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Abstract 

Discrete element method (DEM) is a useful numerical tool for analysing 

complex mechanical behaviour of granular materials as it considers the 

interaction at discrete contact points. In general, most of the DEM software 

packages use spherical particles by default because of easy contact detection 

and less computational cost. However, researchers confirmed that particle 

shape plays a significant role in exploring the mechanical behaviour of granular 

materials. Due to upgraded computation resources, nowadays it is possible to 

simulate the mechanical behaviour of granular materials considering true 

geometric shapes of particles. The key objective of the current research is to 

investigate the mechanical behaviour of granular materials considering particle 

shape characteristics. For that purpose, two basic geotechnical laboratory 

tests, i.e., direct shear test and triaxial test, are considered in this thesis.   

    

The current research uses a commercial DEM code-named Particle Flow Code 

(PFC) developed by Itasca. An attempt was made to generate realistic particle 

shapes considering their major plane of orientations using a built-in clump 

mechanism in PFC. A series of DEM simulations were performed to investigate 

the sensitivity of the macroscopic specimen response to some specific 

parameter (e.g., particle numbers, loading rate). Based on the sensitivity 

analysis, selected microscopic parameters were selected to validate the DEM 

model with the experimental direct shear test results.  

 

To investigate the effects of particle elongations on the mechanical behaviour 

of granular materials, a series of simulations of direct shear tests and triaxial 

tests were performed using a range of dimensionless elongation parameters. 

The evolution of elongated particles was investigated at macro-and micro- scale 

levels. Moreover, the relationships between elongation parameter and critical 

state parameters were established. 
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 A series of triaxial test simulations were performed considering two 

morphological descriptors and their mechanical behaviour was investigated at 

the macro- and micro-scale levels. In addition, a triaxial test environment was 

implemented to investigate the mechanical response of granular materials 

under different loading paths (i.e., axial compression (AC), axial extension 

(AE), lateral compression (LC) and lateral extension (LE)). The grain-scale 

interactions in terms of coordination number and deviator fabric were also 

investigated. Furthermore, the relationships were established among strength, 

dilatancy and state parameter concerning critical states.   

 

Keywords: Discrete element method; particle geometry; shear strength; critical 

state; microscopic behaviour.                 
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Chapter 1 Introduction  

1.1 Background  

Granular materials are ubiquitous and closely associated with our daily life. 

These materials are basically comprised of discrete particles which interact 

with each other at their microscopic contacts to sustain the external loads 

applied to them. In general, these materials exhibit many salient features such 

as dilatancy, anisotropy and nonlinearity because of the heterogeneity and 

irregularity in nature. It was mentioned that the strength and deformation 

characteristics of granular materials mainly depends on the particle shape (e.g., 

Gong & Liu 2017; Kodicherla et al. 2019). The physical mechanisms responsible 

for macroscopic responses of granular materials remain a question often raised 

by various investigators in the field (Nouguier-Lehon 2010; Yang & Luo 2015; 

Hohner et al. 2015; Zhao & Zhou 2017). There is no generalized particle shape 

to intrinsically characterize the mechanical responses of granular material that 

exist in nature. Therefore, particle shape is still worth considering and its 

influence on the mechanical behaviour of granular materials remains an open 

topic in the research community.  

 

Nowadays, constitutive relationships have become a standard tool for resolving 

a wide variety of engineering problems. Due to rapid developments in the 

computational power and up-gradation of sophisticated numerical models, 

there is a potential possibility to investigate large-scale practical problems 

arising in the field. Among the various available numerical methods, discrete 

element method (DEM) is one of the powerful tools to simulate the mechanical 

behaviour of granular materials.  
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The advent of DEM enables researchers to explore more fundamental aspects 

of soil behaviour (Cundall & Strack 1979). Despite its simplicity, the 

particulate implementation of DEM captures many salient features of soils 

(Iwashita & Oda 1998; Thornton 2000; Cundall 2001; O’Sullivan & Cui 2009). 

In the past decades, there has been a dramatic increase in the number of DEM-

related research papers across a variety of scientific disciplines including 

Geomechanics (O’Sullivan 2014).  

 

1.2 Objectives and scope of the thesis 

The primary intention of this thesis is to investigate the effects of particle shape 

characteristics on the mechanical behaviour of granular materials under 

commonly used laboratory element tests, i.e., direct shear test and triaxial test 

using DEM. In general, particle shape characteristic is defined by the terms, i.e., 

elongation, roundness and texture. The particle elongation indicates the aspect 

ratio while the roundness describes the angularity of the particle. The texture 

represents surface characteristics of the particle or in other words, it represents 

the particle morphological features. As each of these parameters affects the 

mechanical behaviour of granular materials, it is important to explore further 

at micro-scale levels. Hence, this thesis is motivated to investigate some of the 

major parameters used to define the particle shapes with the following targeted 

objectives:   

 

 To investigate the effectiveness of realistic particle geometry generation 

approach and the validation of the DEM model with experimental direct 

shear test results.    

 

 To explore the influence of particle elongations and morphological 

features on the direct shear and triaxial shear behaviour of granular 

materials at the macro- and micro-scale levels.  
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 To explore the influence of strength and critical state behaviour of 

granular material under different drained loading paths.  

 

1.3 Outline of the thesis 

This thesis consists of eight chapters in total. Each chapter is organized as 

follows:  

 

 In Chapter 2, a brief history of DEM, a review of the computer 

algorithms and the state of art is presented. The basic principle of DEM 

and its terminology is also presented in the subsequent sections. In 

addition, the basic definitions for macroscopic and microscopic 

parameters are given.  

 

 In Chapter 3, a systematic sensitivity analysis considering a range of 

microscopic parameters, a procedure for the generation of realistic 

particle shapes are presented. The validation of the DEM model with 

experimental direct shear test results using generated clumped particles 

is presented. Moreover, subsequent microscopic parameters are also 

investigated.   

 

 In Chapter 4, the influence of particle elongations on the macro- and the 

micro-scale response of granular materials under the direct shear test 

condition is explored. The relationships between stress-dilatancy and 

the critical state parameters are established.   

 

 In Chapter 5, the influence of particle elongations on the critical state 

behaviour of granular materials under drained triaxial test conditions is 

investigated. The quantitative relationships are established between the 

particle shape characteristics and critical state parameters.  
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 In Chapter 6, the influence of particle morphology on the drained 

triaxial behaviour of granular materials is examined. The relationship 

between macro- and micro-scale levels are derived.         

 

 In Chapter 7, the influence of loading paths on the critical state 

behaviour of granular materials using DEM is investigated. The effects 

of loading paths on the strength and the critical state lines in the 
'q p

are investigated. A comprehensive comparison is made among the 

loading paths and the evolution of critical state characteristics are 

discussed.     

      

 In Chapter 8, the key findings from the preceding chapters are 

summarized and the possible future perspectives are suggested.  
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Chapter 2 Review of DEM simulations and its 

terminology      

2.1 Introduction 

In the 21st century, geotechnical engineering has faced various challenges that 

require effective and sustainable leadership. The key challenges include climate 

change, energy production, material characterization and water management 

which will compel the use of advanced and robust numerical modelling 

techniques. These new challenges will involve more sophisticated constitutive 

models that explicitly acknowledge the discrete nature of granular materials or 

soils.  

 

In granular assembly, the transfer/distribution of forces occurs through 

interactions between the particles. The macroscopic responses of granular 

materials are non-linear and hysteretic, which mainly depends on the 

magnitude of stress levels, stress paths and stress history. Such complexities 

have led to the developments of constitutive models of granular media, which 

may be analytical, physical (typically photoelastic) or numerical. The analytical 

models were developed based on the regular arrays of spheres and discs (Duffy 

& Mindlin 1957; Deresiewicz 1958 (a) & 1958(b); Duffy 1959; Rowe 1962) 

whereas the physical models were modelled using steel balls, glass beads, 

aluminium rods and photoelastic discs (Matsuoka & Geka 1983; Oda et al. 

1985). As compared to analytical and physical models, the most promising way 

to model the granular material behaviour is through numerical techniques, 

because all the loading or boundary conditions can be monitored effectively. 

Moreover, the stresses and strains at any stage within the sample can be 

extracted, but the accurate determination of the input parameters selected for 

the modelling is required as it greatly affects the results. A popular 

commercially available DEM package named Particle Flow Code (PFC), 
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developed by Itasca Consulting Group (Itasca Consulting Group 2018) is used 

to perform all the numerical simulations in this thesis. All numerical 

simulations are executed by a Dell Precision T7500 workstation, which has the 

following specifications: Intel® Xeon® CPU X5690 @3.47 GHz; 12 cores; 48 GB 

of RAM; NVIDIA Quadro 4000.   

 

2.2 Review of computer algorithms and state of the art review   

Cundall (1978) developed the original version of the two-dimensional DEM 

program called BALL. In this program, a linear spring contact law was 

implemented and a user has an option to choose wall boundaries as strain-

controlled, stress-controlled or servo-controlled. Later, the BALL program was 

extended to TRUBAL for reproducing the published work of Rowe (1962) by 

Cundall & Strack (1979c). BALL was extended to the 3D version TRUBAL by 

Cundall (1988). In TRUBAL version, nonlinear contact laws were implemented 

using a complete Hertz normal contact theory and a simplified tangential 

contact theory of Mindlin (1949). In the last decade, several open-source and 

commercial DEM packages have been developed to simulate the mechanical 

behaviour of granular materials and coupled with fluids as well. Some of the 

currently available open-source DEM options are Oval (Kuhn 2003), YADE 

(Kozicki & Donzé 2009), LMGC90 (Duboise et al. 2011), ESyS Particle 

(Weatherley et al. 2011), Mercury-DPM (Thornton et al. 2013), and LIGGGHTS 

(Kloss & Goniva 2011). Also, some of the commercially available options 

include PFC by Itasca (Itasca Consulting Group 2018), Chute Maven, EDEM, 

ELFEN, PASSAGE®, Bulk Flow AnalystTM, and Rocky®.  

 

2.3 Discrete Element Method (DEM)  

The discrete element method (DEM) is a numerical approach which was 

originally pioneered by Cundall (1971, 1974). In the very beginning, DEM was 

applied to solve problems related to rock mechanics. In later stages, Cundall 

(1978) and Strack & Cundall (1978) and Cundall & Strack (1979 a, b) used  
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BALL to develop the constitutive relationships for granular soils. The perks of 

using this approach are that each particle in the cloud of granular assembly and 

their interactions are explicitly analysed. To reduce the computational cost of 

the simulations in DEM, the shapes of the particles are simplified as discs in 2D 

and spheres in 3D. Hence, this allows a large number of particles to be analysed 

while still capturing the salient response characteristics of granular material 

behaviour. The unique feature of the DEM is that a user can apply the load and 

deformations virtually. However, in the physical laboratory tests, it is 

incredibly difficult to access all the necessary information and the data of the 

particle-scale mechanism that underlies the complex overall material response.  

 

In DEM, the properties of stressed assembly of rigid particles (e.g., position, 

velocity and contact forces) are updated at each numerical iteration timestep. 

The translational and rotational displacements of each particle are obtained by 

explicitly integrating the governing differential equations based on Newton’s 

second law of motion, while the contact forces between particles are calculated 

using a well-defined force-displacement contact law (Hertz 1882; Mindlin & 

Deresiewicz 1953; Cundall & Strack 1979b; Itasca Consulting Group 2018). The 

interactions between the particles are monitored at each contact and the 

movement of each particle is traced. It is presumed that the velocity of each 

particle is constant at each iteration timestep. Since the explicit numerical 

integration technique is used in DEM, the time-step is required to be very small 

so that stable numerical solutions can be achieved. 

 

2.3.1 Calculation cycle  

The calculation cycle in PFC alternates between the application of Newton’s 

second law of motion to particles and the force-displacements law at the 

contacts. The force-displacement law is used to obtain the contact forces from 

the relative displacements calculated at the contacts based on their positions. 

The contact forces result in the motion of the particles and the motion is 
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calculated using the second law of motion. Figure 2.1 shows how the 

calculation cycle revolves during the simulation in PFC. At the onset of each 

iteration timestep, a set of contact information is updated based on the known 

positions of the particles and walls. Then, the updated contact force based on 

the relative motion between two particles is calculated by the force-

displacement law through the contact constitutive model and the relative 

displacement from the previous timestep. Using the law of motion, the position 

and velocity resulting from the resultant force and moment; which arises due 

to the contact force acting on the particle, can be resolved. During the 

simulation, existing contacts (ball-ball or ball-wall) can break automatically 

and new contacts may be formed. To ensure the existence of quasi-static 

conditions, the loading rates are usually taken at a very low rate with very small 

fractions of inertial forces allowed in the assembly.   

 

 

Figure 2.1 Calculation cycle in PFC 

(Source: Itasca manual 2018) 

 

Force – displacement law  

The force-displacement law is associated with the relative displacement 

between the particles at contact and the contact forces acting on them. The 
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contact force vector ( iF ) can be decomposed into normal ( n
iF ) and shear ( s

iF )  

components concerning the contact plane, as given below:  

 

n s
i i iF F F                                                                                                                        (2.1) 

 

The normal contact force vector ( n
iF ) is given as:  

 

n n n i
iF k U n                                                                                                                     (2.2) 

 

where nk  is the normal stiffness (force/displacement) at the contact evaluated 

by the implemented contact law, in  is the unit contact normal and nU  is the 

overlap of two particles.  

 

When the contact is formed, initially the shear contact force is zero. At each 

subsequent relative shear-displacement increment of the elastic shear force, the 

shear displacement increment is added to the current value. The shear 

component of the contact displacement-increment vector occurring over a 

timestep of t  is calculated as:  

 

s s
i iU V t                                                                                                                         (2.3) 

  

The shear elastic force-increment vector is given as:  

 

   s s s
i iF k U                                                                                                                   (2.4) 

 

where sk  is the shear stiffness at contact and the value is determined by the 

implemented contact law. The shear stiffness is the tangent modulus, the new 

shear contact force is calculated by summing up the old shear force vector 
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existing at the beginning of the timestep with the shear elastic force-increment 

vector.  

 

( )s s s
i j old iF F F                                                                                                                       (2.5) 

 

The value of normal to shear contact force evaluated using Eqns. (2.1) and (2.5), 

are adjusted to satisfy the contact constitutive relationships.  

 

Law of motion  

The motion of a single particle is determined by the resultant force and moment 

vectors acting upon it. The equations of motion can be described in terms of 

two vector quantities: one relates to the resultant force to the translational 

motion and the other one relates to the resultant moment to the rotational 

motion. The motion of the centre of mass is described in terms of its position-

x , velocity-
.

x , and acceleration -
..

x . The rotational motion of the particle is 

described in terms of its angular velocity   and angular acceleration 
.

 . 

 

Translation motion  

The equation for translational motion can be written in the vector form as: 

 

.

F m x g 
  

 
                                                                                                                  (2.6) 

 

where F is the resultant force. In other words, it is equal to the sum of all 

externally applied forces acting on a particle; m is the total mass of the particle, 

and g is the body force acceleration vector (e.g., gravitational loading).  

 

The translational equations of motion are solved for balls and clumps via the 

second-order Velocity Verlet algorithm (Verlet 1967). This method of 
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integration offers a second-order accuracy and is often used in the molecular 

dynamics simulations because, for a conservative system, the energy oscillates 

around a constant value corresponding to the exact energy of the system. For 

instance, the previous cycle solved in Eqn. (2.6) at the time t  and that the 

timestep resolved for the current cycle is Δt, the 1/2 step velocity, 
  /2. t t

x  , is 

calculated as: 

 

     /2. . 1

2

tt t t F
x x g t

m

  
    

 
                                                                                     (2.7) 

 

The position at a time t t  is updated using the 1/2 step velocity. 

 

   
 /2. t t

t t tx x x t



                                                                                                  (2.8) 

 

During the force-displacement cycle point, the forces are updated for the 

current cycle, leading to the updated acceleration 
 .. t t

x . The velocity is 

subsequently updated accordingly: 

 

     /2. . 1

2

t tt t t t F
x x g t

m

   
    

 
                                                                         (2.9) 

 

In PFC, the final velocity update of Eqn. (2.9) occurs as the initial step in the 

timestep determination cycle point or during the finalization stage when 

finishing a series of cycles as mentioned above. Thus, if one queries the velocity 

of a ball or clump after cycle point 10.0, they are querying the 1/2 step velocity 

  /2. t t

x  . 

 

 

mk:@MSITStore:C:/Program%20Files/Itasca/PFC500/pfchelp.chm::/docproject/source/manual/pfc_model_components/pfc_model_formulation/timestep_constraints.html#timestep-constraints
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Rotational motion  

The fundamental equation of rotational motion for a rigid body is given as: 

 

L I                                                                                                                            (2.10) 

 

where L is the angular momentum, I  is the inertia tensor and   is the angular 

velocity. Euler's equation can be obtained from Eqn. (2.11) by taking the time 

derivative: 

 

. .

M L I L                                                                                                      (2.11) 

 

where M is the resultant moment acting on the rigid body. This relation refers 

to a local coordinate system that is attached to the body at its centre of mass. 

 

2.3.2  Timestep determination  

To reliably update the model state, one must determine a suitable timestep for 

the numerical integration of Newton’s laws. The accelerations and velocities 

are assumed to be constant within each timestep. Hence, to minimize the 

propagation of disturbance to any particles other than its immediate neighbour 

in the calculation cycle, a small timestep must be identified. At the start of each 

calculation cycle, PFC estimates the critical timestep and actual timestep is 

taken as a fraction of this estimated critical value. 

 

The critical timestep estimation is calculated by considering a one-dimensional 

mass-spring system defined by a point mass (m) and spring stiffness (k) as 

shown in Figure 2.2. It should be noted that the motion of the point mass is 

governed by the differential equation, 
..

kx mx  . Bathe & Wilson (1976) 

expressed the critical timestep which corresponds to a second-order finite-

difference scheme as follows: 
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;crit

T
t 


     2 /T m k                                                                                               (2.12) 

 

where T is the time - period of the system.  

 

Taking the infinite series of point masses and springs (see Figure 2.2 (a)) into 

consideration, the smallest period will happen when the masses will move in 

opposite motion synchronically, such that, there is no motion at the centre of 

each spring. Figure 2.2(b) and Figure 2.2(c) show how the motion of a single 

mass can be described by two equivalent systems. The mathematical 

expression for the critical timestep is given as:  

 

crit

m m
t

k k
 2

4
                                                                                                         (2.13) 

 

where k is the stiffness of each spring as shown in figure (see Figure 2.2).  

 

 

Figure 2.2 Multiple mass-spring systems 

(Source: Itasca manual 2018) 
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These two systems characterize the translational motion. The rotational 

motion is characterized by the same two systems in which mass ‘m’ is replaced 

by a moment of inertia I of a finite-sized particle, and the stiffness is replaced 

by the rotational stiffness. Thus, a critical timestep for the generalized multiple 

mass-spring systems can be expressed as: 

 

 

 

/ ,

/ ,

tran

crit
rot

m k translation motion
t

I k rotational motion




 


                                                                 (2.14) 

 

where trank  and rotk  are the translational and rotational stiffness’s respectively 

and I  is the moment of inertia of the particle. 

 

2.3.3 Local damping   

The energy supplied to the particle system is dissipated through frictional 

sliding or viscous damping. However, these dissipation mechanisms may not 

be sufficient to arrive at a steady-state solution in a reasonable number of 

cycles. In PFC, a body-based damping scheme called local damping is available 

to dissipate additional kinetic energy. The local damping acts on each ball or 

clump, applying a damping force with a magnitude proportional to the 

unbalanced force. When the local damping is activated, a damping 

force/moment dF , which is proportional to the unbalanced force/moment uF  is 

applied to particles which are opposite to the corresponding velocity (V) 

direction is given as:  

 

 d uF d F sign V                                                                                                               (2.15) 

 

where d is the local damping ratio and sign denotes the signum function.     
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2.3.4   Linear contact model  

The linear contact model provides linear and dashpot components that act 

parallel with each other. The linear component provides linearly elastic (no-

tension) frictional behaviour, while the dashpot component provides viscous 

behaviour (see Figure 2.3). Both components act over a vanishingly small area 

and thus transmit only a force. This model can be assigned to both ball-ball and 

ball-facet contacts.  

 

 

Figure 2.3 Behaviour and rheological components of the linear model 

(Source: Itasca manual 2018) 

 

The linear model offers an infinitesimal interface that does not resist relative 

rotation so that the contact moment equals to zero (i.e.,  0cM ). The contact 

force is resolved into linear and dashpot components (  l d
cF F F ). The linear 

force is produced by linear springs with a constant normal and shear stiffness 

nk  and sk , respectively. The dashpot force is produced by dashpots with 

viscosity given in terms of the normal and shear critical-damping ratios, n  and 

s  respectively. The linear springs act in parallel with the dashpots. A surface 

gap sg  is defined as the difference between the contact gap, cg  and the 

reference gap rg  so that when the reference gap is zero, the notional surface 

coincides with the piece surfaces as shown in Figure 2.4. The contact is active 
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if and only if the surface gap is less than or equals to zero; the force-

displacement law is skipped for inactive contact. 

 

 

Figure 2.4 Surface gap for linear contact model 

 (Source: Itasca manual 2018) 

 

The linear springs cannot sustain tensions, and slip is accommodated by 

imposing a Coulomb limit on the shear force using the friction coefficient,  . 

The normal and shear components of the linear force can be denoted by l
nF  and 

l
sF , respectively. 

l
nF  is updated either in an absolute sense based on the surface 

gap, or incrementally based on the surface-gap increments, with the update 

type controlled by the normal-force update mode, lM . It should be mentioned 

that l
sF  is always updated incrementally based on the relative shear-

displacement increments.  

 

The dashpot force is affected by the dashpot mode, 
dM , which provides four 

combinations of normal and shear behaviour. The normal-behaviour model can 
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be either full or no-tension, where full means that the entire dashpot load is 

assigned and no-tension means that d
nF  is capped to ensure that the total normal 

force (
l d
n nF F ) does not become tensile. The shear-behaviour mode can be 

either full or slip-cut, where slip-cut means that 
d
sF  is set to zero if the linear 

spring is sliding. The contact with the linear model is active if and only if the 

surface gap (
s c rg g g  ) is less than or equal to zero. When the reference gap 

is zero, the notional surfaces coincide with the piece surfaces. The force-

displacement law is skipped for inactive contacts.  

 

Surface property inheritance  

The linear stiffness and the friction coefficient  may be inherited from the 

contacting pieces. For a property to be inherited, the inheritance flag for this 

property must be set to true, and both contacting pieces must hold a property 

with the same name.  

 

   1 2

1 1 1

n n n
k k k
   

   1 2

1 1 1

s s s
k k k
                                                                                                                 (2.16) 

 

where (1) and (2) denote the properties of piece 1 and 2 respectively.  

 

The friction coefficient is inherited using the minimum of the values set for the 

pieces:  

 

    1 2min ,                                                                                                         (2.17) 

 

The linear stiffnesses are inherited, assuming that both pieces stiffness act in a 

series as shown in Figure 2.5.  
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Figure 2.5 Relationship of normal stiffness to piece normal stiffness for 

linear contact model  

(Source: Itasca manual 2018) 

 

Deformability  

The deformability of a homogeneous, isotropic, and well-connected granular 

assembly experiencing small-strain deformation can be fit by isotropic material 

model, which is described by the elastic constants of Young's modulus (E) and 

Poisson's ratio   . E and  are emergent properties that can be related to the 

effective modulus  *E  and the normal to shear stiffness ratio                                         

(
* /n sk k k ) at the contact as follows: E is related to *E , with E increasing as *E

increases;   is related to *k , with   increases up to a limiting positive value as 

*k  increases.  

 

* /nk AE L  , *
s nk k / k , [ nk  and sk  inheritance: = false]                                  (2.18) 
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                                                                                     (2.20) 

 

These relationships are obtained by specifying *E and *k as the arguments of the 

deformability method. The normal stiffness to the axial stiffness of the volume 

of material is given in Figure 2.6.  

 

 

Figure 2.6 Volume of material associated with contact 

(Source: Itasca manual 2018) 

 

2.3.5 Principle of clump formation 

The clump is a single entity formed by overlapping independent balls (also 

called pebbles in PFC) at different coordinates to create an irregular particle 

shape. The overlapping contacts are generally ignored in the calculations, 

resulting in a saving of computational time as compared to a similar calculation 

in which all contacts are active. In this sense, a clump differs from a group of 
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particles that are bonded to one another. Moreover, a clump template may hold 

the surface description that can be used for the calculation of inertial 

parameters and clump visualization.  

