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Abstract

This study explores the dynamic effects of patent policy on innovation and income
inequality in a Schumpeterian growth model with endogenous market structure and
heterogeneous households. We find that strengthening patent protection has a positive
effect on economic growth and a positive or an inverted-U effect on income inequality
when the number of differentiated products is fixed in the short run. However, when
the number of products adjusts endogenously, the effects of patent protection on growth
and inequality become negative in the long run. We also calibrate the model to US
data to perform a quantitative analysis and find that the long-run negative effect of
patent policy on inequality is much larger than its short-run positive effect. This result
remains consistent with our empirical finding from a panel vector autoregression.
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1 Introduction

A recent study by Aghion et al. (2019) provides empirical evidence to show that innovation
and income inequality have a positive relationship. However, innovation and income inequal-
ity are both endogenous variables; therefore, it would be interesting to see how they are both
affected by an exogenous policy parameter, such as the level of patent protection. Therefore,
this study analyzes the effects of patent policy on innovation and inequality. This analysis
fills an important gap in the literature because previous studies, which explore the effects of
patent policy on innovation in the macroeconomy, rarely consider its microeconomic impli-
cations on the income distribution. Furthermore, the Schumpeterian growth model that we
develop allows us to analytically show how the effect of patent policy on the income distrib-
ution changes over time. The tractability of this dynamic analysis enables us to compare the
transition path of income inequality derived from the growth model to the impulse response
function estimated from a panel vector autoregression (VAR).
We introduce heterogeneous households into a Schumpeterian model with endogenous

market structure to explore the effects of patent protection on economic growth and income
inequality. The Schumpeterian model with endogenous market structure is based on Peretto
(2007, 2011) and features both horizontal innovation (i.e., the development of new products)
and vertical innovation (i.e., the quality improvement of products). Although endogenous
market structure gives rise to transition dynamics in the aggregate economy, the wealth dis-
tribution of households is stationary (as an equilibrium outcome) along the entire transition
path due to the stationary consumption-output and consumption-wealth ratios. This useful
property makes our analysis tractable. Upon deriving the autonomous dynamics of the aver-
age firm size, we are able to also derive the dynamics of economic growth and the evolution
of the income distribution (given a general wealth distribution).
In this growth-theoretic framework, we find that strengthening patent protection leads to

a higher growth rate and causes a positive or an inverted-U effect on income inequality when
the number of differentiated products is fixed in the short run. However, when the number
of products adjusts endogenously, the effects of patent protection on economic growth and
income inequality become negative in the long run. The intuition of these results can be
explained as follows.
Stronger patent protection confers more market power to monopolistic firms, which then

charge a higher markup and earn more profits. As a result, strengthening patent protection
has a positive effect on innovation and economic growth when the number of firms is fixed in
the short run. However, the increased profitability also attracts the entry of new firms, which
in turn reduces the market share captured by each firm. Given that it is the firm size that
determines the incentives for quality-improving innovation,1 the entry of new firms caused by
stronger patent protection stifles quality-improving innovation,2 which determines long-run
growth.3 These contrasting effects of patent protection on economic growth at different time
horizons have novel implications on the dynamics of income inequality.

1See Cohen and Klepper (1996a, b) and Laincz and Peretto (2006) for empirical evidence.
2See Jaffe and Lerner (2004), Bessen and Meurer (2008) and Boldrin and Levine (2008) for evidence.

Boldrin and Levine (2008) even suggest to abolish the patent system entirely.
3See Peretto and Connolly (2007) for a theoretical explanation on why vertical innovation, instead of

horizontal innovation, drives growth in the long run and Garcia-Macia et al. (2019) for empirical evidence.
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In our model, households own different amounts of wealth. This wealth inequality gives
rise to income inequality; see Piketty (2014) for evidence on the importance of wealth in-
equality on income inequality. Given that asset income is determined by the rate of return on
assets and the value of assets, an increase in either the real interest rate or asset value would
raise income inequality; see Madsen (2017) for evidence that asset returns are an important
determinant of income inequality. As a result, strengthening patent protection has the fol-
lowing effects on income inequality in the short run. The positive effect of patent protection
on the equilibrium growth rate leads to a higher interest rate through the Euler equation
of the households; therefore, strengthening patent protection has a positive effect on income
inequality by increasing the equilibrium growth rate and the real interest rate in the short
run. This dynamic-general-equilibrium effect is also present in previous studies, such as
Chu (2010b) and Chu and Cozzi (2018), who focus on quality improvement without variety
expansion. In our model, endogenous entry gives rise to a novel effect. The larger markup
as a result of stronger patent protection reduces the demand for intermediate goods, which
in turn reduces the value of assets through the entry condition of new products. Therefore,
strengthening patent protection also has a negative effect on income inequality.
The above positive and negative effects together generally give rise to an inverted-U re-

lationship between patent protection and income inequality in the short run. However, it
is also possible to have only a positive relationship between patent protection and income
inequality over the permissible range of the policy instrument. In the long run, the effect of
patent protection on economic growth becomes negative (due to endogenous market struc-
ture) as explained before. Therefore, the effect of patent protection on the real interest rate
also becomes negative, and hence, strengthening patent protection has a negative effect on
income inequality by decreasing the equilibrium growth rate and the real interest rate in the
long run. Finally, we calibrate the model to US data to perform a quantitative analysis and
find that the long-run negative effect of patent protection on income inequality is much larger
than its short-run positive effect. This dynamic pattern of income inequality is consistent
with the impulse response function estimated from a panel VAR.
This study relates to the patent-design literature.4 In this literature, the seminal study

is Nordhaus (1969), who analyzes the implications of patent length (i.e., the statutory term
of patent). In the US, the statutory term of patent is 20 years; however, the vast majority
of patents are not renewed until the end of the statutory term, rendering an extension of
patent length ineffective in most industries.5 Subsequent studies, such as Gilbert and Shapiro
(1990) and Klemperer (1990), instead explore patent breadth (i.e., the broadness or scope of
patent protection).6 In this study, we also explore the effects of patent breadth but consider
a dynamic general-equilibrium model of innovation and economic growth, which differs from
the partial-equilibrium models in this literature.
Therefore, this study also relates to the literature on innovation and economic growth.

Romer (1990) develops the seminal R&D-based growth model in which economic growth
is driven by the invention of new products. Aghion and Howitt (1992), Grossman and

4See Scotchmer (2004) for a comprehensive review of this literature.
5See for example Chu (2010a) for an analysis of patent length extension in an R&D-based growth model.
6When an inventor applies for a patent, he/she makes a number of claims about the invention in the patent

application. The level of patent breadth is determined by how broadly these claims are to be interpreted by
patent judges when it comes to enforcing the patent in courts.
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Helpman (1991) and Segerstrom et al. (1990) consider an alternative growth engine that
is the innovation of higher-quality products and develop the Schumpeterian growth model.
Subsequent studies, such as Smulders and van de Klundert (1995), Peretto (1998, 1999)
and Howitt (1999), develop the second-generation Schumpeterian model with both vertical
and horizontal innovation.7 This study contributes to the literature by developing a second-
generation Schumpeterian model with heterogeneous households to explore the effects of
patent protection.
Other studies also explore the effects of patent protection on innovation in the R&D-based

growth model; see for example, Cozzi (2001), Li (2001), Goh and Olivier (2002), Furukawa
(2007), Futagami and Iwaisako (2007), Horii and Iwaisako (2007), Chu (2009, 2011), Ace-
moglu and Akcigit (2012), Iwaisako (2013), Iwaisako and Futagami (2013), Kiedaisch (2015),
Chu et al. (2016) and Yang (2018, 2020). These studies focus on models with a representative
household; therefore, they do not consider the effects of patent protection on income inequal-
ity. This study contributes to the literature by applying an R&D-based growth model with
heterogeneous households to explore the effects of patent protection on income inequality in
addition to innovation and economic growth.
Some studies in the literature consider heterogeneous workers and explore the effects

of innovation on the skill premium or more generally wage inequality; see for example,
Acemoglu (1998, 2002), Spinesi (2011), Cozzi and Galli (2014) and Grossman and Helpman
(2018). This study complements them by assuming wealth heterogeneity rather than worker
heterogeneity and by analyzing income inequality rather than wage inequality. A recent study
by Madsen and Strulik (2020) explores the evolution of inequality (measured by the ratio
of land rent to wages) in a unified growth model.8 Our study differs from their interesting
work by considering other measures (i.e., the coeffi cient of variation, the Gini coeffi cient
and the top income share) of income inequality in a Schumpeterian growth model, in which
innovation is the engine of technological progress and economic growth.
Some studies in the literature also explore the relationship between income inequality

and innovation in the R&D-based growth model; see for example, Chou and Talmain (1996),
Zweimuller (2000), Foellmi and Zweimuller (2006), Jones and Kim (2018) and Aghion et al.
(2019). Our study relates to these interesting studies by exploring how patent policy influ-
ences the relationship between innovation and inequality. Chu (2010b), Chu and Cozzi (2018)
and Kiedaisch (2020) also explore the effects of patent policy on innovation and inequality.9

