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Abstract—We consider a single-cell massive multi-input multi-
output (MIMO) network with uniform planar array (UPA)
antennas equipped at the base station that serves a number
of single-antenna users. In the overloaded multi-user setting, it
is likely that users’ channels are highly spatial-correlated with
overlapping spectrum in the angular domain, which imposes
challenges on uplink channel estimation and data transmission
due to potential pilot contamination during uplink training
and multiuser interference during uplink data transmission. To
mitigate the effect of multiuser channel spatial correlation, we
adopt a recently proposed active channel sparsification strategy,
and propose a novel method for joint user and beam selection
in the angular domain. In particular, we represent all users’
channels in the angular/beam domain, taking advantage of the
doubly block Toeplitz structure of the channel covariance matrix
for UPA. Accordingly, we construct a weighted bipartite graph
to represent the beam and user association for ease of user/beam
selection. By doing so, we reformulate the problems of mean
square error minimization for uplink channel estimation and
sum rate maximization for uplink data detection as two mixed
integer linear programs (MILPs), by which the challenging joint
user and beam selection problem can be efficiently solved via
off-the-shelf MILP solvers. The simulation results demonstrate
the effectiveness of our active channel sparsification strategy for
the joint user and beam selection.

Index Terms—Massive MIMO, channel estimation, user selec-
tion, active channel sparsification.

I. INTRODUCTION

Being a key technology of the fifth generation (5G) and
beyond wireless communication systems, massive multi-input
multi-output (MIMO) has been, and will be, deployed in many
practical network scenarios. Equipped with massive antennas
that could be linear, planar or other antenna geometries, the base
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station is able to serve tens of users simultaneously, offering
very high spectral and energy efficiencies [1] [2].

Due to the collocation of a large number of antenna elements,
the channels of massive MIMO with uniform linear/planar
array (ULA/UPA) exhibit high spatial correlation, provided the
limited number of scatters around the antenna array. Aiming
to exploit the benefit of spatial correlation in massive MIMO,
a number of works in the literature made the assumption of
the low-rankness of the channel covariance matrices (e.g., [3]–
[5]). Such an assumption has been shown very useful and led
to a number of tractable theoretical analysis. The obtained
insights from theoretical analysis have guided the practical
system design in the past years, although the validation of
such assumption is still under debate for sub-6GHz frequency
bands.

Under the low rankness assumption, when the user’s channel
is cast into the angular or beam domain, its angular spectral
density exhibits some sparsity property (e.g., [3]–[5]) – most
spectral density values are close to zero – with massive antennas.
As such, if the users’ locations are sufficiently apart with no
overlapping on their angle spread regions of their angle-of-
arrival (uplink) or angle-of-departure (downlink), their channel
subspaces are orthogonal in an asymptotic sense. Such a sparsity
property has been demonstrated to be very useful in both time-
division duplex (TDD) and frequency-division duplex (FDD)
systems. For instance, it has been used for the coordinated
design of pilot reuse strategies in TDD mode (e.g., [3], [5]) by
avoiding allocating the same pilot to the users with overlapping
spectrum in the angular domain. It has been also employed
for precoder design and user grouping in FDD mode (e.g., [4],
[6]) by designing orthogonal precoders for the users in the
same group with high channel spatial correlation.

Since then, exploiting channel sparsity in the beam/angular
domain has extensive applications in massive MIMO systems,
such as pilot decontamination and channel estimation in TDD
massive MIMO [7]–[11], downlink channel estimation in FDD
massive MIMO [12]–[16], and spatial multiplexing in mmWave
massive MIMO systems [17]–[19], among many others. It is
worth noting that most of the approaches rely highly on the
assumption of channel sparsity in the angular/beam domain,
and require hundreds of antennas in the single dimension to
promote channel sparsity. Unfortunately, when it comes to UPA,
channel sparsity may not be taken as granted, because each
row or column may only have a limited number of antenna
elements.

The question then arises as to what if channel sparsity does
not hold. Can we still enjoy the benefit of channel sparsity
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by artificially creating such property? The answer is yes. Very
recently, a novel concept of active channel sparsification (ACS)
has been proposed in [20] for FDD massive MIMO with
ULA, in order to reduce the feedback overhead with negligible
system performance degradation. In contrast to conventional
wisdom, ACS does not rely on the assumption of channel
sparsity, and can adapt to any level of possible channel sparsity
(if any) through active sparsification. The main idea is to
1) represent each user’s channel by the weighted sum of a
set of common bases vectors (i.e., virtual beams), for which
the columns of discrete Fourier transform (DFT) matrix are
usually used for ULA; 2) construct a weighted bipartite graph
to describe channel representation by establishing the user-
beam association with respect to the weighted combinations;
and finally 3) switch on/off beams to avoid beam overlapping
among different users and at the same time to achieve the
maximum multiplexing gain. The key enabler is to bridge
the multiplexing gain (i.e., prelog of the sum rate expression)
to the maximum cardinality bipartite matching of the graph
representation. Taking advantage of combinatorial optimization
tools, maximizing multiplexing gain problem is translated to
an MILP, for which the off-the-shelf solvers can find a feasible
beam/user selection in an effective way. Since then, such an
ACS concept had been adopted in a number of scenarios. For
instance, it has been applied to dual-polarized FDD massive
MIMO systems for the design of sparsifying precoders in [21].

In this paper, we revisit such an ACS concept and apply
it to the joint design of the uplink massive MIMO with
UPA, by taking into account both channel estimation and
data transmission. Due to channel spatial correlation, the
users’ channels are overlapping in the beam domain with high
probability, when a large number of users are requesting service
simultaneously, which results in severe pilot contamination
for uplink training and multiuser interference for uplink
transmission. To resolve these issues, we adopt the ACS strategy
by switching on/off beams and scheduling users to artificially
make the overall users’ effective channels as sparse as possible
without degrading too much channel estimation accuracy as
well as uplink sum rate performance. Compared with the
existing pilot decontamination methods, e.g., [3], [22]–[24], the
proposed approach does not rely on the assumption of channel
sparsity, and takes both uplink channel estimation and data
transmission into account. On the other hand, our approach
improves the original formulation in [20] by considering both
performance metrics in the infinite SNR (i.e., multiplexing
gain) and finite SNR (i.e., signal-to-interference-plus-noise
ratio) regimes, as well as explicit user selection. Specifically,
our contributions in this paper are three-fold.

• By analyzing the channel covariance matrix of UPA
massive MIMO, which has a doubly block Toeplitz
structure, we approximately represent users’ channel in the
angular/beam domain by employing the two-dimensional
DFT basis vectors as virtual beams. As such, we formally
confirm in a principled way that if the representing beams
of different users are not overlapping, then the same pilot
can be reused for channel estimation of these users without
pilot contamination. This agrees with the well-known

results for ULA massive MIMO.
• We explicitly implement the ACS strategy by introducing

a set of binary variables for the selection of beams
and users, by which we construct the effective channel
covariance matrices by projecting the original ones onto
the subspace spanned by the selected virtual beams. Such
projected covariance matrices serve for channel estimation
and uplink receiver design. It will be shown effective
by simulations with respect to sum rate and channel
estimation performance even in the non-asymptotic regime
with a finite number of antennas.

• By representing the beam-user association as a weighted
bipartite graph, the joint beam and user selection problem
can be cast as a maximum cardinality bipartite matching
problem on the graph representation. By doing so, we
reformulate the mean squared error (MSE) minimization
and sum rate maximization problems as two MILPs, for
which off-the-shelf solvers yield feasible solutions. To
further mitigate the limitations of parameter choosing, we
propose an alternating projection algorithm between two
MILPs.

Numerical results are also provided to demonstrate the effec-
tiveness of our proposed methods in both rectangular (16× 8)
UPA and ULA (128× 1) antenna configurations. Notably, our
proposed uplink channel estimation and transmission methods
with joint beam and user selection have superior sum rate and
MSE performance than the vanilla minimum mean squared
error (MMSE) scheme without user/beam selection as well as
the classical baselines with user grouping.

The rest of this paper is organized as follows. In Section
II, we present the massive MIMO system model with uplink
channel training and data transmission, followed by asymptotic
analysis on the channel covariance matrix and the ACS
framework in Section III. We propose in Section IV a joint
beam and user selection approach based on a weighted bipartite
graph representation. The simulation results and the conclusion
are presented in Sections V and VI, respectively.

