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Abstract
We study here the problem of exploring a temporal graph when the under-
lying graph is a star. The aim of the exploration problem in a temporal star
is finding a temporal walk which starts and finishes at the center of the star,
and visits all leaves. We present a systematic study of the computational
complexity of this problem, depending on the number k of time points where
each edge can be present in the graph. We distinguish between the decision
version StarExp(k), asking whether a complete exploration exists, and the
maximization version MaxStarExp(k), asking for an exploration of the
greatest possible number of edges. We fully characterize MaxStarExp(k)
in terms of complexity. We also partially characterize StarExp(k), showing
that it is in P for k < 4, but is NP-complete, for every k > 5. Finally, we
partially characterize classes of “random” temporal stars which are, asymp-
totically almost surely, yes-instances and no-instances for StarExp(k).
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1. Introduction and motivation

A temporal graph is, roughly speaking, a graph that changes over time.
Several networks, both modern and traditional, including social networks,
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transportation networks, information and communication networks, can be
modeled as temporal graphs. The common characteristic in all the above5

examples is that the network structure, i.e. the underlying graph topology, is
subject to discrete changes over time. Temporal graphs naturally model such
time-varying networks using time-labels on the edges of a graph to indicate
moments of existence of those edges, while the vertex set remains unchanged.
This formalism originates in the foundational work of Kempe et al. [32].10

In this work, we focus in particular on temporal graphs where the un-
derlying graph is a star graph and we consider the problem of exploring
such a temporal graph starting and finishing at the center of the star. The
motivation behind this is inspired from the well known Traveling Salesper-
son Problem (TSP). The latter asks the following question: “Given a list15

of cities and the distances between each pair of cities, what is the shortest
possible route that visits each city and returns to the origin one?”. In other
words, given an undirected graph with edge weights where vertices represent
cities and edges represent the corresponding distances, find a minimum-cost
Hamiltonian cycle. However, what happens when the traveling salesperson20

has particular temporal constraints that need to be satisfied, e.g. (s)he can
only go from city A to city B on Mondays or Tuesdays, or (s)he can only
travel by train and, hence, needs to schedule his/her visit based on the train
timetables? In particular, consider a traveling salesperson who, starting from
his/her home town, has to visit n−1 other towns via train, always returning25

to his/her own home town after visiting each city. There are trains between
each town and the home town only on specific times/days, possibly different
for different towns, and the salesperson knows those times in advance. Can
the salesperson decide whether (s)he can visit all towns and return to his/her
own home town by a certain day?30

1.1. Previous work.
Recent years have seen a growing interest in dynamic network studies.

Due to its vast applicability in many areas, the notion of temporal graphs
has been studied from different perspectives under various names such as
time-varying [1, 25, 45], evolving [12, 19, 24], dynamic [16, 22, 28, 48, 49],35

and graphs over time [36]; for a recent attempt to integrate existing models,
concepts, and results from the distributed computing perspective see the
survey papers [13–15] and the references therein. Temporal data analytics,
temporal flows, as well as various temporal analogues of known static graph

2



concepts such as cliques, vertex covers, diameter, distance, connectivity and40

centrality have also been studied [2–6, 10, 30, 34, 35, 37, 46, 47].
Notably, temporal graph exploration has been studied before [11, 23, 31,

38]; Erlebach et al. [23] define the problem of computing a foremost explo-
ration of all vertices in a temporal graph (Texp), without the requirement
of returning to the starting vertex. They show that it is NP-hard to approx-45

imate Texp with ratio O(n1−ε) for any ε > 0, and give explicit construc-
tion of graphs that need Θ(n2) steps for Texp. They also consider special
classes of underlying graphs, such as the grid, as well as the case of random
temporal graphs where edges appear in every step with independent prob-
abilities. Michail and Spirakis [38] study a temporal analogue of TSP(1,2),50

where the objective is to explore the vertices of a complete directed tem-
poral graph with edge weights from {1, 2} with the minimum total cost;
they derive several polynomial-time approximation algorithms, including a
(1.7+ε)-approximation for the generic case of “temporal TSP(1,2)”. Ilcinkas
et al. [31] propose a 2O(

√
logn)n-time algorithm for exploring constantly con-55

nected dynamic graphs on an underlying cactus graph, also showing a lower
bound of 2Ω(

√
logn)n for the algorithm. Bodlaender and van der Zanden [11]

show that exploring temporal graphs of small pathwidth is NP-complete;
they start from the problem that we define in this paper1, which we prove
is NP-complete, and give a reduction to the problem of exploring temporal60

graphs of small pathwidth.
We focus here on the exploration of temporal stars, inspired by the Trav-

eling Salesperson paradigm where the salesperson returns to his/her base
after visiting every city. The Traveling Salesperson Problem is one of
the most well-known combinatorial optimization problems, which still poses65

great challenges despite having been intensively studied for more than sixty
years. For the Symmetric TSP, where the given graph is undirected (as is
the case for the temporal version of the problem that we consider here) and
the edge costs obey the triangle inequality, the best known approximation
algorithm is still the celebrated 3/2 – approximation of Christofides [17], de-70

spite forty years of intensive efforts to improve it. Only recently, Gharan et
al. [27] proved that the special case of Graphic TSP, where the costs corre-
spond to shortest path distances of some given graph, can be approximated

1A preliminary version of this paper appeared publicly in ArXiv on 12th May 2018
(https://arxiv.org/pdf/1805.04713.pdf).
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within 3/2 − ε, for a small constant ε > 0 (which was further improved by
subsequent works, e.g. [42]). For the Asymmetric TSP where paths may75

not exist in both directions or the distances might be different depending on
the direction, the O(log n)-approximation of [26] was the best known for al-
most three decades, improved only recently to O(log n/ log log n) [7] and then
even more recently with the breakthrough result of an O(1)-approximation
[44]. Online TSP-related problems as well as versions of TSP where each80

node must be visited within a given time window or following a particular
timetable have been recently studied [9, 29, 41]. Various other TSP varia-
tions have also been studied over the years, including polynomially-solvable
cases [20, 21].

1.2. The model and definitions.85

It is generally accepted to describe a network topology using a graph,
the vertices and edges of which represent the communicating entities and the
communication opportunities between them, respectively. Unless otherwise
stated, we denote by n and m the number of vertices and edges of the graph,
respectively.90

We consider graphs whose edge availabilities are described by sets of
positive integers (labels), one set per edge.

Definition 1 (Temporal Graph). Let G = (V,E) be a graph. A temporal
graph on G is a pair (G,L), where L : E → 2N is a time-labeling function,
called a labeling of G, which assigns to every edge of G a set of (discrete)95

time labels. The labels of an edge are the (discrete) time instances (“days”)
at which it is available.

We call G the underlying graph and we call the largest label assigned by
the function L to any edge of G the lifetime of the temporal graph.

For the majority of the following sections, we focus on the above standard100

model of temporal graphs (also studied in, e.g. [4, 5]), where the labels of
an edge may be positive integers. However, in the final section we will also
discuss a similar model of temporal graphs where the labels are real num-
bers selected from the continuous time interval [0, 1]. The main reason for
studying this model is that it simulates the behavior of the system when the105

lifetime of the temporal graph tends to infinity and, thus, there are virtually
no repetitions of labels on an edge of the underlying graph.
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In this paper, we focus on temporal graphs whose underlying graph is an
undirected star, i.e. a connected graph of m = n − 1 edges which has n − 1
leaves, i.e. vertices of degree 1.110

Definition 2 (Temporal Star). A temporal star is a temporal graph (Gs, L)
on a star graph Gs = (V,E). Henceforth, we denote by c the center of Gs,
i.e. the vertex of degree n− 1.