 

Figure 2.7 shows the contact information of two pebbles in PFC. The clump 

generally represents by the centres of the pebbles (
aX  , 

bX ), the point of 

contact (
cX ) and the unit-vectors ( 1n  , 2n , 3n ). The normal 3n  can be given as:  

 

3 1 2
B A

B A

x x
n n n

x x


  


                                                                                                          (2.21) 

 

where 1n  and 2n  lie in the contact plane.  

 

 

Figure 2.7 Typical contact between two pebbles in DEM 

(Source: Itasca manual 2018) 

 

Let ‘m’ be the mass of a clump and ‘
c
ix ’ be its location of the centre of mass.             

If pN  is the balls form a clump, the mass of clump can be given as:  
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1

pN
p

p

m m


                                                                                                                         (2.22) 

1

1 pN
c p p
i i

p

x m x
m 

                                                                                                                  (2.23) 

where pm  and 
p
ix  are the mass and centroid of the constituent pebble 

respectively. The motion of a clump can be expressed in terms of translation 

motion of a point in the clump and rotation of the entire clump.  

 

2.4 Stress tensor  

In a quasi-static regime, for a representative elementary volume (REV), the 

stress-strain behaviour of a granular assembly can be quantitatively obtained 

using averaged Cauchy’s stress tensor (e.g., Christoffersen et al. 1981; Mehrabadi 

et al. 1982):  

 

1
    c c

ij i j
c V

f b
V

                                                                                                 (2.24) 

 

where V  is the total volume of the REV, 
cf  and cb  are the contact force and 

branch vector at each contact point c, respectively. For a clear understanding,         

a contact force cf  can be decomposed into three components, i.e., 
c
nf  , 

c
tf  and 

c
sf  

in the n, t and s directions (in 3D) such that 
c c c c

n t sf f n f t f s   . Herein, n, t and s 

are three orthogonal unit vectors parallel and perpendicular to the contact 

plane. The mean effective stress and deviator stresses are iip   / 3  and 

  ij ijq s s 3 / 2  with ij ij ijs p   , respectively, where ij  is the Kronecker 

delta. 
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2.5 Microscopic parameters  

2.5.1 Coordination number (CN)  

The CN is a fundamental microscopic quantity, which can provide the 

structural stability of a granular assembly (Thornton 2000; Rothenburg & 

Kruyt 2004).  

 

2 /CN C N                                                                                                                    (2.25) 

 

where C  is the number of contacts and N is the number of particles. The 

numeric number 2 denotes the fact that each contact is shared by two particles. 

According to O’Sullivan (2002), higher CN usually corresponds to higher 

packing density or a lower void ratio (e) and the material strength and stiffness 

are proportional to the specimen CN in the absence of any particle crushing.        

It should clearly be stated that the contacts used for clumped particles refer to 

the clump-to-clump contacts, which means that the contacts between the 

spheres constituting the clump are ignored or omitted.   

 

2.5.2 Fabric tensor  

According to Oda (1972, 1978), the term ‘fabric’ refers to the spatial 

arrangement of particles. In other words, it can also be used to quantify the 

structural anisotropy of granular materials (Oda 1999; Thornton 2000). These 

measures reflect interparticle connectivity (Satake 1978; Mehrabadi et al. 1982; 

Mehrabadi & Nemat-Nasser 1983; Oda et al. 1985), the distribution of void size 

or orientation (Kuhn 1999; Fu & Dafalias 2015), the distribution of the longer 

axis for non-spherical particles (Oda et al. 1985), or the orientation of particles 

surfaces (Kuo et al. 1998). Satake (1978) suggested that the geometrical 

anisotropy of a contact network could be characterized by a fabric tensor 
ij , 

which is given as:  
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1

1
     

cN
k k

ij i j
kc

n n
N




                                                                                                              (2.26) 

 

where kn  denotes the unit normal contact vector at contact k with i, j ,   ,1 2 3  

(for 3D) and cN  is the number of contacts in the assembly. The similar fabric 

tensor was also used by Kodicherla et al. (2018) for the evaluation of inherent 

fabric anisotropy of sand particles. 

 

The elements of the second-order fabric tensor  11 22, and 33  characterize the 

distribution of the contact orientation in the direction of reference axes, i.e., x, 

y, and z-axis. If the assembly of particles is isotropic in the sense of second-

order fabric tensor, the fabric tensor can be given in the matrix form as: 

     

11 12 13

21 22 23

31 32 33

1 0 03
10 03

10 0 3

  

   

  

 
   
    
   
    

 

                                                                (2.27) 

 

          1 2 3 11 22 33 1                                                                                   (2.28) 

 

The fabric tensor given in Equation (2.26) is a symmetrical second-order tensor, 

which has three principal values     11 22 33 1 / 3  indicates the average 

orientation of contacts distributed uniformly in the x, y and z directions.  

 

Although the second-order fabric tensor is the most commonly used approach 

to quantify the fabric, it may not necessarily identify the important differences 

between different packing configurations such as face-centred-cubic packing 

and/or rhombic packing (O’Sullivan et al. 2004). Consequently, some 

researchers like O’Sullivan et al. (2004) and Thornton & Zhang (2005) have 

also been used the fourth-order fabric tensor in their studies, which is given by: 



 
Chapter 2 Review of DEM simulations and its terminology 

 

48 
 

  
c
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1

, , , , ,                                                            (2.29) 

 

It is cumbersome to visualise the fourth-order fabric tensor. Thus, still, the 

second-order fabric tensor is used.  

 

2.5.3 Strong and weak force subnetworks  

Radjai et al. (1998) in a 2D case and Thornton & Antony (1998)  in a 3D case 

demonstrated that the whole contact network can be distinguished into strong 

and weak subnetworks based on whether the normal contact force is higher or 

lower than the average normal contact force 
n
avgf , respectively. The average 

normal contact force is given as: 

 

cN

c

n n
avg if f

N
 

1

1
                                                                                                                  (2.30)  

  

where n

if  is the thi  normal contact force in the assembly. Similarly, based on the 

definition of the fabric tensor mentioned in Eq. (2.26), the associated fabric 

tensors with the subnetworks can be expressed as:  
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                                                                       (2.31)  

  

where s
cN  and w

cN  are numbers of contacts in the strong and weak subnetworks, 

respectively. The total number of contacts 
cN  in the granular assembly is 

s w
c c cN N N  . As a result, the relation between the fabric tensor ij  of the whole 

contact network and those of the strong and weak sub-networks can be 

expressed as: 
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                                                                                                             (2.32) 

 

According to Thornton & Sun (1993), for three-dimensional axisymmetric 

conditions, a deviator fabric ( d ) is given as the difference between major and 

minor principal fabrics, i.e., d   1 3  has been used to describe the degree of 

structural anisotropy of granular assembly.  

 

2.6 Developments in particle geometries in DEM   

Although the basic formulations for DEM were derived back in the 1970s, the 

seminal research papers were published in 1979 (Cundall & Strack 1979) and 

picked- up slowly in the late 1990s (Zhu et al. 2007; O’Sullivan 2011). The most 

commonly used particle shapes in DEM are discs (in 2D) and spheres (in 3D). 

This is mainly due to computational limitations and easy contact detection 

during the simulation. However, the characterization of particle shape is 

crucial when it comes to reproducing quantitative bulk behaviour of granular 

assemblies (Cho et al. 2006; Andrade et al. 2012; Jerves et al. 2016). Such 

observations have spurred the development of several DEM variants to capture 

the particle shapes given in Figure 2.8 (Andrade & Mital 2019). Among these 

efforts involved in the use of ellipsoids (Rothenburg & Bathurst 1991; Lin & Ng 

1997; Ng 2004; Ng 2009; Yan et al. 2010), use of clumps or clusters of spherical 

particles (Favier et al. 2001; McDowell & Harireche 2002; Li & McDowell 

2018), polyhedra (Hart et al. 1988; Nezami et al. 2004), non-uniform rational 

basis splines or NURBS (Lim et al. 2014; Lim et al. 2016), and level sets (Jerves et 

al. 2016; Kawamoto et al. 2016; Kawamoto et al. 2018).  
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Figure 2.8  DEM variants to capture the particle shape: (a) Ellipsoids,       

(b) Clumps, (c) Polyhedra, (d) NURBS and (e) Level sets 

(Source: Andrade & Mital 2019) 

 

2.7 Summary  

The DEM has been considered as a useful tool for exploring the mechanical 

behaviour of granular materials. The particle mechanics studies are mostly 

performed by considering the assemblies of spherical particles due to its 

simplicity and easy contact detection. But some studies (e.g., Cavarretta et al. 

2010; Kodicherla et al. 2019) reported that the particle shape has significant 

effects on the mechanical behaviour of granular assemblies. The ability of 

realistic particles mainly depends on the motion and inter-particle contact 

forces at both macro- and micro-scale levels. A study conducted by Rothenburg 

& Bathurst (1992) indicates that a smaller angle of repose and reduced shear 

strength for spherical particles when compared with the non-spherical 

particles. Thus considering particle shape is an important aspect in modelling 

behaviour of granular materials. However, there is no generalized particle shape 

to understand the underlying mechanism between the particles in the 

literature. Hence, this thesis is targeted at exploring the macroscopic and 
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microscopic behaviour of granular materials employing different particle 

shapes using a built-in clump logic in PFC.  
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Chapter 3 Experimental and numerical 

validation of direct shear test 

3.1 Introduction 

In geotechnical engineering, the shear strength of granular materials can be 

evaluated using the direct shear test in the laboratory. The test was initially 

used in the 19th century by Alexandre Collin. There exists two kinds of direct 

shear test apparatus: the cubical specimen (i.e., Cambridge-type) with rigid 

wall boundaries which was developed by Roscoe (1953), and the cylindrical 

specimen (i.e., NGI-type) with the wire-reinforced membrane, which provides 

lateral confinement to the specimen (Bjerrum & Landva 1966). In both tests, 

the applied vertical and horizontal forces are measured and the ratio of 

horizontal stress acting in the shear band area and thereby providing a direct 

measure of the angle of internal friction of granular materials. However, it is 

still unclear that the exact state of stress within the shear band is unidentified. 

Alternatively, this problem can be further examined using DEM simulations. In 

DEM, a user can have great controllability and the same representative samples 

can be generated multiple times. This would ultimately provide a way to 

understand the sensitivity of granular materials considering a range of 

microscopic parameters for further investigation.   

 

 In Section 3.2, relevant published literature on both laboratory tests and DEM 

simulations under the direct shear test condition is reviewed. The description 

of the physical direct shear test and the procedure is presented in Section 3.3. 

A brief procedure for the generation of realistic particle shapes is presented in 

Section 3.4. The procedure for numerical simulations and sensitivity analysis is 

presented in Section 3.5 and Section 3.6 respectively. A numerical DEM 

validation with experimental laboratory direct shear test results is presented 
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in Sections 3.7. In the end, a summary of the overall chapter is presented in 

Section 3.8.  

 

3.2 Review of literature   

In the early stages of two-dimensional DEM simulations employing direct shear 

test was performed by Masson & Martinez (2001) and Zhang & Thornton 

(2002). It should be noted that the displacements of the particles in the out-of-

plane direction, and the contact forces between the particles in the shear 

direction also contribute to the overall material response of granular materials. 

Therefore, three-dimensional DEM analyses are essentially needed to capture 

the micromechanics along with the localisation.  

 

The macro-and micro-scale response of idealised granular material in the direct 

shear test apparatus was carried out by Cui & O’Sullivan (2006). The 

mechanical response of granular materials was considered by combining 

coupling experimental tests with subsequent DEM simulations. They found 

that the macro-scale response of the experimental test results was generally in 

agreement with the simulation results and the peak state angle of shearing 

resistance slightly underestimated. Moreover, a relative good match was found 

between the physical tests and the numerical simulations considering the 

micro-scale response.  

 

The shear behaviour of fresh and coal fouled ballast in the direct shear test using 

a three-dimensional DEM code i.e., PFC, was explored by Indraratna et al. 

(2014). The ballast particles were modelled using about 10-20 spherical balls 

clumped together in appropriate sizes. The fouled ballast with various void 

contamination index (VCI) ranging between 20 and 70% was modelled by 

injecting a specified number of miniature spherical particles. It was found that 

the peak shear stress of ballast assembly decreases and the dilation of fouled 

ballast increases with increasing VCI. The reduced maximum contact force 
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associated with increased particle contact area due to fouling describes the 

decreased breakage of fouled ballast.  

 

The direct shear behaviour of coarse sand using three-dimensional DEM 

considering rolling friction model was investigated by Salazar et al. (2015). To 

incorporate the grain shape characteristics, a rolling friction contact model was 

applied to the spherical particles. From the analysis of results, it was found that 

the particles that were up-scaled twice slightly less accurate than the unscaled 

experimental results.  

 

Wang et al. (2015) applied DEM to simulate the irregular ballast stones using a 

clump mechanism using the direct shear test. A non-linear contact force model 

with Mohr-Coulomb was implemented to model the interaction of the 

clumped particles. The results demonstrate that ballast behaviour was in good 

agreement with experimental behaviour. Also, the shear resistance increases 

with the normal stress application, indicating that the lateral confinement of 

ballast bed leading to less vertical settlement and more track stability. 

 

Amirpour Harehdasht et al. (2018) studied the micromechanics based 

assessment of reliability and applicability of boundary measurements in a 

symmetric direct shear test using a three-dimensional DEM code, i.e., SiGran. 

The performance of physical direct shear apparatus was optimized by 

modifying the symmetrical test configuration. The numerical results show 

quantitative data on different forms of energy consumed during shear and also 

confirmed the physical and numerical data reported in the literature. The 

micro-scale results show new evidence that corroborates the further use of the 

boundary measurements in the physical symmetrical direct shear test.  

  

Wang et al. (2018) explored three-dimensional modelling of direct shear test on 

granular rubber-sand. An excellent agreement was found between the 

simulation and experimental results, verifying the model’s capacity to examine 
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the mixtures shear behaviour. Moreover, these observations demonstrate the 

inclusion of rubber particles amends the mixture stiffness, grading and packing 

at the particulate level, leading to a corresponding variation in the material 

shear behaviour.  

 

Gong et al. (2019) studied the direct shear behaviour of railway ballast mixed 

with tire-derived aggregates (TDA) and compared those results with DEM. 

Both laboratory and DEM results confirmed that TDA significantly decreased 

the peak shear stress and the dilation effect of the ballast-TDA mix. As the 

content of TDA increased, the coordination number (CN) of TDA increased, 

while the CN of ballast particles decreased. Moreover, the TDA tended to 

decrease the occurrence of large contact forces which are greater than 250 N, 

and thus lowered ballast breakage in the TDA mix.    

 

3.3 Description of the physical direct shear test apparatus and 

procedure  

The laboratory direct shear apparatus consists of a metal box of a square in 

cross-section (100 mm   100 mm  50 mm, as shown in Figure 3.1), split 

horizontally into two halves at its mid-height. The normal (vertical) load is 

applied to the specimen and is kept constant throughout the test. A gradually 

increasing horizontal (shear) load is applied to the lower part of the box until 

the sample fails in shear. Each sample is tested with different normal loads. The 

horizontal load is applied at a constant loading rate (0.015 mm/s). The lower 

half of the box is mounted on the rollers and is pushed forward at a uniform 

rate by a motorized gear system. The upper half of the box bears against a steel 

proving ring, the deformation of which is shown on the dial gauge indicating 

the shearing force. A snapshot of the laboratory direct shear test set-up used is 

shown in Figure 3.2.  
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Figure 3.1 Direct shear apparatus currently used in the laboratory 

 

Figure 3.2 A snapshot of the direct shear test setup used in the laboratory 
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The shear stress, t, is calculated by dividing the horizontal load measured in 

the proving ring over the original cross-sectional area of the specimen, while 

the vertical stress (or normal stress),   is calculated by dividing the applied 

vertical load over the original cross-sectional area of the specimen.  

 

The angle of shearing resistance,  , can be calculated as: 

 

 n
1tan /                                                                                                                                                  (3.1)    

 

where τ is shear stress and n  is normal stress applied to the specimen. This 

test has been considered widely by many researchers in the geotechnical 

investigations, including the recent works by Cui & O’Sullivan (2006); 

Indraratna et al. (2014); Salazar et al. (2015); Wang et al. (2015); Amirpour 

Harehdasht et al. (2018); Wang et al. (2018) and Gong et al. (2019). 

 

3.4 Generation of realistic particles  

The development of digital imaging technology has supported the growth of 

advanced 3D imaging methods coupled with numerical models, such as X-ray 

tomography, laser scanner and X-ray microtomography (Lin & Miller 2005; 

Ando et al. 2012; Mollon & Zhao 2013; Sun et al. 2014; Garboczi & Bullard 2016). 

However, these approaches involve high precision instrumentation and 

complicated approaches. Alternatively, 2D approaches which are robust and 

reasonably appropriate can be used as an effective tool for shape 

characterization and understanding the interaction of contacts of realistic 

particle shapes using DEM (Vangla et al. 2018).      

 

To capture the geometric shape of the particle, about 10 representative sand 

particles are selected and those are cleaned thoroughly with alcohol to remove 

any dust particles exist on the surface. The scanning electron microscope 

(SEM) JSM – 6510 (JEOL) is used to obtain high-quality images for the analysis. 
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The particles are mounted on a specialized sample holder with adjustable 

height to optimize the operation. Before placing the particles on the sample 

holder, the particles are air-dried and coated with a conductive film to reduce 

thermal damage and to improve the secondary electron signal by the electron 

beam under a voltage of 15 kV. The surfaces of the particles are sputtered with 

a thin layer of a gold coating by JEC - 3000FC auto-fine coater. By adjusting the 

contrast and focusing on the particle with the required magnification, the 

desired image is obtained. For the representative purposes, magnification is 

fixed at 30x and subsequently yielded image has pixels of 1024   819.                    

To obtain the particle shape/geometry information, it is necessary to apply 

image processing techniques before analysing the image. The scanning electron 

microscope (SEM) micrographs are processed using an open-source image 

processing tool called Image J (Schneider et al. 2012). A MATLAB based 

subroutine is adopted to trace the outer periphery of the particle. This image 

has different features such as pixels, roughness and form features of the particle 

for further analysis (Vangla et al. 2018). A method proposed by Gander et al. 

(1994) is applied to fit the circles to a series of data points along the periphery 

of particle geometry. Using this approach, the best-fit circles are being found 

by minimising the sum of the squares of the distances between the points and 

the circle. A detailed procedure for finding the corner and non-corner regions, 

particle outline and best-fitted circles were reported in Zheng & Hryciw 

(2015). It should be noted that this approach provides a way to generate 

realistic particles using clumps considering the major plane of orientation of 

the particles. An illustration of the modelled clumps along with the SEM 

micrographs is presented in Figure 3.3. For more information regarding the 

clump logic in PFC, one may refer to Section 2.3.5.  
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Figure 3.3 A library of generated clumps along with SEM micrographs 

 

3.5 Numerical simulations  

In PFC3D, the direct shear box is modelled using rigid walls having the same 

dimensions as mentioned in Section 3.3. The shear box has two independent 

boxes namely the ‘box top’ and ‘box bottom’ with corresponding planes to 

cover at both the ends (top and bottom), respectively. Also, two more 

additional flanges are attached (left and right) either side of the shear box to 

overcome the particle expulsion during shear. The schematic representation of 

the direct shear test model in PFC along XZ-plane is shown in Figure 3.4.  
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Figure 3.4 Schematic representation of direct shear test along XZ-plane 

 

The particles are randomly distributed using a widely employed random 

generation approach, which was described by Itasca (2002). A built-in random 

seed generator is used to define a random size and the location for each particle 

within the problem domain. If the particle does not fit – in, i.e., where 

overlapping with an existing particle occurs, the radius is retained but another 

location is chosen randomly. At the onset, a maximum number of attempts to 

find a suitable location for any particle is specified. Once the number of 

attempts has exceeded the maximum value, the generation process is 

terminated. The limitations of this approach include the computationally 

expensive contact detection which is required to avoid the overlapping of 

particles at each insertion attempt. After generating the particles, the assembly 

is cycled to reach equilibrium through facilitating particles to form a contact 

with each other. A built-in servo-control mechanism is activated to maintain 

the desired stress levels during one-dimensional compression under different 

normal stresses. Moreover, the density scaling based on the auto timestep 

scaling mode in PFC (Itasca Consulting Group 2018) is also activated to 
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minimize the computational cost associated with subsequent DEM 

simulations which were also reported by Cui & O’Sullivan (2006).  

 

3.6 Sensitivity analysis 

To understand the sensitivity of microscopic parameters on the DEM 

simulations of granular materials, a range of parameters are considered as 

presented in Table 3.1.   

 

Table 3.1 Microscopic parameters for the sensitivity analysis 

Properties Value 

Number of particle 926, 2345, 7180 and 11,375 

Interparticle friction coefficient 0.3, 0.4, 0.5 and 0.6 

Damping constant  0.1, 0.3, 0.5 and 0.7 

Particle density (kg/m3) 2700  

Wall friction  0 (smooth wall) 

Shear to normal stiffness ratio  0.1, 0.5, 1 and 2 

 

All numerical assemblies considered for the sensitivity analysis are one-

dimensionally compressed at 75 kPa and sheared up to a maximum shear strain 

of 25%. The sensitivity analysis includes the following:  

 

 Sensitivity to the number of particles  

 Sensitivity to the interparticle friction coefficient  

 Sensitivity to loading rate   

 Sensitivity to damping constant   

 Sensitivity to shear to normal stiffness ratio  

 

3.6.1 Sensitivity to the number of particles   

For the sensitivity to the number of particles, the number of particles 

considered as 926, 2345, 7180 and 11,375. The generated assemblies of various 
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numbers of particles are shown in Figure 3.5. The ratio between mean 

unbalanced force and the mean contact force against shear strain for different 

particle numbers are presented in Figure 3.6. It is seen from the figure that the 

shear strain decreases with the increasing number of particles. Similarly, no 

much variation is noticed in the plot between stress ratio and vertical strain 

against shear strain (see Figure 3.7 and Figure 3.8). Following the literature 

(Huang et al. 2014a), and a statement given by Wang & Gutierrez (2010), if the 

number of particles maintained in between 1170 – 3000, the potential effects of 

the particle numbers on the simulation results can be avoided. Moreover, it was 

also mentioned by O’Sullivan (2011) that the computational cost enormously 

affects the number of particles of granular materials. When realistic gradings 

are used, as many small numbers of particles must be clumped together to 

simulate each irregular large particle. The existence of these smaller particles 

significantly increases the number of degrees of freedom in the system and also 

necessitates the use of a very small timestep to ensure numerical stability. 

Hence, taking into account the computational expenses, each assembly is 

limited to 2,345 discrete particles such that the computation time is within the 

reasonable limits for a single run (i.e., within 24 hours) except for the 

sensitivity analysis. In addition, for repeatability of the simulation, the random 

seed generator is kept constant so that the repeatability of similar results can 

be achieved.     

 

The particle size distribution of the assembly used is shown in Figure 3.9. This 

figure indicates that the particle size follows a log-normal distribution. The 

uniformity coefficient (  60 10/uC d d ) of the assembly is 1.45 and the coefficient 

of curvature (   2
30 60 10/cC d d d ) is 1.04. These values indicate that the assembly 

is poorly graded. The equivalent diameter of the clumped particles can be 

obtained as, 6eqd V  /  , where V is the volume of the clump. 
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Figure 3.5 Numerical assemblies for different particle numbers 

(Walls are omitted)  
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Figure 3.6 Ratio between mean unbalanced force and the mean contact force 

against shear strain for different particle numbers 

 

Figure 3.7 Stress ratio against shear strain for different particle numbers 
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Figure 3.8 Vertical strain against shear strain for different particle numbers 

 

Figure 3.9 Particle size distribution curve used 
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3.6.2 Sensitivity to the interparticle friction coefficient 

The interparticle friction coefficient is one of the intrinsic parameters which 

significantly affect the DEM simulation results. This is mainly related to the 

friction between the particles when one particle slides over another. Numerous 

studies have explored the effect of interparticle friction coefficient theoretically 

and experimentally (e.g., Rowe & Barden 1964; Skinner 1969). Figure 3.10 and 

Figure 3.11 show the effect of interparticle friction coefficient on the stress ratio 

and vertical strain against shear strain for clumped particle systems. It is 

observed that the strength increases with increase in the interparticle friction 

coefficient. The angle of internal friction for quartz sand lies in between 21° and 

31° which was evaluated based on the experimental observations (Proctor & 

Barton 1974). The interparticle friction coefficient is taken as 0.5 for the 

numerical simulations throughout this thesis, which was also commonly 

employed in most of the simulations.  