Notation: We use x, x, and X to represent scalar, vector,
and matrix, respectively. Specifically, [x]i denotes the i-th entry
of vector x. [X]i,j denotes the element in the i-th row and j-th
column of matrix X . {xn}Nn=1 , {x1,x2, . . . ,xN}. For two
integers M and N with M < N , [N ] , {1, 2, . . . , N} and
[M,N ] , {M,M + 1, . . . , N}. XT, XH and X† denote the
transpose, conjugate transpose and Moor-Penros pseudoinverse
of a matrix X , respectively. X is Hermitian if and only if
X = XH. tr(X) denotes the trace of a matrix X . ‖x‖ denotes
the `2 norm of a vector x. E{·} denotes the expectation. The
Kronecker product of two matrices X and Y is denoted by
X ⊗ Y . vec(X) is the column vectorization of the matrix
X . diag ({x1, . . . , xN}) denotes the diagonal matrix with
x1, . . . , xN at the main diagonal. x = maxp{a} means x
is the sum of the largest p elements in the vector a. NC(α, β)
denotes the complex normal distribution, where α and β are
mean (vector) and variance (matrix), respectively.

An n × n matrix X has a Toeplitz structure if and only
if [X]i,j = [X]i+1,j+1 for any i ∈ [n] and j ∈ [n]. An
mn×mn matrix X is a doubly block Toeplitz matrix, if X
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Fig. 1: A single-cell multi-user massive MIMO network with UPA
antennas equipped at the base station that server a number of single-
antenna users.

has a Toeplitz structure with m ×m blocks and each block
also has a Toeplitz structure with size n×n, i.e., [[X]i,j ]p,q =
[[X]i+1,j+1]p+1,q+1 for i, j ∈ [m] and p, q ∈ [n]. IM is the
M ×M identity matrix, and VM is the DFT matrices with
[VM ]p,q = 1√

M
e−

2π(p−1)(q−1)
M for all p ∈ [M ], q ∈ [M ].

II. SYSTEM MODEL

A. Channel Model

We consider a single-cell uplink massive MIMO system with
the base station equipped with an Mx ×My UPA serving NU
single-antenna users. Let M = Mx ×My be the total number
of antenna elements. Given the angle intervals of azimuth A
and elevation B, the uplink channel vector can be given by [5],
[20]

h =

∫
B

∫
A
β(θ, φ)a(θ, φ)dθdφ (1)

where A = [θmin, θmax], B = [φmin, φmax] and |A| = 2δθ
and |B| = 2δφ. Note that δθ and δφ are the angular spread
(AS) of azimuth and elevation, respectively. The complex gain
β(θ, φ) is assumed to be independent and identically distributed
(i.i.d.) across paths, with constant second-order statistics, i.e.,
β , E{|β(θ, φ)|2}, and a(θ, φ) ∈ CM×1 is the steering vector
of UPA and can be written as [25], [26], [27]

a(θ, φ) = ay(θ, φ)⊗ ax(θ, φ) (2)

=


1

e
2πdy
λw

sin(φ) sin(θ)

...

e
2πdy(My−1)

λw
sin(φ) sin(θ)

⊗


1

e
2πdx
λw

sin(φ) cos(θ)

...

e
2πdx(Mx−1)

λw
sin(φ) cos(θ)


where dx and dy are antenna spacing of column and row arrays,
respectively (see Fig. 1), and λw is the wavelength.

B. Uplink Channel Estimation

During the uplink training phase, the received pilot signal
at the base station is expressed as

Y = his
T

i +
∑
j 6=i

hjs
T

j + N (3)

where si is the pilot sequence assigned to user i with
si = [si1, si2, · · · , siτ ]T. The pilot sequences are assumed
orthogonal, i.e., sH

isj = τ if i = j and 0 otherwise, where τ
is the length of pilot sequences. N ∈ CM×τ is additive white
Gaussian noise (AWGN) at the antennas across pilot dimen-
sions, where each element is i.i.d. Gaussian with zero mean and
variance σ2. The uplink channel hi ∈ CM×1 ∼ NC(0,Ri) of
user i is given in a similar form in (1) where Ri = E{hihH

i}
is the channel covariance matrix.

For clarity, we only take into account the interference caused
by the users with the same pilot sequence, while the interference
from the users assigned with different pilot sequences can
be easily mitigated by multiplying the pilot sequence. Thus,
let all users of interest send the same pilot signal si = s
for all i. Before proceeding further, we recall the MMSE
channel estimation. Let S = s ⊗ IM with SHS = τIM . By
vectorization [3], we represent the received pilot signal in (3)
as y = S

∑NU
i=1 hi +n, where y = vec(Y ) and n = vec(N).

Hence, the linear MMSE estimator for a desired channel hi
can be given by

ĥMMSE
i = Ri

(
σ2IM + τ

NU∑
i=1

Ri

)−1

SHy. (4)

C. Uplink Data Transmission

During the uplink data transmission phase, the received
signal at the BS can be written as

yd =

NU∑
i=1

hix
d
i + nd (5)

where xdi is the transmitted signal from the i-th user, yd ∈
CM×1 is the overall received signal at the base station, and
each element of nd ∈ CM×1 is the i.i.d. Gaussian noise. In this
phase, linear receive beamformers wi ∈ CM×1 are designed
based on the estimated channels in the training phase to recover
the transmitted signal xdi , that is, x̂di = wH

iy
d.

Due to the overlapping of channel spectrum in the angular
domain, the overloaded multiuser system incurs potential pilot
contamination and interference-limited data transmission. A
natural way is to select a subset of users to access the channel
resource simultaneously. In view of the fact that users’ channels
in the beam domain have some nice properties (e.g., sparsity),
we perform user selection in the beam domain, taking possible
beam selection into account. Our goal is to design proper
uplink channel estimators and receiving beamformers at the
base station with joint beam and user selection, striking a
balance between pilot decontamination and data transmission.
Before proceeding further, we analyze the asymptotic behavior
of the channel covariance matrix, which will guide our design
of channel estimation and joint beam/user selection.

III. ACTIVE CHANNEL SPARSIFICATION AND ASYMPTOTIC
ANALYSIS

For the asymptotic analysis of massive MIMO with UPA
antennas, we start with the following theorem, which has been
widely-accepted in the literature yet not formally proved.
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Theorem 1. For the UPA massive MIMO, the channel co-
variance matrix R = E{hhH} has a Hermitian doubly block
Toeplitz structure, so that it can be asymptotically diagonalized
by the 2D-DFT matrix, i.e.,

lim
Mx,My→∞

R = (VMy
⊗ VMx

)Λ(VMy
⊗ VMx

)H (6)

=

My∑
a=1

Mx∑
b=1

χ(ωa, ζb)(fa ⊗ gb)(fa ⊗ gb)
H (7)

where {fa}
My

a=1 and {gb}Mx

b=1 are columns of the DFT matrices,
and Λ ∈ CM×M is a diagonal matrix with the ((a−1)My+b)-
th diagonal element being

χ(ωa, ζb) =
∑
µ

∑
ν

rµ,νe
2π(µωa+νζb) (8)

for which (ωa, ζb) = ( a−1
2My

, b−1
2Mx

) and

rµ,ν = β

∫
B

∫
A
e−

2π
λw

(dxν+dyµ) sinφ sin θdθdφ (9)

with µ ∈ [−My,My], ν ∈ [−Mx,Mx], and β =
E{|β(θ, φ)|2}.

Proof. See Appendix A.

Remark 1. Theorem 1 guarantees that the covariance matrix of
UPA massive MIMO channel can be asymptotically represented
by the linear combination of a set of common basis vectors
coming from 2D-DFT matrices. This is a generalized version
of the covariance matrix in ULA massive MIMO from Toeplitz
to doubly block Toeplitz. When Mx = 1 or My = 1, Theorem 1
reduces to the ULA setting with the channel covariance matrix
being Toeplitz and the common basis vectors being from 1D
DFT matrix, which agrees with that in [4].

In what follows, Theorem 1 will be shown useful for channel
representation, which is the key enabler of joint user and beam
selection in Section IV. As ULA is a special case of UPA, we
focus on UPA hereafter, and the ULA setting can be easily
specified.