Definition 3 (Time edge). Let e = {u, v} be an edge of the underlying graph
of a temporal graph and consider a label l ∈ L(e). The pair ({u, v}, l) is115

called time edge.

A basic assumption that we follow here is that when a message or an entity
passes through an available link at time (day) t, then it can pass through a
subsequent link only at some time (day) t′ > t and only at a time at which
that link is available. The problem of exploring a star graph becomes trivial120

otherwise, i.e. in the “non-strict” setting where labels on consecutive edges
of the journey only have to be non-decreasing

Definition 4 (Journey). A temporal path or journey j from a vertex
u to a vertex v ((u, v)-journey) is a sequence of time edges ({u, u1}, l1),
({u1, u2}, l2), . . . , ({uk−1, v}, lk), such that li < li+1, for each 1 ≤ i ≤ k − 1.125

We call the last time label, lk, arrival time of the journey.

Given a temporal star (Gs, L), on the one hand we investigate the com-
plexity of deciding whether Gs is explorable: we say that (Gs, L) is explorable
if there is a journey starting and ending at the center of Gs that visits every
node of Gs. Equivalently, we say that there is an exploration that visits ev-130

ery node, and explores every edge, of Gs. On the other hand, we investigate
the complexity of computing an exploration schedule that visits the greatest
number of edges. A (partial) exploration of a temporal star is a journey J
that starts and ends at the center of Gs which visits some nodes of Gs; its
size |J | is the number of nodes of Gs that are visited by J , where each vertex135

is only accounted for once even if it is visited multiple times. We, therefore,
identify the following problems:

StarExp(k)
Input: A temporal star (Gs, L) such that every edge has at most k labels.
Question: Is (Gs, L) explorable?
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MaxStarExp(k)
Input: A temporal star (Gs, L) such that every edge has at most k labels.
Output: A (partial) exploration of (Gs, L) of maximum size.

Note that the case where one edge e of the input temporal star has only140

one label is degenerate. Indeed, in the decision variant (i.e. StarExp(k)) we
can immediately conclude that (Gs, L) is a no-instance as this edge cannot
be explored; similarly, in the maximization version (i.e. MaxStarExp(k))
we can just ignore edge e for the same reason. We say that we “enter” an
edge e = {c, v} of (Gs, L) when we cross the edge from c to v at a time on145

which the edge is available. We say that we “exit” e when we cross it from
v to c at a time on which the edge is available. Without loss of generality
we can assume that, in an exploration of (Gs, L), the entry to any edge e
is followed by the exit from e at the earliest possible time (after the entry).
That is, if the labels of an edge e are l1, l2, . . . , lk and we enter e at time li,150

we exit at time li+1. The reason is that, waiting at a leaf (instead of exiting
as soon as possible) does not help in exploring more edges; we are better off
returning to the center c as soon as possible.

In order to solve the problem of exploring as many edges of a temporal
star as possible, we define here the Job Interval Selection Problem155

where each job has at most k associated intervals (JISP(k)), k ≥ 1.

Job Interval Selection Problem - JISP(k) [43]
Input: n jobs, each described as a set of at most k intervals on the real
line.
Output: A schedule that executes as many jobs as possible; to execute
a job one needs to select one interval associated with the job. To execute
several jobs, the intervals selected for the jobs must not overlap.

Notice that every edge e with labels l1, l2, . . . , lk can be seen as a job to
be scheduled where the corresponding intervals are [l1, l2], [l2, l3], . . . , [lk−1, lk],
hence MaxStarExp(k) is a special case of JISP(k−1). JISP(k) is a well-160

studied problem in the Scheduling community with several known complexity
results, some of which carry over to the MaxStarExp(k) problem. In par-
ticular, Spieksma [43] showed a (1/2)-approximation for the problem, later
improved to a (1/1.582)-approximation by Chuzhoy et al. [18]. This immedi-
ately implies a (1/1.582)-approximation algorithm for MaxStarExp(k); we165
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use the latter to conclude on the APX-completeness2 of MaxStarExp(k) af-
ter proving that the latter is APX-hard for any k ≥ 4. Note here that JISP(k)
was shown [43] to be APX-hard for any k ≥ 2, but since MaxStarExp(k)
is a special case of JISP(k−1), its hardness does not follow from the already
known results. In fact, we show that MaxStarExp(3) -which is a special170

case of JISP(2)- is polynomially solvable.

1.3. Our contribution.
In this paper we do a systematic study of the computational complex-

ity landscape of the temporal star exploration problems StarExp(k) and
MaxStarExp(k), depending on the maximum number k of labels allowed175

per edge. As a warm-up, we first prove in Section 2 that the maximization
problem MaxStarExp(3), i.e. when every edge has at most three labels
per edge, can be efficiently solved in O(n log n) time; sorting the labels of the
edges is the dominant part in the running time.

In Section 3 we prove that, for every k ≥ 6, the decision problem180

StarExp(k) is NP-complete and, for every k ≥ 4, the maximization problem
MaxStarExp(k) is APX-hard, and thus it does not admit a Polynomial-
Time Approximation Scheme (PTAS), unless P = NP. These results are
proved by reductions from special cases of the satisfiability problem. The
APX-hardness result is complemented by a (1/1.582)-approximation algo-185

rithm for MaxStarExp(k) for any k, which implies that MaxStarExp(k)
is APX-complete for k ≥ 4. This approximation algorithm carries over from
an approximation for the Job Interval Selection Problem [18].

Finally, in Section 4 we study the problem of exploring a temporal star
whose edges receive k random labels each. Here, we distinguish between two190

similar models for which we show lower and upper bounds on the number
of labels per edge needed for full exploration of the resulting temporal star
graph with high probability. The first model assigns k labels to each edge
of Gs, independently of other edges, and each label is chosen uniformly at
random and independently from the set of positive integers {1, 2, . . . , α},195

for some α ∈ N. For this first model, we partially characterize the classes
of temporal stars which, asymptotically almost surely, admit a complete
(resp. admit no complete) exploration. In the second model, each label of

2APX is the complexity class of optimization problems that allow constant-factor ap-
proximation algorithms.
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each edge is a real number3 chosen uniformly at random and independently
from the continuous interval [0, 1]. For the second model, we provide a lower200

bound for the number of labels per edge needed for full exploration of the
star with high probability. We also discuss, in Section 4, the relation between
the two models and the implications of a proven upper/lower bound on the
number of labels per edge needed for explorability in one model on the other.

2. Efficient algorithm for k ≤ 3 labels per edge205

In this section we show that, when every edge has two or three labels, a
maximum size exploration in (Gs, L) can be efficiently found in O(n log n)
time. To do that, we reduce our problem to the Interval Scheduling Maxi-
mization Problem (ISMP).

Interval Scheduling Maximization Problem (ISMP)
Input: A set of intervals, each with a start and a finish time.
Output: A set of non-overlapping intervals of maximum size.