However, all the above-mentioned studies feature either vertical or horizontal innovation; as
a result, they do not feature endogenous market structure. Furthermore, instead of focusing
on a stationary income distribution, the tractability of our model allows us to analytically
derive the evolution of the income distribution without imposing any parametric assump-
tion on the wealth distribution. We find that endogenizing the market structure has novel
implications on the dynamic effects of patent protection on income inequality.

7See Laincz and Peretto (2006), Ha and Howitt (2007), Madsen (2008, 2010) and Ang and Madsen (2011)
for empirical evidence that supports the second-generation Schumpeterian model.

8See Galor (2011) for a comprehensive review of unified growth theory.
9Chu et al. (2019) explore the effects of monetary policy in a monetary Schumpeterian growth model with

heterogenous households. Like this study, their model features a complete market, which is different from
the interesting framework in Bilbiie and Ragot (2020) and Bilbiie et al. (2020), who consider heterogeneous
households in the monetary New Keynesian model with idiosyncratic shocks and incomplete markets.
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The rest of this study is organized as follows. Section 2 presents some stylized facts.
Section 3 presents the model. Section 4 analyzes the dynamics of the model. Section 5
explores the effects of patent policy. Section 6 concludes. Appendix A contains the proofs.

2 Stylized facts

This study examines whether changes in the strength of patent protection affect income in-
equality. The Ginarte-Park index of patent rights is a standard measure of patent strength
across countries; see Ginarte and Park (1997). Many studies use this index to estimate the
effects of patent strength on innovation;10 however, only a few studies explore the effects
of patent strength on income inequality. A notable example is Adams (2008) who consid-
ers static panel regressions and finds that patent strength has a positive effect on income
inequality, which is consistent with the positive short-run effect (but does not capture the
negative long-run effect) from our panel VAR analysis.
Although the Ginarte-Park index is very influential in the literature, it is not available

at an annual frequency (available at a quinquennial frequency only), which prevents us from
using the index in our panel VAR analysis. Instead, we measure patent protection by using
total patent counts, which is an annual time series being useful for a shock analysis. We
have plotted the correlation between patent counts and the Ginarte-Park index in Figure
1, which is clearly positive on average, indicating that countries with stronger patent rights
tend to have higher patent counts. This empirical correlation may be driven by many forces,
but it is consistent with our theoretical model in which stronger patent protection increases
the number of patented products.11

Figure 1

10See for example Park (2005, 2008) for a discussion.
11See the discussion in footnote 25.
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We compile country-level data on income inequality and patent counts. The data series
are in annual frequency, giving us an unbalanced panel of 89 countries from 1980 to 2017.
The Gini index of household income inequality comes from the Standardized World Income
Inequality Database, whereas the number of patents is taken from the World Development
Indicators of the World Bank. Table 1 reports the descriptive statistics, whereas Table 2
performs a panel unit-root test to confirm the stationarity of the data.

Table 1: Descriptive statistics
Mean p50 SD Min Max Obs

patent_strength 3.215 3.425 1.110 0.200 5.000 461
log_patents 7.133 7.196 2.230 0.693 13.913 2465
inequality 0.460 0.462 0.069 0.174 0.762 2465

Table 2: Panel unit-root tests
Inverse χ2(x)-P Modified Inverse χ2(x)-Pm

patent_strength 529.636*** 13.666***
log_patents 299.930*** 7.663***
inequality 220.351*** 3.242***

Notes: H0: panel variable contains unit root; H1: panel variable is stationary. The Fisher-

type unit-root test based on Phillips-Perron tests examines the null hypothesis of a unit root

against the stationary alternative. *, ** and *** indicate statistical significance at the 10%,

5%, and 1% levels respectively.

We carry out a shock analysis in a panel VAR to examine the dynamic relationship be-
tween income inequality and patents.12 We estimate a recursive panel VAR with a maximum
of 3 lags to capture the dynamics in the data and identify a patent shock by applying the
usual Choleski decomposition on the variance-covariance matrix of residuals. We estimate
the panel VAR using the GMM estimator in Abrigo and Love (2016),13 which can better deal
with unobserved country heterogeneity, especially in fixed t and large n settings, providing
a consistent estimate of the mean effects across countries. We specify the following ordering
for the 2 × 1 vector of variables [patents, inequality] in order to identify the patent shock.
The reason behind this specific recursive ordering stems from the theoretical ordering of
the variables that should run from the more exogenous variable to the less exogenous one.
The variable, patents, is ordered first and followed by inequality. By undertaking a panel
VAR-Granger causality Wald test, we find patents to be exogenous among the variables.
Our aim here is to track the response of income inequality due to a shock in patents, using

a panel VAR in a bivariate setting as a benchmark: the log of patents and income inequality.
As effi ciency can be improved by including a longer set of lags in GMM estimation, we
estimate the VAR using 3 lags and plot the estimated response coeffi cients up to a forecast
horizon of 10 years. The panel VAR approach helps us assess the common response for the
countries to a patent shock.

12See Appendix C for a formal description of the panel VAR.
13This estimator is essentially a difference GMM, but the differencing is based on forward orthogonal

deviations, instead of the usual first-differencing.
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Figure 2 shows the bootstrapped impulse responses to a patent shock, together with
plus/minus one standard-error confidence bands, obtained by bootstrapping (1000 draws).
For a one standard deviation positive shock in patents, income inequality initially increases
and then the median response converges to a negative level in the long run. The shaded
curves represent the confidence interval around the estimated response functions, computed
from a typical Monte Carlo integration exercise with 1000 draws, for statistical significance.
Following Uhlig (2005) and Alessandri and Mumtaz (2019), we construct 68% confidence
bands around the median estimate. The eigenvalue stability condition graph in Figure
3 suggests that as all the eigenvalues lie inside the unit circle, the panel VAR satisfies the
stability condition. Although the short-run positive response of income inequality to a patent
shock is small, the novel finding here is the large negative response of inequality in the long
run, which is consistent with our simulation results and remains robust even if we extend
the panel VAR to a multivariate setting or consider top income inequality as an alternative
measure of income inequality; see the robustness checks in Appendix C.

Figure 2 Figure 3

In the rest of this section, we further examine the robustness of the negative relationship
between patents and income inequality by considering an IV panel regression:

σi,t = ϕ0 + ϕ1Ni,t−1 + Ωi + Ωt + εi,t,

where σi,t is income inequality in country i at time t and Ni,t−1 is the log patent counts at
time t−1. Ωt and Ωi denote year and country fixed effects. In order to capture the variation
in patent counts from the variation in patent strength, we use patent strength µi,t−1 as
an instrumental variable for patent counts Ni,t−1. Table 3 shows that ϕ1 is negative and
significant, providing further support for the negative effect of patent strength on income
inequality via patent counts. The larger absolute value of ϕ1 in the regression with IV than
the one without IV shows that the variation in patent counts coming from patent strength
has an even more significant negative effect on income inequality. Unfortunately, due to the
quinquennial frequency of the Ginarte-Park index, we are not able to use patent strength in
the panel VAR to capture its dynamics at a higher frequency.
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Table 3: Regression results

FE FE IV
(1) (2) (3)

inequality inequality inequality
log_patents -0.002** -0.005*** -0.038**

(0.001) (0.001) (0.017)
1st stage:
log_patents

patent_strength 0.249***
(0.0798)

Country FE YES YES YES
Year FE No YES YES
Observations 2434 2434 443
No. of countries 115 115 74
F statistics 5.887** 11.966*** 4.901***
First stage F test 9.81***
Under-id Test 9.76***
Weak-id Test 9.40***

Note: Standard errors are in parentheses. The variable, log_patents, is instrumented by

using patent strength. Other covariates include country and year dummies. Under-id and

Weak-id tests report the Anderson canon. corr. LM statistic and Anderson-Rubin Wald test

statistic with rejection implying identification. *, ** and *** indicate statistical significance at

the 10%, 5%, and 1% levels respectively.

