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Abstract. In this paper we study the spaces of non-compact real algebraic

curves, i.e. pairs (P, τ), where P is a compact Riemann surface with a finite
number of holes and punctures and τ : P → P is an anti-holomorphic invo-

lution. We describe the uniformisation of non-compact real algebraic curves

by Fuchsian groups. We construct the spaces of non-compact real algebraic
curves and describe their connected components. We prove that any connected

component is homeomorphic to a quotient of a finite-dimensional real vector

space by a discrete group and determine the dimensions of these vector spaces.

In memory of Ernest Borisovich Vinberg

1. Introduction

It is well known that the category of complex algebraic curves is isomorphic to the
category of compact Riemann surfaces. For a complex algebraic curve generated
by the polynomial F (x, y) with complex coefficients, the corresponding compact
Riemann surface P is obtained as the regularisation of the set of complex solutions
of the equation F (x, y) = 0. If the Riemann surface P has a finite number of holes
and punctures, we will say that the corresponding complex curve has holes and
punctures.

Similarly the category of real algebraic curves is isomorphic to the category
of pairs (P, τ), where P is a compact Riemann surface and τ : P → P is an
anti-holomorphic involution on P . For a real algebraic curve generated by the
polynomial F (x, y) with real coefficients, the corresponding pair (P, τ) consists of
the compact Riemann surface P as above and the involution τ which is generated by
the complex conjugation (x, y) 7→ (x̄, ȳ). The set of fixed points of the involution τ
is called the set of real points of the real curve (P, τ) and is denoted by P τ . If the
Riemann surface P has a finite number of holes and punctures, we will say that
(P, τ) is a real curve with holes and punctures. Those holes and punctures that are
invariant under the involution τ will be called real holes and real punctures. The
remaining holes and punctures occur in pairs which are mapped by the involution τ .

The set of real points of a compact real curve decomposes into pairwise disjoint
simple closed smooth curves that are called ovals. The topological type of the
compact real curve (P, τ) is determined by the triple (g, k, ε), where g is the genus
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of P , k is the number of ovals and ε ∈ {0, 1} with ε = 1 if P\P τ is orientable and
ε = 0 otherwise.

We can compactify a real curve (P, τ) by closing every hole with a disk and every
puncture with a point and extending τ to an anti-holomorphic involution τ̂ on the
resulting surface P̂ . The ovals of (P̂ , τ̂) are called compactified ovals. The type of a
compactified oval is given by the cyclic sequence of glued in disks and points. The
topological type of the real curve (P, τ) is determined by the type (g, k, ε) of the

corresponding compactified real curve (P̂ , τ̂), the numbers 2nI and 2mI of non-real
holes and punctures and the types of compactified ovals. The numbers nR and mR

of real holes and punctures respectively are determined by the type of the real
curve. In this paper we will assume that 2g + 2nI + nR + 2mI + mR > 2 as the
other cases are easier, but require different techniques.

The aim of this paper is to prove the following description of the moduli space
of real curves with holes and punctures.

Theorem 1.1. The moduli space Mt of all real algebraic curves of type

t = (g, k, ε|2nI , 2mI , types of compactified ovals, nR,mR)

is not empty if and only if 1 6 k 6 g + 1 and k ≡ g + 1 (mod 2) in the case ε = 1
and 0 6 k 6 g in the case ε = 0. Under these conditions the moduli space Mt has
a natural topological structure, is connected and is the quotient Tt/Modt, where Tt
is homeomorphic to a real vector space of dimension 3g−3+3nI +2mI +2nR+mR

and Modt is a discrete group.

This result was previously only described for compact real algebraic curves (The-
orem 2 in [N75] and §2 in [N78]).

2. Sequential Sets of Automorphisms

We will recall some standard results in complex analysis (see for example Chap-
ter 5 in [N18]). Consider the upper half plane H = {z ∈ C

∣∣ Im(z) > 0}. Holomor-
phic and anti-holomorphic automorphisms of H are isometries with respect to the

hyperbolic metric ds = |dz|
Im(z) on H. Geodesics in this geometry are half-circles with

centre on the real axis and rays orthogonal to the real axis. The group Aut(H)
of bi-holomorphic automorphisms of H is isomorphic to PSL(2,R) and consists of
Möbius transformations

C(z) =
az + b

cz + d
, where a, b, c, d ∈ R and ad− bc > 0.

