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Discovery of NOvel CIP2A VAriant (NOCIVA) and its clinical relevance in myeloid leukemias
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Statement of Translational Relevance: A significant fraction of chronic myeloid leukemia (CML) patients relapse from first-generation (1G) tyrosine kinase inhibitor (TKI) therapy, and this could be prevented by the de novo use of 2G TKIs. However, there are no patient stratification markers to guide clinicians in the selection of frontline TKI therapy for optimal outcomes in CML patients. Here, identical results from two independent CML cohorts indicate that the determination of NOCIVA mRNA levels by clinically approved qPCR platforms from de novo chronic phase CML patients could provide significant support for clinicians in recognizing patients in need of first-line 2G TKI therapy. In acute myeloid leukemia (AML), high NOCIVA/CIP2A ratio at diagnosis could indicate a need for first-line therapy intensification.

Abstract
Purpose: Cancerous inhibitor of PP2A (CIP2A) is an oncoprotein that inhibits the tumor suppressor PP2A-B56. However, CIP2A mRNA variants remain uncharacterized. Here, we report the discovery of a CIP2A splicing variant, NOCIVA (NOvel CIp2a VAriant).
Experimental Design: Characterization of CIP2A variants was performed by both 3’ and 5’ rapid amplification of cDNA ends from cancer cells. The function of NOCIVA was assessed by structural and molecular biology approaches. Its clinical relevance was studied in an acute myeloid leukemia (AML) patient cohort and two independent chronic myeloid leukemia (CML) cohorts. 
Results: NOCIVA contains CIP2A exons 1-13 fused to 349 nucleotides from CIP2A intron 13. Intriguingly, the first 39 nucleotides of the NOCIVA-specific sequence are in the coding frame with exon 13 of CIP2A and code for a 13 amino acid peptide tail nonhomologous to any known human protein sequence. Therefore, NOCIVA translates to a unique human protein. NOCIVA retains the capacity to bind to B56, but whereas CIP2A is predominantly a cytoplasmic protein, NOCIVA translocates to the nucleus. Indicative of prevalent alternative splicing from CIP2A to NOCIVA in myeloid malignancies, AML and CML patient samples overexpress NOCIVA but not CIP2A mRNA. In AML, a high NOCIVA/CIP2A mRNA expression ratio is a marker for adverse overall survival. In CML, high NOCIVA expression is associated with inferior event-free survival among imatinib-treated patients, but not among patients treated with dasatinib or nilotinib.
Conclusions: We discovered novel variant of the oncoprotein CIP2A and its clinical relevance in predicting tyrosine kinase inhibitor therapy resistance in myeloid leukemias. 
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Introduction

Cancerous inhibitor of protein phosphatase 2A (CIP2A) functions as an oncoprotein by directly binding to the tumor suppressor PP2A-B56α (1,2). CIP2A is overexpressed in a vast variety of human cancers, and high CIP2A expression has been shown to correlate with poor patient survival in a broad spectrum of human malignancies (3-6). Furthermore, CIP2A is required for malignant cellular growth in vitro and for tumor formation in vivo in a number of cancers, and its overexpression broadly promotes cancer cell drug resistance (6-11). Prior to the advancement of this potential cancer therapy target in drug development, there should be a comprehensive understanding of CIP2A protein and/or mRNA variants. In regard to the CIP2A (KIAA1524) gene, there are no genetic homologs in the human genome, and virtually no information exists about the variant forms of CIP2A at either the mRNA or protein level.

Current evidence suggests a pivotal role of alternative splicing (AS) abnormalities in leukemia pathogenesis (12,13). Particularly in acute myeloid leukemia (AML), a prominent component of the disease is recurrent mutations in spliceosome machinery and genome-wide aberrant splicing events (14-17). Despite therapeutic progress, the outlook for AML remains unsatisfactory (18), and up to 50% of AML patients will experience relapse (18,19). In contrast, chronic myeloid leukemia (CML) treatment was revolutionized by the use of targeted tyrosine kinase inhibitors (TKIs)(20,21). However, despite their remarkable clinical efficiency in most CML patients, a significant portion of patients develop resistance to first-generation (1G) TKI imatinib. The identification of such a patient population at the diagnostic phase is important so that these patients could be treated with first-line 2G TKI therapy instead. However, there are no molecular markers that predict treatment failure at the time of diagnosis or for selection of frontline TKI therapy for optimal outcomes (22). Interestingly, both AML and CML are among very few human malignancies in which CIP2A mRNA is not overexpressed; although presumably due to posttranscriptional stabilization, CIP2A is overexpressed at the protein level, and this correlates with more aggressive disease (4,23).

Here, we identified a novel CIP2A variant, NOCIVA (NOvel CIP2A VAriant), that is produced via AS. NOCIVA translates to a unique human protein that can heterodimerize with CIP2A, and bind to the PP2A B56 subunit. In AML and CML, high NOCIVA expression is found as a marker of poor clinical outcome. Of particular clinical relevance in CML, high NOCIVA expression is associated with resistance to the 1G TKI imatinib, but this effect is not seen in patients treated with second-generation TKIs such as dasatinib or nilotinib. 


Materials and Methods

3’ RACE and 5’ RACE
For both 3’ and 5’ rapid amplification of cDNA ends, Invitrogen’s (Carlsbad, CA, USA) 3’RACE (catalog no. 183743-019) and 5’RACE (catalog no. 18374-058) kits were used according to the manufacturer’s protocols. Primer sequences are listed in Supplemental Table 1.

