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Abstract

Intensive research has been conducted on the verification and valida-
tion of deep neural networks (DNNs), aiming to understand if, and how,
DNNs can be applied to safety critical applications. However, existing
verification and validation techniques are limited by their scalability, over
both the size of the DNN and the size of the dataset. In this paper,
we propose a novel abstraction method which abstracts a DNN and a
dataset into a Bayesian network (BN). We make use of dimensionality
reduction techniques to identify hidden features that have been learned
by hidden layers of the DNN, and associate each hidden feature with a
node of the BN. On this BN, we can conduct probabilistic inference to un-
derstand the behaviours of the DNN processing data. More importantly,
we can derive a runtime monitoring approach to detect in operational
time rare inputs and covariate shift of the input data. We can also adapt
existing structural coverage-guided testing techniques (i.e., based on low-
level elements of the DNN such as neurons), in order to generate test
cases that better exercise hidden features. We implement and evaluate
the BN abstraction technique using our DeepConcolic tool available at
https://github.com/TrustAI/DeepConcolic.

1 Introduction

Neural networks generally work with high precision, but recent work has shown
that they are subject to weaknesses such as adversarial attacks [35], data poison-
ing attacks [2], Trojan attacks [22], model inversion attacks [8], etc. Given their
importance and such weaknesses, the analysis of DNNs has become a popular
research direction, with research on formal verification, coverage-guided testing,
etc. See [16] for a recent survey. The large size of DNNs, containing tens of
thousands of neurons that interact with each other in intricate ways, leads to
the scalability problem of these analysis methods, particularly for white-box
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analysis techniques, whose computational complexity is usually measured over
either the number of neurons or the number of parameters. Moreover, most
analysis methods – either verification or testing – work with local inputs in-
dividually, which easily leads to the other scalability problem when they need
to work with a large dataset. The above scalability problems, due to the size
of DNNs and the size of datasets, imply the need for an abstraction technique
that approximates a DNN and a dataset into a simpler model – while preserving
critical properties – to improve the scalability of the analysis methods.

Contribution. This paper proposes a novel abstraction technique for DNNs
through Bayesian approximation: we abstract the behaviour of a DNN on a
dataset into a Bayesian network (BN), which is a probabilistic graphical model
based on high-level features instead of low-level neurons.

The first step of this abstraction is naturally to identify the relevant hidden
features for each hidden layer. Standard feature extraction techniques are avail-
able, and while we obviously have to select some for experimental results and
explore a few different ways of conducting feature extraction, we predominantly
treat feature extraction as black-box techniques.

The features not only provide the structure of the BN, they also provide, for
each input from a given dataset1, an observation of occurrences of features in
neighbouring layers.

This first allows us to conduct probabilistic reasoning to understand how
the appearance of some input features may statistically affect the appearance
of hidden features or output labels, and how the appearance of some output
label may affect the appearance probability of some input feature, etc. Such
reasoning contributes to a global explainable AI method, helping the users to
understand how the DNN behaves when processing inputs.

Second, we can use the BN as the basis for a simple monitor, which can
be used to identify cases where the classification of the DNN is unreliable. In
particular, we want to identify two situations where the classification of the DNN
becomes unreliable: outliers (data that has hardly ever, or not at all, occurred
during training), and a significantly different long-term behaviour compared to
the training data-based abstraction. Such a significant covariate shift suggests
that the network is used in an environment, which is significantly different from
its training environment, and therefore its decision making might not be reliable.
An outlier suggests that the decision making from the network might not be
reliable. Both cases may compromise the safe application of the DNN.

Third, we design a few coverage metrics over the BN, together with a novel
concolic testing method – based on symbolic execution – considering the infor-
mation from both the network and the BN. These metrics and methods improve
over earlier structural coverage metrics [33] and concolic testing method [32] for

1For most methods, the dataset that has been used to learning a DNN is also used to
identify the features. But we also use fixed features, e.g. when a DNN is used over a new
dataset, and we are also keen to keep this part of the analysis independent from how the
features are selected.

2



DNNs. Since the abstract model can be significantly smaller than the origi-
nal DNN, the effectiveness of the symbolic execution technique for generating
relevant new test cases for the DNN is significantly improved.

In addition to the improved scalability, we show that this approach is closer
to the design intent for deep learning. In convolutional neural networks, while
neurons are the minimal (syntactic) units, the features on either the input or
the hidden layers are the minimal semantic units. As such, the main aim of
both the DNN architecture, and the back-propagation learning algorithm, is to
improve the hidden features learned by hidden layers. There also exist significant
research directions, such as interpretability, that aim at understanding what has
been learned by a DNN, e.g., by visualising the hidden features. We therefore
base our work on the key hypothesis of deep learning that hidden features
should be first-class citizens, rather than neurons, who do not represent a
clear semantics per se.

The organisation of the paper is as follows. In the next section, we will
present preliminaries about deep neural networks, dimensionality reduction,
and Bayesian Networks. In Section 3, we will turn to the presentation of our
Bayesian Network-based approach, including a generic framework on extracting
hidden features for given layers (Section 3.1) and feature space discretisation
(Section 3.2), concrete strategies for feature extraction and discretisation (Sec-
tion 3.3), and the Bayesian network construction (Section 3.4). We then turn in
Section 4 to our approach for exploiting the Bayesian Network for the detection
of unanticipated operational data. Our Bayesian Network-based approach is
further utilised in Section 5 for defining Bayesian Network-based hidden feature
coverage metrics. We discuss in Section 6 our adaptation of a concolic testing
algorithm to achieve the latter coverage, and present in Section 7 our imple-
mentation and evaluation. Finally, we will discuss related works in Section 8
and conclude in Section 9.

2 Preliminaries

Deep Neural Networks Let N be a deep neural network (DNN) of a given
architecture. For a learning model, we use (X,Y ) to denote the training data,
where X is a vector of inputs and Y is a corresponding vector of outputs such
that |X| = |Y |. Let DX be the input domain and DY be the set of labels2.
Hence, X ⊂ DX . We may use x and y to range over DX and DY , respectively.

A networkN :DX → D(DY ) can be seen as a mapping from DX to probabilis-
tic distributions over DY . This means that N (x) is a probabilistic distribution,
which associates each possible label y ∈ DY with a probability value (or confi-
dence level) (N (x))y. We consequently let fN :DX → DY and cN :DX → [0, 1]
be such that, for any x ∈ DX ,

fN (x) = arg max
y∈DY

{(N (x))y}.

2Throughout this paper, we will use double-struck capitals to denote domains.
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fN (x) returns the label with the greatest probability, i.e., the classification
label.

In this work, we consider sequential networks: a network N consists of a
sequence of layers Layers = (l1, . . . , lK), where every layer li ∈ Layers contains a
set of |li| neurons hi =

{
ni,1, . . . , ni,|li|

}
. Each neuron ni,j in hi first computes a

value n̂i,j in some domain that is usually assumed to be the set of Real numbers
R, and this value is typically computed as a function of the outputs of neurons
in layer li−1. The particular semantics of the latter function depends on the role
of the layer: this function often consists of a linear combination of (a portion
of) its inputs, which means that one has

n̂i,j = Wi,j

(
ni−1,1, . . . , ni−1,|li−1|

)
+ bi (1)

where Wi,j and bi are coefficients of weight and bias matrices for the layer, that
are the parameters learned by the network during the training phase.

Other functions are also useful, notably to reduce overfitting by decreasing
the capacity of the network (i.e., the total number of weight and bias parameters
that need to be learned). This is for instance the case of max-pooling layers,
that down-sample their inputs by selecting the maximum over a given subset:

n̂i,j = max sj
(
ni−1,1, . . . , ni−1,|li−1|

)
(2)

where each sj , for j ∈ {1, . . . |li|}, is a function that gives a subset of all given
neuron outputs from the preceding layer (the successive j’s typically result in
a sliding window over all inputs). The functional semantics of such a layer is
therefore non-linear.

Each value n̂i,j of a layer li may additionally pass through an activation
function σi that enables N to capture non-linearities: the output of neuron ni,j
is called its activation, and is then computed as

ni,j = σi(n̂i,j). (3)

Notable examples of activation functions include e.g., ReLU, Sigmoid, tanh, etc.
In this work, we shall focus on the former, which can be defined as:

ReLU(n̂)
def
= max {0, n̂} (4)

The product of domain of all neuron values in hi builds up the valuation space
Li of all neurons for layer li (the n̂i.j ’s); one typically has, therefore, Li = R|li|.
We pose that the valuation of every neuron in the input layer l1 corresponds
to each component (e.g., pixel) of the input x ∈ DX , so that L1 = DX . We

also denote with ĥi(x) ∈ Li the set of all neuron values in layer li (before being
passed through any subsequent activation function), when N is fed with input
x.

Figure 2 presents a simple four layer network, where each of the first three
layers contains 4 neurons and the last layer contains 2 neurons.
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Layer Function specification Output shape #weights + #bias parameters
l0 conv2d (convolutional) 26 × 26 × 8 80
l1 flatten (flat) 5408 0
l2 dense (dense) 42 227 178
l3 dense 1 (dense) 10 430

Table 1: Structure of the DNN Nms, dedicated to the MNIST dataset; layers
l0 and l2 incorporate ReLU activation functions, whereas the output layer l3
involves a classical Softmax to output the predicted label.

