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Abstract 1 

Cliff recession poses a significant threat to the built environment, transportation infrastructure and 2 

land use. In this paper, a novel computational framework called the Nodal-integration based Particle 3 

Finite Element Method (N-PFEM) is developed for modelling the cliff recession resulting from 4 

weathering-induced landslides. The N-PFEM combines the nodal-integration technique with the 5 

PFEM in second-order cone programming and thus requires no variable mapping operation, which is 6 

essential in the classical PFEM for modelling history-dependent materials, for modelling large 7 

deformation problems such as landslides in cliff recession processes. To verify the developed N-8 

PFEM, a series of benchmarks have been simulated including the cliff recession under both the 9 

weathering-limited and transport-limited conditions. Simulation results from the N-PFEM are 10 

validated in detail to these from the limit analysis method, well established geomorphologic models 11 

and the discrete element method. Additionally, measures for preventing cliff recession such as the 12 

construction of retaining wall structures are also investigated using the N-PFEM.  13 
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1. Introduction 19 

Modelling the progressive retreat of cliffs has recently received considerable attention by the 20 

engineering community due to increasing coastal erosive processes caused by climate change and 21 

amplified environmental awareness at national and European level (Bray and Hooke, 1997). Also 22 

the insurance industry needs reliable models for the predictions of the amount of cliff retreat over 23 

time for residential buildings located in exposed areas whereas local authorities and decision makers 24 

need to know the level of risk faced by residential buildings and public infrastructure (e.g. coastal 25 

roads, pedestrian footpaths, car parks, etc.). Along many coastal areas, the recession rate of cliffs is 26 

significantly high leading to non-negligible socio-economic impacts (Bird, 2016). A typical example 27 

is the soft glacial drift cliff at Holderness coast, Aldbrough, UK, that erodes at about 2 meter per 28 

year with a maximum recession rate being 3.4 meter per year (Hobbs et al., 2020). This rapid 29 

erosion results in critical impacts on human communities including, but are not limited to, the loss of 30 

farmland, damage to infrastructure, properties and tourism. In order to engineer adequate mitigation 31 

and remediation measures, it is thus of vital importance to develop reliable models to predict cliff 32 

recession rates driven by the local environmental conditions. 33 

        The natural drivers responsible for triggering cliff recession can be classified into two 34 

categories: factors increasing the driving forces, such as seismic loading (Massey et al., 2017), wave 35 

loading (Sunamura, 1982) and anthropogenic activities (Xue et al., 2009), and factors decreasing 36 

resistance forces, such as weathering (Utili and Crosta, 2011a) and crack formation (Kogure et al., 37 

2006, Voulgari and Utili, 2017). This paper focuses on the latter and on weathering-induced cliff 38 

recession in particular. Indeed, weathering proceeds in the manner of physical break down and 39 

chemical alteration of rocks which weakens the shear strength of rocks and form thick sequences of 40 

weathered geo-materials whose engineering properties have been highly altered. The weathering 41 

process gradually decreases the stability of the slope, which ultimately leads to subsequent 42 
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landslides and the progressive retreat of the cliff crest (Hutchinson, 2001). The earliest effort 43 

devoted to forecasting the progressive evolution of cliff erosion lies in (Fisher, 1866) in which a 44 

model was proposed to study the disintegration of a coastal chalk cliff considering the accumulation 45 

of a basal debris apron. This model was then extended by further introducing the effect of different 46 

weathering stages (Lehmann, 1933) and the upper and lower sloping sectors (Bakker and Le Heux, 47 

1946, Nash, 1981). In these models, the evolution process is controlled based on assumptions 48 

concerning the geometry of falling blocks, the bulking of geo-materials, the accumulation of debris 49 

and the weathering rate. Further consideration of the effects of mechanical properties of geo-50 

materials on the evolution process were performed in Andrews and Bucknam (1987). More recently, 51 

an analytical method based on an upper bound limit analysis approach was proposed to simulate the 52 

cliff recession process (Utili and Crosta, 2011a). The basic idea is to perform limit analysis of slope 53 

instability induced by a homogeneous decrease of ground strength with the debris following the 54 

landslide occurrence being removed before the onset of the successive landslide. This implies 55 

weathering-limited slope conditions. Voulgari and Utili (2017) extended the limit analysis model of 56 

(Utili and Crosta, 2011a) to account for the effects of seismic actions, the formation of tension 57 

cracks and seepage. From their modelling it emerges that although the formation of tension cracks 58 

affects the geometry of each landslide profile, it bears little influence on the overall geomorphologic 59 

evolution of the cliff especially relative to rock strength degradation. Therefore, the onset of tension 60 

crack was not considered in the paper.  61 

Using numerical techniques, cliff recession under more complex conditions, e.g. non uniform slope 62 

weathering, have been investigated, such as the evolution of natural cliffs subject to weathering 63 

using the discrete element method (Utili and Crosta, 2011a), the evolution of an overhanging rock 64 

slope using the displacement discontinuity method (Zhang et al., 2016). These studies, except for 65 

Utili and Crosta (2011a, 2011b), focus on the factors triggering slope instabilities leading to cliff 66 
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recession without attempting to predict the complete evolution of cliff recession that results from a 67 

discrete sequence of landslides.  68 

        In order to predict the complete evolution process of cliff recession and the resulting 69 

geomorphology, the numerical approach adopted has to be capable of predicting not only the failure 70 

of a slope but also the post-failure process such as the mass transport and deposition which affects 71 

the subsequent slope failures. Recently, several methods have been developed and applied to analyse 72 

landslide and granular flow problems such as the smoothed particle hydrodynamics (SPH) method 73 

