
2 (line 4 of Figure 12):

As,+3 A2,0
2 , As,+3 A2,1

2 and As,+3 A2,2
2 : We see there that the A2

2 part of L+

(with the triple points not resolved) bifurcates exactly the same way as

in the TA3
2 cases. Therefore for this part on its own, ∆w+ = 2mod4

and ∆t = 2. Hence, in total, ∆n+ = 0 and ∆(w+ + t)/2 = 1 due to the

change of the crossing of the cuspidal edge with the meeting line of the

two A2 sheets. Hence, as,+3 a2,0
2 = as,+3 a2,1

2 = as,+3 a2,2
2 = 1;

As,−3 A2,0
2 , As,−3 A2,1

2 and As,−3 A2,2
2 : Respectively, their framed links will be

the same as As,+3 A2,0
2 , As,+3 A2,1

2 and As,+3 A2,2
2 but with the removal of the

cuspidal edge. Therefore, as,−3 a2,0
2 = as,−3 a2,1

2 = as,−3 a2,2
2 = 0;

• A4A2 (line 6, right of Figure 12):

As,+4 A1
2: ∆w+ = −1, ∆t = 1. Hence, ∆(w+ + t)/2 = 0 and ∆n+ = 0

=⇒ as,+4 a1
2 = 0;
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As,−4 A1
2: ∆w+ = −1, ∆t = 1. Hence, ∆(w+ + t)/2 = 0 and ∆n+ = 0

=⇒ as,−4 a1
2 = 0;

As,+4 A0
2: ∆w+ = −1, ∆t = 1. Hence, ∆(w+ + t)/2 = 0 and ∆n+ = 0

=⇒ as,+4 a0
2 = 0;

As,−4 A0
2: ∆w+ = −1, ∆t = 1. Hence, ∆(w+ + t)/2 = 0 and ∆n+ = 0

=⇒ as,−4 a0
2 = 0;

• D−4 A2 (lines 1 and 2 of Figure 14):

D−,+4 A±2 : ∆w+/2 = 0, ∆n+ = 0 =⇒ d−,+4 a±2 = 0;
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D−,−4 A±2 : Its framed link contribution will be similar to L+ of D−,+4 A±2

but it will have the cuspidal edges removed. So we have ∆w+/2 = 0

and ∆n+ = 0 =⇒ d−,−4 a±2 = 0;

• D+
4,2A2 (line 5 of Figure 14 and line 1 of Figure 15):

D+,−
4,2 A

+
2 , D+,−

4,2 A
−
2 : Respectively, the transition of the fragments of the

framed links are the same as TA3,0
2 and TA3,1

2 and so the increment of

the invariant is the same. Hence, d+,−
4,2 a

+
2 = d+,−

4,2 a
−
2 = 0;

D+,+
4,2 A

+
2 , D+,+

4,2 A
−
2 : We should notice that the transition differs from

D+,−
4,2 A

+
2 and D+,−

4,2 A
−
2 by only the presence of the straight edge compo-

nent which switches its crossings with two of the other local branches.

Since each switch means changing the total writhe by ±2, the mod4

effect of the two switches is 0. Hence d+,+
4,2 a

+
2 = d+,+

4,2 a
−
2 = 0;

222



• D+
4,1A2 (lines 2, 3, 4, and 5 of Figure 15):

D+,−
4,1 A2: Recall we have D+,−

4,1 A2 = D+,−
4,l A2 +D+,−

4,r A2. In all the D+
4 A2-

left or -right cases, from the L+-bifurcational point of view, the purse

may be kind of opened up and replaced by a pair of planes A and

B which are nearly horizontal but still meet transversally along a line

which we shall call c. The planes are co-oriented upwards. The D+
4 point

is then represented by some point O ∈ c. The cuspidal edge of the purse

corresponds then to two rays emanating from O perpendicular to c: ray

Oa in the upper half of plane A, and ray Ob in the upper half of plane

B. This is illustrated below. The way we postulated the resolutions of

L+ near D+
4 points corresponds to joining Oa and Ob in one smooth

curve passing under c.

O

Oa

Ob

c

A

B

Now a smooth A2 sheet C moves into this configuration in a generic way,

that is, transversally to c, Oa and Ob. Then we see that the pre- and

post-bifurcation resolutions of the triple points coincide. This yields the

zero-jump conclusion in the cases not involving the cuspidal edge. If the

edge participates in the link, then the additional argument similar to

that used in the D+,+
4,2 A2 cases works to yield the same. As examples,

we consider D+,−
4,l A

+
2 and D+,+

4,l A
+
2 in detail.
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D+,−
4,l A

+
2 :

We resolve the triple points to give the illustration below. We see the

resolutions of the triple points coincide. ∆w+ = 0, ∆t = 0. So we have

∆(w+ + t)/2 = 0 and ∆n+ = 0. Hence d+,−
4,1 a

+
2 = 0.

+

+

+

+

+

+

D+,+
4,l A

+
2 :

The transition differs from D+,−
4,l A

+
2 by only the presence of the straight

edge component which switches its crossings with two of the other local

branches. Since each switch means changing the total writhe by ±2, the

mod4 effect of the two switches is 0. Hence d+,+
4,l a

+
2 = 0.
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• D+
4,0A2 (lines 3 and 4 of Figure 14):

D+,+
4,0 A

±
2 : Since we are not considering the s-decorations in the invari-

ants, we can consider the D+,+
4,0 A

±
2 transition to be the opposite to

D+,+
4,2 A

±
2 . Hence, since d+,+

4,2 a
±
2 = 0 we have d+,+

4,0 a
±
2 = 0;

D+,−
4,0 A

±
2 : Using the same logic as above, we can consider D+,−

4,0 A
±
2 to be

the opposite to D+,−
4,2 A

±
2 . Hence, since d+,−

4,2 a
±
2 = 0 we have d+,−

4,0 a
±
2 = 0.

�

7.3 Framing negative cuspidal edges and self-

intersection lines (Idc−)

Following [1] we look at the framed link L− formed by negative cuspidal edges

(σ = −) and self-intersection lines. Its construction details are as follows.

• Framing along edges As,−3 is shown in Figure 106.

Figure 106: Framing along As,−3 .

• The framing of A2
2 segments is shown in Figure 107.
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Figure 107: Framing of A2
2.

We now postulate the behaviour of L− near points of isolated singularity

types.

• The link L− at an As,−3 A2 junction is shown in Figure 108. At As,+3 A2,

the link will of course not include the edge component.

Figure 108: L− at As,−3 A2 points.

• The link L− at a σ = + swallowtail is shown in Figure 109. The local

writhe of the framing here is −1/4. At a σ = − swallowtail we define

the L− via the reflection of Figure 109, that is, in this case the local

writhe is +1/4.
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Figure 109: L− at a swallowtail As,+4 .

• We resolve triple points the same way as this was done in L+ (Figure

102), with the only difference that the local framing is now opposite to

the one we had that time. (In the cross-product interpretation of the

deformations of the branches we are now still using the framing L+).

• We now look at the L− near D±4 points. We smooth out the D−4 point

as we did for the L+ case in Figure 103. L− of D−,−4 is similar to L+

of D−,+4 , shown in Figure 104, with the only difference being that the

framing is outside the pyramid. Of course, the contribution of D−,+4 to

our framed link is empty.

• L− of D+,−
4 is similar to L+ of D+,+

4 , shown in Figure 105, with the only

difference being that the framing will now face away from the reader.

The L− framing for D+,+
4 is similar to D+,−

4 but with the cuspidal edge

component removed.
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We introduce the invariant,

Idc− = n− +
(w− + t)

2

where n− is the number of components of the link L−, w− is the writhe of L−

and t is the number of triple points of the caustic.