Quantitative real-time PCR (RQ-PCR)
The primer and probe sequences used in this study for RQ-PCR analysis are listed in Supplemental Table S1. NOCIVA RQ-PCR #1, #2 and #3 assays were designed to amplify the NOCIVA specific mRNA sequence (Fig. S1A). The CIP2A RQ-PCR assays were designed to amplify the exon13-14 (CIP2A e13 assay) or exon20-21 (CIP2A e20 assay) branch site. The primer concentration in each reaction was 300 nM and probe concentration 200 nM. 
The standard curve analysis for amplification efficiency and the melting curve analysis for NOCIVA#1 and NOCIVA#2 RQ-PCRs are shown in Figure S1B-J. The amplification efficiency of all used assays, including control genes beta-actin and GAPDH, was 90-100%. Agarose gel electrophoresis of RQ-PCR products also revealed single band for all main assays used in this study (Fig. S1K). Minor groove binding (MGB) based NOCIVA#3 RQ-PCR assay was used for the analysis of the CML study cohort2 (Fig. S1A).
Amplification of target cDNAs was performed using KAPA PROBE FAST RQ-PCR Kit (Kapa Biosystems, Wilmington, MA, USA) and 7900 HT Fast Real-Time PCR System (Thermo Fisher Scientific, Waltham, MA, USA) according to the manufacturers’ instructions. RQ-PCR was executed under the following conditions: 95°C for 10 min followed by 45 cycles of 95°C for 15 s and 60°C for 1min. Relative gene expression data were normalized to the expression level of endogenous house-keeping genes GAPDH and beta-actin using the 2^-ΔΔC(t) method with SDS software (version 2.4.1, Applied Biosystems, Foster City, CA, USA) or with the Thermo Fisher Cloud Real-time qPCR Relative Quantification application. To estimate the degree of overexpression in the AML and CML cohort1, the expression of each gene was normalized to the expression level in a commercial normal BM control sample (pooled from 56 males and females, 636591, lot 1002008, Clontech Laboratories, Fremont, CA, USA). In CML cohort2 a pool of cDNA from 4 normal individuals was used as calibrator and all the samples were normalised to GAPDH as an endogenous control. Results were derived from the average of at least two independent experiments and two technical replicates. 

Patient cohorts
The study was conducted in accordance with the ethical guidelines of the Declaration of Helsinki.
AML study cohort
Basic molecular and clinical characteristics for the 80 patients with AML are listed in Table S2. Detailed information for AML study cohort can be found in (24). All 80 patients received regimens comprising anthracycline and high-dose cytarabine as induction therapy. Their median age was 50 years (Q1 = 38.8, Q3 = 58.0), median overall survival was 5.4 years (95% CI, 2.8 to 7.9) and median follow-up time was 5.4 years (range 6 days–16 years). The European LeukemiaNet (ELN) 2010 genetic risk group classification (25) was used for risk stratification (Table S3). All patients gave informed, written consent which was signed, and the local Ethical Review Board of Turku University Hospital (TYKS) approved the study protocol. 
CML study cohort1
This cohort comprised of 35 newly diagnosed chronic phase CML patients from the University of Liverpool CML biobank. One patient lacked follow up data. Twenty patients received imatinib as a first line therapy and 14 received a second generation TKI, either dasatinib or nilotinib. Their median age was 53.5 years (Q1 = 42.3, Q3 = 62.0), the median follow-up time was 32.5 months (range 9–75 months) and median event free survival was 30.9 months (95% CI, 24.1 to 39.4). All CML cohort1 patients gave informed, written consent which was signed.
CML study cohort2
This cohort consisted of 159 newly diagnosed CML patients from the UK-wide SPIRIT2 clinical trial (26). The samples were the first 141 biobanked samples plus 18 additional patients whose disease progressed. Eighty-one patients received imatinib and 78 dasatinib as their first line treatment. Their median age was 53 years (Q1 = 43, Q3 = 63) and median follow-up time was 60 months (range 1–60 months).
The vast majority of SPIRIT2 entrants gave informed consent to donate samples to the SPIRIT2 biobank housed at Molecular Pathology Laboratory at the Imperial College Healthcare NHS Trust (ICHNT), in addition to the informed, written consent which was signed required to enter the trial. The present project was approved by the National Cancer Research Institute CML subgroup, who have ownership of this biobank, and ethical approval was given by the Liverpool East Committee of the UK National Research Ethics Committee.
 
Statistical analysis
Statistical analysis was performed using SAS software (version 9.3, SAS Institute Inc., Cary, NC, USA) or GraphPad Prism (version 8.3., GraphPad Software, San Diego, CA, USA). Normal distribution of the data was tested and if needed transformations were performed. All statistical tests were two-sided and declared significant at a p-value of less than 0.05. 
Continuous variables were summarized by descriptive statistics (median, interquartile range and range) while frequencies and percentages were calculated for categorical data. Kruskal-Wallis test, Mann-Whitney u-test, one sample t-test and Student’s t-test were used for analyzing continuous variables. For categorical variables, frequency tables were analyzed using Fisher's exact test. A Pearson’s pairwise correlation analysis was performed in a gene-to-gene manner. 
Univariable survival analysis was based on the Kaplan–Meier method where stratum-specific outcomes were compared using log-rank statistics or on Cox proportional hazards regression model. To adjust for the explanatory variables (diagnosis age, expression levels of NOCIVA, CIP2A, SET, EVI1, WT1, ARPP19, TIPRL and PME1), a Cox proportional hazards regression model was used for multivariable analysis. In multivariable analysis, covariates were entered in a stepwise backward manner.
Overall survival (OS) was defined for all patients measured from the date of diagnosis to the date of death from any cause. Event free survival (EFS) was defined as the time from the date of diagnosis to the first occurrence of any of the following: death from any cause during treatment, progression to the accelerated phase or blast crisis, or loss of a cytogenetic response. Time to complete molecular response (CMR) was defined from the date of diagnosis to the date of no detectable BCR-ABL1 transcripts in two consecutive samples with good quality control values (BCR-ABL1/ABL1 ratio of ≤ 0.0032%, in the presence of at least 31623 control ABL1 transcripts). Freedom from progression (FFP) was defined from the date of diagnosis of chronic phase to the date of accelerated phase or blast crisis. 

