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Abstract

Introduction

The pathophysiology of heart failure with preserved ejection fraction (HFpEF) remains

incompletely defined. We aimed to characterize HFpEF compared to heart failure with

reduced ejection fraction (HFrEF) and asymptomatic hypertensive or non-hypertensive

controls.

Materials and methods

Prospective, observational study of 234 subjects (HFpEF n = 140; HFrEF n = 46, controls n

= 48, age 73±8, males 49%) who underwent echocardiography, cardiovascular magnetic

resonance imaging (CMR), plasma biomarker analysis (panel of 22) and 6-minute walk test-

ing (6MWT). The primary end-point was the composite of all-cause mortality and/or HF

hospitalization.

Results

Compared to controls both HF groups had lower exercise capacity, lower left ventricular

(LV) EF, higher LV filling pressures (E/E’, B-type natriuretic peptide [BNP], left atrial [LA] vol-

umes), more right ventricular (RV) systolic dysfunction, more focal and diffuse fibrosis and

higher levels of all plasma markers. LV remodeling (mass/volume) was different between

HFpEF (concentric, 0.68±0.16) and HFrEF (eccentric, 0.47±0.15); p<0.0001. Compared to

controls, HFpEF was characterized by (mild) reductions in LVEF, more myocardial fibrosis,

LA remodeling/dysfunction and RV dysfunction. HFrEF patients had lower LVEF, increased

LV volumes, greater burden of focal and diffuse fibrosis, more RV remodeling, lower LAEF

and higher LA volumes compared to HFpEF. Inflammatory/fibrotic/renal dysfunction plasma

markers were similarly elevated in both HF groups but markers of cardiomyocyte stretch/
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damage (BNP, pro-BNP, N-terminal pro-atrial natriuretic peptide and troponin-I) were higher

in HFrEF compared to HFpEF; p<0.0001. Focal fibrosis was associated with galectin3,

GDF-15, MMP-3, MMP-7, MMP-8, BNP, pro-BNP and NTproANP; p<0.05. Diffuse fibrosis

was associated with GDF-15, Tenascin-C, MMP-2, MMP-3, MMP-7, BNP, proBNP and

NTproANP; p<0.05. Composite event rates (median 1446 days follow-up) did not differ

between HFpEF and HFrEF (Log-Rank p = 0.784).

Conclusions

HFpEF is a distinct pathophysiological entity compared to age- and sex-matched HFrEF

and controls. HFpEF and HFrEF are associated with similar adverse outcomes. Inflamma-

tion is common in both HF phenotypes but cardiomyocyte stretch/stress is greater in HFrEF.

Introduction

Heart failure with preserved ejection fraction (HFpEF) represents a growing yet incompletely

understood clinical entity[1]. While heart failure with reduced ejection fraction (HFrEF) has

been extensively studied, with a compelling evidence base, similar data are lacking in HFpEF

[1]. Furthermore, whether HFpEF and HFrEF are part of the same syndrome or separate enti-

ties, remains subject to debate[2]. Most epidemiological and clinical trial data on HFpEF are

based on imaging with echocardiography[3]. Cardiovascular magnetic resonance imaging

(CMR) is the recognized gold standard for the majority of imaging parameters that comprise

latest guidance on HFpEF, as well as for right ventricular (RV) assessment[1]. Furthermore,

CMR provides unique tissue characterization properties for assessment of the extra-cellular

space, namely late gadolinium enhancement imaging (LGE) for focal fibrosis[1, 4] and pre and

post-contrast T1 mapping for extracellular volume (ECV)[5] quantification, a surrogate of

interstitial fibrosis, both of which are implicated in HFpEF pathophysiology[2].

However, in-depth phenotyping of such HF groups with integrated CMR and extensive

plasma biomarker profiling has yet to be performed. In this prospective, observational study,

we compared CMR, echocardiography and circulating biomarkers between HFpEF, HFrEF

and controls with the aim of gaining pathophysiological insights into the HFpEF syndrome.

We further assessed whether clinical outcomes differed across the three groups.

Materials and methods

Study population

All subjects were recruited at a single tertiary cardiac centre as part of a prospective, observa-

tional, cohort study. The inclusion criteria for the HF groups were clinical[6] or radiographic

evidence of HF and left ventricular EF on transthoracic echocardiography (TTE) of�50% for

HFpEF or <40% for HFrEF. The exclusion criteria were: documented myocardial infarction

(MI) in the preceding 6 months, suspected or confirmed cardiomyopathy (e.g. HCM, amyloid)

or constrictive pericarditis, severe native valve disease, non-cardiovascular life expectancy <6

months, severe pulmonary disease (forced expiratory volume [FEV1]<30% predicted or

forced vital capacity [FVC] <50% predicted), estimated glomerular filtration rate (eGFR) <30

ml/min/m2 and standard contraindications to CMR[4, 7]. At the time of study conception and

conduct, owing to conjecture and lack of international consensus[2] regarding the existence of

and clear diagnostic thresholds for HFpEF, patients with with mid-range EF (HFmrEF) were
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excluded to avoid uncertainty in the characterisation of HFpEF. The presence of diastolic dys-

function was not chosen as an inclusion criterion for HFpEF diagnosis since contemporary

clinical trial data has also highlighted its presence at rest in only two thirds of HFpEF patients

[8, 9]. Furthermore, elevated natriuretic peptides were also not a requirement for HFpEF diag-

nosis in our study since normal levels of natriuretic peptides have previously been observed in

a significant proportion of such patients[8, 10].

Since the primary focus of our study was phenotyping HFpEF, we enrolled consecutively

approached patients. HFrEF and control subjects were then recruited towards the end of the

study. While it is well recognised from epidemiological data[3, 8, 11] that HFpEF patients are

older and more frequently female, age- and sex-matching was performed in the HFrEF and

control groups in order to limit the number of confounding variables.

Asymptomatic controls without known cardiac disease were recruited. Controls were

recruited through advertising and none had been referred for a clinical CMR scan. Fourteen

volunteers had also served as healthy controls in another study at our centre[12]. We did not

exclude hypertensive controls (n = 19) since hypertension is highly prevalent in the general

population without heart failure and is strongly associated with incident HFpEF[13] and we

wanted to account for this potential confounder.

All subjects underwent comprehensive clinical assessment, blood sampling, TTE and CMR,

completed the Minnesota Living with Heart Failure (MLHF) questionnaire[14] and six-minute

walk test (6MWT)[15]. At baseline, coronary artery disease (CAD) was defined as either

patient self-reporting of anginal symptoms, documented MI, coronary angiographic vessel

luminal stenosis of�70% and/or coronary revascularisation based upon patients’ medical rec-

ords. The results from the latest (last) chest radiographic reports prior to patients’ study visit

were sourced from the electronic Hospital Radiology reporting systems. The study was

approved by the United Kingdom National Research Ethics Service (reference: 12/EM/0222).

