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Abstract

A biologically motivated individual-based framework for evolution in
network-structured populations is developed that can accommodate eco-
evolutionary dynamics. This framework is used to construct a network
birth and death model. The evolutionary graph theory model, which con-
siders evolutionary dynamics only, is derived as a special case, highlighting
additional assumptions that diverge from real biological processes. This
is achieved by introducing a negative ecological feedback loop that sup-
presses ecological dynamics by forcing births and deaths to be coupled.
We also investigate how fitness, a measure of reproductive success used
in evolutionary graph theory, is related to the life-history of individuals
in terms of their birth and death rates. In simple networks, these ecologi-
cally motivated dynamics are used to provide new insight into the spread
of adaptive mutations, both with and without clonal interference. For ex-
ample, the star network, which is known to be an amplifier of selection in
evolutionary graph theory, can inhibit the spread of adaptive mutations
when individuals can die naturally.

1 Introduction

Evolution is the process by which species adapt and change over time through
the basic principles of birth, mutation, interaction and death. It consists of eco-
logical dynamics, which includes the change in population size and distribution,
and evolutionary dynamics, which is the change in the composition of a given
trait in a population. This process is often studied using the assumption of
ecological equilibrium, i.e. fixed population size and distribution or infinite pop-
ulation size. Examples include Wright-Fisher model [18, 70], adaptive dynamics
[14], evolutionary game theory [47, 32, 56] and evolutionary graph theory [42].
More recent studies consider eco-evolutionary dynamics where ecological and
evolutionary dynamics interact [8, 9, 11, 13], which is confirmed to be the case
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in real biological systems [26, 21]. Our overall objective is to understand how a
network-structured population affects eco-evolutionary dynamics. However, our
primary focus here is on how ecological dynamics can be suppressed to achieve
ecological equilibrium and thereby uncover the hidden ecological assumptions
underpinning evolutionary graph theory.

Levins’ [41] metapopulation model considers discrete spatial structure in
the form of spatially separated sites that can be empty or occupied by a local
population and whose individuals can migrate to other sites. This model has
been extended in various ways, for example, by considering a network of sites
[28]. Metapopulation models are characterised by their extinction-colonisation
dynamics, where local populations on occupied sites can go extinct and unoccu-
pied sites become colonised by migrants. This means that it is possible to have
both occupied and unoccupied sites. In structured epidemic models [30, 51],
where sites are seen as hosts who can carry infectious disease, the susceptible-
infected-susceptible (SIS) dynamics consist of colonisation events in the form of
susceptible hosts getting infected and extinction events in the form of infected
hosts recovering. In individual-based lattice models, such as the competing con-
tact process [15], sites can accommodate at most one individual, so extinction
on a site is a death event and colonisation is a birth event. However, a notable
exception is the individual-based framework of evolutionary graph theory [42]
where each site always has one individual present on it. Due to this restriction,
this framework differs in terms of the dynamics used in the aforementioned
models where empty sites are allowed. Dynamics that allow empty sites have
been applied to biologically relevant scenarios, for example, in the case of epi-
demic models: foot-and-mouth disease [38], sexually transmitted diseases [17]
and avian influenza [66]. On the other hand, evolutionary graph theory is dom-
inated by theoretical discussions about the importance of population structure
on evolution [42, 7, 27]. To bridge the gap between these models, we need to
study them within a single framework that will allow us to view their relation-
ship in terms of the underlying biological assumptions made at the individual
level.

The modelling framework we use is Champagnat et al.’s [8] individual-based
model of asexual reproduction. Here we apply this model in the context of a
network-structured population. We assume that individuals are distributed over
a network of sites and spread by being dispersed upon birth. Using Champagnat
et al.’s [8] model allows us to consider different evolutionary models by changing
the timescale of individual-level processes. In the limit where mutation rates
tend to zero we obtain only the ecological dynamics. As the mutation rate
increases, we obtain eco-evolutionary dynamics. In the latter case, we then
consider cases where ecological and evolutionary processes happen at similar
timescales which is the case in RNA viruses [25], for example. Examples where
network-structure plays an important role include the the spread of antibiotic
resistant bacteria around hospital environments [40], and respiratory viruses in
human contact networks [63, 69].

The paper is structured as follows. Section 2 describes Champagnat et al.’s
[8] model and how it can be applied to allow for a network-structured popula-
tion. Section 3 gives the main result showing that ecological dynamics can be
suppressed by using a negative ecological feedback loop. In Section 4 we con-
struct a model with ecologically motivated dynamics, called the network birth
and death model (NBD), which includes the SIS epidemic model [30] as a spe-
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cial case. We then apply the result in Section 3 to the NBD model to derive
evolutionary graph theory dynamics. In Section 5, we investigate the long-term
behaviour of the NBD model by calculating the probability of an adaptive mu-
tant replacing a resident population both with and without clonal interference.
We end with a brief discussion.

2 Evolution modelling with eco-evolutionary dy-
namics and network structure

We consider a population in which individuals are distributed over a finite num-
ber of connected sites, which multiple individuals can occupy. Individuals and
sites represent different things depending on the modelling context. Examples
can be found in the metapopulation and epidemiology literature such as the frag-
mented habitat of fritillary butterflies [29] and farms housing livestock infected
with foot and mouth disease [46]. The sites are assumed to be arranged on a
network such that individuals can spread to a connected site only. Examples of
natural and artificial networks where the spread of individuals is restricted to
nearest neighbours include email networks spreading computer viruses [55] and
livestock movement networks [39].

We use Champagnat et al.’s [8] model, an individual-level birth and death
process that incorporates interaction and mutation. In this process, the popu-
lation is updated in continuous time through either a birth or death event, re-
spectively increasing or decreasing the population size by one. For birth events,
individuals are assumed to reproduce asexually, giving rise to an offspring that
is of identical type when there is no mutation or of a different type when there
is mutation. For death events, it is assumed that individuals free up any space
that they previously occupied. Deaths and births are assumed to be independent
events allowing the population size to fluctuate. Interaction between individuals
can affect birth and/or death. In particular, interaction allows the consideration
of frequency dependent selection over the adaptive landscape through the use
of evolutionary game theory [47, 57, 1]. Mutation allows the introduction of a
continuous number of new types into the population, allowing consideration of
a richer adaptive landscape. For example, when the evolution of a population
is studied over a long period of time, multiple different types can appear that
could potentially result in clonal interference [22] where two or more adaptive
mutations are in competition with one another.

The mathematical description of the Champagnat et al. [8] model is as fol-
lows. An individual can have l real-valued phenotypic traits given by the set
U ⊂ Rl. The state of the population at a given point in time is given by the mul-
tiset S containing the traits of each individual. Since S is a multiset, if there are
two individuals with traits i ∈ U then there would be at least two copies of i in
S. An individual with traits i ∈ U is denoted Ii. The individual-level processes
follow a Poisson process. The death and birth rate of Ii is respectively given by
d(i,S) and b(i,S). The probability that an offspring of Ii carries a mutation is
µ(i). Generally mutation is a fixed constant independent of phenotypic traits,
though assuming there is dependence on phenotypic traits allows accounting for
rare occurrences where this is the case. For example, high antibiotic resistance
in bacteria is a result of cooperative mutations where several different genes
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act together to provide this level of resistance [44]. In this case, the muta-
tion probability would be higher than in the case of lower antibiotic resistance
where a single gene could be acting on its own. The probability that Ii gives
birth to an offspring with trait w is given by M(i, w) such that M(i, w) = 0 if
w /∈ U . Putting this together gives a model of population evolution described
by a continuous time Markov process. The infinitesimal dynamics of the state
of the population S at time t is described by the generator L that acts on real
bounded functions φ(S) as follows

Lφ(S) =
∑
i∈S

[1− µ(i)]b(i,S)[φ(S ∪ {i})− φ(S)]

+
∑
i∈S

µ(i)b(i,S)

∫
Rl

[φ(S ∪ {w} − φ(S)]M(i, w)dw

+
∑
i∈S

d(i,S)[φ(S \ {i})− φ(S)]. (1)

The infinitesimal generator describes the way in which the population can
change over time. In particular, it describes three different events that can
cause the population to change. The event described by the first line is an
offspring born with no mutation, the second line is an offspring born with a
mutation and the last line represents the death of an individual. For further
details on the infinitesimal generator see Appendix A.