3 A Schumpeterian growth model with heterogeneous
households and endogenous market structure

The Schumpeterian model with in-house R&D and endogenous market structure is based on
Peretto (2007, 2011), which features creative accumulation instead of creative destruction.14

Chu et al. (2016) introduce patent protection into the Peretto model to explore its effects on
innovation and economic growth. We further introduce heterogeneous households into the
model to analyze the effects of patent protection and endogenous market structure on eco-
nomic growth and income inequality. Our analysis provides a complete closed-form solution
for economic growth and the income distribution on the transition path and the balanced
growth path.

3.1 Heterogeneous households

The economy features a unit continuum of households, which are indexed by h ∈ [0, 1]. The
households have identical homothetic preferences over consumption but own different levels
14See Garcia-Macia et al. (2019) for evidence supporting the notion that creative accumulation is the main

driving force of innovation.
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of wealth. The utility function of household h is given by15

U(h) =

∞∫
0

e−ρt ln ct(h)dt, (1)

where the parameter ρ > 0 determines the rate of subjective discounting and ct(h) is house-
hold h’s consumption of final good (numeraire). Household h maximizes (1) subject to

ȧt(h) = rtat(h) + wtL− ct(h). (2)

at(h) is the real value of assets owned by household h, and rt is the real interest rate.
Household h supplies L units of labor to earn a real wage rate wt.16 From standard dynamic
optimization, the familiar Euler equation is

ċt(h)

ct(h)
= rt − ρ, (3)

which shows that the growth rate of consumption is the same across households such that
ċt(h)/ct(h) = ċt/ct = rt − ρ, where ct ≡

∫ 1
0
ct(h)dh is aggregate consumption.

3.2 Final good

Competitive firms produce final good Yt using the following production function:

Yt =

∫ Nt

0

Xθ
t (i)[Zα

t (i)Z1−αt Lt/Nt]
1−θdi, (4)

where {θ, α} ∈ (0, 1). Xt(i) denotes the quantity of non-durable intermediate good i ∈
[0, Nt], and Nt is the mass of available intermediate goods at time t. The productivity of
intermediate good Xt(i) depends on its own quality Zt(i) and also on the average quality
Zt ≡ 1

Nt

∫ Nt
0
Zt(i)di of all intermediate goods capturing technology spillovers. The private

return to quality is determined by α, and the degree of technology spillovers is determined
by 1−α. The term Lt/Nt captures a congestion effect of variety and removes the scale effect
in the model.17

Profit maximization yields the following conditional demand functions for Lt and Xt(i):

Lt = (1− θ)Yt/wt, (5)

Xt(i) =

(
θ

pt(i)

)1/(1−θ)
Zα
t (i)Z1−αt Lt/Nt, (6)

where pt(i) is the price ofXt(i). Competitive producers of final good pay θYt =
∫ Nt
0
pt(i)Xt(i)di

for intermediate goods. The market-clearing condition for labor implies Lt = L for all t.

15For simplicity, we consider inelastic labor supply. However, our results are robust to the extension of
elastic labor supply; see Appendix D for derivations.
16Our results are robust to allowing for population growth. Derivations are available upon request.
17Our results are robust to parameterizing this congestion effect as Lt/N

1−ξ
t , where ξ ∈ (0, 1), as in Peretto

(2015). See the discussion in footnote 29.
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3.3 Intermediate goods and in-house R&D

The monopolistic firm in industry i produces the differentiated intermediate good with a
linear technology that requiresXt(i) units of final good to produceXt(i) units of intermediate
good i ∈ [0, Nt]. Furthermore, the firm in industry i incurs φZα

t (i)Z1−αt units of final good
as a fixed operating cost. To improve the quality of its product, the firm also devotes Rt(i)
units of final good to R&D. The innovation specification is given by18

Żt(i) = Rt(i). (7)

In industry i, the monopolistic firm’s (before-R&D) profit flow at time t is

Πt(i) = [pt(i)− 1]Xt(i)− φZα
t (i)Z1−αt . (8)

The value of the monopolistic firm in industry i is

Vt(i) =

∫ ∞
t

exp

(
−
∫ s

t

rudu

)
[Πs(i)−Rs(i)] ds. (9)

The monopolistic firm in industry i maximizes (9) subject to (6), (7) and (8). The current-
value Hamiltonian for this optimization problem is

Ht(i) = Πt(i)−Rt(i) + ηt(i)Żt(i), (10)

where ηt(i) is the co-state variable on (7).
We solve this optimization problem in Appendix A and derive the unconstrained profit-

maximizing markup ratio given by 1/θ. To analyze the effects of patent breadth, we introduce
a policy parameter µ > 1, which determines the unit cost for imitative firms to produce
Xt(i) with the same quality Zt(i) as the monopolistic firm in industry i.19 In general, the
parameter µ captures the market power of monopolistic firms. Here we consider the case, in
which a larger patent breadth µ increases the production cost of imitative firms and allows
the monopolistic producer of Xt(i), who owns the patent, to charge a higher markup without
losing her market share to potential imitators.20 Therefore, the equilibrium price becomes

pt(i) = min {µ, 1/θ} . (11)

We assume µ < 1/θ. In this case, a larger patent breadth µ leads to a higher markup, and
this implication is consistent with Gilbert and Shapiro’s (1990) seminal insight on “breadth
as the ability of the patentee to raise price”.

18Here we consider homogeneous research productivity normalized to unity; see for example Minniti et al.
(2013) and Marsiglio and Tolotti (2018) for different aspects of research heterogeneity in the Schumpeterian
growth model.
19Here we assume a diffusion of knowledge from the monopolistic firm to imitators.
20Intuitively, the presence of monopolistic profits attracts potential imitators. However, stronger patent

protection increases the production cost of imitative products and allows monopolistic firms to charge a
higher markup without losing market share to these potential imitators; see also Li (2001), Goh and Olivier
(2002), Chu (2011) and Iwaisako and Futagami (2013) for a similar formulation.
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We follow previous studies to consider a symmetric equilibrium in which Zt(i) = Zt
for i ∈ [0, Nt]. In this case, the size of intermediate-good firms is also identical across all
industries, such that Xt(i) = Xt.21 From (6) and pt(i) = µ, the quality-adjusted firm size is

Xt

Zt
=

(
θ

µ

)1/(1−θ)
L

Nt

. (12)

We define the following transformed variable:22

xt ≡ µ1/(1−θ)
Xt

Zt
= θ1/(1−θ)

L

Nt

. (13)

xt is a state variable that is determined by the quality-adjusted firm size Xt/Zt, which in
turn depends on L/Nt.23 Lemma 1 derives the rate of return on quality-improving R&D,
which is increasing in xt and µ.

Lemma 1 The rate of return to in-house R&D is given by

rqt = α
Πt

Zt
= α

[
µ− 1

µ1/(1−θ)
xt − φ

]
. (14)

Proof. See Appendix A.