Informed consent was provided by all subjects prior to participation. The study was conducted

according to the Declaration of Helsinki and was registered with ClinicalTrials.gov

(NCT03050593).

Plasma biomarker assessment

At recruitment, blood was sampled for B-type natriuretic peptide ([BNP]—immunoassay, Sie-

mens, Erlangen, Germany), haematocrit, haemoglobin, troponin-I (normal�40 ng/L, ultra-

sensitive, sandwich chemiluminescence assay, ADVIA 2400 analyser, Siemens, Erlangen,

Germany) and renal function. Residual supernatant plasma was stored at -80˚C in cryotubes

prior to batch analysis at a later stage using a Luminex1 bead-based multiplex assay[16],

enabling high-throughput biomarker profiling as previously described[17].

The following plasma biomarkers implicated in HF and also recently evaluated using the

same assay in the TOPCAT HFpEF clinical trial[18, 19] were profiled: suppression of tumori-

gencity-2 (ST2), galectin3, growth differentiation factor-15 (GDF-15), Tenascin-C, tissue

inhibitor of metalloproteinases (TIMP-1, TIMP-4), matrix metalloproteinases (MMP-2,

MMP-3, MMP-7, MMP-8, MMP-9), pro-BNP, N-terminal pro-atrial natriuretic peptide

(NTpro-ANP), renin, myeloperoxidase, highly-sensitive C-reactive protein (hs-CRP), tumour

necrosis factor receptor-1 (TNFR-1), interleukin-6, cystatin-C and neutrophil gelatinase-asso-

ciated lipocalin (NGAL). Plasma biomarkers (total 22) were further categorized as either sur-

rogates of myocardial interstitial fibrosis, LV cardiomyocyte stress/damage, myocardial

hypertrophy, inflammation/oxidative stress, atrial wall stress/stretch or markers of renal dys-

function[20–22]. The assay ranges inclusive of upper and lower limits of quantitation, respec-

tive dilution factors and detailed analytical methods for each Luminex multiplexed plasma
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biomarker assay (Bristol Myers Squibb, Ewing Township, New Jersey, USA) are shown in S1

Table.

Transthoracic echocardiography

Echocardiography was performed by accredited sonographers in accordance with American

Society of Echocardiography guidelines using an iE33 system (Philips Medical Systems, Best,

The Netherlands)[7]. LVEF was calculated using the biplane method or estimated visually

where endocardial border definition was sub-optimal.

CMR protocol

All scans were performed on a 3-Tesla platform (Siemens Skyra, Erlangen, Germany) with an

18-channel cardiac coil, as reported previously[4, 7]. This included standard long and short-

axis cine imaging; basal, mid and apical short-axis pre- and post-contrast T1 mapping and

LGE imaging. A total of 0.15mmol/kg of contrast (Gadovist, Bayer Healthcare, Berlin, Ger-

many was administered.

CMR analysis

CVI42 software (Circle Cardiovascular Imaging, Calgary, Canada) was used for analysis, per-

formed by a single operator (PK) blinded to clinical data. Papillary muscles and trabeculations

were excluded from cavity volume when deriving ventricular volumes, EF and LV mass[4]. RV

systolic dysfunction (RVD) was defined as RVEF <47% based upon normative data from the

published literature utilizing the same technique[23] and our own healthy controls whereby

the lower limit of RVEF was also 47%. The biplane method[24, 25], excluding the appendage

and pulmonary veins was used to calculate left atrial (LA) volumes, LA ejection fraction, reser-

voir and conduit volumes. LA dilation[26] was defined as maximal LA volume indexed (LAVI-

max) >40ml/m2. Volumetric and mass data were indexed to body surface area.

LGE images were analyzed qualitatiavely for focal fibrosis, categorized as either absent or

present and further quantified accordingly[4]. The mid-ventricular T1 maps were analyzed for

ECV and iECV (ECV indexed to body surface area) as described previously[4]. Segments with

MI or artefact were excluded but regions of focal non-MI fibrosis were included in the final

ECV (and iECV) calculations. As reported previously[4], T1 mapping was not performed due

to the sequence not being available in 55 (24%) consecutive CMR scans (HFpEF n = 44,

HFrEF n = 7, controls n = 4). A further 4 patients with HFpEF had non-analyzable T1 maps.

Follow-up and endpoints. All subjects were followed up for the primary endpoint which

was the composite of all-cause mortality or hospitalization for HF (defined as a hospital admis-

sion for which HF was the primary reason and requiring either diuretic, inotropic or intrave-

nous nitrate therapy). Secondary outcomes were all-cause mortality and HF hospitalization.

Outcome data were obtained from hospital records. In patients with multiple events, the time

to first event was used as the censored outcome.

Statistical analysis

SPSS v22 was used for statistical analyses. Normality for continuous data was assessed using

the Shapiro-Wilk test, histograms and Q-Q plots. Normally distributed data are expressed as

mean ±SD. Non-parametric data are expressed as median (25–75% IQR). Categorical data are

expressed as absolute numbers or percentages. For comparison of normally distributed data

between the 3 groups, the one-way ANOVA with Bonferroni correction was used. For com-

parison of non-normally distributed data, the Kruskal-Wallis test was employed. The Chi-
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square or Mann-Whitney U tests were to compare categorical data, as appropriate. For addi-

tional between group comparisons, multiple linear regression was used to adjust for clinical

variables, where the dependent variable was the log transformed plasma biomarker of interest

and independent variables included age, gender, body mass index (BMI) and co-morbidities

[diabetes, hypertension, lung disease, atrial fibrillation (AF), chronic kidney disease (CKD),

CAD). Binary logistic regression was undertaken with the same adjustments to test for differ-

ences in the presence of elevated troponin-I levels between HF groups. Spearman’s rank corre-

lations were performed to detect any important associations with NTpro-ANP. Kaplan-Meier

analysis was undertaken to calculate event rates. The Log-Rank test was used to test differences

in survival curves. CMR assessments of intra-observer and inter-observer variability were

undertaken at least 4 weeks apart (by PK and JRA), on a subset of 10 randomly selected

patients (S1 Table).

Results

The overall study consort diagram including reasons for exclusion are detailed in Fig 1. CMR

was not performed due to the presence of pacemakers and such subjects were excluded from

the final analysis in 2 out of 51 confirmed HFrEF and 7 out of 182 confirmed HFpEF. All sub-

jects were recruited over a period of 26 months. The final participant was enrolled in April

2015. The final cohort comprised 234 subjects: HFpEF n = 140; HFrEF n = 46 and controls

n = 48. The majority of HF patients were diagnosed and participated in the study as out-

patients (HFpEF 57%; HFrEF 78%). All HF patients participating as in-patients had clinical

evidence of heart failure (albeit deemed stable) at the time of their study visit and were on or

had been receiving concomitant intravenous diuretic therapy.