RNA sequencing of AML patient samples
Eight AML patient bone marrow samples were used for deep RNA sequencing study. Samples with RNA quality numbers ≥9 (Fragment Analyzer (Advanced Analytical Technologies, Heidelberg, Germany)) were selected for RNA library preparation with TruSeq RNA library preparation kit v2 (Illumina, San Diego, CA). Paired-end sequencing with a read length of 100 or 150 bp was performed on an Illumina HiSeq 2500 sequencer, yielding ~114 million read pairs per sample. Image analysis, base calling, and quality check was performed with Illumina data analysis pipelines. The sequencing reads were further trimmed of Illumina adapters using Trimmomatic (version 0.39, (27)). The trimmed reads were then aligned to human reference genome (hg38) allowing for novel junctions using STAR-2.6.1b (28) in two pass mode. The aligned reads were visualized against the known CIP2A gene models and the predicted novel CIP2A isoform (NOCIVA) using the Integrative Genomics Viewer (IGV; (29)). The IGV sashimi plots were drawn to verify the support for the novel junction site between CIP2A exon 13 and 14.

Antibodies
Two NOCIVA specific antibodies were generated by immunizing rabbits against NOCIVA specific peptide NNKNTQEAFQVTS by BioGenes GmbH (Berlin, Germany). Antibodies for IF imaging were anti-CIP2A (sc-80659, 1:5000, Santa Cruz Biotechnology, Dallas, TX, USA) and Alexa Fluor-conjugated anti-mouse or rabbit secondary antibodies (488, 555, 1:300, Thermo Fisher Scientific). Antibodies used in NOCIVA binding assays included anti-B56α (sc-136045, 1:5000, Santa Cruz Biotechnology), anti-V5 (E10/V4RR, 1:5000, Thermo Fisher Scientific) and anti-GST (CAB4169, 1:10 000, Thermo Fisher Scientific). 

Recombinant protein binding assays
CIP2A, NOCIVA and B56 recombinant protein expression, purification and interaction assays were performed as described in (1). 


Results

Identification of a Novel CIP2A Variant (NOCIVA) mRNA Isoform

To identify potential mRNA variants of CIP2A (gene alias KIAA1524), rapid amplification of cDNA ends PCR assays (3’RACE and 5’RACE) were employed in human cell line mRNA samples (PNT2, MDA-MB-231, HeLa). As a result, a novel CIP2A mRNA splice variant (named here as NOCIVA) with alternative exon inclusion was identified (Fig. 1A, Fig. S2A). NOCIVA comprised of exons 1-13 of CIP2A fused C-terminally to a part of the intron between exons 13 and 14 (Fig. 1A). This 349-nucleotide intronic region (Fig. 1A, Fig. S2B) is normally located within intron 13 of the CIP2A gene, more precisely ranging from 108561721 to 108562069 in Homo sapiens chromosome 3 (GRCh38.p13 reference, annotation release 109.20200228). As a clear evidence that NOCIVA constitutes a functional mRNA transcript, NOCIVA mRNA contains a stop codon followed by a 330-nucleotide 3´UTR with a polyadenylation signal (PAS) AATAAA and a poly(A) tail (Fig. 1B, Fig. S2B).

As an indication that NOCIVA mRNA is created by AS, the spliced intron region was found to be flanked by GT and AG dinucleotides (Fig. S2B yellow, GU-AG intron) and the junction site between CIP2A and NOCIVA contains exonic splicing silencer (ESS) matrices, especially Fas ESS and PESS-octamers (Fig. 1C). Further, binding sites for many splice factors, including YB-1, SRp20, Sam68, SLM2, SRp40, and multiple hnRNPs (including hnRNP K), were predicted in the near vicinity of the junction site by SpliceAid 2 (30) and SFmap (version 1.8)(31) (Fig. 1C).

Validation PCR for full-length NOCIVA mRNA expression was conducted in the HeLa cell line with forward primers targeting CIP2A exon 1 and reverse primers targeting the NOCIVA-specific 3’ end of the mRNA (Fig. 2A and Fig. S3A for PCR assay design). Additionally, validation PCR for NOCIVA expression was conducted in multiple cancer cell lines with primers specific to the mRNA sequence that codes for the unique C-terminal portion of NOCIVA (Fig. 2B, and Fig. S3B for PCR assay design). The correctly sized PCR products were subsequently sequenced to confirm the NOCIVA transcript.

To provide methodology-independent validation of the NOCIVA transcript, we analyzed the deep RNA sequencing data of 8 AML patient samples. The sequencing reads were aligned to the human reference genome (hg38), allowing for novel junctions using STAR-2.6.1b in two-pass mode (28). The aligned reads were visualized against the known CIP2A mRNA sequence and the NOCIVA transcript using the Integrative Genomics Viewer (IGV) (32). Two out of eight analyzed samples had detectable expression of reads aligning with the NOCIVA-specific sequence (Fig. 2C, Fig. S3C). Both IGV analysis, and Sashimi plots, verified the existence of a novel junction site resulting in a fusion between CIP2A exon 13 and the NOCIVA-specific sequence within intron 13 of the KIAA1524 gene (Fig. 2C and Fig. S3D).