 

 

 

Figure 3.10 Stress ratio against shear strain for different interparticle friction 

coefficients 
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Figure 3.11 Vertical strain against shear strain for different interparticle 

friction coefficients 

 

3.6.3 Sensitivity to loading rate  

In general, most of the simulations and laboratory tests are quasi-static, i.e., 

inertial effects are assumed to be negligible. Especially in DEM, in addition to 

the mechanical response of granular materials, the computational cost 

demands mainly depend on the loading rate (Anitha Kumari 2012). Thus 

choosing a suitable loading rate is crucial in DEM simulations. To understand 

the sensitivity to loading rate, a series of numerical direct shear test simulations 

are performed considering various strain rates (i.e.,  26.0 10 ,  36.0 10 , 

 46.0 10 and  56.0 10 ). Figure 3.12 shows the ratio between the mean 

unbalanced forces to the mean contact force against shear strain for different 

loading rates. It is seen that except  26.0 10 , there seems no much variation 

noticed in the stress ratio, indicating that lower loading rates are showing 

approximately the same behaviour. Figure 3.13 shows the stress ratio against 

shear strain for different loading rates. It is also noticed that there is no 

significant variation in the plot of vertical strain against shear strain (see Figure 
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3.14). Hence, considering the computational time, the loading rate is taken as 

 46.0 10 , for all the DEM simulations throughout this thesis.   

 

 

Figure 3.12 Ratio between mean unbalanced force and mean contact force 

against shear strain for different loading rates  

 

 

Figure 3.13 Stress ratio against shear strain for different loading rates 
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Figure 3.14 Vertical strain against shear strain for different loading rates 

  

3.6.4 Sensitivity to damping constant   

In PFC, local damping is activated to dissipate the kinetic energy. The local 

damping applies a damping force to the particles and the magnitude of the 

damping force is proportional to the unbalanced force. Figure 3.15 shows the 

ratio between mean unbalanced forces to the mean contact force against shear 

strain for different damping constants. It is seen that except d = 0.1, there seems 

no significant variation observed with different damping constants. Also, the 

plots of stress ratio and vertical strain against shear strain (see Figure 3.16 and 

Figure 3.17) show no significant effect for different values of damping constants. 

To achieve reasonable results, considering the ratio between mean unbalanced 

forces to the mean contact force, a damping value of 0.7 is used throughout the 

simulations in this thesis. This value also commonly used by several researchers 

in the field (e.g., Gong & Liu 2017; Zhu et al. 2020).  
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Figure 3.15 Ratio between mean unbalanced force and mean contact force 

against shear strain for different damping constants   

 

 

Figure 3.16 Stress ratio against shear strain for different damping constants   

0 5 10 15 20 25

0.000

0.005

0.010

0.015

R
at

io
 b

et
w

ee
n

 m
ea

n
 u

n
b

al
an

ce
d

 fo
rc

e 

an
d

 m
ea

n
 c

on
ta

ct
 fo

rc
e 

[%
] 

Shear strain, gxz [%]

 d = 0.1

 d = 0.3

 d = 0.5
 d = 0.7

0 5 10 15 20 25
0.0

0.5

1.0

1.5

2.0

S
tr

es
s 

ra
ti

o,
 

/

Shear strain, gxz [%]

 d = 0.1
 d = 0.3

 d = 0.5

 d = 0.7



Chapter 3 Experimental and numerical validation of direct shear test 

 

71 
 

 

Figure 3.17 Vertical strain against shear strain for different damping constants  

 

3.6.5 Sensitivity to the ratio between normal and shear stiffness   

To understand the sensitivity to the ratio between normal and shear stiffness, 

a series of direct shear test simulations are performed using different values of 

k* ( /n sk k ) taken as 0.1, 0.5, 1 and 2. Figure 3.18 and Figure 3.19 show the stress 

ratio and vertical strain against shear strain for different values of contact 

stiffness ratio. It is seen from the figures that there is no significant variation 

found for different contact stiffness ratios. According to Goldenberg & 

Goldhirsch (2005), for realistic granular materials, the value of /n sk k  typically 

in the range of  1.0 / 1.5n sk k , which correlates well with the Cattaneo–

Mindlin model (Johnson 1985). Hence, /n sk k   = 4/3 is used for all the DEM 

simulations.  
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Figure 3.18 Stress ratio against shear strain for varying stiffness ratios  

 

Figure 3.19 Vertical strain against shear strain for varying stiffness ratios 
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contact forces are almost negligible. Hence, the system will be in equilibrium 

state so that a stable solution can be achieved within a reasonable time. Based 

on the sensitivity analysis, the selected input parameters are chosen for the 

numerical validation of the direct shear test, as presented in Table 3.2.  

 

Table 3.2 Input parameters for DEM validation 

Parameter description  Value  

Number of particles  2,345 

Notional particle density,  3/ kg m    2700 

Inter-particle friction coefficient 0.4 

Wall-particle friction coefficient 0.0 

Wall stiffness (N/m) .  91 0 10  

Effective modulus, *E (Pa) .  80 52 10  

Normal to shear stiffness ratio, *( / ) n sk k k   4/3 

Local damping constant   0.7 

 

3.7 Comparison between the experimental and DEM results   

3.7.1 Stress-strain behaviour   

A set of experimental and subsequent DEM simulations are performed under 

direct shear test conditions to examine the efficiency and applicability of the 

proposed realistic particle generation approach. The macroscopic behaviour of 

granular specimens is exposed to three different normal stresses, i.e., n  = 75, 

179, and 318 kPa and those are kept constant throughout the shearing process.  

 

Figure 3.20 and Figure 3.21 show the comparison of stress ratio and vertical 

strain against shear strain obtained from the laboratory as well as from DEM 

simulations. The macroscopic responses of all specimens exhibit stress-

dependent and strain-hardening behaviour. The volume change in terms of the 

vertical strain shows the initial contraction and volumetric dilation, whereby 
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the higher the normal stress, the higher the peak stress and smaller in the 

dilation is noticed. These observations are consistent with the study performed 

by Indraratna et al. (2014), for three-dimensional DEM simulations of fresh and 

fouled railway ballast subjected to direct shear test conditions. Furthermore, it 

is found that the DEM results are qualitatively in agreement with the 

laboratory results and minor variations are noticed. These variations could be 

attributed to the initial conditions and particle breakage during the simulation 

which is not considered in this investigation.  

 

 

 

 

Figure 3.20 Comparison of laboratory and DEM simulation results of stress 

ratio against the shear strain  
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Figure 3.21 Comparison of laboratory and DEM simulation results of vertical 

strain against shear strains  

 

The peak angle of shearing resistance,  p , is obtained as the best fit lines 

between the applied normal stresses and shear stresses at the peak state. It is 

found from Figure 3.22 that the  p  laboratory and DEM simulations are 31.29° 

and 35.14°, respectively. As compared to the laboratory test results, the DEM 

simulation results are overestimated. 
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Figure 3.22 Peak stress against normal stress  

 

3.7.2 Coordination number (CN)   

For a three-dimensional assembly, considering the friction between the 

particles, assuming no sliding anywhere, the number of degrees of freedom of a 

particle is 6, which indicates that a total number of degrees of freedom in the 

system is 6Np. Similarly, the number of constraints at each contact is 3.                 

The total number of constraints in the system is 3NC. If the assembly is said to 

be statically determinate, then the CN is equalled to 4 (i.e., 3NC = 6Np). It was 

mentioned by Gong (2008) that if the CN is greater than 4,  it can be treated as 

redundant, otherwise, it is structurally unstable. Figure 3.23 presents the 

variation of CN against shear strain under different normal stresses. As 

expected, CN increases with increasing normal stress. Moreover, regardless of 

the applied normal stresses, the CN values are above 4, which indicates 

structurally stable assembly at any stage during the entire simulation.  
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Figure 3.23 CN against the shear strain  

 

Figure 3.24 shows the distribution of contact forces along XZ-plane for the 

DEM specimen with the applied normal stress of n  = 179 kPa. In PFC3D, the 

inter-particle forces are represented by solid lines with its thickness and colour 

is proportional to the force magnitudes (Itasca Consulting Group 2018). The 

lines connecting the particles can form a force chain. It can be seen that at the 

onset (i.e., xzg = 0%), the contact forces distributed uniformly and transmitted 

vertically from top to bottom of the shear box, while as shearing advances, the 

contact normal forces are intensified in the diagonal direction (see Figure 

3.24(b)). This behaviour is attributed to the reduction of contact numbers per 

particle associated with an increase in the dilation and the corresponding drop 

in the shear strength.   
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Figure 3.24 Distribution of contact normal force networks for normal stress of 

179 kPa: a) end of one-dimensional compression; b) end of the shear  

 

In general, a vector has two independent properties, i.e., magnitude and 

direction. Each vector represents the displacement of a particle, with the vector 

start corresponds to the initial position and the length represents the distance 

travelled. Figure 3.25 shows the displacement vectors of clumped particles for 

the applied normal stress of n = 179 kPa. As observed from Figure 3.25(a) that 

at small strain (i.e., 1%xzg  ), particles in the ‘box top’ moved horizontally 

while particles in the ‘box bottom’ tended to travel in the downward direction 

causing a contraction in the assembly. On the other hand, at higher global shear 

strain (i.e., 18%xzg  ), particles in the ‘box top’ tended to move up or dilate (see 

Figure 3.25(b)). These microstructural features in DEM clearly illustrate the 
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likely mechanism for the volumetric changes occurred during the shearing, 

which may not be possible to capture during the physical experimentation.       

 

 

Figure 3.25 Displacement vectors for normal stress of 179 kPa: a) end of one-

dimensional compression; b) end of the shear 

 

3.7.3 Evolution of fabric anisotropy  

Figure 3.26, Figure 3.27 and Figure 3.28 show the evolution of deviator fabrics 

of overall, strong and weak subnetworks under different normal stresses during 

shearing, respectively. A brief description of the fabric tensor is presented in 

Section 2.5.2. As can be seen from the figures that the overall and subnetworks 

are developed considerably and the degree of anisotropy increase with an 

increase in shear strain. It is also found that the increase in normal stress can 
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limit the development of fabric anisotropy, thereby increase in shear strength. 

Moreover, in contrast, normal stress has shown a significant effect on the 

structural anisotropy and higher the normal stress, whereby smaller the 

deviator fabric.  

 

 

 

 

 

 

Figure 3.26 Deviator fabric against shear strain for different normal stresses 
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Figure 3.27 Strong deviator fabric against shear strain for different normal 

stresses 

 

Figure 3.28 Weak deviator fabric against shear strain for different normal 

stresses 
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3.8 Summary  

In this chapter, a series of laboratory and numerical simulations were 

performed under direct shear test conditions. A simple and robust approach 

suggested by Zheng & Hryciw (2015) was employed to generate the realistic 

particle geometries considering their major plane of orientations. Based on the 

sensitivity analysis, appropriate microscopic parameters were selected to 

validate the DEM model with experimental results.  

 

The DEM simulation results were generally in agreement with the laboratory 

test data; however, the peak angle of shearing resistance observed in the DEM 

simulations is consistently higher than that of the peak angle of shearing 

resistance observed in the laboratory tests. It was also noticed that normal 

stress has a significant effect on the structural anisotropy. Moreover, the 

simulation results demonstrate the effectiveness of the particle generation 

method adopted in this investigation. The microscopic results in terms of fabric 

anisotropy are found to increase with the increase in normal stress and showed 

a significant effect on the structural anisotropy. 
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Chapter 4 Influence of particle elongations on 

the direct shear behaviour 

4.1 Introduction  

Numerous laboratory experiments have been carried out to explore the particle 

shape effects on the mechanical response of granular materials (Shinohara et al. 

2000; Cho et al. 2006; Yang et al. 2012). Also, in-depth microscopic information 

of the specimens using photoelasticity (Oda 1974), CT scan (Goudarzy et al. 

2016) and X-ray (Reimann et al. 2017) methods were employed by different 

researchers. However, the traditional element tests (e.g., direct shear, simple 

shear and triaxial shear tests) can only provide limited macroscopic 

information in the laboratory. In general, these methods are extremely 

laborious and sometimes even more expensive. Instead, DEM based numerical 

approaches are efficient in exploring the microscopic behaviour of granular 

materials (e.g., Gong & Liu 2017; Kodicherla et al. 2019). The developments in 

computer technology have provoked the potential possibility to consider 

realistic particle shapes in DEM. Hence, the desire of obtaining the true 

behaviour of granular materials could be achieved at reasonable costs.    

 

In this chapter, a general introduction is presented in Section 4.1 and a review 

of literature related to different particle shapes under direct shear test 

conditions are reviewed in Section 4.2. In Sections 4.3 and 4.4, the methodology 

for particle elongation and the simulation details are presented, respectively. 

The results at macroscopic and microscopic levels are presented in Sections 4.5 

and 4.6, correspondingly. Also, the distribution of force chain networks in 

Section 4.7 and the relationships between stress-dilatancy and critical state 

lines are furnished in Section 4.8. In the end, a summary of this chapter is 

presented.     
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4.2 Review of literature     

Extensive numerical investigations have been carried out by employing various 

particle shapes, such as clumped discs (Maeda et al. 2010; Saint-Cyr et al. 2011), 

ellipses (Ting et al. 1995), polygons (Tillemans & Heemann 1995; Hosseininia 

2012), spheropolygons (Alonso-Marroquin 2008) in 2D cases, and clumped 

spheres (Hartl & Ooi 2011; Kozicki et al. 2012; Azema et al. 2013), ellipsoids       

(Ng 2009), polyhedrons (Zhao et al. 2015), spherocylinders (Pournin et al. 

2005), spheropolyhedra (Boton et al. 2013), superellipsoids (Wellmann et al. 

2008; Cleary 2010) in 3D cases. Besides, some researchers have adopted the 

particle shape descriptors, e.g., elongation or aspect ratio (Ting et al. 1995; Ng 

2009; Azema & Radjai 2010), angularity (Azema et al. 2013; Zhao et al. 2015), 

eccentricity ratio (Zhao et al. 2015) and roughness (Kozicki et al. 2012), to 

quantitatively describe the particle shape effects in their numerical 

investigations. Moreover, it was mentioned by Anitha Kumar (2012) that the 

shear strength of clumped particle was found higher than those of spherical 

particles.  

 

The effect of particle properties on the soil behaviour under three-dimensional 

direct shear test conditions using bonded spherical particles was explored by 

Ni et al. (2000). The effect of particle shape and particle size under different 

vertical (normal) loads were explored. It was found that the particle size, when 

compared with the shear box, affected the bulk shear strength of the sample, 

but it is dependent on the number of particles used in the simulations. Also, the 

authors found that as the particle becomes less spherical, the bulk friction angle 

and volumetric dilation of sample increases. Moreover, the shear strength 

increased considerably by the particle shape changes from a pure sphere.   

 

Zhang & Thornton (2007) performed a numerical examination of the direct 

shear test using a two-dimensional DEM. The authors found that the dilation 

inside the shear zone was much greater than that deduced from the boundary 
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measurements. The stress ratio obtained from the boundary force was about 

10% greater than that calculated in the shear zone. The coaxiality of stress and 

strain rate exists at the critical state. Also, it was suggested that the previously 

published simulation results in the context of both stress ratio and dilation 

would be obtained easily if the shear box aspect ratio was reduced below the 

value of 1:2, which was commonly adopted in the traditional Casagrande shear 

box test.  

 

The interplay between contact friction and particle interlocking arising from 

the geometric interaction between the particles to produce the bulk behaviour 

of granular friction in DEM simulations using a Jenike direct shear test was 

explored by Hartl & Ooi (2011). The authors considered two different particle 

shapes, i.e., spherical particle and non-spherical particle. The full range of 

interparticle contact friction values was considered and explored numerically. 

To separate the influence of sample packing density from interparticle contact 

friction on the bulk shearing response, the same initial packing was used for 

each particle shape in the simulations. It was found that particle interlocking 

has a greater effect than the packing density on bulk friction and for each 

particle shape. Moreover, a good quantitative match of the limiting bulk 

friction as long as similar initial packing density was achieved. 

 

Yan (2011) explored the particle elongation and decomposition effect to the 

macroscopic and microscopic response under numerical direct shear test 

assemblies using PFC3D. The elongated particles were modelled by joining 

primary spherical balls together, and no particle breakage was allowed. The 

global measurements appreciably conclude that the higher ultimate shear 

strength of the assemblage as compared to the local ones from the measurement 

spheres, regardless of the particles aspect ratio and packing. Also, it was found 

that only particles close to the shear plane exhibit significant rotation and 

consequently a noticeable change in the fabric was observed.  
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Zhao et al. (2015) explored the effect of particle angularity under direct shear 

test using a modified version of the open-source DEM code, i.e., YADE. Four 

categories of assemblies with different angularities using convex polyhedra 

were generated and sheared under different vertical (normal) stresses. It was 

found that the macroscopic shear strength and dilatancy characteristics were 

in agreement with the results reported in the literature.  

 

Tian et al. (2018) studied the influence of particle shapes on the microstructure 

evolution of granular materials under two-dimensional direct shear test 

conditions using PFC2D. The authors considered three different particle 

shapes including circular, triangular and elongated particles. The results show 

that the peak shear stress ratio and the ultimate dilatancy increases when 

decreasing the value of overall regularity. Moreover, it was also reported that 

particle shape has a remarkable influence on the fabric evolution of granular 

assemblies.  

 

4.3 Methodology for particle elongation 

The particle elongation methodology is adopted from Azema & Radjai (2011). 

The elongated particles are generated using a commonly adopted multi-

spherical (MS) approach, as suggested by Taghavi (2000). The elongated 

particles are modelled as a juxtaposition of three spheres of the radius R  with 

an imaginary rectangle of length, L and width, '2R , as shown in Figure 4.1. 

Assuming that R is the radius of a circle circumscribing the particle, the radius 

R  is also that of the inscribed circle. Hence, the change of a particle from a 

circular shape is considered to be 2  /R R R L   . A dimensionless 

elongation parameter, Λ is defined as:   

 

Δ R R/                                                                                                                       (4.1) 
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where ΔR is the deviation from the circular shape which is equal to a half of 

the imaginary length (L) of the rectangle. For better visualization, the portrayal 

of the generated elongated particles with different Λ values is presented in  

Figure 4.2.  Alternatively, the aspect ratio (AR) of the elongated particle can also 

be calculated by    2 2L R R '  /  .  

 

 

 

 

Figure 4.1 Methodology for particle elongation 
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Figure 4.2 Elongated particles with different Λ 

 

4.4 Simulation details      

A built-in clump logic is used to generate the elongated particles, i.e., an 

approach for creating elongated particle by joining and overlapping three 

spheres of the same size and by allocating the corresponding radii and 

coordinates. More details regarding the clump logic are given in Section 2.3.5. 

In total, six consolidated specimens with a target void ratio (e) of 0.5, 

represented as S1, S2, S3, S4, S5 and S6 are generated. All input parameters are 

the same as mentioned in Section 3.6, except for E* . For simplicity, the E*  is 

taken as 810  Pa which is same as used by Gong et al. (2019) and approximately 

equal to that used by Guo & Zhao (2013, 2014) and Gu et al. (2014). The initial 

characteristics of the specimens are presented in  
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Table 4.1. The initial states of generated packings with different Λ are presented 

in Figure 4.3. It should be noted that all assemblies are prepared at their densest 

states, ensuring that they all had the same relative density. To achieve the 

densest state, a zero clump friction coefficient was temporarily used during the 

specimen generation stage and changed back to 0.5 while shearing. This routine 

approach was also used by many investigators in the field (e.g., Deluzarche & 

Cambou 2006; Abbireddy & Clayton 2010; Gong & Liu 2017; Zhao & Zhao 

2019).  

 

 

 

 

 

 

 

Table 4.1 Initial characteristics of the numerical specimens 

Specimen ID Λ eo CNo 

S1 0.1 0.49 14.5 

S2 0.2 0.43 12.4 

S3 0.3 0.41 11.9 

S4 0.4 0.40 11.7 

S5 0.5 0.43 11.5 

S6 0.6 0.48 11.5 
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Figure 4.3 The initial states of generated packings with different Λ 

(wall are omitted) 
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4.5 Macroscopic behaviour         

All numerical samples are sheared to a maximum shear strain ( xzg ) of 30%, 

which are expected to reach the critical state. It should be stated that the 

average stresses are obtained directly from the wall forces instead of each 

contact (e.g., Thornton & Zhang 2003; Thornton 2015). Figure 4.4 presents the 

influence of Λ on the direct shear behaviour of samples one-dimensionally 

compressed at σn = 200 kPa. It is found that all samples exhibit an initial strain-

hardening and post-peak softening behaviour, then eventually attaining a 

critical value at maximum shear strain, manifested by no further changes in 

both the stress ratio and vertical strains. Also, the evolution of vertical strain 

against shear strain ( xzg ) (see Figure 4.5) shows a dilative response in all the 

samples.    

 

The influence of Λ on the direct shear friction angles at peak state (
p ) and 

critical state ( c ), respectively are presented in Figure 4.6. The error bars in 

Figure 4.6 indicates the standard deviation of direct shear friction angles at the 

critical state. Moreover, the values of 
p  initially increases, i.e., attaining an 

extreme value at Λ = 0.2 and stays stable as Λ increases. It was mentioned by 

Azema & Radjai (2010) that c
 monotonically increases with Λ (for biaxial 

simulations), while Ng (2009) mentioned that c
 monotonically decreases 

with increasing aspect ratios (for triaxial simulations) using ellipsoids. The 

results from this study supported the former one. These differences may be 

attributed to the surface textures and resultant interaction mechanisms 

between the particles during shear. 

 

Figure 4.7 presents the influence of normal stress on the shear behaviour of 

granular material (for the sample S3). Interestingly, it is found that after ~25% 

of shear strain, independent of the applied normal stresses, all samples reach 

the critical state with a unique value of normalized stress ratio                                  

(i.e., / .0 51   ), which is obtained from the slopes of linear fitting by plotting 
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the shear stress against the normal stress at the critical state. However, the 

peaks are slightly varied owing to the inhibited rotations of particles which are 

highly compressed during the one-dimensional compression with the applied 

incremental normal stresses. These results are generally in agreement with the 

physical experiments conducted by Charles & Watts (1980) and numerical 

simulations performed by Abedi & Mirgasemi (2011).  

 

 

 

    

 

Figure 4.4 Stress ratio against shear strain for different samples 
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Figure 4.5 Vertical strain against shear strain for different samples 

 

Figure 4.6 Influence of Λ on the peak and critical state friction angles 
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Figure 4.7 Influence of normal stresses on the shear behaviour of granular 

assembly (sample S3) 

 

4.6 Evolution of fabric anisotropy and microscopic behaviour     

The evolution of CN against shear strain ( xzg ) for samples one-dimensionally 

compressed at σn = 200 kPa are presented in Figure 4.8. The basic formulation 

and the description of the CN are presented in Section 2.5.1. It is observed that 

CN decreases quickly at the onset and slowly attains almost steady value at the 

critical state. This rapid decrement of onset CN may be due to the sudden 

transformation of the state of the assembly in addition to the contribution of 

volume increase as a result of dilatancy. Except for sample S1, there seems no 

big variation is found with increasing Λ.  

 

Figure 4.9 shows the evolution of deviator fabric d  against shear strain for all 

the numerical samples. The description of deviator fabric is furnished in Section 

2.5.2. For large strains, the trends in Figure 4.9 is generally comparable to that 

observed in Figure 4.4, whereas for small strains, the deviator fabric is governed 

by the volume change and it agrees with that for the volume change showed in 
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Figure 4.5. It can also be understood that for small strains, the deviator fabric 

depends on both the stress and volume change, whereas for large strains, the 

volume approaches to a steady value and the deviator fabric mainly depends on 

the stress only. 

 

 

 

 

 

Figure 4.8 Influence of Λ on the CN  
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Figure 4.9 Influence of Λ on the deviator fabric  

 

The evolution of principal fabrics for strong force subnetworks (
1
s  and 

3
s ) and 

weak force subnetworks (
1
w  and 

3
w ) are presented correspondingly in Figure 

4.10 and Figure 4.11. The description of the subnetworks is presented in Section 

2.5.3. It is observed that the strong subnetwork becomes highly anisotropic 

(see Figure 4.10) and the 
1

s  shows a similar trend as seen in Figure 4.4. 

Moreover, there is a stiffer response as Λ increases for 
1

s  and the peak principal 

values of the strong fabric tensor occur at the same range of shear strain (i.e., 

about 3.5%). The weak force subnetwork ( w

i ) also exhibits anisotropy during 

the entire shearing process (see Figure 4.11), but with a smaller in magnitude as 

compared with the strong force subnetwork shown in Figure 4.10. It is also 

noted from Figure 4.11 that there is no obvious variation of 
1
w  as Λ increases. 