3.4 Entrants

Following previous studies, we assume that entrants have access to aggregate technology Zt
to ensure symmetric equilibrium at any time t. A new firm pays βXt units of final good to
set up its operation and enter the market with a new product (which will be protected by a
patent). β > 0 is a cost parameter, and the cost function βXt captures the case in which the
setup cost is increasing in the initial output volume of the firm. The asset-pricing equation
determines the rate of return on assets as

rt =
Πt −Rt

Vt
+
V̇t
Vt
. (15)

Intuitively, the asset-pricing equation equates the interest rate to the rate of return from Vt,
which is given by the monopolistic profit Πt net of the R&D cost Rt plus the capital gain
V̇t. The free-entry condition is given by24

Vt = βXt. (16)

21Symmetry also implies Πt(i) = Πt, Rt(i) = Rt and Vt(i) = Vt.
22This definition has the advantage that a change in µ does not directly affect xt.
23Given a fixed L, the number of firms Nt converges to a steady state, at which point the firm size xt also

reaches a steady state.
24We treat entry and exit symmetrically (i.e., the scrap value of exiting an industry is also βXt); therefore,

Vt(i) = βXt always holds. If Vt > βXt (Vt < βXt), then there would be an infinite number of entries (exits).
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Substituting (7), (8), (13), (16) and pt(i) = µ into (15) yields the return on entry as

ret =
µ1/(1−θ)

β

[
µ− 1

µ1/(1−θ)
− φ+ zt

xt

]
+
ẋt
xt

+ zt, (17)

where zt ≡ Żt/Zt is the growth rate of aggregate quality.

3.5 General equilibrium

The equilibrium is a time path of allocations {at, ct, Yt, Xt(i), Rt(i)} and prices {rt, wt, pt(i), Vt (i)}
such that the following conditions are satisfied:

• households maximize utility taking {rt, wt} as given;

• competitive firms produce Yt and maximize profits taking {pt(i), wt} as given;

• monopolistic firms produce Xt(i) and choose {pt(i), Rt(i)} to maximize Vt(i) taking rt
as given;

• entrants make entry decisions taking Vt as given;

• the value of all existing monopolistic firms adds up to the value of the households’
assets such that NtVt =

∫ 1
0
at(h)dh ≡ at;

• the market-clearing condition of labor holds such that Lt = L; and

• the following market-clearing condition of final good holds:

Yt = ct +Nt(Xt + φZt +Rt) + ṄtβXt. (18)

3.6 Aggregation

Substituting (6) into (4) and imposing symmetry yield the following aggregate production
function:

Yt = (θ/µ)θ/(1−θ)ZtL, (19)

which also uses markup pricing pt(i) = µ. Therefore, the growth rate of output is

Ẏt
Yt

= zt, (20)

which is determined by the quality growth rate zt.
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4 Dynamics

In this section, we analyze the dynamics of the model. Section 4.1 presents the dynamics
of the aggregate economy. Section 4.2 summarizes the dynamics of the wealth distribu-
tion. Section 4.3 derives the dynamics of the income distribution. Section 4.4 considers the
consumption distribution.

4.1 Dynamics of the aggregate economy

We now analyze the dynamics of the economy. In Appendix A, we show that the consumption-
output ratio ct/Yt jumps to a unique and stable steady-state value. This equilibrium prop-
erty simplifies the analysis of transition dynamics and ensures the stationarity of the wealth
distribution even on the transition path.

Lemma 2 The consumption-output ratio jumps to a unique and stable steady-state value:

ct
Yt

=
βθρ

µ
+ 1− θ. (21)

Proof. See Appendix A.

Equation (21) implies that for any given µ, consumption and output grow at the same
rate given by

gt ≡
Ẏt
Yt

=
ċt
ct

= rt − ρ, (22)

where the last equality uses the Euler equation in (3). Substituting (14) into (22) yields the
growth rate of output given by

gt = α

[
µ− 1

µ1/(1−θ)
xt − φ

]
− ρ, (23)

which depends on the state variable xt. Then, (20) implies that the quality growth rate is
also given by

zt = α

[
µ− 1

µ1/(1−θ)
xt − φ

]
− ρ, (24)

which is positive if and only if

xt > x ≡ µ1/(1−θ)

µ− 1

( ρ
α

+ φ
)
. (25)

Intuitively, innovation requires the firm size to be large enough so that it is profitable for
firms to do in-house R&D. For the rest of the analysis, we assume that xt > x. In this case,
the dynamics of xt is derived in Lemma 3.
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Lemma 3 The dynamics of xt is determined by an one-dimensional differential equation:

ẋt = µ1/(1−θ)
[

(1− α)φ− ρ
β

]
− (1− α) (µ− 1)− βρ

β
xt. (26)

Proof. See Appendix A.

Proposition 1 Under the parameter restriction ρ < min {(1− α)φ, (1− α)(µ− 1)/β}, the
dynamics of xt is globally stable and xt gradually converges to a unique steady-state value.
The steady-state values {x∗, g∗} are given by

x∗(µ
−

) = µ1/(1−θ)
(1− α)φ− ρ

(1− α)(µ− 1)− βρ > x, (27)

g∗(µ
−

) = α

[
(µ− 1)

(1− α)φ− ρ
(1− α)(µ− 1)− βρ − φ

]
− ρ > 0. (28)

Proof. See Appendix A.

The differential equation in (26) shows that given an initial value x0, the state variable
xt gradually converges to its steady-state value denoted as x∗, which also determines N∗ =
θ1/(1−θ)L/x∗.25 On the transition path, the firm size determines the rate of quality-improving
innovation and the equilibrium growth rate gt according to (23). When xt evolves toward
the steady state, gt also gradually converges to its steady-state value g∗. The steady-state
values of {x∗, g∗} are derived in Proposition 1.

4.2 Dynamics of the wealth distribution

In this section, we show that for any given xt at any time t, the wealth distribution is
stationary and determined by its initial distribution that is exogenously given at time 0.26

It is useful to recall that the aggregate economy features transition dynamics determined
by the evolution of xt. However, the wealth distribution is stationary despite the transition
dynamics in the aggregate economy because the consumption-output ratio ct/Yt is stationary,
which in turn implies that the consumption-wealth ratio ct/at is also stationary as shown in
the proof of Lemma 2.
Aggregating (2) across all households yields the following aggregate asset-accumulation

equation:
ȧt = rtat + wtL− ct. (29)

25Therefore, the number of patented products N∗ is increasing in patent protection µ, which is consistent
with Figure 1.
26Here we take wealth inequality as given; see for example Wan and Zhu (2019) for an analysis in which

government policy affects wealth inequality.
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Let sa,t(h) ≡ at(h)/at denote the share of wealth owned by household h. Then, the growth
rate of sa,t(h) is given by

ṡa,t(h)

sa,t(h)
=
ȧt(h)

at(h)
− ȧt
at

=
ct − wtL

at
− sc,t(h)ct − wtL

at(h)
, (30)

where wtL = (1 − θ)Yt and sc,t(h) ≡ ct(h)/ct. Given that ċt(h)/ct(h) = ċt/ct = rt − ρ, the
consumption share sc,t(h) of any household h ∈ [0, 1] is stationary such that sc,t(h) = sc,0(h),
which is endogenous. Proposition 2 derives the dynamics of sa,t(h) and shows that the wealth
distribution of households is also stationary (i.e., sa,t(h) = sa,0(h), which is exogenously
given at time 0). This stationarity is due to the stationary consumption-output ct/Yt and
consumption-wealth ct/at ratios along the transition path of the aggregate economy.

Proposition 2 The dynamics of sa,t(h) is given by an one-dimensional differential equation:

ṡa,t(h) = ρ[sa,t(h)− sa,0(h)]. (31)

Also, the wealth distribution is stationary and remains the same as the initial distribution.

Proof. See Appendix A.

4.3 Dynamics of the income distribution

In this section, we show that the income distribution is endogenous and nonstationary but
still analytically tractable. Although the wealth distribution is stationary, the transition
dynamics in the aggregate economy (in particular, the transition dynamics of the real interest
rate) gives rise to an endogenous evolution of the income distribution. Therefore, once we
trace out the transition dynamics of the real interest rate, we can also trace out the transition
dynamics of income inequality.
Income received by household h is given by

It(h) = rtat(h) + wtL. (32)

Aggregating (32) yields the aggregate level of income as

It = rtat + wtL. (33)

Let sI,t(h) ≡ It(h)/It denote the share of income received by household h. Then, we have

sI,t(h) =
rtat(h) + wtL

rtat + wtL
=

rtat
rtat + wtL

sa,0(h) +
wtL

rtat + wtL
, (34)

which determines the evolution of the share of income received by household h and allows us
to derive any moment of the income distribution. For example, the coeffi cient of variation
of income is defined as27

σI,t ≡

√∫ 1

0

[sI,t(h)− 1]2dh =
rtat

rtat + wtL
σa, (35)

27In Appendix B, we show that the Gini coeffi cient of income is also given by σI,t = rtat
rtat+wtL

σa when σa
is defined as the Gini coeffi cient of wealth.
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where σa ≡
√∫ 1

0
[sa,0(h)− 1]2dh is the coeffi cient of variation of wealth that is exogenously

given at time 0. Here we do not impose any parametric assumption on the distribution
of sa,0(h) except that it is non-degenerate and has a well-defined standard deviation; for
example, it may capture the case in which only the top 1% households own intangible
capital from innovation as in Aghion et al. (2019).28

Equation (35) shows that income inequality σI,t is increasing in the asset-wage income
ratio rtat/(wtL) given that wealth inequality drives income inequality in our model. Propo-
sition 3 derives the equilibrium expression for σI,t at any time t. Let’s define a composite
parameter Θ ≡ (1− θ)/(θβ).