Together, these results identify NOCIVA as a novel, alternatively spliced CIP2A variant that is expressed in multiple cancer cell lines. The NOCIVA transcript has been assigned a GenBank identifier 2402366.

Characterization of NOCIVA protein

Interestingly, in NOCIVA mRNA, the 5´ end of the NOCIVA-specific intronic sequence is fused in the coding frame with the preceding 3´ end of the CIP2A mRNA sequence. After 39 nucleotides, corresponding to 13 amino acids (AAs) (red text in Fig. 1B), the C-terminal tail is followed by a classical stop codon TAA. Therefore, the potential NOCIVA protein consists of 545 AAs that are shared with CIP2A, followed by the NOCIVA-specific peptide sequence NNKNTQEAFQVTS (Fig. 1B). The novel 13 AA peptide sequence in NOCIVA did not match any known protein sequence in the human proteome based on a BLAST homology search (33) (Fig. S4A, BLASTP 2.8.1+, Database: nonredundant (nr) protein sequences). We used the recombinant NOCIVA peptide to generate two affinity chromatography-purified NOCIVA-specific antibodies. The specificity of the antibodies was tested by using bacterially produced NOCIVA and CIP2A proteins. Anti-NOCIVA antibodies specifically recognized NOCIVA but did not recognize CIP2A protein fragments (Fig. 2D, Fig. S4B for NOCIVA ab #2 data). Importantly, the NOCIVA signal could be abolished by using a blocking peptide (Fig. 2D). Additionally, the C-terminal CIP2A antibody did not recognize NOCIVA (Fig. S4C).

Interestingly, whereas CIP2A resided predominantly in the cytoplasm of MDA-MB-231 breast cancer cells as expected (3), endogenous NOCIVA positivity was clearly nuclear (Fig. 2E and Fig. S4D). A similar conclusion could be drawn from GFP fusion overexpression studies in both the MDB-MB-231 (Fig. 2F) and HeLa (Fig. S4E) cell lines. Hence, NOCIVA expresses a novel immunogenic peptide sequence, and constitutes a CIP2A variant protein that is abundantly localized to the nucleus.

To address NOCIVA protein functions, recombinant GST-NOCIVA (CIP2A 1-545+13 AA peptide) and GST-CIP2A 1-560 were compared (Fig. S4F for Coomassie staining) in terms of two functions critical for CIP2A-mediated PP2A modulation: protein homodimerization, and direct binding to the B56α subunit of PP2A (1). Consistent with the location of B56α binding regions in the N-terminal part of CIP2A 1-560 (1), which is identical between NOCIVA and CIP2A, both proteins co-immunoprecipitated B56α with equal efficiency in vitro (Fig. 3A). NOCIVA could also competently heterodimerize with CIP2A 1-560, albeit with lower affinity than that seen with CIP2A 1-560 homodimers (Fig. 3B). This can be explained by the partial overlap of the CIP2A-NOCIVA fusion site with the AA region mediating CIP2A homodimerization (1)(Fig. 3C, D), and when compared to CIP2A homodimers, in NOCIVA-CIP2A heterodimers, some of the stabilizing interactions are lost (Fig. 3E).

NOCIVA expression in normal and cancer cells

To compare expression levels of NOCIVA mRNA in biological samples with those of CIP2A, we designed and validated two quantitative real-time PCR (RQ-PCR) assays for both NOCIVA (NOCIVA#1 and #2 assays) and CIP2A (CIP2A e13 and e20 assays) (Fig. S5A). The primer sequences are listed in Table S1, and if not otherwise indicated, NOCIVA#1 and CIP2A e20 were the mainstay assays. Notably, CIP2A and NOCIVA RQ-PCR assays were optimized to yield similar amplification efficiencies, allowing a direct comparison between their respective expression levels. 

NOCIVA showed overall low levels of expression across normal human tissues (Fig. 4A), but consistent with its regulation from the same promoter region as CIP2A, the expression profile across different tissues, including high expression in testis, was comparable to that of CIP2A (Fig. 4A and S5B). Although the absolute expression of NOCIVA was below 7% of CIP2A in all tissues, leukocytes, the kidney, and the pancreas had the highest NOCIVA/CIP2A mRNA ratio (Fig. 4B). To address the potential overexpression of NOCIVA in cancer, we assessed NOCIVA mRNA expression between normal epidermal keratinocytes (Ker, NHEK) and patient-derived cutaneous and head and neck squamous cell carcinoma UT-SCC cells (34,35) in which CIP2A was overexpressed (Fig. S5C). NOCIVA mRNA also showed significantly elevated expression in SCC samples compared to NHEKs (Fig. 4C, p=0.0001 by Student’s t-test).

Considering that the highest NOCIVA/CIP2A ratio was found in lymphoid cells (Fig. 4B), we examined NOCIVA expression in lymphoid cancer cells. Relatively higher expression of NOCIVA than CIP2A was observed in most AML (F36P, Eol-1, Kasumi-1, KG-1, MOLM-13) and CML (K562, Ku812, Meg01) cell lines (Fig. 4D). We confirmed the expression of the NOCIVA protein in Kasumi-1 and KG-1 cells by Western blotting. Consistent with the preferential expression of NOCIVA mRNA in lymphoid cells, the expression of NOCIVA protein in AML cells exceeded that of the glioblastoma cell line T98G (Fig. 4E). Encouraged by these results, we validated NOCIVA gene expression from a panel of 80 clinical AML (BM) and 35 CML (peripheral blood) samples. Consistent with earlier results (4,24), 96% of AML and 94% of CML patients expressed lower levels of CIP2A than normal BM controls pooled from 56 males and females (Fig. 4F, G). However, fully supporting active AS from CIP2A to NOCIVA in myeloid cancers, 77% of AML and 65% CML samples displayed overexpression of NOCIVA compared to BM controls (Fig. 4F, G). Based on Pearson pairwise correlation analysis, we found that NOCIVA expression levels in AML samples were significantly correlated among the PP2A inhibitor proteins with PME1 (r=0.43, p=0.0002), ARPP19 (r=0.37, p=0.0014), and SET (r=0.30, p=0.0104), but not with established AML markers Wilms’ tumor 1 (WT1)(36) and ectopic viral integration site-1 (EVI1)(37)(Fig. 4H).