210

We can then apply a known greedy algorithm that finds an optimal solu-
tion for ISMP; the basic idea of this algorithm is to order the set of intervals
in increasing order of finish time and then “greedily” process them in one
pass, selecting as large a compatible subset as it can.

By proving that MaxStarExp(3) is solvable in O(n log n) time, we215

clearly also prove that the decision variation of the problem, i.e. Star-
Exp(3), can also be solved within the same time bound. We give here
the proof for k = 3 labels, which also covers the case of k = 2.

Theorem 1. MaxStarExp(3) can be solved in O(n log n) time.

Proof. We show that MaxStarExp(3) is reducible to ISMP. Given (Gs, L)220

we construct in linear time a set I of at most 2(n−1) intervals as follows: all
edges of (Gs, L) with a single label can be ignored as they can not be explored
in any exploration of (Gs, L); for every edge e of (Gs, L) with labels le < l′e
we create a single closed time interval, [le, l′e]; for every edge e of (Gs, L) with
labels le < l′e < l′′e we create two closed time intervals, [le, l′e] and [l′e, l

′′
e ].225

We may now compute a maximum size subset I ′ of I of non-conflicting
(i.e. disjoint) time intervals, using the greedy optimal algorithm for

3This is distinct from the rest of the paper, where we assume the standard model of
integer labels.
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ISMP [33]. It suffices to observe that no two intervals associated with the
same edge will ever be selected in I ′, as any two such intervals are non-
disjoint; indeed, two intervals associated with the same edge e are of the230

form [le, l
′
e] and [l′e, l

′′
e ], hence they overlap at the single time point l′e.

So a maximum-size set I ′ of non-overlapping intervals corresponds to a
maximum-size exploration of (Gs, L) (in fact, of the same size as the size of
I ′). Also, we may indeed solve StarExp(3) by checking whether |I ′| = n−1
or not. The above works in O(n log n) time [33].235

3. Hardness for k ≥ 4 labels per edge

In this section we show that, whenever k ≥ 6, StarExp(k) is NP-
complete. Furthermore, we show that MaxStarExp(k) is APX-hard for
k ≥ 4. Thus, in particular, MaxStarExp(k) does not admit a Polynomial-
Time Approximation Scheme (PTAS), unless P = NP. In fact, due to a known240

polynomial-time constant-factor approximation algorithm for JISP(k) [18],
it follows that MaxStarExp(k) is also APX-complete.

3.1. StarExp(k) is NP-complete for k ≥ 6 labels per edge
We prove our NP-completeness result through a reduction from a special

case of 3SAT, namely 3SAT(3), which is known to be NP-complete [39].245

3SAT(3)
Input: A boolean formula in CNF with variables x1, x2, . . . , xp and
clauses c1, c2, . . . , cq, such that each clause has at most 3 literals, and
each variable appears in at most 3 clauses.
Question: Is the formula satisfiable?

Intuition and overview of the reduction:. Given an instance F of 3SAT(3),
we shall create an instance (Gs, L) of StarExp(k) such that F is satisfiable
if and only if (Gs, L) is explorable. Henceforth, we denote by |τ(F )| the
number of clauses of F that are satisfied by a truth assignment τ of F .250

Without loss of generality we make the following assumptions on F . Firstly,
if a variable occurs only with positive (resp. only with negative) literals, then
we trivially set it to true (resp. false) and remove the associated clauses.
Furthermore, without loss of generality, if a variable xi appears three times in
F , we assume that it appears once as a negative literal ¬xi and two times as255

a positive literal xi; otherwise we rename the negation with a new variable.

9



Similarly, if xi appears two times in F , then it appears once as a negative
literal ¬xi and once as a positive literal xi.

Before we move on to the specifics of our reduction, we shall introduce the
intuition behind it. (Gs, L) will have one edge corresponding to each clause of260

F , and three edges (one “primary” and two “auxiliary” edges) corresponding
to each variable of F . We shall assign labels in pairs to those edges so that
it is possible to explore an edge only by using labels from the same pair to
enter and exit the edge; for example, if an edge e is assigned the pairs of
labels l1, l2 and l3, l4, with l1 < l2 < l3 < l4, we shall ensure that one cannot265

enter e with, say, label l2 and exit with, say, label l3, by introducing the
above-mentioned “auxiliary” edges and assigning appropriate labels to them
to enforce the exploration of e using one of the desired pairs of labels.

In particular, for the “primary” edge corresponding to a variable xi we
will assign to it two pairs of labels, namely (αi − β, αi − β + γ) and (αi +270

β, αi + β + γ), for some α, β, γ ∈ N. The first (entry,exit) pair corresponds
to setting xi to false, while the second pair corresponds to setting xi to true.
We shall choose α, β, γ so that the entry and exit from the edge using the
first pair is not conflicting with the entry and exit using the second pair,
i.e. (αi− β, αi− β + γ) and (αi+ β, αi+ β + γ) do not overlap.275

Then, to any edge corresponding to a clause cj that contains xi unnegated,
we shall assign an (entry, exit) pair of labels (αi − δ, αi − δ + ε), choosing
δ, ε ∈ N so that (αi−δ, αi−δ+ε) is conflicting with the (αi−β, αi−β+γ) pair
of labels of the edge corresponding to xi, which is associated with xi = false
but not conflicting with the (αi + β, αi + β + γ) pair. If xi is false in F280

then cj cannot be satisfied through xi so we should not be able to explore
a corresponding edge via a pair of labels associated with xi. If cj contains
xi negated, we shall assign to its corresponding edge an (entry, exit) pair of
labels (αi+ζ, αi+ζ+θ), choosing ζ, θ ∈ N so that the latter is in conflict with
the (αi+ β, αi+ β + γ) pair of labels of the edge corresponding to xi, which285

is associated with xi = true but not in conflict with the (αi− β, αi− β + γ)
pair. If xi is true in F then cj cannot be satisfied through ¬xi so we should
not be able to explore a corresponding edge via a pair of labels associated
with ¬xi.

Finally, for every variable xi we also introduce two additional “auxiliary”290

edges: the first one will be assigned the pair of labels (αi, αi + ξ), ξ ∈ N,
so that it is not conflicting with any of the above pairs – the reason for
introducing this first auxiliary edge is to avoid entering and exiting an edge
corresponding to some variable xi using labels from different pairs. The

10



second auxiliary edge for variable xi will be assigned the pair of labels (αi+295

χ, αi + χ + ψ), χ, ψ ∈ N, so that it is not conflicting with any of the above
pairs – the reason for introducing this edge is to avoid entering an edge that
corresponds to some clause cj using a label associated with some variable xi
and exiting using a label associated with a different variable xi′ .

The reduction:. For the reduction from 3SAT(3) to StarExp(k) we se-300

lect constants α, β, γ, δ, ε, ζ, θ, ξ, χ, ψ so that all the requirements mentioned
above regarding the conflicts of different pairs of labels are satisfied. In par-
ticular, given an instance F of 3SAT(3), we create in polynomial time the
following instance (Gs, L) of StarExp(k):

• For every variable xi, i = 1, 2, . . . , p, create an edge ei (the “primary”305

edge for xi) with labels 50i−10, 50i−7, 50i+10, and 50i+13. The pair
of labels 50i−10, 50i−7 of ei represent the assignment xi = false and
the pair of labels 50i+10, 50i+13 represent the assignment xi = true.
More specifically, entry in ei with label 50i− 10 and exit from ei with
label 50i− 7 represents xi = false (and similarly for the other pair of310

labels and the assignment xi = true).