The Champagnat et al. [8] model can be applied to a network-structured
population by assuming that one of the traits is the position of the individual.
However, movement would be limited by the mutation rate µ in this case. To
avoid this, the position of an individual is introduced as a separate characteristic.
We then assume that individuals spread upon birth such that offspring can
be placed onto a connected site where they mature immediately and remain
until death. This individual-level model will enable us to construct population-
level models that use this kind of spreading mechanism between sites, such as
metapopulation models [41]. Examples of where this type of spreading dynamics
can be used include modelling dispersal in plants [19], spread of social behaviour
such as alcoholism [62] and spread of infectious disease in epidemics.

The mathematical description of the Champagnat et al. [8] model with net-
work structure is as follows. We consider a network of N distinct sites repre-
sented by a matrix W with entries Wm,n ≥ 0. Sites m and n are connected
if Wm,n > 0. Let X = {1, 2, . . . , N} be the set of positions individuals can
occupy. An individual is now characterised by i = (Ui, Xi) where Ui ∈ U and
Xi ∈ X . This way of characterising individuals is taken from Champagnat &
Méléard [10] but here X is a discrete set. Using the same notation as before:
an individual with characteristics i = (Ui, Xi) is denoted Ii and the state of the
population S now contains elements i. To represent the individuals in site n we
define Sn = {i ∈ S : Xi = n}; it therefore follows that Sn ⊆ S. We assume the
network W can have an impact on the death and birth rates. The death rate of
Ii is given by d(i,S,W ). The birth rate of Ii when their offspring is spread to
site x is given by b(i, x,S,W ). Since W is constant, it is dropped for brevity,
i.e. d(i,S) = d(i,S,W ) and b(i, x,S) = b(i, x,S,W ). The mutation functions,
µ and M remain the same. The infinitesimal dynamics in this case is given by

Lφ(S) =
∑
i∈S

∑
n∈X

[1− µ(i)]b(i, n,S)[φ(S ∪ {(Ui, n)})− φ(S)]

4



Birth
(no mutation)

Birth
(with mutation)

Death

Figure 1: The ways in which the population state can change according to the
dynamics in Equation (2).

+
∑
i∈S

∑
n∈X

µ(i)b(i, n,S)

∫
Rl

[φ(S ∪ {(w, n)} − φ(S)]M(Ui, w)dw

+
∑
i∈S

d(i,S)[φ(S \ {i})− φ(S)]. (2)

The dynamics in Equation (2) describe how the population state changes
whenever there is birth or death in the population, this is illustrated in Figure 1.
In this model the size, distribution and composition of a population is given by
its current state S. Ecological dynamics describe how the size and distribution of
a population changes due to the interaction of individuals and their environment.
Evolutionary dynamics describe how the composition of the population changes
due to evolutionary forces such as mutation and natural selection. In the next
section we show that it is possible to suppress ecological dynamics so that only
the composition of the population changes when S is updated.

Equation (2) will be used to calculate the probability of eventually hitting
some population state A from an initial state S, denoted hA(S). The hitting
probability is found by solving{

LhA(S) = 0,

hA(A) = 1.
(3)

Equation (2) can also be used to find the hitting time. The derivation of the
hitting probability and time are in Appendix A.
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3 Suppressing ecological dynamics in eco-evolutionary
dynamics

We show that we can suppress ecological dynamics in the eco-evolutionary dy-
namics proposed, leaving us with evolutionary dynamics that are based on eco-
logically motivated assumptions. In models that only consider evolutionary
dynamics, such as the Moran process [53] and evolutionary graph theory [42],
these underlying ecological assumptions are lost. This is because their evolu-
tionary dynamics are directly defined from the assumption of fixed population
size and distribution, rather than treating it as a consequence of suppressing
ecological dynamics as is the case here.

When ecological dynamics are suppressed, the carrying capacity does not
depend upon the composition of the population. To achieve this behaviour, we
create a negative ecological feedback loop that balances out opposing ecological
forces pushing the system towards an equilibrium. For example, there is nega-
tive feedback between predators and their prey where an increase in predators
leads to decrease in prey and vice versa [2]. The ecological processes that re-
sult in a birth oppose those that result in a death. We therefore balance out
these processes such that a population converges to a given size regardless of its
composition.

The equilibrium we consider is where the population is equally distributed
across all sites such that there is one individual per site giving a total population
size of N . There are several ways available to modify the birth and death
rates so that, whenever there is a deviation from the equilibrium, a negative
ecological feedback loop comes into effect and pushes the population towards
the equilibrium. We use the Heaviside step function

Hy[z] =

{
0 z < y,

1 z ≥ y,

but other functions to suppress the ecological dynamics would work equally well.
The modified death rate of Ii amplifies its death rate by c if present on a site
with multiple occupancy but otherwise has no effect; that is,

D(c, i,S) = cH2[|SXi |]d(i,S) c ≥ 1. (4)

Similarly, the modified birth rate of Ii amplifies its birth rate onto site n by c
if site n is empty but otherwise has no effect; that is,

B(c, i, n,S) = cH0[−|Sn|]b(i, n,S) c ≥ 1. (5)

The infinitesimal generator for the modified birth and death rates, denoted
Lc, is given by Equation (2) but with b replaced by B and d replaced by D.
The parameter c controls the strength of the negative ecological feedback loop’s
effect. For c = 1, there is no effect. For c > 1, it is more likely that individuals
sharing a site will die and that offspring are placed onto empty sites. This effect
is maximised for c→∞, which suppresses ecological dynamics resulting in fixed
population size and distribution.

When ecological dynamics are suppressed, the system updates through a
replacement event where a birth and a death are coupled. This is formally
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shown by considering the hitting probability. Using the generator Lc, the hitting
probability in the limit as c→∞ of the eco-evolutionary dynamics can be shown
(Appendix B) to reduce to

hA(S) =
1

λS

∑
i∈S

∑
j∈S

r(i, j, Ui,S)[1− µ(i)]hA(S ∪ {(Ui, Xj)} \ {j})

+

∫
Rl
r(i, j, w,S)µ(i)hA(S ∪ {(w,Xj)} \ {j})M(Ui, w)dw (6)

where λS is the rate of leaving state S and r(i, j, u,S) is the rate at which a type
u offspring of Ii replaces Ij in state S. This shows that in the limiting dynamics
we have derived, the population is updated through replacement events that
happen with rate r. It is shown in Appendix B that the replacement rate r for
Equation (6) is given by

r(i, j, u,S) = b(i,Xj ,S)
d(j,J )∑

k∈JXj

d(k,J )
+ d(j,S)

b(i,Xj ,S \ {j})∑
k∈S\{j}

b(k,Xi,S \ {j})
(7)

where J = S ∪ {(u,Xj)}. We can see in r that there two components, birth-
death (BD), i.e. birth followed by death, and death-birth (DB), i.e. death fol-
lowed by birth. The first term is a birth-death (BD) component where Ii first
gives birth to an offspring that is placed onto site Xj who then replaces Ij . The
second term is a death-birth (DB) component where Ij dies first and then Ii
gives birth to an offspring that is placed onto site Xj , hence replacing Ij .

4 Application I: Deriving evolutionary graph the-
ory dynamics from a network birth and death
process

A model with ecologically motivated dynamics is constructed, which we will
refer to as the network birth and death model (NBD). This model contains the
SIS epidemic model [30] and competing contact process [15] as special cases. As
shown in Section 3, we suppress ecological dynamics in NBD giving pure evolu-
tionary dynamics based on birth and death rates. These evolutionary dynamics
are compared to the fitness-based evolutionary graph theory dynamics to show
how fitness can be interpreted in terms of birth and death rates. We thereby un-
cover hidden assumptions and provide biological insight into evolutionary graph
theory dynamics.