For m ∈ [M ], denote by vm = fa ⊗ gb with m = (a −
1)My+b, and V = VMy

⊗VMx
. By Karhunen-Loève transform,

the channel vector can be asymptotically represented as

hi,∞ = V Λ
1
2
i hw =

M∑
m=1

√
λi,mhmvm (10)

where hm is the m-th entry of hw ∼ NC(0, I), and λi,m is
the m-th diagonal element of Λi.

For brevity, we let τ = 1 and s = 1. Thus, the MMSE
channel estimate turns to be

ĥMMSE
i = Ri

σ2IM +

NU∑
j=1

Rj

−1

y (11)

which asymptotically approaches to

ĥMMSE
i,∞ =

M∑
m=1

λi,m∑NU
j=1 λj,m + σ2

vmvH

my (12)

with y =
∑
j hj + n being the training phase signal when

pilot s = 1.

Theorem 2. Let Si = {m : λi,m > 0} be the support of beam
representation of user i’s channel. If Si ∩Sj = ∅ for all j 6= i,
then MSEi,∞ = 0 when SNR tends to infinity.

Proof. From (12), the asymptotic MSE can be given by

MSEi,∞ = E
{
‖hi,∞ − ĥMMSE

i,∞ ‖2
}

(13)

= tr

(
M∑
m=1

λi,m

(
1− λi,m∑NU

j=1 λj,m + σ2

)
vmvH

m

)
(14)

=

M∑
m=1

λi,m

(
1− λi,m∑NU

j=1 λj,m + σ2

)
(15)

where (14) is due to tr(vmvH
m) = tr(vH

mvm) = 1.
In the high SNR regime, i.e., σ2 → 0, MSEi,∞ in (15)

approaches

lim
σ2→0

MSEi,∞ =

M∑
m=1

(
λi,m −

λ2
i,m∑NU

j=1 λj,m

)

=

M∑
m=1

(∑NU
j=1 λi,mλj,m − λ2

i,m∑NU
j=1 λj,m

)
(16)

=

M∑
m=1

(∑NU
j 6=i λi,mλj,m∑NU
j=1 λj,m

)
= 0 (17)

where the last equation is due to the fact that Si ∩ Sj = ∅
implies λi,mλj,m = 0 for any m ∈ [M ] when i 6= j. This
proves Theorem 2.

Theorem 2 agrees with the existing results for ULA in [3],
[5] that, if users have non-overlapping spectrum in the beam
domain, they can be assigned with the same pilot without
causing pilot contamination. Inspired by this, one may image
that if the overlapping beams among users can be controlled
by user and/or beam selection, pilot contamination can be
manually mitigated even if users have overlapping spectrum.
This motivates the ACS strategy.

A. Active Channel Sparsification
For user/beam selection, we introduce two sets of binary

variables {xm}Mm=1 and {yi}NUi=1 as designing parameters to
control the activity of beams and users, respectively, as follows

xm =

{
1, virtual beam m is selected,
0, otherwise. (18)

yi =

{
1, user i is selected,
0, otherwise. (19)

where m = (a − 1)My + b is the index of the virtual beam
corresponding to the antenna at a-th column and b-th row in
the UPA setting.

As in (10), the channel vector can be asymptotically
represented by a linear combination of 2D-DFT beams, so
that channel estimation is to figure out the coefficients of the
linear combination. To avoid pilot contamination, a subset of
users is selected to reuse the same pilot, whilst it may not be
necessary to estimate all coefficients of the linear combination.
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1) Channel Estimation: With beam selection enabled, we
construct an effective channel covariance matrix for user i,
which can be represented by

RON/OFF
i =

M∑
m=1

xmvmvH

mRi. (20)

When xm = 1 for all m ∈ [M ], RON/OFF
i reduces to the

original Ri, where “ON/OFF” indicates the beam and user
selection through the binary variables {xm}Mm=1 and {yi}NUi=1.
Such a covariance matrix can be interpreted as the projection of
the original covariance matrix Ri onto the subspace spanned
by the set of selected beams {vm : xm = 1}Mm=1. When
Mx,My → ∞, RON/OFF

i can be further represented in the
following way

lim
Mx,My→∞

RON/OFF
i = V XV HRiV V H = V (XΛi)V

H (21)

=

M∑
m=1

λi,mxmvmvH

m (22)

where λi,m is the m-th diagonal element of Λi defined in
Theorem 1 for user i, and X = diag(x1, . . . , xM ). It looks as
if some virtual beams are selected to asymptotically represent
the channel covariance matrices.

Plugging (20) into (11), we obtain the channel estimate
ĥON/OFF
i of user i by beam selection,

ĥON/OFF
i = RON/OFF

i

σ2IM +

NU∑
j=1

yjR
ON/OFF
j

−1

y (23)

which asymptotically approaches ĥON/OFF
i,∞ as Mx,My → ∞,

defined as

ĥON/OFF
i,∞ =

M∑
m=1

λi,mxm∑NU
j=1 λj,myjxm + σ2

vmvH

my (24)

=

M∑
m=1

wmλi,mxm∑NU
j=1 λj,myjxm + σ2

vm (25)

with wm = vH
my. It looks as if the channel estimator is a linear

combination of the selected beams in an asymptotic sense.
Thus, the asymptotic MSE of channel estimation with beam

selection can be given by

MSEON/OFF
i,∞ = E

{
‖hi,∞ − ĥON/OFF

i,∞ ‖2
}

(26)

=

M∑
m=1

λi,m

(
1− λi,mxm∑NU

j=1 λj,myjxm + σ2

)
. (27)

Note that if no user or beam selection is applied, i.e., xm =
yj = 1 for all m ∈ [M ] and j ∈ [NU ], then (27) boils down
to (15).

2) Data Transmission: For simplicity, we adopt the zero-
forcing (ZF) beamforming at the base station, which is designed
based on uplink channel estimates, that is,

wON/OFF
i ∈ R{ĥON/OFF

i } ∩ N{ĥON/OFF
j : yj = 1, j 6= i} (28)

where R(·) and N (·) are the range and null space of the
subspace spanned by the vectors, respectively.

As Mx,My → ∞, the ZF beamforming vector asymptoti-
cally lies in the subspace spanned by the unselected and the
unoccupied beams, i.e.,

wON/OFF
i,∞ ∈ span {vm : m ∈ S} (29)

where S = {m : xmλi,m > 0 and yjλj,m = 0,∀j 6= i}. Note
that xmλi,m > 0 ensures that beam m is active (xm = 1) to
represent user i’s channel where the corresponding component
of vm has nontrivial contribution (λi,m > 0) to the channel
representation. In addition, yjλj,m = 0, i 6= j guarantees
that, if user j is active (yj = 1), then it should not cause
interference at beam m through λj,m; otherwise it should be
inactive (yj = 0). Thus, the asymptotic signal-to-interference-
plus-noise ratio (SINR) is given by

γi,∞ =

∑M
m=1 λi,mxm∑

j 6=i
∑M
m=1 yjλj,mxm + σ2

(30)

and therefore the corresponding asymptotic rate can be written
as Ri,∞ = log(1 + γi,∞).

IV. JOINT USER AND BEAM SELECTION

It is shown from the above asymptotic analysis that beam and
user selection has an influence on channel estimation quality
and uplink data rate. Our objective of joint channel estimation
and data detection can be formulated as the following multi-
objective optimization problem:

max

NU∑
i=1

yiRi,∞, min

NU∑
i=1

yiMSEON/OFF
i,∞ (31)

where the asymptotic quantities are used as the objective func-
tions to guide joint beam and user selection. The performance
will be verified by simulation in practical scenarios.

This multi-objective optimization problem can be divided
into two sub-problems, so that the tradeoff between two criteria
can be made by the following alternating optimization [28]

(P1) :
max

∑NU
i=1 yiRi,∞

s.t. yiMSEON/OFF
i,∞ ≤ Pi, ∀i ∈ [NU ]

(32)

(P2) :
min

∑NU
i=1 yiMSEON/OFF

i,∞
s.t. Ri,∞ ≥ yiQi, ∀i ∈ [NU ]

(33)

where Pi is the maximum MSE that the i-th user should
not exceed if selected to guarantee certain channel estimation
accuracy, Qi is the minimum rate that the i-th user should
surpass if selected to guarantee certain quality of service (QoS).
Note that if user i is not selected, i.e., yi = 0, then the MSE
and rate constraints are automatically satisfied.