Proposition 3 The degree of income inequality at any time t is given by

σI,t =
1

1 + µΘ/rt
σa =

1

1 + µΘ/(ρ+ gt)
σa. (36)

Proof. See Appendix A.

4.4 Dynamics of the consumption distribution

In this section, we show that the consumption distribution is also analytically tractable.
From (2), we can show that the consumption of household h is given by

ct(h) =

[
rt −

ȧt(h)

at(h)

]
at(h) + wtL = ρat(h) + wtL, (37)

where we have used
ȧt(h)

at(h)
=
ȧt
at

=
ċt
ct
. (38)

In (38), the first equality is based on the stationarity of the wealth distribution, whereas
the second equality is based on the stationarity of the ct/at ratio as shown in the proof of
Lemma 2.
Aggregating (37) yields the aggregate level of consumption as

ct = ρat + wtL. (39)

Let sc,t(h) ≡ ct(h)/ct denote the share of consumption by household h. Then, we have

sc,t(h) =
ρat(h) + wtL

ρat + wtL
=

ρat
ρat + wtL

sa,0(h) +
wtL

ρat + wtL
, (40)

28From (34), the top ε income share at time t is given by∫ 1

1−ε
sI,t(h)dh =

rtat
rtat + wtL

∫ 1

1−ε
sa,0(h)dh+

wtL

rtat + wtL
ε =

σI,t
σa

[∫ 1

1−ε
sa,0(h)dh− ε

]
+ ε,

which is increasing in σI,t if and only if
∫ 1
1−ε sa,0(h)dh > ε. In the US, the top 1% wealth share is 40%.

16



which determines the evolution of the share of consumption by household h. The coeffi cient
of variation of consumption is defined as

σc,t ≡

√∫ 1

0

[sc,t(h)− 1]2dh =
ρat

ρat + wtL
σa, (41)

where σa is once again the coeffi cient of variation of wealth that is exogenously given at time
0. Finally, we derive the equilibrium expression for σc,t at any time t as

σc,t =
1

1 + µΘ/ρ
σa, (42)

where the composite parameter Θ ≡ (1 − θ)/(θβ) is defined as before and we have used
wtL/at = µΘ as in Proposition 3.

5 Effects of patent breadth on growth and inequality

This section analyzes the effects of patent breadth µ on economic growth and inequality.
Equation (23) shows that the initial impact of a larger µ on the growth rate gt is positive
because xt is fixed in the short run. This is the standard positive profit-margin effect,
captured by (µ−1)/µ1/(1−θ) in (23), of patent breadth on monopolistic profits and innovation
as in previous studies, such as Li (2001) and Chu (2011), which feature an exogenous market
structure. However, in our model, the market structure is endogenous and the number of
firms gradually adjusts. The higher profit margin attracting entry of new firms reduces the
size xt of each firm and the rate of return r

q
t on quality-improving innovation as (14) shows.

29

In the long run, this negative entry effect dominates the positive profit-margin effect such
that the new steady-state growth rate g∗ in (28) is lower than the initial steady-state growth
rate; see Figure 4 for an illustration in which patent breadth increases at time t. In summary,
endogenous market structure gives rise to opposite short-run and long-run effects of patent
protection on growth.

29As shown in Appendix E, this result is robust to parameterizing the congestion effect ξ ∈ (0, 1) as L/N1−ξ
t

in (4), which yields Yt = (θ/µ)θ/(1−θ)ZtN
ξ
t L in (19). In this case, the output growth rate in (20) becomes

Ẏt/Yt = zt+ξṄt/Nt as in Peretto (2015). Although a larger patent breadth increases the variety growth rate
Ṅt/Nt, which contributes to the output growth rate as empirical studies tend to find (see e.g., Garcia-Macia
et al. (2019)), the overall effect of a larger patent breadth on Ẏt/Yt eventually becomes negative because the
effect of µ on zt eventually becomes negative and dominates its positive effect on Ṅt/Nt; see the analysis of
patent breadth on economic growth in Chu et al. (2020). This negative effect arises because more entries
reduce average firm size xt and zt is increasing in firm size; see Cohen and Klepper (1996a, b) and Laincz
and Peretto (2006) for evidence on the relationship between firm size and innovation.
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Figure 4: Transitional effects of patent breadth on economic growth

The above contrasting effects of patent protection on economic growth at different time
horizons have novel implications on income inequality, which is determined by the rate of
return on assets and the value of assets as (35) shows. The initial impact of a larger patent
breadth µ has both a positive effect and a negative effect on income inequality σI,t. The
positive effect arises because a larger patent breadth initially increases the growth rate gt
and the interest rate rt as in Chu (2010b) and Chu and Cozzi (2018), who focus on quality
improvement without endogenous entry. We refer to this positive effect as the interest-
rate effect as in Chu and Cozzi (2018). In our model, endogenous entry gives rise to a
novel negative effect of patent breadth on income inequality because a larger patent breadth
reduces the demand for intermediate goods Xt, which in turn reduces asset value via the
entry condition in (16). We refer to this negative effect as the asset-value effect, which is
captured by the term µΘ in the denominator of (36).30

These positive interest-rate and negative asset-value effects together generally give rise to
an inverted-U relationship between patent protection and income inequality in the short run.
However, it is also possible to yield only a positive relationship between patent protection and
income inequality over the permissible range of patent breadth µ. In the long run, the effect
of a larger patent breadth on the growth rate gt and the interest rate rt becomes negative
due to endogenous market structure. Therefore, the interest-rate effect of patent breadth
becomes negative in the long run. Together with the negative asset-value effect, increasing
patent breadth unambiguously reduces income inequality in the long run; see Figure 5 for
an illustration in which case 1 (case 2) refers to a small (large) increase in patent breadth at
time t. Proposition 4 summarizes these results.

30It is useful to note that the Schumpeterian growth model without endogenous entry in Chu and Cozzi
(2018) also features an asset-value effect, which however is positive. The difference in our model with
endogenous entry is due to the entry condition in (16) under which the at/Yt ratio is decreasing in µ as
shown in the proof of Lemma 2.
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Figure 5: Transitional effects of patent breadth on income inequality

Proposition 4 Strengthening patent protection has the following effects on economic growth
and income inequality at different time horizons: (a) it causes a positive effect on economic
growth and a positive or an inverted-U effect on income inequality in the short run; and (b)
it causes a negative effect on both economic growth and income inequality in the long run.

Proof. See Appendix A.

Finally, we explore the effect of patent breadth on consumption inequality σc,t. Equation
(42) shows that an increase in the level of patent breadth causes a one-time permanent
decrease in consumption inequality as shown in Figure 6. This decrease is due to the asset-
value effect captured by the term µΘ in the denominator of (42). Interestingly, in the case
of consumption inequality, the interest-rate effect is absent because rt − ċt/ct = ρ in (37).
However, this property is due to the log utility function. In the case of a more general
iso-elastic utility function, the elasticity of intertemporal substitution would determine the
sign of the interest-rate effect; see the analysis in Chu (2010b).