Layer Function specification Output shape #weights + #bias parameters
l0 conv2d (convolutional) 26 × 26 × 8 80
l1 max pooling2d (max-pooling) 13 × 13 × 8 0
l1 flatten (flat) 1352 0
l2 dense (dense) 42 56 826
l3 dense 1 (dense) 10 430

Table 2: Structure of the DNN Nmx, similar to Nms except for it incorporates a
max-pooling layer.

Example DNNs for Handwritten Digits Recognition For the purpose
of keeping our illustrations simple, we base most of our examples on a small
DNN Nms, whose structure is summarised in Table 1. We have trained Nms on
the MNIST dataset, that consists of labelled black-and-white images of 28×28
pixels, until it reached a validation accuracy of about 98%. We have similarly
constructed and trained a DNN Nmx that incorporates a max-pooling layer,
summarised in Table 2, to further investigate the effect of such filters on both
the hidden space and the ability of our test generation algorithm to capture
their intrinsically non-linear functional semantics.

Dimensionality Reduction via Feature Extraction The goal of dimen-
sionality reduction techniques consists in computing a mapping from a high-
dimensional space into some space of (much) lower dimensionality, called the
feature space. Computing approaches for such mappings usually rely on statisti-
cal principles and operate on a given sample of high-dimensional data; prominent
examples include Principal Component Analysis (PCA), t-distributed Stochastic
Neighbour Embedding (t-SNE) [25], or other forms of kernel tricks [36]. Other
techniques that do not specifically address dimensionality reduction per se, still
compute relevant transformations in our context—such is the case of Indepen-
dent Component Analysis (ICA) [17]. Each one of these techniques results in
mappings that satisfy various properties of interest, among which we notice:

Linearity: this property is satisfied when the obtained mapping consists of
a pair of matrices W ∈ DH×L and B ∈ DL for some field D, such that
any element x ∈ DH from the H-dimensional space is mapped onto the
element xW +B ∈ DL in the L-dimensional feature space. Both PCA and
ICA belong to the set of techniques that give such linear mappings.

Orthogonality: PCA computes features one by one, in an effort to minimise
the variance of the data. The importance of the features – in terms of
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their effectiveness in the reduction of variance – is gradually decreased,
although the features are orthogonal (linear independence) to each other.
Conversely, ICA computes features at the same time, and the generated
features may not be orthogonal to each other.

Many available dimensionality reduction techniques compute mappings that are
non-linear, such as t-SNE for instance, which is a supervised learning procedure
that tries to separate clusters of samples of the same label for adequate visual
representations in 2D or 3D spaces. Whereas some of these techniques are
adequate for constructing our BN abstraction, we focus in this work on feature
mappings that are linear. This restriction will actually enable us to provide an
effective feature-based test-case generation algorithm.

We will consider feature mappings in decomposed form: a mapping will be
given as a set Λ = {λj}j∈{1,...,|Λ|}, where each λj maps the high-dimensional

space into the jth-component of the feature space. We will use a double-struck
capital F to denote such a feature space, and indexed F’s to denote the domain
of each one of its individual components (typically R).

Bayesian Network A Bayesian Network (BN) B = (V,E, P ) is a directed
acyclic graph (DAG) whose nodes V represent variables in the Bayesian sense [20],
E are edges, and P maps each node in V to a set of probability tables. B is such
that each edge in E represents conditional dependencies, and nodes that are not
connected (no path connects one node to another) represent variables that are
conditionally independent of each other. In our BN-based analysis, every node
that has at least one incoming edge will be attached with a conditional proba-
bility table, and each source node will be associated with a marginal probability
table.

Figure 1 presents a simple BN abstracted from Nms according to the process
described in the next Section. It represents 6 binary variables (that take their
values in the set {0, 1}), and it thus has 6 nodes, each of which is attached with
a probability table. The two nodes conv2d.0 and conv2d.1 have no predecessor,
and they are thus only associated with marginal probability tables. From the
first table, we can learn that the variable conv2d.0 takes value 0 with probability
0.5. Every other table in this Figure represents a set of conditional probabilities:
for instance, under the condition that variables dense.0 and dense.1 respectively
hold values 1 and 0, then the variable dense 1.0 takes value 0 with probability
0.05.

3 Bayesian Network-based Abstraction of DNN

Let us now turn to the description of our approach for constructing a Bayesian
Network in a way that suits out needs for capturing the distribution of neuron
valuations in terms of hidden features encoded in each DNN layers, as well as
their causal relationships.
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Figure 1: An example Bayesian network abstracted from a network of three
hidden layers (one convolutional followed by two fully-connected layers) trained
on MNIST dataset.

3.1 Extraction of Hidden Features

Let us assume that some feature extraction technique from Section 2 has been
used to analyse the set of neuron values n̂i,1, . . . , n̂i,|li| that are induced by all
inputs in a given training set Xtrain ⊂ DX at a given layer li ∈ Layers. This
produces a set of feature mappings Λi = {λi,j}j∈{1,...,|Λi|}, where each λi,j :Li →
Fi,j maps the neuron valuation space Li into the j-th component of the feature

space Fi for layer li. The latter space is the product Fi
def
=
∏

j∈{1,...,|Λi|} Fi,j .

Further, Λi is such that the neuron values ĥi(x) – i.e., before being fed to
the activation function σi – for any input x ∈ DX , can be transformed into a
|Λi|-dimensional vector

〈λi,1 ◦ ĥi(x), . . . , λi,|Λi| ◦ ĥi(x)〉 ∈ Fi (5)

where λi,j ◦ ĥi(x) represents the j-th component of the value obtained after

mapping ĥi(x) into the feature space. We will refer to the projection λi,j ◦ ĥi(x)
as the hidden feature valuation induced by x on component Fi,j .

Figure 2 gives an illustrative diagram of reducing h1, h2, h3 to features. In
particular, each hi is reduced to two features λi,1 ◦ hi and λi,2 ◦ hi.
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𝜆2,1ℎ2

𝜆 2,2ℎ2

𝜆1,1ℎ1

𝜆 1,2ℎ1

𝜆 3,1ℎ3

𝜆 3,2ℎ3

𝑛1,1

𝑛1,2

𝑛1,3

𝑛1,4

𝑛2,1

𝑛2,2

𝑛2,3

𝑛2,4

𝑛3,1

𝑛3,2

𝑛3,3

𝑛3,4

ℎ1 = (𝑛1,1,𝑛1,2,𝑛1,3,𝑛1,4) ℎ2 = (𝑛2,1,𝑛2,2,𝑛2,3,𝑛2,4) ℎ3 = (𝑛3,1,𝑛3,2,𝑛3,3,𝑛3,4)

Dimensionality reduction

𝜆1,1ℎ1 < 5 𝜆1,1ℎ1 ≥ 5

0.8 0.2

𝜆1,2ℎ1 < 2 𝜆1,2ℎ1 ≥ 2

0.7 0.3

𝜆3,1ℎ3 < 3 𝜆3,1ℎ3 ≥ 3

𝜆2,1ℎ2 < 4 𝜆2,2ℎ2 < 1 1.0 0
𝜆2,1ℎ2 < 4 𝜆2,2ℎ2 ≥ 1 0.8 0.2
𝜆2,1ℎ2 ≥ 4 𝜆2,2ℎ2 < 1 0.5 0.5
𝜆2,1ℎ2 ≥ 4 𝜆2,2ℎ2 ≥ 1 0.6 0.4

𝜆3,2ℎ3 < 3 𝜆3,2ℎ3 ≥ 3

𝜆2,1ℎ2 < 4 𝜆2,2ℎ2 < 1 0.4 0.6
𝜆2,1ℎ2 < 4 𝜆2,2ℎ2 ≥ 1 0.9 0.1
𝜆2,1ℎ2 ≥ 4 𝜆2,2ℎ2 < 1 0 1.0
𝜆2,1ℎ2 ≥ 4 𝜆2,2ℎ2 ≥ 1 0.3 0.7

…

Figure 2: Illustration of our Reduction of Neural Networks to Bayesian Networks

3.2 Discretisation of the Hidden Feature Space

The feature extraction techniques mentioned in Section 2 result in mappings λi,j
that range over a continuous and potentially infinite domain, such as R. Yet,
our BN-based abstraction technique relies on the construction of probability
tables, where each entry associates a set of distinct hidden feature values with
a probability. For this construction to be relevant, we therefore discretise each
hidden feature component into a finite set of sub-spaces. We first introduce
the general process and notations we use for discretising hidden features, and
elaborate on various strategies in the next Section.

Discretisation Process We define the discretisation process in a similar way
as the feature extraction above, and rely on a set of training inputs Xtrain to
gather statistics about the projections onto each hidden feature component of
the resulting neuron values. Given such a component F, we use these aggregate
statistics to find a partition of F.