The trends of strong force sub-network (major principal value)(see Figure 

4.10), are similar to the evolutions of stress ratios given in Figure 4.4, which 

describes the major contribution to the stress-fabric relationship which is 



Chapter 4 Influence of particle elongations on the direct shear behaviour 

 

97 
 

mainly governed by the strong force components. The trends of the weak force 

sub-network are, however, very different from the evolutions of the stress ratio.  

 

 

 

 

Figure 4.10 Influence of major and minor principal fabrics in the strong 

subnetwork 
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Figure 4.11 Influence of major and minor principal fabrics in the weak 

subnetwork 

 

4.7 Distribution of force chain networks  

In the force chain system, each force is characterized by a colour line fragment 

joining the particles which are in contact, and the line is proportional to the 

magnitude of the contact normal forces. Figure 4.12 presents the distribution 

of contact normal force chain network along XZ-plane at different strains. For 

a better comparison, samples S1 and S6 are taken into account. Comparing 

these two specimens, the sample S6 has greater force in magnitudes than those 

of sample S1 at the same shear strain. It was mentioned by Zhao & Zhou (2017) 

that the contact normal forces contribute significantly more to the shear 

strength than contact tangential (shear) forces in the assembly. This indicates 

that the sample S6 is expected to have a higher shear strength than that of the 

sample S1, which is in agreement with the trend as seen in Figure 4.4. 
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Figure 4.12 Distribution of contact force chain networks along XZ-plane 

 

4.8 Stress- dilatancy relationship  

Simony & Houlsby (2006) mentioned that the horizontal plane in the direct 

shear test is presumed to be a zero extension line, the angle of dilation,   can 

be derived from Mohr’s circle of strain increments, which is given as:  

 

  /    / g  zz xz v utan d d d d                                                                                     (4.2) 
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where  zz
 and g xz

are the vertical strain and shear strain, respectively. The 

vertical deformation (v) and the shear displacement (u) can be used to evaluate 

the rate of dilation (dv/du). Figure 4.13 shows the angle of dilation against shear 

strain for the samples one-dimensionally compressed at σn = 200 kPa. In all 

samples,   originates from zero reaches a peak value (
p ) and slowly 

decreases to the critical value with fluctuations lesser than 5°. 

 

 

Figure 4.13 Angle of dilation against the shear strain 

 

To explore the relationship between the peak angle of dilation, 
p  and peak 

angle of internal friction,  p
, Bolton (1986) has simplified the Rowe’s (1969) 

stress-dilatancy relationship which is given as:  

 

   p c pk                                                                                                                          (4.3) 
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where k  is the fitting parameter. An attempt has been made in this investigation 

to see how best these parameters are in relationship with each other.                              

A relationship between 
p c   and  p

 is shown in Figure 4.14. Moreover, the 

literary data points from various researchers are superimposed (Bolton 1986; 

Guo & Su 2007 (angular & rounded sand); Gong & Liu 2017; Gong et al. 2019). 

The data from this study is well-fitted (R2 = 0.96) by the following 

mathematical expression:    

 

    p c p  1.182 0.09                                                                                                         (4.4) 

 

It is observed that the k obtained in this study is higher than those reported in 

the literature. According to Gong & Liu (2017), the value of k for 2D elongated 

planar particles is smaller than those of 3D multi-sphere ellipsoids. It is also 

mentioned by Rothenburg & Bathurst (1992) that this variation could be 

attributed to the planar nature of the 2D granular assembly.     
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Figure 4.14 Relationship between p c   and p
 

4.9 Critical State Soil Mechanics (CSSM) framework  

The critical state is a reference state and its uniqueness has evoked increasing 

debate for many years. However, reaching the critical state in physical shear 

tests is a difficult task. It is a fact that due to highly non-uniform deformation 

in the specimen, very limited attention has been given to the critical state 

properties of granular materials in the direct shear tests.  

 

A pioneer work by Casagrande (1936) is to describe a popular state for sands at 

which prevention of volume change leads to no further strength. Later, a unified 

approach by Roscoe et al. (1958) to form the concept of a unique critical void 

ratio line in the e p q '  space considering the behaviour of Weald clay. This 

key concept formed as the cornerstone for the framework of the critical state 

soil mechanics (CSSM) (Schofield & Wroth 1968). The position of the critical 

state line (CSL) is a unique representation of granular materials.                                    
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A methodology to linearize the CSL in the    /


 
ae p p  space for sand, which is 

given as:  

 

 Γ


  

c c ae e p p      /                                                                                                          (4.5) 

 

where ap  is the atmospheric pressure (=101.325 kPa), which is used for 

normalization, 
Γe  is the intercept on the x-axis (i.e., critical state void ratio,        

ec), 
c  is the slope of CSL, and ς is a material constant parameter (i.e., taken as 

.  0 7 , which is a typical value for Toyoura sand (Li & Wang 1998)).          

Figure 4.15 shows the CSLs fitted by Eq. (4.5) for the samples considered. The 

CSL parameters for each sample indicating almost parallel and a minor slope 

ranging between -0.011 and -0.021 is noticed. This variation could be attributed 

to the deviation in the particle geometric shape (Xie et al. 2017 and Jiang et al. 

2018). Also, it is observed that as particles elongate, the downward shifting of 

CSL is noticed and the intercept values are slightly increased initially and then 

decreases to the minimum value.  

 

 

Figure 4.15 Critical state lines in the  


 
ae p p/  space for all samples 
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The two critical state parameters, i.e., the slope of the critical state line (c
) and 

the intercept of critical state lines on the y-axis (
e ) are correlated against Λ as 

shown in Figure 4.16 and Figure 4.17, respectively. Both critical state 

parameters are well-fitted by a unique second-order polynomial function with 

accepted regression value. The developed mathematical expressions can be 

seen at the inset of the plots.  

 

 

Figure 4.16 Correlation between e against Λ 
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Figure 4.17 Correlation between c against Λ 

 

4.10 Summary  

This chapter has presented the results of three-dimensional DEM-based 

analysis of how elongated particles influence the mechanical behaviour of 

granular assemblies under direct shear test conditions. The stress-strain 

response of elongated particles exhibits an initial strain - hardening followed 

by post-peak softening behaviour, and thereafter eventually attained a critical 

state. The peak state direct shear friction angles initially increase and stay 

stable as Λ increases, whereas the critical state direct shear friction angles 

increase with the increase of Λ. It was also observed that independent of the 

applied normal stresses, all samples reached critical state at a unique 

normalized stress ratio at the large shear strain.  

 

The stress-fabric relationship was found to be mainly governed by the strong 

force subnetwork. The strong force subnetwork is more affected by the change 

of Λ than the weak force subnetwork. The behaviour of  p
 concerning to Λ 

depends on the mutual influence of c  and c . As particle elongates, the 
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downward shifting of CSLs was noticed. The correlation between the critical 

state parameters and particle elongations were well-fitted by a unique second-

order polynomial function with acceptable regression value.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Chapter 5 Influence of particle elongations on triaxial behaviour 

 

107 
 

 

Chapter 5 Influence of particle elongations on 

triaxial behaviour  

5.1  Introduction  

The complexity in granular soils originates from particulate nature and the key 

characteristics include particle size, gradation analysis, particle shape and 

mineralogy. Among the various grain-scale characteristics, particle size and 

gradation analysis can be routinely used in the soil mechanics. In the past 

decade, the influence on these characteristics has received relatively more 

attention rather than the particle shape due to the difficulties involved in 

quantifying the grain shape characteristics. An accurate evolution of the 

particle shape may not be required and the information on particle shape is 

usually provided in qualitative terms using routinely used approach proposed 

by Krumbein & Sloss (1963). The chart was arranged as a 4×5 matrix of 2D 

images of standard particles. In each row, five particles with the same 

sphericity but different values of roundness and each column includes four 

particles with the same roundness but different values of sphericity. For a given 

particle, roundness and sphericity values are assessed by visual comparison 

with the reference particle shapes in the chart. In general, this approach is 

tedious and the accuracy in predicting the shape characteristics may not be 

high. Thus, to improve the accuracy, one can choose to evaluate the roundness 

of the particle from the measurements on the particle image suggested by 

Wadell (1932) method. However, the direct measurements remain time-

consuming and may need sophisticated instrumentation for obtaining accurate 

results.  

 

In this chapter, a general introduction is presented in Section 5.1 and relevant 

review of the literature is presented in Section 5.2. The basic definitions for the 

particle shape characteristics are presented in Section 5.3. In Section 5.4, 
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simulation details and input parameters are presented. In Sections 5.5 and 5.6, 

the evolution of macroscopic and microscopic behaviours are discussed. In 

Section 5.7, relationships between critical state parameters and shape 

parameters are presented. In the end, in Section 5.8, a summary of the overall 

chapter is provided.  

 

5.2 Review of literature  

The relationship between critical state and particle shape of the mechanics of 

granular materials was explored by Yang & Luo (2015).  They used spherical 

glass beads and crushed angular glass beads of different percentages mixed 

with a uniform quartz sand (Fujian sand). The mixtures of Fujian sand and 

spherical glass beads were deemed to be markedly more susceptible to 

liquefaction than the mixtures of Fujian sand and crushed angular glass beads. 

The geometry of particle was measured using a laser scanning technique and 

was characterized by aspect ratio, sphericity and convexity. Considering these 

three shape parameters, a new shape index, i.e., overall regularity was proposed. 

Moreover, it was noticed that the change in liquefaction susceptibility was 

shown to be consistent with the change in the position of the critical state locus 

(CSL) in the compression space. This was manifested by a decrease in the 

intercept and gradient of the CSL due to the presence of spherical glass beads.  

 

The effect of particle shape on the strength, dilatancy, and stress-dilatancy 

relationship through a series of drained triaxial compression tests on sands 

mixed with angular and rounded glass beads of different proportions (0%, 25%, 

50%, 75%, and 100%) were studied by Xiao et al. (2019). The overall regularity 

was maintained from 0.844 to 0.971 to define the particle shape of these 

mixtures. It was found from the results that at an initial relative density of 0.6, 

all samples exhibit strain-softening and volume-expansion behaviour. The 

peak-state deviatoric stress, peak-state axial strain, and peak-state friction 

angle at a given confining pressure decreased with increasing overall regularity. 
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Due to the changes in the particle shape, the maximum differences in the peak-

state deviator stress, peak-state axial strain, peak-state friction angle, excess 

friction angle, and maximum dilation angle could be as much as 0.61 MPa, 5.4%, 

8.6, 1.5, and 3° at a given confining pressure of 0.4 MPa, respectively. It was also 

found that the slope of the relationship between the peak-state friction angle 

and maximum dilation angle was independent of the particle shape, whereas 

the intercept (i.e., the critical state friction angle) was significantly influenced 

by the particle shape.  

 

The influence of grading on the undrained behaviour of granular materials was 

explored by Liu et al. (2014). The authors considered two different materials, 

i.e., glass balls and Hostun sand. For each material, samples with different 

grading’s and similar relative densities were prepared. The experimental results 

confirm that the undrained shear strength decreases when the coefficient of 

uniformity increases from 1.1 to 20. The results demonstrate a significant 

influence of the grading, i.e., increasing the coefficient of uniformity heightens 

the potential of static liquefaction, and the materials become more unstable. 

Moreover, the DEM simulation results show similar behaviours as compared to 

the experimental tests and confirmed the influence of the grain size 

distribution on the stress-strain relationship and instability phenomena. 

 

The influence of particle characteristics on the index void ratios of granular 

materials was explored by Sarkar et al. (2019). The effects of particle and 

specific gravity characteristics such as shape, size, and specific gravity on the 

limiting void ratios emax and emin of the granular matter were investigated. To 

assess the effect of specific gravity, two different types of materials, i.e., glass 

beads and natural sands were considered. Particle characteristics such as 

roundness, sphericity and regularity, the average of roundness and sphericity, 

were calculated through image analysis techniques after obtaining high-quality 

microscopic images of individual grains. The German DIN standards were 
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strictly followed to determine the extremities of the void ratio. Experimental 

data were used to investigate the effects of the particle characteristics on the 

relative density of soils. The results show the significant effect of the mean grain 

size (D50) on the extreme void ratios of poorly graded glass as well as the 

significant effect of Cu but the negligible effect of D50 on the extreme void ratios 

of sand.  

 

Gong & Liu (2017) explored the effect of aspect ratio on triaxial compression 

of multi-sphere ellipsoid assemblies simulated using DEM. The authors found 

that the stress–dilatancy relationship of ellipsoids with different aspect ratios 

were expressed as a linear function. In particular, the aspect ratio influenced 

the position of the critical state lines for these assemblies. Particle-scale 

characteristics at the critical state indicate that particles tend to be flat lying, 

and the obstruction of particle rotation that occurs with longer particles affects 

their contact mechanics.  

 

Fu et al. (2012) studied the effect of particle shape and size on flow properties 

of lactose powders. The influence of particle shape/size of three different 

lactose powders on their respective flow and bulk characteristics were 

explored. Two of the samples differ in size but have similar shapes; the third 

sample was more spherical but similar in size to one of the other two samples. 

In addition to particle size, particle shape significantly affect the flow 

characteristics of powder over a wide range of stress conditions. 

 

Shinohara et al. (2000) explored the effect of particle shape on the angle of 

internal friction was investigated by the triaxial compression test. The angular 

stainless steel powder was processed toward increasing sphericity by a 

rotational impact-type surface modification apparatus. The angle of internal 

friction was found to increase with the increasing angularity of particles and 
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decreasing initial voidage of the specimen owing to increase in the interlocking 

effect. 

 

Zhao & Zhou (2017) investigated the effects of particle asphericity on the 

macro and micro-mechanical behaviours of granular assemblies. They proposed 

a shape descriptor, i.e., asphericity, to isolate the effect of aspect ratio and 

angularity. It was found that particle asphericity can enhance the particle-

particle inter-locking with higher locked-in forces, showing an increasing 

proportion of sliding contacts, thereby making a granular assembly stiffer and 

stronger. Also, weak contacts have a dominant proportion in the overall contact 

networks, positively correlated with asphericity. However, asphericity has an 

insignificant effect on the mean coordination number at the critical state. 

Furthermore, it was found that anisotropy of granular fabric is strongly 

determined by anisotropy sources in strong contact networks, where a larger 

asphericity results in a more anisotropic granular fabric. 

 

Xie et al. (2017) investigated the influence of particle geometry and the 

intermediate stress ratio,    b    2 3 1 3/  on the shear behaviour of 

granular materials. They investigated samples with different particle aspect 

ratios and a unique particle size distribution (PSD). At the macroscopic level, 

the shear strength decreases with an increase in both aspect ratio and b values, 

whereas at the microscopic level, the fabric evolution was also affected by both 

aspect ratio and b. The results from DEM analyses qualitatively agree with the 

available experimental data. The position of the critical state loci in the 

compression ( e p ' ) space is slightly affected by aspect ratio while the critical 

stress ratio is dependent on both aspect ratio and b. Moreover, it was 

understood that for a given stress path, a unique critical state fabric norm is 

dependent on the particle shape but is independent of critical state void ratio. 
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Zhao et al. (2017) investigated the particle shape effects on the fabric of granular 

random packing. A broad range of particle shapes controlled by two shape 

parameters (i.e., aspect ratio and blockiness) were taken into account. A series 

of random packing of non-cohesive, frictional monodisperse superellipsoids 

was conducted under gravitational forces in the simulations. The effects of 

particle shape on packing density and mean coordination number was in 

agreement with the reported literature. The distribution of particle 

orientations was much more sensitive to blockiness than aspect ratio. The 

anisotropy of both particle orientations and contact normals shows a similar 

M-type relationship with aspect ratio, two times larger than that of branch 

vectors. Interestingly, the particle shape has an insignificant effect on the 

probability distribution of normalized contact forces which shows a clear 

exponential distribution.  

 

Ng (2009) investigated the particle shape effect on macro- and micro-

behaviours of monodisperse ellipsoids. The evolution of three vector-typed 

micromechanical arguments with strain including the particle orientation, 

branch vector, and normal contact force was investigated. The normal contact 

force (micromechanical argument) was found to have a direct relationship with 

the principal stress ratio (macroscopic parameter). It was also found that the 

maximum angle between vectors was related to particle shape, distributions 

and the maximum values of these angles do not change with loading. 

 

Katagiri et al. (2010) explored a simple shear simulation of 3D irregularly shaped 

particles by image-based DEM. The particle shape was modelled by a cluster of 

several spherical elements using dynamic optimization method. It was found 

that the 10-element model can quantitatively reproduce the shear behaviour of 

relatively-dense specimens, whereas, for loose specimens, the 10-element model 

was found to be insufficient. This result implies that the overall grain shape 

that was relevant to the moment transmission between grains is important in 
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densely-packed granular assembly, while small surface angularity plays a 

considerable role in the loosely-packed granular assembly. 

 

5.3 Particle shape characteristics   

The same approach, i.e., as discussed in Section 4.3, is used for generating 

elongated particles. In general, particle shapes can be characterized by three 

key shape parameters, i.e., the aspect ratio ( RA ), convexity ( XC ) and sphericity 

( WS ) (Wadell 1932; Krumbein 1941; Powers 1953; Krumbein & Sloss 1963; 

Barrett 1980). The definitions of these parameters are given as:  

 

 Aspect ratio ( RA ): The ratio between minimum Feret diameter ( min
FD ) 

and the maximum Feret diameter ( max
FD ).   

 

min. min

max. max

F
Feret

R F
Feret

Diameter D
A

Diameter D
                                                                           (5.1) 

 

 Convexity ( XC ): The measure of the compactness of a particle. It is the 

ratio between the particle volume PV  and the volume of the particle’s 

convex hull, CHV .  In general, the range of XC  values typically vary 

between 0 and 1, and mainly depends on the shape of the particle.  

particle p

X

Convex hull CH

Volume V
C

Volume V
                                                                                (5.2) 

 

 Sphericity ( WS ): It describes how closely a particle resembles a sphere. 

According to Wadell (1932), it is the ratio between the surface area of a 

sphere which is believed to have the same volume and surface area of 

that particle.      
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2/31/3 6 p

W

p

V
S

S


                                                                                         (5.3) 

where PV  and PS  are the volume and surface area of a particle 

respectively. The range of WS  vary from 0 to 1  0 1WS  and the value 

of WS for a spherical particle equals to 1.   

 

 Overall regularity ( RO ): It is considered as the impacts of three particle 

shape parameters (i.e., RA , XC and WS ), which is used for characterizing 

particle shape in an integrated manner (Yang & Luo 2015).  

 

 
3

R X W

R

A C S
O

 
                                                                                       (5.4) 

 

It should be noted that RA , XC , WS  and RO  can only reflect the shape 

characteristics of a particle but not the whole assembly. The generated 

elongated particles with different shape parameters are presented in Figure 5.1. 
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Figure 5.1 Elongated particles with varying shape parameters    

5.4 Simulation details  

The triaxial test specimen in three-dimensions is modelled using six 

independent rigid walls formed as a cubic box. The particles are allowed to 

distribute randomly and there is no gravitational force is applied to the 

particles. A built-in servo-mechanism is activated to maintain the desired stress 

levels within the assembly during isotropic compression. While shearing the 

sample, both the top and bottom walls are permitted to move towards each 

other at a constant loading strain rate which is sufficiently small enough to 

ensure the quasi-static conditions, whereas the remaining walls hold the same 

confining pressure using a stress-controlled servo mechanism (Zhao & Zhao 

2019). To investigate the particle elongation effects, all samples generated at 

their densest state by imposing a zero interparticle friction coefficient during 

the sample preparation stage. The input parameters used here are the same as 

those used in the previous chapter (see Section 4.4).  
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5.5 Macroscopic behaviour     

The axial strain 
1  and volumetric strain 

v  can be obtained from the 

displacements of the rigid walls (boundaries), as:   

 

 
0

0
1

d
   ln

H

H

Hh

h H


 
   

 
                                                                                                                                       (5.5)        

 
0

1 2 3

0

d
         ln

V

v

V

v V

v V
   

 
      

 
                                                                              (5.6)   

   

where H and V are the height and volume of the specimen at the current time, 

respectively, 
0H  and 

0V  are their initial values at the onset of shear. Similarly, 

the strains 
2  and 

3 , in x and y - directions can be obtained accordingly.    

 

It should be mentioned that all samples are isotropically compressed at              

200 kPa. Figure 5.2 shows the evolution of stress ratio (q/p) against axial strain 

for different values of Λ. It is observed that all specimens deemed to exhibit 

similar behaviour, i.e., post-peak strain-softening, which is obvious in the dense 

granular assemblies. The stress ratio flattens off and tends to follow a steady-

state after an axial strain of 40%. According to Schofield & Wroth (1968), this 

state is believed to have reached a critical state.  
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Figure 5.2 Stress ratio against axial strain for different Λ 

 

In the triaxial shear test, the mobilised shear strength of granular assembly can 

be represented by the angle of internal friction  , which is given as: 

 

q p

q p

 


 

   
    

   

'
1 3

'
1 3

3 /
arcsin arcsin

/ 6
                                                                (5.7) 

 

where  1  = major principle effective stress; 3  = minor principle effective stress. 

The influence of Λ on the angle of internal frictions at both peak and critical 

states is presented in Figure 5.3. The peak state is recognised as the state at 

which the stress ratio reaches the peak against axial strain, whereas the critical 

state is considered to be the one at which the granular assembly is continuously 

sheared under a constant volume and stresses. The error bars represent the 

standard deviation of the friction angles at the critical state. It is found that the 
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peak state friction angles reached a peak value at Λ = 0.2 and almost stabilized 

as a further increase in Λ. According to Gong & Liu (2017), as aspect ratio 

increases, the value of peak state friction angles exhibited a unimodal peak, 

whereas the critical state friction angle was monotonically increased. Although 

the same approach (i.e., MS approach) was used in both the investigations, the 

variations at both peak and critical state friction angles are noticed. This might 

be due to different initial conditions and the number of spheres in each clump.   

 

Figure 5.3 Effect of Λ on the angle of internal frictions 

Figure 5.4 presents the effect of confining stresses on the triaxial shear 

behaviour of granular materials for Λ = 0.3. As it is found that all assemblies 

reach the critical state at the same stress ratio (i.e., q p'~ /  = 1.0), which indicates 

that the residual shear strength of the assemblies is dependent on the confining 

stress. However, the peak stress ratio of the assemblies with different confining 

stresses is slightly varied. These findings are in agreement with the results 

reported by Gong & Liu (2017) and Kodicherla et al. (2019). Furthermore, the 
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ellipsoids generated using MS approach has multiple contacts resulting in a 

stronger interlocking, enhancing the shear strength of the granular assembly. 

In the case of true ellipsoids, the effect of interlocking may be limited because 

of the smooth surface, consequently lesser shear strength was achieved by         

Ng (2009).   

 

 

Figure 5.4 Stress ratio against axial strain for different isotropic stresses 

 

Figure 5.5 shows the evolution of volumetric strains and void ratios against 

axial strain and Λ. The evolution of volumetric strain against axial strain for 

different Λ values is shown in Figure 5.5(a). It is observed from the figure that 

all assemblies exhibit initial contraction and continuous dilation until reaching 

the critical state. Also, it is clearly understood that Λ has a significant impact 

on the volumetric behaviour of granular assemblies. For instance, the sample 

for Λ = 0.1 reaches a critical state of about ~30% of axial strain, whereas for the 

case Λ = 0.6, about ~45% of axial strain was required to reach the critical state. 

The void ratio (e) initially decrease up to Λ = 0.3 but increase further with the 
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increase in Λ (see Figure 5.5(b)). This observation is somewhat different from 

the behaviour of granular materials obtained using the multi-sphere (MS) 

approach by Gong & Liu (2017). It may be because the method of particle 

generation has a noticeable influence on the spatial arrangement and the 

critical state void ratio (ec) of granular assemblies. The relationship between 

the void ratios against Λ at different stages of axial strains in Figure 5.5(c) 

shows that the values of e reach a minimum value at Λ = 0.4 while increase with 

the increase in Λ, for different percentages of axial strains.   

 

 

 

Figure 5.5 (a) Evolution of volumetric strain against axial strain; (b) Evolution 

of void ratio against axial strain; (c) Relationship between void ratio against 

Λ at different stages of axial strains 
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5.6 Microscopic behaviour   

5.6.1 Coordination number (CN) 

Figure 5.6 presents the evolution of CN against axial strain for different Λ 

values. It is observed that all samples follow an exponential decay against the 

axial strain. The inset (see Figure 5.6) shows the initial and steady-state CN of 

the samples with different Λ values. The onset of CN decreases with increasing 

Λ, while the steady-state CN is found to increase with the increase in Λ 

values.  