19



Figure 6: Transitional effects of patent breadth on consumption inequality

5.1 Quantitative analysis

In this section, we calibrate the model to aggregate US data in order to perform a quantitative
analysis. The model features the following parameters: {α, ρ, θ, β, φ, µ}. We follow Iacopetta
et al. (2019) to set the degree of technology spillovers 1 − α to 0.833. We set the discount
rate ρ to 0.03 and the markup µ to 1.40, which is at the upper bound of the range of
values reported in Jones and Williams (2000).31 Then, we calibrate {θ, β, φ} by matching
the following moments in the US economy. First, labor income as a share of output is 60%.
Second, the consumption share of output is 64%. Third, the growth rate of output per capita
is 2%. Table 4 summarizes the calibrated parameter values.

Table 4: Calibrated parameter values
α ρ θ β φ µ

0.167 0.030 0.400 4.667 0.499 1.400

Based on these parameter values, we first simulate the relationship between patent
breadth and income inequality in the short run by using (23) and (36).32 Specifically, we
consider the moment when the level of patent breadth µ changes by holding xt constant in
(23). Figure 7 plots the percent changes in income inequality when the markup µ deviates
from its initial value of 1.40 and shows that the value of µ that maximizes income inequality
in the short run is about 1.84.
31We will examine a range of paramater values in a robustness check.
32In Appendix F, we also simulate the relationship between patent breadth and cosumption inequality.
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Figure 7: The short-run effects on income inequality

Next we simulate the dynamic effects of patent breadth µ on the quality-adjusted firm
size xt, the growth rate gt and income inequality σI,t. The baseline value of markup µ is 1.40,
and we raise µ by 0.01 to 1.41. Figure 8 presents the transitional path of the quality-adjusted
firm size xt. Figure 9 presents the transitional path of the growth rate gt. Figure 10 presents
the transitional path of income inequality σI,t in terms of percent changes from its initial
value. When patent protection strengthens, the growth rate increases from 2.00% to 2.17%,
which in turn raises income inequality by 2.43% on impact. Gradually, more products enter
the market, resulting into a gradual decrease in the quality-adjusted firm size xt from 3.50
to 3.39. This smaller firm size leads to a decrease in the steady-state growth rate to 1.77%,
which in turn decreases income inequality by 4.80% in the long run. Therefore, the negative
effect of patent breadth on income inequality in the long run is much larger in magnitude
than its positive effect in the short run. This result (especially the novel negative effect of
patent protection on income inequality in the long run) is consistent with the stylized facts
documented in Section 2. In the US, the level of patent protection has gradually increased
since the end of 1970’s.33 This period of strengthening patent protection coincides with a
period of rising income inequality during which the Gini index rises from 0.43 in 1979 to
0.51 in 2017. Our simulation results imply that when the strengthening of patent protection
stops, its positive effect on income inequality will eventually become negative after a few
decades.
33For example, the Ginarte-Park index of patent rights increases from 3.83 in 1975 to 4.88 in 2015.
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Figure 8: Transitional path of the firm size

Figure 9: Transitional path of the growth rate
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Figure 10: Transitional path of income inequality

In this numerical exercise, we consider a conservatively low discount rate ρ and a relatively
large markup µ. Considering a larger ρ or a smaller µ would lead to an even more significant
decrease in economic growth g and income inequality σI in the long run. In the following
tables that report results for ρ ∈ {0.03, 0.04, 0.05} and µ ∈ {1.20, 1.30, 1.40},34 we present
the equilibrium growth rates and the percent changes in income inequality on impact when
µ increases by 0.01 and also when the economy reaches the new balanced growth path. The
tables show that strengthening patent protection can lead to a decrease in the steady-state
growth rate to as low as 0.79% and a decrease in income inequality by as much as 16.74%
in the long run. Therefore, we present the relatively conservative results under ρ = 0.03 and
µ = 1.40 as our benchmark.

Table 5: Effects of patent protection on economic growth
Short-run effects Long-run effects

ρ = 0.03 0.04 0.05 0.03 0.04 0.05
µ = 1.20 2.28% 2.34% 2.40% 1.20 1.15% 0.97% 0.79%

1.30 2.22% 2.26% 2.31% 1.30 1.64% 1.56% 1.48%
1.40 2.17% 2.21% 2.25% 1.40 1.77% 1.72% 1.67%

Table 6: Effects of patent protection on income inequality
Short-run effects Long-run effects

ρ = 0.03 0.04 0.05 0.03 0.04 0.05
µ = 1.20 4.18% 4.28% 4.35% 1.20 −16.19% −16.52% −16.74%

1.30 3.19% 3.27% 3.32% 1.30 −7.24% −7.39% −7.49%
1.40 2.43% 2.49% 2.54% 1.40 −4.80% −4.90% −4.96%

34Here we recalibrate the other parameters {θ, β, φ} to match the same moments as before.
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6 Conclusion

This study introduces heterogeneous households into a Schumpeterian growth model with
endogenous market structure. Although endogenous market structure causes the aggregate
economy to feature transition dynamics, the wealth distribution of households is stationary,
which in turn allows us to derive the dynamics of the income distribution. In summary, we
find that strengthening patent protection increases economic growth and causes a positive or
an inverted-U effect on income inequality in the short run when the number of differentiated
products is fixed. However, when the number of products adjusts endogenously, the effects
of patent protection on economic growth and income inequality eventually become negative.
This finding highlights the importance of endogenous market structure, which gives rise to
different effects of patent policy on innovation and inequality at different time horizons.
Therefore, previous studies that neglect the endogenous adjustment of the market structure
may have identified only the short-run effects of patent policy on innovation and inequality.
Finally, to maintain the tractability of the dynamics of income inequality, we have focused
on the effects of the aggregate economy on the evolution of the income distribution, without
adding to the model a potential feedback effect from the income distribution to the aggregate
economy. We leave this interesting extension to future research.
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Appendix A: Proofs

Proof of Lemma 1. The current-value Hamiltonian for monopolistic firm i is given by
(10). To introduce the upper bound µ on price pt (i), we modify (10) as follows:

Ht (i) = Πt (i)−Rt (i) + ηt (i) Żt (i) + ωt (i) [µ− pt (i)] , (10’)

where ωt (i) is the multiplier on pt (i) ≤ µ. Substituting (6)-(8) into (10’), we can derive

∂Ht (i)

∂pt (i)
= 0⇒ ∂Πt (i)

∂pt (i)
= ωt (i) , (A1)

∂Ht (i)

∂Rt (i)
= 0⇒ ηt (i) = 1, (A2)

∂Ht (i)

∂Zt (i)
= α

{
[pt (i)− 1]

[
θ

pt (i)

]1/(1−θ)
Lt
Nt

− φ
}
Zα−1
t (i)Z1−αt = rtηt (i)− η̇t (i) . (A3)

If pt (i) < µ, then ωt (i) = 0. In this case, ∂Πt (i) /∂pt (i) = 0 yields pt (i) = 1/θ. If the
constraint on pt (i) is binding, then ωt (i) > 0. In this case, we have pt (i) = µ, proving
(11). Given that we assume µ < 1/θ , pt (i) = µ always holds. Substituting (A2), (13) and
pt (i) = µ into (A3) and imposing symmetry yield (14).

Proof of Lemma 2. Substituting (16) into the total asset value at = NtVt yields

at = NtβXt = (θ/µ)βYt, (A4)

where the second equality uses θYt = Nt(µXt).35 Differentiating (A4) with respect to t yields

Ẏt
Yt

=
ȧt
at

= rt +
wtL

at
− ct
at
, (A5)

where the second equality uses (2) with at ≡
∫ 1
0
at(h)dh and ct ≡

∫ 1
0
ct(h)dh. Using (3) for

rt, (5) for wt, and (A4) for at, we can rearrange (A5) to obtain

ċt
ct
− ȧt
at

=
ct
at
−
[
ρ+

µ (1− θ)
βθ

]
, (A6)

the right-hand side of which is increasing in ct/at with a strictly negative y-intercept. There-
fore, ct/at must jump to the steady state. Then, we have (21), noting (A4).

Proof of Lemma 3. Substituting zt = rt − ρ = ret − ρ into (17) yields

ẋt
xt

= ρ− µ1/(1−θ)

β

[
µ− 1

µ1/(1−θ)
− φ+ zt

xt

]
, (A7)

where we have also used the expression of zt in (24) to obtain (26).

