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Abstract. Molecular dynamics (MD) is in the core of fundamental research for a range of
disciplines in natural sciences and is known for its applications in the design of new functional
materials and the drug discovery. MD simulations are performed under certain thermodynamic
conditions, typically at fixed temperature and pressure. The thermodynamic variables in the
MD are modeled using equations that are called thermostats. Many different thermostats have
been proposed. Recently (Samoletov A and Vasiev B 2017 J. Chem. Phys. 147 204106), we
have shown that a range of thermostats can be derived in the framework of a unified approach
based on the fundamental principles of statistical physics, so that the relevant dynamic schemes
are based on the concept of temperature expression (in short, ϑ-expression). However, only a few
specific ϑ-expressions have been used so far and reported in the literature. In this paper, we are
using a wider set of ϑ-expressions and their mathematical properties that allow us to modify the
known and offer new thermostats with improved computational efficiency and ergodicity. We
focus on the Nosé-Hoover-Langevin stochastic scheme and extend it with additional temperature
control tools. Simultaneous thermostatting of all phase space variables with minimal additional
computational costs is an advantage of the modified dynamics.

1. Introduction
Molecular dynamics (MD) [1–5] is an inevitable companion of research in a range of disciplines
in natural sciences and in engineering including such popular branches as the design of new
functional materials and the drug discovery. MD simulations are performed under certain
environmental (thermodynamic) conditions, typically at fixed temperature or pressure. It is
no wonder that many different dynamic temperature control tools that are called thermostats,
deterministic and stochastic, have been proposed [4–9]. Recently, we have shown that a range
of thermostats can be derived in the framework of a unified approach based on the fundamental
principles of statistical physics [10]. However, this result has been presented in a rather formal
form, so the benefits of unified approach presented may not seem obvious in terms of practical
use. To address this issue, it is necessary to compare particular cases of abstract results with well-
known dynamic thermostat schemes, although, obviously, with a loss of mathematical generality.

The Nosé–Hoover–Langevin (NHL) method [6–8] is commonly used in applications. This
stochastic thermostat scheme allows one to obtain the canonical distribution for the simulated
physical system using single additional degree of freedom subject to stochastic perturbation.
The reliability of using the NHL scheme, as well as its deterministic counterpart, is based on
the ergodic hypothesis, which claims that a physical system phase-space trajectory will spend
an equal amount of time in each phase-space volume of equal probability [11]. In other words,
this hypothesis equates the long-time average of a physical observable to its ensemble average.
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While it is known that deterministic thermostats often violate ergodicity, e.g., [12–14], they
are assumed to be applicable for practical purposes. At the same time, the ergodicity of NHL
thermostats, for which some rigorous results have been obtained [8], seems to be a very likely
property.

Characteristic features of the NHL thermostat are 1) a single extra variable is added to
physical equations of motion; 2) kinetic temperature expression is used. Initially, in the NHL
scheme as it described in article [6], an additional dynamics variable was introduced formally,
so there was no physical interpretation of it. On the contrary, theoretical scheme [10] is firmly
based on the fundamental laws of statistical physics and allows reproducing the previous results
as a very special case of a more general theory.

It is assumed that the physical system of interest to us, S, placed in the thermal reservoir,
Σ, (such that is considered as a dynamical system of a very large (infinite) number of phase
variables, which determines the general statistical properties of the S system) should to some
extent perturb it and will itself be affected by the backward influence of this perturbation. Thus,
the thermal reservoir is naturally divided into two parts, namely, the part that involved in joint
dynamics with system, S∗, and the unperturbed part, Σ \ S∗, which is constantly in thermal
equilibrium. An important assumption is made that all systems participating in joint dynamics
are statistically independent at thermal equilibrium. In such a scheme, an additional thermostat
variables are associated with the pertubed part S∗ of the thermal reservoir. Therefore, the
dynamic temperature control associated with this additional degree of freedom is as important
as the kinetic energy control of the S system. Of course, the actual description of S∗ system
depends on the physical system of interest to us, as well as on the experimental methods used to
extract the information, as they determine the temporal and spatial scales of data measurement
and interpretation.