Bi-holomorphic automorphisms can be classified with respect to the fixed point
behavior of their action on H. An element is called hyperbolic if it has two fixed
points, which lie on the boundary ∂H = R ∪{∞} of H. A hyperbolic element with
fixed points α, β in R is of the form

[τα,β(λ)](z) =
(λα− β)z − (λ− 1)αβ

(λ− 1)z + (α− λβ)
,

where λ > 0. A hyperbolic element with one fixed point at ∞ is of the form

[τ∞,β(λ)](z) = λz − (λ− 1)β
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or

[τα,∞(λ)](z) =
1

λ
z −

(
1

λ
− 1

)
α,

where α resp. β is the real fixed points and λ > 0. The parameter λ > 0 is called the
shift parameter. The axis `(g) of the element g = τα,β(λ) is the geodesic between
the fixed points α and β, oriented from β to α if λ > 1 and from α to β if λ < 1.
The element g = τα,β(λ) preserves the geodesic `(g) and moves the points on this
geodesic in the direction of the orientation. We call a hyperbolic element τα,β(λ)
with λ > 1 positive if α < β.

An element is called parabolic if it has one fixed point, which is on the bound-
ary ∂H. A parabolic element with a fixed point α is of the form

[πα(λ)](z) =
(1− λα)z + λα2

−λz + (1 + λα)
.

A parabolic element with fixed point ∞ is of the form

[π∞(λ)](z) = z + λ.

We call a parabolic element πα(λ) positive if λ > 0.

An element that is neither hyperbolic nor parabolic is called elliptic. It has one
fixed point that is in H. Given a base-point x ∈ H and a real number ϕ, let ρx(ϕ)
denote the rotation through angle ϕ about the point x. Any elliptic element is of
the form ρx(ϕ), where x is the fixed point.

We will call hyperbolic and parabolic automorphisms of H shifts. Riemann
surfaces are bi-holomorphic to quotients H/Γ, where Γ is a Fuchsian group that
consists of shifts. Sequential sets are special generating sets of such Fuchsian groups
which were introduced in [N72], p. 151. They can be defined as follows:

Definition 2.1. For two elements C1 and C2 in Aut(H) with finite fixed points
in R we say that C1 < C2 if all fixed points of C1 are to the left of any fixed point
of C2.

Definition 2.2. A triple of shifts (C1, C2, C3) in Aut(H) is a sequential set if their
product is

C1 · C2 · C3 = 1,

and for some element A ∈ Aut(H) the elements {C̃i = ACiA
−1}i=1,2,3 are positive,

have finite fixed points and satisfy C̃1 < C̃2 < C̃3.

Figure 1 illustrates the position of the axes of the elements C̃i when all elements
are hyperbolic.
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Figure 1: Sequential set
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Definition 2.3. A tuple of shifts (C1, . . . , Cr) in Aut(H) is a sequential set if for
any j ∈ {2, . . . , r − 1} the triple (C1 · · ·Cj−1, Cj , Cj+1 · · ·Cr) is a sequential set.

Definition 2.4. A sequential set of type (g, n,m) is a (n+m+ 2g)-tuple of shifts

(C1, . . . , Cn+m, A1, B1, . . . , Ag, Bg)

in Aut(H) such that the elements A1, . . . , Ag, B1, . . . , Bg and C1, . . . , Cn are hyper-
bolic, the elements Cn+1, . . . , Cn+m are parabolic, and the tuple

(C1, . . . , Cn+m, A1, B1A
−1
1 B−11 , . . . , Ag, BgA

−1
g B−1g )

is a sequential set.

Figure 2 illustrates the position of the axes and fixed points of the elements of a
sequential set of type (g, n,m).

.......

.......
.......
........
...........

........................................................................................
.......
.....

.......
........
....

C1

. . .
.......
.......
.......
........
...........

........................................................................................
.......
.....

.......
........
....

Cn

•

Cn+1

. . .

•

Cn+m

.......

.......
.......
........
...........

........................................................................................
.......
.....

.......
........
....

A1

.......

.......
.......
........
...........

........................................................................................
.......
.....

.......
........
....

B1A
−1
1 B−11

.......

.......
.......
........
...........