NBD uses density-dependent regulation of population size based on Huang
et al. [34]. The intra-site competition for survival is captured through pairwise
interactions. This competition has negative feedback such that increasing pop-
ulation size results in increased competition and vice versa. For Ii, let δUi be
the natural death rate and γUi,Uj be the death rate due to competition with Ij .
Huang et al. [34] specifies that the inverse of γ can be interpreted as the payoff
in evolutionary game theory [47]. That is, a larger payoff is received when γ is
lower. The death rate is then given by

d(i,S) = δUi +
∑

j∈SXi\{i}

γUi,Uj (8)
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where self-interactions have been discounted. It is assumed that γu,v > 0 ∀u, v ∈
U to ensure negative feedback. The birth rate is given by

b(i, n,S) = s|Sn|βUiWXi,n s ∈ [0, 1]. (9)

The birth rate of Ii is βUi . It is weighted by WXi,n to capture the network
effect of its position when placing its offspring in site n. We added s|Sn| to
capture the ability of an offspring to survive when invading site n depending
on its occupancy. For 0 < s < 1, there is negative feedback such that survival
decreases as occupancy increases and vice versa. For s = 0, the convention
that 00 = 1 is used implying that there is no invasion because offspring do not
survive on occupied sites. For s = 1, offspring always survive when invading.

NBD forms a basis for the susceptible-infected-susceptible (SIS) epidemic
model [30] and its various extensions. In the SIS model, a host can be infected
(I) or susceptible (S) and is represented by a node in a network. Infection
can only spread from I to S, and is therefore proportional to the number of I
neighbours. Whereas I recovers (becoming S) independent of its neighbours.
A generalisation of the SIS model that has multiple infected types is obtained
from NBD as follows. A host is represented by a site, which is S when vacant
and I when occupied. The presence of Ii on a site indicates having infection Ui,
i.e. the phenotypic traits. The spread of infection is represented by the birth
rate in Equation (9), where we set s = 0 to restrict spread to S (vacant sites)
only. Thus, infection Ui spreads with rate βUi with weighting WXi,n to capture
the network effect. Recovery from infection is represented by the death rate in
Equation (8), where γ does not come in play as infection only spreads to vacant
sites. Thus, δUi is the recovery rate from infection Ui. When there are two
infected types, we obtain the competing contact process [15], a model of inter-
host competition between two infected types that spread using SIS dynamics.
On the other hand, we obtain Beutel et al.’s [3] model when hosts can carry
multiple infections (setting s > 0), which means there is intra-host competition.
Therefore, NBD allows us to consider a combination of inter and intra-host
competition between infections.

In the framework known as evolutionary graph theory (EGT) [42, 67], one
considers a population of fixed size in which each vertex contains a single indi-
vidual. We wish to investigate whether EGT can be obtained from NBD. To
do this, we first suppress ecological dynamics (see Section 3) in NBD to obtain
pure evolutionary dynamics. The replacement rate in this case is obtained by
substituting Equations (8) and (9) into Equation (7), giving

r(i, j, u,S) =sβUiWXi,Xj

δUj + γUj ,u

δUj + γUj ,u + δu + γu,Uj

+ δUj
βUiWXi,Xj∑

k∈S\{j}

βUkWXk,Xj

. (10)

The exponent of s is 1 in the BD component as every site has one individual
in this case. The hitting probability in NBD, denoted hNBD

A (S), is given by
substituting this replacement rate into Equation (6). On the other hand, let
R(i, j, u,S) be the replacement rate in EGT. Using R, we define an infinitesimal
generator for EGT and use it to solve Equation (3) to obtain the hitting proba-
bility in EGT, denoted hEGT

A (S) (this is shown in Appendix C). For equivalence
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between NBD and EGT, we check whether they have the same hitting proba-
bilities, i.e. hNBD

A (S) = hEGT
A (S). For the comparisons we make, we consider

standard EGT definitions of the replacement rate R.
In EGT, three families of dynamics are generally considered [65]; link (L),

death-birth (DB), and birth-death (BD) dynamics. In link dynamics a link
in the network is selected, then the offspring of the individual at the start of
the link replaces the individual at the end of the link. In death-birth (birth-
death) an individual is first selected for death (birth) before a neighbouring
individual is selected for birth (death). Each of these families have two distinct
cases [59], where individuals are selected for either birth or for death. For
link dynamics we will use LB (LD) to indicate selection on birth (death). For
BD and DB dynamics, we use an upper case letter to indicate the event in
which selection happens [31], e.g. bD indicates selection on death. Selection
is dependent on fitness, which is the relative fecundity of individual in their
competitive neighbourhood. In evolutionary game theory, fitness is obtained
by calculating the average payoff. Payoffs depend upon the strategy played in
a game specifying the rules of interactions between individuals. We consider
constant fitness, i.e. is independent of individuals’ interactions, in order to be
able to make comparisons with evolutionary graph theory results based on this
case, these include the circulation theorem [42, 59] and amplification of selection
[42, 31, 67]. The fitness of Ii depends upon their traits only, which we denoted
FUi . The replacement rates for the standard EGT dynamics are given in Table
1 and only hold for those states where there is 1 individual per site, i.e. for S
such that |Sx| = 1 ∀x ∈ X .

The conditions required to obtain the standard EGT dynamics from NBD
are summarised in Table 2, excluding bD which could not be obtained (all de-
tails in Appendix D). We note that the result for dB dynamics has previously
been obtained by Maciejewski [43] for the neutral fitness case (see also [5]).
The conditions specify whether s, β, δ, γ are suppressed, identical for all traits,
proportional to fitness and subject to other requirements. Due to the require-
ments for LD, we note that it does not extend to the variable fitness case. The
following insights are obtained from deriving the dynamics in this way:

• Standard EGT dynamics use only one component of the replace rate in
NBD (Equation (10)). Dynamics using the BD component are obtained
by suppressing the natural death rate by setting δu = 0 ∀u ∈ U . This can
be viewed as a biological scenario where individuals rarely die naturally
but undergo intense intra-site competition with invaders. Individuals that
can successfully invade are therefore more likely to spread. Fitness is
interpreted as the birth rate when it acts on birth. The inverse fitness is
interpreted as the death rate due to competition when it acts on death.
On the other hand, dynamics using the DB component are obtained when
offspring cannot survive on occupied sites (s = 0). Biologically, this can
be viewed as invasion being difficult, hence individuals that can outlive
their competitors are more likely to spread. Inverse fitness is interpreted
as the natural death rate when it acts on death. Fitness is interpreted as
the birth rate when it acts on birth.

• Link dynamics is a type of BD dynamics. In their definitions in Table
1, the order of birth and death is ambiguous and so they are classified

9



Table 1: Standard EGT dynamics. The shorthand notation for BD and DB
dynamics follows Hindersin & Traulsen [31] where a capital letter is used to
indicate whether selection is on birth or death.

Dynamics Description R(i, j, u,S)

Death-Birth-
Death (Db)/
Voter Model

Ij dies inversely proportional to its fit-
ness and is replaced by Ii with proba-
bility proportional to WXi,Xj .

1/FUj∑
n∈S

1/FUn

WXi,Xj∑
k∈S\{j}

WXk,Xj

Death-Birth-
Birth (dB)

Ij dies uniformly at random, i.e. with
probability 1/N , and is then replaced
by Ii with probability proportional to
FUiWXi,Xj .

1

N

FUiWXi,Xj∑
k∈S\{j}

FUkWXk,Xj

Link-Birth
(LB)

Ii replaces Ij with probability propor-
tional to FUiWXi,Xj .

FUiWXi,Xj∑
n,k∈S

FUnWXn,Xk

Link-Death
(LD)

Ii replaces Ij with probability propor-
tional to WXi,Xj/FUj .

WXi,Xj/FUj∑
n,k∈S

WXn,Xk/FUk

Birth-Death-
Birth (Bd)/
Invasion
Process

Ii is chosen proportional to fitness who
then replaces Ij with probability pro-
portional to WXi,Xj .

FUi∑
n∈S

FUn

WXi,Xj∑
k∈S

WXi,Xk

Birth-Death-
Death (bD)

Ii is selected uniformly at random
who then replaces Ij proportional to
WXi,Xj/FUj .

1

N

WXi,Xj/FUj∑
k∈S

WXi,Xk/FUk

10



Table 2: Assumptions required for all u, v ∈ U to obtain standard EGT dy-
namics from NBD. bD dynamics are not listed as they could not be obtained.
1 is a column vector of 1s.