These results show that NOCIVA mRNA is robustly overexpressed in patient AML and CML cells compared to normal BM.

Clinical relevance of NOCIVA expression in diagnostic AML samples

To understand the potential clinical significance of NOCIVA AS, we next analyzed the prognostic significance of NOCIVA mRNA expression in 80 AML patients treated with intensive chemotherapy (AML study cohort, Table S2 and (24)). After dividing NOCIVA expression into high and low expression groups according to the median (2.18, Q1=1.14, Q3=6.65), Kaplan-Meier estimates revealed that high NOCIVA mRNA expression was a strong indicator of shorter overall survival (OS) (Fig. 5A, p=0.022 by log-rank test). Interestingly, low CIP2A e20 (Fig. 5B, p=0.073 by log-rank test) expression was instead a borderline significant predictor of longer OS, indicating that active AS from CIP2A to NOCIVA is oncogenic in AML.

An additional analysis of the prognostic role of the studied genes for OS was performed by a multivariable Cox proportional hazards model, which included age at diagnosis and diagnostic mRNA expression levels of CIP2A e13, CIP2A e20, SET, ARPP19, TIPRL, PME1, EVI1, WT1, and NOCIVA. All the covariates were included in the model as independent predictors. After excluding the nonsignificant markers, age at diagnosis (Fig. 5C, p=0.0013, hazard ratio (HR): 1.07), EVI1 (p=0.0004, HR: 1.27) and NOCIVA gene expression (p=0.0205, HR: 1.51) were found to be independent prognostic factors for OS. It was notable that the hazard ratio for NOCIVA mRNA expression was even higher than that for EVI1 expression or diagnosis age, both of which are considered strong predictors of AML outcome in current clinical practice (37,38).

We also analyzed the association of the studied markers with clinical characteristics and risk groups. The expression of NOCIVA did not show correlations with any of the clinical characteristics: age, sex, leukocyte or BM blast count, secondary leukemia, or presence/absence of a normal karyotype (p>0.05 in all the analyses, Tables S4 and S5). In regard to genetic risk group associations, neither NOCIVA nor CIP2A expression levels showed an association with the ELN-2010 risk group (Fig. 5D, p>0.05 by Kruskal-Wallis test). On the other hand, and as expected, EVI1 mRNA expression at diagnosis was significantly different among the three risk groups, and its expression increased in accordance with the risk group (p=0.005 by Kruskal-Wallis test).

As CIP2A and NOCIVA mRNA expression levels had opposite roles in predicting AML patient OS (Fig. 5A, B), we further tested the predictive role of the ratio of their expression in the same AML cohort. Importantly, among the four evaluated expression ratio pairs, high NOCIVA/low CIP2A selectively predicted poor OS (Fig. 5E). When pooling the other three ratios together, the high NOCIVA/low CIP2A ratio was a significant predictor of inferior OS (Fig. 5F, p=0.042 by log-rank test). These data strongly indicate that rather than the absolute expression of these genes, the ratio between spliced and non-spliced CIP2A mRNA is the determining factor for AML survival. This finding could help develop a clinically translatable assay including the measurement of CIP2A mRNA as an internal control.

Together, these data demonstrate a risk group-independent association between a high NOCIVA/CIP2A expression ratio, and a poor clinical outcome among AML patients treated with intensive chemotherapy.

Clinical relevance of NOCIVA expression in diagnostic CML samples

Next, we evaluated the prognostic significance of NOCIVA mRNA expression in 34 newly diagnosed chronic phase (CP) CML patients (CML study cohort 1). Twenty patients received imatinib (1G TKI), and 14 received dasatinib or nilotinib (2G TKI) as first-line therapy. As calculation of OS was not reasonable in this cohort due to only one death at 60 months, Kaplan-Meier estimates were used to analyze the event-free survival (EFS). Importantly, after dividing NOCIVA expression into high and low expression groups according to the median (5.5, Q1=0.20, Q3=20.0), analysis revealed that high NOCIVA mRNA expression was associated with significantly shorter EFS (Fig. 6A, p=0.024 by log-rank test).

Although TKIs have revolutionized CML therapy, the identification of patients likely to have resistance to frontline 1G TKI imatinib at diagnosis is still a significant unmet clinical challenge (22). Interestingly, EFS was significantly shorter in the high NOCIVA patient group treated with imatinib (Fig. 6B, p=0.004 by log-rank test), but this was not seen among patients treated with 2G TKIs (Fig. 6C, p=0.429 by log-rank test). An analysis of the time to complete molecular response (CMR) was used to assess the depth of a patient’s response, with CMR being the deepest form of response. Patients with high NOCIVA expression had a significantly inferior time to CMR (Fig. 6D, p=0.039 by log-rank test). Critically, none of the patients with high levels of NOCIVA mRNA at diagnosis achieved CMR. Again, among patients treated with 2G TKIs, no association was found between NOCIVA expression and CMR, indicating that 2G TKI therapy may overcome the adverse effect of high NOCIVA mRNA expression.