............................................................................... .........
........
....

.......

.......

.....

B1

. . .
.......
.......
.......
........
...........

........................................................................................
.......
.....

.......
........
....

Ag

.......

.......
.......
........
...........

........................................................................................
.......
.....

.......
........
....

BgA
−1
g B−1g

.......

.......
.......
........
...........

............................................................................... .........
........
....

.......

.......

.....

Bg



Figure 2: Sequential set of type (g, n,m)

According to Theorem A in [N78] and Theorem 1.1 in [N04], a sequential set V
of type (g, n,m) generates a Fuchsian group Γ(V) that consists of shifts such that
the surface P = H/Γ is of genus g with n holes and m punctures. We will say that
P is a surface of type (g, n,m).

3. Real Surfaces without Real Holes or Real Punctures

Let the moduli space Mg,n,m be the space of classes of bi-holomorphic equiv-
alence of Riemann surfaces of type (g, n,m). According to Theorem 2.1 in [N04],
any Riemann surface of type (g, n,m) is bi-holomorphic to a quotient H/Γ, where
Γ is a Fuchsian group generated by a sequential set of type (g, n,m), hence we can
describe the moduli spaceMg,n,m via the space of sequential sets of type (g, n,m).

Let T̃g,n,m be the set of all sequential sets of type (g, n,m). The group Aut(H) ∼=
PSL(2,R) acts on the set T̃g,n,m by conjugation. Let Tg,n,m = T̃g,n,m/PSL(2,R) be
the quotient of this action. A sequential set of type (g, n,m) consists of 2g + n hy-
perbolic and m parabolic automorphisms which can be described by

3(2g + n) + 2m = 6g + 3n+ 2m

real parameters. The relation

C1 · · · · · Cn+m · [A1, B1] · · · · · [Ag, Bg] = 1

implies some restrictions on these parameters, hence a point in T̃g,n,m can be de-
scribed by 6g+ 3n+ 2m− 3 real parameters. Taking into account the action of the
3-dimensional group PSL(2,R), we can conclude that the space Tg,n,m is homeo-

morphic to R6g+3n+2m−6, see Theorem 4.1 in [N04].
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Sequential sets in the same orbit of PSL(2,R) correspond to bi-holomorphically
equivalent Riemann surfaces, hence the moduli space Mg,n,m of Riemann surfaces
of type (g, n,m) up to bi-holomorphic equivalence is of the form

Mg,n,m = Tg,n,m/Modg,n,m,

where Modg,n,m is a discrete group of automorphisms of a surface of type (g, n,m)
that acts on Tg,n,m. Therefore

Mg,n,m ' R6g−6+3n+2m/Modg,n,m .

This fact is due to O. Teichmüller, see [T], §49 on p. 360 and §143 on p. 458 of the
English translation.

Now let us consider real algebraic curves. Recall that the topological type of a
real curve without real holes and real punctures is determined by the type (g, k, ε)
of the corresponding compactified real curve and the numbers 2nI and 2mI of non-
real holes and punctures. A slight modification of the proofs in [N04] (Lemma 2.2)
leads to the following description of the corresponding Fuchsian groups. A real
curve of type t = (g, k, ε|2nI , 2mI) can be constructed using a sequential set

V = (C0, C1, . . . , Cr, A1, . . . , Ah, B1, . . . , Bh)

of type (h, g − 2h+ 1 + nI ,mI) and hyperbolic automorphisms

D = (D1, . . . , Dg−2h),

where the number h and the hyperbolic automorphisms D depend on the type t.
The hyperbolic automorphisms D are constructed using reflections in geodesics in
the hyperbolic space H. Let Rj denote the reflection in the axis of the hyperbolic
automorphism Cj . For ε = 1, let h = (g − k + 1)/2 and Dj = R0Rj for j =

1, . . . , g− 2h = k− 1. For a hyperbolic automorphism C, let
√
C be the hyperbolic

automorphism such that (
√
C)2 = C. For ε = 0 and k > 0, let h = 0, Dj = R0Rj

for j = 1, . . . , k − 1 and Dj = R0Rj
√
Cj for j = k, . . . , g. For ε = 0 and k = 0,

let h = 0 and Dj =
√
C0R0Rj

√
Cj for j = 1, . . . , g. Figure 3 shows the axes of the

elements with the notation Ãi = R0AiR0, B̃i = R0BiR0, Cj = R0CjR0.
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Figure 3: Sequential set for a real curve of type (g, k, ε|2nI , 2mI)