35We derive this by using pt(i) = µ and Xt(i) = Xt for θYt =
∫ Nt

0
pt(i)Xt(i)di.
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Proof of Proposition 1. One can rewrite (26) simply as ẋt = d1 − d2xt. This linear
system for xt has a unique (non-zero) steady state that is globally (and locally) stable if

d1 ≡ µ1/(1−θ)
[

(1− α)φ− ρ
β

]
> 0, (A8a)

d2 ≡
(1− α) (µ− 1)− βρ

β
> 0, (A8b)

from which we obtain ρ < min {(1− α)φ, (1− α)(µ− 1)/β}. Then, ẋt = 0 yields the steady-
state value x∗ = d1/d2, which gives (27). Substituting (27) into (23) yields (28).

Proof of Proposition 2. Manipulating (2) yields

ȧt(h)

at(h)
= rt +

wtL

at(h)
− ct(h)

at(h)
. (A9)

Then, the growth rate of sa,t(h) ≡ at(h)/at is

ṡa,t(h)

sa,t(h)
=
ȧt(h)

at(h)
− ȧt
at

=
wtL− ct(h)

at(h)
− wtL− ct

at
, (A10)

which becomes

ṡa,t(h) =
ct − wtL

at
sa,t(h)− sc,t(h)ct − wtL

at
. (A11)

We use (5) for wt, (21) for ct/Yt and (A4) for at/Yt in (A11) to derive

ṡa,t(h) = ρsa,t(h)− sc,t(h)
βθρ+ µ (1− θ)

βθ
+
µ (1− θ)

βθ
. (A12)

To achieve stability of sa,t(h), ṡa,t(h) = 0 must hold for any t ≥ 0 because sa,t(h) is a pre-
determined variable and its coeffi cient is positive. We can achieve this if and only if sc,t(h)
jumps into a stationary level at t = 0 that ensures sa,t(h) to be stationary. Then, we have

sc,0(h) =
βθρsa,0(h) + µ (1− θ)

βθρ+ µ (1− θ) , (A13)

and sc,t(h) = sc,0(h) for any t ≥ 0. Substituting (A13) into (A12) yields (31).

Proof of Proposition 3. By (35), we have

σI,t =
1

1 + [wtL/(rtat)]
σa. (A14)

Using (5) for wt and (A4) for at/Yt, we obtain

wtL

rtat
= µ

(
1− θ
βθ

)
1

rt
, (A15)

where rt = ρ+ gt. Combining (A14) and (A15) yields (36).
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Proof of Proposition 4. With rqt = rt, it is straightforward to show from (14) that for
a given xt, rt is increasing in µ ∈ (1, 1/θ). Thus, the short-run effect of µ on rt = gt + ρ is
positive. To see the short-run effect of µ on inequality, we use (A14) and (A15) to write

σI,t =
(rt/µ)

(rt/µ) + Θ
σa, (A16)

noting rt = gt + ρ. It shows that σI,t is increasing in rt/µ, in which36

rt
µ

=
α

µ

[
µ− 1

µ1/(1−θ)
xt − φ

]
, (A17)

which uses (14) and rqt = rt. For a given xt, we can show that

d

dµ

(
rt
µ

)
> 0⇔ (µ− 1)− φµ1/(1−θ)

xt
− 1− µθ

1− θ ≡ κ(xt, µ) < 0. (A18)

It is useful to note that for a given xt, κ(xt, µ) is a monotonically increasing function in both
xt and µ.37 At both ends of the original domain of µ ∈ (1, 1/θ), the signs of κ(xt, µ) are
opposite such that

lim
µ→1

κ(xt, µ) = −
(
φ

xt
+ 1

)
< 0 (A19a)

and

lim
µ→1/θ

κ(xt, µ) =

(
1− θ
θ

)[
1− αφ

αφ+ ρ

x

xt

]
> 0, (A19b)

noting x/xt < 1. As shown in Figure A1, there uniquely exists a threshold value of µ, denoted
as µ̂(xt) ∈ (1, 1/θ), such that the effect of µ on σI,t is positive for a suffi ciently small
µ ∈ (1, µ̂(xt)) and negative for a suffi ciently large µ ∈ (µ̂(xt), 1/θ). This implies that the
unconstrained short-run effect of µ on σI,t follows an inverted-U shaped. However, to ensure
x∗ > x, there is an upper bound of µ, that is,

µ < 1 + β (αφ+ ρ) ≡ µ. (A20)

Thus, if µ < µ̂(xt), then only the positive part of an inverted-U effect appears in the feasible
range of µ ∈ (1, µ).

36The lower bound of the right-hand side of (A17) at xt = x, defined in (25), is strictly positive, which
implies rt/µ > 0.
37κ(xt, µ) being increasing in xt is obvious. As for µ, note

d

dµ
κ(xt, µ) =

1

1− θ
1

xt

[
xt − x

(
αφ

αφ+ ρ

)(
1− 1

µ

)]
> 0,

in which the inequality always holds due to xt > x in (25).
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Figure A1: Proof of Proposition 4

Finally, concerning the long-run effects of µ, we differentiate (28) with respect to µ to
derive

d

dµ
g∗ = − αβρ [(1− α)φ− ρ]

[(1− α)(µ− 1)− βρ]2
< 0, (A23)

showing the negative effect of µ on the long-run growth rate g∗. Given that r∗ = g∗ + ρ, an
increase in µ leads to a decrease in the long-run interest rate r∗ and also a decrease in the
steady-state ratio r∗/µ. Therefore, the long-run effect of µ on income inequality σI,t is also
negative.
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Appendix B: Gini coeffi cient

Income received by household h is given by

I(h) = ra(h) + wL = sa(h)ra+ wL, (B1)

where the identity index h is uniformly distributed between 0 and 1. We now order the
households in an ascending order of income. The Gini coeffi cient of income is given by
σI = 1− 2bI , where

bI ≡
∫ 1

0

LI(h)dh. (B2)

The Lorenz curve LI(h) of income is given by

LI(h) ≡
∫ h
0
I(χ)dχ∫ 1

0
I(χ)dχ

=
ra
∫ h
0
sa(χ)dχ+ wL

∫ h
0

1dχ

ra+ wL
, (B3)

where
∫ h
0

1dχ = h and
∫ h
0
sa(χ)dχ is the Lorenz curve La(h) of wealth. To see this,

La(h) ≡
∫ h
0
a(χ)dχ∫ 1

0
a(χ)dχ

=

∫ h
0
a(χ)dχ

a
=

∫ h

0

sa(χ)dχ. (B4)

Substituting (B3) and (B4) into (B2) yields

bI =
ra

ra+ wL

∫ 1

0

La(h)dh+
wL

ra+ wL

∫ 1

0

hdh, (B5)

where
∫ 1
0
hdh = 0.5 and

∫ 1
0
La(h)dh ≡ ba. Recall that the Gini coeffi cient of wealth is given

by σa = 1− 2ba. Therefore, substituting (B5) into σI = 1− 2bI yields the Gini coeffi cient of
income given by

σI =
ra

ra+ wL
σa, (B6)

which is the same as (35) except that σa is now the Gini coeffi cient of wealth.
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Appendix C: Panel VAR and robustness checks

In this appendix, we provide a formal description of the panel VAR, which extends the
traditional VAR to panel data and allows for unobserved individual heterogeneity denoted
as Λn for country n. A first-order panel VAR model can be specified as follows:

Ayn,t = Λn + Λ(L)yn,t−1 + εn,t,

where yn,t is a k× 1 vector of endogenous variables for country n at time t. As this equation
cannot be estimated directly due to contemporaneous correlations between yn,t and εn,t, the
standard reduced form can be derived by pre-multiplying the system by A−1 as follows:

yn,t = Γn + Γ(L)yn,t−1 + en,t,

where Γn = A−1Λn, Γ(L) = A−1Λ(L) and en,t = A−1εn,t. The impulse response functions can
now be derived on the basis of the moving average representation of the system as follows:

yn,t = γn +
∑
i

Γi(L)en,t−i = γn +
∑
i

Φi(L)εn,t−i,

where Φi are the impulse response functions.
Here we first extend the bivariate setting to a multivariate setting by including per capita

GDP growth in the analysis. Figure C1 presents the impulse response function. The initial
impact of income inequality in response to a patent shock continues to be positive. More
importantly, we continue to see a significant negative response for a 10 year forecast horizon.
The result also holds even if we exclude non-resident patents.

