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Abstract— We propose an efficient enhanced K-means clus-
tering (E-KMC) algorithm for semi-blind channel estimation of
uplink cell-free massive multiple-input multiple-output (MIMO)
systems in factory automation, an important application of
the internet of things (IoT). The proposed E-KMC algorithm
operates with significantly less clusters and complexity than the
KMC algorithm while achieving enhanced bit error rate (BER)
performance, as the latter converges extremely slowly even with
just medium modulation order and a medium number of trans-
mit antennas. A near-optimal short pilot is designed to assist
clustering of the E-KMC based channel estimation scheme. The
semi-blind receiver structure achieves a BER performance that
is very close to the case with perfect channel state information
(CSI), as well as a mean square error (MSE) of channel
estimation that is very close to the theoretical lower bound
derived in the paper. The proposed E-KMC based channel
estimation scheme also significantly outperforms other types
of semi-blind channel estimation approaches including second-
and higher-order statistics based and machine learning based
approaches, while at a much lower complexity. In addition,
the E-KMC based channel estimation, is conducted at central
processing unit (CPU) and avoids excessive fronthaul overhead
due to exchange of the estimated CSI between access points
(APs) and CPU.

I. INTRODUCTION

Cell-free (CF) massive multiple-input multiple-output
(MIMO) [1] has been introduced as a promising fifth gener-
ation (5G) and beyond 5G technique, due to its high energy
efficiency, high quality of service and flexible and cost-
effective infrastructure. CF massive MIMO is an eminently
suitable solution for internet of things (IoT) applications such
as factory automation [2], where closed-loop control sensors
and acuators run periodic cycles while demanding ultra-
reliable low-latency communications [3]. In such a system,
it is important to acquire accurate channel state information
(CSI) with scant fronthaul overhead and relatively short frame
length.

Conventional channel estimation for CF massive MIMO
systems is based on training symbols [4] [5]. Their accuracy

This work was supported in part by the National Natural Science
Foundation of China under Grant 61901138, in part by the Natural Science
Foundation of Guangdong Province under Grants 2018A030313344 and
2018A030313298, and in part by the Guangdong Science and Technology
Planning Project 2018B030322004.

is highly dependent on the number of training symbols
and orthogonality between training symbols. When CSI is
estimated at individual access points (APs) and then passed
to central processing unit (CPU) for joint signal detection [4]
[5], additional fronthaul overhead is required for exchange
of the estimated CSI between APs and CPU. Independent
component analysis (ICA), one of the blind source separation
approaches, was employed in [6] and [7] for blind channel
estimation and signal detection in massive MIMO systems,
however, the ICA-based approaches [6] [7] suffer an error
floor at high signal-to-noise ratio (SNR) due to inadequate
ambiguity elimination.

Machine learning [8] has been applied to MIMO systems
[9] [10] [11]. In [9], an expectation-maximization (EM) based
semi-blind channel estimation approach was proposed, how-
ever, its complexity is relatively high, and its performance
is limited by the initial channel estimation which requires a
relatively long pilot with low spectral efficiency. K-means
clustering (KMC) [12], which enables noise suppression,
is one of the most popular clustering algorithms [13] due
to its effectiveness and simplicity. KMC was employed in
[10] for blind signal detection in space shift keying MIMO
systems, where KMC was conducted multiple times to avoid
error floor, requiring a high computational complexity. The
work was extended in [11] to present a so called KMC-
based blind signal detector for MIMO systems with spatial
modulation. However, it was assumed in [11] that ambiguity
was mitigated with ideal CSI obtained, which is not practical.
Therefore, the approach in [11] is only pseudo blind. Also,
KMC [10] [11] is not suitable for a CF massive MIMO
system with relatively short frame length, high modulation
order and large number of transmit antennas.