 

Figure 5.6 CN against axial strain for different Λ 

 

5.6.2 Evolution of deviator fabric  

The evolution of deviator fabric against axial strain for different Λ values is 

shown in Figure 5.7. The trend of d  follows same as the stress-strain response 

(see Figure 5.2), which was also reported by Kodicherla et al. (2019) that the 

deviator fabric at small strains mainly depends on both the stress and volume 
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change, while at large strains the volume approaches a steady value and depend 

only on the stress.  

    

 

Figure 5.7 Evolution of deviator fabric against axial strain for different Λ 

 

5.7 Relationships between critical state and shape parameters  

According to Yang & Luo (2015), the position of CSL may change its position 

by the transformation of particle shape in the stress space. From Figure 5.8(a), 

it is found that a strong linear relationship between two quantities (R2 = 0.974), 

indicating that the M values decreasing with increasing RA . A strong 

correlation between M and XC  (see Figure 5.8(b)) and M and WS  (see Figure 

5.8(c)), both show an approximately linear and a second order exponential 

relationship with acceptable regression coefficient values, respectively. Also, it 

is noted that the M values decreasing with increasing XC  and WS , respectively. 
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Although the XC  is almost insensitive in my case, it is also one of the important 

parameters to consider in correlating the relationship between critical state 

parameters and particle shape characteristics. Moreover, the key shape 

parameter RO  defines based on the impacts of all three shape parameters (i.e., 

RA , XC  and WS ). Hence, XC  also is considered in this analyses. Similar 

observations were also reported by Yang & Luo (2015), for Fujian sand and 

Glass beads. Furthermore, considering the impacts of three shape parameters 

(i.e., , ,R xA C  and wS ), the correlation between M and RO can be given as: 

 

2.197 1.384 RM O                                                                                                          (5.8) 

 

 

Figure 5.8 Relationships between M and shape parameters   

 

The correlations between the critical state parameters (i.e., e  and c ) and the 

shape parameters (i.e., , ,R x w RA C S and O ) are presented in Figure 5.9. It is 

noticed that the e  correlate with these shape parameters fairly well, giving a 
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linear relationship with acceptable regression values. Amongst the 

relationships, XC  correlate well with the e  (i.e., R2 = 0.981). The shape effect 

between the intercept e  and 
RO , is given as:  

 

 1.435 0.747 Re O                                                                                                      (5.9) 

 

The gradient of the CSL against the shape parameters is shown in Figure 5.10. 

A fair correlation is established between c  and the shape parameters. The 

effect of the shape parameter c  can be well represented by RO , given as: 

 

 0.0946 0.0862c RO                                                                                             (5.10) 

 

The above equation can well predict that the slope of the CSL in the stress 

space tends to decrease as particle 
RO increases. These findings are in 

agreement with the study conducted by Yang & Luo (2015).     
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Figure 5.9 Relationships between e  and shape parameters 

 

Figure 5.10 Relationships between c  and shape parameters 
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5.8 Summary  

A series of DEM based drained triaxial simulations were performed considering 

different values of Λ. The macroscopic behaviour of granular materials exhibits 

post-peak strain-softening response, the stress ratio flattens off and tends to 

follow a steady-state after an axial strain of ~40%. It was also found that the 

residual shear strength of the assemblies depends on the applied confining 

stress. The microscopic behaviour in terms of CN shows an exponential decay 

against the axial strain, the deviator fabric followed a similar trend as observed 

in the macroscopic behaviour of granular materials.  

 

The quantitative relationships were established between the critical state 

parameters and shape parameters. Furthermore, it should be highlighted that a 

critical stress ratio (M) and critical state parameters (i.e., e  and c ) decrease 

with increasing shape parameters (i.e., R x wA C S, , and  ). The relationship 

between the shape index ( RO ) and the shape parameters ( R x wA C S, , and ) was 

also established to provide a collective description of the particle geometry.  
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Chapter 6 Influence of particle morphology on 

triaxial behaviour  

6.1 Introduction 

To understand the true mechanical behaviour, numerous particle shapes have 

been considered in the literature. For non-spherical particle shapes whose 

surface equations are more complicated, the multi-sphere (MS) method and 

polyhedron method can be generally used to reconstruct the 3D particles. Using 

the MS method, complex non-spherical particle shape can be approximately 

constructed via clumping small spheres and the resolution of the particle shape 

is determined by both the number and size of the component spheres. Using 

the polyhedron method, the surface of a particle can be constructed using 

polygons. As long as the component spheres or polygons are sufficient, any 

complex shape can be well represented using either of the above methods. 

Nevertheless, in practice, this is unrealistic due to computational cost, 

especially in processing the contact detection.  

 

In addition to the above-mentioned particle generation methods, particle 

irregularity and roughness also were found to have a significant influence on 

the shear strength and volume change of granular materials (Kozicki et al. 2012; 

Kozicki et al. 2014; Araujo et al. 2017). Moreover, among the various particle 

shapes considered in DEM simulations, it was confirmed that ellipsoid-shaped 

particles can offer a realistic behaviour of the mechanical behaviour of granular 

materials (Bagherzadeh-khalkhali & Mirghasemi 2009; Zhou et al. 2013). 

Moreover, the effects of particle morphology on the macroscopic and 

microscopic responses of granular materials are not yet fully explored or 

understood.  
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A general introduction is presented in Section 6.1 and a review of literature 

related to particle morphology is discussed in Section 6.2.  In Sections 6.3, a 

methodology for particle morphology is presented. In Section 6.4 and Section 

6.5, simulation details and simulations results are presented correspondingly. 

In Section 6.6, the relationship between macro- and micro-scale parameters are 

furnished.  In the end, a summary of this chapter is also presented.     

  

6.2 Review of literature     

It was mentioned by Zhao & Zhao (2019) that the particle morphology is an 

indispensable factor in affecting the mechanical behaviours of granular 

materials. Several researchers have attempted to study granular material 

behaviour at different scales including shear strength, crushability, dilatancy, 

shear-induced localization and instability (Sukumaran & Aishmawy 2003; 

Guo & Su 2007; Tsomokos & Georgiannou 2010). However, it is a challenging 

task to quantitatively relate the morphological features of soil particles to the 

mechanical behaviour of granular materials using physical experimentation. 

Instead, micromechanics based numerical models, such as discrete element 

method (DEM), have been widely applied across many disciplines for capturing 

the microscopic insights of granular materials (Radjai et al. 1998; Thornton 

2000; Nicot & Darve 2007; Wang et al. 2012; Guo & Yu 2015; Nicot et al. 2017; 

Jiang et al. 2018).  

 

During the past two decades, the developments in X-ray micro-computed 

tomography (µCT) technology has allowed three-dimensional (3D) 

visualization and characterisation capabilities at the micro-scale enhancing 

significantly the insights into micromechanical behaviour of granular materials. 

Nevertheless, the number of scanned particles is usually restricted because of 

the limitations in costs and resolutions of µCT scanning.  The DEM framework 

allows reconstruction of particle surfaces and realistic particle shapes that can 

be modelled using advanced clump template logics (Ferellec & McDowell 

2008; Gao et al. 2012; Zheng & Hryciw 2015). Although the limitation of the 
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number of particles exists for DEM simulations, the samples for describing the 

particle morphologies of DEM are repetitive and can represent the realistic 

particles to the least. 

 

Wei et al. (2018) proposed a method for generating realistic sand particles with 

fractal nature using an improved spherical harmonic analysis. Based on the 

X-ray micro-computed tomography images of natural sand particles, a set of 

spherical harmonic descriptors and an associated fractal dimension were 

introduced to characterize the multi-scale particle morphology. A powerful 

correlation between the spherical harmonic descriptors and the spherical 

harmonic degree in log-log scales was found for natural sand particles, which 

indicates a clear fractal nature between the multi-scale morphological features 

of sand particles. The visual inspection of 3D printed particles and the 

statistical distributions of the shape parameters (i.e., sphericity, roundness, 

convexity and elongation index) of the generated particles were consistent 

with those measured for the real sand particles from the μCT images.  

 

Li et al. (2015) proposed a new algorithm to approximate real particles for DEM 

simulation based on a modified greedy heuristic algorithm. The authors 

proposed three different solution schemes based on a modified greedy heuristic 

algorithm, namely, a body-covering scheme, a surface-covering scheme and a 

triangular surface-covering scheme. The parameters were used to evaluate the 

precision of three different schemes indicate that all three schemes are 

excellent. It was understood that different schemes offer different levels of 

precision for different particles with different numbers of multiple spheres. 

Therefore, it was important to choose the scheme best suited to represent a 

particular objective. Also, the computational time was considered as the 

efficiency of the algorithm.  

 

Jerves et al. (2015) investigated the effects of grain morphology on critical state 

using a computational analysis approach. To enable the inclusion of real grain 
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shapes, a new DEM scheme (LS-DEM) was employed. Using LS-DEM, the 

experimental results were calibrated and validated for real experimental 

results. Also, the potentiality of LS-DEM, the dependency of critical state 

parameters (CSP) such as critical state line (CSL) slope k, CSL intercept  , and 

critical state friction angle of unconfined compressive strength on the grain’s 

morphology, i.e., sphericity, roundness, and regularity, were exploited. 

Moreover, the authors found that the critical state friction angles show less 

sensitiveness to idealization and for cs the CSPs computed from real grain 

shapes show more dependency on the grain’s regularity than their counterparts 

from idealized grains. The authors investigated the importance that the amount 

of accuracy used in capturing a real grain’s shape can have on the values of the 

critical state parameters.  

 

A numerical investigation of particle shape effects on the fabric of granular 

packing was carried out using the three-dimensional discrete element method 

with a superellipsoid model by Zhao et al. (2017). A broad range of particle 

shapes controlled by two shape parameters (i.e., aspect ratio and blockiness) 

were taken into account. A series of random packing of non-cohesive, frictional 

monodisperse superellipsoids was conducted under gravitational forces in 

simulations. The fabric of a granular packing was quantified in terms of packing 

density, coordination number, distribution of particle orientations, the 

anisotropy of three types of fabric vectors (i.e., particle orientation, contact 

normal and branch vector), and distribution of normalized contact forces.            

It was shown that the effects of particle shape on packing density and 

coordination number were in agreement with the reported literature. 

Moreover, ellipsoids show the lowest packing density in the family of 

superellipsoids. The distribution of particle orientations was much more 

sensitive to blockiness than aspect ratio. Interestingly, it was found that 

particle shape has an insignificant effect on the probability distribution of 

normalized contact forces which shows a clear exponential distribution.  
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The influence of particle morphology on the friction and dilatancy of sand was 

investigated by Alshibli & Cil (2018). The stress-strain response and volume 

change behaviour, as well as peak state and critical state (CS) friction and 

dilatancy angles, was examined and the triaxial test results of Toyoura and 

Hostun RF sands collected from the literature were included in the analyses. 

Simple statistical models capable of predicting the peak and CS friction angles 

as well as dilatancy angle by providing particle surface texture, roundness, 

sphericity, relative density, and initial mean stress as input parameters were 

developed. The results show that morphology parameters highly influence 

dilatancy angle, CS, and peak state friction angles. 

 

An experimental investigation of the kinematics of sand particles under triaxial 

compression was explored by Cheng & Wang (2017). A particle-tracking 

method based on the particle volume was employed and applied to the 

acquisition of particle kinematics of uniformly graded sand undergoing 

shearing in a mini triaxial apparatus using the X-ray synchrotron radiation 

technique. It was found that the particle tracking based on the two tracking 

criteria’s i.e., particle volume and particle surface area, provides consistent 

results of particle kinematics with high accuracy.   

 

Lee et al. (2012) studied the simulation of triaxial compression tests with 

polyhedral discrete elements to simulate drained and undrained triaxial 

compression tests. A series of DEM simulations were performed to replicate 

nine isotropically consolidated drained triaxial compression (CIDC) tests on 

sand specimens. The DEM micro-mechanical parameters of the inter-particle 

friction angle, normal and shear contact stiffness were calibrated using a single 

test in the series. The calibrated DEM model was then used to compute the 

response of the other eight tests. The deviatoric stress and volumetric strains 

obtained in each CIDC test simulation show good agreement with the 

corresponding experimental data. The major source of error in the simulations 

was the use of larger particle sizes necessary to keep the computational cost 
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manageable. The computed undrained triaxial compression (CIUC) responses, 

presented in terms of the stress path, deviatoric stress, and shear-induced pore 

water pressure, were consistent with the sand behaviour.  

 

Ngo et al. (2016) explored a micromechanics-based investigation of fouled 

ballast using large-scale triaxial tests and discrete element modelling. 

Monotonically loaded and drained triaxial tests were carried out on ballast 

with levels of clay fouling that varied from 10 to 50% void contamination index 

(VCI) subjected to three confining pressures of 10, 30, and 60 kPa. The results 

show that an increase in the level of fouling decreased the mobilized friction 

angle and increased the ballast dilation. Ballast fouling was approximately 

simulated in DEM by adding 1-mm particles into the pore spaces of the fresh 

ballast. The predicted mobilized friction angles and volumetric changes 

obtained from the DEM simulations agreed well with those measured in the 

laboratory, indicating that the peak friction angle of fouled ballast and dilation 

decreased as the degree of fouling increased.  

 

6.3 Methodology  

The elliptical particles are modelled using a commonly adopted multi-sphere 

(MS) approach in PFC. In three-dimensions, the Voronoi diagram of a closed 

surface may be approximated by calculating a constrained Delaunay 

tetrahedralization of the ellipsoid mesh representing the surface (Chew 1989; 

Dey 2003; George 2003). For an ellipsoid surface enclosing a volume, a Delaunay 

tetrahedralization is initially constructed and then for each tetrahedron, the 

centre and radius of its circumscribed sphere are noted as the balls or pebbles 

of a clump. This approach can be implemented in the Kubrix automatic mesh 

generation software package (Taghavi 2000; Simulation Works 2009) as an 

option called BubblePack which automatically generates clump templates for 

PFC3D. The ellipsoid surface in the form of an STL file (see Figure 6.1), and two 

morphological descriptors of which ξ represents the particle geometry and β 

represents the surface texture of the particle, should be identified. The 
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BubblePack outputs a file containing a surface description of the clump 

template that is compatible to read in PFC3D as shown in Figure 6.2.  

 

Figure 6.1 Clump representing an ellipsoid generated by MS approach 

 

Figure 6.2 A surface representing an ellipsoid 

 

To optimize these two parameters, Figure 6.3 shows the effects of ellipsoid 

clump templates for different values of ξ and β. The present DEM model can 

present the total range of ellipsoids as controlled by two morphological 

descriptors. However, due to the computational limitations and associated 

costs, we herein focus on the following cases: β = 150° with ξ = 0.4, 0.6 and 0.8; 

and ξ = 0.4 with β = 100°, 130° and 160°. The initial configurations of ellipsoidal 

assemblies with various β and ξ are presented in Figure 6.4.  
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Figure 6.3 The effects of varying β and ξ for the ellipsoid clump templates 
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Figure 6.4 Initial configurations of ellipsoidal assemblies for triaxial 

simulations 

 

6.4 Simulation details     

It should be mentioned that all samples are prepared at their densest states.  

The input parameters used and simulation procedure remain same as reported 

in the previous chapter (see Section 5.4).   

  

6.5 Simulation results  

The simulation results include the evolution of macro and microscopic 

response of ellipsoid particles for various morphological descriptors under 

drained triaxial test conditions. The macroscopic behaviour includes the 

evolution of normalized stress, volumetric strain, void ratio and shear strength. 

The microscopic behaviour includes the evolution of coordination number, 

deviator fabric for strong force and weak force subnetworks. Moreover, the 

relationship between macro and macro-level quantities are established.  
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6.5.1 Macroscopic behaviour   

Figure 6.5 and Figure 6.7 show the stress ratio against axial strain for the 

specimens with different ξ and β, respectively. All specimens exhibit very 

similar behaviour, i.e., post-peak strain-softening, which is associated with 

dilatancy in terms of volumetric strain as shown in Figure 6.6 & Figure 6.8. This 

typical behaviour is quite obvious for dense granular assembly. Also, the 

normalized deviator stress and volumetric strains flatten off and tend to reach 

a steady value after an axial strain of 40%, which shows that all samples have 

attained a critical state (Schofield & Wroth 1968).  

 

The peak shear strength is found to depend on the morphological descriptors, 

i.e., the lower value of β tend to higher shear strength, and the higher value of 

ξ tend to higher shear strength. This is due to the rough surface of a particle 

where multiple contacts exist around the particle, a limited number of contacts 

in-between the smoother particles. As mentioned by Ludewig & Vandewalle 

(2012) and Shamsi & Mirghasemi (2012) that multiple contacts between rough 

surfaces of the particles would result in stronger interlocking, and as such, lead 

to higher shear strength within the granular assembly.  
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Figure 6.5 Evolutions of stress ratio against axial strain for the specimens          

ξ = 0.4 with different β 

 

Figure 6.6 Evolutions of volumetric strain against axial strain for the 

specimens ξ= 0.4 with different β 
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Figure 6.7 Evolutions of stress ratio against axial strain for the specimen’s β

 150 with different ξ 

 

Figure 6.8 Evolutions of volumetric strain against axial strain for the 

specimens β  150  with different ξ 

0 10 20 30 40 50 60
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

St
re

ss
 r

at
io

, q
/p

 [
 ]

Axial strain, a [%]

 x = 0.4

 x = 0.6

 x = 0.8

0 10 20 30 40 50 60

0

4

8

12

16

20

V
ol

u
m

et
ri

c 
st

ra
in

 [
%

]

Axial strain, a [%]

 x = 0.4

 x = 0.6

 x = 0.8



Chapter 6 Influence of particle morphology on triaxial behaviour 

 

139 
 

Figure 6.9 and Figure 6.10 show the evolution of void ratio (e) against axial 

strain for the specimens with different values of β and ξ, respectively. These 

curves follow a similar trend as obtained for the volumetric behaviour of 

granular assembly (see Figure 6.6 and Figure 6.8). Also, it is observed that the 

onset void ratios increase with an increase of β and decrease with an increase 

of ξ. These variations could be attributed to the transformation of particle 

geometry and surface textures with corresponding changes in the 

morphological descriptors.   

 

 

 

Figure 6.9 Evolutions of the void ratio against axial strain for the specimens ξ 

= 0.4 with different β 
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Figure 6.10 Evolutions of the void ratio against axial strain for the specimens 

β = 150° with different ξ 

 

6.5.2  Evolution of the angles of internal friction     

Figure 6.11 and Figure 6.12 show the influence of β and ξ on the angle of 

internal frictions, respectively. The error bars in these figures represent the 

standard deviation of the angles of friction at the critical state. It is found that 

the friction angles are reliant on the morphological descriptors at both peak 

states and critical states. However, at the critical state, such effects are less 

significant as compared to the peak state. Also, the peak state angles of friction 

decrease with an increase of β and increase with an increase of ξ. Moreover, 

the deviation between angles of friction at peak state and critical state appears 

to have an increasing trend as ξ increases, which suggests an increase in 

dilation angle. The same observations were reported by Zhao & Zhou (2017) 

under drained triaxial test simulations.          
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Figure 6.11 Effect of β on the angle of internal frictions 

 

Figure 6.12 Effect of ξ on the angle of internal frictions 
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6.5.3 Microscopic behaviour       

Figure 6.13 and Figure 6.14 show the evolutions of coordination number (CN) 

for the specimens with different β and ξ respectively. It is found that the CN 

experiences a significant exponential decay before reach % 1 15  and it 

stabilizes during a further increase in the axial strain.  

 

 

 

 

Figure 6.13 Evolutions of CN for the specimens ξ = 0.4 with different β 
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Figure 6.14 Evolutions of CN for the specimens β = 150° with different ξ 

 

Figure 6.15 and Figure 6.16 show the probability distributions of CN for the 

specimens with different β and ξ, respectively. These curves are well-fitted by 

the Gaussian distribution function and there appears to be a systematic 

skewness to the distributions. Although there is no big variation between the 

specimens with β = 100° and β = 130°, the distribution shifts to the right as both 

β increases and as ξ decreases. The peaks are within the range of 6.0 to 8.0, an 

increase in β or decrease in ξ leads to a decrease in CN.       
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Figure 6.15 Probability distributions of coordination numbers for the 

specimens ξ = 0.4 with different β 

 

Figure 6.16 Probability distributions of coordination numbers for the 

specimens β = 150° with different ξ 
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Figure 6.17 and Figure 6.18 show the force chain networks corresponding to the 

initial, peak and critical states with different β and ξ respectively. In both the 

figures, before shearing the sample, i.e., at the initial stage or end of isotropic 

compression (see left columns in figures), contact forces are approximately 

distributed uniformly throughout the specimen, because the sample was under 

a state of isotropic compression. At the peak state (see middle figure), the 

strong contact forces (i.e., red-coloured spots) are transmitted through the top 

to bottom of the specimen. Also, it seems that there are limited strong contacts, 

however, they are deemed to be adequate to take up the external loads as 

pillars. Meanwhile, the weak contact force chains contributed to the stability 

of the strong contact force chains to a much less degree. Furthermore, as β 

increases or ξ decreases, the strong contact force chains are found to become 

stronger, corresponding to higher peak stresses. For the remaining shear 

process, the contacts gradually disappeared and lead to sparser contact force 

networks before attaining the critical state.          
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Figure 6.17 The contact force chain networks at initial (left), peak (centre) 

and critical (right) states for β = 100° and β = 160° 

 

Figure 6.18 The contact force chain networks at the initial (left), peak 

(middle) and critical (right) states for ξ = 0.4 and ξ = 0.8 
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In DEM simulations, the Coulomb’s friction law is commonly applied to track 

the proportions of sliding fractions in the assembly. According to Gong & Liu 

(2017), the sliding is governed by a sliding index  /c t nS f f , where 
tf  is the 

tangential contact force at the contact, µ is the internal friction coefficient, and 

nf  is the normal force at the contact. In general, it is assumed that the sliding is 

assumed to occur when 
cS  is greater than 0.999.  

 

The evolution of proportions of sliding contacts for the specimens with 

different β and ξ, respectively are presented in Figure 6.19 and Figure 6.20.         

It is found that independent of β and ξ, the sliding contacts increases sharply 

to the peak and reaches a steady value at a higher axial strain. These 

observations were also reported by Gu et al. (2014) and Gong & Liu (2017) for 

the dense granular assemblies under triaxial test conditions. Moreover, ξ has a 

significant effect on the sliding contacts as compared to β, which indicates the 

increase of ξ can improve the interlocking between particles.     
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Figure 6.19 Proportions of sliding fractions for the specimens ξ = 0.4 with 

different β 

 

Figure 6.20 Proportions of sliding fractions for the specimens β = 150° with 

different ξ 
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6.6 Establishing the micro-macro relationship    

Several investigators have tried to establish the relationship between the 

micro-macro relationship for granular materials (e.g., Radjai et al. 1998; Alonso-

Marroquin et al. 2005; Sazzad & Suzuki 2013). Figure 6.21 to Figure 6.24, the 

overall and strong fabric measures of /d m  and /s s
d m   against axial strain 

for the specimens with different β and ξ, respectively are presented. Both 

overall and strong fabric measures behave similarly with higher in magnitudes 

for the strong fabrics. Moreover, it is found that the increase in β or ξ leads to 

an increase in the fabric measures for the same axial strain.  Figure 6.25 presents 

a relationship between the macro and micro scale quantities for different 

morphological descriptors. Regardless of β and ξ, the relationships are 

approximately linear before their peaks.  