These findings were then validated in an independent cohort of 159 patients (CML study cohort 2) from the SPIRIT2 clinical trial (26). In this cohort, 81 patients had received imatinib and 78 had received dasatinib as first-line therapy. Similar to CML study cohort 1, high NOCIVA expression at diagnosis was associated with disease progression exclusively among imatinib-treated patients. Imatinib-treated patients who subsequently progressed to blast crisis had higher expression of NOCIVA at diagnosis than patients who did not progress (Fig. 6E, p=0.04 by Mann-Whitney U-test). No significant difference was observed for patients treated with dasatinib (Fig. 6E). Interestingly, imatinib-treated patients with the highest quartile NOCIVA expression at diagnosis had significantly inferior freedom from progression (FFP) compared to patients with lower NOCIVA expression (Fig. 6F, p=0.039 by log-rank test). Consistent with the results from CML study cohort 1, no association between NOCIVA expression and FFP was observed among the dasatinib-treated patients (Fig. 6G). Finally, as a further indication of its independent role as a leukemia oncoprotein, we did not detect a significant association between NOCIVA expression and any of the BRC-ABL transcript variants from the CML cohort 2 (Fig. 6H). 


Discussion
Regardless of the thorough profiling of CIP2A expression across human cancers (2,5), the mRNA or protein variants of CIP2A remain uncharacterized. Here we describe a novel clinically relevant CIP2A variant NOCIVA. One of the most interesting features of NOCIVA is that it codes for a unique immunogenic C-terminal 13 AA peptide tail (Fig. 1B). As no homologous sequences could be identified to the 13 AA NOCIVA tail in the human proteome, NOCIVA can be considered a novel human protein. Strongly indicative of the alternative cellular functions of CIP2A and NOCIVA, the NOCIVA protein was found to be predominantly nuclear, whereas CIP2A mainly resides in the cytoplasm. However, similar to CIP2A, NOCIVA retains the capability to dimerize and bind to B56, indicating that it functions similarly to CIP2A as a PP2A inhibitor protein (1). Further studies on the differential functional roles of NOCIVA and CIP2A are warranted. In particular, the functional importance of the C-terminal truncation of CIP2A in NOCIVA is an important future topic to be addressed, as currently no molecular functions have been assigned to the C-terminal CIP2A tail. Unfortunately, during the project, we failed to yet develop siRNA or CRISPR/Cas9 tools selectively suppressing NOCIVA but not CIP2A. 

AML and CML patient samples displayed clearly higher expression of NOCIVA mRNA than CIP2A, suggesting that during myeloid leukemogenesis, a splicing switch that creates NOCIVA from CIP2A is activated (Fig. 6I). This is interesting, as AML and CML are the only cancer types in which CIP2A seems to be underexpressed at the mRNA level compared to corresponding normal tissue (Fig. 6I)(4,23). At the NOCIVA junction site, exonic splicing silencer sequences (ESSs) as well as binding sites for hnRNPs and various splice factors were found (Fig. 1C). A recent study reported expression changes in 13 hnRNPs affecting mRNA processing in AML (39), among which hnRNP A1, A2B1, and C were predicted to bind to the NOCIVA junction site. Additionally, the expression of hnRNP K (40), SRSF3 (SRp20) (41), and YB-1 (42) has been shown to be altered in AML but also to contribute to leukemia progression. Interestingly, SRSF3 (43) and YB-1 (44) have also been shown to specifically promote exon inclusion during AS. Detailed analysis of the role of these splicing factors in the AS of CIP2A to NOCIVA will be needed in the future to better understand the regulation of NOCIVA in myeloid cancers.

Our data firmly indicate that high NOCIVA mRNA expression is associated with poor clinical outcomes in both AML and CML. The data suggest that if NOCIVA is highly expressed in AML cells at the diagnosis phase, treatment of those patients with standard cytotoxic chemotherapy is not sufficient to kill these cells. Thus, we cautiously propose that NOCIVA contributes to cytotoxic chemotherapy resistance in AML. These novel findings are particularly interesting because NOCIVA expression was independent of the current genetic risk classification in AML, suggesting that the evaluation of NOCIVA expression at diagnosis could provide clinically relevant predictive value. Furthermore, mechanistic follow-up studies of these findings could reveal novel mechanisms mediating AML chemotherapy resistance. In CML, high NOCIVA mRNA expression was associated with inferior EFS and FFP as well as lower rates of CMR in imatinib-treated CML patients. Hence, the data suggest that 2G TKI therapy is needed to overcome the adverse effects of high NOCIVA expression. Currently, a significant number of CML patients still receive 1G TKI as front-line therapy due to the higher costs and worse side-effect profiles of 2G and 3G TKIs. We propose that together with other diagnostic biomarkers, such as BCR-ABL transcript variants, the detection of NOCIVA/CIP2A ratio at the CML diagnostic phase might help in treatment decision making between imatinib and 2G TKIs. The urgent clinical utility of such an assay for CML patient front-line TKI therapy selection was recently highlighted by an expert group (22).

Although previously debated, mRNA expression-based diagnostics have entered clinical CML diagnostics (45). As an example, BCR-ABL1/ABL1 mRNA ratios on the international scale (IS) were shown to predict the success of treatment-free remission attempts for patients with de novo CP CML (46). The technical platforms allowing a standardized clinical assessment of mRNA expression levels for CML samples include droplet digital PCR (ddPCR) (46) and the Cepheid GeneXpert qPCR cartridge system (47). However, currently, there are no patient stratification markers to guide clinicians in the selection of frontline TKI therapy to achieve optimal outcomes in CML patients (22). Based on our nearly identical results from two independent clinical CML cohorts, and independence of NOCIVA from other candidate markers, the determination of NOCIVA mRNA levels from patients with de novo CP CML by ddPCR assay or the Cepheid qPCR cartridge system could provide significant support for clinicians in recognizing patients in need of first-line 2G TKI therapy. Similarly, in AML, high NOCIVA expression at diagnosis could indicate a need for frontline therapy intensification. 