(Bui et al., 2011, Pastor et al., 2014), the material point method (MPM) (Andersen and Andersen, 74 

2010, Soga et al., 2016, Tran and Sołowski, 2019), the finite volume method (FVM) (Mangeney et 75 

al., 2003, 2007a) , the discrete element method (DEM) (Staron and Hinch, 2005, Staron, 2008), the 76 

dedicated numerical model, SHALTOP, that can consider complex 3D topography (Lucas and 77 

Mangeney, 2007, Mangeney et al., 2007b, Favreau et al., 2010), the particle finite element method 78 

(PFEM) (Zhang et al., 2014, Wang et al., 2019, Zhang et al., 2019b, Mulligan et al., 2020, Yuan et 79 

al., 2020), etc. The PFEM is developed based on the idea that mesh nodes are treated as particles 80 

that can move freely and even separate from the domain they originally belong to (Idelsohn et al., 81 

2004, Oñate et al., 2004). Computational domains are re-identified based on the particles followed 82 

by mesh generations. It has been shown that the PFEM is particularly suitable for modelling large 83 

deformation problems with free-surface evolutions (Oñate et al., 2011). So far, a series of 84 

challenging problems, in addition to landslides, in geomechanical and geotechnical problems have 85 

been tackled using the PFEM including, but are not limited to, ground excavation (Carbonell et al., 86 

2010), granular flows (Lagrée et al., 2011, Zhang et al., 2013, Cante et al., 2014, Staron et al., 2014, 87 

Franci and Cremonesi, 2019), soil-structure interactions (Oñate et al., 2011, Monforte et al., 2017). 88 

Nevertheless, it is worth to note that a drawback associated with the PFEM for solving problems 89 

with history-dependent materials in geomechanics, or more generally solid mechanics, is the 90 
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requirement of the variable mapping operation (Zhang et al., 2013). When new meshes are 91 

generated in the PFEM procedure, although information of displacements, velocities and 92 

accelerations is stored at mesh nodes and requires no mapping operation, field variables such as 93 

stresses, strains and other internal variables, for example those controlling the strain softening for 94 

sensitive clays (Zhang et al., 2017), have to be mapped from the old to the new integration points. 95 

Such a mapping operation inevitably leads to errors and increases complexity. To overcome this 96 

issue, the nodal integration method was recently introduced to the PFEM for geotechnical problems 97 

that the integrals are performed over smoothed domains rather than finite elements and all field 98 

variables are computed and stores at nodes (Zhang et al., 2018, Yuan et al., 2019). Franci et al. 99 

(2020) then explored the possibility of a nodal PFEM formulation for free-surface fluid dynamics 100 

problems. It has been shown that the PFEM with the nodal-integration technique not only 101 

circumvents the requirement of variable mappings as in the classical PFEM but also allows the use 102 

of low order elements, such as the 3-node triangle element, without volumetric locking and 103 

insensitivity to mesh distortion.  104 

In this paper, the nodal-integration technique is implemented in the version of the PFEM 105 

developed in Zhang et al. (2013, 2017). Specifically, the nodal-integration technique is introduced to 106 

the dynamic finite element formulation in mathematical programming to form the N-FEM which is 107 

then incorporated in the PFEM framework to form the Nodal-based PFEM (N-PFEM). Compared to 108 

the existing PFEM with nodal-integration techniques in geomechanics  in which an explicit 109 

integration scheme is used, the developed N-PFEM is based on implicit integration so that 110 

significantly larger time steps can be used in the simulation. This feature is of great importance for 111 

the modelling of cliff recession subject to weathering since the length of time to model is of some 112 

years. Additionally, as the finite element formulation developed in the presented N-PFEM is based 113 

on second-order cone programming, it inherits some unique merits of the FEM in mathematical 114 
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programming that have been showcased in Krabbenhøft et al. (2007). Among them, a notable 115 

advantage for modelling landslide-induced cliff erosion rests with its convergence properties. Indeed, 116 

significant changes of stresses or strains may occur in just a very small time interval in the post-117 

failure analysis of landslides. Whereas this critical change is likely to result in the nonconvergence 118 

of the standard Newton-Raphson based FEM, the adopted advanced optimisation algorithms still 119 

guaranteed  the convergence regardless of whether the solved known states (e.g. the field variables 120 

at tn) are close to the new unknown states (e.g. the field variables at tn+1) (Zhang et al., 2014). The 121 

nodal integration also enables a more straightforward treatment of the cohesive-frictional contacts 122 

compared to the PFEM developed in Zhang et al. (2013, 2017). Last but not least, low-order 123 

elements such as the three node triangular element can be used in the developed version for tackling 124 

nearly incompressible problems while maintaining satisfactory accuracy which is not possible for 125 

the earlier PFEM version in Zhang et al. (2013, 2017) where six-node triangular elements are 126 

adopted for modelling geomechanical problems. To demonstrate the robustness and correctness of 127 

the developed N-PFEM, cliff recession under both weathering-limited and transport-limited 128 

conditions are considered. Comparisons between the simulation results from the N-PFEM and these 129 

from analytical approach and DEM modelling available in the literature are performed. Furthermore, 130 

the use of retaining wall for alleviating cliff recession subject to weathering is investigated using the 131 