Theorem 7.3.1. The mod2 invariant Idc− is dual to the cycle

A4
2 + TA2

2 + A±,−3 A2
2 + TA3A2 + A

2,e/h;±,+;±,+
3 + A

2,e/h;±,+;±,−
3 + A

±,e/h
4

+A±,+,±5 + A±,−,q3 +D+,±,±
4,a/c .

Recalling the expressions for our 20 basic discriminantal cycles from Table

4, we have

I ′dc− = I ′16 + I ′18 + I ′19 + I ′χ + I ′sw++
+ I ′(sw+−+sw−+)/2 + I ′(t+c+++c−+)/2

+I ′(t+c+−+c−−)/2 + I ′
(((d+−+d−−)/2)+((d+++d−+)/2)+χ+15)/2

.

Proof of Theorem 7.3.1.

Again, we first consider bifurcations where contributions of triple points are

zero.

• D+
4,a (line 2 of Figure 13):

D+,s,+
4,a : Its L− is the same as L+ of D+,s,−

4,a =⇒ d+,s,+
4,a = 1;
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D+,s,−
4,a : ∆w−/2 = 0, ∆n− = 1 =⇒ d+,s,−

4,a = 1;

• D+
4,b (line 3 of Figure 13):

D+,s,+
4,b : Same as L+ of D+,s,−

4,b =⇒ d+,s,+
4,b = 0;

D+,s,−
4,b : Its contribution to L− is the same as the contribution of D+,s,+

4,b

to L+ with the only difference being that the framing of the cuspidal

edge will be in the direction away from the reader. Hence, d+,s,−
4,b = 0;

• D+
4,c (line 4 of Figure 13):

D+,s,+
4,c : Its contribution to L− is the same as that of D+,s,−

4,c to L+ =⇒

d+,s,+
4,c = 1:

D+,s,−
4,c : Similar to L+ of D+,s,+

4,c with the framing of the cuspidal edge

directed away from the reader. Hence, d+,s,−
4,c = 1;

• D−4,q (line 1 of Figure 13):

D−,s,+4,q : Its link contribution is empty =⇒ d−,s,+4,q = 0;

D−,s,−4,q : Its framed link is the same as its contribution to Ife. Hence,

d−,s,−4,q = 0;

• D5 (line 5 of Figure 13):

Ds,+
5 : ∆w−/2 = 0, ∆n− = 0 =⇒ ds,+5 = 0;
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Ds,−
5 : ∆w−/2 = 1mod2, ∆n− = 1 =⇒ ds,−5 = 0;

• Aq3 (lines 1, 2 and 3 of Figure 11):

As,+,+,+3 , As,+,+,−3 and As,+,−,−3 : It is obvious that L− does not have local

components at the corresponding bifurcations. Therefore,

as,+,+,+3 = as,+,+,−3 = as,+,−,−3 = 0;

As,−,+,+3 , As,−,+,−3 and As,−,−,−3 : Respectively, their contributions to L−

are similar to the contributions of As,+,+,+3 , As,+,+,−3 and As,+,−,−3 to L+,

with the only difference being that the framing is now in the opposite

direction. Hence, as,−,+,+3 = as,−,+,−3 = as,−,−,−3 = 1;

• Aε,e4 (line 4 of Figure 11): ∆w−/2 = 0, ∆n− = 1 =⇒ aε,e4 = 1;
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• Aε,h4 (line 5 of Figure 11): Similar to L+ ofAs,+,+,−3 . Hence, the C Lemma

implies aε,h4 = 1;

• A5 (line 6 of Figure 11):

As,+,+5 : ∆w−/2 = 0, ∆n− = 1 =⇒ as,+,+5 = 1.

As,+,−5 : ∆w−/2 = 0 and ∆n− = 1 =⇒ as,+,−5 = 1.

As,−,+5 : ∆w−/2 = 0, ∆n− = 0 =⇒ as,−,+5 = 0.
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As,−,−5 : ∆w−/2 = 0, ∆n− = 0 =⇒ as,−,−5 = 0.

• A4
2 (line 1 of Figure 12): Its contribution to L− is exactly the same as

its contribution to L+. Therefore a4
2 = 1;

• TA2,e
2 (line 3, left of Figure 12): Its contribution to L− is similar to L+

with the only difference being the framing looking in the opposite di-

rection. Hence, ∆w−/2 = 0, ∆n− = 1 =⇒ ta2,e
2 = 1;

• TA2,h
2 (line 3, right of Figure 12): Its link contribution is similar to L+

of D+,s,−
4,c Applying the C Lemma we have ta2,h

2 = 1;
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• A2,e;s,σ;s′,σ′

3 and A2,h;s,σ;s′,σ′

3 (lines 5 and 6 of Figure 12): The contributions

of A2,e;s,σ;s′,σ′

3 to Idc− and of A2,e;s,−σ;s′,−σ′
3 to Idc+ coincide. The same

holds for the hyperbolic case;

• TA3A
e
2 (line 7, left of Figure 12):

TAs,+3 Ae2: ∆w−/2 = 0, ∆n− = 1 =⇒ tas,+3 ae2 = 1;

TAs,−3 Ae2: ∆w−/2 = 0, ∆n− = 1 =⇒ tas,−3 ae2 = 1;

• TA3A
h
2 (line 7, right of Figure 12):

TAs,+3 Ah2 : Similar to L+ of TAs,−3 Ah2 . Hence tas,+3 ah2 = 1;

TAs,−3 Ah2 : Similar to L+ of TAs,+3 Ah2 . Hence tas,−3 ah2 = 1;

We now consider bifurcations with contributions from triple points.

• TA3
2 (line 2 of Figure 12): Its contribution to L− will be the same as its

contribution to L+, provided we co-orient the three A2 sheets in the

opposite direction to what was done for the L+ case. Hence ta3
2 = 0;

• As,σ3 A2
2 (line 4 of Figure 12): The contributions of As,σ3 A2

2 to L− coincide

with those of As,−σ3 A2
2 to L+. Hence, as,+3 a2

2 = 0 and as,−3 a2
2 = 1;
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• As,σ4 A2 (line 6, right of Figure 12): Contributions of As,σ4 A2 to L− are

the same as those of As,−σ4 A2 to L+. Hence, as,σ4 a2 = 0;

• D−4 A2 (lines 1 and 2 of Figure 14):

D−,+4 A±2 : ∆w−/2 = 0, ∆n− = 0 =⇒ d−,+4 a±2 = 0;

D−,−4 A±2 : ∆w−/2 = 0, ∆n− = 0 =⇒ d−,−4 a±2 = 0;

• D+,σ
4,2/1/0A

±
2 (lines 3− 5 of Figure 14 and 1− 5 of Figure 15): The con-

tributions of D+,σ
4,2/1/0A

±
2 to L− are the same as that of D+,−σ

4,2/1/0A
±
2 to L+.

Hence, d+,σ
4,2/1/0a

±
2 = 0.

�

7.4 Linking invariant (Iλ)

The linking number of two oriented links A and B in R3 is the sum of the

crossing numbers in their link diagram over all crossings where A passes over

B. The roles of A and B may be swapped here to get the same result.
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If links A and B are not oriented then the crossings loose their signs,

and we are left with the mod2 linking number which is equal to the parity

of the number of crossings in the link diagram at which A passes over B

(equivalently, B over A). We are now going to study this number for the

links related to the links L+ and L− considered each on its own in the two

previous sections.