We give in Figure 3 an illustration of what the discretisation process pro-
duces. Each plot focuses on one hidden feature component Fdense,j of a layer
dense, and the clouds of dots represents the respective distribution of hidden
feature values λdense,j ◦ ĥdense(x), for x uniformly drawn from a subset of Xtrain .
The goal of the discretisation process is therefore to partition each horizontal
axis into a set of distinct regions. In this work, we only consider partitions into
finite sets of intervals. We describe the remaining elements of Figure 3 in the
next Section.

More specifically, the discretisation process produces two objects for each
mapping λi,j :

8



−10 −5 0 5 10 15

0.00

0.02

0.04

0.06

0.08

d
e
n
si

ty
Fdense,0

−15 −10 −5 0 5 10 15

0.00

0.02

0.04

0.06

0.08

0.10

d
e
n
si

ty

Fdense,1

Figure 3: Projection onto two hidden feature components Fdense,0 and Fdense,1

of neuron values induced by a sample of training data Xtrain , associated density
estimates (solid lines), and interval boundaries for discretisation (dashed vertical
lines). Although our current strategies for discretisation ignore input labels, we
still represent them by colouring the respective dots.

• a finite set of intervals that partitions the feature component;
• a total discretisation function that maps each neuron valuation for this

layer, i.e., that belongs to Li, onto the corresponding interval.

Further Notations We use ] exponents to denote discrete spaces, or entities
that belong to a discrete space. Formally, the process of discretising a feature
mapping λi,j consists in finding a finite set of m right-open intervals F]

i,j ={
f ]1i,j , . . . , f

]m
i,j

}
that partitions the codomain Fi,j of λi,j .

Example 3.1 (Lidden feature partitioning). We may partition Fi,j = (−∞,∞)

into two intervals F]
i,j =

{
f ]1i,j , f

]2
i,j

}
such that f ]1i,j includes all real numbers

strictly lower than 5, and f ]2i,j includes all real numbers greater or equal than 5.

Given an interval f ]ki,j , we denote with f
[k
i,j (resp. f

k[
i,j) the least element in

f ]ki,j (resp. the least element not in f ]ki,j). This discretisation being a partition,

one always has f
[1
i,j = −∞ and f

n[
i,j =∞ if the component ranges over R.

Example 3.2 (Continuing Example 3.1). We can write f ]1i,j as (−∞, 5[ and f ]2i,j
as [5,+∞).

To obtain the hidden feature interval that results from all neuron values at
layer li, we define the discretisation function Discr]i,j :Li → F]

i,j as the total map-
ping that gives the interval for the jth component at layer li, which corresponds
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Fi,1

f
[2
i,1

f
[3
i,1

f
[4
i,1

Fi,2

f
[2
i,2

f
[3
i,2

f]1i,1
f]2i,1

f]3i,1
f]4i,1

f]1i,2

f]2i,2

f]3i,2

Li

ĥi(x)

λ i
,1

λ
i,2

Figure 4: Schematic representation of the discretised feature space for a single
layer li, and two extracted features. The ellipse represents the high-dimensional
valuation space for li, i.e., Li, and we illustrate the discretisation of two fea-
ture components Fi,1 and Fi,1 that are induced by mappings λi,1 and λi,2,
respectively. We arbitrarily partition feature λi,1 into a set of four intervals

F]
i,1 =

{
f ]1i,1, . . . , f

]4
i,1

}
, and λi,2 into three intervals F]

i,2 =
{
f ]1i,2, . . . , f

]3
i,2

}
. The

application of λi,1 and λi,2 on the valuation ĥi(x) induced by some input x ∈ DX

gives feature values λi,1 ◦ ĥi(x) and λi,2 ◦ ĥi(x) that belong to intervals f ]2i,1 and

f ]3i,2, respectively.

to the interval obtained for the discretised hidden feature component Fi,j ; i.e.,

Discr]i,j ◦ ĥi(x) = f ]ki,j iff λi,j ◦ ĥi(x) ∈ f ]ki,j .
At last, we define the full discretised hidden feature space for a layer li as

the product F]
i

def
=
∏

j∈{1,...,|Λi|} F
]
i,j , and use F ]

i to denote elements of F]
i .

Illustrations We illustrate in Figure 4 the notations that we use to de-
note the discretisation for a single layer according to some feature mapping
Λi ⊇ {λi,1, λi,2} and arbitrary discretisations to four and three intervals, re-

spectively: i.e., F]
i,1 =

{
f ]1i,1, . . . , f

]4
i,1

}
and F]

i,2 =
{
f ]1i,2, . . . , f

]3
i,2

}
. We also show

the respective intervals obtained from the neuron values induced by some input
x as λi,1 ◦ ĥi(x) ∈ f ]2i,1 and λ1,2 ◦ ĥi(x) ∈ f ]3i,2; in other words: the application

of the feature mapping λi,1 to the neuron values ĥi(x) at layer li obtained with

input x, belongs to the second interval f ]2i,1 in the discretisation of Fi,1. We

apply the same principle and obtain the third interval f ]3i,2 for Fi,2.

Example 3.3. We further give in Figure 2 a more concrete example, where the
feature λ1,1 is split into the set of ranges {(−∞, 5[, [5,+∞)} , and the feature
component λ2,2 is partitioned into {(−∞, 1[, [1,+∞)}.
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3.3 Strategies for Hidden Feature Extraction & Discreti-
sation

Predefined strategies need to be employed for both extracting hidden features
(i.e., to identify a number of mappings that correspond to relevant hidden fea-
tures), and constructing a discretisation as defined above, for each of them.

At this stage, we can anticipate that the choice of such strategies has a great
impact on various properties of the resulting discretised hidden feature space,
such as its ability to accurately separate the hidden feature valuations that are
induced by “sufficiently” dissimilar inputs, or to isolate hidden sub-spaces that
correspond to corner cases. In particular, we hypothesise that various character-
istics of each layer within the neural network, such as its function and position
(depth), need to be taken into consideration when selecting discretisation strate-
gies.

Furthermore, the fact that we use the training data to perform extractions
and discretisations has an impact on the semantics of the resulting hidden sub-
spaces. Indeed, in doing so we rely on the training data and the set of neuron
valuations it induces within the DNN to infer an abstract representation of its
learned behaviours. For now, we devise and explain several such strategies.

Density-based Discretisation Let us now refer to the density estimates
given in Figure 3. These estimations were obtained using Kernel Density Es-
timation (with Gaussian kernels), which is a standard technique for empiri-
cally approximating a probability distribution over a given domain (here, each
Fdense,j). We can first observe that the distributions of hidden feature values
exhibit some irregularities that can be exploited to identify relevant intervals.

We adapt DeepGauge’s idea to identify corner-cases in test data (w.r.t. train-
ing) among sets of neuron activations by singling out regions of neuron values
that are never encountered in test data [24]. In our case, this naturally trans-
lates into the identification of hidden feature component intervals that are not
exercised (enough) by the neuron values induced by the training dataset.

For each hidden feature component, our strategy for computing intervals us-
ing density estimates consists of a simple analysis of the associated density dis-
tribution. We define as interval boundaries the hidden feature values: (i) where
the density crosses a given lower-bound threshold dmin ; (ii) prominent local
minima with density strictly greater than dmin . In Figure 3, the dashed vertical
lines illustrate the result of such a discretisation strategy for the two considered
hidden feature components.

Further, Simpler Discretisations For the purposes of our initial approach,
we also investigate two basic discretisation strategies that operate by partition-

ing each segment
[
min

(
λi,j ◦ ĥi(Xtrain)

)
,max

(
λi,j ◦ ĥi(Xtrain)

)]
:

k-bins-uniform: The set of intervals partitions the segment into a given
strictly positive number k of bins, all of the same width;

11



k-bins-quantile: The set of intervals is created as above, except that their
respective width is calculated so that every interval holds a similar amount
of individual projections from the training dataset λi,j ◦ ĥi(Xtrain). For
instance, the 4-bins-quantile strategy proceeds by gathering all projected
activations into 4 equally populated bins, and then computes 4 intervals
based on the edges of each bin.

The resulting set of intervals is straightforwardly augmented with two left- and
right-open intervals to obtain a partition of the hidden feature component line.
These latter intervals are regions of neuron valuations that we assume corre-
spond to corner cases for the DNN under investigation.

The combined set of extracted and discretised hidden features provides us
with a discrete and low-dimensional space that we can use to reason about the
neuron valuations induced by any given input x. This space will, in particular,
allow us to associate each combination of hidden feature intervals with a measure
of its occurrence within a given dataset (other that Xtrain), as well as reason
about the dependencies between intervals of successive layers.

For the sake of conciseness, we will say that such an input (or set of inputs)

elicits or exercises a given hidden feature interval f ]ki,j , noted x  f ]ki,j (or

X  f ]ki,j), when Discr]i,j ◦ ĥi(x) = f ]ki,j . We generalise this notation to a given

combination of intervals F ]
i =

(
f ]k1

i,1 , . . . , f
]k|Λi|
i,|Λi|

)
∈ F]

i for all hidden features

extracted for a layer li as x F ]
i

def
=
∧

j∈{1,...,|Λi|} x f
]kj

i,j .