N-PFEM with focus on the recession distance and the evolution of the resistance force from the 132 

retaining wall.  133 

        The paper is organised as follows. In Section 2, we present the formulations of the nodal-134 

integration based finite element method (N-FEM). The merging of the N-FEM into the PFEM 135 

framework to form the N-PFEM is detailed in Section 3. Numerical benchmarks such as a block 136 

sliding on a rigid surface, cliff recession under uniform and non-uniform weathering conditions are 137 
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illustrated in Sections 4 to 6 and the design of retaining wall structure to prevent cliff recession is 138 

discussed in Section 7. Conclusions are drawn in Section 8.  139 

 140 

2. Nodal-integration based finite element method (N-FEM) 141 

Before introducing the nodal-integration based particle finite element method (N-PFEM), the nodal-142 

integration based finite element method (N-FEM) is formulated in this section, which is the core for 143 

solving the equations governing cliff erosion processes. 144 

2.1 Governing equations  145 

Considering a continuum medium with volume  , the momentum equations read  146 

T

T
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, on 
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σ + b = v

σ t
 (1) 147 

where  is the usual linear strain-displacement differential operator, σ  is the stresses, b is the body 148 

forces, ρ is the density of the medium, v  is the velocity with a superposed dot representing 149 

differentiation with respect to time, N is the matrix containing the unit outward normal to the 150 

boundary Γ and t is the traction. It can be discretised in time using the standard θ-method: 151 
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where the subscripts n and n+1 refer to the known and unknown states in a typical time step, θ1 and 153 

θ2 are parameters taking values in [0, 1] and n+1 n u = u u . The above equation can be reformulated 154 

as: 155 
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Following Zhang et al. (2019a), the generalised Hellinger–Reissner variational principle for the 159 

discretised governing equations (3) and (4) with rate-independent materials reads: 160 
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In the above mixed variational principle, displacements, stresses and inertial forces are independent 162 

fields. F is the yield function and 
1 2

ˆ



 

 .  is the elastic compliance modulus that, for plane-163 

strain cases, is in the form: 164 

1        0
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=  (6) 165 

where E and   are elastic modulus and Poisson’s ratio, respectively. Its validity has been proved in 166 

Zhang et al. (2013, 2019a), and interested reader are referred to these references for details.  167 
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2.2 FEM with the nodal-integration technique 168 

The discrete form of program (5) needs to be derived by using spatial discretisation methods. In the 169 

paper, the nodal-integration based finite element technique is adopted. By first using the standard 170 

finite element discretisation, we have:  171 

u
ˆu N u  (7) 172 

where û  is a vector consisting of displacement at mesh nodes and uN  is a matrix of shape functions. 173 

Following the classic FEM, the strain field is then approximated as: 174 

u
ˆ B uε  (8) 175 

where 
u uB = N  is the strain-displacement matrix. Contrary to the standard FEM that integration is 176 

performed over finite elements, the integration in the proposed method is operated on cells. As 177 

shown in Fig.1, a cell (also called a smoothing domain) is a “non-overlap” and “no-gap” domain 178 

associated with each mesh node, for example, the cell 
s

k  associated with the kth node (the red zone 179 

in Fig. 1) that covers several one-third of adjacent elements of a node k. The coloured polygon is 180 

bounded by multiple straight boundary segments which connect the midpoint of an edge to a 181 

centroid of the triangular elements. Consequently, the strain in the kth cell is the weighted average of 182 

the strain (or called smoothed strained) of all the one-third adjacent elements of node k (Zhang et al., 183 

2018, Yuan et al., 2019, Franci et al., 2020) 184 

u
ˆ( ) ( )d ( ) d

s s
k k

k k kΦ Φ
 

    x ε x x B uε   (9) 185 

where ( )kΦ x is the smoothing function in the form (Liu et al., 2009, Liu and Trung, 2010): 186 
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in which As

k  is the area of the smoothing domain 
s

k . 188 

 189 
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 190 

Fig. 1. Node-based cells (also called smoothing domains) based on given triangle mesh.  191 

 192 

As demonstrated in Fig.1, the cell 
s

k is comprised of Ns sub-domains that are one-third of the 193 

triangular elements adjacent to node k. For the linear triangular element, the strain is constant inside 194 

the elements. Therefore, substituting Eq. (10) into (9), the smoothed strain 
kε is simply:  195 

1 1

1 1 1 1
ˆA A

A 3 A 3

s sN N
e e e e e

k i i i i is s
i ik k 

   B uε ε  (11) 196 
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where i is the element number and ˆA , ,  and e e e e

i i i iB uε  are the area, the strain, the strain gradient 197 

matrix and the displacement of the ith triangular element, respectively. For simplicity, the smoothed 198 

strain on the cell 
s

k  is written as: 199 

ˆ
k k kB uε       with    

1

1 1
A

A 3

sN
e e

k i is
ik 

 B B  (12) 200 

where ˆ
ku  is the nodes’ displacement of the cell k. Thus for each cell, the strain increment  201 

  ˆ   u Buε  (13) 202 

where B  consists of the smoothed strain-displacement matrix as shown in Eq (12). 203 

As the mixed variational principle is adopted, state variables such as the displacement, the stress and 204 

the dynamic force have to be interpolated independently. Herein for each cell, we have  205 