Baseline clinical characteristics

The baseline data are summarized in Tables 1–3. All 3 groups were evenly matched for age

and sex distribution.

Controls. Hypertensive controls were older (75±6 vs 71±3 years, p = 0.006), had a higher

proportion of smokers, hypercholesterolaemia and exhibited lower exercise capacity (360

(325–423) vs 410 (378–456)m, p = 0.007) compared to non-hypertensive controls. The pres-

ence of hypertension correlated with the finding of focal fibrosis in controls (r = 0.328,

p = 0.023). Focal fibrosis (non-ischaemic in all cases) was observed in a small minority of

hypertensive controls (18%) and absent in non-hypertensive controls. There were no other sig-

nificant clinical, imaging or plasma biomarker differences between the control groups (also

see S3–S5 Tables).

HF versus controls. Compared to controls, HF patients had a significantly greater preva-

lence of CAD and diabetes, poorer renal function and higher LV filling pressures (i.e. higher

E/E’ and BNP). Exercise capacity was markedly worse in HF patients.

HFpEF versus HFrEF. Compared to HFrEF, patients with HFpEF had less CAD, higher

body mass index, less severe diastolic dysfunction (i.e. lower BNP and E/E’), more atrial fibril-

lation (AF) (31% versus 20%) and lower 6MWT distance (180m versus 210m; p = 0.038). The

MLHF score tended to be higher in HFpEF (p = 0.089) and NYHA class was similar between

groups. Abnormal chest X-ray findings were similarly prevalent in both HF groups (Table 2).

CMR

LV parameters. Compared to controls, LVEF was marginally lower in HFpEF, albeit pre-

served overall (p = 0.019). LV volumes were similar but HFpEF patients exhibited higher LV

mass and more concentric remodeling (higher mass/volume ratio). In comparison to HFpEF,
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patients with HFrEF had marked reductions in LVEF and substantially higher LV volumes

and mass but with a reduction in mass/volume ratio indicative of adverse eccentric remodel-

ing. Examples of typical CMR LV characteristics (plus additional imaging and plasma profiles)

of the HF groups are illustrated in Fig 2.

RV parameters. RVEF was lower in HFrEF compared to the other groups. RVD was

more prevalent in HFrEF (46%) compared to HFpEF (19%) and was also associated with

greater remodeling (increased RV end-systolic volumes) compared to HFpEF and controls.

LA parameters. Across the cohort and irrespective of cardiac rhythm, HF patients had

higher LA volumes and a greater proportion of dilated atria (p<0.0001). In sinus rhythm,

LAEF was lower in HF patients compared to controls and lowest in HFrEF (p<0.0001). LA

conduit function was depressed in HFrEF compared to HFpEF or controls.

Tissue characterization. Qualitatively, focal fibrosis was more prevalent in both HF

groups compared to controls and was commonest in HFrEF (controls 10%, HFpEF 47%,

HFrEF 89%, p<0.0001). Likewise, similar trends were observed for ischemic (0%; 16%; 57%)

and non-ischemic fibrosis (10%; 35%; 41%), p<0.0001 for both. A small subset of HF patients

exhibited both patterns of focal fibrosis: HFpEF n = 4 and HFrEF n = 5. The size of MI

expressed as a percentage of LV mass, was larger in HFrEF (9.8% vs 3%, p<0.0001) compared

to HFpEF. However, there was no significant difference in the extent of non-ischemic fibrosis

Fig 1. Study overview. Consort diagram illustrating recruitment and reasons for exclusion. CMR = cardiovascular magnetic resonance imaging; HCM = hypertrophic

cardiomyopathy; HFpEF = heart failure with preserved ejection fraction; HFrEF = heart failure with reduced ejection fraction; ILR = implantable loop recorder;

PAF = paroxysmal atrial fibrillation; TTE = transthoracic echocardiography.

https://doi.org/10.1371/journal.pone.0232280.g001
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(p = 0.179) between HF groups. Diffuse fibrosis (ECV, iECV) was also higher in both HF

groups compared to controls and greatest in HFrEF: controls (25%, 10.9±2.8), HFpEF (28%,

13.7±4.4), HFrEF (31%, 18.1±7.1); p<0.0001.

Table 1. Baseline clinical characteristics.