• For every variable xi, i = 1, 2, . . . , p, also create an edge e′i (the first
“auxiliary” edge for xi) with labels 50i and 50i + 1. The labels on
e′i ensure that we do not enter ei with a label associated with the
assignment xi = false and exit from ei with a label associated with315

the assignment xi = true; in an exploration of (Gs, L), this will not
occur since we must explore both e′i and ei, and this only happens if we
enter and exit ei using labels associated with the same truth assignment
for the variable xi.

• For every variable xi, i = 1, 2, . . . , p, also create an edge e′′i (the second320

“auxiliary” edge for xi) with labels 50i+15 and 50i+16. The labels on
e′′i ensure that we do not enter and exit edges associated with clauses
of F (see bullet point below) using pairs of labels that are associated
with different variables.
We refer the reader to Figure 1 for a sketch time-line indicating all the325

relevant times relating to variable xi.

• For every clause cj, j = 1, 2, . . . , q, create an edge ep+j with the fol-
lowing labels:
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ei :

e′i :

e′′i :

(50i− 10, 50i− 7) (50i+ 10, 50i+ 13)

(50i, 50i+ 1)

(50i+ 15, 50i+ 16)

time

Figure 1: The time windows relating to variable xi. There are two possible windows of
exploration of the edge ei, a single window of exploration for the edge e′i (dashed line),
and a single window of exploration for the edge e′′i (dotted line).

– For every variable xi that appears unnegated for the first4 time
in C, add two labels 50i− 12 and 50i− 9.330

– For every variable xi that appears unnegated for the second5 time
in C, add two labels 50i − 8 and 50i − 5. Note here that both
(entry,exit) pairs (50i − 12, 50i − 9) and (50i − 8, 50i − 5) are
conflicting with the (entry,exit) pair (50i−10, 50i−7) of the edge
ei that is associated with the assignment xi = false.335

– For every variable xi that appears negated, add two labels 50i+8
and 50i + 11. Note that the (entry,exit) pair (50i + 8, 50i + 11)
is conflicting with the (entry,exit) pair (50i+ 10, 50i+ 13) of the
edge ei that is associated with the assignment xi = true.

The reader is referred to Figure 2 for an example construction.340

Notice that the (entry,exit) pairs on edges associated with different clauses
are not conflicting if we pair them in ascending order, e.g. if an edge has labels
l1, l2, l3, l4 we pair them into (l1, l2), (l3, l4); that is because each variable
appears at most twice unnegated and once negated. The following lemmas
are needed for the proof of NP-completeness (Theorem 2).345

4We consider here the order c1, c2, . . . , cq of the clauses of C; we say that xi appears
unnegated for the first time in some clause cµ if xi ̸∈ cm, m < µ.

5Again, we consider the order c1, c2, . . . , cq of the clauses of C; we say that xi appears
unnegated for the second time in some clause cµ if ∃m < µ, such that xi ∈ cm.
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Figure 2: The temporal star constructed for the formula (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨
¬x3) ∧ (¬x1 ∨ x3). Setting x1 to true, x2 to true and x3 to true yields a satisfying truth
assignment whose corresponding exploration is indicated in (b), where the numbers in the
circles indicate the order over time of the exploration of each edge.

Lemma 1. There exists a (partial) exploration J of (Gs, L) of maximum size
which explores all the edges ei, e′i, e′′i , i = 1, 2, . . . , p.

Proof. Let J be a (partial) exploration of (Gs, L) of maximum size. Without
loss of generality, we may assume that J explores every edge at most once.

We will show that one may also assume that any edge of the form ep+j350

corresponding to the clause cj, j = 1, . . . , q, that is explored by J is explored
via (entry,exit) pairs associated with the same literal of cj. Indeed, let cj =
(lπ ∨ lρ ∨ lσ) be a clause whose corresponding edge is visited by J , where the
literal lπ (resp. lρ and lσ) is xπ (resp. xρ and xσ) or ¬xπ (resp. ¬xρ and
¬xσ), for some π = 1, . . . , p (resp. ρ = 1, . . . , p and σ = 1, . . . , p).355

Let α1, . . . , a6 be the labels of ep+j. If J explores ep+j using (α2, α3) (resp.
(α4, α5)), then there exists an edge e′′r , for some r = 1, . . . , p, which is not
explored by J , by construction of the edges of the form e′′i . Then, one can
create a (partial) exploration of the same size as J as follows: starting from J
swap the exploration of ep+j with the exploration of e′′r . Note that there is no360

other edge that is explored by J using a time window that overlaps with that
of the exploration of e′′r , since it would also be conflicting with the window
used by J to explore ep+j. By iteratively swapping edges of the form ep+j
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- that are explored using (entry, exit) pairs associated with different literals
- with edges of the form e′′r , we result in a (partial) exploration J ′, of the365

same size as J , such that any edge of the form ep+j that is explored by J ′

is explored via an (entry,exit) pair of labels associated with the same literal
of cj. Note that no exploration window of any edge e′i, e′′i overlaps with any
exploration window of any edge ep+j in J ′. In fact, since J ′ is of maximum
size, all edges of the form e′′i must be explored by J ′.370

We will now show that we may also assume that all edges of the form
e′i are explored by a maximum size (partial) exploration of (Gs, L). Assume
that an edge e′i is not explored by J ′, i = 1, . . . , p. Then it must be that
the edge ei corresponding to the variable xi is explored by J ′ using the pair
(50i−7, 50i+10) (as this is the only possible conflicting exploration window).375

Construct an exploration J ′′ as follows: starting from J ′,

1. replace (50i − 7, 50i + 10) by (50i + 10, 50i + 13) as the exploration
window of ei, and

2. add e′i to the exploration using its window (50i, 50i+ 1).

Notice that step 1 is indeed possible without causing conflicts with other380

edges: let cα be the clause containing ¬xi (so, the edge ep+α has been as-
signed, amongst others, the labels 50i+8, 50i+11); then, since J ′ explores ei
using (50i−7, 50i+10) it must be that ep+α is not explored by J ′ -if explored
at all- using (50i+8, 50i+11). So, swapping the windows as shown in step 1
is possible without conflicts. Now, notice that J ′′ has size larger than the385

size of J ′ which is a contradiction. Therefore, ei cannot be explored by J ′

(or any maximum size exploration of (Gs, L)) using (50i − 7, 50i + 10), and
e′i must be explored by J ′, for all i = 1, . . . , p.

It remains to show that all edges ei, i = 1, . . . , p, are explored by J ′.
Assume that there is an edge ei, for some i = 1, . . . , p, that is not explored390

by J ′ and let cα be the clause that contains ¬xi. The only way that ei
cannot be explored by J ′ is if J ′ explores edges that cause a conflict with
both exploration windows (50i− 10, 50i− 7) and (50i+10, 50i+13) of ei. In
fact, if ei is not explored by J ′ then it must be that ep+α is explored using the
exploration window (50i + 8, 50i + 11). Then we can create J ′′ of same size395

as J ′, starting from J ′, by removing ep+α from the exploration and adding ei
to the exploration, exploring it using the window (50i + 10, 50i + 13). This
way, one can create a maximum size exploration that contains all edges ei,
i = 1, . . . , p.
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We conclude that there can always be found an exploration of maximum400

size which explores all edges ei, e′i, e′′i , i = 1, . . . , p, which completes the proof
of the lemma.