 Nσ σ  (14) 206 

where σ  is the smoothed stress and N  is the shape function matrix which are in fact identity 207 

matrices since the linear approximation is made for the displacement field, and  208 

r Nr r  (15) 209 

where r  is the dynamic force applied on the nodes, and rN  is the corresponding shape function 210 

matrix. Note that the displacement approximation for elements in the approach is the same as in the 211 

classic FEM and therefore shape function matrix for force vectors is constructed in the same way as 212 

in the classic FEM. 213 
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Substituting the approximations in (13), (14) and (15) into the spatially continuous variational 214 

principle (5) results in the fully discrete problem:  215 
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It is noteworthy that all integration operations for equations in (17) are carried out on cells using the 219 

nodal-integration technique rather than on finite elements using Gauss integration technique. Thus 220 

information on all the variable states, such as displacements, velocities, strains, stresses, etc., is 221 

stored on mesh nodes. A proper treatment with boundaries in the numerical model is essential. 222 

Inspired by the recently proposed framework for the discrete element method (Krabbenhoft et al., 223 

2012, Meng et al., 2018, 2019a), the purely frictional and cohesive-frictional contact interfaces are 224 

accounted for. As indicated in Fig. 2, frictional/cohesive-frictional behaviour is considered for 225 

yellow smoothing domains in contact with the boundary while red smoothing domains have 226 

potential contacts. To prevent the penetration into the boundary, the following non-penetration 227 

condition is employed: 228 
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where ˆ Iu is the displacement increments of the node at contact I, nI is the outward normal vector 230 

of the boundary, pI is the contact force from the boundary, 0

Ig is the initial gap and Ig  is the gap at 231 

the next step. 232 

 233 

 234 

Fig. 2. The boundary condition for a deformable body. Smoothing domains are shown with dash 235 

lines. Smoothing domains with frictional/cohesive-frictional interfaces are coloured in yellow.  236 

 237 

Following the approach in Meng et al. (2019b), the condition (18) can be enforced into the principle 238 

leading to: 239 
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where Nb is the number of boundary contacts, the normal and tangential vectors of the boundaries 241 

are collected in n and n̂ , respectively, contact forces in the normal and tangential directions are 242 

organised into vectors p and q, respectively, and shear strength for boundary contacts is considered 243 

with a constraint (i.e.,  ,  0bF p q ) as: 244 

,  purely frictional interfaces

, cohesive-frictional interfacesc





 




q p

q p+ A
 (20) 245 

where μ is the friction coefficient, c is the cohesion of the shear strength and A is the vector 246 

collecting all cohesive interfaces’ area. Principle (19) is thus the discretised optimisation problem 247 

for the nodal-integration based finite element method with contacts (N-FEM). Following the 248 

procedure in the appendix, principle (19) can be cast into a standard second-order cone program. 249 

Thus, efficient standard second-order cone programming solvers can be employed. 250 

3. Implementation of the nodal-integration based PFEM (N-PFEM)  251 

Similar to the idea of the PFEM for geomechanics problems in Zhang et al. (2013), the key feature 252 

of the modelling procedure of the N-PFEM is that nodes are viewed as free “particles” that can 253 

move and even separate from the domain to which they originally belong. On the basis of the 254 

particle distribution, the computational domain is re-identified and discretised in space at each time 255 

step and then the governing equations are resolved. Nevertheless, compared to the classical PFEM, 256 

the proposed N-PFEM does not require the operation of variable mapping when it is used for solving 257 

geomechanical problems. This is owing to the fact that has been indicated in Section 2.2 that 258 

information of all field variables is stored on mesh nodes and the nodal integration is performed. 259 

Briefly, the computational cycle of the N-PFEM for a typical time interval is as follows (see also Fig. 260 

3): 261 
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1. The computational domain is represented by a cloud of particles at time tn. 262 

2. The alpha-shape technique is adopted to identify the boundary of the computational domain and 263 

then triangle meshes are generated based on the particles and identified boundary;   264 

3. Cells (e.g. smoothing domains) are constructed according to the topology of the triangle meshes, 265 

on which the N-FEM is resolved to obtain the state of field variables at tn+1;  266 

4. Update the position of the particles to form the new cloud of particles; 267 

5. Loop the above process over all time steps. 268 

 269 
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1. A cloud 

of particles

2. Mesh of 

physical domain

3. Node-based 

cells 

4. A new cloud 

of particles

 270 

Fig. 3. Computational cycle of the N-PFEM 271 

 272 

4. Validation on a sliding block 273 

For the purpose of verification, the developed approach is adopted to simulate a block (2 m long and 274 

1 m high) that slides on a slope as shown in Fig. 4 (a). Model parameters for the simulation include 275 

the unit weight of the block of 20 kN/m3 and the inclined slope angle of 45˚ and 60˚. The time step 276 
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used in the simulation is 0.01 s, which is sufficiently small to obtain convergence. Both the Young’s 277 

modulus and the strength of the block are set to be sufficiently large so that the block behaves nearly 278 

as a rigid body. Both purely frictional and cohesive-frictional interfaces between the block and the 279 

inclined slope were considered. The frictional angle for the contact interface between block and 280 

plane was 20˚ with three different values of cohesion considered: 0 kPa, 1 kPa and 10 kPa. The 281 

analytical solution of the block sliding distance S can be derived from first principles: 282 