3.4 Construction of the Bayesian Network Abstraction

The abstraction that we construct primarily represents the probabilistic distri-
bution of the set of hidden feature values induced by a test sample X. In other
words, given an input x ∈ X, the abstraction allows us to estimate the proba-
bility that x induces a given combination of values for the hidden features that
have been learned by the DNN.

Thanks to the layered and acyclic nature of the DNNs that we consider,
we can directly characterise the causal relationship between the sets of neuron
values in various layers w.r.t. a series of inputs as well. In other words, given an
input x ∈ X, one can in principle estimate the conditional probability of each
neuron value at layer li w.r.t. the probability of every combination of neuron
values at layer li−1. By lifting the above relationship from individual neuron
values to hidden feature intervals, we seek to capture causal semantic relations
that link the features at each layer: in a layer li, and with an input x, the
probability that a hidden feature valuation belongs to a given interval in the
corresponding feature space is dependent on probabilities pertained to hidden
feature intervals at layer li−1.

Let us assume that suitable feature-extraction and discretisation strate-
gies have been employed to obtain a set of discretised feature components

F]
N =

{
F]

1,1,F
]
1,2, . . . ,F

]
K,|ΛK |

}
for a network N with layers (l1, . . . , lK). We
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first associate each hidden feature component Fi,j with a discrete (i.e., cate-

gorical) random variable ranging over F]
i,j . The causal relationship assump-

tion further gives us the structure of a Discrete Bayesian Network, where each
node is associated with a discretised hidden feature, and each edge denotes
the dependency between a pair of hidden features in successive layers. Given
this structure and a set of inputs X ⊂ DX , Bayesian inference on the sets

of feature intervals
{
Discr]i,j ◦ ĥi(X)

∣∣∣ j ∈ {1, . . . , |Λi|}
}

, for 1 ≤ i ≤ K, al-

lows us to estimate the probabilities mentioned above, and construct a BN

BN ,X
def
= (VN ,X , EN ,X , PN ,X), where

VN ,X
def
=
{

Lf ]i,jM
∣∣∣F]

i,j ∈ F]
N

}
(6)

is the set of nodes, i.e., one variable for each extracted feature component,

EN ,X
def
=

⋃
1<i≤K

{
Lf ]i−1,1M, . . . , Lf

]
i−1,|Λi−1|M

}
×
{

Lf ]i,1M, . . . , Lf
]
i,|Λi|M

}
(7)

is the set of edges connecting features in neighbouring layers, and

PN ,XLf ]i,jM
def
=

P1

(
f ]k1,j

)
if i = 1

CPi
(
f ]ki,j

∣∣∣F ]
i−1

)
otherwise

(8)

associates each node with either a marginal probability table (for hidden features
of layer l1) or a conditional probability table (for hidden or output layers). A

conditional probability table CPi
(
f ]ki,j

∣∣∣F ]
i−1

)
is defined for each feature interval

f ]ki,j ∈ F]
i,j for layer li, w.r.t. each combination of feature intervals F ]

i−1 for layer
li−1, as

CPi
(
f ]ki,j

∣∣∣F ]
i−1

)
def
= Pr

(
x f ]ki,j

∣∣∣x F ]
i−1

)
. (9)

Intuitively, CPi
(
f ]ki,j

∣∣∣F ]
i−1

)
gives the probability that any input x ∈ X chosen

uniformly exhibits feature interval f ]ki,j , knowing that it exhibits intervals F ]
i−1

for all extracted features at layer li−1.
One can compute marginal probabilities for hidden feature intervals that

pertain to hidden and output layers based on the conditional probability tables
as defined in Eq (9): the unconditional probability obtained for every interval

f ]ki,j ∈ F]
i,j is then

Pi
(
f ]ki,j

)
def
= Pr

(
x f ]ki,j

)
. (10)

Eq. (10) gives the probability that, given any input x chosen uniformly in X,

λi,j ◦ ĥi(x) belongs to a given feature interval f ]ki,j , without any knowledge on
the neuron values. Hidden features pertaining to the input later are not sub-
ject to any conditional dependence in the BN we construct. We therefore use

P1

(
f ]k1,j

)
in Eq. (8), which estimates the unconditional probabilities associated

with hidden feature intervals of l1.
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Observe that, according to Eq. (7), the value of each feature extracted from a
layer li is assumed to directly depend on the value of every feature for layer li−1;
this assumption is further reflected in the construction of conditional probability
tables in Eq. (8). Figure 2 contains an example BN, where the above assump-
tion induces full connections between the nodes pertaining to successive layers.
Figure 2 additionally gives two conditional probability tables for Discr]3,1 ◦ h3

and Discr]3,2 ◦h3, respectively; it also shows two unconditional probability tables

for Discr]1,1 ◦ h1 and Discr]1,2 ◦ h1, respectively. The tables are attached to their
respective BN nodes.

3.5 Preserved Property

First of all, we show that the constructed BN is an abstraction of the NN. Given
a finite set X of inputs, an abstraction constructs a set X ′ ⊇ X that generalises
X to more elements [12]. Given an input x and a BN BN ,X , we are able to
check the probability of x on BN ,X , i.e., BN ,X(x). We say that x is included in
BN ,X if BN ,X(x) > 0. The following lemma suggests that every sample in X is
included in BN ,X :

Lemma 1. All inputs x in the dataset X are included in the BN ,X with proba-
bility greater than 0.

Let X ′ be the set of inputs that satisfy BN ,X(x) > 0. This lemma suggests
that X ′ ⊃ X. Therefore, BN ,X defines an abstraction of the dataset X. This
abstraction also suggests that the abstraction assumption – i.e., inputs that are
outliers w.r.t. the abstraction are also outliers w.r.t. the original neural network
– is reasonable because X ′ ⊃ X.

4 Exploiting the Bayesian Network

4.1 Probabilistic Inference

Given a BN BN ,X , we can conduct probabilistic inference to understand how
the original neural network processes inputs. By doing this, we gain a better
understanding about the “black-box” neural network – and improve its inter-
pretability/explainability – by conducting causal and evidential reasoning.

Causal Reasoning is to understand how the up-stream causes may affect the
down-stream effects. Typically, it considers queries such as how the appearance
of some input features may statistically affect how a given hidden feature or
output label is exercised.

A BN is a joint probability P (F ]
1 , . . . , F

]
K) =

∏K
i=1

∏F ]
i

j=1 PN ,XLf ]i,jM—cf.

Eq. (8). If we have evidence on the input feature by having, e.g., Lf ]1,j1M = v for
some value v, then we will be able to reason about the maximum a posteriori
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(MAP) estimation of the output labels, MAP
(
Lf ]K,j2

M
∣∣∣ Lf ]1,j1M = v

)
, which rep-

resents the maximum probability the output label j2 can have after considering
not only the evidence Lf ]1,j1M = v but also all possible values of other nodes on
the BN.

Evidential Reasoning is to understand how the availability of evidence on
the down-stream effects may affect the up-stream causes. Typically, it consid-
ers queries such as how the appearance of some output label may affect the
appearance probability of some input feature.

Considering a given label j2 (that is, we have an evidence that Lf ]K,j2
M = 1

and ∀j 6= j2: Lf ]K,jM = 0), the probability of P1

(
f ]k1,j

)
may change to reflect

the availability of the evidence. It is possible that some features may be more
important for some specific label.

4.2 Runtime Monitoring

We propose two ways of monitoring the behaviour of a DNN through its associ-
ated BN. The first one is to monitor the distribution shift by comparing a BN
obtained from operational data and the original BN obtained using the training
data. The second is to monitor the possibility of a given input to determine the
risk of a safety violation by checking if it is an outlier.

Monitoring Distribution Shift Let BN ,X = (VN ,X , EN ,X , PN ,X) be the
BN we learned from the training dataset. It can be seen as a generative model
for the dataset X. Covariate shift, an important kind of distribution shift, refers
to the change in the distribution of the input variables present in the training
and the test data. Now, assume that we have collected a set X ′ of operational
data. We can use X ′ to construct another BN BN ,X′ = (VN ,X , EN ,X , PN ,X′)
that has the same structure as BN ,X (i.e., the vertices and the edges remain),
but where the probability tables are re-generated according to X ′.

By comparing the probabilities in BN ,X and BN ,X′ , we can assess whether
some of the probabilistic causal relations are changed. Indeed, a change on
probabilistic causal relation may imply the change on a conditional probability
represented by the BN, on which the probabilistic causal relation is a factor.

Detecting Outliers Unlike the above methods which only consider the close-
ness of the new input with the training dataset in terms of geometric distance,
we can assess whether any new input is an outlier by considering its probability
on the BN: any input x′ for which

BN ,X(x′) = 0 (11)

will be identified as an outlier. As implied by Lemma 1, our abstraction is sound
because all training instances are considered and none of them will lead to the
case of Eq. (11).
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5 Bayesian Network-based Feature Coverage

Given a trained DNN N , the process described in Section 3.4 provides a method
for constructing a BN BN ,X , whose structure is derived using assumed depen-
dencies between hidden features that are extracted and discretised by means of
the techniques specified in Section 3.3. The probabilities in BN ,X are further
inferred using the set of hidden feature valuations induced by X, and provide
useful insights on whether X:

(i) induces a varied range of valuations for each extracted hidden feature; and
(ii) exercises the assumed relationships between hidden feature intervals.