Namely, we denote L+,ε the link obtained from L+ by displacing each

point a small positive distance ε in the direction of the framing of L+ at that

point, and similarly L−,ε the link obtained from L− by displacing each point

ε in the direction of the framing of L− at that point. Denote by λ the mod2

linking number 〈L+,ε, L−,ε〉 and for consistency with previous notation we call

the new invariant Iλ. We will depict L+,ε by a solid black line and L−,ε by a

solid red line.

Theorem 7.4.1. The mod2 invariant Iλ is dual to the cycle

A±,±3 A2
2 + A±,±4 A2 + A

2,e/h;±,+;±,−
3 + A±,+,±5 .

Recalling the expressions for our 20 basic discriminantal cycles from Table

4, we have

I ′λ = I ′17 + I ′
d+−

+ I ′c++
+ I ′c+− + I ′(t+c+−+c−−)/2 + I ′t + I ′sw++

+ I ′sw+−

+I ′(sw+++sw−−)/2 + I ′(sw+−+sw−+)/2.
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Proof of Theorem 7.4.1.

To understand the contributions of various strata to the invariant Iλ, we now

check how the parity of numbers of crossings of one of the links over the other

changes under the bifurcations. For each stratum Xi below, the corresponding

increment xi is ∆λ.

We use the symbol ⊗ in the illustrations of this proof to indicate the

direction of the shift of the link component, unlike earlier where it denoted

the direction of the framing.

• D+
4,a (line 2 of Figure 13):

D+,s,+
4,a : ∆λ = 0;

D+,s,−
4,a : ∆λ = 0;

• D+
4,b (line 3 of Figure 13):

D+,s,+
4,b : ∆λ = 0;
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D+,s,−
4,b : ∆λ = 0;

• D+
4,c (line 4 of Figure 13):

D+,s,+
4,c : ∆λ = 0;

D+,s,−
4,c : ∆λ = 0;

• D−,s,σ4,q (line 1 of Figure 13): Only one of the two links, namely Lσ,ε shows

up locally. Hence, d−,s,σ4,q = 0;
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• D5 (line 5 of Figure 13):

Ds,+
5 : ∆λ = 0;

Ds,−
5 : ∆λ = 0;

• As,σ,q3 (lines 1, 2 and 3 of Figure 11): In all the As,σ,q3 bifurcations, only

the Lσ,ε link shows up locally. Hence, as,σ,q3 = 0;

• Aε,e4 (line 4 of Figure 11): ∆λ = 0;

• Aε,h4 (line 5 of Figure 11): ∆λ = 0;
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• A5 (line 6 of Figure 11):

As,+,+5 : ∆λ = 1;

As,+,−5 : ∆λ = 1;

As,−,+5 : ∆λ = 0;
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As,−,−5 : ∆λ = 0;

• A4
2 (line 1 of Figure 12): As was explained in the A4

2 item from Section

7.2 we know the resolution of each triple point stays the same, since

any triplet of sheets meet after the bifurcation the same way as before.

Hence, there will be no contribution to the change in the linking number

from the triple points. In addition, we have three double crossings

(points a, b and c). Here each double crossing provides exactly one

occasion of, say, the red going over the black. So, since we have three

occasions of that before the bifurcation and still three after, there is no

parity change in the linking number which implies a4
2 = 0;

• TA2,e
2 (line 3, left of Figure 12): ∆λ = 0. Below we illustrate the case

of TA2,e,2
2 or TA2,e,1

2 with the parabolic A2 sheet co-oriented outwards.

If TA2,e,0
2 or TA2,e,1

2 with the parabolic A2 sheet co-oriented inwards

was considered, the colours would swap in the figure but our conclusion

would yield the same result.

240



• TA2,h
2 (line 3, right of Figure 12): Consider TA2,h,0

2 . Here, ∆λ = 0.

Similarly, ta2,h,1
2 = 0;

• A2,e
3 (line 5 of Figure 12):

A2,e;s,+;s′,+
3 : ∆λ = 0;

A2,e;s,+;s′,−
3 : ∆λ = 1;

241



A2,e;s,−;s′,−
3 : ∆λ = 0;

• A2,h
3 (line 6, left of Figure 12): Here we are looking at the bifurcation

from inside the edge surfaces.

A2,h;s,+;s′,+
3 : ∆λ = 0;

A2,h;s,+;s′,−
3 : ∆λ = 1;
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A2,h;s,−;s′,−
3 : ∆λ = 0;

• TA3A
e
2 (line 7, left of Figure 12):

TAs,+3 Ae2: ∆λ = 0;

TAs,−3 Ae2: Its links are similar to the links of TAs,+3 Ae2 with the only

difference being the cuspidal edge is red. Hence, tas,−3 ae2 = 0;

• TA3A
h
2 (line 7, right of Figure 12):

TAs,+3 Ah2 : ∆λ = 0;

TAs,−3 Ah2 : Its links are similar to the links of TAs,+3 Ah2 but the horizontal

cuspidal edge is red. Hence, tas,−3 ah2 = 0;
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• TA3
2 (line 2 of Figure 12): Before the bifurcation we have no triple points

on the self-intersection locus, and afterwards we have two. Resolving

the two triple points, we obtain six double crossings of the L±,ε, and at

each of these six we have L+,ε crossing over L−,ε exactly once. Hence,

∆λ = 0. As an example, we show the links of TA3,0
2 below;

• A3A
2
2 (line 4 of Figure 12):

As,+3 A2
2: We should notice that the transition As,+3 A2

2 differs from TA3
2

by only the presence of a straight edge component which switches its

crossings with all of the other local branches. We know TA3
2 does not

change the linking number but switching three crossings changes the

linking number by 1mod2. Therefore, ∆λ = 1. For example, As,+3 A2,0
2

is shown below;
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As,−3 A2
2: The links are similar to As,+3 A2

2 with the colour of the vertical

cuspidal edge swapped from black to red. Hence, as,−3 a2
2 = 1;

• A4A2 (line 6, right of Figure 12):

As,+4 A2: For example, considerAs,+4 A1
2. Here, like for theAs,+4 A0

2 case, we

have four double crossings and two single crossings of alternate colours.

Therefore, ∆λ = 1;

As,−4 A2: Again, we have four double crossings and two single crossings

of alternate colours. Therefore, as,−4 a2 = 1;

• D−4 A2 (lines 1 and 2 of Figure 14):

D−,+4 A±2 : ∆λ = 0;
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D−,−4 A±2 : Similar to D−,+4 A±2 but with all the cuspidal edges now red.

Therefore, d−,−4 a±2 = 0;

• D+
4,2A2 (line 5 of Figure 14 and line 1 of Figure 15):

D+,+
4,2 A2: Similar to the transition As,+3 A2

2 where a straight edge compo-

nent switches its crossings with two of the other local branches. Hence,

d+,+
4,2 a2 = 0. For example, the D+,+

4,2 A
+
2 transition is shown below;

D+,−
4,2 A2: The links are similar to the D+,+

4,2 A2 cases, except the change

of colour of the horizontal branch. Hence, d+,−
4,2 a2 = 0. The D+,−

4,2 A
+
2

transition is shown as an example below;
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• D+
4,1A2 (lines 2, 3, 4, and 5 of Figure 15):

D+,+
4,1 A

±
2 : As was explained in Section 7.2 we know that the pre- and

post-bifurcation resolutions of the triple points coincide for D+,+
4,1 A2. In

addition, two of the three crossings of the edge with the local branches

of L−,ε change during the bifurcation. Therefore, d+,+
4,1 a

±
2 = 0. For

example, the D+,+
4,l A

+
2 transition is shown below;

D+,−
4,1 A

±
2 : Similar to the D+,+

4,1 A
±
2 case, except the change of colour of

the horizontal branch. Hence d+,−
4,1 a

±
2 = 0;

• D+
4,0A2 (lines 3 and 4 of Figure 14):

D+,+
4,0 A

±
2 : Since we are not considering the s-decorations in the invari-

ants, we can consider this move to be the opposite of the move D+,+
4,2 A

±
2 .