20.5( sin( ) cos( ) / )S g g cA m t      (21) 283 

where β is an angle of slope inclination, μ is the interface frictional coefficient (tan20°), g is the 284 

gravitational acceleration (10 m/s2), t is the sliding time, c  is the interface cohesion, A is the 285 

interface area (2 m2) and m is the block mass (4×103 kg).  286 

 287 

The simulation results and the analytical solutions of the displacement versus time are shown in Fig. 288 

4(b): excellent agreement of the simulation results with the analytical solution can be observed.  289 
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 290 

Fig. 4. The sliding of a block: (a) geometric model and (b) comparison between numerical and 291 

analytical solutions.  292 

 293 

5. Uniform weathering: N-PFEM Versus Limit Analysis  294 

A vertical uniform slope subjected to the uniform weathering that has been studied using the limit 295 

analysis method in Utili and Crosta (2011a) is here considered. The vertical slope is 40 m high with 296 

a unit weight of 20 kN/m3. Three different meshes, namely a coarse one (4876 elements), a fine one 297 
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(10950 elements) and a very fine one (30276 elements) are used to discretise the vertical slope as 298 

illustrated in Fig. 5.  299 

 300 

H
=

4
0
m

(a)

(b)

(c)

 301 

Fig. 5 Uniform weathering model with (a) a coarse mesh, (b) a fine mesh and (c) a very fine mesh. 302 

 303 

Weathering causes a decrease of the strength of the slope materials over time (Gupta and Rao, 2000, 304 

Gullà et al., 2006, Tran et al., 2019). Kimmance (1988) reported experimental data of weathering of 305 

granites as shown in Fig. 6(a). It is evident that weathering causes a reduction mainly of cohesion 306 

and to a much lesser extent of the friction angle. The same phenomenon is observed for hard soils 307 

such as cemented sands (Wang and Leung, 2008) as shown in Fig. 6(b). Here, we assumed a 308 

weathering induced cohesion only decrease (constant friction) for sake of comparison with the main 309 

cliff retreat scenario presented in Utili and Crosta (2011a) in section 3.3. Following Utili and Crosta 310 
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(2011a) the initial cohesion of the geo-material is set to 500 kPa and a constant frictional angle of 311 

34˚, is adopted (Utili and Crosta, 2011a). 312 

 313 

(a)

(b)

 314 

Fig. 6. Mechanical degradation of geo-materials due to weathering: (a) granites (after Kimmance, 315 

1988) and (b) cemented sand (after Wang and Leung, 2008). Different weathered granite samples 316 

have been adopted for testing and indicated with SB1, SB2 and SB3 in Fig 6(a). SB1, SB2 and SB3 317 

samples represent weak brownish grey granites, moderately to highly altered granites and highly 318 

altered granites, respectively. 319 
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The condition of strong erosion (also called weathering-limited erosion) is here assumed. This 320 

means that after each slope failure the landslide debris is removed from the model. The cohesion of 321 

the geo-materials is decreased by small steps of by 0.5 kPa. Slope failure occurs once a shear band 322 

has developed from the slope toe all the way to the slope upper horizontal level as shown in Fig.7. In 323 

this study several successive failure events take place, so it is important to identify slope failures in a 324 

consistent way for all the failures taking place. Common criteria in the literature are in terms of loss 325 

of static equilibrated solution for the failing mass or the achievement of a threshold of strain or 326 

displacement at some reference points in the slope (Lane & Griffiths, 1999). Here for reasons of 327 

ease of computation, the horizontal displacement of the slope crest dcrest, normalised by the slope 328 

height, was considered: I= dcrest/H. The threshold value for failure assumed in our simulations was 329 

Ifailure =3.5×10-3. After a slope failure is identified, the failed slope mass is deleted to replicate strong 330 

erosion (the marked nodes in Fig. 7). Mesh convergence of the evolution processes produced by the 331 

proposed method is examined and the simulation results are also compared to those from limit 332 

analysis in Utili and Crosta (2011a). Fig. 8 shows the relationship between the normalised cohesion 333 

c/(γH) and the crest retreat normalised by slope height CR/H, where c is the cohesion, γ is the unit 334 

weight, H is the slope height and CR is the crest retreat distance. The steps shown in the figure result 335 

from a sequence of discrete landslide events. Each landslide event leads to a finite retreat of cliff, 336 

corresponding to horizontal lines. Between landslide events the slope is stable with the ground 337 

strength parameters progressively being degraded due to weathering captured by the vertical lines in 338 

Fig. 8.  339 

A satisfactory agreement between the results from the proposed method and the limit analysis 340 

solutions from Utili and Crosta (2011a) can be observed for the first four failure mechanisms which 341 

are enough to track how the cliff profile evolves due to the weathering action. The little discrepancy 342 

between two methods is to be attributed to the following factors: 1) in the limit analysis model of 343 
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(Utili and Crosta, 2011a) a logarithmic spiral failure surface is assumed, whereas in our approach 344 

the failure surface is obtained as result of the simulations without any predefined assumption on its 345 

shape; and 2) some approximation in identifying the failure surface in our approach due to the FEM 346 

space discretization as shown in Fig. 7.  347 

 348 

Fig. 7. Shear band at the onset of the first failure. Colours are proportional to equivalent plastic 349 

strain increment. The mesh marked with nodes is considered as failure mass. 350 
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Fig. 8. Uniform weathering results (dimensionless normalised cohesion and the crest retreat).   352 