Our BN abstraction can therefore be used to define some quality metric for the
set X, in terms of the hidden features that are captured in layers of N that X
does or does not exhibit. We elaborate on this idea in this Section, and develop
new coverage metrics that can be used to assess the quality of test datasets.
We show in the subsequent Section how these metrics can also be exploited to
generate new inputs for the purpose of increasing the range of hidden feature
valuations and causal relationships induced by such datasets.

5.1 Eliciting Semantic Assumptions Missed by Test Data

Observe that a marginal probability Pi
(
f ]ki,j

)
< ε computed based on a BN

BN ,X , where ε is a small-enough probability, expresses that f ]ki,j is a hidden fea-
ture interval that is rarely elicited by any input in X. Similarly, a conditional

probability CPi
(
f ]ki,j

∣∣∣F ]
i−1

)
< ε expresses that an assumed causal dependency

between intervals for all hidden features of layer li−1 and a hidden feature in-
terval f ]ki,j for li is not exercised by X. Under the assumption that the hidden
sub-space that underlies the structure of BN ,X reflects high-level (semantic) be-
haviours thatN must capture, then both cases lead to clearly identified semantic
assumptions that are not tested by any input from X, or not tested enough.
We now turn these observation into more formal definitions of coverage metrics.

Hidden Feature Coverage The first BN-based coverage metric that we de-
fine disregards conditional probabilities, and concentrates on each individual
hidden feature interval in isolation:

Definition 5.1 (BN-based Feature Coverage). Given a trained DNN N , the
BN-based feature coverage of a non-empty set of inputs X ⊂ DX is obtained via
the BN abstraction BN ,X as

BFCov (BN ,X)
def
=

1∣∣VN ,X

∣∣ ∑
Lf]

i,jM∈VN ,X

∣∣∣{f ]ki,j ∈ F]
i,j

∣∣∣Pi(f ]ki,j) ≥ ε}∣∣∣∣∣∣F]
i,j

∣∣∣ . (12)

Informally, BFCov (BN ,X) ranges over ]0, 1], and gives the proportion of
features that are exercised (enough) by X—this measure cannot be null if ε is
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sufficiently small, since the sum of all the entries of the probability tables is
always one.

Example 5.1. Consider the BN given in Figure 2. For layer l3, the follow-
ing marginals can be computed based on the given two conditional proba-
bility tables: Pr(λ3,1 ◦ h3(x) < 3) ≈ 0.725, Pr(λ3,1 ◦ h3(x) ≥ 3) ≈ 0.275,
Pr(λ3,2 ◦ h3(x) < 3) ≈ 0.4, and Pr(λ3,2 ◦ h3(x) ≥ 3) ≈ 0.6. Assuming a dataset
X was used to infer the probabilities in the figure (and assuming similar non-
negligible marginal probabilities for the nodes pertained to layers l1 and l2),
then we obtain BFCov (BN ,X) = 1. This means that X adequately covers the
full range of hidden features values learnt by the abstracted DNN.

Yet, the null conditional probabilities in the figure indicate that some com-
binations of hidden feature intervals between l2 and l3 are not exercised by
X.

Hidden Feature-dependence Coverage We further exploit the insights on
causal relationships exercised by a dataset X that the conditional probabilities
of a BN BN ,X provide to define the following coverage metric:

Definition 5.2 (BN-based Feature-dependence Coverage). Given a trained
DNN N , the BN-based feature-dependence coverage of a non-empty set of inputs
X ⊂ DX is obtained via the BN abstraction BN ,X as

BFdCov (BN ,X)
def
=

1∣∣∣V +
N ,X

∣∣∣
∑

Lf]
i,jM∈V +

N ,X

∣∣∣∣∣∣∣
(f ]ki,j , F

]
i−1) ∈

F]
i,j × F]

i−1

∣∣∣∣∣∣∣
CPi
(
f ]ki,j

∣∣∣F ]
i−1

)
≥ ε

∨ Pi
(
f ]ki,j

)
< ε


∣∣∣∣∣∣∣∣∣∣F]

i,j × F]
i−1

∣∣∣
(13)

where V +
N ,X

def
=
{

Lf ]i,jM ∈ VN ,X

∣∣∣ i > 1
}

are all nodes in BN ,X that represent

hidden features extracted for hidden or output layers.

BFdCov (BN ,X) gives the proportion of assumed causal relationships be-
tween features of successive layers that are exercised (enough) by X. Observe
that this metric only takes conditional probabilities into account; therefore, the
first layer (i.e., for i = 1) is taken out of the summation, and the normalisation
factor is adjusted accordingly. Further, the set above the innermost fraction
includes the conditional probability entries pertaining to hidden feature inter-

vals that are not elicited by X (i.e., for which Pi
(
f ]ki,j

)
< ε). We eliminate

the impact of feature coverage as measured in Def. 5.1 on feature-dependence
coverage in this way, i.e., so that BFdCov (BN ,X) only captures the causal re-
lationships between hidden features that are not exercised by X, whatever the
actual coverage of hidden features that X induces.

At last, we straightforwardly combine the two above metrics to provide a
consistent coverage measure that is based on every probability entry of the BN:

BFxCov (BN ,X)
def
= BFCov (BN ,X)× BFdCov (BN ,X) . (14)

17



Example 5.2. Continuing Example 5.1 (and, again, further assuming non-
negligible entries in the conditional probability tables that are not shown in
Figure 2), we obtain

BFdCov (BN ,X) =
1

4
×
(

2× 8

8
+ 2× 7

8

)
=

15

16
≈ 94%.

Coverage Criteria We trivially derive the following test criteria from the
coverage metrics given in Defs. 5.1 and 5.2:

Definition 5.3 (BN-based Feature Coverage Criterion). A non-empty set of
inputs X ⊂ DX satisfies the BN-based feature coverage criterion that is obtained
via the BN abstraction BN ,X iff BFCov (BN ,X) = 1.

Definition 5.4 (BN-based Feature-dependence Coverage Criterion). A non-
empty set of inputs X ⊂ DX satisfies the BN-based feature-dependence coverage
criterion that is obtained via the BN abstraction BN ,X iff BFdCov (BN ,X) = 1.

5.2 Advantages of the Abstraction and Coverage Criteria

In the following, we discuss a few advantages of our BN-based approach to
modelling DNN behaviours, and the adjoined coverage criteria.

From Structural Coverage to Semantics Coverage Our BN-based ab-
straction allows us to formulate semantics-based coverage criteria: we are now
able to work directly with features instead of neurons. As argued in the intro-
duction, in machine learning, features are regarded as the basic elements and
should be dealt with directly.

Working with Semantics with Minimal Adaptation Definitions 5.3
and 5.4 resemble structural versions of coverage criteria, that are directly based
on neuron activations [26, 24, 32]. Actually, BFCov (BN ,X) can be seen as the
BN counterpart of the neuron coverage [26] and BFdCov (BN ,X) can be seen as
the BN counterpart of the MC/DC [32]. Therefore, our BN representation of
hidden space coverage provides us with a means to enhance existing structural
approaches for assessing the quality of trained DNNs with semantics, without
requiring drastic changes to the basic principles. We will demonstrate this as-
pect further in the next Section, by showing how the core test case generation
algorithm of DeepConcolic can be adapted to the above criteria.

Evaluating Suitability of Feature Extraction Techniques on a Dataset
Our framework is general and can work with any feature extraction technique.
Therefore, it can potentially be applied to evaluate and compare the quality of
applying feature extraction techniques on some given dataset—it is known that
there does not exist a single feature extraction technique that works best on all
datasets. Certainly, to have a fair evaluation and comparison, the dataset needs
to be of “golden standard”.
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Improved Scalability The size—measured by the number of nodes—of the
BN is adjustable, and usually significantly smaller than the original neural net-
work. However, as hinted in Eq. (8), the size of the underlying conditional/joint
probability tables at a given layer li grows exponentially in the number of nodes
used to represent layer li−1 (i.e., its number of hidden features) and in the size
of their respective partitions.

Still, if the number of extracted hidden features and their respective parti-
tioning is kept small enough, then the scalability of any analysis method based
on our BN representation can be significantly better than an analysis method
that is directly based on the neural network’s structure.

Connection to Boxing-Clever, and Beyond The production of the
marginal probability tables of the input layer can partition the input space
into a set of hyper-rectangles. Each hyper-rectangle is associated with a set of
constraints (or half-planes), such that each constraint comes from one hidden
feature of the input layer. Therefore, by working with the marginal probability
tables, it is easy to work out some functionalities that are enabled in Boxing-
Clever [1], e.g., the computation of empty hyper-rectangles. Note that in
our case, the hyper-rectangles are based on hidden features instead of neurons.