Lemma 2. There exists a truth assignment τ of F with |τ(F )| ≥ β if and
only if there exists a (partial) exploration J of (Gs, L) of size |J | ≥ 3p+ β.

Proof. (⇒) Assume that there is a truth assignment τ that satisfies β clauses405

of F . We give a (partial) exploration J of (Gs, L), of size 3p+ β, as follows.
First, we add to J all the edges e′i, e′′i , i = 1, 2, . . . , p; these are 2p edges in
total and can only be explored one way as they have each been assigned two
labels. Then, we add to J all edges ei, i = 1, 2, . . . , p which are p edges in
total; we explore each ei depending on the value of xi in τ , namely if xi = true410

we explore ei using the pair (50i+10, 50i+13), and if xi = false we explore
ei using the pair (50i − 10, 50i − 7). Now, consider an arbitrary clause cj
of F that is satisfied in τ , i.e. it has at least one true literal which is of the
form xi or ¬xi, for some i = 1, 2, . . . , p. If xi = true then we explore ep+j

using the pair of labels that corresponds to the unnegated appearance of xi415

in cj – depending on whether xi appears unnegated for the first or the second
time in cj, this pair is (50i− 12, 50i− 9) or (50i− 8, 50i− 5), respectively. If
¬xi = true then we explore ep+j using the pair of labels (50i + 8, 50i + 11)
that corresponds to the negated appearance of xi in cj. As there are at least
β satisfied clauses of F in τ , we have added at least β extra edges to J . It420

has already been established earlier in this section that all the (entry,exit)
pairs chosen for the exploration of the edges that we added in J are pairwise
non-conflicting. So, J is a (partial) exploration of (Gs, L) which explores at
least 3p+ β edges.

(⇐) Assume that there is a (partial) exploration J of (Gs, L) which ex-425

plores at least 3p+β edges. By Lemma 1, there is a (partial) exploration J of
(Gs, L) of maximum size which explores all edges ei, e′i, e′′i , for i = 1, 2, . . . , p.
It holds that |J | ≥ 3p+ β, since J is of maximum size and we already know
that there exists an exploration of size at least 3p + β; also, J explores at
least β edges that are associated with clauses of F , since there are in total 3p430

edges in (Gs, L) that are not associated with clauses of F . We can construct
a truth assignment τ of F which satisfies at least β clauses as follows.

We check the (entry,exit) pairs of exploration in J of the edges that
correspond to clauses of F . The entry and exit labels must be associated with
the same variable xi, otherwise there would be conflict with the exploration435

of the respective edge e′′i . So, for each such edge, we set the variable xi
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associated to the chosen (entry,exit) pair to true if the (entry,exit) pair is
(50i − 12, 50i − 9) or (50i − 8, 50i − 5), i.e. if the pair corresponds to an
unnegated appearance of xi; we set xi to false if the chosen (entry,exit) pair
is (50i + 8, 50i + 11). Since J explores at least β edges that are associated440

with clauses of F , we have now set the value of at least β variables of F
to true or false. For any remaining variable xi, the value of which has not
already been set via the above process, we may set xi to false (resp. true)
if J explores the primary edge ei associated with xi using the pair of labels
50i− 10, 50i− 7 (resp. 50i+10, 50i+13). It is easy to see that the resulting445

truth assignment satisfies at least β clauses of F , each one associated with
an edge ep+j, j ∈ {1, 2, ..., q}, that is explored in J .

We move on to the main theorem of the section.

Theorem 2. StarExp(k) is NP-complete for every k ≥ 6.

Proof. It is easy to see that StarExp(k) is in NP, for every k. We may450

verify any solution, i.e. an exploration given as a list of edges and associated
entry and exit times, in polynomial time by:

1. checking that the exploration visits all O(n) vertices,

2. checking that the exploration enters and exits all O(n) edges on existing
edge-labels (we would need to check at most k(n− 1) labels in total),455

and

3. checking that the sorted list that contains all the entry and exit times
together is such that, for every i = 1, 2, . . . , n− 1, the labels located at
positions 2i− 1 and 2i in the ordered list are associated with the same
edge; this last condition verifies that there are no overlaps in the given460

exploration windows of the solution.

An immediate corollary of Lemma 2 is that F is satisfiable if and only if
(Gs, L) is explorable. Therefore, since the constructed instance (Gs, L) from
the reduction has at most 6 labels per edge, it follows that StarExp(6) is
NP-complete.465

To extend this result to the NP-completeness of StarExp(k) also for
values k ≥ 6, it suffices to add to the constructed instance (Gs, L) an “artifi-
cial” edge e∗ that only contains labels that are much larger than any of the
labels on the other edges of (Gs, L). If F is satisfiable then the exploration
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of (Gs, L) is as described previously, with the addition of exploring e∗ using470

any of its exploration windows. This is possible, since none of those will be
conflicting with any window of any other edge. Conversely, if (Gs, L) is ex-
plorable, then the exploration of e∗ can be ignored regarding the satisfiability
of F since it overlaps with no other edge’s exploration.

3.2. MaxStarExp(k) is APX-complete for k ≥ 4 labels per edge475

It can be shown that the reduction of Section 3.1 linearly preserves ap-
proximability features; this would in turn prove that MaxStarExp(k) is
APX-hard for k ≥ 6, since MAX3SAT(3), i.e. the maximization version
of 3SAT(3), is APX-complete [8]. However, this leaves a gap in the com-
plexity of the problem for k ∈ {4, 5}. To close this gap we instead give480

an L-reduction [40] from the Max2SAT(3) problem, i.e. an approxima-
tion preserving reduction which linearly preserves approximability features.
Max2SAT(3) is known to be APX-complete [40].

MAX2SAT(3)
Input: A boolean formula in CNF with variables x1, x2, . . . , xp and
clauses c1, c2, . . . , cq, such that each clause has at most 2 literals, and
each variable appears in at most 3 clauses.
Output: Maximum number of satisfiable clauses in the formula.

The reduction:. Given an instance F of MAX2SAT(3) we shall create an485

instance (Gs, L) of MaxStarExp(k) such that F has β satisfiable clauses
if and only if (Gs, L) has β + 3p explorable edges. As previously, we assume
without loss of generality that every variable appears once as a negative
literal and once or twice as a positive literal.

The reduction is the same as the one presented in Section 3.1, with the490

edges of (Gs, L) being assigned the same labels as in the previous reduction
to appropriately introduce conflicts between exploration windows of edges.
The only difference in the construction is that now we start from a 2-CNF
formula F (instead of a 3-CNF formula in Section 3.1). Thus every edge of
(Gs, L) that corresponds to a clause of F now receives four labels instead of495

six, i.e. two labels for every literal that appears in the clause.
The following lemmas are needed for the proof of APX-hardness (The-

orem 3). The proof of Lemma 3 is similar to the proof of Lemma 1, with
the difference that clauses of F are of the form cj = (lπ ∨ lρ) rather than
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cj = (lπ ∨ lρ ∨ lσ). The proof of Lemma 4 is exactly the same as the proof of500

Lemma 2.