Dynamics Suppressed Identical Proportional to Fitness Other

LB δu = 0 γu,v = γv,u βu = Fu s > 0

LD δu = 0 βu = βv γu,v = 1/Fu, u 6= v s > 0, |U| = 2, µ(i) = 0

Bd δu = 0 γu,v = γv,u βu = Fu s > 0, W1 = 1

Db s = 0 βu = βv δu = 1/Fu –

dB s = 0 δu = δv βu = Fu –

separately from BD and DB dynamics. This means that intra-site com-
petition also takes place in link dynamics. In LB intra-site competition
is independent of fitness with both individuals equally likely to die. In
LD an individual dies inversely proportional to fitness due to intra-site
competition.

• bD cannot be obtained from NBD. It requires birth and movement to be
separate, as is evident in its definition (Table 1) where the term repre-
senting birth does not specify where an offspring is placed. In our case,
birth and movement is combined as seen in Equation (2) where b(i, n,S)
specifies the individual that gives birth and where the offspring is placed.

• Bd can be obtained from NBD. Similar to bD, it is also defined with sepa-
rate birth and movement (Table 1), but its movement term is independent
of neighbours. This allows us to combine movement with birth provided
that it does not affect birth. This is only true when W is right stochastic
(W1 = 1) and, in this case, Bd and LB are equivalent [59] and therefore
share the same spreading mechanism. This is not the case when W is not
right stochastic because LB allows position to affect the birth rate, which
is βUi

∑
x∈X WXi,x for Ii, whereas it is βUi in Bd which is independent of

position.

• Db and dB can be obtained from SIS-type epidemic dynamics. This is
because they share the same spreading mechanism and do not have intra-
site competition. Using the multi-strain SIS model described above, they
are obtained by letting βu → ∞ ∀u ∈ U , resulting in vacant sites imme-
diately being occupied by offspring. This is how Durrett & Levin [16] use
the contact process to obtain the voter model [33], which has identical
dynamics to Db. This illustrates that pathogen evolution, at least at the
between host level, is likely to behave similarly to death-birth evolutionary
dynamics rather than birth-death.

• When Db and dB are derived from NBD there is no self-replacement,
i.e. individuals cannot be replaced by their own offspring. The DB com-
ponent of the replacement rate in NBD (Equation(10)) specifies that death
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happens first followed by birth, therefore preventing self-replacement. The
standard definitions (Table 1) allow self-replacement for both BD and DB
type dynamics, but for dynamics derived from NBD this is only possible for
BD type dynamics. Note that Db can be obtained from our derivation of
LD when W is left stochastic, i.e. W ᵀ1 = 1. In this case self-replacement
is allowed as LD is a type of BD dynamics. However, using this definition
is limited due to the restrictions on LD (see Table 2).

Other non-standard EGT definitions of the replacement rate R can also be
considered. For example, Zukewich et al. [71] combines Bd and Db using a
parameter to allow a smooth transition between the two. Setting the parameter
to 1 gives Bd, 0 gives Db and a value in the 0 to 1 range gives a combination
of them. The replacement rate in NBD, Equation (10), provides a biologically
motivated alternative to constructing hybrid models comprising both Bd and
Db dynamics. Another example is Kaveh et al.’s [37] DB dynamics that are not
based on fitness and are obtained from Equation (10) by setting s = 0. They
use parameters similar to δ and β that give the likelihood of birth and death.
However, their parameters are weights rather than rates since their system is
constructed in discrete time.

5 Application II: Long-term behaviour of a net-
work birth and death process

The long-term behaviour of NBD is analysed in the cases with and without
clonal interference.

5.1 No clonal interference

It is assumed that adaptive mutations arise in succession as in Muller’s [54]
classical model. Here, a resident population can only be invaded by one type
of mutant at a time so that there is no interference from other mutations. This
means that either the current resident or mutant goes extinct before another
mutation arises. This behaviour is obtained in the rare mutation limit, µ(i)→
0 ∀i, in Champagnat et al.’s [8] model, who derive adaptive dynamics [49, 14]
in this limit. We assume no mutation, µ(i) = 0 ∀i, as the results are identical
for the evolutionary scenario considered.

We consider an evolutionary scenario that plays out between two types;
resident (trait 0) and mutant (trait 1), so U = {0, 1}. A mutant is introduced
into a resident population by replacing a resident selected uniformly at random,
and the individuals then compete with each other. In the limit of infinite time,
the population will go to extinction since this is the only true absorbing state.
However, before this the population must reach a state where only one type
remains. We are interested in the hitting probability for the set of states where
only the mutant type remains, since this provides a measure of how successful
the mutant type is.

The probability of reaching a state with only the mutant type is formally
defined as follows. Let R = {S : Ui = 0 ∀i ∈ S} be the set of states where only
the resident type remains; i.e. there is at least one resident but no mutants.
Similarly, let M = {S : Ui = 1 ∀i ∈ S} be the set of states where only the
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Table 3: The cases of the dynamics compared in the NBD model. For all cases
mutants are assumed to have identical death rates to the residents (δ0 = δ1 and
γu,v = γv,u ∀u, v ∈ {0, 1}) but an advantageous birth rate (β1 > β0).

Case Dynamics Parameter Values

(i) SIS δ0 = δ1 > 0 and s = 0

(ii) SIS with invasion δ0 = δ1 > 0 and s = 1

(iii) SIS with invasion and no natural death δ0 = δ1 = 0 and s = 1

mutant type remains. We want the probability of hitting M from an initial
population state S. This probability, denoted ρ(S), is calculated by solving the
Equation 

Lcρ(S) = 0 S /∈M∪R,
ρ(S) = 0 S ∈ R,
ρ(S) = 1 S ∈ M.

(11)

The first line says the population is in a state with both mutants and residents
so the infinitesimal generator for modified dynamics, Lc, is used to specify how
the hitting probability changes with an infinitesimally small change in time.
Recall that c controls the strength of the negative ecological feedback loop. The
second line says the hitting probability is 0 as the population cannot hit a state
with only mutants starting from a state with only residents. The third line says
the hitting probability is 1 as the population is already in a state with only
mutants.

Since there is no mutation, a mutant is assumed to be equally likely to appear
on any given site. We will therefore consider an initial state with 1 mutant and
N − 1 residents where each site is occupied by one individual only. This allows
us to make comparisons with evolutionary graph theory where these are the only
possible initial states. The average of ρ for an initial mutant placed uniformly
at random is given by

ρ̄ =
1

N

N∑
n=1

ρ({S0 \ {(0, n)}} ∪ {(1, n)}), (12)

where S0 = {(0, 1), (0, 2), . . . , (0, N)} is the state with one resident on each site.
We will use ρ̄ to compare different NBD dynamics when mutants are assumed
to have identical death rates to the residents (δ0 = δ1 and γu,v = γv,u ∀u, v ∈
{0, 1}) but an advantageous birth rate (β1 > β0). The cases of the dynamics we
compare are given in Table 3.

In Figure 3, ρ̄ is plotted against the negative feedback amplifier c for the
networks shown in Figure 2. It is observed that

ρ̄(i) < ρ̄(ii) < ρ̄(iii) (13)

for all networks where ρ̄(i), ρ̄(ii) and ρ̄(iii) are values of ρ̄ for cases (i), (ii) and
(iii) in Table 3 respectively. SIS-type dynamics are therefore the least beneficial
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Figure 2: 4-node networks where all outgoing edges from a site with k neigh-
bours are weighted 1/(k+1) including self-loops (not depicted on the networks).

for the spread of an advantageous mutant. Moving from (i) to (ii), shows that
allowing invasion is beneficial, since ρ̄ shifts up with the networks maintaining
their order. As we move from (ii) to (iii), disallowing natural death provides a
further benefit, since ρ̄ shifts higher up. However, the networks now change their
order. In particular, the combined effect of allowing invasion and disallowing
natural death is largest in the star network and smallest in the complete network.