In this paper, we solve the problem of formulating the dynamics of the NHL type, which
includes temperature expressions related to both systems, S and S∗, temperature control is
applied to all degrees of freedom of the physical system of interest to us, and assuming that in
general thermostated dynamics, a single thermostat variable can still be viewed for comparison,
as in a standard NHL scheme.

2. Temperature expressions and thermostats
The design of dynamic thermostats is based on the concept of temperature expression [10].
Let us briefly recall the details of corresponding theoretical scheme, which are essential for this
article.

Let the probability density σ (x), x ∈ M = Rn be given (the phase space is not necessarily
even dimensional). We set the probability density in the form σϑ (x) ∝ exp

{
−ϑ−1V(x)

}
where V(x) : M → R is a coercive function, that is, V(x) → +∞, as ‖x‖ → +∞, so that
V(x) = −ϑ lnσϑ (x), where ϑ > 0 is a parameter. Consider a pair of vector fields, gradient∇V(x)
and incompressible G (x), that is, ∇ ·G (x) = 0 for all x ∈M, such that ∇V(x) ·G (x) = 0 for
all x ∈M (in other words, ∇V(x) and G (x) form a cosymmetric pair as defined in [15]). Then
we relate to the system S the equations of motion

ẋ = G(x).

Thus, we arrive at the following properties, V̇ = ∇V(x) ·G (x) = 0 and ∇ · (G (x)σ (x)) = 0,
that is, V(x) is a first integral and the density σ (x) is invariant for the dynamics ẋ = G(x).

When the S system contacts the thermal reservoir Σ at thermodynamic temperature T ,
ϑ = kBT , where kB is the Boltzmann constant, then we define the temperature expression,
Θ(x, ϑ), based on the ergodic hypothesis as much as the concept of a thermostat itself.
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Function Θ(x, ϑ), x ∈ M is called a temperature expression if it explicitly depends on the
parameter ϑ = kBT and satisfies the condition,∫

M
Θ(x, ϑ)dµϑ(x) = 0 for all ϑ > 0,

where dµϑ(x) = σϑ(x)dx. Similarly, for the S∗ system
∫
M∗ Θ∗(y, ϑ)dµ∗ϑ(y) = 0 for all ϑ > 0,

where dµ∗ϑ(y) ∝ exp{−ϑ−1V∗(y)}dy, y ∈M∗ = Rn
∗
.

The ergodic hypothesis implies that for invariant densities

lim
τ→∞

1

τ

∫ τ

0

{
Θ(x(t), ϑ)
Θ∗(y(t), ϑ)

}
dt = 0,

for almost all trajectories.
Our approach to designing thermostats with desired properties is based on the following

observations. First, it is easy to make sure that the set of ϑ-expressions is a linear space. Then we
associate this linear space with a vector space whose components are phase space functions that
grow no faster than polynomials. Therefore, we use the expansion of a ϑ-expression in the basis in
M, {ei}, ϕ(x, ϑ) =

∑
ϕi(x, ϑ)ei, and similarly, the basis inM∗, {e∗i }, ϕ∗(y, ϑ) =

∑
ϕ∗i (y, ϑ)e∗i .

It is acceptable that the functions ϕi(x, ϑ) and ϕ∗i (y, ϑ) are themselves ϑ-expressions. Further,
in respect of functions ϕi(x, ϑ) and ϕ∗i (y, ϑ), we use expansion in terms of polynomials. We can
also define the mapping of a ϑ-expression (or a vector of ϑ-expressions) to a ϑ-expression. In
this article, we do not develop this scheme in a general mathematical form. Instead, we will
look at examples.

Now we modify the equations of motion according to the dynamic principle [10], that is,

∇xV(x) ·G (x) ∝ Θ(x, θ),

assuming the validity of the ergodic hypothesis. Note that it is always possible to expand G (x)
into two parts, first, the cosymmetry of ∇xV(x), ∇xV(x) ·G1 (x) = 0 for all x ∈ M, and the
other ∇xV(x) ·G2 (x) that is vanishing on average only. Similarly, we relate to the S∗ system
the equations of motion ẏ = G∗(y), y ∈ M∗, the appropriate potential function V∗(y), and the
equilibrium probability density σ∗ϑ (y) ∝ exp

{
−ϑ−1V∗(y)

}
.