 353 

With regard to the dependence of the results from mesh size, the predicted cliff retreat from the fine 354 

mesh and the very fine mesh are identical for all practical purposes. However the value of cohesion 355 

at failure is not the only feature to check since the geometry of the failure mechanism is also 356 

important. The slope profiles after the fourth failure predicted by the proposed method using 357 

different meshes are illustrated in Fig. 9. It is evident that the shapes of the slope profile left are very 358 

similar. Thus the fine mesh will be used to simulate the case of the non-uniform degradation in the 359 

following sections for the sake of computational efficiency. 360 
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 361 

Fig. 9. The slope shape after the fourth failure subject to uniform weathering with (a) a coarse mesh, 362 

(b) a fine mesh and (c) a very fine mesh.  363 

 364 

6. Non-uniform degradation 365 

In this section, a more realistic weathering scenario, namely the non-uniform weathering over time 366 

and space, is considered. Additionally, the transport-limited condition is here investigated. The 367 

condition implies that the debris accumulates at the toe of the slope after each landslide event (Utili 368 

and Crosta, 2011b). Therefore both the onset of failure and the movement of the debris need to be  369 

correctly simulated for the model to capture the evolution of the cliff investigated.  370 
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In light of field hardness tests taken at different depth from the exposed surface of a cliff subject to 371 

weathering (Yokota and Iwamatsu, 2000), a weathering front parallel to the exposed surfaces 372 

moving inwards at a constant rate is here assumed as shown in Fig. 10. The weathering depth is 373 

Wfront= vfront × treal where vfront is the speed of the weathering front and treal is the physical time. The 374 

damage index D is used to quantify the degradation of the cliff subjected to weathering. Specifically, 375 

for intact rocks, the damage index is D=0, while we have D=1 if the rocks are fully weathered. 376 

Currently, data related to quantitative descriptions on strength degradation within natural slopes 377 

induced by weathering are scanty. Thus, cohesion is reduced to zero for fully weathered geo-378 

materials to validate the approach against the predictions of cliff evolution from Discrete Element 379 

simulations reported in Utili and Crosta (2011b). The decrease of cohesion over time is given by: 380 

c(t)=c × (1 − D) 

 

(21) 381 

WD as shown in Fig. 10 is the width of partially weathered zone, in which the damage index D 382 

changes linearly from 1 to 0. WD is given by: 383 

WD = vfront/ vD 

 

(22) 384 

where vD is the damage rate, i.e. the increment of D over time. In the simulations, the damage index 385 

inside the slope is prescribed as shown in Fig. 10. The shear strength inside the slope can be 386 

determined from Eq. (21).  387 

Since the spatial distribution of weathering changes over time, it is necessary to explicitly assume an 388 

initial condition to simulate the progression of degradation with time unlike the case of uniform 389 

degradation. The initial condition assumed at t0, was that of unweathered material: D=0 throughout 390 

the whole slope. This assumption supposes the existence of a time when the cliff was characterised 391 

by a uniform strength which could be thought as the time of formation of the cliff: for instance, the 392 

formation of a scarp or a hillslope because of a deep-seated landslide, a series of rapid displacements 393 
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along a specific plane (e.g. fault) or erosion and deposition of river terraces. This is also the standard 394 

assumption in the Fisher-Lehmann and Bakker-Le Heux models. 395 
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Fig. 10. The weathering process within the cliff. 397 

Weathering is usually very slow. Therefore the weathering rate needs to be speeded up to run the 398 

simulations in a feasible computation time as indicated in Utili and Crosta (2011b). This means that 399 

a fictitious simulation time needs to be employed. The ratio between the fictitious time in the 400 

simulation tsim and the real time treal is: 401 

treal = tsim × κ  (23) 402 

where κ is the speedup ratio defined as the ratio of  the physical time to the simulation time. 403 

 404 



26 

The cliff model considered in Utili and Nova (2008) and Utili and Crosta (2011a) is used in this 405 

study which is also shown in Fig. 12 (a). The velocity of the weathering front is vfront =0.01 m/year 406 

and WD is 2 m. The material parameters are the same as these for the case of uniform weathering 407 

except that the non-associated plastic flow with a null dilation angle is assumed for the geo-material 408 

in this section. To calibrate the speedup ratio, κ is set to 0.50×1010, 1.00×1010 and 1.58×1010 409 

corresponding to a speedup velocity of the weathering front of 1.59, 3.17 and 5.00 m/s, respectively. 410 

Note that as soon as dynamic motion in any point in the slope is identified, weathering is stopped 411 

and the speed up ratio is set to unity, i.e. the real time coincides with the simulation time, for the 412 

whole duration of the dynamic motion until the landslide body stops its motion. Then, once quasi-413 

static conditions are resumed, weathering scaling is also resumed with the speed up ratio set to its 414 

original value until the next failure occurs. One simulation, consisting of a sequence of discrete 415 

landslide events and slow weathering process, required around 62.6 hours to complete.  416 

The results of the simulation in terms of normalised crest retreat versus propagation distance of the 417 

Weathering Front (WF) for WF/H<0.4 are shown in Fig. 11. The crest retreats obtained for κ = 418 

0.50×1010 and κ= 1.00×1010 are in a good agreement, indicating that the speedup ratio κ= 1.00×1010 419 

is sufficiently small not to unduly affect the results. This ratio was therefore adopted in all 420 

subsequent simulations.  421 
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 422 

