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Abstract. A simple model for the apparent shear stress on the vertical interface between the 

floodplain and main channel in asymmetric smooth compound channels is proposed using 

experimental data obtained in this study. The turbulent structure, including Reynolds shear 

stress in asymmetric compound channel flows, is investigated for three different flow depths. 

The lateral distribution of the apparent shear stress obtained shows that the total apparent shear 

stress has a negative peak near the junction edge in the main channel. Furthermore, the 

intensity of the advection terms and the Reynold shear stress near the interface are investigated 

as the function of the bankfull height and floodplain width. The momentum transport due to 
Reynolds stress and secondary current between main channel and floodplain is finally modeled 

as depth ratio using scaling argument. The validation of the current model on three datasets 

shows an accurate prediction of overall discharge for the asymmetric smooth compound 

channels.   

Keywords: Overall discharge, asymmetric compound channel, Momentum transfer, turbulent 

shear, secondary current  

1. Introduction 
The decrease in velocity in the different sections of compound channels, intensifies as the depth 
somewhat reaches just above the bankfull height [1-3]. Thereafter, the decrease in channel velocity 

would directly relate to the retarding effect of apparent shear force. For the modelling purpose, a good 

approximation of the apparent shear stress on the interface is needed to accurately predict the 

discharge over the flooded areas. Accuracy of the predicted apparent shear (  ) at the interface of the 
compound section occurring on the interfacial vertical, horizontal or diagonal plane helps to improve 

1D methods, which are lucid to apply and can be corrected to predict overall discharge and zonal 

discharge [4-9]. Apparent shear can be defined as a measure of the combining effect of viscous shear, 
turbulence with the action of vortices induced between main-channel and floodplain(s) [3, 10]. Two 

components of large-scale motions, namely the fluctuation velocity (   ̅̅ ̅̅ ) and secondary current (   ̅̅̅̅ ) 

where   is the fluid density and   ̅̅̅̅  is the time average product of streamwise and lateral velocity, are 

key characteristics to measure momentum exchange in any compound channel [11-15]. However, in 

practice, measuring   is time consuming and cumbersome because small scale (in time and size) 

vortices are difficult to capture. Therefore, researchers generally relate    to large-scale motions, such 

as mean velocity. The overall    is often approximated as a function of the difference between main 

channel (  ) and floodplain (  ) velocity [16-19].  
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The aforementioned approach is identified in the linear scaling argument by describing the lateral 

momentum transfer between adjacent flow sections [20]. This lateral momentum transfer is usually 

introduced as the interfacial stress (      between the corresponding sections. Our contention lies on 

the same hypothetical assumption where in the streamwise direction, the largest eddy scale is observed 
as the typical difference in average velocity due to no-slip condition at the channel bed. This paper 

aims to investigate the characteristics of spanwise shear stress due to the advection induced secondary 

currents, Reynolds shear stress, and then the apparent shear stress, which represents the magnitude of 
the spanwise momentum transport. Finally, a scaling argument model for interfacial shear stress is 

proposed to estimate the overall discharge of an asymmetric compound channel. 

2. Experimental Methodology  

The experiments were carried out in a 0.75m wide and 20m long glassed-wall flume at the hydraulics 
laboratory of Xi’an Jiaotong Liverpool University (XJTLU), China (figure 1). Three compound 

channel cross sections were tested in the rectangular flume with the bed slope of S0 =0.003 in all the 

scenarios. The three test asymmetrical channels has the bankfull height of 4 and 8 cm with the 
floodplain width of 20 and 40cm, respectively (figure 1b). In total, three depth ratios for each 

configuration are tested and designated as low depth (  =0.1), intermediate depth (  =0.3) and high 

depth (  =0.5). In the experiments, the main channel Manning’s roughness   is found to be 0.01. The 

floodplain material is polyvinyl chloride (PVC), used to construct three different cases of the 
experiments (table 1). In table 1, Qt is the total flow discharge of channel; Umc and Ufp are the main 

channel and floodplain velocity respectively; Reynolds number     UaveR/  , where R is the 

hydraulic radius and    is kinematic viscosity; and Froude number    Uave/√        where g is 

the acceleration due to gravity.  