HFpEF n = 140 HFrEF n = 46 Controls n = 48 p value

Age (years) 73±9 72±8 73±5 0.820

Male (%) 68 (49) 23 (50) 24 (50) 0.977

Heart rate (b.p.m) 70±14 67±16 68±10 0.308

Systolic BP (mmHg) 145±25 132±24 Δ� 151±24 0.001

Diastolic BP (mmHg) 74±12Δ 71±17 Δ 79±10 0.006

Body mass index (kg/m2) 34±7Δ 28±6� 25±3 <0.0001

Sinus Rhythm (%) 97 (69)Δ 37 (80)Δ 48 (100) <0.0001

Atrial Fibrillation 43 (31)Δ 9 (20) 0 (0) <0.0001

Diabetes (%) 75 (54)Δ 18 (39)Δ 0 (0) <0.0001

Hypertension (%) 127 (91)Δ 25 (54)� 22 (46) <0.0001

Angina (%) 23 (16)Δ 11 (24)Δ 0 (0) 0.003

Known Myocardial infarction (%) 16 (11)Δ 19 (41)Δ� 0 (0) <0.0001

Coronary artery disease (%) 31 (22)Δ 23 (50)Δ� 0 (0) <0.0001

Asthma or COPD (%) 24 (17) 9 (20) 3 (6) 0.134

Smoking (%) 75 (54)Δ 28 (61)Δ 17 (35) 0.033

Hypercholesterolaemia (%) 69 (49) 21 (46) 18 (38) 0.367

Peripheral Vascular Disease (%) 3 (2) 3 (7) 0 (0) 0.120

TIA or CVA (%) 19 (14)Δ 5 (24)Δ 0 (0) 0.025

Betablocker (%) 95 (68)Δ 41 (89)Δ� 2 (4) <0.0001

ACEi or ARB (%) 120 (86)Δ 36 (78)Δ 10 (21) <0.0001

Aldosterone antagonist (%) 43 (31)Δ 19 (41)Δ 0 (0) <0.0001

Loop Diuretic (%) 113 (81)Δ 37 (80)Δ 0 (0) <0.0001

NYHA III/IV (%) 43 (31) 12 (26) NA 0.551

6 minute walk distance 180 (120–250)Δ 210 (165–290)Δ� 380 (350–440) <0.0001

MLWHF score 49 (25–65) 36 (22–59) NA 0.089

Sodium (mmol/L) 139±4 140±3 140±2 0.098

Urea (mmol/L) 9±4Δ 9 ± 4Δ 6±1 <0.0001

Creatinine (mmol/L) 89 (73–114.8)Δ 97 (77–128)Δ 71 (56.3–84.5) <0.0001

eGFR (ml/min/m2) 68 (52–83)Δ 61 (48–77) Δ 92 (74–100) <0.0001

CKD grade Δ Δ <0.0001

1 27 (19) 6 (13) 26 (54) -

2 54 (39) 17 (37) 20 (42) -

3 59 (42) 23 (50) 2 (4) -

Haemoglobin (g/L) 129±22Δ 134±24 140±15 0.003

Haematocrit (%) 38±6 40±7 41±4 0.071

BNP (ng/L) 135.6 (65.5–254.4)Δ 387 (178–634)Δ� 33 (24–44) <0.0001

Δ P<0.05 for HFpEF or HFrEF versus controls

�P<0.05 for HFpEF vs HFrEF

Values are mean ± SD or n (%) or median (interquartile range). ACEi = angiotensin converting enzyme inhibitor; ARB = angiotensin II receptor blocker; BNP = B-type

natriuretic peptide; CKD = chronic kidney disease; COPD = chronic obstructive pulmonary disease; CVA = cerebrovascular accident; eGFR = estimated glomerular

filtration rate; NA = not applicable; NYHA = NewYork Heart Association; TIA = transient ischaemic attack

https://doi.org/10.1371/journal.pone.0232280.t001
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Table 2. Imaging characteristics by heart failure classification.

HFpEF n = 140 HFrEF n = 46 Controls n = 48 p value

Prior Chest Radiography

Pulmonary oedema (%) 97 (69) 31 (67) NA 0.933

Raised CTR (%) 101 (72) 35 (76) NA 0.362

Pleural effusion (%) 49 (35) 21 (46) NA 0.138

Echo�

E/E’ 13±6Δ 15±5Δ� 9±3 <0.0001

LA

Overall including AF subjects
LAVImax (ml/m2) 43±19Δ 45±15Δ 30±7 <0.0001

LAVImin (ml/m2) 30±19Δ 33±16Δ 17±5 <0.0001

LAEF (%) 35±18Δ 28±15Δ 44±11 <0.0001

Sinus rhythm subjects only
LAVImax (ml/m2) 36±14Δ 43±14Δ� 30±7 <0.0001

LAVImin (ml/m2) 21±12 29±12Δ� 17±5 <0.0001

LAEF (%) 44±14 32±12Δ� 44±11 <0.0001

CMR

LV

LVEDVI (ml/m2) 79±18 142±44Δ� 81±14 <0.0001

LVESVI (ml/m2) 35±10 106±44Δ� 34±8 <0.0001

LVEF (%) 56±5Δ 28±9Δ� 58±5 <0.0001

LVEDMI (g/m2) 52±15Δ 64±22Δ� 46±9 <0.0001

LV mass/LV volume 0.68±0.16Δ 0.47±0.15Δ� 0.57±0.09 <0.0001

RV

RVEDVI (ml/m2) 80±19 86±27 83±15 0.212

RVESVI (ml/m2) 37±14 53±33Δ� 37±9 <0.0001

RVEF (%), median (range) 54 (27–74) 49 (20–72)Δ� 55 (47–70) <0.0001

RV Dysfunction (%) 25 (19)Δ 21 (46)Δ� 0 (0) <0.0001

LA

Overall including AF subjects
LAVImax (ml/m2) 53±25Δ 59±24Δ 35±12 <0.0001

LAVImin (ml/m2) 38±26Δ 44±24Δ 17± 8 <0.0001

LA reservoir volume indexed (ml/m2) 15±7 15±7 17±6 0.087

LA conduit volume indexed (ml/m2) 29±9 23±9Δ� 30±9 <0.0001

Dilated LA 90 (64)Δ 38 (83)Δ� 15 (31) <0.0001

Sinus rhythm subjects only
LAVImax (ml/m2) 43±17Δ 55±19Δ� 35±12 <0.0001

LAVImin (ml/m2) 26±13Δ 38±18Δ� 17±8 <0.0001

LA reservoir volume indexed (ml/m2) 17±6 17±6 17±6 0.957

LA conduit volume indexed (ml/m2) 28±8 22±9Δ� 30±9 <0.0001

LAEF (%) 41 ± 12Δ 33 ±12Δ� 51 ± 11 <0.0001

Dilated LA 48 (49)Δ 29 (78)Δ� 15 (31) <0.0001

LV Tissue characterization

ECV (%) 28±5Δ 31±8Δ� 25±3 <0.0001

iECV (ml/m2) 13.7±4.4Δ 18.1±7.1Δ� 10.9±2.8 <0.0001

LGE positive (%) 66 (47)Δ 41 (89)Δ� 5 (10) <0.0001

LGE positive–MI (%) 23 (16)Δ 26 (57)Δ� 0 (0) <0.0001

If MI, size of infarct as % of LV mass 3.0 (1.3–4.6) 9.8 (4.2–20.6)� NA <0.0001

(Continued)
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Table 2. (Continued)

HFpEF n = 140 HFrEF n = 46 Controls n = 48 p value

LGE positive–non-MI 49 (35)Δ 19 (41)Δ 5 (10) <0.0001

If non-MI, size of scar as % of LV mass 2.9 (1.4–6.5) 3.9 (2.2–7.7) 2.4 (0.6–3.6) 0.437

ΔP<0.05 HFpEF or HFrEF versus controls

�P<0.05 for HFpEF versus HFrEF

Values are mean ± SD or n (%). CTR = cardiothoracic ratio; ECV = extracellular volume; iECV = indexed ECV; LAEF = left atrial ejection fraction; LAVI = left atrial

volume indexed to body surface area (maximal/minimal); LVEDMI = left ventricular end-diastolic mass indexed to body surface area; LVEDVI = left ventricular end-

diastolic volume indexed to body surface area; MI = myocardial infarction; NA = not applicable; RVEF = right ventricular ejection fraction; RVEDVI = right ventricular

end-diastolic volume indexed to body surface area

https://doi.org/10.1371/journal.pone.0232280.t002

Table 3. Plasma biomarkers by heart failure classification.