Fig. 11. Dimensionless crest retreat versus weathering front under different speedup ratios. WF is 423 

the propagation distance of the weathering front.  424 

The predicted cliff profiles over time are shown in Figs. 12 (b)-(i) with the associated weathering 425 

fronts plotted in Fig.13. As it can be seen in Fig.13 (i), at the end of the cliff geometric evolution, 426 

most of the slope is fully weathered and the final angle of repose of the scree made of debris is about 427 

30° over the horizontal. In Fig. 12, the debris materials are depicted in blue and the so-called non-428 

displaced undisturbed zone is in red. It emerges that the free cliff front (e.g. the surface from the 429 

crest of the slope to the rear of the accumulated debris) remains parallel to the original cliff surface 430 

which is represented by a dashed line. This phenomenon produced by the N-PFEM simulation 431 

confirms the assumption made by the Fisher-Lehmann model (Fisher, 1866, Lehmann, 1933), which 432 

is a classic geomorphologic model to predict the shape of the undisturbed zone of slopes subjected 433 

to weathering, that in a given time weathering produces an equal retreat of all parts of the exposed 434 

free face by the falling away of fine debris. Readers interested in the assumption of this 435 
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geomorphologic model and the equation of the shape of the undisturbed zone are referred to 436 

Hutchinson (1998).  437 
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Fig. 12. The evolution of the slope subjected to weathering propagation at simulation time of (a) 0.0 439 

s, (b) 1.5 s (c) 1.8 s, (d) 2.4 s (e) 3.3 s (f) 4.1 s (g) 5.4 s (h) 8.2 s and (i) 16.0 s. Colours are 440 

proportional to the accumulated horizontal displacement (m). The blue indicates the sliding mass 441 

while the undisturbed zone in the slope is indicated in red. 442 

 443 
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 444 

Fig. 13. The propagation of weathering front at simulation time of (a) 0.0 s, (b) 1.5 s (c) 1.8 s, (d) 445 

2.4 s (e) 3.3 s (f) 4.1 s (g) 5.4 s (h) 8.2 s and (i) 16.0 s. Colours are proportional to the damage index, 446 

D. The green indicates the intact mass while the fully weathered materials are in yellow. 447 

 448 

In Fig.14 the final deposit predicted by the N-PFEM method (Fig. 12 (i))  is compared to the DEM 449 

simulations in Utili and Crosta (2011b), yellow curves, and that from the Fisher-Lehmann 450 

geomorphologic model (Fisher, 1866, Lehmann, 1933). The results of the three methods broadly 451 

agree well with each other. It can be seen that the proposed N-PFEM and the DEM produce very 452 

similar results in terms of both the shape of the undisturbed zone and the slope profile. An advantage 453 

of the N-PFEM model over the DEM is that, as a continuum approach, it does not require the 454 

calibration process needed for the particle bond parameters of the DEM modelling.  455 

 456 
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Fig.14. Final deposit of the slope derived from the N-PFEM, the DEM (Utili and Crosta, 2011b) and 458 

the Fisher-Lehmann model.  459 

7. Retaining wall design 460 

In order to prevent the cliff recession due to weathering induced landslides, one of the measures 461 

commonly taken in practical engineering is the construction of retaining wall structures. In this 462 

study, the performance of the retaining wall against weathering induced cliff failures is shown in Fig. 463 

15. The higher the retaining wall, the safer the slope but the associated construction and 464 

maintenance costs will also be higher. Therefore, it is important to strike the right balance with 465 

respect to the wall construction costs. For this purpose, the performance of retaining wall with 466 

different heights (i.e. 0 m, 5 m, 10 m, 15 m, 20 m to 25 m) is investigated using the proposed N-467 

PFEM. As a matter of fact, the retaining wall will eventually be degraded due to weathering in the 468 

very long term. In our simulations the rigid retaining wall is modelled as rough boundary condition. 469 

The parallel weathering model described for the non-uniform weathering case in section 6 was 470 

adopted together with the slope material parameters. A faster weathering rate is considered with 471 

vfront =0.1 m/year; WD is 2 m and the speedup ratio κ is reduced to 1.00×109. 472 
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Fig.15. The numerical model with a retaining wall structure. 474 

The evolution of the slope subjected to weathering is shown in Fig. 16 while the simulation results 475 

for the crest retreat over time are shown in Fig. 17 in which the height of the retaining wall is 476 

normalized by the height of the slope, h/H, and so does the distance of crest retreat (i.e. CR/H).  477 

Fig. 17 indicates that the first crest retreat event occurs at about 57.1 years (simulation time = 1.5 s ) 478 

regardless of the height of the retaining wall. There is also no clear difference on the crest retreat 479 

distance between different cases until the slope with the highest retaining wall reaches its final 480 

deposit profile at 199.8 years (simulation time = 6.3 s ). The detached debris covers the whole 481 

retaining wall for the lower retaining wall structure (i.e. h/H ≤ 0.375) implying that the effect of the 482 

retaining wall on the shape of the scree resting on the slope base is negligible. In addition, the crest 483 

retreat distances for these four cases are comparable. The slope with second highest retaining wall 484 

(h/H=0.5) reaches its final deposit profile at 255.3 years (simulation time = 8.05 s). At the final stage, 485 

the slopes with h/H ≥ 0.5 has a much lower crest retreat while, for the cases with low retaining walls 486 