Beyond the input layer, every 0-valued entry of a conditional probability
table (of some hidden layer) represents a missing training example in satisfying
the causal relation represented by the 0-valued entry. By back-propagation of
the 0-value to the input layer, it is possible to identify an empty region – not
necessarily an empty hyper-rectangle – of the input space such that any input
in the region satisfies the causal relation represented by the 0-valued entry.

Detection of Unintended Memorisation and its Implication to Safety
Assurance Intuitively, if the test dataset X is deemed representative of re-
alistic inputs, then low-probability entries in the Bayesian Network BN ,X may
reveal out-of-distribution training data samples. Carlini et al. [4] have suggested
that a neural network may unintendedly memorise these out-of-distribution data
samples, leading to a negative effect on its generalisation ability [7]. We have
discussed in [40, 41] the relation between generalisation ability with the failure
rate of neural networks in operation, under a safety assurance framework.

6 Concolic Approach for Test Case Generation

We have extended the DeepConcolic approach for testing DNNs that was pi-
oneered by Sun et al. [32] with our new test criteria in order to operationally
assess the utility of the above constructions and definitions. Our goal in doing
so is to check whether our new definitions for hidden feature coverage can be
used to guide the generation of test cases.
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6.1 DeepConcolic in a Nutshell

The DeepConcolic approach for test case generation consists of alternating con-
crete executions and symbolic analyses of the DNN under test. The concrete
executions actually evaluate the test input using the trained DNN, and report
on the level of coverage achieved. The symbolic analyses, on the other hand,
aim at synthesising new test inputs based on some test target that is chosen so
as to increase the considered coverage metric. This approach is provably more
efficient at constructing sets of test inputs that achieve very good coverage than
a basic random generation of test inputs.

Test Case Generation via Symbolic Analysis The symbolic analysis is
performed on a symbolic model that constrains every neuron activation up to
a layer li according to the functional semantics of each respective layer, with
the addition of neuron valuation constraints that encode a given test target
(such as a change in the sign of a particular neuron output, for instance). The
goal of the analysis is then to solve the problem of finding a value for every
input neuron, such that some distance metric w.r.t. a legitimate test input is
minimised, while satisfying all the above constraints. In the case of input images,
typical distance metrics for assessing the similarity between inputs include the
Chebyshev distance L∞, which uses the maximum absolute difference between
any one pixel or colour component between two images as a measure of their
distance, or the L0 “norm”, that simply counts the number of pixels or colour
components that differ. The set of values obtained for every input neuron
consists of a new test case that is in principle guaranteed to fulfil the test
target; this input is added to the set of generated test cases if some oracle
mechanism determines that it is “close enough” to a reference test input. The
latter requirement serves as a “plausibility” filter to only retain realistic inputs.

Linear Programme and Distance Metric The problem that is solved at
each symbolic analysis step of DeepConcolic is a Linear Programme (LP), and
in our case, the symbolic analysis consists in solving an LP as well. Such a
problem is built as a set of constraints Constr (·) that involve continuous (free)
variables, associated with an optimisation objective. A solution to the problem
consists of an assignment for every one of these variables that meets both the
set of constraints and the optimisation objective.

The specification of an LP problem requires that every constraint and ob-
jective function involved be linear inequalities or linear arithmetic expressions.
This requirement constrains the distance metric that we can use to compare
input images, which must therefore be linear as well. Among the metrics listed
above, only the Chebyshev distance L∞ satisfies this requirement. We will
therefore assume this distance metric below, and will denote with ‖x− y‖∞ the
distance between two vectors of same dimension x and y.

Convergence & Approximations In some cases, reliance on a linear en-
coding of functional semantics may induce losses in analysis precision. This
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translates in either:

over-approximation: incorrect solutions, i.e., the LP-problem over-approximates
the actual behaviours of the DNN on the given input;

under-approximation: infeasible problems derived from legitimate behaviours,
i.e., the LP-problem under-approximates the actual functional behaviours
of the DNN on the given input.

In DeepConcolic, such an imprecision typically arises in layers whose functional
semantics cannot be precisely encoded using linear arithmetic and inequalities.
Such is the case for max-pooling layers for instance, that require ad hoc treat-
ments for its encoding as a set of linear constraints.

One can easily check whether the input that is extracted from a solution
to the LP problem exhibits the intended behaviours so as to discard inputs
that do not meet the desired test target; keeping such inputs may also help
better exploring the input-space. Note, however, that both under- and over-
approximations may impair the convergence of the overall generation algorithm.
We elaborate on this particular aspect for our adaptation in the next Section,
and investigate it further experimentally in Section 7.2.

6.2 Concolic Test Generation with BN-based Criteria

In our case, a test target, that we will denote Target
(
f ]ki,j

)
, consists of a (set

of) hidden feature interval(s) that should be elicited by the test input to be
generated; such is the case for the criterion given in Def. 5.3 above for instance,
for covering a rare hidden feature interval.

The overall procedure is parameterised with the structure of the Bayesian
Network based on which our coverage metrics are defined: i.e., we assume
here that suitable feature extraction and discretisation have been applied on
a training sample Xtrain . The computation starts by randomly sampling an
initial set of test inputs X0 that is correctly classified by N , and initialising the
probability tables in the Bayesian Network to produce BN ,X0

. Let Xok
0 = X0

be the initial set of candidates from which new tests can be derived. Then,
each iteration i of the test case generation process proceeds according to the
following operations:

1. Identify a test target t = Target (·) that is not yet met by the current set
of input test cases Xi. This step is performed by means of an analysis of
the marginal or conditional probability tables in BN ,Xi

;
2. Select a test input x ∈ Xok

i according to some heuristics, such as some
closeness to the identified target t;

3. Construct an LP problem based on t: this problem comprises a set of con-
straints Constraints, and an optimisation objective that seeks to minimise
the distance between activations of input neurons and x. This problem is
formulated as:

Minimise: ‖(n1,1, . . . , n1,|l1|)− (x1,1, . . . , x1,|l1|)‖∞
Subject to: Constraints

(15)
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where n1,1, . . . , n1,|l1| is the set of all input neurons in N ;
4. Solve the LP problem, and extract the newly generated test input x′ from

values of input neurons: x′ = (n1,1, . . . , n1,|l1|);
5. Keep the generated input x′ if it passes the oracle and, optionally, if it

actually improves on x w.r.t. the target t: in such a case, let Xi+1 =
Xi ∪ {x′}; otherwise, let Xi+1 = Xi and Xok

i+1 = Xok
i , and continue from

step 1;
6. Let Xok

i+1 = Xok
i ∪{x′} if fN (x′) = fN (x), Xok

i otherwise. The latter case
indicates that N does not output the same classification label for x′ than
for x, which means that x′ is considered adversarial for N , as x′ is both
deemed close enough to x from which it is derived, and it is not assigned
the same label as x by N ;

7. Update probabilities in BN ,Xi
to account for the new test x′ and construct

BN ,Xi+1
; the test case generation continues if the test criterion obtained

via this new BN is not satisfied.

The three steps from the algorithm above that need to be specialised according
to the sought-after BN-based test criteria consist of:

(i) the identification of a test target by analysing BN ,Xi
;

(ii) the selection of a test input;
(iii) the construction of the set of constraints Constraints.

Test oracle aside, the selection criterion in step 5 embodies a practical mea-
sure that we employ to counter a consequence of the loss of precision that is
induced by dimensionality reduction. We discuss this aspect further in Sec-
tion 6.3 below. We first elaborate on step 3, which involves an encoding of the
functional behaviours of the DNN up to some layer of interest, that is indicated
by the test target.

6.2.1 Encoding the Neural Network

Given a test target that aims at obtaining a test input that exhibits a given
hidden feature interval at layer lk, we first construct a symbolic encoding of the
neural network up to lk. We reuse the constraints suggested by Sun et al. [33]
to construct this encoding of layer behaviours. Precisely, for each neuron ni,j
for i > 1, and assuming ReLU activation functions, we have two variables n̂i,j
and ni,j and constraints that can directly be derived from Eqs. (1) and (4) in
Section 2:

n̂i,j = Wi,j

(
ni−1,1, . . . , ni−1,|li−1|

)
+ bi,

ni,j ≥ n̂i,j and ni,j ≥ 0

where Wi,j and bi are weight and bias parameters in layer i, respectively.
The case of layers that induce non-linear functional behaviours requires an

alternative approach, since they cannot be directly encoded in the same way as
in Eq. (6.2.1). To circumvent this issue, our approach consists in constraining
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the neurons of these layers in such a way that they exhibit the same behaviour as
that induced by the candidate input x. Considering for instance a max-pooling
layer li (for which we gave the functional behaviour in Eq. (2) in Section 2), the
idea is first to capture its selection behaviour using the following binary matrix

Sx ∈ {0, 1}|li|×|li−1|, whose coefficients are computed as

Sx
j,k = (1 if n̂i,j = ni−1,k, 0 otherwise)

so that a 1 at row j and column k indicates that the output of neuron ni−1,k

as induced by x was selected by the layer as the value for n̂i,j , i.e., ni−1,k =
max sj

(
ni−1,1, . . . , ni−1,|li−1|

)
as per Eq. (2). Note that multiple neurons of

layer li−1 selected by a function sj may be maxima, in which case there are
more than one 1’s in the corresponding row of Sx. Then, obtaining a new input
that induces the same selection behaviour at layer li boils down to enforcing
either one of the following linear constraints:

(n̂i,j = ni−1,k) if Sx
j,k = 1, (n̂i,j > ni−1,k) otherwise.