Motivated by the above open issues, we propose an
efficient enhanced KMC (E-KMC) algorithm based semi-
blind channel estimation scheme for a CF massive MIMO
system in factory automation. The main contributions are
summarized as follows.
• The proposed E-KMC algorithm achieves a significant

complexity reduction over KMC [11], while outperform-
ing KMC in terms of bit error rate (BER). This is
because given the number of transmit antennas K and
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modulation order M , E-KMC forms only K clusters
of predefined size with all received signal vectors, and
requires only one iteration to assign each cluster a group
of received signal vectors nearest to the mean (centroid)
of the cluster. While KMC [11] has MK clusters to
assign and has to conduct cluster assignment and means
update iteratively. It does not converge even after 1000
iterations and presents a worse BER performance than
E-KMC. Furthermore, clustering requires the number
of observations (frame length in this use case) to be
much larger than the total number of clusters. Hence,
the proposed E-KMC algorithm is suitable for a wide
range of number of transmit antennas, modulation order
and frame length.

• A near-optimal short pilot is designed with low com-
plexity, which helps to find the centroids of clusters and
avoid ambiguity. The proposed E-KMC based channel
estimation scheme enables a BER performance that is
very close to the case with perfect CSI. It also out-
performs other types of semi-blind channel estimation
approaches [6] [9] [14] in terms of BER and mean
square error (MSE) of channel estimation, and requires
much lower complexity than the ICA [6] and EM [9]
receivers with the same pilot length. A lower bound on
the MSE of channel estimation by E-KMC is derived
and shown to be very lose to simulation results.

• As the proposed E-KMC based channel estimation is
conducted jointly at CPU, the fronthaul overhead is
greatly reduced compared to [4] and [5], where channel
estimation is conducted at individual APs and transmit-
ted to the CPU.

II. SYSTEM MODEL

In this paper, we consider a CF massive MIMO uplink
system for factory automation with K single-antenna sensors
and N distributed single-antenna APs, as illustrated in Fig.
1. The APs are connected to a CPU via fronthaul links. Joint
signal detection is implemented at CPU, without the need of
any information of channel.

Each transmit symbol is drawn from a constellation set
C = {c1, c2, · · · , cM}, where M is the modulation order.
X = [x[1], · · · ,x[t], · · · ,x[T ]] of size K × T is the trans-
mitted signal matrix, where x[t] of size K × 1 as its t-th
column is defined as the t-th symbol vector of K sensors
within a frame. The first L symbols of X are exploited
as pilots, the rest (T − L) symbols are utilized for data
transmission. Thus, X can be written as X = [XP XD],
where XP = [xp[1], · · · ,xp[l], · · · ,xp[L]] and XD =
[xd[L+ 1], · · · ,xd[u], · · · ,xd[T ]] respectively denote the pi-
lot matrix of size K×L and data matrix of size K×(T−L).
Since closed-loop control sensors run periodic cycles in
factory automation [3], several data vectors occur with a
higher probability than others. For example, vector f takes

CPU

AP

Sensor

Fronthaul

Fig. 1. Diagram of a CF massive MIMO system for factory automation

four possible values of Φ1 to Φ4 with unequal probabilities,
where vectors Φ1 and Φ2 have a higher probability to occur
than the Φ3 and Φ4.

The received signal at CPU with T samples is organized
into an N × T matrix Y, given by

Y = HX + W (1)

where W denotes the noise matrix of size N × T , which
has independent identically distributed entries following
CN (0, N0), which N0 denoting the noise variance, and H
is the Rayleigh block fading channel matrix. Let hnk be the
element of H in its n-th row and the k-th column, which
represents the channel coefficient between the n-th AP and
k-th sensor, which is modeled as hnk = gnk

√
βnk [1], where

βnk and gnk ∈ CN (0, 1) denote the large-scale fading and
small-scale fading coefficients between the n-th AP and k-th
sensor, respectively. Y = [y[1], · · · ,y[t], · · · ,y[T ]], where
y[t] denotes the t-th column of Y. The observed matrix
at CPU is written as Y = [YP YD], where YP and YD

correspond to the received pilot symbols and the received
data symbols, respectively.

III. E-KMC BASED SEMI-BLIND CHANNEL ESTIMATION

In this section, we present the proposed E-KMC based
semi-blind channel estimator and the pilot design to enable
high-accuracy and low-complexity estimation.

A. E-KMC Based Semi-blind Channel Estimation

To overcome the limitations of the pilot assisted approach
and the conventional KMC method as stated above, we
propose an E-KMC algorithm to estimate channel in a semi-
blind manner with low complexity.