 

Figure 6.21 Evolutions of /d m  against axial strain for the specimens ξ = 0.4 

with different β 
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Figure 6.22 Evolutions of /d m   against axial strain for the specimens β = 150° 

with different ξ 

 

Figure 6.23 Evolutions of /s s
d m   against axial strain for the specimens ξ = 0.4 

with different β 
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Figure 6.24 Evolutions of /s s
d m   against axial strain for the specimens β= 

150° with different ξ 

 

Figure 6.25 Relationship between strong fabric parameter /s s
d m   and stress 

ratio 
'/q p  
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6.7 Summary  

The macroscopic behaviour of numerical assemblies with different 

morphological descriptors was deemed to be comparable in trends. The 

difference between angles of internal friction at the peak state and the critical 

state appears to increase with increasing ξ, which corresponds to an increase 

in the dilation angle. The coordination numbers exhibit significant exponential 

decay before reaching an axial strain of about 15% and eventually stabilizes 

with a further increase in the axial strain. Moreover, irrespective of the 

morphological descriptors, an approximately linear relationship is found 

between the stress ratio and the strong fabric parameter /s s
d m   before 

reaching the peak.   
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Chapter 7 Influence of loading paths on critical 

state behaviour   

7.1 Introduction 

The development of critical state soil mechanics (CSSM) framework was 

initiated in the 1950s and 1960s by Roscoe et al. (1958) and Schofield & Wroth 

(1968). The key assumption of the CSSM framework is that the soil is 

continuously sheared to a large strain where both the constant volume and 

constant stress states occur. Although the CSSM framework was based on the 

experimental observations and theoretical derivations, the conflicting findings 

regarding some key issues, such as the uniqueness of the critical state line 

(CSL) and achieving the critical state, have been discussed for a long time (Chu 

1995; Mooney et al. 1998; Zhao & Gao 2013). Notwithstanding this, the 

uniqueness of critical state has evoked increasing debate for many years and 

remains an unresolved issue. The central difficulty lies in how to integrate 

fabric anisotropy into the delineation of the critical-state failure. Some 

experimental investigations indicated that the CSL in the void ratio (e) and 

mean normal effective stress ( 'p ) space is non-unique (Been et al. 1991; Verdugo 

& Ishihara 1996), while others show a unique CSL regardless of the initial 

conditions (Ng 2009; Sitharam & Vinod 2009; Salvatore et al. 2017).  

 

Critical-state failure is a salient feature for particular materials, whereas the 

critical-state theory (CST) is widely accepted for understanding and 

interpreting the behaviour of a range of materials under complex loading 

conditions. In elasto-plastic soil modelling, the critical state is also a favourable 

reference state for capturing and simulating the soils responses, and thus many 

constitutive models have been developed within the CST framework.  
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A critical state void ratio (
ce ) alone cannot well represent the comprehensive 

state of the soil sample. Been & Jefferies (1985) introduced a state parameter

   ce e , where e  is the current void ratio and 
ce is the void ratio at the critical 

state for the current  'p  value. A positive value of   signifies a looser state while 

the negative value   indicates a denser state of the assembly. In the recent past, 

numerous constitutive models for soils have been developed which explicitly 

take   into account in their formulation (e.g., Jefferies 1993; Jefferies and 

Shuttle 2002). However, there is a lack of large-strain laboratory test data for 

three-dimensional generalized loading conditions, which bounds the ability to 

develop and to apply these models to field applications where the stress state 

is not axisymmetric (Huang et al. 2014b).      

 

An overview of the relevant literature regarding the loading paths is presented 

in Section 7.2.  In Sections 7.3 and 7.4, evaluation of ID and introduction on the 

loading paths are presented. The simulation details and results are presented in 

Sections 7.5 and 7.6, respectively. In the end, a summary of the chapter is 

presented.  

 

7.2 Review of literature 

The experimental results on critical state behaviour of granular materials under 

true triaxial test conditions is rarely reported because the loss of homogeneity 

in deformation at large strain levels. Thus computer-based numerical 

simulations are gained much weightage in which the loading paths and 

simulation parameters can be appropriately controlled and the stress-strain 

responses can be analyzed thoroughly. In the literature, many researchers have 

been dedicated to studying the critical-state behaviour of granular materials 

(e.g., Ng 2009; Sitharam & Vinod 2009; Maeda et al. 2010; Yan & Dong 2011; 

Guo & Zhao 2013; Gu et al. 2014). Nevertheless, many DEM studies have 

investigated the effects of b on the load-deformation response (Thornton 2000; 

Barreto & O’Sullivan 2012; Ng 2004; Sazzad & Suzuki 2013). These studies 
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have considered the influence of b mainly on comparing the behaviour of sands 

under triaxial compression (b = 0.0) and triaxial extension loading conditions 

(b = 1.0). Been et al. (1991) reported that the CSL obtained from triaxial 

compression tests and that determined from triaxial extension tests are 

identical, a consensus has been formed among other researchers that the CSL 

for triaxial extension lies below that of triaxial compression (Vaid et al. 1990; 

Riemer & Seed 1997; Carrera et al. 2011). Yet there is no clear justification made 

in this regard.  

 

Huang et al. (2014) explored the critical-state response of granular assemblies 

composed of elastic spheres under generalised three-dimensional loading 

conditions using DEM. The simulations were performed with a simplified 

Hertz–Mindlin contact model using a modified version of the LAMMPS code. 

Initially, isotropic samples were subjected to three-dimensional stress paths 

controlled by the intermediate stress ratio,        b 2 3 1 3 , where 1 ,  2

and 3 are the major, intermediate, and minor principal stresses, respectively. 

The data show that, while shearing, the dilatancy at post-peak increases with 

increasing b. Thus at a given mean effective stress, the void ratio at the critical 

state increases systematically with b. Four commonly used three-dimensional 

failure criteria were shown to give a better match to the simulation results at 

the critical state than at the peak state. The variation in the critical state void 

ratios at the same mean effective stress, p'  value is related to the directional 

fabric anisotropy which is sensitive to b. 

 

Zhou et al. (2016) studied the macroscopic and microscopic behaviours of 

granular materials under proportional strain paths. A contact model 

considering rolling friction was adopted to account for the effects of particle 

shape. The mechanical responses indicate that loose assemblies without the 

rolling resistance were more vulnerable to static liquefaction. A sample with a 
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smaller initial void ratio or larger rolling friction coefficient will reinforce the 

stability of the structure and reduce the likelihood of failure.  

 

Xie et al. (2017) explored the influence of particle geometry and the 

intermediate stress ratio on the shear behaviour of granular materials. The 

numerical experiments employ samples with different particle aspect ratios 

and a unique particle size distribution (PSD). The test results show that both 

the particle aspect ratio (AR) and intermediate stress ratio (b) affect the macro- 

and micro-scale responses. At the macro-scale, the shear strength decreases 

with an increase in both aspect ratio and intermediate stress ratio, b values. At 

the micro-scale level, the fabric evolution was also affected by both AR and b. 

The results from DEM analyses qualitatively agree with available experimental 

data. It is observed that the position of the critical state loci in the compression 

( e p ' ) space is only slightly affected by AR while the critical stress ratio is 

dependent on both AR and b. It was also demonstrated that the influence of the 

aspect ratio and the intermediate stress can be captured by micro-scale fabric 

evolutions that can be well understood within the framework of existing 

critical state theories. For a given stress path, a unique critical state fabric norm 

is dependent on the particle shape but is independent of critical state void ratio. 

 

Yang & Wu (2017) studied critical state behaviour for anisotropic granular 

materials using DEM. Samples with different degrees of initial fabric 

anisotropy were sheared up to the critical state under both triaxial 

compression and extension conditions. Based on the numerical simulations 

with varying densities and confining pressures, a unique critical-state line was 

approximately obtained in the e p '  plane and was found to be independent of 

initial fabrics and shearing modes or Lode angles. The fabric anisotropy and its 

evolution during the loading process were quantified by a deviatoric fabric 

tensor defined based on the statistical distribution of the contact normal 

vectors within the granular assemblies. The most prominent observation is that 

the principal direction of the fabric tensor is codirectional with the stress at the 
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critical state, whereas its norm was having a unique value pertinent to the shear 

mode or Lode angle. 

 

Jiang et al. (2018) studied the influence of particle-size distribution on critical 

state behaviour of spherical and non-spherical particle assemblies. A series of 

DEM based triaxial test simulations were performed to examine the influence 

of particle-size distribution (PSD) and particle shape, which were 

independently assessed.  Samples were composed of particles with varying 

shapes characterized by overall regularity (OR) and different PSDs. The samples 

were subjected to the axial compression through different loading schemes: 

constant volume, constant mean effective stress, and constant lateral stress. All 

samples were sheared to large strains to ensure that a critical state was reached. 

For a given PSD, both the shear strength and fabric norm decrease with an 

increase in OR. It was found that the critical state angle of shearing resistance 

was highly dependent on particle shape. In terms of PSD, uniformly distributed 

assemblies mobilize higher shear strength and experience more dilative 

responses than specimens with a greater variety of particle sizes. The position 

of the critical state line in the e p ' space was also affected by PSD. However, 

the effects of PSD on critical strength and evolution of fabric were negligible.  

 
Yang et al. (2018) studied the unified modelling of the influence of consolidation 

conditions on monotonic soil response considering the evolution of fabric. An 

anisotropic plasticity model to address the effect of consolidation conditions 

on the responses of soils within the framework of the anisotropic critical state 

theory (ACST) was proposed. Double-yield surfaces were employed to describe 

the plastic deformation caused by both deviatoric shear and compression.              

A fabric tensor was defined to quantify the internal structure of soils and its 

evolution during the plastic deformation under both loading mechanisms was 

explicitly proposed. The novel expression of the fabric evolution rules allows 

for both ‘hardening’ and ‘softening’ types of variation in the fabric norm that is 

manifested by discrete element method simulations. A modified anisotropic 
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variable was proposed, engaging with the effect of the anisotropic 

consolidation and the subsequent loading path and rendering the combined 

dilation–contraction deformation patterns being simulated, which are 

exclusively pertinent to the anisotropic consolidation conditions. The 

predictive capacity of the model was demonstrated by triaxial tests on both 

sand and clay. A satisfactory comparison was found between the model 

response and test results. 

 

 

7.3 Evaluation of density index (ID) 

In DEM simulations, the application of interparticle friction during the 

isotropic compression will play a key role in controlling the state of granular 

assembly. In soil mechanics, the state of soil can be well – represented by 

relative density
rD e e e e  

max max min
( ) / ( ) , where 

maxe  and 
min
e  are the 

maximum and minimum void ratios, respectively. However, the evaluation of 

limiting void ratios are challenging in DEM simulations. Therefore, an 

alternative measure 
r

D  is the densification index  D
I , which is used to capture 

the state of the numerical assembly. The expression 
D

I  is defined as (Zhang et 

al. 2018):  

 

up

D

up low

e e
I

e e





                                                                                           (7.1)  

 

where eup and elow are the corresponding void ratios on upper and lower 

consolidation lines, respectively. The upper boundary is the isotropic 

consolidation line (ICL) of the loosest sample and the lower boundary is the 

ICL of the sample exposed to the densest state or maximum densification (see 

Figure 7.1). It should be emphasised that the state of the sample in DEM mainly 

depends on the application of the interparticle friction coefficient during the 

specimen generation or isotropic compression phase. To achieve the densest 
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state, the zero interparticle friction coefficient should be assigned to the 

particles during the specimen generation phase, and then the e obtained at the 

end of the isotropic compression phase will be considered as emin
. Similarly, for 

the loosest state, the interparticle friction coefficient in the successive isotropic 

compression phase shall be gradually increased until the e becomes almost 

stable even though the change is imposed in the interparticle friction 

coefficient. The e obtained at this particular isotropic compression phase will 

be regarded as emax
. Although, the 

rD  and DI  are slightly different as DI  is 

dependent on
'

op , and therefore, its value for the same e can change with 
'

op . 

 

 

Figure 7.1 Evaluation of densification index ( DI ) 

  

7.4 Triaxial loading paths   

Several investigators worked on the DEM simulations for analysing the 

mechanical response of granular materials under various loading conditions, 

together with identifying their critical-state behaviour (Ng 2004, 2009; Fu & 

Dafalias 2015; Yang & Wu 2016). However, the mechanical response of granular 
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materials are not only closely related to the loading environment but also be 

contingent to the stress paths or loading paths (Jiang et al. 2013; Gutierrez et al. 

2009; Rodriguez & Lade 2013).  

 

In general, standard triaxial stress loading path tests are performed based on 

engineering practice and more generalised three-dimensional stress state 

taking into account the fact that the intermediate and minor principal stresses 

can be attained using true triaxial apparatus (TTA) (Ko & Scott 1967; Green & 

Bishop 1969; Head 1986). Each stress path has a critical field significance. 

However, the stress paths with lateral stress greater than the vertical stress are 

thought to represent more critical field cases.  

 

The triaxial drained loading and unloading stress paths can be classified into 

four types: axial compression (AC), axial extension (AE), lateral compression 

(LC) and lateral extension (LE). The schematic representation of the stress 

paths is shown in Figure 7.2. For the case of AC and AE tests, the specimen is 

loaded axially (
a  ) and unloaded axially (

a  ) while the lateral pressure 

is kept constant ( 0r  ), respectively. Similarly, for the case of LC and LE 

tests, the specimen is loaded laterally (
r  ) and unloaded laterally                        

( r
) while the axial pressure kept constant ( 0a  ), respectively. The 

illustration of drained triaxial loading paths considered in the  'q p  space for 

isotropically consolidated specimens at 400 kPa is shown in Figure 7.3.  
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Figure 7.2 Illustration of three-dimensional triaxial drained loading paths 

(after Springman et al. 2013) 
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Figure 7.3 Triaxial drained loading paths in the q p '  space 

 

7.5 Simulation details   

A random sand particle in the form of an STL file (clump template file) using 

the MS approach is modelled. More information regarding the MS approach 

can be found in Section 3.4. In clump template, each constituent particle is 

formed by joining and overlapping individual spheres (called pebbles in PFC) 

at different coordinates, which then behave as a rigid body that does not break 

apart, regardless of the magnitude of forces acting upon it (Li & Yu 2010; Yang 

et al. 2013). In PFC, modelling the clump template pebbles can occur via the 

BubblePack algorithm (Taghavi 2000). A triangulated surface must be 

specified with geometry, and no manual generation of pebbles is allowed. These 

pebbles are filtered based on their morphological descriptors such as ξ which is 

the ratio of the smallest to the largest pebble within the clump ( x 0 1 ) and 

β corresponds to an angular measure of smoothness (    0 180 ). Taking 

computational limitations and associated costs into account, the following 

parameters are adopted: .x  0 5  and   150 . The main effects of the 

morphological descriptors (i.e., x  and  ) on the macro- and the micro-scale 
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response of granular materials were described by Kodicherla et al. (2020). A 

map of clumps with a different plane of orientations is presented in Figure 7.4.  

In total, 60 numerical simulations are performed for 12 different series of 

numerical simulations. Each series has 5 simulations with different confining 

pressures (
'

op  = 100, 200, 400, 800 and 1600 kPa), under four different stress 

paths. For example, Series I – III involve AC stress path tests on three different 

states of assemblies, i.e., AC_L, AC_M and AC_D. These states of assemblies 

typically represent loose, medium and dense states based on theirs 
DI . All 

samples are sheared to a maximum 
a  of 60%, at which the critical state failure 

can be identified. A summary of the DEM simulation results under different 

stress paths is considered, where the subscript ‘0’ denotes the onset shear or 

end of isotropic compression as presented in Appendix - A.  
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Figure 7.4 Map of clumps along the different plane of orientations:               

(a) XYZ (b) XZY (c) YXZ (d) YZX (e) ZXY and (f) ZYX 
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7.6 Simulation results  

7.6.1 Macroscopic behaviour   

The macroscopic evolution of stress ratio (  'q / p  ) against axial strain ( a ) for 

the two extreme values of 0p
' and three different states of assemblies under AC 

and AE stress path tests are presented in Figure 7.5(a) and Figure 7.6(a), 

respectively. It is observed that independent of the applied 0p
' , dense samples 

exhibit post-peak strain-softening behaviour, whereas loose samples show a 

strain hardening response. Also, the medium dense samples exhibit initial 

hardening with minor post-peak strain-softening behaviour. Independent of 

stress paths, in all samples, the critical states are attained after a > ~ 50%.  

 

In terms of volumetric responses, it is observed that dense samples are more 

dilative while loose samples exhibited extreme contractive responses. For 

medium dense samples, initial contraction followed by dilation behaviour is 

identified (see Figure 7.5(b) and Figure 7.6(b)). These behaviours are 

irrespective of the stress path tests considered. Moreover, these characteristics 

well represent the typical behaviour of granular materials, which are well 

documented in the literature (Gong et al. 2012; Gong & Zha 2013). 

  

Figure 7.5(c) and Figure 7.6(c) present the evolution of void ratio (e) against a  

for AC and AE stress paths, respectively. The e increases with increasing a  in 

dense samples, whereas e decreases with increasing a  in loose samples. For 

both the cases, e flattens off after a  ~ 50% and reaches a critical value. A 

unique value 
ce  is achieved for a given 'p0 . Moreover, the 

ce  decrease with 

increasing 'p0 .  
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Figure 7.5 Macroscopic results of AC test: (a) a
  ; (b) a v

  ; (c)  a e  

 

Figure 7.6 Macroscopic results of AE test: (a)  a ; (b) a v
  ; (c)  a e  
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Figure 7.7 illustrates the comparison of loading path tests results for medium 

dense samples with different confining pressures (i.e., 100, 200, 400, 800, and 

1600 kPa) for Series - II and Series - V, respectively. For both AC and AE tests, 

the η exhibits minor post-peak strain-softening behaviour and reaches a critical 

value after a > ~50% (see Figure 7.7(a)). The volumetric behaviour for the AC 

test showed considerable initial contraction (i.e., up to a ~ 10%) whereas, for 

the AE test, a well-represented dilation is noticed from the onset shear (see 

Figure 7.7(b)). Interestingly, it is found that irrespective of the stress path tests, 

the confining stresses showed a significant influence on oe  (i.e., 0.366 ~0.460). 

Moreover, the critical state stress-ratio for the AC test ( '/ .cM q p  1 08 ) is 

higher than that obtained for the AE test ( '/ .eM q p  0 83 ) (see Figure 7.7(c)). 

The ratio of /c eM M  = 1.30 is very close to the typical range of the standard 

Toyoura sands evaluated from laboratory experiments (Lade & Duncan 1975; 

Kulhawy & Mayne 1990; Yoshimine et al. 1998; Yang et al. 2008). A numerical 

investigation by Ng (2004) was found that relative value of stress ratio of 1.12 

and 1.09 for two different aspect ratios of ellipsoids (i.e., 1.2 and 1.5) 

respectively, which are slightly smaller than those obtained in this 

investigation. This may be attributed to the fact that particle morphological 

features can affect the critical state stress ratios of granular materials 

(Kodicherla et al. 2020).   
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Figure 7.7 Comparison of triaxial stress path results for Series - II and        

Series - V: (a) aq  ; (b) v a  ; (c) a   

 

7.6.2 Comparison of drained triaxial loading paths  

Figure 7.8 compares the stress-strain response of DEM samples sheared under 

different loading paths isotropically compressed at 
'

400op kPa . The q for AC 

and LE are positive, while for LC and AE are negative. Moreover, the volumetric 

strain for the LE sample followed that of the AE sample while the volumetric 

strain for the AC sample is similar to that of the LC sample. It is confirmed that 

isotropic samples sheared in the same loading mode yield the same behaviour 

regardless of loading directions (see Figure 7.8), which is in line with the 

reported results by Huang et al. (2014).  
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Figure 7.8 Stress-strain behaviour of DEM samples sheared under different 

loading paths ( 
'

 400 op kPa )  

 

7.6.3 Evolution of critical state characteristics    

A brief overview of the CSSM framework is presented in Chapter 4 (see Section 

4.9). The CSSM framework can be described by two unique relationships, 

given as:  

 

q Mp '                                                                                                                                    (7.2)    

 ' / p


  c ae p                                                                                                          (7.3) 

 

where M is a critical stress ratio,    is the intercept of the CSL and   is the 

slope of the CSL in the e p '  space and ς are the material constants and ap is the 

atmospheric pressure for normalization.  

 

Figure 7.9 presents the critical state characteristics for AC and AE loading 

paths. Referring to Figure 7.9(a), it is observed that the CSLs show an obvious 
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dependency on the loading paths. The CSL of AE path is located above than 

that of AC path in the e p ' space, which is in agreement with the simulated 

results reported by Li (2006). Also, these CSLs collapses into two different 

trend lines with a unique independent critical state parameter (see Figure 

7.9(b)). The AC loading path test has 
c .  0 522  and 

c .  0 0133 , while the AE 

has 
e .  0 534  and 

e .  0 0139 . Irrespective of the loading paths, both CSLs fit 

into very-well with considerable spacing between them and has a regression 

value greater than R .2 098 . As noticed in Figure 7.9(c), the critical state data 

points in the q p ' space are linearly fitted and considered to pass through the 

origin with slopes of .cM  1 106  and .eM  0 838 , respectively. Moreover, the 

critical strength of the AC loading path test is found to be higher than that 

obtained from the AE loading path. These findings are in agreement with a 

study conducted by Yang & Wu (2016) for undrained loading paths using 

clumped particles with an aspect ratio of 0.6.     

 

 

Figure 7.9 Critical state characteristics of AC and AE loading paths:               

(a) '

ce p  (b) c ae p p( '/ )  (c) 
'q p  
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7.6.4 DEM analysis of the state parameter  

Been & Jefferies (1985) introduced a scalar quantity called as the state 

parameter, i.e., 
ce e    where e is the current state void ratio and 

ce is the 

critical state void ratio on the critical state line in the e p '  space 

corresponding to the current 
'

op  as shown in Figure 7.10. A positive value of   

signifies a loose state while a negative value  represents a dense state of the 

system.  The   is chosen to be the state-dependent variable that is represented 

as (Li & Wang 1998): 

 

 


     c c ae e e e p p'[ / ]                                                                                            (7.4) 

 

where e , 
c  and   are the material constants determining the critical state 

line in the e p ' space, 
ap  is the atmospheric pressure for normalization. Been 

& Jefferies (1985) observed from the triaxial test data that a clear link between 

  and the strength and dilatancy of sand. In the literature, recently developed 

constitutive models for soils have explicitly considered   in their formulation, 

e.g., NorSand (Jefferies 1993; Jefferies & Shuttle 2002; Wood et al. 1994), 

Severn–Trent sand (Gajo & Wood 1999) and the model proposed by Li & 

Dafalias (2000).  
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Figure 7.10 Critical state line and state parameter ( ) (after Li & Dafalias 

2000) 

 

7.6.5 Relationship between the strength and state parameter    

Many researchers (e.g., Castro 1969; Lade 1972; NGI 1982; Jefferies & Been 

2006) struggled to have a quantitative comparison between the strength and 

the state-dependent response of granular materials. Figure 7.11 compares the 

peak angle of shearing resistance (
p ) against the initial state parameter (

o ). 

The DEM results of the AC loading path results are generally in agreement with 

those of experimental triaxial compression tests performed on sands. However, 

the AE loading path tests data are consistently below the experimental values 

of sands, which do not compare well with the compression results. As it is 

difficult to achieve the densest state in experimental tests, the 
p  values of 

dense samples lied as an outlier to the right. Moreover, an experimental study 

conducted by Cho et al. (2006) and a DEM study executed by Maeda et al. 

(2009) confirmed that the shear strength of granular materials depends mainly 

on particle geometry, whereas a numerical study by Huang et al. (2014b) found 

that the shear strength of spherical particles is consistently below the 

experimental values, attributing to the particle geometry and interlocking.   
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Figure 7.11 Relationship between 
p  and 

0  

Following the approach suggested by Been & Jefferies (1985), the stress 

dilatancy angle of shearing resistance (
p c  ) against the 

0  is shown in 

Figure 7.12. The simulations results under both loading path tests are compared 

with experimental datasets reported in the literature (see Figure 7.12). Using 

this approach the responses observed in the DEM simulations well matched 

with those in the literature (e.g., Castro 1969; Lade 1972; NGI 1982; Jefferies & 

Been 2006).  
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Figure 7.12 Relationship between 
p c   and 

0  

 

 

7.6.6 Relationship between dilatancy and state parameter   

It was mentioned by Rowe (1962) that a similarity between friction angle ( ) 

and dilation rate (D) may be forecasted theoretically and the difference 

between 
p  and 

c  is directly related to the dilation rate.  In practice, it is 

preferable to relate individual behaviours to the fundamental parameters of the 

state instead of relating derived behaviours to each other. According to Taylor 

(1948), the strength of soil can be distinguished into a dilational and intrinsic 

component. Consequently, the developments of this decomposition led to the 

stress-dilatancy theory suggested by Rowe (1962). Been & Jefferies (1985) 

introduced that the dilation rate (
v aD d / d   ) at the peak (

pD ) was related 

to the 
0 . Figure 7.13 shows the relationship between 

pD  and 
0  for both the 

loading path tests. Besides, for a better comparison, the experimental data from 

Jefferies & Been (2006) is also superimposed in the plot. A unique relationship 
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is found between 
pD  and 

0 which is path-dependent and the DEM data lie 

within the range of the experimental values. 