For an input neuron n1,j , we have a variable n1,j and a constraint on its
possible values based on the range of each input component (e.g., pixel)

n1,j ∈ [a, b].

We let Constr1,...,i (N ) be the set of constraints that we obtain as described
above for the neural network N up to layer li.

6.2.2 Targeting Feature Intervals

Further, a test target Target
(
f ]ki,j

)
, that aims at eliciting hidden feature interval

f ]ki,j ∈ F]
i,j in layer li, directly translates into a pair of inequalities on neuron

values for layer li as follows:

Constr
(
f ]ki,j

)
def
=
(
f

[k
i,j ≤ λi,j

(
n̂i,1, . . . , n̂i,|li|

)
< f

k[
i,j

)
(16)

Observe that, if the feature mapping λi,j is linear, then the inequalities above
are linear as well. We straightforwardly extend the above construction to sets of

target feature intervals for a layer li: Target
(
F ]
i

)
translates into Constr

(
F ]
i

)
,

that is the union (i.e., the conjunction) of all inequalities built as per Eq. (16)

for each interval in F ]
i .

6.2.3 Fulfilling BN-based Test Criteria

When the goal of the symbolic analysis is to increase BFCov (BN ,X) coverage,
the identification of a test target consists in finding an interval of hidden feature
values that has a small probability of occurring according to BN ,X : this search
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boils down to identifying a target interval f ]ki,j such that Pi
(
f ]ki,j

)
< ε, and

building a target t = Target
(
f ]ki,j

)
.

Finding a candidate test input that has the best chance of leading to an
interesting solution for the LP problem is a hard problem. Even more so when
considering the potential losses in precision incurred by the underlying symbolic
analyses. We therefore make the simple assumption that an input x whose
feature value λi,j ◦ ĥi(x) is close to any of the target interval boundaries is a
“good-enough bet”. This assumption gives a simple heuristic for finding the
candidate test input x, which consists in searching for a test x ∈ X, that

minimises either |λi,j ◦ ĥi(x)− f [k
i,j | or |λi,j ◦ ĥi(x)− fk[

i,j |.
Then, the set of constraints Constraints for specifying the LP problem for

targeting t consists of:

Constraints = Constr1,...,i (N ) ∪ Constr
(
f ]ki,j

)
(17)

The case of BFdCov (BN ,X) is similar, as the test target identification con-

sists in finding an entry CPi
(
f ]ki,j

∣∣∣F ]
i−1

)
< ε in any conditional probability

table PN ,XLf ]i,jM. One straightforwardly obtains t = Target
({
f ]ki,j

}
∪ F ]

i−1

)
,

that aims at covering both the interval f ]ki,j and a condition on hidden features
of layer li−1 for which the probability of finding an input in X that exhibits
f ]ki,j is very small. The selection of a test input can also be done according to a
heuristic search like the one above, and the resulting set of constraints is:

Constraints = Constr1,...,i (N ) ∪ Constr
(
F ]
i−1

)
∪ Constr

(
f ]ki,j

)
(18)

6.3 Helping Convergence

In the description of the algorithm above, we have hinted at a practical measure
that we use to counter a consequence of the loss of precision that is induced by
dimensionality reduction. Indeed, although the latter comes in addition to the
imprecision that is notably due to linearly encoding non-linear behaviours such
as max-pooling layers—discussed in Section 6.1—, our preliminary empirical
evaluations have shown us that the aforementioned imprecision has an adverse
effect on the ability of our adapted algorithm to fulfil our BN-based criteria.

For instance, given a test target t = Target
(
f ]ki,j

)
and a candidate test

input x, the solution x′ of the resulting LP program often leads to a hidden
feature valuation λi,j ◦ ĥi(x′) that does not belong to f ]ki,j : in other words,
the actual behaviour at li subject to input x′ does not satisfy Eq. (16) due to
the approximations induced by the feature mapping λi,j . Even worse, x′ may

actually be “further” on the Fi,j line from the target than x: i.e., |t− ĥi(x)| <
|t − ĥi(x)|, where |t − y| def

= min
(
|λi,j(y)− f [k

i,j |, |λi,j(y)− fk[
i,j |
)

measures the
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distance between t and the hidden feature value induced by neuron values y for
layer li.

On a purely theoretical level, we acknowledge that this convergence issue is
an intrinsic limitation of our technique, as it may be possible that none of the
constructed LP problems ever have any solution that improves the desired cov-
erage metric. Still, we can identify ways to counter this issue in practice. First,
we can observe that rejecting any newly generated input on the grounds that it
does not fulfil the test target quickly leads to the inability to find new candidate
test inputs for any unmet test target. Instead, considering such inputs as legiti-
mate new test cases even though they do not improve coverage helps populating
the set of potential candidate tests inputs: they indeed help further explorations
of the input space. Further, keeping only a new input x′ if it improves over its
original test x w.r.t. the target t may naturally lead to the construction of a set
of test cases that is “closer” to satisfying the criterion (although this is not a
requirement for actually helping convergence). We validate these claims further
with dedicated experiments in Section 7.1.

At last, we posit that further constraining the set of admissible solutions
of the LP programs indirectly gears the set of generated inputs towards cases
that meet the desired targets. In particular, we assume that constraining non-
targeted hidden features so that they replicate the respective values induced by
x reduces the over-approximations, i.e., increases the precision of the symbolic
analysis. We achieve this by introducing the additional set of linear constraints

Replicx

(
f ]ki,j

)
def
=

⋃
j′∈{1,...,|Λi|},j′ 6=j

(
λi,j′

(
n̂i,1, . . . , n̂i,|li|

)
= λi,j′ ◦ ĥi(x)

)
(19)

into the set Constraints built for targeting Target
(
f ]ki,j

)
from an input x (in the

case of a BN-based feature criterion). We empirically support this assumption
using a dedicated set of experiments in the next Section.

7 Implementation and Evaluations

We have augmented the DeepConcolic tool3 in order to experimentally vali-
date the practicality and efficiency of our new coverage metrics, as well as our
adaptation of concolic test case generation. With the following experiments,
we want to assess whether our BN-based approach meets the needs to define
semantics-based coverage criteria, that go beyond the low-level structure of neu-
ral networks.

We have implemented multiple strategies for linear dimensionality reduction
and discretisation of each feature component. We have notably included PCA
(with or without pre-scaling of activation values) and ICA (cf. Section 2), as
well as several strategies for computing discrete partitions (cf. Section 3.3).

The wide range of combinations that all these strategies offer, even more
when a distinct choice can be made regarding each individual layer, makes the

3Available at https://github.com/TrustAI/DeepConcolic/.
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Figure 5: Adversarial examples found by achieving a BN-based feature coverage
criterion for all dense layers of Nms. Each row includes, from left to right, the
original test image, the adversarial example (with its new classification label in
overlay), and an image that emphasises every pixel that differs.

complete study of this choice a challenging task. As in the first step we mainly
want to assess the practicality of our BN-based approach for defining coverage
criteria, for now we will report on some results for broad families of combinations
of strategies. All experiments were carried out on the DNNs Nms and Nmx

described in Tables 1 and 2, that target the classification of the handwritten
digits from the MNIST dataset.

7.1 Concolic Testing for BN-based Criteria

We have run the extended concolic testing tool on Nms and Nmx by focusing
on their dense layers (named dense and dense 1 in both cases), with varying
numbers of extracted feature components for each one of these two layers, using
various algorithms for feature extraction, and/or changing the discretisation
strategies. Each run comprised at most 100 iterations, and was initialised with
uniformly drawn test sets X0 of 10, 100, or 1000 correctly classified inputs.

We give in Figure 5 some adversarial examples that were found during the
experiments on Nms and when targeting the BN-based feature coverage crite-
rion. For comparison purposes, we also show in Figure 6 an adversarial example
found by DeepConcolic to achieve a structural criterion (i.e., expressed on in-
dividual neuron activations instead of on hidden features). We observe that,
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Figure 6: Adversarial example found by DeepConcolic while seeking a structural
coverage criterion; this is borrowed from Sun et al. [33].

even though the distance metric used in all three cases was the same (L∞), the
example found through structural coverage appears to involve small-grain per-
turbations of pixels. On the contrary, our adversarial examples, and in general
every generated test, exhibit differences that seem to precisely indicate where
the input images need to be perturbed to alter the induced value for the respec-
tive targeted hidden feature.

We note that most adversarial examples were found during the first 30 to 40
iterations of the test case generation algorithm. Further, most adversarial exam-
ples were found when using extended discretisation strategies (cf. Section 3.3),
where two additional left- and right- open intervals that do not contain any
value that is induced by the training dataset are used for partitioning hidden
feature components. This suggests that attempting to identify intervals in a
hidden feature component Fi,j that do not exhibit any feature value (i.e., find-

ing intervals whose intersection with the set λi,j ◦ ĥi(Xtrain) is empty, where
Xtrain is the training dataset), seems a suitable strategy to find corner-cases for
DNNs.