Lemma 3. There exists a (partial) exploration J of (Gs, L) of maximum size
which explores all the edges ei, e′i, e′′i , i = 1, 2, . . . , p.

Lemma 4. There exists a truth assignment τ of F with |τ(F )| ≥ β if and
only if there exists a (partial) exploration J of (Gs, L) of size |J | ≥ 3p+ β.505

Using Lemma 4 we can now prove the APX-hardness of
MaxStarExp(k).

Theorem 3. MaxStarExp(k) is APX-hard, for k ≥ 4.

Proof. Denote by OPTMax2SAT(3)(F ) the greatest number of clauses that can
be simultaneously satisfied by a truth assignment of F . Also, denote by510

OPTMaxStarExp((Gs, L)) the greatest number of edges that can be explored by
an exploration of (Gs, L). The proof is done by an L-reduction [40] from the
Max2SAT(3) problem, i.e. by an approximation preserving reduction which
linearly preserves approximability features. For such a reduction, it suffices to
provide a polynomial-time computable function g and two constants γ, δ > 0515

such that:

• OPTMaxStarExp((Gs, L)) ≤ γ · OPTMax2SAT(3)(F ), for any boolean for-
mula F , and

• for any (partial) exploration J ′ of (Gs, L), g(J ′) is a truth assignment
for F and OPTMax2SAT(3)(F ) − |g(J ′)| ≤ δ(OPTMaxStarExp((Gs, L)) −520

|J ′|), where |g(J ′)| is the number of clauses of F that are satisfied by
g(J ′).

We will prove the first condition for γ = 13. Note that a random truth
assignment satisfies each clause of F with probability at least 1

2
(if each

clause had exactly 2 literals, then it would be satisfied with probability 3
4
,525

but we have to account also for single-literal clauses), and thus there exists
an assignment τ that satisfies at least q

2
clauses of F . Furthermore, since

every clause has at most 2 literals and every variable appears at least once,
it follows that q ≥ p

2
. Therefore OPTMax2SAT(3)(F ) ≥ q

2
≥ p

4
, and thus

p ≤ 4 ·OPTMax2SAT(3)(F ). Now Lemma 4 implies that:530
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OPTMaxStarExp((Gs, L)) = 3p+OPTMAX2SAT (3)(F )

≤ 3 · 4 ·OPTMAX2SAT (3)(F ) +OPTMAX2SAT (3)(F )

= 13 ·OPTMax2SAT(3)(F )

To prove the second condition for δ = 1, consider an arbitrary par-
tial exploration J ′ of Gs(L). As described in the (⇐)-part of the proof
of Lemma 4 (same as the (⇐)-part of the proof of Lemma 2), we con-
struct in polynomial time a truth assignment g(J ′) = τ that satisfies at least
OPTMaxStarExp((Gs, L)) − 3p clauses of F , i.e. |g(J ′)| = |τ(F )| ≥ |J ′| − 3p.535

Then:

OPTMax2SAT(3)(F )− |g(J ′)| ≤ OPTMax2SAT(3)(F )− |J ′|+ 3p

= OPTMaxStarExp((Gs, L))− 3p− |J ′|+ 3p

= OPTMaxStarExp((Gs, L))− |J ′|

This completes the proof of the theorem.

Corollary 1. MaxStarExp(k) is APX-complete, for k ≥ 4.

Proof. MaxStarExp(k) is a special case of the Job Interval Selection
Problem where every job has at most k−1 intervals6 . To verify this, observe540

that every edge e with labels l1, l2, . . . , lk can be seen as a job to be scheduled
where the corresponding intervals are [l1, l2], [l2, l3], . . . , [lk−1, lk].

Therefore, the known (1/1.582)-approximation algorithm for the Job In-
terval Selection Problem with bounded number of intervals per job [18]
directly implies a (1/1.582)-approximation for MaxStarExp(k). The lat-545

ter, combined with the APX-hardness of MaxStarExp(k), concludes the
proof.

Now we prove a correlation between the inapproximability bounds for the
MaxStarExp(k) problem and Max2SAT(3), as a result of the L-reduction
presented in the proof of Theorem 3. Note that, since Max2SAT(3) is APX-550

hard [8], there exists a constant ε0 > 0 such that there exists no polynomial-
time constant-factor approximation algorithm for Max2SAT(3) with ap-
proximation ratio greater than (1− ε0), unless P = NP.

6For a detailed definition of the Job Interval Selection Problem see Section 1.
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Theorem 4. Let ε0 > 0 be the constant such that, unless P = NP,
there exists no polynomial-time constant-factor approximation algorithm for555

Max2SAT(3) with approximation ratio greater than (1− ε0). Then, unless
P = NP, there exists no polynomial-time constant-factor approximation algo-
rithm for MaxStarExp(k) with approximation ratio greater than (1− ε0

13
).

Proof. Let ε > 0 be a constant such that there exists a polynomial-time ap-
proximation algorithm A for MaxStarExp(k) with ratio (1− ε). Let F be560

an instance of MAX2SAT(3) with p variables and q clauses. We construct
the instance (Gs, L) of MaxStarExp(k) corresponding to F , as described
in the L-reduction (see Theorem 3). Then we apply the approximation al-
gorithm A to (Gs, L), which returns a (partial) exploration J . Note that
|J | ≥ (1 − ε) · OPTMaxStarExp. As described in the proof of Lemma 2, we565

construct from J in polynomial time a truth assignment τ ; we denote by |τ |
the number of clauses in F that are satisfied by the truth assignment τ . It
now follows from the proof of Theorem 3 that:

OPTMax2SAT(3)(F )− |τ | ≤ OPTMaxStarExp((Gs, L))− |J |
≤ 13ε ·OPTMax2SAT(3)(F )

Therefore |τ | ≥ (1 − 13ε) · OPTMax2SAT(3)(F ). That is, using algorithm A,
we can devise a polynomial-time algorithm for MAX2SAT(3) with approx-570

imation ratio (1 − 13ε). Therefore, due to the assumptions of the theorem
it follows that ε ≥ ε0

13
, unless P = NP. This completes the proof of the theo-

rem.

Note that we have fully characterized MaxStarExp(k) in terms of com-
plexity, for all values of k ∈ N. However, the reduction that shows APX-575

hardness for MaxStarExp(k) cannot be employed to show NP-hardness of
the decision version StarExp(k), since the the decision problem 2SAT is
polynomially solvable.

Open Problem. What is the complexity of StarExp(k), for k ∈ {4, 5}?

4. k random labels per edge580

We now study the problem of star exploration in a temporal star graph
on an underlying star graph Gs of n vertices, where the labels are assigned
to the edges of Gs at random. In particular, each edge of Gs receives k
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labels independently of other edges, and each label is chosen uniformly at
random and independently from a set of available labels. We will distinguish585

between two models: the “integer labels” model, where the labels are integer
numbers chosen from the set of positive integers up to a lifetime α ∈ N, and
the “continuous [0, 1] model”, where the labels are real numbers from 0 up
to 1.