 

Figure 7.13 Relationship between 
pD  and 

0  

Figure 7.14 illustrates the relationships among the strength in terms of 
p ,  

p  

and pD . A linear relationship is observed between 
p -

pD and 
p -

pD  (see 

Figure 7.14(a) and (b)), which is typical for the standard sands as reported by 

Vaid & Sasitharan (1991). It is also found that the slope and the position of best-

fit lines appear to be path-dependent. It was also reported in the literature that 

the dependency of strength parameters on the intermediate stress ratio of 

numerical simulations by Ng (2004) and Huang et al. (2014a).  
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Figure 7.14 Relationship between peak strength and peak dilatancy:                

(a) 
p pD  ; (b) 

p pD   

 

7.6.7 Evolution of microscopic quantities      

From Figure 7.15(a) and (b), it is observed that for the onset shearing, i.e.,
a       

~ < 10%, the CN increases for the AC loading path while decreases for the AE 

loading path, which is because contraction induces the formation of new 

contacts whereas dilation induces more contact disruptions. These behaviours 

are well represented by the volumetric responses for both loading paths 

considered (see Figure 7.15(b)). Also, for all the samples, CN reaches a critical 

value at large a . Figure 7.15(c) shows the relationship of ' p CN  at the critical 
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state, which shows that the CN increases with increasing 
'

op , reflecting a 

decrease in the e. The data presented in Figure 7.15(d) indicates that these 

relationships are non-linear and dependent on the loading paths. Furthermore, 

it should be highlighted that the CN for the AC is higher than that obtained for 

AE.  

 

Figure 7.15 Evolution of CN for Series - II and Series - V: (a) 
a CN   for AC 

loading path; (b) 
a CN  ; (c) 'p CN  at critical state; (d) 'p CN  at a critical 

state. 

Figure 7.16 shows the evolution of deviator fabrics for medium dense samples 

under the AC and AE loading paths. For both overall and strong deviator fabrics, 

it is found that the structural anisotropy increased to the peak and stabilized 

as a  further increased and finally reaches a critical value. Also, the strong force 

subnetworks generally follow the trend of the stress-strain behaviour as 

observed in Figure 7.5 and Figure 7.6, which supports the initiation of the 

strong force chain buckling that can be characterized by the appearance of peak 

structural anisotropy (Tordesillas & Muthuswamy 2009; Huang et al. 2014c). 
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Figure 7.16(c) and (d) show the relationships between the overall and strong 

deviator fabrics against 'p , respectively for Series - II and Series - V at the critical 

states. As it is noticed that the AC loading path results are found to be more 

anisotropic than the AE loading path. Moreover, the structural anisotropy at 

the critical state decreases with increasing 
'

op , which is significantly modified, 

especially in the strong deviator fabric 
,d str  in comparison to the overall 

deviator fabric 
d .    

 

Figure 7.16 Evolution of deviator fabrics for Series - II and Series - V:  

(a) 
a d  ; (b) 

,a d strong  ; (c) '

dp   at the critical state; (d) '

,d strongp   at 

the critical state 

7.7 Summary  

This chapter has presented the results of strength and critical state behaviour 

of granular materials under different drained triaxial loading paths using DEM. 

In total, sixty numerical simulations are performed by considering the different 

states of assemblies based on their density index and sheared to the maximum 

value to achieve critical states. The numerical results are analyzed at the macro 
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and micro scale levels, examining the uniqueness of the critical state lines and 

relationships among strength, dilation and state parameters.  

 

It is found that all samples have reached critical values after an axial strain of 

~ 50%. A unique critical state void ratio is achieved for a given mean effective 

stress, which is confirmed to be path-dependent. The critical void ratios are 

found to decrease with increasing mean effective stress. For medium dense 

samples, independent of loading paths, the mean effective stress affected the 

onset void ratio. Moreover, at a critical state, the value of the critical stress ratio 

for the axial compression loading path is higher than that obtained for the axial 

extension. It is also confirmed that the samples sheared under the same loading 

mode yield the same behaviour regardless of loading directions.  

 

The critical state lines in the  'e p  space are found to be path-dependent and 

the critical strengths of granular materials in the axial compression loading 

path is higher than that of axial extension. The coordination numbers increase 

with increasing mean effective stress showing a decrement in the void ratio. 

The relationships between coordination number and void ratio are found to be 

non-linear and mainly depends on the stress paths. Moreover, the structural 

anisotropy at the critical state decreases with increasing mean effective stress. 
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Chapter 8 Summary and Conclusions   

8.1     Summary  

The principal objective of the current research is to explore the mechanical 

behaviour of granular materials considering particle shape characteristics using 

discrete element modelling (DEM). Two commonly used fundamental 

geotechnical laboratory tests, i.e., the direct shear test and triaxial test, were 

chosen for consideration into this research.     

 

8.1 Principal findings   

8.1.1 Direct shear test  

A series of physical direct shear tests were conducted on natural sand and 

subsequent numerical simulations were also performed. Based on the analysis 

of results and discussions, the following conclusions are drawn:  

 

1. A series of numerical direct shear test simulations were performed to 

investigate the sensitivity to microscopic parameters. All samples were 

one-dimensionally compressed at 75 kPa. The particle numbers were not 

sensitive to the macroscopic behaviour, whereas the ratio between mean 

unbalanced force and the mean contact force against shear strain for 

different particle numbers were found to be sensitive. The specimen 

response was found to be sensitive to the interparticle friction 

coefficient. Except for  26.0 10  mm/s, the macroscopic response of the 

specimen was not sensitive to the loading rate. Moreover, the specimen 

was also not sensitive to the damping and stiffness ratios. 

 

2. The DEM results of direct shear test employing generated realistic 

clumps were generally in agreement with the laboratory test data. This 

shows the capability of the particle generation approach. However, the 
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peak angle of shearing resistance was found to be consistently higher 

than those obtained from the laboratory tests. The microscopic results 

in terms of fabric anisotropy were found to increase with the increase in 

normal stress and showed a significant influence on the structural 

anisotropy.  

 

3. For elongated particles, the peak state direct shear friction angles were 

initially increased and stay stable as Λ further increases. The critical 

state direct shear friction angles were found to increase with the 

increase in Λ. Also, it was found that independent of applied normal 

stresses, all samples reached a unique normalized stress ratio at the 

critical state.  

 

4. The trend of coordination numbers of elongated particles under the 

direct shear test was found to decrease rapidly at the onset and slowly 

attains almost steady value at the critical state. There seems no 

significant variation was noticed among the evolution of coordination 

numbers, except for sample S1. For small strains, it was found that the 

deviator fabric depends on both the stress and volume change, whereas 

for large strains, the volume approaches to a stable value and found to 

mainly depend on the stress only. The trends of strong force sub-

network (major principal value), were similar to the evolutions of stress 

ratios which describes the major contribution to the stress-fabric 

relationship was mainly governed by the strong force components.  

 

5. A relationship between 
p c   and  p

 was found to be well-fitted with 

acceptable regression value. Also, it was observed that as particles 

elongate, the downward shifting of critical state lines was noticed. The 

intercept values were slightly increased initially and then decreases to 
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the minimum value. Besides, the critical state parameters for each 

sample indicating almost parallel and minor slope was noticed.     

 

8.1.2 Triaxial shear test  

A series of numerical simulations were performed considering particle 

elongations, morphology and various loading paths under drained triaxial test 

conditions. Based on the simulation results, the following conclusions are 

drawn:  

 

1. The same particle elongation methodology (i.e., see in Chapter 4) was 

used to investigate the critical state behaviour under drained triaxial 

test conditions. At the macroscopic level, similar observations were 

noticed.  

 

2. At the microscopic level, the onset of coordination number decreases 

with increasing Λ, while at the steady-state coordination numbers 

found to increase with the increase in Λ values. The trend of deviator 

fabric followed as same as the stress-strain response. 

 

3. The relationship between critical stress ratio and critical state 

parameters were found to decrease with increasing particle shape 

parameters. Moreover, irrespective of the critical state parameters, 

acceptable regression values were achieved.  

 

4. Two morphological descriptors, i.e., ξ represents the particle geometry 

and β represents the surface texture of the particle, were considered to 

investigate the particle morphology at the macroscopic and microscopic 

level. The peak state angles decrease with an increase of β and increase 

with an increase of ξ.  Moreover, the deviation between angles of friction 
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at peak state and critical state was found to have an increasing trend as 

ξ increases, which was believed to increase in the dilation angle. 

 

5. The coordination numbers experience a significant exponential decay 

before reach % 1 15  and stabilize as a further increase in the axial 

strain. The probability distributions were found to be well-fitted by a 

Gaussian distribution function and found to be a systematic skewness 

to the distributions. The relationships were found to be approximately 

linear before their peaks.  

 

6. Notwithstanding the loading paths, independent of the applied initial 

mean effective stresses, dense samples show post-peak strain-softening 

behaviour while loose samples were found to exhibit strain hardening 

response. Also, the medium dense samples exhibit initial hardening 

with minor post-peak strain-softening behaviour.  

 

7. The deviator stress for AC and LE are positive while for LC and AE are 

negative. Moreover, it was found that the isotropic samples sheared in 

the same loading mode yield the same behaviour regardless of loading 

directions.  

 

8. For AC and AE loading paths, irrespective of the loading paths, critical 

state lines were found to fit into a very-well and considerable spacing 

between them. For a given mean effective stress, a unique critical state 

void ratio was found to be path-dependent.  

 

9. A linear relationship was found between 
p  -

pD , the slope and the 

position of best-fit lines appeared to be path-dependent. Also, a unique 

relationship was found between 
pD -

0 which was also believed to be 

path-dependent. 
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10. The microscopic parameters in terms of coordination numbers found to 

increase with increasing mean effective stress and a decrement were 

noticed in the void ratio. The relationships between coordination 

number and void ratio were found to be non-linear and mainly depends 

on the loading paths. Moreover, the structural anisotropy at the critical 

state decreases with increasing mean effective stress. 

 

8.2 Future perspectives   

In the current research, the influences of particle shape characteristics on the 

macro- and micro-scale behaviour of granular materials were explored under 

the direct shear test and triaxial test conditions using DEM. To further advance 

the findings of the current research, a few suggestions for future research are 

given below.  

 

1. Although an attempt was made to investigate and validate the 

experimental results from direct shear test considering the major plane 

of orientation of realistic sand particles, the future research needs to 

consider an improved version of 3D geometric reconstruction 

approaches to track the true mechanical behaviour of granular materials. 

  

2. The macroscopic response of numerical assembly under the direct shear 

test was quantitatively in agreement with experimental results. 

However, there seems minor deviations were noticed, which could be 

pertinent to the sensitivity to the particle numbers and initial conditions 

of the sample. Therefore, in future research, these aspects need to be 

taken into account to fully enhance the DEM capabilities.  

 

3. Even though a random clumped particle was used to explore the effects 

of loading path tests, the stress level considered seemed to be beyond the 

normal range that would be considered in laboratory tests. At that high- 
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stress level, particle crushing is unavoidable and may dominate the 

overall stress-deformation response. However, such a mechanism was 

absent in the current study which must be considered in future research.  

 

4. One more issue which could be possibly explored in the future research 

is that very limited attention has been made in the literature to fluid 

coupling with DEM employing different particle shapes (e.g., Liu et al. 

2015; Foroutan & Mirghasemi 2020). Future research needs to consider 

the particle shapes along with fluid coupled DEM to understand the 

mechanical behaviour of saturated soils.  

 

5. The future research will also focus on true triaxial stress paths 

considering different intermediate principal stress values and undrained 

test conditions. Also the evolution of the rotation of principal stress 

direction under direct shear test conditions.  
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Appendix - A: Summary of DEM results for 

different loading paths  

Series 
designation 

Simulation 
ID 

e0 ID ψ0 CNo 

Series - I 

AC_L_100 0.629 0.109 0.124 5.6 
AC_L_200 0.608 0.143 0.112 7.1 
AC_L_400 0.567 0.204 0.097 9.8 
AC_L_800 0.527 0.206 0.085 13.5 
AC_L_1600 0.481 0.186 0.083 19.1 

Series - II 

AC_M_100 0.460 0.504 -0.045 8.1 
AC_M_200 0.451 0.506 -0.045 9.6 
AC_M_400 0.435 0.514 -0.035 11.9 
AC_M_800 0.406 0.505 -0.036 15.8 
AC_M_1600 0.366 0.500 -0.032 21.8 

Series - III 

AC_D_100 0.362 0.733 -0.143 10.7 
AC_D_200 0.353 0.735 -0.143 12.3 
AC_D_400 0.337 0.741 -0.133 14.8 
AC_D_800 0.311 0.741 -0.131 18.9 
AC_D_1600 0.279 0.737 -0.119 25.5 

Series - IV 

AE_L_100 0.629 0.109 0.109 5.6 
AE_L_200 0.608 0.143 0.093 7.1 
AE_L_400 0.567 0.204 0.077 9.8 
AE_L_800 0.527 0.206 0.053 13.5 
AE_L_1600 0.481 0.186 0.040 19.1 

Series - V 

AE_M_100 0.460 0.504 -0.058 8.1 
AE_M_200 0.451 0.506 -0.061 9.6 
AE_M_400 0.435 0.514 -0.070 11.9 
AE_M_800 0.406 0.505 -0.082 15.8 
AE_M_1600 0.366 0.500 -0.085 21.8 

Series - VI 

AE_D_100 0.362 0.733 -0.158 10.7 
AE_D_200 0.353 0.735 -0.161 12.3 
AE_D_400 0.337 0.741 -0.168 14.8 
AE_D_800 0.311 0.741 -0.179 18.9 
AE_D_1600 0.279 0.737 -0.176 25.5 

Series - VII 

LC_L_100 0.631 0.103 0.121 5.1 
LC_L_200 0.613 0.130 0.108 6.5 
LC_L_400 0.585 0.164 0.115 9.1 
LC_L_800 0.546 0.159 0.116 12.6 
LC_L_1600 0.495 0.150 0.110 19.1 

Series VIII 

LC_M_100 0.461 0.502 -0.049 7.9 
LC_M_200 0.451 0.506 -0.054 9.5 
LC_M_400 0.435 0.514 -0.035 11.8 
LC_M_800 0.408 0.499 -0.022 15.7 
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LC_M_1600 0.368 0.495 -0.017 21.7 

Series - IX 

LC_D_100 0.359 0.741 -0.151 10.7 
LC_D_200 0.351 0.739 -0.154 12.3 
LC_D_400 0.337 0.741 -0.133 14.8 
LC_D_800 0.311 0.741 -0.119 19.0 
LC_D_1600 0.279 0.737 -0.106 25.5 

Series - X 

LE_L_100 0.631 0.103 0.124 5.1 
LE_L_200 0.613 0.130 0.105 6.5 
LE_L_400 0.585 0.164 0.090 9.1 
LE_L_800 0.546 0.159 0.061 12.6 
LE_L_1600 0.495 0.150 0.035 19.1 

Series - XI 

LE_M_100 0.461 0.502 -0.048 7.9 
LE_M_200 0.451 0.506 -0.057 9.5 
LE_M_400 0.435 0.514 -0.060 11.8 
LE_M_800 0.408 0.499 -0.077 15.7 
LE_M_1600 0.368 0.495 -0.090 21.7 

Series -XII 

LE_D_100 0.359 0.741 -0.151 10.7 
LE_D_200 0.351 0.739 -0.157 12.3 
LE_D_400 0.337 0.741 -0.158 14.8 
LE_D_800 0.311 0.741 -0.174 19.0 
LE_D_1600 0.279 0.737 -0.181 25.5 
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Appendix - B: Servo-mechanism in PFC 

The PFC3D code used for this thesis provides an in-built servo-mechanism in 

order to maintain the desired stress levels. The servo function is called once per 

cycle. The function of a servo-control mode is to permit any desired stress path 

to be followed approximately in incremental steps. With the servo-control 

mode, the applied strain field is continuously adjusted according to the 

difference between the desired stress state and the measured stress state. The 

servo-mechanism uses a proportional controller with adaptive gain as follows. 

Let tF be the target force (input by the user), and Fc be the reaction force 

exerted by all pieces in the model on a wall. The wall velocity v is decomposed 

in to two components:  

nv v  


n  +(v   nv )


n  

where nv is the signed magnitude of the velocity in direction 


n , 

nv  ( . )


v n  

where /


 t tn F F  is a unit vector in the direction of the target force. The 

value of nv  is adjusted as: 

(F F )t c
nv G   

where G is the controller gain and tF  = .


tF n  and cF  = .


cF n  are the signed 

magnitudes of the target servo force and of the reaction force, respectively. 

To ensure stability, the gain is automatically evaluated as 

c
G

K t





 

where   is a relaxation factor that can be set by user with the gainfactor 

keyword (default to 0.8), cK is the sum of the effective transitional stiffness of 

all mechanical contacts involving the wall, and t is the current timestep.  
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Appendix - C: Direct shear test – PFC code  1 

%% Geometry creation %% 2 

new 3 

;;;define the size of sample 4 

[mv_W=0.100] 5 

[mv_D=0.100] 6 

[mv_H=0.05] 7 

 8 

;[clumpFric = 0.3]   9 

;[wallFric = 0.0] 10 

 11 

domain extent [-0.8*mv_W] [0.8*mv_W] [-0.8*mv_D] [0.8*mv_D] [-12 

0.8*mv_H] [0.8*mv_H] condition destroy 13 

;;;;supposing that the center of the model is at position (0,0,0) 14 

 15 

cmat default model linear method deformability emod 1.0e8 kratio 1.33 16 

 17 

;cmat default model linear prop kn 1e9 ks 1e9 fric 0.0 type pebble-pebble 18 

;cmat default model linear prop kn 1e9 ks 0.0 fric 0.0 type pebble-facet 19 

;;;;Pre-define contact model and properties 20 

 21 

wall generate name 'walltop' box [-0.5*mv_W] [0.5*mv_W] [-0.5*mv_D] 22 

[0.5*mv_D] 0.0 [0.6*mv_H]  23 

wall generate name 'wallbot' box [-0.5*mv_W] [0.5*mv_W] [-0.5*mv_D] 24 

[0.5*mv_D] [-0.6*mv_H] 0.0 25 

 26 

wall delete range set name 'walltopBottom' 27 

wall delete range set name 'walltopTop' 28 

wall delete range set name 'wallbotBottom' 29 
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wall delete range set name 'wallbotTop' 30 

 31 

wall generate name 'walltopTop'    plane dip 0.0 dd 0.0 position 0.0 0.0 [ 32 

0.5*mv_H]  33 

wall generate name 'wallbotBottom' plane dip 0.0 dd 0.0 position 0.0 0.0 [-34 

0.5*mv_H]  35 

;;;wall generation 36 

 37 

wall generate name 'wallLeft' ... 38 

    group polygons ... 39 

    polygon ... 40 

        [-0.5*mv_W] [0.5*mv_D] [0.0] ... 41 

        [-0.5*mv_W] [-0.5*mv_D] [0.0] ... 42 

        [-0.7*mv_W] [0.5*mv_D] [0.0] ... 43 

        [-0.7*mv_W] [-0.5*mv_D] [0.0] 44 

 45 

wall generate name 'wallRight' ... 46 

    group polygons ... 47 

    polygon ... 48 

        [0.5*mv_W] [0.5*mv_D] [0.0] ... 49 

        [0.5*mv_W] [-0.5*mv_D] [0.0] ... 50 

        [0.7*mv_W] [0.5*mv_D] [0.0] ... 51 

        [0.7*mv_W] [-0.5*mv_D] [0.0] 52 

 53 

set random 10001    ;;;;reset the random seed 54 

 55 

[rmin =  56 

clump template create ... 57 

      pebcalculate ... 58 

      name three_peb ... 59 

      pebbles 3 ... 60 
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        0.0007 0.0 0.0 0.0 ... 61 

        0.0007 5.56e-5 0.0 0.0 ... 62 

        0.0007 -5.56e-5 0.0 0.0 63 

 64 

clump distribute ... 65 

        porosity 0.35 ... 66 

        resolution 1.0 ... 67 

        numbin 5 ... 68 

        diameter ... 69 

        bin 1 ... 70 

          volumefraction 0.2 ... 71 

          template three_peb ... 72 

          size 0.004 0.006 ... 73 

          azimuth 0.0 360 ... 74 

          elevation 0.0 360 ... 75 

          tilt 0.0 360 ... 76 

          density 100.0 ... 77 

          gauss ... 78 

          group bin1 ... 79 

        bin 2 ... 80 

          volumefraction 0.2 ... 81 

          template three_peb ... 82 

          size 0.004 0.006 ... 83 

          azimuth 0.0 360 ... 84 

          elevation 0.0 360 ... 85 

          tilt 0.0 360 ... 86 

          density 100.0 ... 87 

          gauss ... 88 

          group bin2 ... 89 

        bin 3 ... 90 

          volumefraction 0.2 ... 91 
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          template three_peb ... 92 

          size 0.004 0.006 ... 93 

          azimuth 0.0 360 ... 94 

          elevation 0.0 360 ... 95 

          tilt 0.0 360 ... 96 

          density 100.0 ... 97 

          gauss ... 98 

          group bin3 ... 99 

        bin 4 ... 100 

          volumefraction 0.2 ... 101 

          template three_peb ... 102 

          size 0.004 0.006 ... 103 

          azimuth 0.0 360 ... 104 

          elevation 0.0 360 ... 105 

          tilt 0.0 360 ... 106 

          density 100.0 ... 107 

          gauss ... 108 

          group bin4 ... 109 

        bin 5 ... 110 

          volumefraction 0.2 ... 111 

          template three_peb ... 112 

          size 0.004 0.006 ... 113 

          azimuth 0.0 360 ... 114 

          elevation 0.0 360 ... 115 

          tilt 0.0 360 ... 116 

          density 100.0 ... 117 

          gauss ... 118 

          group bin5 ... 119 

    box [-0.5*mv_W] [0.5*mv_W] [-0.5*mv_D] [0.5*mv_D] [-0.5*mv_H] 120 

[0.5*mv_H] 121 

 122 
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measure create id 1 radius 0.2 ... 123 

                    bins 100 @dmin [table.x(exptab,10)]  124 

measure dump id 1 table 'numerical' 125 

 126 

pause key  127 

 128 

clump attribute density 2700 damp 0.7  129 

;clump prop fric @clumpFric 130 

;wall prop fric @wallFric  131 

cyc 2000 calm 10 132 

set timestep scale  133 

cyc 5000 134 

set timestep auto  135 

cyc 1000 136 

calm 137 

clump attribute displacement multiply 0.0 138 

save MakeSpecimen 139 

return 140 

 141 

%% one-dimensional compression phase %% 142 

 143 

rest MakeSpecimen  144 

 145 

def wszz 146 

    wszz = wall.force.contact.z(wall.find('walltopTop'))/(mv_W*mv_D) 147 

end 148 

 149 

def servo_walls 150 

    wall.servo.force.z(wall.find('walltopTop')) = -szz*mv_W*mv_D 151 

end 152 

set fish callback 9.0 @servo_walls 153 
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 154 

wall servo activate on zforce [-szz*mv_W*mv_D] vmax 0.1 range set name 155 

'walltopTop' 156 

 157 

[szz = 2.0e5]  ;;;positive indicates compression, which is self-defined 158 

[tol=0.001] 159 

 160 

def stop 161 

    if math.abs((wszz-szz)/szz) > tol 162 

        exit 163 

    endif 164 

    if mech.solve('aratio') > 1e-4  165 

        exit 166 

    endif 167 

    stop = 1 168 

end 169 

 170 

[stop = 0] 171 

 172 

history id 1 @wszz 173 

history id 101 mech solve aratio 174 

 175 

solve fishhalt @stop  176 

 177 

calm 178 

clump attribute displacement multiply 0.0 179 

 180 

wall attri disp mult 0.0 181 

 182 

save Compact 183 

%% Shear phase %% 184 
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rest Compact 185 

 186 

[vel=1.0e-2] 187 

 188 

wall attri xvel [vel] range set name 'walltopLeft' 189 

wall attri xvel [vel] range set name 'walltopRight' 190 

wall attri xvel [vel] range set name 'walltopFront' 191 

wall attri xvel [vel] range set name 'walltopBack' 192 

wall attri xvel [vel] range set name 'wallLeft' 193 

 194 

def shear_disp 195 

    shear_disp = wall.disp.x(wall.find('walltopLeft')) 196 

end 197 

 198 

def shear_str 199 

    lz0 = wall.pos.z(wall.find('walltopTop'))-200 

wall.pos.z(wall.find('wallbotBottom')) 201 

    shear_str = (shear_disp/lz0)*100 202 

end 203 

 204 

def shear_stress 205 

    shear_stress = -206 

(wall.force.contact.x(wall.find('walltopLeft'))/(mv_W*mv_D))*0.001 207 

end 208 

 209 

def ver_disp 210 

    ver_disp = wall.disp.z(wall.find('walltopTop')) 211 

end 212 

 213 

def ver_str 214 

    ver_str = (ver_disp/lz0)*100 215 
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end 216 