(i.e. h/H ≤ 0.375), the effect of the retaining wall on the crest retreat is insignificant.  487 
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 488 

Fig. 16. Evolution of the cliff with different retaining wall heights at different simulation time 489 

instants: (a) 1.8 s, (b) 6.3 s, (c) 8.05 s and (d) 16.0 s. Colours are proportional to accumulated the 490 

horizontal displacement (m) and black dash lines indicate crest retreat of the cliff without the 491 

retaining wall. 492 

 493 
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Fig. 17. Dimensionless crest retreat over time. 495 

8. Discussion and conclusions  496 

A novel computational framework called the Nodal-integration based Particle Finite Element 497 

Method (N-PFEM) was developed for modelling cliff recession resulting from weathering-caused 498 

landslides. To this end, the nodal integration technique is first embedded into the finite element 499 

formulation in second-order cone programming. The resulting nodal-integration based finite element 500 

formulation (N-FEM) is then merged into the framework of the particle finite element method 501 

(PFEM) to form the N-PFEM for simulating cliff recession involving very large material 502 

deformations.  Comparing to the classical PFEM, the developed N-PFEM stores information of all 503 

field variables on mesh nodes and performs nodal integration on the cell associated with each mesh 504 

node. Consequently, it requires no operation of variable mapping from old meshes to new meshes, 505 

when new meshes are generated, which is essential in the classical PFEM for modelling history-506 
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dependent materials and inevitably introduces errors and considerable complexity to solution 507 

procedures.  508 

        The ability of the proposed N-PFEM for predicting cliff recession in weathering has been 509 

showcased through a series of examples. The results from the N-PFEM modelling have been 510 

compared with these from the limit analysis, the DEM simulation and the Fisher-Lehmann 511 

geomorphologic model available in literatures. Analytical methods, such as the limit analysis 512 

method and the Fisher-Lehmann geomorphologic model, can provide a quick estimation of the slope 513 

profile. But the limit analysis approach can only handle the weathering-limited case and the shape of 514 

the failure surface has to be defined in advance. The simulation results from the N-PFEM and the 515 

DEM agree well with each other in terms of both the final deposit shape and the shape of the 516 

undisturbed zone of the slope. In comparison with the DEM, the appeal of the N-PFEM is that the 517 

time onerous calibration of the material properties at microscopic levels is not required. 518 

       The prevention of cliff recession by retaining wall structures is also studied using the developed 519 

N-PFEM. Since the purpose of this example is to illustrate the capability of the proposed N-PFEM 520 

for studying the effect of a retaining wall on cliff erosions, we only consider a retaining wall of a 521 

simple geometry. Further studies on the influences of the geometry and the engineering properties of 522 

a retaining wall that may change during the weathering process are critical for the optimum design 523 

of retaining walls in practice and achievable using the N-PFEM.  524 
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Appendix: Second-order cone programming 529 

In this work, optimisation problem (18) is transformed into a standard SOCP which is then can be 530 

resolved using the advanced interior-point method. Very efficient solvers capable of dealing with 531 

large-scale SOCP problems have been developed in last decades or so. Of particular notes are the 532 

packages MOSEK (Mosek, 2015) and SeDuMi (Sturm, 1999). 533 

 534 

The SOCP is a generalization of linear and quadratic programming that allows for affine 535 

combinations of variables to be constrained inside a special convex set, called second-order cone 536 

(Calafiore and Ghaoui, 2014). The following primal standard form of the SOCP is often used: 537 

Tmin       

subject to   

    





a

D

y

y e

y

  (A1) 538 

where y are the full problem variables and  is a Cartesian product of second-order cones i.e., 539 

1 2 n    . Two most common conic cones are: 540 

 the quadratic cone:  541 

 2 2

1 2 |  m

q my y y    y  (A2) 542 

 the rotated quadratic cone:  543 

 2 2

1 2 3 1 2 | 2 , 0,  0m

r my y y y y y      y  (A3) 544 

The minimisation part of principle (18) with respect to ˆu  can be solved analytically resulting in a 545 

maximisation problem: 546 



36 

 

 

n+1 n+1

T 2 T

n+1 n+1 n+1 n+1 0
, , ,  1

T T

n+1 n+1

n+1

1 1
max

2 2

ˆsubject to  

0

,  0

bN
I I

r

I

b

t g p

F

F

 

     

 





C D

B A f + +

r p q 

r r

r np nq

p q

 





 (A4) 547 

Obviously, this maximum problem is equivalent to the following minimum problem: 548 
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 (A5) 549 

Comparing (A5) to the standard SOCP form (A1), the quadratic terms, namely 550 

T 2 T

n+1 n+1 n+1 n+1

1 1
 and 

2 2
rt  C Dr r  , in the objective function have to be reformulated. To this end, 551 

two auxiliary variables X and Y are introduced in the objective function and we have 552 
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The newly introduced inequality constraints can be converted to rotated quadratic cones: 554 
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 (A7) 555 

The yield criteria  n+1 0F   and  ,  0bF p q  can be reformulated as a quadratic cone as well. 556 

Readers are referred to (Zhang et al., 2013) for more details. Problem (A7) is now the formulation of 557 

the N-FEM in a standard SOCP form which is the eventual problem to be resolved at each 558 

incremental analysis step. 559 

560 
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