In Section IV-D, we employ an alternating projection method
to jointly optimize (P1) and (P2) without relying too much
on the threshold parameters {Pi}NUi=1 and {Qi}NUi=1.

A. Bipartite Graph Representation

To better illustrate the use of ACS for joint user and beam
selection, we represent the users’ channels with respect to
beams in a bipartite graph G. Let G = (B,U , E) be a bipartite
graph, with beams b ∈ B on one side and users u ∈ U on
the other side. Let us introduce another set of binary variables
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such that ai,m = 1 if λi,m > δ and 0 otherwise, where a small
value of λi,m indicates the negligible contribution of the beam
m to the i-th user’s channel, and δ is a tunable parameter
with δ = 0 for asymptotic case and a properly chosen positive
value to adapt the scenarios with a finite number of antennas.
Therefore, a beam bm and a user ui are connected with an
edge (bm, ui) ∈ E if ai,m = 1.

According to the asymptotic channel representation (10), for
the user ui, the channel can be approximately represented as

hi ≈
∑

bm∈N (b)

wi,mvm (34)

where wi,m =
√
λi,mhm and N (b) = {bm ∈ B : ai,m = 1}.

Such an approximate channel representation captures the strong
beams when λi,m is greater than a certain threshold δ.

Let us explain the impact of beam and user selection on
channel estimation and uplink data transmission. It can be
observed in Fig. 2 that all users suffer from severe pilot
contamination caused by beam overlapping. Basically, four
users should be assigned different orthogonal pilots because
of the overlapped beam between any two users. Nevertheless,
if we actively switch off the beam b5 and users u2 and u3,
then the partial channel representations of users 1 and 4 are
not overlapping any more, for which the assignment of the
same pilot would not cause pilot contamination. Note here that
the original channels h1 and h4 are partially represented by
beams without b5. This will not result in issues as long as the
partial channel estimation is sufficient to achieve acceptable
uplink transmission rate. Therefore, the maximization of uplink
transmission rate with beam and user selection will also come
to play. Given a proper beam and user selection strategy, only
partial channel has been estimated, built on which the receiver
beamformers are designed. From the uplink data rate viewpoint,
it is prone to more users and possibly fewer beams to remove
overlap, while for channel estimation, fewer users with possibly
more beams are preferred to reach less pilot contamination
and thus higher estimation accuracy. To this end, the joint
optimization problem aims to strike a good balance between
them.

B. Sum Rate Maximization (P1)

We first focus on the rate maximization problem (P1) in the
infinite number of antenna regime, hoping that the obtained
solution could shed light on the practical scenarios.

Noting that the direct maximization of (P1) is too compli-
cated, especially when taking user scheduling into account, we
turn to a revised version of rate maximization. That is, we split
the rate maximization into two parts: one is the multiplexing
gain (i.e., the pre-log of the rate expression) maximization and
the other one is the SINR constraint. In doing so, users will
be selected as many as possible to improve the multiplexing
gain, whereas the selected users should satisfy the minimum
QoS requirement.

Inspired by the treatment in [20], where the sum rate
maximization problem is alternatively done by optimizing the
multiplexing gain, we transform (P1) into a more tractable
problem. As proven in [20], the maximum multiplexing gain

is equal to the rank of the effective channel, which can be
obtained by a reformulated maximum cardinality matching
problem with the bipartite graph representation. We point out
that the maximum matching is not on the original bipartite
graph, but rather on a subgraph with user and beam selection.
Let G′ = (B′,U ′, E ′) be the selected subgraph of G = (B,U , E)
with B′ ⊆ B, U ′ ⊆ U , and E ′ ⊆ E .

As such, the optimization problem (P1) can be reformulated
as follows:

(P ′1) : max |M(B′,U ′)| (35a)

s.t. MSEON/OFF
i,∞ ≤ Pi, ∀ui ∈ U ′ (35b)

γi,∞ ≥ Γi, ∀ui ∈ U ′, (35c)

where |M(B′,U ′)| is the maximum cardinality bipartite
matching number of the selected subgraph G′ = (B′,U ′, E ′),
and the constraints guarantee that the selected users have
reasonable SINR for uplink transmission and acceptable MSE
for uplink channel estimation. Note that in addition to the
objective function considered in [20], we impose the SINR and
MSE constraints to ensure that the resulting user and beam
selection has a reasonable performance guarantee at finite SNR.
While the objective function can be similarly translated as
those in [20], the constraints (35b)-(35c) call for different
treatment. For ease of presentation, we introduce a binary
matrix A = (ai,m) ∈ {0, 1}NU×M , which is the adjacency
matrix [29] of the M ×NU bipartite graph G.

Theorem 3. The optimization problem (P ′1) can be trans-
formed to a mixed integer linear program (MILP), whose
solution is feasible for (P ′1), as follows

(P ′′1 ) : max
xm,yi,zi,m

M∑
m=1

NU∑
i=1

zi,m (36a)

s.t. xm ≤
NU∑
i=1

[A]i,myi, ∀bm ∈ B, (36b)

yi ≤
M∑
m=1

[A]i,mxm, ∀ui ∈ U , (36c)

zi,m ≤ [A]i,m, ∀ui ∈ U , bm ∈ B, (36d)
NU∑
i=1

zi,m ≤ xm, ∀bm ∈ B, (36e)

M∑
m=1

zi,m ≤ yi, ∀ui ∈ U , (36f)

(1− τth)

NU∑
j=1

yjλj,m ≤ xmλi,m + c1(1− xm) + c2(1− yi),

∀ui ∈ U , bm ∈ B, (36g)

yiτ

M∑
m=1

λi,m ≤
M∑
m=1

λi,mxm, ∀ui ∈ U , (36h)

NU∑
i=1

yiλi,m ≤ xmτmω , ∀bm ∈ B, (36i)

xm, yi ∈ {0, 1}, ∀ui ∈ U , bm ∈ B, (36j)
zi,m ∈ [0, 1], ∀ui ∈ U , bm ∈ B, (36k)
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ON/OFF 

beam/user selection

Overlapped edge/user/beamActive edge/user/beam Inactive edge/user/beam

Users 𝒰
𝑢2𝑢1 … 𝑢𝑁𝑈

𝑒1,1

Virtual Beam ℬ
𝑏1 𝑏2 … 𝑏𝑀

Edge ℰ

𝑏3 𝑏4 𝑏𝑀−1𝑏𝑀−2

𝑢3

𝑏3 𝑏4 𝑏𝑀−1𝑏𝑀−2𝑏1 𝑏2 𝑏𝑀…

𝑢2𝑢1 𝑢3 … 𝑢𝑁𝑈

Fig. 2: Weighted bipartite graph representations, where the weight on edges eu,b denotes the coefficient of the linear combination. The figure
on the left shows the severe overlapping virtual beams among users, and the one on the right illustrates the non-overlapping virtual beams
when ON/OFF user and beam selection is applied.

where the objective function (36a) is translated from the
maximum cardinality bipartite matching number in (35a) with
zi,m = 1 indicating the edge (ui, bm) is in the edge set
of the maximum matching, and 0 otherwise; the constraints
(36b) and (36c) ensure that, if a beam is selected (i.e.,
xm = 1), there should be a user to occupy it, and vice
versa; the constraints (36d), (36e), (36f) are to guarantee
the edges {(ui, bm) : zi,m = 1} in the selected subgraph
G′ = (B′,U ′, E ′) form a maximum cardinality matching; the
constraint (36g) is translated from (35b) where τth ∈ [0, 1]
satisfying τth

∑M
m=1 λi,m = Pi; and the constraints (36h) and

(36i) come from (35c).

Proof. See Appendix B.