Let us now turn to a discussion on the overall behaviours of the concolic
testing approach delineated in Section 6 in regard to the BN-based coverage
metrics defined in Section 5. In particular, we want to assess the impact of the
size of the initial test set (X0) on the ability of DeepConcolic to generate new
sets of inputs that achieve high coverage.

We summarise the runs for BN-based feature coverage in Figure 7. We first
observe that, overall, between 10% to 60% of iterations produce new test inputs,
and that the increase in the size of Xi is not correlated with the correspond-
ing feature coverage. Instead, the coverage tends to increase in discrete steps,
and often reaches plateaus for significant numbers of iterations. The former
observation is a direct consequence of the discrete nature of the structure—the
BN—based on which we defined the coverage metrics. This behaviour also gives
a great illustration of our concerns for convergence raised in Section 6.3. We
also note that neither PCA (in blue) or ICA (in red) seem to have any impact
on the number of generated tests or the achieved coverage.

Further, the bottom row in Figure 7 indicates that 100 iterations already
leads to increases in achieved coverage when the initial size of the test set X0 is
sufficiently large. This confirms that the size of the test set helps our heuristics
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Figure 7: Representation of 360 traces of up to 100 iterations of test case gener-
ation by DeepConcolic targeting BN-based feature coverage, for various sizes of
initial test sets |X0| ∈ {10, 100, 1000}. Red and blue lines respectively indicate
runs with ICA and PCA-based feature extractions. Each box in the bottom
row shows the overall distribution of initial BFCov (BNms,X0) and the respective
final coverage BFCov (BNms,X100

).

28



0

10

20

30

40

50

|X
i
|−
|X

0
|

|X0| = 10 |X0| = 100 |X0| = 1000

0 20 40 60 80 100

0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

B
F
x
C
o
v
(B
N

m
s
,X

i
)
−

B
F
x
C
o
v
(B
N

m
s
,X

0
)

0 20 40 60 80 100 0 20 40 60 80 100

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

B
F
x
C
o
v
(B
N

m
s
,X

i
)

iteration (i)

Figure 8: Representation of 360 traces of up to 100 iterations of test case gen-
eration by DeepConcolic targeting BN-based feature-dependence coverage, for
various sizes of initial test sets |X0| ∈ {10, 100, 1000}. Red and blue lines respec-
tively indicate runs with ICA and PCA-based feature extractions. Each box in
the bottom row shows the overall distribution of initial BFxCov (BNms,X0) and
the respective final coverage BFxCov (BNms,X100).
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in identifying good candidate test inputs for a given test target.
We now turn to our results for BN-based feature-dependence coverage, sum-

marised in Figure 8; note that the coverage measure that is plotted is the one
defined in Eq. (14), which is the combined version of pure feature coverage and
feature-dependence. We first observe that many runs terminate before reaching
100 iterations. This can be tracked down to two root causes: (i) the feature-de-
pendence coverage reaches 100% (while full feature coverage is not achieved),
which basically means that every conditional probability table entry is greater
than ε whereas some entries of marginal probability tables are still negligible;
(ii) no new pair (test target, candidate test input) can be identified (i.e., every
such pair has already been attempted). Still, we can note an overall increase in
coverage for |X0| = 10. This suggests that a dedicated heuristics is required to
achieve both feature and feature-dependence coverage in combination.

7.2 Convergence & Precision Aspects

In Section 6.3, we posited that constraining the LP program in such as way that
hidden feature components that are not related to the target replicate the values
induced by the source input x, alleviates the convergence issues. We have again
used Nms to assess this assumption. We have conducted two sets of experiments,
that each consisted in a set of 40 runs with each parameter uniformly drawn
from a set of pre-defined values for the number of extracted features per layer,
discretisation strategy, number of bins, etc. Each set of runs differs in that for
a single one of them the counter measure detailed in Eq. (19) was employed.

We plot in Figure 9 the resulting distributions of: distance from generated
inputs to target (d — on the respective components line), along with the similar
histograms showing the difference between the distance of a source test input
x and a newly generated one x′: δ > 0 indicates that the generated input is
closer to the target hidden feature interval than its source test. We can mainly
observe that using the counter measure has no noticeable impact on our measure
of progress (δ), yet it seems to gear generated inputs closer to their respective
targets overall. We made similar observations when PCA was used for feature
extraction, and when performing the same experiments with other DNNs.

We could note, however, that the above impact seems to be barely noticeable
in the case of networks with max-pooling layers. We illustrate this by showing
in Figure 10 the histograms obtained from an identical set of experiments for
Nmx. This suggests that the benefits of the counter measure is attenuated by the
loss in precision that is incurred by our symbolic encoding of such intrinsically
non-linear layers.

8 Related Work

The investigation of techniques to analyse the weaknesses of deep learning has
been a very popular research domain in the past few years. In the following,
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(b) with replication of values for non-targeted hidden feature components

Figure 9: Assessing the impact of constraining non-targeted hidden feature
components on progress, using Nms. On the left: histograms representing the
distribution of all distances to the closest bounds of target hidden feature inter-
vals during 40 runs of up to 100 iterations (with extended discretisation strategy
and bins uniformly drawn from a fixed set of values) of test case generation by
DeepConcolic targeting BN-based feature coverage when ICA was used as fea-
ture extraction technique—PCA gives similar-looking results, although it does
not map to feature components that are comparable with each other. On the
right: similar histograms showing the difference between the distance of a source
test input x and a newly generated one x′: δ > 0 indicates that the generated
input is closer to the target hidden feature interval than its source test. Con-
trary to the top row (a), the bottom row (b) shows distributions for d and δ
obtained when the counter measure of Eq. (19) was enabled.
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Figure 10: Assessing the impact of max-pooling layers, and constraining non-
targeted hidden feature components on progress, using Nmx. See Figure 9 for a
description of the histograms.
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we briefly review a few directions that are closely related to this paper. Please
refer to [16] for a comprehensive review.

Testing includes methods to generate a set of test cases and use the generated
test cases to evaluate the reliability (or other properties) of deep learning. There
are a number of ways to determine how the test cases are generated, including
e.g., fuzzing [11], coverage metrics [34, 14], symbolic execution [10, 31], concolic
testing [32], etc.

Verification includes algorithms to check if a deep learning model satis-
fies a property. Existing verification algorithms can be roughly categorised
into constraint-solving based methods [19], abstract interpretation based meth-
ods [9, 21, 29], global optimisation based methods [15, 27, 28], and game-based
methods [38, 39].

Abstraction There are a few existing methods on abstraction of deep learn-
ing. For example, in [6], a Boolean abstraction on the ReLU activation pattern
of some specific layer is considered and monitored. Conversely of Boolean ab-
straction, Henzinger et al. [12] and Cheng [5] consider box abstractions. The
qualitative box abstraction is enhanced by Lukina et al. [23] to identify unex-
pected inputs with a quantitative abstraction of box distance, which measures
the minimum distance to one of the class centres.

Probabilistic Assessment unlike testing and verification which are mainly
to determine the existence of “bugs” (i.e., counterexamples to the satisfiability
of desirable properties) in the deep learning model, assesses the satisfiability
of a property in a probabilistic way, by e.g., summarising over sampling re-
sults. Due to the unknown ground truth over the underlying distribution, this
approach usually requires to either make an assumption over the underlying dis-
tribution [37] or learn the distribution [41]. Note that the obtained probabilistic
assessment can be bounded [3, 18].

Certification and Safety Arguments While the above techniques may
compute the evidence to the (un)satisfiability of a property, the properties they
work with are mainly low-level ones, such as the point-wise robustness which
only regards robustness w.r.t. a given input. More investigations are needed to
understand if and how the evidence we can gain against these low-level spec-
ifications, can contribute to the claim of higher-level specifications such as “a
deep learning model can be free from failure for the next k inferences” [40].
One step further, it might be interesting to understand the safety issues in
learning-enabled autonomous systems [30, 13].
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9 Conclusions

In this paper, we have suggested a new way to abstract the successive layers of a
trained DNN by means of a Bayesian Network. The abstraction relation between
these two objects is parameterised by a linear feature extraction mapping and
a discretisation strategy for the features.

The constructed model can also be used to assess the quality of a set of test
inputs w.r.t. both the amount of individual features it covers, and assumed
relationships between features. We have exercised this ability by extending the
test case generation tool DeepConcolic with our new BN-based coverage criteria.
We have carried out extensive experiments to assess the effectiveness of this tool
in generating new inputs despite the approximations that stem from the feature
extraction techniques, as well as the linear encoding of non-linear functional
behaviours (like max-pooling layers). Our experimental results show that the
new tool is able to efficiently generate new test inputs, including adversarial
examples, and generates new inputs by emphasising portions of learnt features
to legitimate inputs. However, the formulation of our coverage metrics suffers
from the discrete structure of the underlying BN, and fails to precisely account
for any small-scale improvement towards fulfilling the associated criteria.
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