The flow depths were measured using point gauges, while discharges were measured by an 

electromagnetic flowmeter installed in front of the channel at the upstream end. The 3D velocities 
were measured using side and down looking Acoustic Doppler velocimeter (ADV) at the cross section 

located at the 10m downstream from the entrance. For all the tests, uniform flow condition remains 

with the averaging flow depth being discrepancies of    mm between 5 and 18 m sections. The  -,  - 

and  -axes refer to streamwise, transverse and vertical (normal to the bed) directions, respectively. 
The corresponding instantons velocities, time averaged velocities and velocity fluctuations are denoted 

as ( , , ), ( ,  ,  ) and (  ,   ,   ), respectively. The measuring points in a cross-section were taken 

at an interval of 5 mm vertically and at the interval of 20 to 50 mm laterally. Also, measurements were 

obtained by averaging time series at 50Hz over 60-120 mins. The accuracy of the ADV was    to  % 

of the measured mean velocities and    to   % for the Reynolds stresses. The ADV raw data were 

processed with the software WinADV using the [21] filtering method based on de-spiking concept. 

Table 1. Summary of the flow conditions of all test cases where test names signify first three numbers 
as floodplain width and last digit as bankfull height. 

Tests  Dr (=1-h/H) Qt (l/s) Uave 

(m/s) 

Umc 

(m/s) 

Ufp 

(m/s) 

Re 

( 10
4
) 

Fr        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

       
 
 

R0204 0.1 16.83 0.3786 0.4146 0.0978 4.90 0.5605 0.1083 

 0.3 21.14 0.4315 0.4564 0.1390 7.16 0.5755 0.0464 
 0.5 35.23 0.5161 0.5208 0.2509 12.4 0.5821 0.0118 

R0208 0.1 40.27 0.3294 0.3054 0.1735 13.2 0.5402 0.0145 

 0.3 40.43 0.4926 0.4864 0.1707 14.4 0.4683 0.0121 
 0.5 40.50 0.5076 0.5537 0.1334 13.8 0.2637 0.0120 

R0404 0.1 16.81 0.3296 0.5173 0.2003 2.77 0.4999 0.1795 

 0.3 21.14 0.4034 0.5892 0.2645 5.82 0.5179 0.1133 

 0.5 25.32 0.4669 0.6571 0.4368 9.36 0.5306 0.0101 
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Figure 1. (a) Plan view and (b) cross-sections of the three asymmetric compound channels. 

3. Cross-sectional Variation of Flow Variables 

3.1. The Lateral Distribution of the Depth-Averaged Streamwise Velocity  

Figure 2 shows the depth-averaged streamwise velocity for nine test cases in table 1. To obtain the 
depth-averaged values for hydrodynamic parameters, these cross-sectional measurements are averaged 

over depth and time, which is usually called double average. For normalization, the double-averaged 

value of the interfacial velocity (      ) is used in practice, as shown in [22]. On the contrary, other 

parameters like friction velocity (  ) or the velocity scale defined as the difference of main-channel 

(   ) and floodplain (   ) divided by the characteristic length at the interface [23-25]. In our study, 

the foremost priority should be given to the significant effect of the channel geometry and the flow 

depth on the interfacial region velocity, so the depth-averaged interface velocity plays a key role in 

understanding the behavior of flow. Furthermore, the flow type in a compound channel is classified as 

shallow flow when       , and intermediate flow when            [26-27]. The characteristics 

of the shallow flow are established as the monotonic and large gradient of velocity flow at the 

interface, as shown in figure 2. A significant difference can be observed over the interfacial region for 

   ≤ 0.3 against    > 0.3 where the lateral variation of velocity is small. The 2D macro-vortices over 

the horizontal plane near the interface (        are induced due to the sudden change of geometry 

from main-channel to floodplain. The floodplain width in R0404 is twice that of R0204, and the 
velocity distribution in the two different geometries is strongly dependent on the momentum exchange 

over the interface. Moreover, the lateral variation of Ux,d over the interfacial region in the case of a 

wider floodplain (R0404) is smaller than the cases like R0204 and R0208, indicating the strong effect 
of width ratio on the momentum transfer of flow between main-channel and floodplain.     
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Figure 2.  Distribution of normalized depth-averaged velocity over the cross section for (a) R0204; (b) 

R0208; (c) R0404. The standard errors estimated for all three cases are 1%, 3% and 1%, respectively.  