Let Ψ denote the set of all possible values of transmitted
signal vectors with size Q. The pilot vector xp[l] is drawn
from ΨP ∈ Ψ whose size is L, and the data vector xd[u]
is drawn from ΨD = Ψ − ΨP with size Q − L. As stated



in Section II, some data vectors are likely to appear with a
higher probability in the constellation for factory automation.
In E-KMC, the L data vectors appeared with highest proba-
bility which are determined by forecasting the distribution
of all data vectors in advance, are respectively selected
and encoded as the L pilot vectors, and the corresponding
decoding process is performed after signal detection.

Let xcd[u] denote the u-th coded data vector. After the cod-
ing process, the number of the coded data vectors xcd[u], u =
L + 1, · · · , T equal to each column vector of pilot matrix
xp[l], will be relatively large in factory automation and we
denote it as T lc . For convenience, T lc for l = 1, · · · , L is
assumed to be the same as Tc. Tc is assumed to be known
at the receiver, considered as prior knowledge in the system.
Let ζl = {i|xcd[u] = xp[l]} represent the set of indices of
coded data vectors which equal to the pilot vector xp[l]. Thus,
the received vectors with indices in ζl can be written as the
following form

y[i] = Hxp[l] + w[i], i ∈ ζ
l

(2)

Let ζy
l = {y[i]|∀i ∈ ζl} represent the set of receive

vectors that correspond to pilot vector xp[l]. Therefore, some
received vectors in Y are assigned into subsets ζy

l , l =
1, · · · , L, respectively. The optimal channel estimation for
(2) based on maximum likelihood criteria is given by

Ĥ = arg min
H

∑
y∈ζy

l

‖y −Hxp[l]‖2 (3)

with l = 1, · · · , L. Based on (3), we mainly focus on the
clusters ζy

l , l = 1, · · · , L, which correspond to the set of
indices of pilot vectors xp[l], l = 1, · · · , L.

In KMC [12], each observation is assigned to its closest
centroid by calculating and comparing the Euclidean dis-
tances, which means that every observation in each cluster
is densely distributed around its centroid in terms of Eu-
clidean distances. The proposed E-KMC algorithm operates
as follows. First, L centroids are initialized by the L selected
columns of YP . For the size of each cluster denoted as
Tc, it is feasible that each centroid is surrounded by Tc
receive vectors. Second, after the initialization of centroids,
the l-th cluster ζy

l can be determined by grouping the Tc
nearest observations to l-th centroid. In E-KMC, the cluster
ζy
l is obtained with the aid of its cluster size and centroid.

The observations with the same channel and data vectors
are grouped into a cluster, which is capable of achieving a
more accurate channel estimate by averaging in the following.
Third, the average of the observations in each cluster is
calculated.

Finally, the channel matrix in (3) can be calculated by

Ĥ = ȳζX
H
P

(
XPXH

P

)−1
(4)

where ȳζ = [ȳ1, · · · , ȳl, · · · , ȳL] is an N × L matrix, with
ȳl denoting the average of the observations in cluster ζy

l .

Thanks to the clustering and the average operation, the noise
power in ȳζ is much lower than that of the original centroids,
which suggests that a more accurate channel estimate can
be obtained. The proposed E-KMC algorithm is depicted in
Algorithm 1.

Algorithm 1 : E-KMC based channel estimator
Input:

The pilot matrix XP ;
The signal matrix Y received at CPU;
The size of each cluster Tc;

Output:
The estimated channel Ĥ;

1: Choose L columns of YP as centroids of L clusters,
which are denoted as y[l], l = 1, · · · , L. The L clusters
are denoted as ζy

l , l = 1, · · · , L;
2: for l = 1, · · · , L do
3: Calculate the Euclidean distances between the received

signals and the centroid of each cluster: D[j] =
‖y[j]− y[l]‖2, j = 1, · · · , T ;

4: Define the set of the closet Tc received vectors as the
cluster ζy

l ;
5: end for
6: Calculate the average of each cluster ȳl, l = 1, · · · , L,

and ȳζ = [ȳ1, · · · , ȳl, · · · , ȳL] is obtained.
7: Compute the estimated channel by Ĥ =