Remark 2. The hyper-parameters τmω and τth, τ ∈ [0, 1]
are designing parameters, and c1, c2 are sufficiently large
constants. In particular, τth, τ ∈ [0, 1] are to control the
maximum MSE (36g) and the minimum SINR to guarantee
basic QoS, respectively. Note in both (36h) and (36i) that
a selected beam-user pair prefers that its power is greater
than a certain level of the sum interference seen by the beam.
The difference should be attributed to the thresholds τ and
τth. Note also that zi,m is relaxed from {0, 1} to [0, 1] to
reduce computational complexity. Such a relaxation does not
change the solution to {zi,m}, because with binary-valued xm
and yi, the polyhedral property of the feasible solution region
guarantees that zi,m should be either 0 or 1, so that there is no
need to explicitly force zi,m to be binary-valued. This property
has been proved in [20]. The solution to P ′′1 is also feasible
to P ′1 because the constraints in the former are contracted
versions of the latter.

C. MSE Minimization (P2)

On the other hand, when our main aim is channel estimation
accuracy, we can reformulate (P2) as another optimization
problem as follows:

(P ′2) : min

NU∑
i=1

MSEON/OFF
i,∞ (37a)

s.t. γi,∞ ≥ Γi, ∀ui ∈ U ′, (37b)

|M(B′,U ′)| ≥ UNc (37c)

where instead of imposing the minimum rate constraint, we
impose the multiplexing gain and individual SINR separately.
This makes the constraint more tractable.

Theorem 4. The optimization problem (P ′2) can be trans-
formed to an MILP, whose solution is feasible for (P ′2), as
follows

(P ′′2 ) : min
xm,yi,ti,m

M∑
m=1

NU∑
i=1

(yiλi,m + ti,m) (38a)

s.t. yiτ

M∑
m=1

λi,m ≤
M∑
m=1

λi,mxm, ∀ui ∈ U , (38b)

NU∑
i=1

yiλi,m ≤ xmτmω , ∀bm ∈ B, (38c)∑
j 6=i

yjλi,mλj,m ≤ λi,m + ti,m + c3(1− xm) + c4(1− yi),

∀ui ∈ U , bm ∈ B, (38d)
NU∑
i=1

yi ≥ UNc , (38e)

xm, yi ∈ {0, 1}, ∀bm ∈ B, ui ∈ U , (38f)
ti,m ≤ 0, ∀bm ∈ B, ui ∈ U , (38g)

where the objective function (38a) and the constraint (38d)
are translated from (37a); the constraints (38b) and (38c) are
from the SINR constraint (37b); the constraint (38e) comes
from (37c) to specify the minimum number of active users.

Proof. See Appendix C.

Remark 3. The hyper-parameters UNc , τmω , and τ ∈ [0, 1]
are designing parameters, and c3, c4 are sufficiently large
constants. The constraint (38c) (see also (36i) in P ′′1 ) is to
control the interference-to-noise ratio (INR), and our aim is to
keep INR as small as possible. To this end, we should ensure
that, given that user i is selected (i.e., yi = 1), if beam m is
also selected (i.e., xm = 1), other users j 6= i with significant
λj are better to be unselected so that the interference from
these users to user i on beam m is under certain level. We
define τmω = maxp{λi,m, i ∈ [NU ]} to select the largest p
values, and consequently, we only need to give a reasonable
value of the integer p rather than an exact threshold to restrict
the INR. The solution to P ′′2 is also feasible to P ′2 because the
constraints in the former are contracted versions of the latter.
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Algorithm 1 Alternating projection

1: Input: Bipartite graph representation G constructed with
a given δ, its adjacency matrix A, the maximum number
of iterations tmax, and hyper-parameters τ and τmω

2: Initialization: FLAG = 1, MSE0 = 0, x0 = x′0 =
({xm}Mm=1) = 0, y0 = ({yi}NUi=1) = 0

3: while FLAG do
4: t← t+ 1
5: Update τ tth according to MSEt−1

6: Update yt as the solution of {yi} in P ′′1 , i.e., (36)
7: Update xt as the solution of {xm} in P ′′1 , i.e., (36)
8: Assign UNc ←

∑NU
i=1 y

t
i in P ′′2 , i.e., (38)

9: Update MSEt as the objective of P ′′2 , i.e., (38)
10: Update x′

t as the solution of {xm} in P ′′2 , i.e., (38)
11: if xt = x′t or t ≥ tmax then
12: FLAG = 0
13: end if
14: end while
15: Output: xt, yt

D. Joint Optimization via Alternating Projection

It has been shown that the original multi-objective optimiza-
tion problem (31) can be divided into two sub-problems, so that
each sub-problem can be reformulated as an MILP and solved
separately, as shown in Sections IV-B and IV-C. Nevertheless,
for each sub-problem we imposed some fine-tuning parameters
to make the problem tractable, which may impact the overall
performance of problems (36) and (38) in a less controllable
way. A closer look at two optimization problems reveals that the
parameter τth in (36) reflects the MSE level, which is exactly
the objective in (38), and similarly UNc in (38) specifies the
minimum multiplexing gain, which is the objective of (36). As
such, one may think to connect two optimization problems, so
that the optimized objective function of one problem serves as
the designing parameter in the other one. Therefore, we come
up with Algorithm 1 to make the alternating projection between
two sub-problems. In particular, Algorithm 1 takes the inputs
of the bipartite graph representation constructed with a given
threshold δ, and its adjacency matrix A. Algorithm 1 starts
with the initialization of user and beam selection parameters
x and y, which are all inactive at the beginning. The main
procedure is the “while” loop that solves two sub-problems
P ′′1 and P ′′2 in an iterative manner. In the iteration t, the sub-
problem P ′′1 is first solved with an updated hyper-parameter
τ tth. The solution of xt and yt is then updated and used to
compute the number of active users UNc for P ′′2 . Then the
solution to P ′′2 updates xt and yt, and the minimized objective
updates MSEt for the next iteration. The iteration terminates
when it exceeds the maximum number tmax, or the alternating
projection converges such that the solution xt does not change
over iteration t. Thus, xt and yt at this point will be the final
solution.

The complexity of Algorithm 1 involves both that of the
alternating projection between two MILPs and that of solving
MILPs. For the alternating projection, it only takes a few
iterations before it converges. For solving the MILPs, the

complexity depends on the implementations of the solvers,
e.g., branch-and-bound. While MILPs are in general NP-
hard problems, using the MATLAB function “intlinprog”, it
takes a few seconds on a desktop PC. It is challenging to
theoretically analyze the complexity of the MILPs because
of their combinatorial nature. Fortunately, Algorithm 1 is
not required to compute frequently in practice. It is because
G is constructed from the second-order statistics, i.e., the
channel covariance matrices, which vary much slower than the
instantaneous channels in low-to-moderate mobility scenarios.
As such, we will instead evaluate the convergence performance
of the algorithm by simulations in Section V.

V. NUMERICAL RESULTS

In this section, we detail the numerical results for the
evaluation of the approaches proposed in Section IV in practical
massive MIMO communication scenarios.

A. Simulation Scenario

We consider a single cell with NU = 20 randomly located
single-antenna users. The channel via each scatter is composited
of 20 paths, within AS of π

16 . The base station is equipped
with M = 128 antennas, and these antennas are arranged
with two different configurations: a rectangular 16 × 8 UPA
and a 128 × 1 ULA. In all simulation results, we estimate
the channel covariance matrix using 1000 uplink channel
realizations. To capture the strong user-beam association, we
construct a bipartite graph with a threshold parameter δ = 4.1

In this section, we evaluate the proposed on-off beam and
user selection method using two performance metrics, i.e., the
achievable sum rate and the normalized MSE (NMSE) per
selected user in the cell. The achievable sum rate is averaged
over the instantaneous sum rate of 1000 channel realizations,
and the average NMSE per user is defined as

NMSE =
1∑
i yi

NU∑
i=1

yi
‖ĥi − hi‖2

‖hi‖2
(39)

where the average is over the active users. Note that the sum
rate performance is determined by both channel estimation
accuracy (i.e., NMSE per user) and the number of activated
users. Unless otherwise explicitly specified, for each separate
optimization problem, we choose the following parameters: the
MSE threshold τth = 0.2, SINR threshold τ = 0.7, p = 3, and
the minimum number of users to be selected UNc = 5.