Therefore, since d+,+
4,2 a

±
2 = 0 this implies d+,+

4,0 a
±
2 = 0;

D+,−
4,0 A

±
2 : Using the same logic as above, we consider D+,−

4,0 A
±
2 to be

opposite to D+,−
4,2 A

±
2 . Hence, d+,−

4,0 a
±
2 = 0.

�
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7.5 mod2 degrees of generic singularities in R3

Our final geometric interpretation of a mod2 discriminantal cycle is based on

the mod2 degrees of generic singularities in R3.

We define the mod2 degree of a non-caustical point in R3 as the mod2

degree of the radial projection map of the caustic onto a sphere centred at

that point. This depends only on the connected component of the complement

to the caustic.

We introduce mod2 degrees of A3A2, A4, D4, and triple points, and check

if any summation of these is a local invariant. We let P be a point of a generic

singularity and P ′ be the perturbation of P . Then we set deg2(P ) := deg2(P ′).

• As,σ3 A2, Figure 110: The point P ′ is inside the cuspidal edge, and on the

side of the A2 sheet that is consistent with its co-orientation.

P

P’

Figure 110: The mod2 degree of an A3A2 point.

• As,σ4 , Figure 111: The point P ′ is contained inside the pyramid.
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P’

P

Figure 111: The mod2 degree of a swallowtail point.

• D+,σ
4 , Figure 112: The point P ′ is inside the purse.

P’

P

Figure 112: The mod2 degree of a D+,σ
4 point.

• D−,σ4 , Figure 113: The point P ′ is outside the pyramid.

P’

P

Figure 113: The mod2 degree of a D−,σ4 point.

• Triple points, Figure 114: The point P ′ is inside the octant into which

all three A2 sheets are co-oriented.
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P’
j

k

P

i

Figure 114: The mod2 degree of a triple point.

We would like to understand which linear combinations of sums of the

degrees of all points of particular types may be local invariants. For this,

we will now check how these particular sums change during all our elemen-

tary 1-parameter bifurcations. Our method will be as follows. Consider the

complement to the caustic. We assign the mod2 degree d to one of its con-

nected components, denoted by U , which survives (at least partially) during

the transition. The degree of any component U ′ differs from d by the parity

of the number of times a generic path from U to U ′ meets the caustic. Say

for example we know a swallowtail point has degree d before passing through

a smooth A2 sheet, then we know afterwards the same point will have degree

d + 1. Hence, it is possible to give all our components degrees, before and

after the bifurcation. From this we calculate the change in parity of the sums

of the degrees.

Table 5 shows the change in the sums of the degrees of all generic isolated

singular points in our bifurcations obtained by direct inspection of Figures 11,
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12, 13, 14 and 15. We do not provide all the details of the calculation. Table

5 allows us to detect one local invariant which is not a linear combination of

invariants for which we already know their geometric sense. For this invariant

we will give all the details of the mod2 degree calculations.
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Table 5 A
+,+
3 A

+,−
3 A

−,+
3 A

−,−
3 A2

2 A
+,+
4 A

+,−
4 A

−,+
4 A

−,−
4 D

+,+
4 D

+,−
4 D

−,+
4 D

−,−
4 A

+,+
3 A2 A

+,−
3 A2 A

−,+
3 A2 A

−,−
3 A2 t

A4
2 . . . . . . . . . . . . . . . . . .

TA2
2 . . . . . . . . . . . . . . . . . .

TA3
2 . . . . 1 . . . . . . . . . . . . .

A
±,+
3 A2

2 . . . . 1 . . . . . . . . . . . . .

A
±,−
3 A2

2 . . . . 1 . . . . . . . . . . . . .

A
2,e/h;+,+;+,+
3 . . . . . . . . . . . . . . . . . .

A
2,e/h;+,+;+,−
3 1 1 . . . . . . . . . . . . . . . .

A
2,e/h;+,+;−,+
3 1 . 1 . . . . . . . . . . . . . . . .

A
2,e/h;+,+;−,−
3 1 . . 1 . . . . . . . . . . . . . .

A
2,e/h;+,−;+,−
3 . . . . . . . . . . . . . . . . . .

A
2,e/h;+,−;−,+
3 . 1 1 . . . . . . . . . . . . . . .

A
2,e/h;+,−;−,−
3 . 1 . 1 . . . . . . . . . . . . . .

A
2,e/h;−,+;−,+
3 . . . . . . . . . . . . . . . . . .

A
2,e/h;−,+;−,−
3 . . 1 1 . . . . . . . . . . . . . .

A
2,e/h;−,−;−,−
3 . . . . . . . . . . . . . . . . . .

A
+,+
4 A1

2 d + 1 . . d + 1 d 1 . . . . . . . d . . d d

A
+,+
4 A0

2 d + 1 . . d + 1 d 1 . . . . . . . d + 1 . . d + 1 d + 1

A
+,−
4 A1

2 . d + 1 d + 1 . d . 1 . . . . . . . d d . d

A
+,−
4 A0

2 . d + 1 d + 1 . d . 1 . . . . . . . d + 1 d + 1 . d + 1

A
−,+
4 A1

2 . d + 1 d + 1 . d . . 1 . . . . . . d d . d

A
−,+
4 A0

2 . d + 1 d + 1 . d . . 1 . . . . . . d + 1 d + 1 . d + 1

A
−,−
4 A1

2 d + 1 . . d + 1 d . . . 1 . . . . d . . d d

A
−,−
4 A0

2 d + 1 . . d + 1 d . . . 1 . . . . d + 1 . . d + 1 d + 1

TA
+,+
3 A2 1 . . . . . . . . . . . . . . . . .

TA
+,−
3 A2 . 1 . . . . . . . . . . . . . . . .

TA
−,+
3 A2 . . 1 . . . . . . . . . . . . . . .

TA
−,−
3 A2 . . . 1 . . . . . . . . . . . . . .

A
+,+,±
5 d . . d + 1 d + 1 . . . . . . . . . . . . .

A
+,−,±
5 . d d + 1 . d + 1 . . . . . . . . . . . . .

A
−,+,±
5 . d + 1 d . d + 1 . . . . . . . . . . . . .

A
−,−,±
5 d + 1 . . d d + 1 . . . . . . . . . . . . .

A
+,e/h
4 d . . d d d . . d . . . . . . . . .

A
−,e/h
4 . d d . d . d d . . . . . . . . . .

A
+,+,q
3 . . . . . . . . . . . . . . . . . .

A
+,−,q
3 . . . . . . . . . . . . . . . . . .

A
−,+,q
3 . . . . . . . . . . . . . . . . . .

A
−,−,q
3 . . . . . . . . . . . . . . . . . .

D
−,±,+
4,q d . d . . . . . . . . . . . . . . .

D
−,±,−
4,q . d . d . . . . . . . . . . . . . .

D
+,±,+
4,a/c

d . d . . . . . . . . . . . . . . .

D
+,±,−
4,a/c

. d . d . . . . . . . . . . . . . .

D
+,±,+
4,b

d . d . . . . . . . . . . . . . . .

D
+,±,−
4,b

. d . d . . . . . . . . . . . . . .

D
+,+
5 d + 1 d . . . . d d . d . d + 1 . . . . . .