To investigate the difference between the complete and star networks, we
analytically calculate ρ̄ when ecological dynamics are suppressed (c → ∞). In
this case the population cannot go extinct and therefore fixates in M or R,
i.e. indefinitely remains in a state where there is only one type. Therefore, ρ̄ is
called the average fixation probability of mutants, a quantity widely studied in
population evolution [60].

5.1.1 Average hitting probability for a complete network

Consider a complete network with arbitrary weights

Wi,j = w > 0 ∀i, j ∈ {1, . . . , N}. (14)

The average fixation probability of a single initial mutant in this network is
given by the formula of Karlin and Taylor [36]

ρ̄comp =

1 +

N−1∑
j=1

j∏
k=1

rk

−1 (15)

where rk for NBD is given by

rk =
sβ0w

(δ1+γ1,0)
(δ0+δ1+γ0,1+γ1,0)

+ δ1
β0

(N−k)β0+(k−1)β1

sβ1w
(δ0+γ0,1)

(δ0+δ1+γ0,1+γ1,0)
+ δ0

β1

(N−k−1)β0+kβ1

. (16)

The term rk is the backward bias of mutants or forward bias of residents. It is
obtained by dividing the rate of a resident increasing by the rate of a mutant
increasing in a state where there are k mutants (and N − k residents). Details
given in Appendix E.

Table 4 shows the bias and average fixation probability for cases (i), (ii), (iii)
in Table 3. The probabilities shown are a closed-form version of Equation (15)
such that: (i) is obtained from Hindersin and Traulsen [31]; (ii) is not shown as
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Figure 3: ρ̄ in the networks given in Figure 2 for the three cases in Table 3, they
are labelled (i)-(iii) on the right-hand side. For all cases, we set β0 = 3, β1 = 10,
and γu,v = 5 ∀u, v ∈ {0, 1}. For cases (i) and (ii) we have δu = 1. In case (i),
ρ̄ is calculated by analytically solving Equation (11), for details on how to do
this using a state transition matrix see Hindersin and Traulsen [31]. In cases
(ii) and (iii), ρ̄ are calculated by running 105 simulations (see Appendix I for
details).

there is no simple analytical form; (iii) is obtained from the Moran probability
[52] as the bias is constant. Analysis of the biases in Table 4 reveals

r
(i)
k > r

(ii)
k > r

(iii)
k , (17)

where r
(i)
k , r

(ii)
k , r

(iii)
k is the bias in cases (i), (ii), (iii) respectively. The proof is

given in Appendix F. The key requirement for Equation (17) to hold is β1 > β0,
which we assume is true. Equation (17) implies that Equation (13) holds for
all N > 1 because, as seen in Equation (15), a larger bias gives a lower fixation
probability. The difference between these cases diminishes as N → ∞ because
their biases all converge to β0/β1, this is seen in Table 4 where lim

N→∞
rk =

β0/β1 ∀k in all cases.
Figure 4 shows ρ̄ (Equation 12) plotted against c in the complete network.

Numerically, we observe that ρ̄ converges to ρ̄comp as c gets large, showing that
the negative ecological feedback loop functions as desired.
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Table 4: Bias and average fixation probability in complete network for NBD.
Cases considered assume an advantageous mutant with β1 > β0.

Case/ EGT Dynamics Bias (rk, k = 1, . . . , N − 1) Avg. Fixation Prob. (ρ̄comp)

(i) SIS-type dynamics
(δ0 = δ1 > 0, s = 0)/ dB

β0
β1

kβ1 + (N − k − 1)β0
(N − k)β0 + (k − 1)β1

N − k
N

1− (β0/β1)

1− (β0/β1)N−1

(ii) then allow invasion
(δ0 = δ1 = δ > 0, s = 1)/
None

sβ0w
1
2 + δ β0

(N−k)β0+(k−1)β1

sβ1w
1
2 + δ β1

(N−k−1)β0+kβ1

No simple analytical form.

(iii) then disallow natural
death (δ0 = δ1 = 0, s =
1)/ LB, Bd

β0/β1
1− (β0/β1)

1− (β0/β1)N

5.1.2 Average hitting probability for a star network

Consider the star network with weights

Wi,j =


wc > 0 i = 1 and j = 1, 2, . . . , N,

wl > 0 i = 2, 3, . . . , N and j = 1,

0 otherwise.

(18)

Site 1 is connected to all other N − 1 sites, which are only connected to site
1. We call the individual in site 1 the centre and individuals in all other sites
leaves.

Let there be k mutant (N−1−k resident) leaves. When ecological dynamics
are suppressed in NBD, a mutant centre replaces a resident leaf with rate

(N − 1− k)

(
swcβ1

δ0 + γ0,1
δ0 + δ1 + γ0,1 + γ1,0

+ δ0

)
, (19)

whereas a resident centre is replaced by a mutant leaf with rate

k

(
swlβ1

δ0 + γ0,1
δ0 + δ1 + γ0,1 + γ1,0

+ δ0
β1

(N − 1− k)β0 + kβ1

)
. (20)

Using these rates, the average fixation probability in the star network, denoted
ρ̄star, is calculated using Hadjichrysanthou et al.’s [27] formula (see Appendix
G). In Appendix H, we show that that Equation (13) holds when N →∞. Note
that for the complete network we were able to show this for all N .

Equations (19) and (20) reveal the interplay between the BD and DB com-
ponents. In particular, consider the case where wc = 1/N and wl = 1/2 so that
the birth rate is exactly βu ∀u ∈ {0, 1}. As N gets larger, the BD component
in Equation (19) and the DB component in Equation (20) get smaller. This
means that the highly connected centre is more reliant on DB to spread its off-
spring whereas the less connected leaves are more reliant on BD to spread their
offspring.
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Figure 4: ρ̄ plotted against the birth rate of a mutant (β1) in the complete
and star networks when using NBD dynamics with β0 = 3, δu = 1 and γu,v =
5 ∀u, v ∈ {0, 1}. For c → ∞, ρ̄ is given by ρ̄comp for the complete network
and ρ̄star for the star network. For other values of c, ρ̄ is calculated by running
106 simulations (see Appendix I for details). As c gets larger we can see that ρ̄
converges to ρ̄comp for the complete network and ρ̄star for the star network. In
particular, the plots for c = 5000 and c→∞ overlap with one another.

Figure 4 shows ρ̄ (Equation 12) for different values of c in the star network.
Its qualitative properties are similar to that of the complete network and we
once again see that the negative ecological feedback loop functions as desired.

5.1.3 Comparison of average hitting probabilities for complete and
star networks

Lieberman et al. [42] show that when using Bd dynamics, the star network am-
plifies the average fixation probability when compared to the complete network,
i.e. ρ̄star > ρ̄comp. By using NBD we can gain further insight as to why this is
the case.

In source-sink metapopulation dynamics [61], a source is a site that is a
net exporter of individuals whereas a sink is a site that is a net importer of
individuals. A source site is advantageous in comparison to a sink site as more
offspring are produced. In the star network, to check whether a leaf or the
centre behaves as a source we consider the case (iii) (from Table 3) but with
neutral residents and mutants i.e. βu = β, δu = δ and γu,v = γ ∀ u, v ∈ {0, 1}.
From Equation (19), the rate at which a leaf is replaced by on offspring of the
centre is

wcβ
1

2
,

whereas, from equation (20), the centre is replaced by the offspring of a leaf is

wlβ
1

2
.

A leaf is therefore a source when wl > wc and sink when wl < wc. When
calculating ρ̄star a randomly placed initial mutant is more likely to be a leaf.
An advantageous mutant is therefore does better when leaves are sources. In
particular, for Bd dynamics leaves are sources as wc = 1/N and wl = 1/2 so
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Figure 5: Plot of ρ̄star− ρ̄comp against the number of sites (N) when using NBD
(with suppressed ecological dynamics) with s = 1, β0 = 3, β1 = 8, γu,v = 5 and
δu = 0 ∀u, v ∈ {0, 1}. It shows that the star network is no longer an amplifier
when wc > wl.

the star network amplifies the average fixation probability of an advantageous
mutant. This is verified in Figure 5 which illustrates that ρ̄star > ρ̄comp when
wl > wc, ρ̄star < ρ̄comp when wl < wc, and wl = wc is the boundary between
amplification and suppression where ρ̄star = ρ̄comp.