HFpEF n = 140 HFrEF n = 46 Controls n = 48 p value

Interstitial fibrosis

ST-2 (ng/ml) 6386 (4956–8905)Δ 5117 (3912–8598) 5729 (4303–6940) 0.028

Galectin-3 (ng/ml) 7495 (5718–8998)Δ 7148 (6393–8859)Δ 5038 (4172–6104) <0.0001

GDF-15 (ng/ml) 2248 (1546–3585)Δ 2117 (1509–3596)Δ 955 (665–1300) <0.0001

Tenascin-C (ng/ml) 13.7 (10.8–17.3) Δ 13.1 (11.4–16.3) Δ 11.1 (8.9–12.9) <0.0001

TIMP-1 (ng/ml) 1009 (755–1379)Δ 1013 (754–1271)Δ 662 (578–890) <0.0001

TIMP-4 (ng/ml) 1.8 (1.4–2.4)Δ 1.7 (1.4–2.1)Δ 1.3 (1.2–1.6) <0.0001

MMP-2 (ng/ml) 72.8 (58.6–86.8)Δ 69.7 (64.4–87.7)Δ 62.7 (56.2–68.7) 0.003

MMP-3 (ng/ml) 6.8 (4.6–10.3)Δ 7.8 (5.1–10.7)Δ 5.7 (3.2–7.5) 0.017

MMP-7 (ng/ml) 0.6 (0.4–1.0)Δ 0.8 (0.5–1.2)Δ 0.3 (0.2–0.5) <0.0001

MMP-8 (ng/ml) 0.3 (0.2–0.4)Δ 0.3 (0.2–0.6)Δ 0.2 (0.1–0.3) <0.0001

MMP-9 (ng/ml) 27.8 (19.5–56.8)Δ 36.6 (22.8–60.2)Δ 24.5 (15.5–37.8) 0.042

LV Cardiomyocyte stress/damage

Elevated Troponin-I, ng/L (%) 33 (24)Δ 17 (37)Δ 0 (0) <0.0001

BNP (ng/L) 136 (66–254)Δ 387 (178–634)Δ� 33 (24–44) <0.0001

Pro-BNP (pg/ml) 1.6 (1.2–2.2)Δ 2.3 (1.6–4.3)Δ� 1.2 (1.1–1.4) <0.0001

Myocardial Hypertrophy

Renin (pg/ml) 389 (223–864)Δ 580 (259–1187)Δ 111 (61–202) <0.0001

Inflammation/oxidative stress

Myeloperoxidase (ng/ml) 212 (160–262)Δ 203 (147–283)Δ 153 (130–178) <0.0001

hs-CRP (ng/ml) 43169 (14992–78805)Δ 24604 (6246–67468)Δ 6914 (3531–17393) <0.0001

TNFR-1 (ng/ml) 5.4 (4.1–7.8)Δ 5.6 (3.9–7.8)Δ 3.2 (2.7–3.7) <0.0001

Interleukin-6 (pg/ml) 4.0 (3.3–5.1)Δ 3.7 (3.2–5.3)Δ 2.9 (2.5–3.2) <0.0001

Atrial stress/stretch

NTpro-ANP (pg/ml) 6443 (4362–8511)Δ 7814 (6226–10097)Δ� 4019 (3362–4475) <0.0001

Renal markers

Cystatin C (ng/ml) 776 (686–989)Δ 811 (676–996)Δ 586 (526–648) <0.0001

NGAL (ng/ml) 44.6 (32.9–58.5)Δ 48.6 (33.1–63.4)Δ 26.4 (21.2–34.3) <0.0001

Δ P<0.05 for HFpEF or HFrEF versus controls

�P<0.05 for HFpEF vs HFrEF

Values are median (IQR) or n (%). GDF-15 = growth differentiation factor-15; hs-CRP = highly-sensitive C-reactive protein; MMP = matrix metalloproteinases;

NGAL = neutrophil gelatinase-associated lipocalin; NTpro-ANP = N-terminal pro-atrial natriuretic peptide; ST2 = suppression of tumorigencity-2; TIMP = tissue

inhibitor of metalloproteinase; TNFR-1 = tumour necrosis factor receptor-1

https://doi.org/10.1371/journal.pone.0232280.t003
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Inter-observer and intra-observer assessments. Data quantification for all CMR parame-

ters are shown in S6 Table. All intra-observer agreements were excellent (co-eficient of varia-

tions<10%) and universally better than for inter-observer agreements. The majority of inter-

observer agreements remained excellent albeit LV end-systolic volumes, RV end-systolic vol-

umes and RV ejection fraction fared worse (but still good).

Plasma biomarkers

All plasma biomarkers tested in the panel except ST2 displayed higher levels in both HF groups

compared to controls. The majority of biomarkers were not different between HFpEF and

HFrEF. The exceptions were the natriuretic peptides (Fig 3) and Troponin-I. BNP, pro-BNP

and NTpro-ANP levels were highest in HFrEF. After adjusting for potential confounders

including age, sex, BMI, diabetes, hypertension, lung disease, AF and CKD, these differences

(or similarities) in plasma biomarkers between HFpEF and HFrEF persisted (see S2 Table)

with the exception of MMP-8. Likewise, following binary logistic regression and adjustments

for the same variables listed above, the presence of troponin-I elevation was different between

the HF groups (odds ratio 2.536; 95% CI 1.033–6.230; p = 0.042).

The presence of focal fibrosis on LGE correlated with the following plasma biomarkers of

interstitial fibrosis: galectin3, GDF-15, MMP-3, MMP-7, MMP-8 and cardiomyocyte stress/

stretch (BNP, pro-BNP, NTproANP); p<0.05 for all. ECV (diffuse fibrosis) also correlated

with plasma interstitial fibrotic markers (GDF-15, Tenascin-C, MMP-2, MMP-3, MMP-7) and

cardiomyocyte stress/stretch (BNP, proBNP, NTproANP); p<0.05 for all. The results of corre-

lations of imaging parameters reflecting fibrosis with plasma biomarkers are shown in S7 and

S8 Tables.

NTpro-ANP strongly correlated with: BNP r = 0.675; minimal LA volume indexed (LAVI-

min) r = 0.608; LAVImax r = 0.580; LAEF r = -0.506; p<0.0001 for all (S1 Fig). Troponin ele-

vations were only observed in the HF cohorts: HFpEF 24%; HFrEF 37%. Hs-CRP levels were

highest in HFpEF but not significantly different compared to HFrEF (p = 0.082).