D
+,−
5 d d + 1 . . . d . . d . d . d + 1 . . . . .

D
−,+
5 . . d + 1 d . d . . d d . d + 1 . . . . . .

D
−,−
5 . . d d + 1 . . d d . . d . d + 1 . . . . .

D
−,+
4 A+

2 d + 1 . d . . . . . . . . 1 . d . d . .

D
−,−
4 A+

2 . d + 1 . d . . . . . . . . 1 . d . d .

D
+,+
4,2 A+

2 d + 1 . d . . . . . . 1 . . . d . d . .

D
+,−
4,2 A+

2 . d + 1 . d . . . . . . 1 . . . d . d .

D
+,+
4,1 A+

2 d + 1 . d . 1 . . . . 1 . . . d . d . .

D
+,−
4,1 A+

2 . d + 1 . d 1 . . . . . 1 . . . d . d .

D
+,+
4,0 A+

2 d + 1 . d . . . . . . 1 . . . d . d . .

D
+,−
4,0 A+

2 . d + 1 . d . . . . . . 1 . . . d . d .

D
−,+
4 A−

2 d + 1 . d . . . . . . . . 1 . d + 1 . d + 1 . .

D
−,−
4 A−

2 . d + 1 . d . . . . . . . . 1 . d + 1 . d + 1 .

D
+,+
4,2 A−

2 d + 1 . d . . . . . . 1 . . . d + 1 . d + 1 . .

D
+,−
4,2 A−

2 . d + 1 . d . . . . . . 1 . . . d + 1 . d + 1 .

D
+,+
4,1 A−

2 d + 1 . d . 1 . . . . 1 . . . d + 1 . d + 1 . .

D
+,−
4,1 A−

2 . d + 1 . d 1 . . . . . 1 . . . d + 1 . d + 1 .

D
+,+
4,0 A−

2 d + 1 . d . . . . . . 1 . . . d + 1 . d + 1 . .

D
+,−
4,0 A−

2 . d + 1 . d . . . . . . 1 . . . d + 1 . d + 1 .



Using Table 5, we are able to find new invariants by adding a combination

of columns together, provided all d’s cancel out. We find eight invariants

which are listed below as well as their expressions as linear combinations of

earlier invariants, up to an additive constant:

• deg2(A+,+
3 A2 ∪ A−,+3 A2 ∪ triple points) = ∅;

• deg2(A+,+
3 A2 ∪ A+,−

3 A2 ∪ A−,+3 A2 ∪ A−,−3 A2) = ∅;

• deg2(A+,+
4 ∪ A−,−4 ) = I20;

• deg2(A+,+
4 ∪ A+,−

4 ∪ A−,+4 ∪ A−,−4 ) = t;

• deg2(D+,+
4 ∪D−,+4 ) = d+

+ + c++ + I20;

• deg2(D+,+
4 ∪D+,−

4 ∪D−,+4 ∪D−,−4 ) = c++ + c+− + d+
+ + d+

− + t;

• deg2(A+,+
3 ∪ A+,−

3 ∪ A−,+3 ∪ A−,−3 ) = (t + c++ + c−+)/2 + (t + c+− +

c−−)/2 + c++ + c+− + t;

• deg2(A+,+
3 ∪A−,+3 ∪A2

2 ∪D
+,+
4 ∪D+,−

4 ) = (t+ c++ + c−+)/2 + c++ + I20.

Hence the invariant deg2(A+,+
4 ∪ A−,−4 ) is an integral geometric interpre-

tation of the discriminantal cycle I ′20. We will now give a detailed proof of

this.

Theorem 7.5.1. The mod2 invariant deg2(A+,+
4 ∪A−,−4 ) is dual to the cycle

A+,+
4 A2 + A−,−4 A2.
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Recalling the expressions for our earlier invariants, we see that the linear

combination in the theorem states that, up to an additive constant,

deg2(A+,+
4 ∪ A−,−4 ) = I20.

Proof of Theorem 7.5.1.

To calculate the increments of the sum of mod2 degrees of A+,+
4 and A−,−4

points, we will consider all bifurcations from Section 2.3 that contain them.

See Figures 11, 12 and 13.

The following bifurcations do not contribute to the invariant since two

points of A+,+
4 or A−,−4 are born with the same mod2 degrees which implies

∆deg2(A+,+
4 ∪ A−,−4 ) = 0mod2:

• A+,e/h
4 : an A+,+

4 and A−,−4 point;

• A+,+,+
5 : two A−,−4 points;

• A+,+,−
5 : two A+,+

4 points;

• A−,−,+5 : two A+,+
4 points;

• A−,−,−5 : two A−,−4 points;

• D+,−
5 : an A+,+

4 and A−,−4 point;

• D−,+5 : an A+,+
4 and A−,−4 point.

The following two bifurcations contribute increment 1 to the invariant:
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• A+,+
4 A2: ∆deg2(A+,+

4 ) = 1 and ∆deg2(A−,−4 ) = 0 =⇒ ∆deg2(A+,+
4 +

A−,−4 ) = 1;

• A−,−4 A2: ∆deg2(A+,+
4 ) = 0 and ∆deg2(A−,−4 ) = 1 =⇒ ∆deg2(A+,+

4 +

A−,−4 ) = 1.

�

7.6 Summary of the extra mod2 invariants

We now summarise our results from this chapter.

Our aim was to construct mod2 local invariants which are defined path-

independently and are not reductions of integer invariants. Papers [10] and

[1] suggested to involve (self-)linking numbers of certain framed links in the

target. This was our reason to take N = R3 as the simplest manifold where

such numbers are well-defined. As usual, we have been looking for invariants

up to an arbitrary choice of additive constants for connected components of

the space of our Lagrangian maps.

The mod2 reduction of the space D(M,T ∗N,N ;Z) of integer discriminan-

tal cycles is a codimension 5 subspace in its Z2 analogue D(M,T ∗N,N ;Z2).

Therefore, the ultimate goal was to construct five mod2 invariants whose

derivatives are linearly independent modulo this subspace.

We have managed to construct five invariants of the kind we wanted: Ife,

Idc+ , Idc− , Iλ, deg2(A+,+
4 ∪ A−,−4 ). However, as it may be easily seen from

our expressions of their derivatives in terms of the mod2 basis from Table 4,
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their span modulo the above subspace is just 4-dimensional: the Iλ may be

excluded without any affect on the span.

Bearing in mind that there is one integer discriminantal cycle, I ′15, still

waiting for its realisation as a derivative of an integer path-independent in-

variant, we have the following statements about the dimensions of the spaces

of local invariants.

Corollary 7.6.1. The space of integer local invariants of Lagrangian maps

between two oriented 3-manifolds has dimension either 14 or 15.

Corollary 7.6.2. For N = R3, the space of mod2 local invariants of La-

grangian maps between two oriented 3-manifolds has dimension at least 18

and at most 20.

It actually does not matter in these corollaries which particular Lagrangian

fibration E → N is used in the maps.

Remark 7.6.3. The four mod2 invariants Ife, Idc+, Idc− and Iλ do not depend

on our s-decoration of the caustic strata and of the bifurcations. Therefore,

they are well-defined in the special setting used by Gallagher. This was briefly

mentioned in the introduction to [9], without any details given.
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Chapter 8

Non-oriented source or target

Recall that throughout this thesis we have been considering the space

L(M,T ∗N,N) of all Lagrangian maps M # T ∗N → N between fixed oriented

3-manifolds. In this chapter we obtain similar classification results, both over

Q and Z2, assuming at least one of the 3-manifolds is either non-oriented or

non-orientable. We use the subscript no to denote a non-orientable manifold.