In summary, this work describes the discovery of a novel human gene and protein product with the characteristics of a clinically relevant PP2A inhibitor in myeloid malignancies. Further studies to validate the clinical diagnostic value of NOCIVA mRNA in the identification of imatinib-resistant CML patients, and the mechanistic basis for imatinib resistance are clearly warranted.
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Figure legends

Figure 1. Characterization of NOvel CIP2A VAriant (NOCIVA) mRNA isoform
A) A schematic presentation of the NOCIVA mRNA isoform identified with RACE-PCR. NOCIVA mRNA contains an alternative exon from CIP2A intron 13, and thus forms a unique and previously unknown coding sequence. Untranslated regions (5’UTR or 3’UTR) are marked with dots, the unique alternative exon in NOCIVA with red and NOCIVA specific 3’UTR with blue. Full length CIP2A corresponds to RefSeq NM_020890.2 sequence. B) NOCIVA mRNA’s 3’-end with the differing features from the original CIP2A mRNA sequence. The shared nucleotide sequence between CIP2A and NOCIVA mRNA is underlined. NOCIVA protein comprises 545 N-terminal CIP2A amino acids and 13 unique amino acids on the C-terminus (in red). The stop codon is indicated by an asterisk. NOCIVA mRNA contains a 3’UTR (blue, 1675-2010) with a polyadenylation signal (PAS, AATAAA at 1962-1967). C) The NOCIVA splice junction with splice site predictions from SpliceAid 2. 

Figure 2. NOCIVA is a novel CIP2A splice variant that constitutes a CIP2A variant protein expressed abundantly in the nucleus 
A) PCR validation of the NOCIVA full-length mRNA sequence expression from the Hela cell line. The forward primer for all lanes was the same targeting the CIP2A exon1 and the distinct reverse primers (R1, R2, R3) were all NOCIVA specific. Please see Fig. S3A for schematic presentation of the PCR assay design. Arrows indicate the PCR product with expected size. The indicated bands were extracted and the presence of NOCIVA specific cDNA (mRNA) was confirmed by DNA sequencing. B) PCR validation of NOCIVA specific mRNA expression from several cancer cell lines. PCR was conducted with CIP2A exon13 targeting forward primer and the NOCIVA sequence specific reverse primer. Please see Fig. S3B for schematic presentation of the PCR assay design. NTC = non-template control. C) RNA sequencing alignment data of one AML patient sample for the NOCIVA specific mRNA transcipt. The sequencing reads were aligned to human reference genome (HG38). The aligned reads were visualized against the known CIP2A mRNA sequence and the NOCIVA transcript using the Integrative Genomics Viewer (IGV). D) NOCIVA specific antibody detects correct size (appr. 90 kDa) recombinant GST-NOCIVA protein, but not recombinant CIP2A fragments. One microgram of each protein was loaded. The signal was blocked with a NOCIVA specific peptide. Above the blots is a schematic presentation of the different CIP2A and NOCIVA fragments used. Full length CIP2A comprises of 905 aa. E) Representative confocal immunofluorescence images of MDA-MB-231 cells stained with NOCIVA and CIP2A antibodies for endogenous proteins. NOCIVA green, CIP2A red, nucleus blue. Scale bar 10 µm. F) Representative confocal images of MDA-MB-231 cells transiently overexpressed with NOCIVA-GFP plasmid for 48 hours. Two separate fields are shown.  NOCIVA-GFP green, nucleus blue. Scale bar 10 µm.

Figure 3. Characterization of NOCIVA protein
A) In vitro GST‐pulldown assay for interaction between B56α and GST‐CIP2A(1–560), or GST-NOCIVA. Representative image from three experiments is shown. The graph shows relative B56α ‐binding efficiency of GST-NOCIVA as compared to GST‐CIP2A(1–560), quantified as a ratio between B56α and GST‐CIP2A(1–560) in pulldown samples. Each bar is mean ± SD from three independent B56α ‐binding experiments; p = 0.405 by one sample t-test. B) In vitro hetero-dimerization assay using purified recombinant GST-tagged NOCIVA and CIP2A(1–560) proteins. Representative image from three experiments is shown. The graph shows relative dimerization efficiency of GST-NOCIVA - V5-CIP2A (1-560) heterodimer as compared to GST‐CIP2A (1–560) - V5-CIP2A (1-560) homodimer, quantified as a ratio between CIP2A(1–560)‐V5 and GST‐CIP2A(1–560) from a pulldown sample. Each bar is mean ± SD from three independent experiments; p = 0.017 by one sample t-test. C) Crystal structure of CIP2A(1-560) homodimer (PDB: 5UFL). D) Modeling of dimer interface area of CIP2A-NOCIVA heterodimer. Differences in NOCIVA (residues 546-560), in contrast to CIP2A, are mapped on CIP2A´s surface and shown in purple-blue. C and D were generated in The PyMOL Molecular Graphics System (Version 2.0 Schrödinger, LCC). E) Amino acid residues distinct between CIP2A(1-560) (left panel) and NOCIVA (right panel) are indicated as sticks and colored based on heteroatom. Protein molecule orientation was held in approximately the same for both panels but twisted slightly to show the optimal orientation of the key residues. Image was done using UCSF Chimera (Version 1.14). Differences in the nature of amino acid side chains are represented by the color scheme and also indicated in the alignment, following the same coloring pattern.