 217 

hist id 11 @shear_stress 218 

hist id 12 @shear_disp 219 

hist id 13 @shear_str 220 

hist id 14 @ver_disp 221 

hist id 15 @ver_str 222 

 223 

; Fabric anisotropy  224 

 225 

; Contact normal anisotropy  226 

 227 

def Contact_normal_aniso  228 

    local sum_xx = 0.0 229 

    local sum_yy = 0.0 230 

    local sum_zz = 0.0 231 

    local sum_xy = 0.0 232 

    local sum_xz = 0.0 233 

    local sum_yz = 0.0 234 

    local count_contacts = 0.0 235 

    loop foreach local ct contact.list  236 

    local e1 = contact.end1(ct) 237 

    local e2 = contact.end2(ct) 238 

    local nx = contact.normal.x(ct) 239 

    local ny = contact.normal.y(ct) 240 

    local nz = contact.normal.z(ct) 241 

    if type.pointer(e1) = 'pebble' 242 

      local cp1 = clump.pebble.clump(e1) 243 

    endif  244 

    if type.pointer(e2) = 'pebble' 245 

      local cp2 = clump.pebble.clump(e2) 246 
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    endif  247 

    count_contacts = count_contacts + 1 248 

    sum_xx = sum_xx + nx*nx 249 

    sum_yy = sum_yy + ny*ny 250 

    sum_zz = sum_zz + nz*nz 251 

    sum_xy = sum_xy + nx*ny 252 

    sum_xz = sum_xz + nx*nz 253 

    sum_yz = sum_yz + ny*nz 254 

    endloop 255 

    Fxx = sum_xx/count_contacts     256 

    Fyy = sum_yy/count_contacts   257 

    Fzz = sum_zz/count_contacts 258 

    Fxy = sum_xy/count_contacts  259 

    Fxz = sum_xz/count_contacts 260 

    Fyz = sum_yz/count_contacts     261 

    end  262 

 263 

hist @Contact_normal_aniso 264 

hist @Fxx 265 

hist @Fyy 266 

hist @Fzz 267 

hist @Fxy 268 

hist @Fxz 269 

hist @Fyz  270 

; Evolution of coordination number  271 

 272 

def Coordination  273 

   local count_contacts = 0.0 274 

   loop foreach local ct contact.list 275 

   local e1 = contact.end1(ct) 276 

   local e2 = contact.end2(ct) 277 
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   if type.pointer(e1) = 'pebble' 278 

      local cp1 = clump.pebble.clump(e1) 279 

    endif  280 

    if type.pointer(e2) = 'pebble' 281 

      local cp2 = clump.pebble.clump(e2) 282 

    endif  283 

    count_contacts = count_contacts + 1.0  284 

    count_clump = clump.num 285 

    endloop 286 

    count_contacts_1 = count_contacts 287 

    count_clump_1 = count_clump 288 

    CN = 2.0*count_contacts_1/count_clump_1 289 

    end  290 

 291 

hist @Coordination   292 

 293 

hist @CN  294 

hist @count_contacts_1  295 

hist @count_clump_1 296 

hist @count_clump_contact_num 297 

 298 

hist @x0 299 

hist @x1 300 

hist @x3  301 

hist @MCN  302 

 303 

; Sliding contacts 304 

 305 

def hist_slip 306 

 local i = 0.0 307 

 local j = 0.0 308 
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 loop foreach local cp contact.list  309 

   aa = contact.prop(cp,'lin_slip') 310 

   if aa = true then  311 

      i = i + 1 312 

   else  313 

      j = j + 1 314 

    endif 315 

    endloop  316 

    slip_ratio = i/(i+j) 317 

 end  318 

hist @hist_slip  319 

hist @slip_ratio  320 

;Porosity Evolution  321 

measure create id 1 rad [0.4*(math.min(mv_W, mv_H))] 322 

[porosity = measure.porosity(measure.find(1))] 323 

 324 

history id  6   measure porosity id 1 325 

 326 

; average force 327 

 328 

def compute_average_normal  329 

   local average_normal = 0.0 330 

   local num= 0.0 331 

   loop foreach local ct contact.list 332 

   local e1 = contact.end1(ct) 333 

   local e2 = contact.end2(ct) 334 

   if type.pointer(e1) = 'pebble' 335 

      local cp1 = clump.pebble.clump(e1) 336 

    endif  337 

    if type.pointer(e2) = 'pebble' 338 

      local cp2 = clump.pebble.clump(e2) 339 
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    endif  340 

      average_normal = average_normal + math.abs(contact.force.normal(ct)) 341 

      num = num + 1 342 

    endloop  343 

    average_normal_1 = average_normal/num 344 

end 345 

 346 

hist @compute_average_normal 347 

hist @average_normal_1 348 

 349 

; strong and weak force  350 

 351 

def check_strong_force 352 

    local Fxx_s = 0.0 353 

    local Fyy_s = 0.0 354 

    local Fzz_s = 0.0 355 

    local Fxy_s = 0.0 356 

    local Fxz_s = 0.0 357 

    local Fyz_s = 0.0 358 

    local Fxx_w = 0.0 359 

    local Fyy_w = 0.0 360 

    local Fzz_w = 0.0 361 

    local Fxy_w = 0.0 362 

    local Fxz_w = 0.0 363 

    local Fyz_w = 0.0 364 

 local num_strong = 0.0 365 

 local num_weak  = 0.0 366 

    loop foreach local cp contact.list 367 

    local e1 = contact.end1(cp) 368 

    local e2 = contact.end2(cp) 369 

    local nx = contact.normal.x(cp) 370 
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 local ny = contact.normal.y(cp) 371 

    local nz = contact.normal.z(cp) 372 

    if type.pointer(e1) = 'pebble' 373 

      local cp1 = clump.pebble.clump(e1) 374 

    endif  375 

    if type.pointer(e2) = 'pebble' 376 

      local cp2 = clump.pebble.clump(e2) 377 

    endif  378 

    if math.abs(contact.force.normal(cp)) >= average_normal_1 then 379 

   num_strong = num_strong + 1 380 

            Fxx_s = Fxx_s + nx*nx 381 

            Fyy_s = Fyy_s + ny*ny 382 

            Fzz_s = Fzz_s + nz*nz 383 

            Fxy_s = Fxy_s + nx*ny 384 

            Fxz_s = Fxz_s + nx*nz 385 

            Fyz_s = Fyz_s + ny*nz 386 

        else 387 

   num_weak = num_weak + 1  388 

   Fxx_w = Fxx_w + nx*nx 389 

            Fyy_w = Fyy_w + ny*ny 390 

            Fzz_w = Fzz_w + nz*nz 391 

            Fxy_w = Fxy_w + nx*ny  392 

            Fxz_w = Fxz_w + nx*nz 393 

            Fyz_w = Fyz_w + ny*nz 394 

        endif 395 

   endloop 396 

    Fxx_s1 = Fxx_s/num_strong 397 

    Fyy_s1 = Fyy_s/num_strong  398 

    Fzz_S1 = Fzz_s/num_strong  399 

    Fxy_s1 = Fxy_s/num_strong  400 

    Fxz_s1 = Fxz_s/num_strong 401 
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    Fyz_s1 = Fyz_s/num_strong  402 

    Fxx_w1 = Fxx_w/num_weak  403 

    Fyy_w1 = Fyy_w/num_weak  404 

    Fzz_w1 = Fzz_w/num_weak 405 

    Fxy_w1 = Fxy_w/num_weak  406 

    Fxz_w1 = Fxz_w/num_weak 407 

    Fyz_w1 = Fyz_w/num_weak  408 

 end 409 

 410 

hist @check_strong_force 411 

hist @Fxx_s1 412 

hist @Fyy_s1 413 

hist @Fzz_s1 414 

hist @Fxy_s1 415 

hist @Fxz_s1 416 

hist @Fyz_s1 417 

hist @Fxx_w1 418 

hist @Fyy_w1 419 

hist @Fzz_w1 420 

hist @Fxy_w1 421 

hist @Fxz_w1 422 

hist @Fyz_w1 423 

 424 

hist purge 425 

 426 

def stop 427 

    if math.abs(shear_str) > 30 then 428 

        stop = 1 429 

    endif 430 

end 431 

[stop=0] 432 
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 433 

clump prop fric 0.5 434 

wall prop fric 0.0  435 

 436 

set hist_rep 500 437 

 438 

solve fishhalt @stop 439 

 440 

save Shear_Test 441 

 442 

return 443 

 444 

 445 

 446 

 447 

 448 

 449 

 450 

 451 

  452 
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 453 

Appendix -D: Triaxial shear test – PFC code  454 

%% Geometry generation %% 455 

new 456 

;;;define the size of sample 457 

[mv_W=0.050] 458 

[mv_D=0.050] 459 

[mv_H=0.050] 460 

 461 

;[clumpFric = 0.3] 462 

;[wallFric = 0.0] 463 

 464 

domain extent [-0.8*mv_W] [0.8*mv_W] [-0.8*mv_D] [0.8*mv_D] [-465 

0.8*mv_H] [0.8*mv_H] condition destroy 466 

;;;;supposing that the center of the model is at position (0,0,0) 467 

 468 

cmat default model linear method deformability emod 1.0e8 kratio 1.33 469 

 470 

;cmat default model linear prop kn 1e9  type ball-ball 471 

;cmat default model linear prop kn 1e10 type ball-facet 472 

;;;;Pre-define contact model and properties 473 

 474 

wall generate name 'box' box [-0.5*mv_W] [0.5*mv_W] [-0.5*mv_D] 475 

[0.5*mv_D] [-0.5*mv_H] [0.5*mv_H] expand 1.2 476 

;;;wall generation 477 

 478 

set random 10001    ;;;;reset the random seed 479 

[rmin=0.006] 480 

[rmax=0.008] 481 



 
Appendix -D: Triaxial shear test – PFC code 

 

230 
 

geometry import ellipsoid.stl 482 

 483 

clump template create name ellipsoid ... 484 

          geometry ellipsoid         ... 485 

          bubblepack ratio 0.6 distance 100 ... 486 

          surfcalculate  487 

 488 

pause key  489 

 490 

clump distribute ... 491 

        porosity 0.4 ... 492 

        resolution 1.0 ... 493 

        numbin 10 ... 494 

        diameter ... 495 

        bin 1 ... 496 

          volumefraction 0.1 ... 497 

          template Ellipsoid ... 498 

          size [rmin] [rmax] ... 499 

          azimuth 0.0 360 ... 500 

          elevation 0.0 360 ... 501 

          tilt 0.0 360 ... 502 

          density 100.0 ... 503 

          gauss ... 504 

          group bin1 ... 505 

        bin 2 ... 506 

          volumefraction 0.1 ... 507 

          template Ellipsoid ... 508 

          size [rmin] [rmax] ... 509 

          azimuth 0.0 360 ... 510 

          elevation 0.0 360 ... 511 

          tilt 0.0 360 ... 512 
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          density 100.0 ... 513 

          gauss ... 514 

          group bin2 ... 515 

        bin 3 ... 516 

          volumefraction 0.1 ... 517 

          template Ellipsoid ... 518 

          size [rmin] [rmax] ... 519 

          azimuth 0.0 360 ... 520 

          elevation 0.0 360 ... 521 

          tilt 0.0 360 ... 522 

          density 100.0 ... 523 

          gauss ... 524 

          group bin3 ... 525 

        bin 4 ... 526 

          volumefraction 0.1 ... 527 

          template Ellipsoid ... 528 

          size [rmin] [rmax] ... 529 

          azimuth 0.0 360 ... 530 

          elevation 0.0 360 ... 531 

          tilt 0.0 360 ... 532 

          density 100.0 ... 533 

          gauss ... 534 

          group bin4 ... 535 

        bin 5 ... 536 

          volumefraction 0.1 ... 537 

          template Ellipsoid ... 538 

          size [rmin] [rmax] ... 539 

          azimuth 0.0 360 ... 540 

          elevation 0.0 360 ... 541 

          tilt 0.0 360 ... 542 

          density 100.0 ... 543 
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          gauss ... 544 

          group bin5 ... 545 

        bin 6 ... 546 

          volumefraction 0.1 ... 547 

          template Ellipsoid ... 548 

          size [rmin] [rmax] ... 549 

          azimuth 0.0 360 ... 550 

          elevation 0.0 360 ... 551 

          tilt 0.0 360 ... 552 

          density 100.0 ... 553 

          gauss ... 554 

          group bin6 ... 555 

        bin 7 ... 556 

          volumefraction 0.1 ... 557 

          template Ellipsoid ... 558 

          size [rmin] [rmax] ... 559 

          azimuth 0.0 360 ... 560 

          elevation 0.0 360 ... 561 

          tilt 0.0 360 ... 562 

          density 100.0 ... 563 

          gauss ... 564 

          group bin7 ... 565 

        bin 8 ... 566 

          volumefraction 0.1 ... 567 

          template Ellipsoid ... 568 

          size [rmin] [rmax] ... 569 

          azimuth 0.0 360 ... 570 

          elevation 0.0 360 ... 571 

          tilt 0.0 360 ... 572 

          density 100.0 ... 573 

          gauss ... 574 
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          group bin8 ... 575 

        bin 9 ... 576 

          volumefraction 0.1 ... 577 

          template Ellipsoid ... 578 

          size [rmin] [rmax] ... 579 

          azimuth 0.0 360 ... 580 

          elevation 0.0 360 ... 581 

          tilt 0.0 360 ... 582 

          density 100.0 ... 583 

          gauss ... 584 

          group bin9 ... 585 

        bin 10 ... 586 

          volumefraction 0.1 ... 587 

          template Ellipsoid ... 588 

          size [rmin] [rmax] ... 589 

          azimuth 0.0 360 ... 590 

          elevation 0.0 360 ... 591 

          tilt 0.0 360 ... 592 

          density 100.0 ... 593 

          gauss ... 594 

          group bin10 ... 595 

    box [-0.5*mv_W] [0.5*mv_W] [-0.5*mv_D] [0.5*mv_D] [-0.5*mv_H] 596 

[0.5*mv_H] 597 

 598 

pause key  599 

 600 

clump attribute density 2700 damp 0.7 601 

 602 

;ball prop fric @clumpFric  603 

;wall prop fric @wallFric  604 

 605 
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cycle 2000 calm 10 606 

set timestep scale  607 

cyc 5000 608 

set timestep auto  609 

cyc 1000 610 

calm 611 

clump attribute displacement multiply 0.0 612 

save MakeSpecimen 613 

return 614 

 615 

%% Isotropic compression %% 616 

 617 

rest MakeSpecimen  618 

 619 

[wp_top=wall.find('boxTop')] 620 

[wp_bot=wall.find('boxBottom')] 621 

[wp_lef=wall.find('boxLeft')] 622 

[wp_rig=wall.find('boxRight')] 623 

[wp_fro=wall.find('boxFront')] 624 

[wp_bac=wall.find('boxBack')] 625 

 626 

def wlx 627 

    wlx = wall.pos.x(wp_rig) - wall.pos.x(wp_lef) 628 

end 629 

 630 

def wly 631 

    wly = wall.pos.y(wp_bac) - wall.pos.y(wp_fro) 632 

end 633 

 634 

def wlz 635 

    wlz = wall.pos.z(wp_top) - wall.pos.z(wp_bot) 636 
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end 637 

 638 

def wsxx 639 

    wsxx = 0.5*(wall.force.contact.x(wp_rig)-640 

wall.force.contact.x(wp_lef))/(wly*wlz) 641 

end 642 

 643 

def wsyy 644 

    wsyy = 0.5*(wall.force.contact.y(wp_bac)-645 

wall.force.contact.y(wp_fro))/(wlx*wlz) 646 

end 647 

 648 

def wszz 649 

    wszz = 0.5*(wall.force.contact.z(wp_top)-650 

wall.force.contact.z(wp_bot))/(wlx*wly) 651 

end 652 

 653 

def servo_walls 654 

    wall.servo.force.z(wp_top) = -szz*wlx*wly 655 

    wall.servo.force.z(wp_bot) =  szz*wlx*wly 656 

    wall.servo.force.x(wp_rig) = -sxx*wlz*wly 657 

    wall.servo.force.x(wp_lef) =  sxx*wlz*wly 658 

    wall.servo.force.y(wp_bac) = -syy*wlx*wlz 659 

    wall.servo.force.y(wp_fro) =  syy*wlx*wlz 660 

end 661 

 662 

set fish callback 9.0 @servo_walls 663 

 664 

wall servo activate on zforce [-szz*wlx*wly] vmax 0.10 range set name 665 

'boxTop' 666 
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wall servo activate on zforce [ szz*wlx*wly] vmax 0.10 range set name 667 

'boxBottom' 668 

wall servo activate on xforce [-sxx*wlz*wly] vmax 0.10 range set name 669 

'boxRight' 670 

wall servo activate on xforce [ sxx*wlz*wly] vmax 0.10 range set name 671 

'boxLeft' 672 

wall servo activate on yforce [-syy*wlx*wlz] vmax 0.10 range set name 673 

'boxBack' 674 

wall servo activate on yforce [ syy*wlx*wlz] vmax 0.10 range set name 675 

'boxFront' 676 

 677 

[szz = 1.0e5]  ;;;positive indicates compression, which is self-defined 678 

[sxx = 1.0e5] 679 

[syy = 1.0e5] 680 

 681 

[tol=0.001] 682 

 683 

def stop 684 

    if math.abs((wszz-szz)/szz) > tol 685 

        exit 686 

    endif 687 

    if math.abs((wsxx-sxx)/sxx) > tol 688 

        exit 689 

    endif 690 

    if math.abs((wsyy-syy)/syy) > tol 691 

        exit 692 

    endif 693 

    if mech.solve('aratio') > 1e-4  694 

        exit 695 

    endif 696 

    stop = 1 697 
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end 698 

 699 

[stop = 0] 700 

 701 

history id 1 @wszz 702 

history id 2 @wsxx 703 

history id 3 @wsyy 704 

 705 

history id 101 mech solve aratio 706 

 707 

solve fishhalt @stop  708 

 709 

calm 710 

clump attribute displacement multiply 0.0 711 

 712 

save Compact 713 

 714 

%% Shear phase %% 715 

 716 

rest Compact 717 

 718 

[vel=0.03] 719 

 720 

wall attri zvel [-vel] range set name 'boxTop' 721 

wall attri zvel [ vel] range set name 'boxBottom' 722 

 723 

wall servo activate off  724 

 725 

wall servo activate on xforce [-sxx*wlz*wly] vmax 1.00 range set name 726 

'boxRight' 727 



 
Appendix -D: Triaxial shear test – PFC code 

 

238 
 

wall servo activate on xforce [ sxx*wlz*wly] vmax 1.00 range set name 728 

'boxLeft' 729 

wall servo activate on yforce [-syy*wlx*wlz] vmax 1.00 range set name 730 

'boxBack' 731 

wall servo activate on yforce [ syy*wlx*wlz] vmax 1.00 range set name 732 

'boxFront' 733 

 734 

[lx0=wlx] 735 

[ly0=wly] 736 

[lz0=wlz] 737 

 738 

def wexx 739 

    wexx = math.ln(wlx/lx0)*100.0    ;;;positive indicates contraction 740 

end 741 

 742 

def weyy 743 

    weyy = math.ln(wly/ly0)*100.0 744 

end 745 

 746 

def wezz 747 

    wezz = math.ln(wlz/lz0)*100.0 748 

end 749 

 750 

def wevol    ; Volumetric strain  751 

    wevol = wexx + weyy + wezz 752 

end 753 

 754 

def wsd      ; deviator stress q 755 

    wsd = (wszz - 0.5*(wsxx + wsyy))*0.001 756 

end 757 

 758 
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hist id 10 @wsd 759 

hist id 11 @wexx 760 

hist id 12 @weyy 761 

hist id 13 @wezz 762 

hist id 14 @wevol 763 

 764 

; porosity  765 

 766 

def get_poros 767 

    local lx0 = wlx 768 

    local ly0 = wly 769 

    local lz0 = wlz 770 

    local sum = 0.0 771 

    loop foreach local bp clump.list 772 

      sum = sum + clump.vol(bp) 773 

    endloop 774 

    global get_poros = 1.0 - sum / (lx0*ly0*lz0) 775 

end 776 

 777 

@get_poros 778 

 779 

hist @get_poros 780 

 781 

; Evolution of coordination number  782 

 783 

def Coordination  784 

   local count_contacts = 0.0 785 

   loop foreach local ct contact.list 786 

   local e1 = contact.end1(ct) 787 

   local e2 = contact.end2(ct) 788 

   if type.pointer(e1) = 'pebble' 789 
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      local cp1 = clump.pebble.clump(e1) 790 

    endif  791 

    if type.pointer(e2) = 'pebble' 792 

      local cp2 = clump.pebble.clump(e2) 793 

    endif  794 

    count_contacts = count_contacts + 1.0  795 

    count_clump = clump.num 796 

    endloop 797 

    CN = 2.0*count_contacts/count_clump 798 

    end  799 

 800 

hist @Coordination   801 

hist @CN  802 

 803 

; Contact normal anisotropy  804 

 805 

def Contact_normal_aniso  806 

    local sum_xx = 0.0 807 

    local sum_yy = 0.0 808 

    local sum_zz = 0.0 809 

    local sum_xy = 0.0 810 

    local sum_xz = 0.0 811 

    local sum_yz = 0.0 812 

    local count_contacts = 0.0 813 

    loop foreach local ct contact.list  814 

    local e1 = contact.end1(ct) 815 

    local e2 = contact.end2(ct) 816 

    local nx = contact.normal.x(ct) 817 

    local ny = contact.normal.y(ct) 818 

    local nz = contact.normal.z(ct) 819 

    if type.pointer(e1) = 'pebble' 820 
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      local cp1 = clump.pebble.clump(e1) 821 

    endif  822 

    if type.pointer(e2) = 'pebble' 823 

      local cp2 = clump.pebble.clump(e2) 824 

    endif  825 

    count_contacts = count_contacts + 1 826 

    sum_xx = sum_xx + nx*nx 827 

    sum_yy = sum_yy + ny*ny 828 

    sum_zz = sum_zz + nz*nz 829 

    sum_xy = sum_xy + nx*ny 830 

    sum_xz = sum_xz + nx*nz 831 

    sum_yz = sum_yz + ny*nz 832 

    endloop 833 

    Fxx = sum_xx/count_contacts     834 

    Fyy = sum_yy/count_contacts   835 

    Fzz = sum_zz/count_contacts 836 

    Fxy = sum_xy/count_contacts  837 

    Fxz = sum_xz/count_contacts 838 

    Fyz = sum_yz/count_contacts     839 

    Phi_1 = 0.5*(Fxx + Fyy) + 0.5*((math.sqrt((Fxx-Fzz)^2+(4*Fxz)^2))) 840 

    Phi_2 = 0.5*(Fxx + Fyy) - 0.5*((math.sqrt((Fxx-Fzz)^2+(4*Fxz)^2))) 841 

    Phi_d = Phi_1 - Phi_2  842 

    end  843 

 844 

hist @Contact_normal_aniso 845 

hist @Fxx 846 

hist @Fyy 847 

hist @Fzz 848 

hist @Fxy 849 

hist @Fxz 850 

hist @Fyz  851 
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hist @Phi_d 852 

 853 

; slip state  854 

 855 

def slip_ratio 856 

    local i = 0.0 857 

    local j = 0.0 858 

    loop foreach local cp contact.list 859 

      aa = contact.prop(cp,'lin_slip') 860 

        if aa = true then 861 

            i = i+1 862 

        else 863 

            j = j+1 864 

        endif 865 

    endloop 866 

    Roll_ratio = i/(i+j) 867 

end 868 

hist @slip_ratio 869 

hist @Roll_ratio  870 

 871 

; Average normal force  872 

 873 

def compute_average_normal  874 

   local average_normal = 0.0 875 

   local num = 0.0 876 

   loop foreach local ct contact.list('pebble-pebble') 877 

      average_normal = average_normal + math.abs(contact.force.normal(ct)) 878 

      num = num + 1 879 

    endloop  880 

    average_normal_1 = average_normal/num 881 

    end 882 
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 883 

hist @compute_average_normal 884 

hist @average_normal_1 885 

 886 

hist purge 887 

 888 

def stop 889 

    if math.abs(wezz) > 50 then 890 

        stop = 1 891 

    endif 892 

end 893 

 894 

[stop=0] 895 

 896 

clump prop fric 0.5 897 

wall prop fric 0.0 898 

 899 

solve fishhalt @stop 900 

save Trixial_Load1 901 

return 902 