We can show that automorphisms in V ∪ D generate a Fuchsian group Γ =
Γ(V ∪ D) such that the Riemann surface P = H/Γ is of type (g, 2nI , 2mI). Let
σ = R0 for k > 0 and σ =

√
C0R0 for k = 0, then σΓσ = Γ. It follows that σ

generates a real curve (P, τ) of type (g, k, ε|2nI , 2mI). Moreover, it can be shown
that every real curve of type t can be constructed in this way.
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The hyperbolic metric on the upper half-plane H induces a hyperbolic metric on
the quotient P = H/Γ. This metric reflects the geometry of the Fuchsian group Γ.
For instance, among all simple closed curves around the hole that corresponds to
the generator Cj there is a unique shortest curve cj . This curve is the image of the
axis of Cj under the natural projection H → P .

Recall that real curves of type t = (g, k, ε|2nI , 2mI) are generated by sequential
sets of type (h, g − 2h + nI ,mI), whereby conjugate sequential sets correspond to
bi-holomorphically equivalent real curves. The space Th,g−2h+1+nI ,mI

of conjugacy
classes of such sequential sets is homeomorphic to a real vector space of dimension

6h+ 3(g − 2h+ 1 + nI) + 2mI − 6 = 3g − 3 + 3nI + 2mI .

The moduli spaceM(g,k,ε|2nI ,2mI) is obtained as the quotient of Th,g−2h+1+nI ,mI
by

the discrete group Modt of homotopy classes of those automorphisms that commute
with τ . Thus M(g,k,ε|2nI ,2mI) is homeomorphic to

R3g−3+3nI+2mI/Modt .

4. Real Surfaces of Genus Zero

We will now prove Theorem 1.1 for real surfaces of genus zero without non-real
holes or punctures. In this case the compactified real curve has exactly one oval
and the number of holes and punctures on this oval determines the type t of the real
surface. Let us consider a set `1, . . . , `r, r > 2, of pairwise disjoint geodesics in the
hyperbolic plane H such that the end points of `i are to the left of the endpoints
of `i+1. Let Ri be the reflection in `i. Product of two hyperbolic reflections is
parabolic if their axes share exactly one endpoint and hyperbolic if the closures
of their axes are disjoint. We can choose the geodesics `i in such a way that the
distribution of parabolic and hyperbolic elements among the products

Cr = RrR1, C1 = R1R2, C2 = R2R3, . . . , Cr−1 = Rr−1Rr

corresponds to the distribution of punctures and holes in the topological type t, see
Figure 4.
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Figure 4: Real curve of genus zero

Consider the shifts

F1 = R1Ri = C1 · · ·Ci−1 and F2 = Ri+1Rr = Ci+1 · · ·Cr−1.
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Then (F1, Ci, F2) is a sequential set and hence so is (C1, . . . , Cr). Therefore the
shifts C1, . . . , Cr generate a Fuchsian group Γ and Pr = H/Γ is a Riemann surface
of genus zero. Moreover, RiΓRi = Γ, hence the reflections Ri induce an anti-
holomorphic involution τ : Pr → Pr such that all holes and punctures are real with
respect to τ and their distribution corresponds to the distribution prescribed in the
topological type t.

We will now prove that this construction gives all real curves (Pr, τ) of genus
zero with only real holes and punctures. To this end, given such a real curve, we
want to identify the corresponding geodesics `1, . . . , `r in H. Consider a connected
component of Pr\P τr . Let Qr be its pre-image under the uniformisation map H →
Pr. The boundary of Qr consists of geodesic segments in H. We can extend these
geodesic segments to geodesics `i.

Sets of geodesics are determined by their endpoints. The number of endpoints
is 2n + m, where n and m are the numbers of holes and punctures in the type t
respectively. Taking into account the action of the 3-dimensional group PSL(2,R)
of automorphisms of H on the set of sets of geodesics, we can conclude that the set
of orbits of this action is homeomorphic to R2n+m−3, thus Mt ' R2n+m−3/Mod,
where Mod is a discrete group determined by the numbering of the holes.