Fig 2. Summary of directional change of CMR and plasma biomarkers profiles compared to controls. CMR images at the top of the

illustration. Panel A: mid-ventricular end-diastolic cines showing concentric remodeling in HFpEF and eccentric remodeling in HFrEF; Panel B:

Late gadolinium enhancement images showing (white arrows) small, sub-endocardial ischemic fibrosis in HFpEF and more extensive ischemic

fibrosis involving multiple segments in HFrEF; Panel C: Late gadolinium enhancement images showing (white arrows) non-ischemic fibrosis in

HFpEF and HFrEF; Panel D: Post-contrast mid-ventricular extra-cellular volume colour maps showing increased diffuse fibrosis in both HFpEF

and HFrEF.

https://doi.org/10.1371/journal.pone.0232280.g002

Fig 3. Plasma biomarkers that were different between HFpEF and HFrEF: Natriuretic peptides. BNP = B-type natriuretic peptide; Pro-BNP = pro-B-type natriuretic

peptide; NTpro-ANP = N-terminal pro-atrial natriuretic peptide; p<0.05 for all.

https://doi.org/10.1371/journal.pone.0232280.g003
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Sub-group analysis of HF patients excluding known CAD and/or MI on LGE. Follow-

ing exclusion of HF subjects with known CAD or with evidence of MI on LGE (n = 43 HFpEF,

n = 28 HFrEF), the higher prevalence of non-ischemic fibrosis in HFrEF compared to HFpEF

remained (72% vs 38%, p = 0.006). Furthermore, the trends for key imaging differences in

these sub-groups between HFrEF and HFpEF remained the same with respect to LVEF, LV

remodeling patterns, RVD, LA dysfunction and iECV. Likewise, higher levels of cardiomyo-

cyte stress/damage plasma biomarkers were again observed in HFrEF relative to HFpEF (see

S9–S11 Tables).

Endpoints. During median follow-up (overall 1446 [1243–1613]; HFpEF 1429 [1157–

1567]; HFrEF 1492 [1392–1545] days), the proportion of events were similar for HFpEF (67

composite events [48%], 45 HF hospitalizations, 22 deaths) compared to HFrEF (20 composite

events [43%], 14 HF hospitalizations, 6 deaths); p = 0.606. The event rates and time to first

events did not differ significantly between HFrEF and HFpEF for both primary (Log-Rank

p = 0.784) and secondary outcomes (all-cause mortality Log-Rank p = 0.372; HF hospitaliza-

tion Log-Rank p = 0.705). Kaplan-Meier survival curves stratified according to both HF groups

are shown in S2 Fig. There were no events in the control group.

Discussion

Our phenotyping study provides important insights into the clinical and pathophysiological

profiles of HFpEF relative to HFrEF and controls. Firstly, our study re-affirms the clinical het-

erogeniety of HFpEF and its association with adverse outcomes and exercise incapacity. Sec-

ondly, striking differences in CMR parameters, underscored by plasma biomarkers were seen

in both HF groups compared to controls. Thirdly, imaging differences of cardiac structure and

function were clearly evident between HFpEF and HFrEF at the chamber levels (LV, RV and

LA) as well as at the LV tissue level (focal and diffuse fibrosis). Finally, plasma markers of

inflammation, fibrosis, myocardial hypertrophy and renal dysfunction were consistently ele-

vated in both HF phenotypes but only markers of cardiomyocyte damage/loss were higher in

HFrEF compared to HFpEF.

Clinical phenotypes and characterization

Our HFpEF cohort was characterized by a high prevalence of both cardiovascular (hyperten-

sion, CAD, diabetes, AF) and non-cardiovascular disease (obesity, renal dysfunction, lung dis-

ease, anaemia), consistent with prevailing literature[3]. In addition, compared to HFrEF,

HFpEF patients had higher BMI, greater proportion of hypertension and AF but less CAD as

also noted previously[2, 3]. Both HF groups displayed markedly reduced exercise capacity and

quality of life, consistent with the diagnoses[27]. Unlike prior literature however[27], exercise

capacity was lower and HF symptoms tended to be higher in HFpEF compared to HFrEF in

our cohort. Possible explanations for this include the contribution of the greater co-morbidity

burden seen in HFpEF[28], as well as vascular stiffening and reduced aortic distensibilty[29],

measures not yet assessed in our cohort but which may further impact upon 6MWT distance.

Imaging and plasma biomarkers

As expected we observed changes in LV structure and function (systolic and diastolic) across

both HF cohorts compared to controls. However, the pattern of these changes was markedly

different between HFpEF and HFrEF. The lower LVEF in HFpEF (albeit preserved overall)

compared to controls has previously been observed with TTE and was thought to reflect mildly

reduced contractile function, subtle systolic abnormalities and impaired longitudinal function

[30]. In our HFpEF cohort, both CMR and plasma changes further explain the likely aetiology
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of such disturbances, with MI noted in a significant minority (16%), non-ischemic focal fibro-

sis in nearly half and an increased proportion of patients having evidence of cardiomyocte

damage/loss (raised Troponin-I). In contrast, LVEF was markedly reduced in HFrEF and was

associated with higher focal fibrotic burden (both MI and non-ischemic) and an even greater

proportion with elevated Troponin-I.

In agreement with previous reports[2, 3], we also observed different patterns of adverse

remodeling in HFpEF (concentric) and HFrEF (eccentric). Parameters previously implicated

in the pathophysiology of adverse remodeling in HF were also found to be elevated in our

study: interstitial fibrosis (CMR and plasma), inflammation, oxidative stress, myocardial hype-

trophy, RAAS activation, cardiomyocyte damage and renal dysfunction[20–22, 31]. Of these,

only markers of cardiomyocyte stretch/damage differed between HF groups.

Recently, alternative paradigms for HFpEF and HFrEF have been proposed[32], postulating

that prevalent co-morbidities in HFpEF induce a pro-inflammatory state which is the predom-

inant pathophysiological mechanism influencing LV remodeling. Systemic inflammation

induces microvascular endothelial dysfunction, which in turn limits nitric oxide bioavailablity,

decreasing protein kinase G activity, promoting both cardiomyocyte hypertrophy (concentric

remodeling) and stiffening (titin hypophosphorylation), with resultant myofibroblast-induced

interstitial fibrosis. In contrast, predominant cardiomyocyte damage/loss resulting in focal

(replacement) fibrosis is thought to be the main driver behind chamber dilation and eccentric

remodeling in HFrEF.

However, the data supporting the differential role of inflammation and cardiomyocyte

damage in HFpEF and HFrEF has been conflicting to. While some studies[22, 33] have shown

contrasting levels of inflammatory markers between HFpEF and HFrEF, others have shown

similar levels in both HF sub-types, as observed in our study[34]. We also noted a clear signal

for cardiomyocyte damage as the predominant mechanism in HFrEF with higher levels of

natriuretic peptides and with Troponin-I. Furthermore, CMR detected focal fibrosis was also

higher in HFrEF. Diffuse fibrosis is thought to represent vulnerable myocardium prior to the

transitory phase towards focal, irreversible (replacement) fibrosis development. Our finding of

more prevalent focal fibrosis in HFrEF is also a likely reflection of this phenomenon. Only one

prior CMR study[35] has compared diffuse fibrosis between HFpEF and HFrEF with similar

findings to the present study.