The natural death rate plays a fundamental role since it can prevent a leaf
from being a source. This is seen in case (ii) (from Table 3) when comparing
the centre to a leaf when both residents and mutants are neutral. That is, from
Equation (19), the rate at which a leaf is replaced by an offspring of the centre
is

wcβ
1

2
+ δ,

whereas, from Equation (20), the rate at which the centre is replaced by an
offspring of a leaf is

wlβ
1

2
+

δ

N
.

The natural death rate can therefore prevent a leaf from being a source when
wl > wc. In particular, when the centre dies, leaves compete with one another
for their offspring to be the replacement but, when a leaf dies, an offspring of
the centre is the only replacement. Another way to look at this is that a natural
death rate limits the amount of time a leaf has to spread its offspring before
it dies. The natural death rate can therefore suppress the fixation probability
of an advantageous mutant in the star network. This is verified in Figure 6,
where increasing the death rate causes ρ̄star − ρ̄comp to decrease, such that the
star network is no longer an amplifier of selection. This is consistent with
Hadjichrysanthou et al. [27] which shows that the star is not an amplifier under
Db and dB dynamics.
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Figure 6: Plot of ρ̄star− ρ̄comp against the number of sites (N) when using NBD
(with suppressed ecological dynamics) with s = 1, β0 = 3, β1 = 8, γu,v = 5
and δu = 0, 0.21, 1 ∀u, v ∈ {0, 1}. It shows that the star network is no longer an
amplifier as the natural death rate increases.

5.2 With clonal interference

Here we no longer assume that adaptations are successive, and instead take into
account the effect of clonal interference, which has been demonstrated in a range
of asexual organisms [35]. For clonal interference in unstructured populations, it
has been shown that the fixation probability of a beneficial mutation decreases
as the population size and mutation rate increases [22]. The inclusion of clonal
interference will therefore provide a better understanding of the impact that
population structure has on the success of an adaptive mutation.

To study the effect of clonal interference we consider the evolutionary sce-
nario considered in Gerrish & Lenski [22]. Here, a resident population (type
0) can be invaded by two kinds of mutant, an original mutant (type 1) and a
superior mutant (type 2), i.e. U = {0, 1, 2}. The population initially consists of
the resident and original mutant types such that, to be consistent with the no
clonal interference case, an original mutant is introduced into a resident popu-
lation by randomly replacing a resident. A superior mutant is introduced later
into the population through random mutation in the resident type. Therefore,
there is initially competition between the resident and original mutant types,
but the superior mutant type can interfere. We are interested in the probability
of reaching a state where only the original mutant type remains since it is a
measure of its success in the presence of clonal interference.

To define this formally, we assume that a resident has constant mutation
probability and that its mutated offspring is a superior mutant, i.e. µ(i) = µ if
Ui = 0 but µ(i) = 0 otherwise, and M(u, v) = 1 if u = 0, v = 2 but M(u, v) = 0
otherwise. Note that the integral in Equation (2) is changed to a summation
because of the discrete number of mutations. Let R be the set of states where
only the resident type remains as we previously defined, and M1 and M2 be
the set of states with all type 1 and type 2 individuals respectively. We want to
calculate the probability, ψ, of hitting M1 conditional on not hitting R ∪M2

starting from an initial state S. When using the modified dynamics, this is
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found by solving the Equation
Lcψ(S) = 0 S = {(u, x) /∈M1 : ∃u = 1}
ψ(S) = 0 S ∈ R ∪M2,

ψ(S) = 1 S ∈ M1.

(21)

We consider the initial states with 1 original mutant and N − 1 residents where
each site is occupied by one individual only, so the average of ψ for a randomly
placed initial original mutant is

ψ̄ =
1

N

∑
i∈S0

ψ({S0 \ {i}} ∪ {(1, Xi)}).

Note that when µ = 0, there is no clonal interference and we have that ψ = ρ
(so ψ̄ = ρ̄).

Clonal interference reduces the amount of time that a mutant of type 1 has
to fixate, since the longer it takes the more likely a mutant of type 2 will appear.
Without clonal interference, the complete network has the lowest fixation time
whereas, for example, the star network is substantially higher [20, 67, 50]. We
should therefore expect the complete network to be least affected as the mutation
rate increases in comparison to the star and other networks. To show that
this is indeed the case, we plot ψ̄ for different mutation rates in Figure 7 for
the networks with four sites given in Figure 2 when ecological dynamics are
suppressed in NBD (c → ∞). The population does not go extinct in this case
and fixates in either M1 or M2, so ψ̄ is the average fixation probability of an
original mutant with clonal interference. The average fixation probability under
clonal interference decreases in all networks, with the complete network being
the least affected since it has the lowest fixation time.

The circulation theorem [45, 42] in EGT identifies networks whose fixation
probability is equal to the Moran probability. This theorem holds for simple
evolutionary dynamics [59], and generally fails for other dynamics. Here we
see it failing due to clonal interference. In Figure 7, we see that the fixation
probability is identical for complete and circle networks because the circulation
theorem holds as µ = 0, but this is no longer the case when µ > 0.

6 Discussion

We have reinterpreted Champagnat et al.’s [8] model to enable eco-evolutionary
dynamics in a network-structured population. This model is based on individual-
level ecological processes that allow the population size, distribution and compo-
sition to change. It represents an advance on current evolutionary graph theory
models which only allow the composition of the population to change. We can
therefore consider cases with more complex dynamics, such as pathogen evolu-
tion [25]. In Sections 3 and 4 we showed, using a negative ecological feedback
loop, that suppression of ecological dynamics leaves the pure evolutionary dy-
namics of evolutionary graph theory [42]. However, this process highlights the
extreme assumptions required and the departure from the underpinning ecolog-
ical processes. In particular, the fixed population size and distribution obtained
by suppressing ecological dynamics are an exception [48, 12] and can prevent
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Figure 7: Comparison of average fixation probability with clonal interference
(ψ̄) for 4-node networks in NBD (with ecological dynamics suppressed). The
parameters are set as follows s = 1, β0 = 1, β1 = 2, β2 = 3, δu = 0, γu,v = 1 for
all u, v ∈ {0, 1, 2}. ψ̄ is calculated by analytically solving Equation (21) using a
state transition matrix [31].

us capturing biological processes accurately. It is therefore useful to know how
results will change when moving away from the extreme assumptions in evolu-
tionary graph theory. We showed that there is a weakened effect of network
structure (Figure 3), and clonal interference (Figure 7) leads to the failure of
key results in evolutionary graph theory such as amplification of selection and
the circulation theorem. On the other hand, deriving evolutionary graph theory
from ecologically motivated assumptions provided new insights. We were able to
interpret evolutionary graph theory dynamics in terms of birth and death rates
(Table 2), and show that natural death can prevent amplification of selection
(Figure 6).

Representing network vertices as sites rather than individuals, which evo-
lutionary graph theory assumes, is the key step we took and others often take
[64, 4] to develop a more general model. This allowed us to incorporate intra-
site dynamics and develop the network birth and death model (NBD). In NBD,
intra-site competition is taken from Huang et al. [34], which provides a way
to consider evolutionary games [47], including multi-player social dilemmas [6].
The NBD model showed that, more so than network structure, allowing intra-
site competition significantly increased the success of an advantageous mutant,
which increased further when natural death was disallowed (Figure 3). Fur-
thermore, when intra-site competition was intensified by suppressing ecological
dynamics in NBD to obtain evolutionary graph theory, the effect of network
structure was more pronounced. This means site capacity, which is determined
by intra-site competition, is an additional variable that can be considered when
investigating the effect of network structure.