First we consider the case of a non-oriented source and then a non-oriented

target.

Recall from Section 2.5 the notation D(M,T ∗N,N ;K) to be the space

of discriminantal cycles in L(M,T ∗N,N) with coefficients K = Q, Z, Z2. We

also recall from Section 3 the notation E(M,T ∗N,N ;K) for the space spanned

by all equations in L(M,T ∗N,N) provided by the 2-parameter bifurcation

families.
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8.1 Non-oriented source

Consider the space of all Lagrangian maps between fixed 3-manifolds, a non-

oriented source manifold Mno, and an oriented target manifold N . In this

setting we cannot differentiate between the signs σ = ±, that is, the local

degree ±1 of the Lagrangian map. This means elementary codimension 1

strata in L(M,T ∗N,N) differing only by the sign σ are glued together. For

example, gluing together the A5 strata with opposite σ decorations creates

the big stratum As,±,ω5 = As,+,ω5 + As,−,ω5 . We should also note that due to

equations 5 and 6 from Section 2.6.1.1 we now have the big stratum A±,±4 A2 =

A+,+
4 A2 +A+,−

4 A2 +A−,+4 A2 +A−,−4 A2. Here we denote any new big strata by

replacing the decoration σ with ±. This reduces the number of codimension 1

strata from the oriented source and target case, shown in Table 1 over Z and

Table 3 over Z2, to 25 over Z and 23 over Z2 in L(Mno, T
∗N,N).

Theorem 8.1.1. The space D(Mno, T
∗N,N ;Q) has rank 8. It is spanned by

the discriminantal cycles

I ′t, I ′sw+
, I ′sw− , I ′c+ , I ′c− , I ′d+ , I ′d− , I ′χ.

Here, the discriminantal cycles are either taken straight from Lemma 2.4.1

or are the sums of its discriminantal cycles only differing in the decoration σ.

Therefore, we now omit the decoration σ in the notation of the discriminantal

cycles. The signs of the subscripts correspond to the s-decorations and the
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signs of the superscripts denote the type of D4 points. For example, the

third discriminantal cycle shown is I ′sw− which is the sum of the cycles I ′sw−,+

and I ′sw−,− from Lemma 2.4.1 and is the derivative of the number of s = −

swallowtails.

Here and for the rest of this chapter we are considering our invariants

up to a choice of additive constants of connected components of the space of

Lagrangian maps. Hence, passing from discriminantal cycles to invariants we

have the following result:

Corollary 8.1.2. The space of rational local invariants of L(Mno, T
∗N,N)

is spanned by

It, Isw+ , Isw− , Ic+ , Ic− , Id+ , Id− , Iχ.

Proof of Theorem 8.1.1.

Table 6 shows a basis of the space E(Mno, T
∗N,N ;Q). It is obtained by

modifying Table 1 in Section 3. Here we glue up the codimension 1 strata

differing only by the decoration σ to create the bigger strata. For example,

say we are introducing the bigger stratum Z = X + Y . In each of the cyclic

equations, which are the columns of Table 1, the entries of rows X and Y

are added up and declared the row Z. We then reduce the system of thus

obtained linear equations to a system of linearly independent equations. This

is done by moving in the table from the left to the right and omitting every

column which is a linear combination of the columns to its left.

259



The rank of the Table 6 matrix is 17, that is, E(Mno, T
∗N,N ;Q) is 17-

dimensional. Now, since we have 25 codimension 1 big strata in L(Mno, T
∗N,N),

the space D(Mno, T
∗N,N ;Q) must be 8-dimensional, and its basis is shown

in Table 7. This concludes our proof of Theorem 8.1.1.
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Table 6 13 14 14 14 14 15 18 18 19 20 22 23 23 27 27 28 29

TA3
2 2 . . . . 1 . . . . . . . . . . .

A±,±
3 A2

2 −2 . . . . . . . . . . . . . . . .

A2,e;+,±;+,±
3 . 1 . . . . . . . . . . . . . 1 .

A2,e;+,±;−,±
3 . . 1 1 . . . . . . . . . . . −1 .

A2,e;−,±;−,±
3 . . . . 1 . . . . . . . . . . . .

A2,h;+,±;−,±
3 . . 1 −1 . . 1 1 . . . . . . . 2 −1

A±,±
4 A2 . . . . . −2 . . . . . . . 2 2 . .

TA+,±
3 A2 . −2 −2 . . 1 . . −2 . . 2 . −2 . . .

TA−,±
3 A2 . . . −2 −2 1 . . . . . . 2 . −2 . .

A+,±,+
5 . . . . . . −1 . 1 . . . . . . . .

A+,±,−
5 . . . . . . . −1 1 . . . . . . . .

A−,±,+
5 . . . . . . . 1 . . . . . . . . .

A−,±,−
5 . . . . . . 1 . . . . . . . . . .

A
±,e/h
4 . . . . . . . . −2 . . −2 −2 . . . .

A+,±,q
3 . . . . . . . . . 1 . 2 . . . . .

A−,±,q
3 . . . . . . . . . −1 . . 2 . . . .

D−,±,±
4,q . . . . . . . . . . . −1 −1 . . . .

D+,±,±
4,a/c . . . . . . . . . . 1 1 1 . . . .

D+,±,±
4,b . . . . . . . . . . −1 . . . . . .

D+,±
5 . . . . . . . . . . . 2 . . . . .

D−,±
5 . . . . . . . . . . . . 2 . . . .

D−,±
4 A2 . . . . . . . . . . . . . 1 −1 −2 .

D+,±
4,2 A2 . . . . . . . . . . . . . −1 . . .

D+,±
4,1 A2 . . . . . . . . . . . . . . . . 2

D+,±
4,0 A2 . . . . . . . . . . . . . . 1 . .

261



Table 7 t sw+ sw− c+ c− d+ d− χ

TA3
2 2 . . . . . . .

A±,±
3 A2

2 2 . . . . . . .

A2,e;+,±;+,±
3 . . . 4 . . . .

A2,e;+,±;−,±
3 . . . 2 2 . . .

A2,e;−,±;−,±
3 . . . . 4 . . .

A2,h;+,±;−,±
3 . . . 2 −2 . . .

A±,±
4 A2 1 . . 1 1 . . .

TA+,±
3 A2 . . . 2 . . . .

TA−,±
3 A2 . . . . 2 . . .

A+,±,+
5 . . 2 2 . . . .

A+,±,−
5 . 2 . 2 . . . .

A−,±,+
5 . 2 . . 2 . . .

A−,±,−
5 . . 2 . 2 . . .

A
±,e/h
4 . 1 1 . . . . .

A+,±,q
3 . . . . . . . 1

A−,±,q
3 . . . . . . . 1

D−,±,±
4,q . . . . . . 2 1

D+,±,±
4,a/c . . . . . 2 . −1

D+,±,±
4,b . . . . . 2 . −1

D+,±
5 . 1 1 −2 . −1 1 .

D−,±
5 . 1 1 . −2 −1 1 .

D−,±
4 A2 . . . 3 −3 . . .

D+,±
4,2 A2 2 . . 1 −1 . . .

D+,±
4,1 A2 . . . 1 −1 . . .

D+,±
4,0 A2 −2 . . 1 −1 . . .
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Corollary 8.1.3. For generators of D(Mno, T
∗N,N ;Z) one can take

I ′t, I ′sw+
, I ′c+ , I ′d+ , I ′χ, I ′(d++d−)/2, I ′(sw++sw−)/2, I ′(c++c−)/2.

Here, the discriminantal cycles are taken straight from Remark 2.4.2 or

are the sums of its cycles.