For channel estimation and beamformer design, we take
into account the insights obtained from asymptotic analysis, in
addition to those for finite antenna cases. Table I summarizes

1This hyper-parameter δ determines the density of the bipartite graph
representation. A larger δ gives us a sparser bipartite graph for the MILP
problems – it offers more freedom for beam/user selection, while the residual
interference (i.e., those edges with weight smaller than δ are not considered in
MILPs) is not under control. In contrast, a smaller δ gives us a denser bipartite
graph, which takes into account more edges in the graph, but it may result in
restrictive solutions to MILPs and therefore non-ideal beam/user selection. In
general, it is a challenging task to find the optimal value of the threshold δ
that achieves the best performance in a principled way. Instead, we choose the
threshold δ based on the proportion of the sum edge-weights in the bipartite
graph. In the simulation, choosing δ = 4, the bipartite graph representation
captures 80% total weights of all edges.
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TABLE I: Uplink channel estimation and receive beamformer design

Channel Estimation Beamforming
MMSE ĥMMSE

i wi

k-means0 ĥk-means
i wk-means

i

k-means∞ ĥk-means
i wk-means

i

ON-OFF0,0 ĥON/OFF
i wON/OFF

i

ON-OFF0,∞ ĥON/OFF
i wON/OFF

i,∞
ON-OFF∞,0 ĥON/OFF

i,∞ wON/OFF
i

ON-OFF∞,∞ ĥON/OFF
i,∞ wON/OFF

i,∞

various schemes using different channel estimation and beam-
forming design. In this table, the ON-OFF methods are based
on our proposed joint user and beam selection. To evaluate
how asymptotic results apply to the practical settings with
a finite number of antennas, we also include the asymptotic
channel estimate ĥON/OFF

i,∞ and precoding vector wON/OFF
i,∞ for

comparison. The subscripts with ∞ of ON-OFF indicate an
asymptotic estimator or beamformer is employed. For the sake
of comparison, we also consider the MMSE algorithm with
all users and beams are selected as well as a user selection
scheme with k-means clustering.

For channel estimation, ĥMMSE
i , ĥON/OFF

i , and ĥON/OFF
i,∞ are

defined in (11), (23), and (24) respectively, whereas ĥk-means
i is

defined similarly to (11) with the only difference that only the
selected users from different k-means clusters are taken into
account instead of the all NU users. Similarly, for beamforming
design, wON/OFF

i and wON/OFF
i,∞ are defined in (28) and (29),

respectively. For the beamformers used for MMSE schemes,
wi can be obtained from wON/OFF

i by letting all users be active.
Similarly, wk-means

i can be obtained by activating users selected
from k-means clustering.

Both k-means0 and k-means∞ follow the standard k-means
clustering algorithm, where the goal is to divide data points
into clusters so that the similar data points are grouped in a
cluster with a common centroid. The objective function is the
minimization of the sum of Euclidean distance between each
data point and its associated centroid. In our setting, users are
firstly clustered using k-means according to their covariance
matrices, and only one user is selected from one cluster for
simultaneous transmission. The difference between k-means0

and k-means∞ lies in the distinct data considered for clus-
tering, and therefore distinct similarity measure and centroid
generation strategies [4], [30]. In particular, for k-means0, the
dominant eigenspaces and its chordal distance are applied as
data points and similarity measure, respectively, as did in joint
spatial division and multiplexing (JSDM) for user grouping
in FDD massive MIMO [6]. In contrast to the k-means0

scheme, k-means∞ takes advantage of channels’ asymptotic
representation as suggested in Theorem 1. In particular, as the
user i’s covariance matrix Ri can be diagonalized by 2D-DFT
matrix into a diagonal matrix Λi, we use the reshaped vector
from diag(Λi) as the data point for the k-means clustering.

For the k-means clustering based user selection algorithms,
i.e., k-means0 and k-means∞, the number of clusters is required
to be known a prior. Instead of finding the number of clusters
directly using e.g., [30], the number of active users from
optimizing (36) is served as the number of clusters. The perfor-

TABLE II: The settings of simulations

Objectives Metrics Antenna Configurations
16× 8 128× 1

(36) Sum Rate Fig. 3 Fig. 4
(36) NMSE Fig. 5 Fig. 6
(38) Sum Rate Fig. 7 Fig. 8
(38) NMSE Fig. 9 Fig. 10

mance of clustering algorithms highly relies on initialization. To
rectify this, we run several times of experiments with different
initializations and finally choose the best performance of k-
means for comparison.

B. Simulation Results and Analysis

We first consider two objectives of sum rate maximization
as in Theorem 3, and MSE minimization as in Theorem 4
separately, followed by the joint optimization via alternating
projection as in Algorithm 1. Table II summarizes the settings
of the following figures corresponding to different objectives
and performance metrics.

1) Sum Rate Maximization: In Figures 3-6, we show the
sum rate and the NMSE performance versus SNR for the uplink
data transmission and channel estimation, respectively, with
respect to 16×8 UPA and 128×1 ULA antenna configurations.
For our proposed ON-OFF schemes, the joint beam and user
selection results from (36) in Theorem 3, in which the objective
is the sum rate maximization. Note that the estimated channels
of ON-OFF0,0 and ON-OFF∞,∞ are ĥON/OFF

i and ĥON/OFF
i,∞ ,

which are identical to that of ON-OFF0,∞ and ON-OFF∞,0,
respectively, so we only keep one of them in figures.

It is shown in Fig. 3 and Fig. 4 that our proposed ON-
OFF method ON-OFF0,0 outperforms MMSE and k-means
clustering algorithms in both sum rate and NMSE performance,
thanks to the effective joint beam and user selection. In Fig. 3,
the MMSE and the asymptotic versions of ON-OFF schemes,
i.e., ON-OFF0,∞, ON-OFF∞,0 and ON-OFF∞,∞, suffer from
sum rate saturation in the high SNR regime. For the MMSE
scheme, because all users are active, the multiuser interference
is severe due to high channel correlation among users, so that
both sum rate and NMSE performance do not decrease as
SNR increases. This confirms that user selection is crucial
for a massive MIMO system with a large number (e.g., 20)
of users. The sum rate saturation of those ON-OFF methods
is due to the fact that the asymptotic treatment of channel
estimation and precoding with finite antennas leaves too much
interference so that the system is interference-limited. The sum
rate performance of ON-OFF0,∞ and ON-OFF∞,∞ is worse
than those of ON-OFF0,0 and ON-OFF∞,0, which reveals that
the asymptotic treatment with interference ignored deteriorates
more on precoding than channel estimation. This demonstrates
that the asymptotic results should be refined to adapt the
practical scenarios.

For clustering algorithms, both sum rate and NMSE perfor-
mance of k-means0 is better than that of k-means∞, due to
the inaccuracy of asymptotic representation under the finite
number of both column and row antennas. It appears the sum
rate of k-means is even worse than that of MMSE in the low
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Fig. 3: Sum rate versus SNR with 16×8 UPA. The on-off parameters
are obtained from (36), and there are 5 clusters for k-means.
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Fig. 4: NMSE versus SNR for 16× 8 UPA. The on-off parameters
are obtained from (36), and there are 5 clusters for k-means.
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Fig. 5: Sum rate versus SNR with 128 ULA. The on-off parameters
are from (36), and 5 clusters for k-means.
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Fig. 6: NMSE versus SNR with 128 ULA. The on-off parameters
are from (36), and 5 clusters for k-means.

and moderate SNR regimes - it is probably because the high
channel correlation makes the number of users that can be
selected quite limited. In contrast, our proposed method has
better performance than that of MMSE with the same number
of activated users. There are two limitations of the k-means-type
algorithms. On one hand, k-means algorithms rely critically
on the initialization of centroids - a worse initialization leads
to inferior results. On the other hand, k-means algorithms
minimize the distance of the data points within the cluster,
ignoring the distance between clusters, which may result in
overlapping user selection if clusters are not clearly separable.

Fig. 5 and Fig. 6 present the similar results as Fig. 3 and Fig.
4, but a 128×1 ULA antenna configuration is considered. The
observations are similar to those of Fig. 3 and Fig. 4, which
confirms that our proposed methods are valid for both the
UPA and ULA settings. In contrast, the asymptotic versions of
the ON-OFF scheme gain certain improvement. In particular,
compared with Fig. 4, the ON-OFF scheme with asymptotic
channel estimation, i.e., ON-OFF∞,0, has improved sum rate
performance, which outperforms that of MMSE and k-means-
like algorithms. The reason is that, as squeezing the UPA to a
ULA with the same number of antennas, the asymptotic channel

representation becomes more accurate, so that asymptotic
channel estimation still works in a non-asymptotic setting.