ȳζX
H
P

(
XPXH

P

)−1
;

8: return Ĥ;

It is noteworthy that the proposed E-KMC algorithm forms
only L clusters of size Tc (the minimum value of L is K
as stated in Subsection III-B), in contrast to MK clusters
of dynamic cluster size by KMC [10] [11]. Furthermore, as
clustering requires the number of observations (frame length
in this use case) to be much larger than the total number of
clusters, E-KMC is applicable to a system with a relatively
short frame length to meet low latency demands, while KMC
is not. Hence, the proposed E-KMC algorithm is suitable
for a wide range of CF massive MIMO system with flexible
requirements on the number of transmit antennas, modulation
order and frame length.

B. Pilot Design

Pilots are carefully designed in this subsection to achieve
an accurate channel estimate but with much lower training
overhead and computational complexity. To achieve both high
spectral efficiency and high estimation accuracy, the length of
the pilot sequence L is set to L = K, which is the shortest
length allowable, since there are K unknown vectors from
K sensors in the system needed to be solved by at least K
equations through linear approaches.

To reduce the computational complexity of equation (4),
it is efficient to design the pilot symbols carefully such that



its pseudo inverse defined as X†P = XH
P

(
XPXH

P

)−1
is the

sparsest. To guarantee a unique and low-complexity solution,
the number of elements in the pseudo inverse matrix X†P
being zero or close to zero should be

Z = K(K − 2) (5)

Moreover, since there is an inverse operation in (4), the
noise in ȳζ might be enhanced and propagated into the
following channel estimate. To avoid the noise enhancement,
we carefully design the pilots to minimize the power of X†P
which is defined as Θe = tr

{
X†PX†P

H
}

.
In addition, as mentioned above, K clusters are obtained

by calculating the Euclidean distances between the received
signal and the centroids of K clusters. Since the columns of
received pilot symbols y[l], l = 1, · · · ,K are selected to be
the centroids of K clusters, the performance of clustering can
be improved by increasing the distances between pilot vectors
xp[l], l = 1, · · · ,K. The sum of the distances between any
two pilot vectors is defined as

Θd =

K∑
m=1

K∑
n=1
n 6=m

‖x[m]− x[n]‖2 (6)

Hence, the pilot design can be considered as an optimiza-
tion problem which can be formulated as

P1 : X̃P = arg min
XP∈C

αΘe − ηΘd

Subject to (5)
(7)

where X̃P denotes the optimal designed pilot matrix, α and
η are multi-objective weights utilized to achieve a trade-off
between the energy of X†P and the sum of the distances
between any two pilot vectors, and the pilot matrix should be
full rank here to ensure (4) has a valid solution. However, it is
extremely difficult to find the optimal solution to problem (7)
directly. Thus we split the original optimization problem P1
into two simple subproblems P1.1 and P1.2, and then find
a suboptimal solution to (7). Furthermore, it is noteworthy
that the optimization of noise suppression is more important
than the minimization of distance since the noise suppression
affects both noise power and the distances, which suggests
that α� η. Thus, the optimization for the noise suppression
subject to the lowest complexity is solved first which can be
written as

P1.1 : X̄P = arg min
XP∈C

tr
{

X†PX†P
H
}

Subject to (5)
(8)

Then, based on the solution set to P1.1, the subproblem
about the distances among pilot vectors is formulated by

P1.2 :
^

XP = arg max
X̄P∈CX̄P

K∑
m=1

K∑
n=1
n 6=m

‖x̄[m]− x̄[n]‖2 (9)

where
^

XP denotes the suboptimal designed pilot matrix for
equation (7), CX̄P

represents the solution set to (8), and X̄P

is defined as X̄P = [x̄[1], · · · , x̄[K]]. Multiple suboptimal
solutions to problem (7) might exist when the same distances
are shared among pilot vectors.

We use K = 6 as an example in the following and assume
that {c1, c2, · · · , c11} ∈ C, where C is the constellation set.
We describe how we determine the suboptimal pilot for M -
PSK or M -QAM in the following.