Diastolic dysfunction noted in HF is primarily governed by myocardial hypertrophy (and

stiffness), which in turn is regulated at the tissue level by alterations in cardiomyocytes and the

extracellular matrix[32]. Given that the degree of fibrosis, and consequent remodeling, is vastly

different between both HF groups, surrogates of diastolic dysfunction i.e. natriuretic peptides,

E/E’ and LA volumes were unsurprisingly higher in HFrEF. Furthermore, end-diastolic wall

stress in HFpEF is less pronounced[36], reducing the stimulus for natriuretic peptide secre-

tion. In addition, the greater prevalence of obesity in HFpEF may further blunt natriuretic

peptide levels[36].

Right ventricular dysfunction

A wide range of prevalence for RVD, primarily derived from TTE data has previously been

reported in HFpEF (4–44%), utilizing variable definitions of HFpEF e.g. LVEF�45% and dif-

ferent diagnostic thresholds for RVD (tricuspid annular plane systolic excursion, fractional

area change and RVEF)[37, 38]. There has also been conflicting data as to whether RVD preva-

lence differs between HFpEF and HFrEF[38]. In HFpEF, only 2 CMR studies have analyzed

RV performance and both lacked control groups. In the first study[39] (n = 142) significant

RVD was defined semi-quantitatively as the presence of least moderate RVD (prevalence
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12%). The second study[40] (n = 171) using a RVEF cut-off of<45% reported RVD prevalence

of 19%. To our knowledge, no prospective CMR studies have compared RVD in HFpEF and

HFrEF.

Our study confirms that RVD is present in a significant minority of HFpEF and is also

more prevalent in HFrEF compared to HFpEF, based upon our own internal reference con-

trols. RVD may be part of the natural aetiological profile in HFpEF whereby biventricular

remodeling often co-exists, even in early stages[41] or as a marker of prognosis[37]. The high

concurrent burden of lung disease, CAD and diastolic dysfunction have all previously been

implicated in the aetiology of RVD in HFpEF[37]. Our findings of a greater degree of RVD in

HFrEF compared to HFpEF is likely explained in part by the higher proportion of CAD

(ischaemia and MI) in our HFrEF group which is intrinsically linked to impaired RV contrac-

tility[38]. Furthermore, impaired LV contractility is also known to indirectly impair RV per-

formance[42].

LA dysfunction and remodeling

In our study, compared to controls, both HF groups displayed more adverse LA remodeling

and dysfunction, irrespective of AF. Our findings are further supported by the differential lev-

els of NTpro-ANP (a marker of atrial as well as cardiomyocyte stress/stretch) observed across

all groups and its strong correlations with LAEF and LA volumes.

Our work is additive to the growing evidence base implicating these parameters in HF[43].

Impaired LA function has also been noted in antecedent conditions of HF (e.g. diabetes,

hypertension) even in the presence of normal LA size[44]. Similar to our findings, lower LAEF

has been previously shown in HFpEF compared to hypertensive subjects with LV hypertrophy

[45]. Furthermore, a trend towards worse LAEF in HFrEF when compared to HFpEF has also

been reported using TTE[46]. In that study, analogous to structural changes in the LV, HFrEF

displayed more eccentric LA remodeling whilst HFpEF was characterized by higher LA wall

stress. In our study, worsening LA dilation was observed in HFrEF compared to HFpEF, even

in the absence of AF. Furthermore, the differing degrees of LAEF reduction and LA remodel-

ing seen in our HF groups mirrored the degree of adverse remodeling in the LV, suggesting

indirect upstream LA consequences. This hypothesis is further supported by the strong corre-

lation of NTpro-ANP, a more specific marker of LA stress/stretch than BNP.

Implications

HFpEF has been the subject of ongoing debate as to whether it truly exists or it is just a collec-

tion of co-morbidities in elderly subjects that ultimately drive symptoms and outcomes[2, 3].

Our study provides supportive evidence that HFpEF is a clinical entity distinct from controls

and HFrEF and is characterized by pathophysiological disturbances across a range of both

CMR and plasma biomarker measures, even when accounting for the influence of age, sex and

additional comorbidity.

Our group has previously shown[7] that in those with ‘suspected’ HFpEF who underwent

standard evaluation with echocardiography, utilizing CMR identifies new (27%), previously

undiagnosed clinical pathologies (e.g. HCM, constrictive pericarditis) which may alternatively

account for symptoms but also are independently predictive of prognosis. In this current

study, following exclusion of such pathologies, we were able to study a ‘purer’ cohort of

HFpEF.

The structural and functional changes observed in our HFpEF cohort may also carry prog-

nostic relevance and have ramifications for future clinical trial design and therapies. Worse

outcomes have been previously shown in the presence of adverse LV remodeling[47], focal
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fibrosis[48] and RVD[39, 40] in HFpEF. We have also shown that diffuse fibrosis (iECV and

ECV)[49] and LA dysfunction[24] are independently related to prognosis in our HFpEF

cohort. The distinct patterns of LV remodeling seen in the HF groups and the greater degree

of cardiomyocyte damage/stress seen in our HFrEF cohort also provide potential insights into

the failure of traditional HFrEF vasodilator therapies when tested in HFpEF clinical trials. The

slope of the end-systolic pressure-volume relationship (or end-systolic LV elastance), a mea-

sure of contractility is influenced by chamber size. In HFpEF, elastance is increased and

heightens sensitivity to volume changes resulting in substantial vasodilator-induced blood

pressure (BP) reductions. In HFrEF however, elastance is diminished and similar therapy

improves stroke volume without such BP drops[50]. Finally, CMR potentially enables HFpEF

to be further sub-categorised into clinical phenotypes e.g. ischemic versus non-ischemic and

pathophysiological sub-types enabling more targeted therapies as recently proposed[2]. Inte-

grating plasma markers not only provides supportive measures for CMR derangements, but

could also serve as potential biomarkers to assess treatment response[31]. LA dysfunction is a

potential treatment target in HFpEF[51] and the use of CMR-derived LAEF and NT-proANP

may serve as useful outcome measures in this setting. Furthermore, the association of plasma

biomarkers of interstitial fibrosis and cardiomyocyte stress/damage with LGE and ECV in our

study may be of potential benefit where fibrosis is the focus of treatment strategies in HFpEF

[52]. Our study adds to the growing data for the associations of plasma biomarkers with CMR

measures of fibrosis. MMP-2, galectin-3[53] and BNP[54] have previously been show to corre-

late with ECV in HFpEF. In severe aortic stenosis patients[55], phenotypically similar to

HFpEF, both ECV and LGE have also been shown to correlate with NTpro-BNP. Even in sub-

jects free of cardiovascular disease, NTpro-BNP also correlated with ECV in the MESA study

[56].

Strengths and limitations

We tested an extensive array of biomarkers reflecting individual domains which provides a

more unbiased approach to discriminating key pathophysiological differences between our

cohorts. Furthermore, such changes in biomarker profiles corroborate the CMR findings.