2) MSE Minimization: Figures 7-10 illustrate the sum rate
and NMSE performance versus SNR in the same setting as
those in Figures 3-6. The difference is that the joint beam
and user selection comes from the optimization problem (38),
where the main target is MSE minimization. Remarkably, with
proper chosen threshold parameters, the sum rate and NMSE
performance using the joint beam and user selection from
(38) is comparable with that using (36) both for UPA and
ULA antenna configurations. It is worth noting that, when
serving the same number of users, UPA (Figures 3 and 7) has
a better sum rate performance than ULA (Figures 5 and 9). It
is possibly because there are too many activated users in ULA
(Figures 5 and 9) that lead to certain overlapping among users.
It demonstrates that the UPA antenna could be able to serve
more users than ULA, which also is one of the advantages of
the UPA system.

In order to avoid relying too much on threshold parameters,
we proposed to use an alternating projection algorithm in
Section IV-D to solve the sum rate maximization problem (36)
and the MSE minimization problem (38) in an iterative manner.
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Fig. 7: Sum rate versus SNR with 16×8 UPA. The on-off parameters
are obtained from (38), and there are 5 clusters for k-means.
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Fig. 8: NMSE versus SNR with 16× 8 UPA. The on-off parameters
are obtained from (38), and there are 5 clusters for k-means.
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Fig. 9: Sum Rate versus SNR with 128 ULA. The on-off parameters
are from (38), and 5 clusters for k-means.
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Fig. 10: NMSE versus SNR with 128 ULA. The on-off parameters
are from (38), and 5 clusters for k-means.
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Fig. 11: Instantaneous sum rate versus NMSE at 20 dB with 16× 8
UPA. The on-off parameters are from Alg. 1.

3) Alternating Projection: Fig. 11 presents the instantaneous
sum rate versus NMSE performance obtained from Algorithm

1 with SNR = 20 dB and 16 × 8 UPA antennas. Each point
is a pair of instantaneous sum rate and NMSE for a channel
realization. The joint beam and user selection comes from
the solutions to (36) and (38). We adopt the SINR threshold
τ = 0.7 to ensure a feasible solution that could be found by
both (36) and (38). The instantaneous sum rate and MSE are
calculated by using our proposed scheme ON-OFF0,0. The
alternating projection algorithm is able to converge within a
few iterations (3 iterations in Fig. 11). The MSE threshold τth
is 0.95 as the initialization, which means the MSE constraint
(36g) is relaxed, so that the optimization is prone to sum rate
maximization. As observed from Fig. 11, almost all the (rate,
NMSE) pairs from the last iteration of alternating projection
concentrate on a small area, which yields a reasonably good
average sum rate and NMSE (marked as stars). It shows that
the average sum rate performance obtained from alternating
projection in Fig. 11 is much better than that of the separate
rate or MSE optimization as in Fig. 3, Fig. 4, Fig. 7 and
Fig. 8 obtained from (36) or (38). This demonstrates that
the alternating projection algorithm is capable to adjust the
parameters τth and UNc automatically so as to lead optimization
towards higher sum rate performance. With respect to the
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selected users, the first iteration has 14 users selected, but
this number is decreased to 7 in the last iteration after the
alternating projection algorithm. This is also in contrast to the
number of selected users in Fig. 3, Fig. 4, Fig. 7 and Fig. 8,
where only 5 users are selected. In addition, such an alternating
algorithm does not require to initialize the number of activated
users, which is one of the critical initial conditions for k-means
algorithms.

VI. CONCLUSION

In this paper, we considered the joint uplink channel
estimation and data transmission in the overloaded multiuser
uplink massive MIMO network with UPA antennas at the
base station. To mitigate channel spatial correlation due to
the collocation of antenna elements and users, we adopted the
recently proposed ACS concept and developed an effective
joint beam and user selection method to artificially sparsify the
effective users’ channels. In particular, we first leveraged the
doubly block Toeplitz structure of channel covariance matrices
when UPA is deployed, and approximately represented users’
channels by common basis vectors coming from the 2D-DFT
matrix. By such approximate representation, we proposed a
joint beam and user selection method via ACS to reduce the
spatial correlation among the selected users. By a weighted
bipartite graph representation of user-beam association, we
translated the joint beam and user selection problem into mixed
integer linear programs (MILPs), which can be solved in a more
tractable way. The alternating projection between two MILPs
yields better performance than each of them with automatic
hyper-parameter fine-tuning. This is another evidence showing
the powerfulness of the ACS concept in massive MIMO systems
beyond the use for downlink channel reconstruction in FDD
mode. It is expected this concept has more application scenarios
to deal with spatial correlation in both TDD and FDD massive
MIMO systems.

APPENDIX

A. Proof of Theorem 1

We first show that R is a doubly block Toeplitz matrix. For
notational convenience, we define

Ω = {(θ, φ) : θ ∈ A, φ ∈ B}. (40)

Given the channel vector h in (1), the covariance matrix R =
E{hhH} can be written as

R = E
∫

Ω

∫
Ω′
β(θ, φ)β∗(θ′, φ′)a(θ, φ)aH(θ′, φ′)dθdφdθ′dφ′

(41)

= β

∫
Ω

a(θ, φ)aH(θ, φ)dθdφ (42)

due to the fact that β(θ, φ) is i.i.d. across paths, i.e.,

E{β(θ, φ)β∗(θ′, φ′)} =

{
β, (θ, φ) = (θ′, φ′)
0, otherwise . (43)

Plugging (2) into (42), we have

R = β

∫
Ω

ay(θ, φ)aH

y(θ, φ)⊗ ax(θ, φ)aH

x(θ, φ)dθdφ (44)

= β

∫
Ω

 B11 · · · B1My

...
. . .

...
BMy1 · · · BMyMy

 dθdφ (45)

where each block Bpq can be written as

Bpq =
[
ay(θ, φ)aH

y(θ, φ)
]
pq

A(θ, φ) (46)

= e
2π
λw

dy(p−q) sinφ sin θA(θ, φ) (47)

with

[A(θ, φ)]ij = [ax(θ, φ)]i[a
H

x(θ, φ)]j = e
2π
λw

dx(i−j) sinφ cos θ.
(48)

It can be easily verified that [A(θ, φ)]ij only depends on i− j,
by which it is deemed as a Toeplitz matrix. Moreover, A(θ, φ)
is a Hermitian matrix as A(θ, φ) = AH(θ, φ). Similarly, Bpq

only depends on p− q and thus R is a block Toeplitz matrix
with Toeplitz blocks, which is referred to as a doubly block
Toeplitz matrix. Further, R is a Hermitian matrix, as R = RH.

In (45), as the integral is element-wise operation, which does
not change the Toeplitz structure of the matrix, we conclude
that R is still a Hermitian doubly block Toeplitz matrix. That
is, R has My ×My blocks with Toeplitz structure and each
Mx ×Mx block is a Toeplitz matrix.

According to [31] and [32], the Hermitian doubly block
Toeplitz matrix R is asymptotically equivalent to the cor-
responding doubly block circulant matrix C, which can be
decomposed by 2D-DFT matrix, i.e.,

C = (VMy
⊗ VMx

)Λ(VMy
⊗ VMx

)H (49)

=

My∑
a=1

Mx∑
b=1

χ(ωa, ζb)(fa ⊗ gb)(fa ⊗ gb)
H (50)

where fa and gb are the a-th and b-th columns of DFT matrices
VMy

and VMx
, respectively. The scalar-valued function χ(ω, ζ)

is referred to the generating function of the doubly block
Toeplitz matrix R and the doubly block circulant matrix C,
i.e.,

χ(ω, ζ) =
∑
µ

∑
ν

rµ,νe
2π(µω+νζ) (51)

with µ ∈ [−My,My], ν ∈ [−Mx,Mx], where

rµ,ν = β

∫
B

∫
A
e−

2π
λw

(dxν+dyµ) sinφ sin θdθdφ (52)

is the ν-th element of µ-th block matrix of R. For (ωa, ζb) =
( a−1

2My
, b−1

2Mx
), χ(ωa, ζb) is the uniform sampling of the con-

tinuous and periodic function χ(ω, ζ), and it can be seen as
the eigenvalues of R when Mx,My → ∞. Nevertheless, in
practical UPA system with a finite number of antennas, R is
not perfectly diagonalizable by 2D-DFT matrices. That is, Λ
is not a diagonal matrix any more. As such, χ(ωa, ζb) is used
as an approximation of the eigenvalues of R.