First, Z is equal to 24 as stated in (5), so that each channel
vector should be easily obtained by only two columns of
ȳζ through (4). One possible pilot matrix set that meets the
constraint Z = 24 can be depicted as

^

XPe =


c1 c2 c4 c6 c8 c10
c1 c2 c4 c6 c8 c11
c1 c2 c4 c6 c9 c11
c1 c2 c4 c7 c9 c11
c1 c2 c5 c7 c9 c11
c1 c3 c5 c7 c9 c11

 (10)

Then, considering the property of the pseudo-inverse of
XPe, to ensure that X†Pe has the minimum power, ci with
i = 1, 2, · · · , 11 is chosen to be the symbol with maximum
power in C and the distance between cj and cj+1 with j =
2, 4, 6, 8, 10 should be the largest. Two elements in the set
{c1, c2, · · · , c11} might be equal if the number of maximum-
power signals is smaller than 11. Finally, the distances among
columns in

^

XPe are set to be the largest in order to greatly
enhance the clustering performance through search.

As can be seen in the following sections,
^

XPe is a near-
optimal solution to (7), which not only achieves a supe-
rior MSE performance of channel but also approaches the
theoretical lower bound resented in Section IV, while with
a lowest computational complexity, in comparison to the
existing methods in [6], [9] and [11]. Moreover, since the
pilot vectors are utilized to determine centroids in E-KMC
algorithm, ambiguities are avoided.

IV. PERFORMANCE AND COMPLEXITY ANALYSIS

A. Lower Bound on MSE of Channel Estimation

The normalized MSE of channel estimation is defined as

MSEnormalized =
1

KN
E
{∥∥∥H− Ĥ

∥∥∥2} (11)

The theoretical lower bound of normalized MSE of the
proposed semi-blind E-KMC based channel estimation is
given by

∆ =
N0K

Tc$
(12)

where $ = tr
{

XPXP
H
}

is considered as the total power
of pilot matrix [15].

Due to space limitation, the proof of (12) is not included
in this paper.



TABLE I
COMPLEXITY ANALYSIS (K : NUMBER OF SENSORS, N : TOTAL NUMBER OF APS, M : MODULATION ORDER, L: PILOT LENGTH, TKMC : FRAME

LENGTH REQUIRED IN [11], T : FRAME LENGTH FOR E-KMC AND OTHERS [6] [9], Tc : NUMBER OF RECEIVED VECTORS OF EACH CLUSTER, REM :
NUMBER OF ITERATIONS REQUIRED IN [9], RKMC : NUMBER OF ITERATIONS REQUIRED IN [11]. EST.: ESTIMATION, DET.: DETECTION)

Item E-KMC + MMSE EM [9] + MMSE ICA [6] KMC [11]

Channel est. O (NKT +KTc) O
(
N2 (T − L+KREM)

)
O(N2K +NKT O(TKMCM

KRKMC)

Signal det. O
(
K3
)

O
(
K3
)

+TK2 + TK + TK2)

Total O(NKT +KTc +K3) O(N2 (T − L+KREM) O(N2K +NKT O(TKMCM
KRKMC)

+K3) +TK2 + TK + TK2)

TABLE II
NORMALIZED NUMERICAL COMPLEXITY (K = 6, N = 64, M = 4,

L = 6, TKMC = 81920, T = 1000, Tc = 50, REM = 5,
RKMC = 1000. EST.: ESTIMATION, DET.:DETECTION)

Item E-KMC +
MMSE

EM [9] +
MMSE

ICA [6] KMC [11]

Total 1 10.6 1.2 8.3× 105

B. Complexity Analysis

In Table I, the computational complexity of the proposed
E-KMC scheme in comparison to existing methods [6]
[9] [11] is presented. The complexity order of clustering
operation and pseudo-inverse operation of pilots (4) in E-
KMC is O (NKT +KTc) and O(NK), respectively. Thus,
the computational complexity of the proposed scheme is
O (NKT +KTc). For a fair comparison, all the above
schemes are assumed to share a common pilot. The pilot
design requires a complexity of O(MK) to solve (7), which
is much less than the complexity of O(MK×K) by exhaustive
search. As the pilot is designed offline, it is not counted in
the analyzed total complexity.