We will now construct the space M∗ of real curves of genus zero with 3 holes
of which exactly one is real. Let us revisit the previous construction with r = 3.
We consider a set `1, `2, `3 of pairwise disjoint geodesics in the hyperbolic plane H
such that the end points of `i are to the left of the endpoints of `i+1. Let Ri be
the reflection in `i. We can choose the geodesics `i in such a way that all products
C3 = R3R1, C1 = R1R2, C2 = R2R3 are hyperbolic. Let ci be the axis of Ci for
i = 1, 2, 3. In this case the geodesics `1, `2, `3 and c1, c2, c3 bound a right-angled
hexagon Q3 in H. The type of the hexagon Q3 is determined up to bi-holomorphic
equivalence by the lengths of its sides that are contained in the geodesics c1, c2, c3,
see Theorem 3.5.13 in [R]. These lengths are given by (λ1/2, λ2/2, λ3/2), where
λi = λ(Ci) is the shift parameter of the hyperbolic element Ci. They are com-
pletely determined by the lengths of the minimal geodesics around the holes of
the surface P3. If λ1 = λ2 then the hexagon Q3 is symmetric with respect to the
geodesic orthogonal to c3, see Figure 5. The reflection in this geodesic generates
an anti-holomorphic involution σ : P3 → P3 that interchanges the holes c1 and c2
and maps the hole c3 to itself. Note that λ1 and λ3 completely determine the real
curve (P3, σ) and hence the space M∗ of such real curves is homeomorphic to R2.

Now let us construct the space M∗s of real curves (P, τ) of genus zero with
two non-real holes and r real holes and punctures, generating an oval of type s.
Consider the minimal closed geodesic c0 that separates non-real holes from real
holes and punctures. The geodesic c0 divides the real curve (P, τ) into two real
curves (Pr+1, τ) and (P3, σ) of the types considered above. On the other hand,
starting with the real curves (Pr+1, τ) and (P3, σ), we can glue them together to
form a real curve of type t if the length of the minimal closed geodesic around the
real hole on (P3, σ) is equal to the length of the minimal closed geodesic around
the hole C1 on (Pr+1, τ). Therefore Mt ' R2nR+mR−3/Mod, where nR and mR

are the numbers of real holes and real punctures in the type s respectively.
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Figure 5: Real curve of genus zero with 3 holes

5. Real Surfaces of Any Type

We will now consider the space of real surfaces of any type. Such real surfaces
can be obtained by identifying pairs of non-real symmetric holes on the kinds of
surfaces considered in sections 3 and 4.

Consider a real curve (P, τ) of type t without real holes or real punctures. Let c
be a minimal closed geodesic around a non-real hole on (P, τ). Let ρ be the length
of c. Let c0 be as described in section 3. Among all geodesic segments connecting
the curves c and c0 there is a unique shortest segment. Let x be the end point of
this segment on the curve c.

Consider a real curve (Q, σ) of type s with exactly two non-real holes and without
non-real punctures. Let u and σ(u) be the minimal simple closed geodesics around
the non-real holes on (Q, σ). We can choose (Q, σ) in such a way that the length
of u and σ(u) is equal to ρ. Let c0 be the minimal closed geodesic on (Q, σ) that
separates non-real holes from real holes and real punctures. Among all geodesic
segments connecting the curves u and c0 there is a unique shortest segment. Let y
be the end point of this segment on the curve u.

The family of isometries ϕ mapping the geodesic c to the geodesic u is real
one-dimensional and can be parametrised by the distance between the points ϕ(x)
and y. We can identify the holes τ(c) and σ(u) via the isometry σ ◦ ϕ ◦ τ . Thus
we can glue a real curve (Q, σ) of genus zero and type s into a non-real hole of a
real surface (P, τ) of type t. Repeatedly gluing in real surfaces of genus zero we can
obtain a real curve of any type.

Consider the space M(t|s1,...,sr) of real curves of topological type (t|s1, . . . , sr),
where t is the topological type of a real curve without holes and punctures and si
are the types of ovals. The results of sections 4 and 5 imply that

M(t|s1,...,sr) =Mt × R2nR+mR .

Recall that we have shown in section 3 that

Mt ' R3g−3+3nI+2mI/Modt,

where t = (g, k, ε|2nI , 2mI).
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