3.2. Depth-Averaged Reynolds Stress  

Figure 3 shows the lateral distribution of the normalized Reynolds stress (         ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅       
 

) for 

different flow depths under shallow flow (      ) and intermediate flow (          ) regime 

for three configurations. The Reynolds shear stress is generally related to the gradient of the 
streamwise mean velocity. Figure 3 clearly shows that the maximum value of the Reynolds shear 

stress occurs at the interface where       . Shiono and Knight [28] also experimentally observed 

that the highest value of Reynolds shear is generally seen near the free surface in the interfacial shear 

zone. In all our tests, the most notable fluctuation of Reynolds shear stress is in the shallow flow 

region, with the maximum at       . On the contrary, the lateral variation of         ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ for the flow 

condition of        is found to be very small over the interface. Even for the channel having a 
higher bankfull height (R0208), there is a visible change in the lateral gradient of velocity over the two 

sections (figure 3b). The peak at the interface (i.e., y      ) is significant for the case of       , 

although it is not valid for the case of    = 0.5 where a higher flow exists in the floodplain. Moreover, 
the effect is not as noteworthy compared to other cases like figure 3 (a, c). Table 1 also shows the 

normalized peak values of        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅        
  at the interface (        for all nine tests.  

The peak value for        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅        
 
 is found to shoot at         for shallow depths, as also 

pointed by [24]. Interestingly, the peak of Reynolds stress is somewhat smaller in the case of R0208, 
which points to the reduced turbulent kinetic energy. Indicatively, the water depth in the main channel 

for this case is comparatively high, so the mixing length does not grow proportionally to the shear 

layer generation over the interface. In other words, in these conditions, the wall induced turbulence 

overpowers the shear layer based turbulence. Furthermore, turbulence in deeper bankfull height is no 
more dominant by the bottom turbulence, especially in the main channel section. Usually on contrary, 

for shallow depth conditions, the lateral velocity gradients are undermined over bottom turbulence 

experienced over the interface; however, it is otherwise in R0208.  
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Figure 3. Lateral distribution of the dimensionless transverse Reynolds stress for (a) R0204; (b) 

R0208; and (c) R0404. The standard error for this parameter was about 7-10% in overall cases with a 
maximum of 9.8% in R0208.  

4. Flow Interaction and Effects of Transverse Currents on Main Channel and Floodplain 

For the fully developed flow in the section with steady uniform flow, the momutem equation can be 

deduced to [8]: 

       (   ̅̅̅̅     ̅̅ ̅̅ )                (1) 

where   and   are the area and wetted perimeter of the main-channel, respectively. By rearranging Eq. 

(1), the apparent shear stress         ̅̅̅̅     ̅̅ ̅̅   becomes    
           

   
. 

In figure 4 (a-c), the magnitude of spanwise momentum transport is depicted through apparent 
shear stress in the transverse direction of the cross section. The experimental data in figure 4 show the 

apparent shear stress attains a negative peak near the interface of the main channel and floodplain, 

irrespective of the higher depth ratio (  =0.5). [23, 29-30] indicated that the apparent shear stress 
became extremely large as the depth ratio decreases, which is depicted in all the experimental results 

illustrated in figure 4. They have also identified that the Reynolds stress term is expected to be 

dominant compared to the advection term. Therefore, it is essential to estimate the magnitude of 

momentum transport due to Reynolds stress and secondary currents between the main channel and the 
floodplain in asymmetric compound channel flow, as a function of floodplain width and depth ratio.  

4.1. Interface Stresses on Linear Scale Argument 

Van Prooijen et al. [12] and Bousmar and Zech [31] have derived interfacial stresses for compound 
channels, demonstrating the lateral momentum transfer in shallow mixing layers using scaling 

arguments. In general, the apparent shear stress         ̅̅̅̅     ̅̅ ̅̅   has two components: advection due 

to secondary currents, and shear stress due to the Reynolds stress. By assuming the largest eddy scale 

as a typical difference of streamwise velocities, i.e. the order of the mean flow in each compartment of 

compound channel, the interfacial velocity is estimated as an average of the main channel (Uc) and 

floodplain (Uf) velocity [18]. The a can be expressed as    
 

 
     

    
  . 

The dimensionless interface coefficient   is estimated from the experiments done in this study in 

the transverse direction for all the cases (see table 2).    