Normalized numerical complexity is shown in Table II,
with K = 6 sensors, N = 64 APs, M = 4 (QPSK
modulation), L = 6 pilot symbols, and frame length T =
(MK) × 20 = 81920 for KMC [11] and T = 1000 for E-
KMC and others [6] [9]. Each cluster of the proposed E-KMC
estimator has Tc = 50 elements. The maximum number of
iterations allowable for EM [9] and KMC [11] are set to
REM = 5 and RKMC = 1000, respectively. The proposed
E-KMC scheme is more computationally efficient than the
approaches in [6], [9] and [11]. In particular, it achieves
nearly a 106-times complexity reduction over KMC [11]. This
is because that E-KMC requires only one iteration to assign
each cluster the group of received signal vectors nearest to the
centroid, where the means are calculated only once with the
aid of a short pilot. While KMC [11] has to conduct cluster
assignment and means update iteratively in the 4096-cluster
regime.
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Fig. 2. BER of the proposed E-KMC based semi-blind channel estimation,
with K = 6 sensors, N = 64 APs and QPSK modulation.

V. SIMULATION RESULTS

We use Monte-Carlo simulations to demonstrate the ef-
fectiveness of the proposed E-KMC scheme. The APs and
sensors are uniformly distributed within an area of 500×500
m2. The shadowing model and the three-slope path loss
model [1] for large-scale fading are adopted. The same setup
as for Table II is used except that 16-QAM modulation
(M = 16) is used for Fig. 3. It is noteworthy that the
required frame length for KMC [11] is T = 81920, which
is approximately 82-fold longer than that of E-KMC with
T = 1000 only. The designed pilot matrix in (10) is utilized
in E-KMC. The ambiguity of KMC is mitigated with ideal
CSI as assumed in [11]. The SNR is defined as the average
of ratio of the received signal power to noise power at APs.

Fig. 2 demonstrates the BER performance of the proposed
efficient E-KMC based semi-blind channel estimation method
with QPSK modulation. It provides a BER performance that
is much better than that of ICA [6], EM [9], KMC [11] and
LS [14] methods, and close to the case with perfect CSI.
The proposed E-KMC algorithm requires only 6 clusters and
one iteration, while the KMC approach [11] requires 4096
clusters and does not converge even after 1000 iterations.
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ICA [6] suffers error floor due to insufficient ambiguity
elimination.

Fig. 3 shows the BER performance with 16-QAM modu-
lation, where similar trends to Fig. 2 can be observed. The
complexity of KMC [11] in this case is prohibitive, with
166 = 1.7×107 clusters required, and therefore is not shown
in Fig. 3. The performance of ICA [6] is also not shown as its
ambiguity elimination method is for BPSK and QPSK only.

Fig. 4 illustrates the normalized MSE performance with
QPSK modulation. With the pilot design presented in Sub-
section III-B, the lower bound on MSE derived in (12) is very
close to the simulation result. The proposed E-KMC scheme
demonstrates a much higher channel estimation accuracy than
the ICA [6], EM [9], KMC [11] and LS [14] approaches, with
a training overhead of only 0.6%.

VI. CONCLUSION

A low-complexity E-KMC algorithm has been proposed
for semi-blind channel estimation at CPU of an uplink CF
massive MIMO system in factory automation. The E-KMC
algorithm achieves significant complexity reduction over the
KMC algorithm [11], which is approximately 106-fold in a
6×64 QPSK system as the latter algorithm does not converge
even after 1000 iterations. The BER performance of the E-
KMC based receiver is very close to the perfect CSI case,
and much better than those of the approaches based on ICA
[6], EM [9], KMC [11] and LS [14]. A short pilot with very
low training overhead is designed to find the centroids in
clustering with dramatic complexity reduction over exhaus-
tive search, while achieving a near-optimal performance. In
conclusion, the proposed E-KMC based semi-blind scheme is
applicable to an uplink CF massive MIMO system for factory
automation with a wide range of the number of sensors, the
number of APs, modulation order and frame length.
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