Corollary 8.1.4. The space of integer local invariants of L(Mno, T
∗N,N) is

spanned by

It, Isw+ , Ic+ , Id+ , Iχ, I(d++d−)/2, I(sw++sw−)/2, I(c++c−)/2.

We now consider the Z2 analogue to Theorem 8.1.1.

Theorem 8.1.5. The space D(Mno, T
∗N,N ;Z2) has rank 10. It is spanned

by the discriminantal cycles

I ′t, I ′sw+
, I ′c+ , I ′d+ , I ′χ, I ′(d++d−)/2, I ′(sw++sw−)/2, I ′(c++c−)/2, I ′16, I ′18.

This time the discriminantal cycles are taken straight from Remark 2.4.3

or are the sums of its discriminantal cycles.

Proof of Theorem 8.1.5.

We obtain a basis of the space E(Mno, T
∗N,N ;Z2) by modifying Table 3

using the same method that was used for the Q case. The result is shown in

Table 8.
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Here, E(Mno, T
∗N,N ;Z2) is 13-dimensional. Since in L(Mno, T

∗N,N)

there are 23 codimension 1 big strata, D(Mno, T
∗N,N ;Z2) has dimension

10. Its basis is shown in Table 9. This concludes our proof of Theorem 8.1.5.

Table 8 15 16 17 17 18 20 22 23 27 27 28 34 35

A4
2 . 1 . . . . . . . . . . .

TA2
2 . . . . . 1 1 . . . . . .

TA3
2 1 . . . . . . . . . . 1 .

A±,±
3 A2

2 . . 1 1 . . . . . . . . .

A
2,e/h;+,±;+,±
3 . . 1 . . . . . . . . . 1

A
2,e/h;+,±;−,±
3 . . 1 1 1 . . . . . 1 . .

A
2,e/h;−,±;−,±
3 . . . 1 . . . . . . 1 . 1

A±,±
4 A2 . . . . . . . . . . . . .

TA±,±
3 A2 . . . . . . . . . . . . .

A+,±,±
5 . . . . 1 . . . . . . . .

A−,±,±
5 . . . . 1 . . . . . . . .

A
±,e/h
4 . . . . . . . . . . . . .

A+,±,q
3 . . . . . 1 . . . . . . .

A−,±,q
3 . . . . . 1 . . . . . . .

D−,±,±
4,q . . . . . . . 1 . . . . .

D+,±,±
4,a/c . . . . . . 1 1 . . . . .

D+,±,±
4,b . . . . . . 1 . . . . . .

D+,±
5 . . . . . . . . . . . . 1

D−,±
5 . . . . . . . . . . . . 1

D−,±
4 A2 . . . . . . . . 1 1 . . .

D+,±
4,2 A2 . . . . . . . . 1 . . . .

D+,±
4,1 A2 . . . . . . . . . . . 1 .

D+,±
4,0 A2 . . . . . . . . . 1 . 1 .

264



Table 9 t sw+ c+ d+ χ (d+ + d−)/2 (sw+ + sw−)/2 (c+ + c−)/2 16 18

A4
2 . . . . . . . . . .

TA2
2 . . . . . . . . 1 .

TA3
2 . . . . . . . . . .

A±,±
3 A2

2 . . . . . . . . . .

A
2,e/h;+,±;+,±
3 . . . . . . . . . 1

A
2,e/h;+,±;−,±
3 . . . . . . . . . 1

A
2,e/h;−,±;−,±
3 . . . . . . . . . 1

A±,±
4 A2 1 . 1 . . . . 1 . .

TA±,±
3 A2 . . . . . . . 1 . .

A+,±,±
5 . . . . . . 1 1 . .

A−,±,±
5 . . . . . . 1 1 . 1

A
±,e/h
4 . 1 . . . . 1 . . .

A+,±,q
3 . . . . 1 . . . . .

A−,±,q
3 . . . . 1 . . . 1 .

D−,±,±
4,q . . . . 1 1 . . . .

D+,±,±
4,a/c . . . . 1 1 . . . .

D+,±,±
4,b . . . . 1 1 . . 1 .

D+,±
5 . 1 . 1 . . 1 1 . .

D−,±
5 . 1 . 1 . . 1 1 . .

D−,±
4 A2 . . 1 . . . . . . .

D+,±
4,2 A2 . . 1 . . . . . . .

D+,±
4,1 A2 . . 1 . . . . . . .

D+,±
4,0 A2 . . 1 . . . . . . .
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8.2 Non-oriented target

Similarly, we now consider the space of all Lagrangian maps between fixed 3-

manifolds, a source manifold M which is either oriented or non-oriented and a

non-oriented target manifold Nno. Here, we are not making any assumptions

about the orientability of the source manifold since both options provide the

same results when the target manifold is non-oriented.

Like for the non-oriented source case, we cannot differentiate between

the signs σ = ±. Again, this means elementary codimension 1 strata in

L(M,T ∗N,N) differing only by the sign σ are glued together. In addition

we cannot use left or right rotations in the target space. Therefore, all swal-

lowtails become of one kind. As well, A5 transitions with the same s decora-

tion but opposite writhe decorations are glued up, creating the big stratum

As,±,±5 = As,+,+5 + As,+,−5 + As,−,+5 + As,−,−5 . In order to be consistent with

previous notation we replace the glued up decorations with ± where nec-

essary. This further reduces the number of codimension 1 strata from the

non-oriented source case to 23 both over Z and Z2 in L(M,T ∗N,Nno).

Theorem 8.2.1. The space D(M,T ∗N,Nno;Q) has rank 7. It is spanned by

the discriminantal cycles

I ′t, I ′sw, I ′c+ , I ′c− , I ′d+ , I ′d− , I ′χ.

Similar to the non-oriented source case over Q, the discriminantal cycles
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are either taken straight from Lemma 2.4.1 or are the sums of the Lemma’s

discriminantal cycles.

Corollary 8.2.2. The space of rational local invariants of L(M,T ∗N,Nno) is

spanned by

It, Isw, Ic+ , Ic− , Id+ , Id− , Iχ.

Proof of Theorem 8.2.1.

A basis of the space E(M,T ∗N,Nno;Q) is shown in Table 10. It is obtained

from modifying Table 6 like we did for the non-oriented source case over Q.

However, this time we include the big strata As,±,±5 = As,+,+5 +As,+,−5 +As,−,+5 +

As,−,−5 .

Here E(M,T ∗N,Nno;Q) is 16-dimensional. Since in L(M,T ∗N,Nno) we

have 23 codimension 1 big strata, D(M,T ∗N,Nno;Q) must be 7-dimensional.

Its basis is shown in Table 11. This concludes our proof of Theorem 8.2.1.
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Table 10 13 14 14 14 14 15 18 19 20 22 23 23 27 27 28 29

TA3
2 2 . . . . 1 . . . . . . . . . .

A±,±
3 A2

2 −2 . . . . . . . . . . . . . . .

A2,e;+,±;+,±
3 . 1 . . . . . . . . . . . . 1 .

A2,e;+,±;−,±
3 . . 1 1 . . . . . . . . . . −1 .

A2,e;−,±;−,±
3 . . . . 1 . . . . . . . . . . .

A2,h;+,±;−,±
3 . . 1 −1 . . 1 . . . . . . . 2 −1

A±,±
4 A2 . . . . . −2 . . . . . . 2 2 . .

TA+,±
3 A2 . −2 −2 . . 1 . −2 . . 2 . −2 . . .

TA−,±
3 A2 . . . −2 −2 1 . . . . . 2 . −2 . .

A+,±,±
5 . . . . . . −1 2 . . . . . . . .