Figure C1: Three-variable VAR Figure C2: Top 1% income inequality

We further estimate the effects of patents by changing the inequality measure. We now
consider income inequality at the top 1% or the 99th percentile. The impulse response
function using this alternative measure is shown in Figure C2, which shows a similar response
as the benchmark in Figure 2. Specifically, the initial positive response disappears at some
point, giving rise to a negative response subsequently.

35



Appendix D: Elastic labor supply

Our baseline model features inelastic labor supply. In this appendix, we allow for elastic
labor supply to confirm the robustness of our results. First, we generalize the utility function
of household h ∈ [0, 1] as follows:

U(h) =

∞∫
0

e−ρt {ln ct(h) + κ ln[L− lt(h)]} dt, (D1)

where lt(h) is household h’s labor supply. The parameter κ > 0 measures the importance of
leisure L− lt(h). We replace L by lt(h) in household h’s asset-accumulation equation in (2):

ȧt(h) = rtat(h) + wtlt(h)− ct(h). (D2)

Utility maximization yields household h’s labor-supply function as follows:

lt(h) = L− κct(h)

wt
, (D3)

which shows that lt(h) converges to L as κ → 0. Then, we replace L by lt ≡
∫ 1
0
lt(h)dh on

the production side. The rest of the model is the same as our baseline model except that we
redefine the state variable xt as

xt ≡ µ1/(1−θ)
Xt

Zt

L

lt
= θ1/(1−θ)

L

Nt

(D4)

to ensure that the state variable xt does not jump when lt changes.
We now explore the dynamics of the aggregate economy. Aggregating (D3) across h ∈

[0, 1] and combining it with (1− θ)Yt = wtlt yield aggregate employment:

l(µ
+

) =

(
1 +

κ

1− θ
ct
Yt

)−1
L =

[
1 +

κ

1− θ

(
βθρ

µ
+ 1− θ

)]−1
L, (D5)

in which the consumption-output ratio ct/Yt always jumps to (21). Therefore, (D5) implies
that aggregate employment l is stationary and increasing in µ. Then, the growth rate of
output becomes

gt = zt = α

(
µ− 1

µ1/(1−θ)
l(µ)

L
xt − φ

)
− ρ, (D6)

which is increasing in µ for a given xt. Given an initial value x0, the state variable xt
gradually converges to a steady-state value given by x∗L/l(µ), where x∗ is given in (27).
Therefore, the steady-state equilibrium growth rate g∗ is the same as before (due to the
scale-invariant property of the model) and continues to be decreasing in µ. The dynamics
in xt determines the dynamics in the growth rate gt as before.
We now explore the dynamics of the income distribution. It can be shown that the

dynamics of household h’s wealth share sa,t(h) is still given by the one-dimensional differential
equation in (31).38 As for household h’s income share sI,t(h), it is given by

sI,t(h) =
rtat(h) + wtlt(h)

rtat + wtlt
, (D7)

38Derivations are available upon request.

36



where wtlt(h) = wtL−κct(h) from (D3). Combining (D3) and ct(h) = (rt−gt)at(h)+wtlt(h)
from (D2) yields

wtlt(h) =
1

1 + κ
[wtL− κ(rt − gt)at(h)] , (D8)

which shows that wealthier households supply less labor and receive less wage income. De-
spite the presence of this wage inequality, the equilibrium expression for overall income
inequality is largely the same as before. To see that, we substitute (D8) into (D7) to derive

sI,t(h) =
(rt + κgt)at

(rt + κgt)at + wtL
sa,0(h) +

wtL

(rt + κgt)at + wtL
, (D9)

which shows that the dynamics of household h’s income share is now determined by the
dynamics of the ratio (rt + κgt)at/(wtL), rather than rtat/(wtL). The additional term κgtat
captures the effect of elastic labor on income inequality.
The degree of income inequality is given by

σI,t =
(rt + κgt)at

(rt + κgt)at + wtL
σa. (D10)

One can show that the ratio wtL/at becomes

wtL

at
=

µ

l(µ)
ΘL, (D11)

where Θ is defined as in Section 4.3 and l(µ) is given in (D5). Substituting (D11) into (D10)
yields a similar expression for σI,t as in (36), except for the extra terms κ and l/L.

σI,t =

[
1 +

ΘL

ρ+ (1 + κ)gt

µ

l(µ)

]−1
σa. (D12)

It is useful to note from (D5) that µ/l(µ) is increasing in µ. Together with the result that
g∗ is decreasing in µ, a larger patent breadth decreases income inequality in the long run.
As for the short run, the positive effects of µ on µ/l(µ) and gt (for a given xt) give rise to
an overall ambiguous effect of µ on σI,t in the short run.39 Therefore, the dynamic effects of
patent protection on income inequality are the same as before. Finally, one can substitute
(D8) into ct(h) = (rt − gt)at(h) + wtlt(h) and follow the steps in Section 4.4 to derive the
degree of consumption inequality as

σc,t =

[
1 +

ΘL

ρ

µ

l(µ)

]−1
σa, (D13)

which is decreasing in µ as before.

39We have simulated σI,t and find that it is either increasing or inverted-U in µ in the short run. We can
also prove this result analytically under some suffi cient conditions; derivations are available upon request.
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Appendix E: Congestion effect

In this appendix, we extend the model by parameterizing the congestion effect ξ ∈ (0, 1)
as L/N1−ξ

t in (4), which modifies (19) as

Yt = (θ/µ)θ/(1−θ)ZtN
ξ
t L. (E1)

In this case, the output growth rate becomes

Ẏt/Yt = zt + ξnt, (E2)

where nt ≡ Ṅt/Nt is the variety growth rate and contributes to the output growth rate when
ξ > 0. Following the same derivations as in the proof of Lemma 1, one can derive the rate
of return to in-house R&D given by

rqt = α
Πt

Zt
= α

[
µ− 1

µ1/(1−θ)
xt − φ

]
, (E3)

which is the same as (14) except that xt = θ1/(1−θ)L/N1−ξ
t . Following the same derivations as

in the proof of Lemma 2, one can also show that the consumption-output ratio ct/Yt jumps
to unique and stable steady-state value, which in turn implies that

gt ≡
Ẏt
Yt

=
ċt
ct

= rt − ρ, (E4)

as in (22). Substituting (E3) into (E4) yields

gt = α

[
µ− 1

µ1/(1−θ)
xt − φ

]
− ρ = zt + ξnt, (E5)

where the second equality follows from (E2). In other words, although the output growth
rate gt depends on both the quality growth rate zt and the variety growth rate nt, it is still
determined by the rate of return to in-house R&D in equilibrium.
Equation (E5) shows that for a given xt, a larger patent breadth µ gives rise to a higher

growth rate gt in the short run. Gradually, the entry of new firms reduces the average firm
size xt. It can be shown that the linearized dynamics of xt is given by40

ẋt = (1− ξ)
{
µ1/(1−θ)

[
(1− α)φ− ρ

β

]
− (1− α) (µ− 1)− βρ

β
xt

}
. (E6)

Therefore, the steady-state value of xt is given by (27) as before. Substituting (27) into (E5)
yields the same steady-state equilibrium growth rate g∗ as in (28), which is decreasing in the
level of patent breadth µ as before.

40Derivations are available upon request.
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Appendix F: Consumption inequality

In this appendix, we present the quantitative effects of patent breadth on consumption
inequality. First, we simulate the dynamic effects of patent breadth µ on consumption
inequality σc,t. As before, the baseline value of markup µ is 1.40, and we raise µ by 0.01 to
1.41. Figure F1 shows that consumption inequality decreases by 0.67% permanently.

Figure F1: Transitional path of consumption inequality

Then, we report results under other values of ρ ∈ {0.03, 0.04, 0.05} and µ ∈ {1.20, 1.30, 1.40}.
Table F1 shows that strengthening patent protection can lead to a decrease in consumption
inequality by up to 0.78% permanently.

Table F1: Effects on consumption inequality
ρ = 0.03 0.04 0.05

µ = 1.20 −0.78% −0.78% −0.78%
1.30 −0.72% −0.72% −0.72%
1.40 −0.67% −0.67% −0.67%
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