Figure 4. NOCIVA mRNA expression in normal and cancerous cells
A) NOCIVA mRNA expression in normal tissue panel (Human MTC panel I & II, Clontech) measured with NOCIVA #1 RQ-PCR assay. B) NOCIVA/CIP2A mRNA expression ratio in normal tissues. The percentage value was obtained from a ratio between NOCIVA expression from A) and CIP2A expression from Figure S5B. C) NOCIVA mRNA expression in patient derived normal human epidermal keratinocytes (Ker, NHEK) and squamous cell carcinoma (SCC) cells. mRNA expression levels in Ker 45B cells were defined as value 1. RQ = relative quantification. p = 0.0001 by Student’s t-test. D) NOCIVA and CIP2A mRNA expression in AML and CML cell lines. mRNA expression levels in Hela cells were defined as value 1. E) Representative western blot images of NOCIVA and CIP2A protein expression in indicated AML and glioblastoma (T98G) cell lines. Three independent cell samples were used from each AML cell line. F) and G) Waterfall plots of analyzed genes from the patient cohorts normalized to the pooled (n=56) normal BM sample. On the y-axis are log10 transformed RQ mRNA expression values derived from two technical replicates in two independent experiments. One bar represents one patient. H) Pearson’s pairwise correlations for the mRNA expression of PP2A inhibitors in the AML patient cohort. NOCIVA correlates with PME1 (r=0.43, p=0.0002), ARPP19 (r=0.37, p=0.0014) and SET (r=0.30, p=0.0104), but not with other studied markers. Red represents positive and blue negative correlation. Grey indicates non-significant correlation (p-value > 0.05). 
Beta-actin & GAPDH were used as housekeeping genes in all experiments presented in this figure. Expression values are derived from three technical replicates in two independent experiments. All the figures show mean ± standard error of mean (SEM).

Figure 5. High NOCIVA expression associates with inferior overall survival in AML patients
A) Kaplan–Meier survival curve for overall survival (OS) by NOCIVA gene expression in the AML study cohort, stratified according to the median expression. Higher NOCIVA expression is associated with shorter OS; p = 0.022 by log-rank test. B) Association of CIP2A gene expression level in the AML study cohort, stratified according to the median expression,  and OS (p = 0.073 by log-rank test). C) Multivariable Cox’s proportional hazard model for OS revealed that age at diagnosis (p = 0.0013, HR: 1.07), EVI1 (p = 0.0004, HR: 1.27) and NOCIVA (p = 0.0205, HR: 1.51) gene expressions were independent prognostic factors for OS. D) Gene expression correlation of the indicated genes  with ELN-2010 genetic risk groups in AML patient cohort by Kruskal-Wallis test. Group 1=favourable, 2=intermediate, 3=adverse. E) Kaplan–Meier survival curve for OS by NOCIVA/CIP2A expression ratio in AML patient cohort. High NOCIVA/low CIP2A expressing patients associates with inferior OS. F) Kaplan–Meier survival curve for OS by NOCIVA/CIP2A expression ratio in AML patient cohort. Shown is NOCIVA high/CIP2A low group in relation to other pooled NOCIVA/CIP2A ratios (NOCIVA high/CIP2A high, NOCIVA low/CIP2A low, NOCIVA low/CIP2A high). NOCIVA high/CIP2A low patients associates with inferior OS; p = 0.042 by log-rank test.

Figure 6. High NOCIVA expression associates with inferior outcome in CML patients treated with imatinib
A) Kaplan–Meier survival curve for event free survival (EFS) by NOCIVA mRNA expression in CML study cohort1. The median level of NOCIVA mRNA expression was used to define the high and low groups in each panel. Higher NOCIVA expression is associated with shorter EFS; p = 0.024 by log-rank test. B) Higher NOCIVA expression is associated with shorter EFS in imatinib treated patients in CML cohort1; p = 0.004 by log-rank test. C) No significant association was found related to NOCIVA gene expression level and EFS in patients treated with 2G TKI in CML cohort1; p = 0.429 by log-rank test. D) Lower NOCIVA mRNA expression is associated with shorter time to complete molecular response (CMR) in imatinib treated patients in CML cohort1; p = 0.039 by log-rank test. E) High NOCIVA expression at diagnosis is associated with disease progression for imatinib-treated patients in CML study cohort2; p = 0.04 by Mann-Whitney u-test. Data represents mean ± SEM. F) High NOCIVA expression is associated with shorter freedom from progression (FFP) in imatinib treated patients in CML cohort2; p = 0.039 by log-rank test. Q4 = highest quartile of NOCIVA mRNA expression. G) No significant association was found related to NOCIVA gene expression level and FFP in patients treated with dasatinib in CML cohort2; p = 0.863 by log-rank test. Q4 = highest quartile of NOCIVA mRNA expression. H) BRC-ABL1 transcript variant (E13A2, E14A2, E13A2 and E14A2) expression in association to NOCIVA expression in CML study cohort2. No significant association was detected between any BCR-ABL transcript variant and NOCIVA expression. I) Schematic presentation of the distict roles of CIP2A and NOCIVA in CML. Whereas NOCIVA is overexpressed in CML at mRNA level, CIP2A is only overexpressed at protein level. In CP CML, high NOCIVA mRNA level predicts for disease progression after 1G TKI (imatinib) treatment whereas high CIP2A protein level predicts for disease progression after 1G or 2G TKI treatment. 
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