Table 2. Dimensionless coefficient   for parameters h/bf and Dr for asymmetrical compound channels. 

Test case 

 

Depth ratio (Dr) 

R0204 R0208 R0404 

h/bf = 0.2 h/bf = 0.4 h/bf = 0.1 

0.1 0.0331 0.0654 0.0305 

0.3 0.0251 0.0127 0.0204 

0.5 0.0150 0.005 0.0160 
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Figure 4. Spanwise distribution of apparent shear stress τa for (a) R0204, (b) R0208 and (c) R0404. 

 

Figure 5. Correlation of the vertical interface coefficient   of apparent shear friction to the depth ratio 

Dr for the range of              in our experiments. 

Figure 5 shows the vertical interface coefficient   of apparent shear friction against depth ratio    

for three h/bf data. The data points suggest a power function to estimate interfacial stress at the vertical 
junction with the coefficient of determination as R

2
= 0.99. Based on the above argument, a very 

simple function as                    is found to hold true for the data range of               

with smooth asymmetric compound channels.  

5. Validation of the Current Model for Discharge Calculations 

The classical divided channel method (DCM) and vertical divisional line DCM (QDCMV) are 
commonly used for discharge estimation, which is based on the Manning’s Eq. (2). Much commercial 

software like HEC based modules, CES (Wallingford), and others use the DCM in their algorithms. In 

spite of simplicity, the DCM overshoots the overall discharge estimation because it does not take 
momentum transfer into account [32-33].   

(a)  (b) 

(c) 
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where   is the Manning’s coefficient,   is the hydraulic radius, i.e. the ratio of the wetted area ( ) to 

perimeter ( ), and   denotes the subsection as main channel   or floodplain  . 

To overcome the problem of overestimation in DCM-based methods, the effect of apparent shear 

stress at the vertical interface between the subsections of an asymmetric channel is included in the 

model as a weighting factor. Thus, a coefficient    is included in the QDCM (V) methods as:  

     
    

      
 and      

  

  
          (3) 

        
    and         

        (4) 

where the weightage of the boundary shear force to the fluid flow for each section is defined as   , 

  ;           is the perimeter on which effective apparent shear force acts. The actual main 

channel and floodplain discharges are defined as   ,   , while    ,     are the discharges estimated 

through classical QDCM (V) without considering the effect of momentum transfer at the interface.  

Table 3. Experimental and river datasets used in the analysis. 

Data Qt (m
3
/s) h/Bf b/B b/bf bf/B L/B   =(H-h)/H 

[34] 0.0140-0.0373 0.12 0.4942 0.9772 0.5058 22.35 0.1843-0.5434 

[35] 0.2235-0.9292 0.06 0.3846 0.6667 0.5769 15.39 0.0522-0.5031 

[36] 0.0035-0.0058 0.25 0.2000 0.2500 0.8000 20.00 0.1844-0.2607 

 

Figure 6. Prediction of total discharge % Qt using DCM and QDCM (V) with Eq. 4, which is the 

present modeled equation for the coefficient of apparent shear friction on the vertical interface  . 

Twenty-eight homogenously smooth data of asymmetric experimental channels are considered in 

the validation of the present model (see table 3). The range of data varies from            0.5434 

in m
3
/s,  0.00103          ,                 .  

The error percentage between predicted and experimental total discharge for each flow depth is 

calculated as     
|             |

      
     , where     is the relative error percentage of the predicted 

and observed discharge at     flow depth, respectively. Figure 6 shows the percentage of errors of the 

predicted discharge for all the datasets. 

6. Conclusions 
The experimental results for the spanwise apparent shear stress obtained in the asymmetric compound 

channel are used here to propose a new model for predicting the overall discharge, which is based on 

the lateral momentum transfer parameter using the scaling argument. The model is easy to use and has 

only one parameter defined as the coefficient   of apparent shear friction on the vertical interface. 

This dimensionless coefficient   is found to have a power function with the depth ratio for the 
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geometrical range of              for the asymmetric smooth compound channels. The 

application of the new model gives a good agreement for the datasets in comparison to the DCM that 

overestimates the results in every case. However, the results obtained in our model are well within the 
reasonable percentage error with a maximum of 6.1% in our test datasets. The overall conclusion 

shows that the present experimentally calibrated model for interfacial stress has potential and can be 

extended to the rough asymmetric compound channels. 
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