B. Proof of Theorem 3

For the objective function, we follow the footsteps in [20]
and introduce a set of binary variables zi,m ∈ [0, 1].

max
xm,yi,zi,m

∑
bm∈B

∑
ui∈U

zi,m (53a)
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s.t. xm ≤
∑
ui∈U

[A]i,myi, ∀bm ∈ B, (53b)

yi ≤
∑
bm∈B

[A]i,mxm, ∀ui ∈ U , (53c)

zi,m ≤ [A]i,m, ∀ui ∈ U , bm ∈ B, (53d)∑
ui∈U

zi,m ≤ xm, ∀bm ∈ B, (53e)∑
bm∈B

zi,m ≤ yi, ∀ui ∈ U , (53f)

xm, yi ∈ {0, 1}, ∀ui ∈ U , bm ∈ B, (53g)
zi,m ∈ [0, 1], ∀ui ∈ U , bm ∈ B, (53h)

where (53b)-(53c) ensure that, if a beam is selected, there
should be a user to occupy it, and vice versa, the objective
function (53a) and the constraints (53d)-(53f) are obtained
by following the similar footsteps in [20] for which the
edges {(ui, bm) : zi,m = 1} in the selected subgraph
G′ = (B′,U ′, E ′) form a maximum cardinality matching.

To simplify the constraints in a form of inequalities, we
consider the original graph G = (U ,B, E) in lieu of the selected
subgraph G = (U ′,B′, E ′) where xm = 1 and yi = 1 if and
only if ui ∈ U ′ and bm ∈ B′. Thus, from (35b), we have

yi

M∑
m=1

λi,m

(
1− λi,mxm∑NU

j=1 yjλj,mxm + σ2

)
≤ Pi, ∀ui ∈ U .

(54)

Accordingly, if beam m has a significant contribution to the
channel representation in the beam domain, it is better to be
selected so the corresponding MSE can be mitigated; otherwise,
the beam can not selected (i.e., xm = 0). As such, instead
of considering all beams for each user jointly, we investigate
each beams separately. To this end, we introduce an auxiliary
variable τth ∈ [0, 1] such that τth

∑M
m=1 λi,m = Pi.

To make (54) more tractable, we place our focus on the
regime with high SNR, where σ2 → 0, in hope to gain insights
that can guide the design in the practical settings. As such,
constraint (54) can be replaced by a simpler yet more restrictive
constraint as

yi

(
1− λi,mxm∑NU

j=1 yjλj,m

)
≤ τth, ∀ui ∈ U ,∀bm ∈ B, (55)

where xm in the denominator is dropped without loss of feasi-
bility as it does not change the inequality given xm ∈ {0, 1}.
This constraint is more restrictive in the sense that if this one is
satisfied, then (35b) is satisfied automatically. This guarantees
a feasible solution to (35).

By this constraint, the beams that contribute much to user-
i’s effective channel representation in the beam domain (i.e.,
with a large λi,m) are more likely selected, and this constraint
ensures that the MSE of estimating the component of user-i’s
channel projected onto beam-m is mitigated. The beams with
little contribution (i.e., with a small λi,m) can be or not be
selected. Nevertheless, in case a beam should be unselected
for some reason, it may also result in the non-selection of the
users who relies very much on that.

A further manipulation transforms constraint (55) into the
following form:

yi

NU∑
j=1

yjλj,m − xmyiλi,m ≤ τth

NU∑
j=1

yjλj,m (56)

which can be transformed further to

(1− τth)

NU∑
j=1

yjλj,m ≤ xmλi,m + c1(1− xm) + c2(1− yi)

(57)

where the constants c1 and c2 are sufficiently large to make
sure that if user i or beam m is not selected (i.e., yi = 0 or
xm = 0) then this constraint is automatically satisfied.

As a matter of fact, (55) can be also rewritten as follows

yi

NU∑
j 6=i

yjλj,mxm ≤ τth

NU∑
j=1

yjλj,mxm (58)

because yi = y2
i given that yi ∈ {0, 1}. Intuitively, if both user

i and beam m are selected, the other users can be also selected
if the overall interference from j 6= i to beam m accounts for a
fraction (τth) of the overall power seen at beam m including the
power of the desired signal from user i. Further, with respect
to the SINR constraint (35c), it can be specified as∑

m λi,mxm∑
j 6=i
∑
m yjλj,mxm + σ2

≥ yiΓi, ∀ui ∈ U . (59)

Plugging (58) into (59), we can transform (59) into a more
restrictive one as follows

M∑
m=1

λi,mxm ≥ yiΓiσ2 + yiΓiτth

M∑
m=1

NU∑
j=1

yjλj,mxm (60)

where the two terms on the RHS correspond to desired signal
and upper bounded interference power, respectively. We further
split the above inequality into the following two constraints

M∑
m=1

λi,mxm ≥ yiΓi (σ2 + κ) (61)

κ ≥ yiτth

M∑
m=1

NU∑
j=1

yjλj,mxm (62)

where Γi and κ are SINR and INR thresholds, respectively.
By letting κ = τth

∑
m τ

m
ω , we can replace (62) by a simpler

yet more restrictive constraint to ensure this condition, that is,
NU∑
i=1

yiλi,m ≤ xmτmω ∀bm ∈ B (63)

where τmω = maxp{λi,m, i ∈ [NU ]}.
To make it more tractable, we introduce a designing

parameter τ ∈ [0, 1] such that Γi + κ =
τ
∑
m λi,m
σ2 . Thus,

we have

yiτ

M∑
m=1

λi,m ≤
M∑
m=1

λi,mxm ∀ui ∈ U . (64)

Collecting all inequalities above gives us the MILP formu-
lation in Theorem 3.
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C. Proof of Theorem 4

The optimization problem (P ′2) can be translated into a more
concrete form as follows:

min
xm,yi

NU∑
i=1

M∑
m=1

yiλi,m

(
1− λi,mxm∑NU

j=1 yjλj,m

)
(65a)

s.t. (36h), (36i) (65b)
NU∑
i=1

yi ≥ UNc , (65c)

xm, yi ∈ {0, 1}, ∀bm ∈ B, ui ∈ U (65d)

where we directly impose a constraint that the number of active
users is no less than a predefined parameter UNc for simplicity,
because the multiplexing gain is mainly determined by the
number of users given NU �M .

To simplify the quantities in the objective function, we
introduce a set of auxiliary variables {ti,m}, so that (65a) can
be rewritten as

min
xm,yi,ti,m

NU∑
i=1

M∑
m=1

(yiλi,m + ti,m) (66a)

s.t. −
xm
∑NU
i=1 yiλ

2
i,m∑NU

j=1 yjλj,m
≤

NU∑
i=1

ti,m, ∀bm ∈ B′ (66b)

ti,m ≤ 0, ∀bm ∈ B, ui ∈ U . (66c)

Given the fact that∑NU
i=1 yiλ

2
i,m∑NU

j=1 yjλj,m
=

(
∑NU
i=1 yiλi,m)2 −

∑
i,j:i 6=j yiyjλi,mλj,m∑NU

j=1 yjλj,m

(67)

≥
NU∑
i=1

yiλi,m −
∑
i,j:i 6=j

yiyjλi,mλj,m (68)

where the inequality is because of
∑NU
j=1 yjλj,m ≥ 1 almost

surely, the constraint (66b) can be replaced by a more restrictive
yet tractable one as below

−xm
NU∑
i=1

yiλi,m −∑
j:j 6=i

yiyjλi,mλj,m

 ≤ NU∑
i=1

ti,m. (69)

By considering each user i separately, we further restrict this
constraint with a more tractable one

−λi,m +
∑
j:j 6=i

yjλi,mλj,m − ti,m ≤c3(1− xm) + c4(1− yi),

∀ui ∈ U , bm ∈ B (70)

where c3, c4 > 0 are sufficiently large constants to guarantee
that the constraint is automatically satisfied if the beam m
or the user i is not selected. Collecting all inequalities above
gives us the MILP formulation in Theorem 4.
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