In particular, for the integer labels model we give a lower and an upper590

bound for the number of labels per edge needed for a full exploration of a
star of n vertices to be likely, for different values of the lifetime α. For the
continuous [0, 1] model, we provide a lower bound for the number of labels
per edge needed for full exploration of the star with high probability. Note
that in the continuous [0, 1] model, the chosen labels on all edges of the595

underlying star graph are distinct with probability 1. Thus, any such lower
bound shown for the continuous [0, 1] model is also a lower bound for the
integer labels model (for any value of the lifetime). Conversely, any upper
bound on the number of labels per edge needed for exploration of a temporal
star with high probability in the integer labels model (for some value of the600

lifetime) is also an upper bound for the exploration of a temporal star with
high probability in the continuous [0, 1] model.

4.1. The case of Integer labels
In this section, we assume that each label of an edge of Gs is chosen

uniformly at random and independently of others from the set of integers605

{1, 2, . . . , α}, for some α ∈ N. We call this a uniform random temporal star
with lifetime α and edge availability k, and denote it by Gs(α, k). In this
section, we investigate the probability of exploring all edges in a uniform
random temporal star based on different values of α and k, thus partially
characterizing uniform random temporal stars that can be fully explored or610

not, asymptotically almost surely. In particular, as a warm-up for the results
shown in the next section, we now introduce a technique, which involves pairs
of edges that cannot both be explored in a full exploration of a temporal star,
in order to get a lower bound on the number of labels per edge needed for
full exploration of the temporal star with high probability. In Section 4.2,615

we generalize this technique and derive a stronger bound for the continuous
[0, 1] model, which also holds for the integer labels model for any lifetime.

We introduce the following definition, needed for the proof of Theorem 5.
Definition 5 (Blocking pair of edges). Let e1, e2 be two edges of a uniform
random temporal star Gs(α, 2), α ≥ 2. Let the labels of e1 be a1, a2, with620
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a1 ≤ a2. Let the labels of e2 be b1, b2, with b1 ≤ b2. We say that e1, e2 are a
blocking pair (with respect to exploration in Gs(α, 2)) if a1 ≤ b1 ≤ a2 ≤ b2,
or a1 ≤ b1 ≤ b2 ≤ a2, or b1 ≤ a1 ≤ b2 ≤ a2, or b1 ≤ a1 ≤ a2 ≤ b2.

Theorem 5. If α ≥ 4 and k = 2, then the probability that we can explore all
edges of Gs(α, k) tends to zero as n tends to infinity.625

Proof. Consider two particular edges e1, e2 of Gs(α, 2), α ≥ 4. Let E be the
event that e1, e2 are a blocking pair and E ′ be the event that e1, e2 have 4
distinct labels in total. Then, the probability that e1, e2 are a blocking pair
is:

Pr[E ] = Pr[E | E ′] · Pr[E ′] + Pr[E | Ē ′] · Pr[Ē ′] ≥ Pr[E | E ′] · Pr[E ′], (1)

where Ē ′ denotes the complement of E ′. Note that if all labels of e1, e2 are
distinct, then the probability that e1, e2 are a blocking pair is exactly the
ratio of the “good” arrangements of the 4 distinct labels, i.e. those where
a1 < b1 < a2 < b2, or a1 < b1 < b2 < a2, or b1 < a1 < b2 < a2, or
b1 < a1 < a2 < b2, over the total number of possible arrangements of the 4
distinct labels (recall that, by our naming convention, a1 < a2 and b1 < b2
always hold so the number of such arrangements is 6 in total). So, equation 1
becomes:

Pr[E ] ≥ 4

6
· Pr[E ′]. (2)

Now, the probability that all 4 labels of e1, e2 are distinct is:

Pr[E ′] =

(
1− 1

α

)
·
(
1− 2

α

)
·
(
1− 3

α

)
≥ 3

4
· 2
4
· 1
4
=

3

32
. (3)

Therefore, by equation 3, equation 2 becomes Pr[E ] ≥ 1

16
.

So, we have:

Pr[e1, e2 are not a blocking pair] ≤ 15

16
.

We will now partition the edges into pairs (rather than consider all pos-
sible pairs of edges) to ensure independence and simplify the calculations630

that follow. So, we consider an arbitrary partition of all edges of Gs(α, 2)
into ⌊n−1

2
⌋ independent pairs (with the possibility of an edge remaining un-

paired). If there is an exploration in Gs(α, 2), then there are no blocking
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pairs of edges in any such pairing and, thus, in the particular pairing we
have chosen. Therefore, the probability that we can explore all edges is:635

Pr[exploration] ≤ Pr[no blocking pair exists in the pairing]

≤
(
15

16

)⌊n−1
2

⌋

→ 0, as n→ +∞

Theorem 6. If α ≥ 2(n− 1) and k ≥ 12n lnn, then the probability that we
can explore all edges of Gs(α, k) tends to 1 as n tends to infinity.

Proof. We consider the time-line from 1 to α and we split it into 2(n − 1)
consecutive time-windows, each of which, excluding possibly the last time-640

window, is of size ⌊ α
2(n−1)

⌋ as shown in Figure 3; the last time window may
be of larger size if α is not divisible by 2(n − 1). Let us henceforth refer to
those time-windows as boxes and denote the ith such box by Bi. The first
box contains the labels 1, 2, . . . , ⌊ α

2(n−1)
⌋, the second box contains the labels

⌊ α
2(n−1)

⌋+ 1, ⌊ α
2(n−1)

⌋+ 2, . . . , 2⌊ α
2(n−1)

⌋, and so on.645

1 b α
2(n−1)

c 2b α
2(n−1)

c 3b α
2(n−1)

c (2n− 3)b α
2(n−1)

c α

1st box 2nd box 3rd box 2(n-1)th box

. . .

Figure 3: Splitting the time from 1 to α into 2(n − 1) boxes to show the existence of at
least one label per box, for every edge, asymptotically almost surely.

We will show that for every edge of Gs, there will be asymptotically
almost surely at least one of its labels that falls in the first box, one of its
labels that falls in the second box, etc. But first, let us note the following:

Observation 1. If for every edge e ∈ E and for every box Bi there is at least
one label of e that lies within Bi, then there exists an exploration of Gs(α, k).650

Proof of Observation. Assume that for every edge e ∈ E and for every box
Bi there is at least one label of e that lies within Bi. Fix an arbitrary order
e1, e2, . . . , en−1 of the edges of Gs. We can fully explore Gs, by exploring
every ei, i = 1, . . . , n − 1, in the above order using the label of ei that lies
within B2i−1 to enter ei, and the label of ei that lies within B2i to exit. This655

completes the proof of Observation 1 . �
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Note now that for a particular edge e ∈ E and a particular box Bi of e,
the probability that Bi contains none of the labels of e is:

Pr[Bi is empty] =

(
1−

⌊ α
2(n−1)

⌋
α

)k

≤

(
1−

1
2
· α
2(n−1)

α

)12n lnn

≤ 1

n3
.

So, by the union bound, the probability that there is an empty box of e is:

Pr[there is an empty Bi of e] ≤ #boxes · 1

n3
= 2(n− 1) · 1

n3
≤ 2

n2
,

and so the probability that there exists an edge with an empty box is, again
by the union bound:

Pr[there is an edge with an empty box] ≤ #edges · 2

n2
≤ 2

n
.

Finally, the probability that we can explore all edges of Gs(α, k) is:

Pr[exploration] ≥ 1− 2

n
→ 1, as n→ +∞

The latter completes the proof of Theorem 6. �

Figure 4 shows the current state of what is known for the explorability of
Gs(α, k) depending on the values of the lifetime, α, and the edge availability,
k. Notice that any exploration of a star graph Gs needs at least 2(n − 1)660

distinct labels to explore all n− 1 edges, hence any graph with α < 2(n− 1)
is not explorable.