3. Stochastic equations of motion
The theoretical scheme [10] covers both stochastic and deterministic methods of dynamical
sampling of a statistical ensemble, in particular, thermostats. It is based on the fundamental
principles of statistical mechanics, so that the canonical density is de facto invariant for the
resulting equations of motion. The canonical ensemble is maintained by interaction with
(effectively infinite) thermal reservoir, Σ. Since a complete microscopic description of Σ is
not possible, the simulation of thermal reservoirs is carried out using stochastic or deterministic
thermostats. We arrive at deterministic equations of motion by ignorance the influence of the
main part of the heat reservoir, Σ\S∗, on the dynamics of physical system, which is a stochastic
perturbation by necessary. This greatly simplifies the dynamics, but sharply raises the difficult
question about the ergodicity of thermostats. The practical effectiveness of any deterministic
thermostat is actually a matter of chance.

In this article, we restrict ourselves to considering the generic case when thermostats are
applied to Hamiltonian systems. Let the S system, when it is isolated, be defined by the
Hamiltonian function H(x), x ∈ M, and equations of motion ẋ = G(x) = Jx∇xH(x), and,
similarly, let the S∗ system be defined by M∗, H∗(y), y ∈ M∗, and ẏ = G∗(y) = Jy∇yH

∗(y).
Here, Jx and Jy are symplectic units. It is easy to verify that∇H ·J∇H ≡ 0 and∇ ·J∇H ≡ 0
as required.
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First, let the S∗ system be empty. Thus, the only stochastic thermostat dynamics is possible.
Consider a special ϑ-expression of the form ΘL(x, ϑ) =

∑L
l=0 Θl(x, ϑ)ϑ2l for all L ∈ Z≥0, where

Θl(x, ϑ) = ϕl(x, ϑ) ·∇H(x) − ϑ∇ · ϕl(x, ϑ), l = 0, 1, ..., L, and {ϕl(x, ϑ)}Ll=0 is a set of vector
fields onM such that ϕl(x, ϑ)σ(x)→ 0 as ‖x‖ → ∞, introduce the set of independent vectors of

white noises, {ξ(l; t)}Ll=0 , L ∈ Z≥0, such that 〈ξ(l; t)〉 = 0, 〈ξi(l; t)ξj(l′; t′)〉 = 2λlθδijδll′δ(t− t′),
and the set of vector fields, {ζ(l;x)}Ll=0 , L ∈ Z≥0, such that ∇ ◦ ζ(l;x) = 0 for any l ≥ 0,
where ◦ denotes the component-wise (Hadamard) product of two vectors. Starting with the

relationship, ∇H(x) ·G2(x, λ) =
∑L

l=0 Θl(x, ϑ)ϑ2l, and following the procedure [10], we arrive
at the stochastic dynamics:

ẋ = Jx∇xH(x)−
L∑
l=0

λlη(l;x) ◦∇xH(x)θ2l +

L∑
l=0

ζ(l;x) ◦ ξ(l; t)θl,

where η(x) ≡ ζ(x)◦ζ(x). One can verify by direct calculation that the density σϑ (x) is invariant
for this dynamics. It can be expected that such a Langevin-type dynamics is ergodic.

When the nontrival S∗ system is involved in a joint motion with the S system and an influence
of Σ\S∗, it has to be stochastic by necessary, on the dynamics is taking into consideration, then,
following the procedure [10], we arrive at the stochastic equations of motion (where the case
y ∈ R can be specified as in the standard NHL scheme [6]),

ẋ = Jx∇xH(x) +
∑
(k)

Θ∗k(y, ϑ)ϕk(x, ϑ),

ẏ = Jy∇yH
∗(y)−

∑
(l)

Θl(x, ϑ)ϕ∗l (y, ϑ)−
L∑
l=0

λ∗l η
∗(l; y) ◦∇yH

∗(y)ϑ2l +
L∑
l=0

ζ∗(l; y) ◦ ξ(l; t)ϑl,

under reasonable conditions on the growth of vector fields {ϕk(x, ϑ)}. Here η∗(y) ≡ ζ∗(y)◦ζ∗(y).
and {ϕ∗l (y, ϑ)}. One can verify that the density σ ∝ exp{−ϑ−1[H(x) +H∗(y)]} is invariant for
this dynamics. Such an NHL-type stochastic dynamics can be expected to be ergodic.
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