In evolutionary graph theory, comparisons are often made between birth-
death updating, death-birth updating and sometimes a combination of the two
e.g. [71, 37]. By suppressing the ecological dynamics in NBD, we automatically
obtained dynamics where birth-death and death-birth updating is combined
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(Equations (7) and (10)). The parameters in these dynamics are ecologically
motivated (in terms of birth and death rates), and the birth-death or death-birth
component can be muted. These dynamics are therefore easier to understand
and allow us to switch between different types of updating rules. In these
dynamics, increasing the natural death rate increases the effect of the death-
birth component and decreases the effect of the birth-death component. By
altering the natural death rate, we were able to find that the star network
amplifies selection because Bd dynamics (no natural death) allows sites to act as
sources, i.e. net exporters of offspring. On the other hand, we show numerically
(Figure 6) that allowing natural death can prevent these sites from being sources,
causing the star network to act as a suppressor. This suggests that amplification
of selection requires dynamics in which source sites can exist. The effect of
natural death in preventing amplification does indeed extend to other networks
that are amplifiers under Bd dynamics [68], although it is not specified whether
these networks have source sites. Therefore, the question remains whether the
existence of source sites is a requirement in general for networks that amplify
selection.

Tkadlec et al. [67] constructed networks that increase the fixation probability
of a mutant, but at a cost of higher fixation time. As per our investigations,
these networks would be more susceptible to clonal interference. In the networks
we considered, we found that the fixation probability decreases as the mutation
rate increases when there is clonal interference (Figure 7). Frean et al. [20]
suggested that networks with higher fixation time are more susceptible to clonal
interference. They showed that the star network has a higher fixation time
than the complete network. This is consistent with our observations. Clonal
interference is therefore another element that can be considered in the context
of amplifiers, especially in those networks with long fixation times.

Extending evolutionary graph theory by considering movement continues
to be an active area of research e.g. [64, 4]. We implemented movement on a
network-structured population combining birth with movement such that off-
spring can be placed on a different connected site from their parent. This means
that the movement is local and dependent upon the network-structure of the
population. With the exception of bD dynamics, we were able to recover all
other standard evolutionary graph theory dynamics (Table 2). This shows that
the localised movement in standard evolutionary graph theory dynamics is pri-
marily based on this mechanism where movement is combined with birth, but
also highlights that other options exist. We could implement different movement
dynamics by adding an additional term to the infinitesimal dynamics (Equation
(2)) to account for a change in state caused by the movement of individuals.
This includes movements that would enable bD dynamics to be recovered.
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A Generator Details

Here we provide details on the generator and hitting probability given in Section
2. Though not in the main text, details of the hitting time are also provided.

The infinitesimal generator describes how the expected values of functions
of our model change in infinitesimal time intervals. For a function f acting on
the stochastic process Σ(t), the infinitesimal generator, L, is defined as [58]

Lf(y) =
d

dt
E[f(Σ(t))]|t=0 = lim

t→0

E[f(Σ(t))]− f(y)

t
.

A.1 Hitting Probability

The hitting probability of a state A ∈ S is the probability that the Markov
process eventually reaches state A, given that it started in some state i. Let
TA be the time when the Markov process first enters state A, then the hitting
probability from an initial state i is given by

hA(i) = P (TA <∞|Σ(0) = i).

Using the infinitesimal generator, we can find equations describing the hitting
probability. From the definition of the generator, we have

LhA(i) =
d

dt
E[hA(Σ(t))|Σ(0) = i].

Given that the Markov process starts in state i, the expected value of the hitting
probability does not change with time, and therefore this derivative must be
equal to zero, giving

LhA(i) = 0.

If our initial state i = A, then the hitting probability is equal to 1, so we have
hA(A) = 1. In summary, the hitting probability is given by solving{

LhA(i) = 0,

hA(A) = 1.
(22)

A.2 Hitting Time

The expected time until the Markov process reaches a state A from an initial
state i, is defined as

kA(i) = E[TA|Σ(0) = i].

From the definition of the generator, we have

LkA(i) =
d

dt
E[kA(Σ(t))|Σ(0) = i].

The derivative can be calculated by

d

dt
E[kA(Σ(t))|Σ(0) = i] = lim

h→0

E[kA(Σ(t+ h))|Σ(0) = i]− E[kA(Σ(t))|Σ(0) = i]

h
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Since both of the expectations on the right-hand side condition on Σ(0) = i,
the expected hitting time from 0 must be equal. The expected time from t+ h
therefore has to be h less than the expected time from t, so this becomes

d

dt
E[kA(Σ(t))|Σ(0) = i] = lim

h→0

−h
h

= −1.

Therefore, it must hold that

LkA(i) = −1.

If our initial state i = A, then the expected hitting time is equal to 0, so we
have kA(A) = 0. To summarise, the expected hitting time is given by solving{

LkA(i) = −1,

kA(A) = 0.
(23)

B Hitting probability for modified dynamics

Here we show how the hitting probability for modified dynamics, Equation (6),
is obtained. We have that

0 = lim
c→∞

LchA(S)

0 = lim
c→∞

∑
i∈S

∑
x∈X

[1− µ(i)]B(c, i, x,S)[hA(S ∪ {(Ui, x)})− hA(S)]

+
∑
i∈S

∑
x∈X

µ(u)B(c, i, x,S)

∫
Rl

[hA(S ∪ {(w, x)} − hA(S)]M(Ui, w)dw

+
∑
i∈S

D(c, i,S)[hA(S \ {i})− hA(S)].

Let

λS = lim
c→∞

∑
i∈S

∑
x∈X

B(c, i, x,S) +D(c, i,S).

then rearranging gives

hA(S) = lim
c→∞

1

λS

∑
i∈S

∑
x∈X

B(c, i, x,S)

(
[1− µ(i)]hA(S ∪ {(Ui, x)})

+ µ(i)

∫
Rl
hA(S ∪ {(w, x)})M(Ui, w)dw

)
+D(c, i,S)hA(S \ {i}).

We assume that the population starts in a state S where |S|x = 1 ∀x ∈ X , we
then have that

hA(S) =
1

λS

∑
i∈S

∑
x∈X

b(i, x,S)

(
[1− µ(i)]hA(S ∪ {(Ui, x)})

+ µ(i)

∫
Rl
hA(S ∪ {(w, x)})M(Ui, w)dw

)
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+ d(i,S)hA(S \ {i})

since all sites have 1 individual. From state S we consider the following different
states J that the population can transition to.

1. For J = S ∪ {(u, x)} we have that

hA(J ) = lim
c→∞

1

λJ

∑
j∈J

∑
y∈X

[1− µ(j)]B(c, j, y,J )hA(J ∪ {j})

+ µ(j)B(c, j, y,J )

∫
Rl
hA(J ∪ {(w, y)}M(Uj , w)dw

+D(c, j,J )hA(J \ {j}).

The birth rate in this case is given by

lim
c→∞

B(c, j, y,J ) = lim
c→∞

cH0[−|Jy|]b(j, y,J ) = b(j, y,J )

as H0[−|J |y] = 0 ∀y ∈ X as there are no empty sites. Similarly, the death
in this case is given by

lim
c→∞

D(c, j,J ) = lim
c→∞

cH2[|SXj |]d(j,J ) = lim
c→∞

cδXj,xd(j,J )

as site x is the only site with two individuals and δm,n is the Kronecker
delta function. This means that

lim
c→∞

B(c, j, y,J )

λJ
= 0 ∀j ∈ J , y ∈ X

and

lim
c→∞

D(c, j,J )

λJ
=

lim
c→∞

cδXj,xd(j,J )∑
j∈J

lim
c→∞

cδXj,xd(j,J )
=
δXj ,xd(j,J )∑
j∈Jx

d(j,J )
.

The hitting probability from state J is then given by

hA(J ) =
∑
j∈Jx

d(j,J )hA(J \ {j})∑
k∈Jx

d(k,J )
.