2 12n lnn

2(n− 1)

31

A.a.s. explorable

α

k

Not known /

Non-explorable

Open

Figure 4: The shaded areas of the chart indicate the pairs (α, k) for which Gs(α, k) is
asymptotically almost surely (a.a.s.) explorable and non-explorable, respectively.
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4.2. The case of labels in the continuous interval [0,1]
We consider now the explorability of a temporal version of the star graph

Gs with n vertices, in which each edge selects k time labels independently665

and uniformly at random from the interval [0, 1], for some integer k > 0 (k
may depend on n). We denote this model as Gs([0, 1], k). In this model,
the k(n − 1) chosen labels on all edges of Gs are distinct with probability
1, and so explorability of the graph depends only on the relative ordering
of the labels; we will refer to a relative ordering σ of the labels as a (la-670

bel) configuration. In fact, without loss of generality, we view this ordering
as a permutation of k(n − 1) items which belong to n − 1 distinct groups
(corresponding to the edges) of k identical items each. Therefore, there are(
k(n−1)
k,...,k

)
= (k(n−1))!

(k!)n−1 different configurations. For example, consider the star
Gs with n = 4 vertices and 3 edges, e1, e2, e3; a possible configuration for675

Gs([0, 1], 2) is (e1, e2, e3, e1, e2, e3) (for which we do not have explorability).
Finally, we will denote by Gs([0, 1], k|σ) the instance of Gs([0, 1], k) that has
configuration σ. If Gs([0, 1], k|σ) is not explorable, we say that σ is a blocking
configuration.

We first show the following:680

Lemma 5. When k = n − 1, there is a blocking configuration σ for
Gs([0, 1], k).

Proof. For each i ∈ [n − 1] we let σ[j] = ei+1 iff (j mod n − 1) = i, j ≤
k(n−1). Alternatively, σ consists of k = n−1 concatenations of the sequence
e1, e2, . . . , en−1. Notice now that, between any two labels of the same edge685

there is at least one label from each of the other edges. Therefore, after we
have explored n − 2 edges, the last edge to be explored will have at most
k− (n− 2) = 1 available labels, which is not enough to explore it (remember
exploration means that we start and finish at the center of the star).

We now give a lower bound on the probability that we get a blocking690

configuration when the number of edges is equal to the number of labels per
edge:

Lemma 6. Let the number of edges of Gs be n − 1 = k and let σ be a
randomly chosen configuration for Gs([0, 1], k). Then Pr(σ is blocking) ≥
(k!)k+1

(k2)!
≥ k−k2.695
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Proof. First note that (as mentioned also above) the total number of distinct
label configurations of Gs([0, 1], k) equals

(
k2

k,...,k

)
= (k2)!

(k!)k
. Second, in view of

the construction of the blocking configuration in Lemma 5, we get distinct
blocking configurations for different permutations of the k edges. Therefore,
the probability that we get a blocking configuration is at least (k!)k+1

(k2)!
.700

To show that (k!)k+1

(k2)!
≥ k−k2 , we use the following bound on m!, for any

integer m, namely
√
2πmm+ 1

2 e−m ≤ m! ≤ emm+ 1
2 e−m. In particular, we get

(k!)k+1

(k2)!
≥

(√
2πkk+

1
2 e−k

)k+1

e(k2)k
2+ 1

2 e−k2

=
(
√
2π)k+1kk

2+ 3
2
k+ 1

2 e−k2−k

k2k2+1e−k2+1

= (
√
2π)k+1k−k2+ 3

2
k− 1

2 e−k−1.

For any k ≥ 2, the above is at least k−k2 , as needed. Finally, we note that
for k = 1 the bound holds trivially.

705

Theorem 7. Let σ be a randomly chosen configuration for Gs([0, 1], k). Then

Pr(Gs([0, 1], k|σ) is explorable) ≤
(
1− k−k2

)n−k
k . In particular, for any k ≤

(lnn)
1
2
−ϵ, where ϵ > 0 is a constant, Gs([0, 1], k) is not explorable with high

probability.

Proof. For a set of k edges of Gs inducing a star H, let σ|H denote the part710

of σ that concerns the relative ordering of labels of edges in H. In particular,
if σ|H is blocking for H([0, 1], k), then σ is blocking for Gs([0, 1], k).

In view of this, we partition the set of edges of Gs into
⌈
n−1
k

⌉
sets in-

ducing (edge disjoint) stars H1, . . . , H⌈n−1
k ⌉, having exactly k edges each,

except maybe for the last one. For Gs([0, 1], k|σ) to be explorable, each of715

Hi([0, 1], k|σ|Hi
) should be explorable, for i = 1, 2, . . . ,

⌈
n−1
k

⌉
. Since label

choices of disjoint sets of edges are independent (and thus the events of ex-
plorability for distinct Hi’s are independent), using the upper bound 1−k−k2
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for the explorability of the star with k edges, we get

Pr(Gs([0, 1], k|σ) is explorable) ≤
⌈n−1

k ⌉∏
i=1

Pr(Hi([0, 1], k|σ|Hi
) is explorable)

≤
(
1− k−k2

)⌊n−1
k ⌋

≤
(
1− k−k2

)n−k
k ≤ e−

n−k
k

k−k2

,

where in the third inequality we used the fact that
⌊
n−1
k

⌋
≥ n−k

k
, for any720

1 ≤ k ≤ n. It is now straightforward to verify that e−n−k
k

k−k2 tends to 0 for
k ≤ (lnn)

1
2
−ϵ, for any positive constant ϵ.

Note: The above bound could potentially be improved by considering all(
n−1
k

)
subsets of k edges of Gs (with n−1 total edges), but the corresponding725

events are no longer independent, and so the analysis should be much harder.

5. Conclusions and open problems

In this paper, we have thoroughly investigated the computational com-
plexity landscape of the temporal star exploration problems StarExp(k)
and MaxStarExp(k), depending on the maximum number k of labels al-730

lowed per edge.
We have shown that an optimal solution to the maximization problem, on

instances every edge of which has two or three labels, can be efficiently found
in O(n log n) time. This immediately implies that the decision version can
be also solved in the same time. We show that StarExp(k) is NP-complete,735

for every k ≥ 6, and MaxStarExp(k) is APX-complete, for every k ≥ 4.
Finally, we study the problem of exploring uniform random temporal stars
whose edges have k random labels (chosen uniformly at random within an
interval [1, α], for some α ∈ N). We partially characterize the classes of
uniform random temporal stars which, asymptotically almost surely, admit a740

complete (resp. admit no complete) exploration. In particular, the “blocking
pairs” technique used to show that there is asymptotically almost surely no
complete exploration for k = 2 and α ≥ 4 cannot be easily extended to large
k. So, it remains open to determine the explorability of uniform random
temporal stars for values of k between 2 and 6n lnn.745
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We pose here a question regarding the complexity of StarExp(k),
for k ∈ {4, 5}, which still remains unknown. An interesting variation of
StarExp(k) and MaxStarExp(k) is the case where the consecutive labels
of every edge are λ time steps apart, for some λ ∈ N. What is the complexity
and/or best approximation factor one may hope for in this case?750
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