A−,±,±
5 . . . . . . 1 . . . . . . . . .

A
±,e/h
4 . . . . . . . −2 . . −2 −2 . . . .

A+,±,q
3 . . . . . . . . 1 . 2 . . . . .

A−,±,q
3 . . . . . . . . −1 . . 2 . . . .

D−,±,±
4,q . . . . . . . . . . −1 −1 . . . .

D+,±,±
4,a/c . . . . . . . . . 1 1 1 . . . .

D+,±,±
4,b . . . . . . . . . −1 . . . . . .

D+,±
5 . . . . . . . . . . 2 . . . . .

D−,±
5 . . . . . . . . . . . 2 . . . .

D−,±
4 A2 . . . . . . . . . . . . 1 −1 −2 .

D+,±
4,2 A2 . . . . . . . . . . . . −1 . . .

D+,±
4,1 A2 . . . . . . . . . . . . . . . 2

D+,±
4,0 A2 . . . . . . . . . . . . . 1 . .
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Table 11 t sw c+ c− d+ d− χ

TA3
2 2 . . . . . .

A±,±
3 A2

2 2 . . . . . .

A2,e;+,±;+,±
3 . . 4 . . . .

A2,e;+,±;−,±
3 . . 2 2 . . .

A2,e;−,±;−,±
3 . . . 4 . . .

A2,h;+,±;−,±
3 . . 2 −2 . . .

A±,±
4 A2 1 . 1 1 . . .

TA+,±
3 A2 . . 2 . . . .

TA−,±
3 A2 . . . 2 . . .

A+,±,±
5 . 2 2 . . . .

A−,±,±
5 . 2 . 2 . . .

A
±,e/h
4 . 2 . . . . .

A+,±,q
3 . . . . . . 1

A−,±,q
3 . . . . . . 1

D−,±,±
4,q . . . . . 2 1

D+,±,±
4,a/c . . . . 2 . −1

D+,±,±
4,b . . . . 2 . −1

D+,±
5 . 2 −2 . −1 1 .

D−,±
5 . 2 . −2 −1 1 .

D−,±
4 A2 . . 3 −3 . . .

D+,±
4,2 A2 2 . 1 −1 . . .

D+,±
4,1 A2 . . 1 −1 . . .

D+,±
4,0 A2 −2 . 1 −1 . . .

Corollary 8.2.3. For generators of D(M,T ∗N,Nno;Z) one can take

I ′t, I ′c+ , I ′d+ , I ′χ, I ′(d++d−)/2, I ′sw/2, I ′(c++c−)/2.
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Here, the discriminantal cycles are taken straight from Corollary 8.1.3.

Corollary 8.2.4. The space of integer local invariants of L(M,T ∗N,Nno) is

spanned by

It, Ic+ , Id+ , Iχ, I(d++d−)/2, Isw/2, I(c++c−)/2.

We now consider the Z2 analogue of Theorem 8.2.1.

Theorem 8.2.5. The space D(M,T ∗N,Nno;Z2) has rank 10. It is spanned

by the discriminantal cycles

I ′t, I ′c+ , I ′d+ , I ′χ, I ′(d++d−)/2, I ′sw/2, I ′(c++c−)/2, I ′16, I ′18

and the extra basic discriminantal cycle

I ′21 = A+,±,±
5 + A−,±,±5 .

This time the discriminantal cycles are taken straight from Theorem 8.1.5.

It is possible to give a geometric interpretation of the basic discriminan-

tal cycle I ′21 direct from Table 9, that is D(Mno, T
∗N,N ;Z2). In our case

we know the target manifold Nno is non-oriented and so, we don’t know its

the orientation. Let’s now assume that Nno is not oriented but orientable

and fix an orientation, for example the right one. We see from Table 9 that

Isw+ + I(sw++sw−)/2 = I21. Hence, the invariant I(sw−−sw+)/2 is an integral geo-

metric interpretation of the basic discriminantal cycle I ′21. We should note if
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we change the orientation of the target, the sign ± of the swallowtails swap

but since we are working mod2 it does not change the result.

Proof of Theorem 8.2.5.

A basis of the space E(M,T ∗N,Nno;Z2) is shown in Table 12 and was

obtained by modifying Table 8 by including the big strata As,±,±5 = As,+,+5 +

As,+,−5 + As,−,+5 + As,−,−5 .

Since in L(M,T ∗N,Nno) we have 23 codimension 1 big strata the space

D(M,T ∗N,Nno;Z2) must be 10-dimensional, and its basis is shown in Table

13. This concludes our proof of Theorem 8.2.5.
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Table 12 15 16 17 17 18 20 22 23 27 27 28 34 35

A4
2 . 1 . . . . . . . . . . .

TA2
2 . . . . . 1 1 . . . . . .

TA3
2 1 . . . . . . . . . . 1 .

A±,±
3 A2

2 . . 1 1 . . . . . . . . .

A
2,e/h;+,±;+,±
3 . . 1 . . . . . . . . . 1

A
2,e/h;+,±;−,±
3 . . 1 1 1 . . . . . 1 . .

A
2,e/h;−,±;−,±
3 . . . 1 . . . . . . 1 . 1

A±,±
4 A2 . . . . . . . . . . . . .

TA±,±
3 A2 . . . . . . . . . . . . .

A+,±,±
5 . . . . 1 . . . . . . . .

A−,±,±
5 . . . . 1 . . . . . . . .

A
±,e/h
4 . . . . . . . . . . . . .

A+,±,q
3 . . . . . 1 . . . . . . .

A−,±,q
3 . . . . . 1 . . . . . . .

D−,±,±
4,q . . . . . . . 1 . . . . .

D+,±,±
4,a/c . . . . . . 1 1 . . . . .

D+,±,±
4,b . . . . . . 1 . . . . . .

D+,±
5 . . . . . . . . . . . . 1

D−,±
5 . . . . . . . . . . . . 1

D−,±
4 A2 . . . . . . . . 1 1 . . .

D+,±
4,2 A2 . . . . . . . . 1 . . . .

D+,±
4,1 A2 . . . . . . . . . . . 1 .

D+,±
4,0 A2 . . . . . . . . . 1 . 1 .
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Table 13 t c+ d+ χ (d+ + d−)/2 sw/2 (c+ + c−)/2 16 18 21

A4
2 . . . . . . . . . .

TA2
2 . . . . . . . 1 . .

TA3
2 . . . . . . . . . .

A±,±
3 A2

2 . . . . . . . . . .

A
2,e/h;+,±;+,±
3 . . . . . . . . 1 .

A
2,e/h;+,±;−,±
3 . . . . . . . . 1 .

A
2,e/h;−,±;−,±
3 . . . . . . . . 1 .

A±,±
4 A2 1 1 . . . . 1 . . .

TA±,±
3 A2 . . . . . . 1 . . .

A+,±,±
5 . . . . . 1 1 . . 1

A−,±,±
5 . . . . . 1 1 . 1 1

A
±,e/h
4 . . . . . 1 . . . .

A+,±,q
3 . . . 1 . . . . . .

A−,±,q
3 . . . 1 . . . 1 . .

D−,±,±
4,q . . . 1 1 . . . . .

D+,±,±
4,a/c . . . 1 1 . . . . .

D+,±,±
4,b . . . 1 1 . . 1 . .

D+,±
5 . . 1 . . 1 1 . . .

D−,±
5 . . 1 . . 1 1 . . .

D−,±
4 A2 . 1 . . . . . . . .

D+,±
4,2 A2 . 1 . . . . . . . .

D+,±
4,1 A2 . 1 . . . . . . . .

D+,±
4,0 A2 . 1 . . . . . . . .
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