While imaging parameters have been used to characterise HFpEF previously, these have largely

been from echocardiographic data. Prior CMR studies in this setting have not only been sparse

but largely confined to assessment of individual characteristics such as the LV, RV or diffuse

fibrosis and lacking controls or HFrEF groups for comparison. Our study is the first to under-

take a comprehensive and combined assessment of all of the above parameters as well as quan-

tifying focal fibrosis, using a novel metric of diffuse fibrosis (iECV) and undertaking RV and

LA volumetric and EF measurements across all 3 groups.

This is a single centre, observational study with possible selection bias. Therefore, the results

should be confirmed in additional populations. We do not have additional information

regarding the duration of HF. A small proportion of subjects did not undergo CMR due to the

presence of pacemakers. At the time of study conduct, our centre was not implanting CMR

conditional devices. We recognize that the unequal group sizes and higher number of patients

in the HFpEF group are potentially confounding. However, we minimized the effects of age

and sex by matching for these variables between the groups. Furthermore, we accounted for

additional comorbidities in our statistical analysis. We deliberately chose a higher HFpEF sam-

ple size in our study since HFpEF is widely recognized to be a more heterogenous entity rela-

tive to HFrEF[1]. We did not account for additional co-morbidities such as prior

chemotherapy/radiotherapy or other systemic conditions which may have influenced plasma

biomarker levels as well as imaging markers of fibrosis.
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Coronary angiography was only performed if clinically indicated. Furthermore, the HFrEF

group had a higher proportion who underwent coronary angiography (24/46) compared to

HFpEF (27/140). Therefore, we cannot exclude a higher prevalence of undiagnosed CAD in

the HFpEF group which may account for some differences in plasma biomarker levels between

the groups. Prior literature has consistently revealed a higher comorbidity burden in HFpEF

compared to HFrEF[8, 11]. Indeed, obesity and hypertension were more prevalent in our

HFpEF group compared to HFrEF. However, whilst the proportion of additional comorbidi-

ties such as diabetes and AF were also greater in HFpEF compared to HFrEF, this did not

reach statistical significance, likely a reflection of our sample size. The lack of differences in

prevalent lung disease and CKD between our HF groups however is most likely a consequence

of our inclusion criteria and some selection bias. We excluded patients with severe lung disease

which may alternatively explain HF symptoms. Furthermore, severe renal dysfunction (i.e.

eGFR<30) was a contraindication for CMR evaluation with contrast administration. While

the higher BMI levels in our HFpEF cohort compared to HFrEF are consistent with prior

observations[8, 11, 57], the mean BMI [28] in our HFrEF group relative to healthy controls

was also elevated. However, BMI tends to lessen with advancing and indeed more severe

HFrEF. Our HFrEF cohort comprised relatively stable, ambulant patients who probably had

less severe HF as reflected by only a small minority exhibiting NYHA class III/IV (26%). The

mean BMI and proportion of NYHA III/IV seen in our HFrEF group was also similar to that

observed in recent large, contemporary randomised control clinical trials of HFrEF (PARA-

DIGM-HF[58], DAPA-HF[59]). Furthermore, our controls were relatively lean with only a

handful being obese (8%) likely exaggerating the differences relative to HFrEF. As the HFrEF

cohort were age and sex-matched to the HFpEF population and were not consecutively

enrolled, they may not be representative of the general population with HFrEF, albeit similar

in demographics to recent large phase III clinical HFrEF trials as reported above[58, 59].

We measured Troponin-I with a validated assay routinely used by our institution at the

time of our study. We do recognise however that this assay has been superceded by more

highly sensitive measures of troponin-I with lower limits of detection and which have shown

increased troponin-I levels above the 99th percentile upper reference limit in the majority of

HF patients[60–62]. Utilising these newer assays may have enabled better troponin-I charac-

terisation and profiling between our groups. In our study, ST2 levels were higher in HFpEF

compared to HFrEF but not of statistical significance. In contrast, prior HF studies[63–66]

have demonstrated higher ST2 levels in HFrEF compared to HFpEF, each using similar assay

methodologies (ELISA) but different to our technique of ST2 quantification. This discrepancy

likely represents the possible effects of unequal sample sizes of the groups in our cohort, assay

technique and the heterogeneous nature of HFpEF itself, albeit our HFpEF sample size is the

largest to date and the technique used to measure ST2 levels has also been studied in additional

HFpEF populations[18, 19].

Study participation as in- or out-patients with differing fluid status, or recruitment of in-

patient HF patients who were receiving or had been on preceding intravenous diuretic thera-

pies may alternatively have contributed to differing plasma biomarker levels. Patient enrol-

ment into our study had already been completed by the time of publication of the latest ESC

diagnostic HF guidelines in 2016[1]. Unlike latest ESC guidance[1] however, our inclusion cri-

teria did not require the presence of diastolic dysfunction for HFpEF diagnosis nor elevated

natriuretic peptide levels. However, diastolic dysfunction is often absent at rest in approxi-

mately a third of such patients[9]. All patients with a diagnosis of HFpEF in our cohort had a

history of (or at the time of their study visit) signs and symptoms of HF as per ESC diagnostic

guidelines. In addition, at screening, a diagnostic label of HFpEF was already made by a con-

sultant Cardiologist either at a prior outpatient clinic visit or following a prior hospitalization
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episode. Only a very small minority of HFpEF patients in our cohort (12%) did not have ele-

vated BNP levels as per ESC guidelines (�35 pg/ml). However, natriuretic peptide levels well

below ESC diagnostic thresholds have previously been observed in a significant minority

(18%) of invasively proven HFpEF[10], albeit we recognize left and right heart catheterization

data is lacking in our study. In our sub-group of patients with non-elevated BNP defined as

HFpEF, a high proportion of obesity (BMI�30 kg/m2 in 81%) was observed which may addi-

tionally account for the supressed BNP levels[67]. Furthermore, our data clearly provides com-

pelling evidence (additional natriuretic peptides) that our HFpEF cohort truly had HF and the

high event rates are similar to that of previous outcome studies in HFpEF and indeed our

HFrEF cohort. Our control group also included hypertensive subjects and was therefore not

totally free of cardiovascular disease but the rationale for including such controls was to better

understand the mechanisms leading to HFpEF. If anything, this is likely to have potentially

underestimated the differences between HFpEF (and HFrEF) and control groups.

Conclusions

Compared to HFpEF, HFrEF has worse LV, LA and RV contractile function and more preva-

lent fibrosis (focal and diffuse). Both HFpEF and HFrEF are associated with similar adverse

outcomes. While inflammation is common in both HF phenotypes, cardiomyocyte stretch/

stress is greater in HFrEF suggesting that HFpEF is a distinct clinical entity.
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