2. For J = S \ {i} such that i ∈ S, by following a similar set of arguments
as we have for case 1 we obtain the hitting probability from state J as
follows

hA(J ) =
∑
j∈J

b(j,Xi,J )∑
j∈J

b(j,Xi,J )

(
[1− µ(j)]hA(J ∪ {(Uj , Xi)})

+ µ(j)

∫
Rl
hA(J ∪ {(w,Xi)})M(Uj , w)dw

)
.
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Substituting the hitting probability from J for these two cases into the
hitting probability from S gives

hA(S) =
1

λS

∑
i∈S

∑
x∈X

b(i, x,S)

(
[1− µ(i)]

∑
j∈Sx∪{(Ui,x)}

d(j,S ∪ {(Ui, x)})hA(S ∪ {(Ui, x)} \ {j})

∑
j∈Sx∪{(Ui,x)}

d(j,S ∪ {(Ui, x)})

+ µ(i)

∫
Rl

∑
j∈Sx∪{(w,x)}

d(j,S ∪ {(w, x)})hA(S ∪ {(w, x)} \ {j})

∑
j∈Sx∪{(w,x)}

d(j,S ∪ {(w, x)})
M(Ui, w)dw

)

+ d(i,S)
∑

j∈S\{i}

b(j,Xi,S \ {i})∑
j∈S\{i}

b(j,Xi,S \ {i})

(
[1− µ(j)]hA(S \ {i} ∪ {(Uj , Xi)})

+ µ(j)

∫
Rl
hA(S \ {i} ∪ {(w,Xi)})M(Uj , w)dw

)
This can be rewritten as follows

hA(S) =
1

λS

∑
i∈S

∑
j∈S

b(i,Xj ,S)
d(j,J )∑

k∈JXj

d(k,J )
+ d(j,S)

b(i,Xj ,S \ {j})∑
k∈S\{j}

b(k,Xi,S \ {j})


× [1− µ(i)]hA(J \ {j})

+

∫
Rl

b(i,Xj ,S)
d(j,K)∑

k∈KXj

d(k,K)
+ d(j,S)

b(i,Xj ,S \ {j})∑
k∈S\{j}

b(k,Xi,S \ {j})


× µ(i)hA(K \ {j})M(Ui, w)dw

where J = S ∪ {(Ui, Xj)}) and K = S ∪ {(w,Xj)}). This can then be further
simplified by writing

hA(S) =
1

λS

∑
i∈S

∑
j∈S

r(i, j, Ui,S)[1− µ(i)]hA(J \ {j})

+

∫
Rl
r(i, j, w,S)µ(i)hA(K \ {j})M(Ui, w)dw (24)

where r(i, j, u,S) is the rate at which the offspring of Ii replaces Ij given that
the offspring has trait u.

C Infinitesimal generator and hitting probabil-
ity for evolutionary graph theory

Here we provide the definition of the infinitesimal generator used and the hitting
probability obtained for evolutionary graph theory mentioned in Section 4. The
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infinitesimal generator for evolutionary graph theory is defined as follows

LEGTφ(S) =
∑
i∈S

∑
j∈S

[1− µ(i)]R(i, j, Ui,S)

× [φ(S ∪ {(Ui, Xj)} \ {j})− φ(S)]

+ µ(i)

∫
Rl
R(i, j, w,S)

× [φ(S ∪ {(w,Xj)} \ {j})− φ(S)]M(Ui, w)dw (25)

where R is the replacement rate in evolutionary graph theory dynamics. Note
that R is a function of W but has been dropped for brevity. This generator
with continuous mutations has not been considered before but it allows direct
comparisons between hNBD and hEGT. In particular, solving Equation (3) with
LEGT gives the hitting probability in evolutionary graph theory,

hEGT
A (S) =

1

λS

∑
i∈S

∑
j∈S

R(i, j, Ui,S)[1− µ(i)]

× hEGT
A (S ∪ {(Ui, Xj)} \ {j})

+

∫
Rl
R(i, j, w,S)µ(i)

× hEGT
A (S ∪ {(w,Xj)} \ {j})M(Ui, w)dw, (26)

where λS is the rate of leaving state S. Note that its form is similar that of
hNBD.

D Deriving standard evolutionary graph theory
dynamics

Here we show how we derive standard evolutionary graph theory dynamics from
NBD, see Section 4.

We need to show that

hNBD
A (S) = hEGT

A (S).

We start by observing that for all the standard evolutionary graph theory dy-
namics, the replacement rate satisfies

R(i, j, u,S) = R(i, j, v,S) ∀u, v ∈ U (27)

and therefore

λS =
∑
i∈S

∑
j∈S

R(i, j, Ui,S)[1− µ(i)] +

∫
Rl
R(i, j, w,S)µ(i)M(Ui, w)dw

=
∑
i∈S

∑
j∈S

R(i, j,S),

where R(i, j,S) is the replacement rate with the type of the offspring dropped.
Furthermore, for all the standard evolutionary graph theory dynamics the fol-
lowing also holds

λS =
∑
i∈S

∑
j∈S

R(i, j,S) = 1
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since the replacement rates are defined as probabilities. We then require that
the replacement rate r for NBD have the same property as in Equation (27),
that is,

r(i, j, u,S) = r(i, j, v,S) ∀u, v ∈ U , (28)

we can therefore use r(i, j,S) as the offspring type can be dropped, and

R(i, j,S) =
r(i, j,S)∑

n∈S

∑
k∈S

r(n, k,S)
.

This ensures that the hitting probability is identical for both types of dynamics.
Recall that the replacement rate for NBD is given by

r(i, j, u,S) = sβUiWXi,Xj

δUj + γUj ,u

δUj + γUj ,u + δu + γu,Uj
+ δUj

βUiWXi,Xj∑
k∈S\{j}

βUkWXk,Xj

.

We can now consider which of the standard evolutionary graph theory dynamics
we can obtain from these dynamics.

LB dynamics Setting δu = 0 and γu,v = γv,u ∀u, v ∈ U satisfies Equation
(28) and gives

r(i, j,S)∑
n∈S

∑
k∈S

r(n, k,S)
=

βUiWXi,Xj∑
n∈S

∑
k∈S

βUnWXn,Xk

which is identical to the LB dynamics when βu = Fu ∀u ∈ U .

Bd dynamics Doing the same as with the derivation of LB dynamics, but
setting W1 = 1 gives

r(i, j,S)∑
n∈S

∑
k∈S

r(n, k,S)
=

βUi∑
n∈S

βUn
WXi,Xj

which is identical to the Bd dynamics when βu = Fu ∀u ∈ U .

Db dynamics Setting s = 0 and βu = βv ∀u, v ∈ U satisfies Equation (28)
and gives

r(i, j,S)∑
n∈S

∑
k∈S

r(n, k,S)
=

δUj
WXi,Xj∑

k∈S\{j}

WXk,Xj

∑
n∈S

∑
k∈S\{n}

δUn
WXk,Xn∑

m∈S\{n}

WXm,Xn

=
δUj∑

n∈S
δUn

WXi,Xj∑
k∈S\{j}

WXk,Xj

which is identical to Db dynamics when δu = 1/Fu ∀u ∈ U .
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dB Dynamics Setting s = 0 and δu = δv ∀u, v ∈ U satisfies Equation (28)
and gives

r(i, j,S)∑
n∈S

∑
k∈S

r(n, k,S)
=

δUj
βUiWXi,Xj∑

k∈S\{j}

βUkWXk,Xj

∑
n∈S

∑
k∈S\{n}

δUn
βUkWXk,Xn∑

m∈S\{n}

βUmWXm,Xn

=
1

N

βUiWXi,Xj∑
k∈S\{j}

βUkWXk,Xj

which is identical to dB dynamics when βu = Fu ∀u ∈ U .

LD Dynamics These require the competition rate γu,v and therefore (28)
cannot be satisfied. However, we can bypass this condition by assuming there is
no mutation and that there are only two types, i.e. |U| = 2. Note that excluding
transitions to the same state will not affect hA so if we discount transitions to
the same state, we would require that

R(i, j,S)∑
n∈S

∑
k∈S

Uk 6=Un

R(n, k,S)
=

r(i, j,S)∑
n∈S

∑
k∈S

Uk 6=Un

r(n, k,S)
for Uj 6= Ui. (29)

Setting δu = 0 and βu = βv ∀u ∈ U simplifies the RHS of Equation (29) to

WXi,Xj

γUj ,Ui
γUj ,Ui + γUi,Uj∑

n∈S

∑
k∈S

Uk 6=Un

WXn,Xk

γUk,Un
γUk,Un + γUn,Uk

=
WXi,XjγUj ,Ui∑

n∈S

∑
k∈S

Uk 6=Un

WXn,XkγUk,Un

which for γu,v = 1/Fu when u 6= v ∀u, v ∈ U is equivalent to the LHS of
Equation (29) when using LD dynamics.

E Derivation of bias (rk) in complete network
for NBD

Here we show how the bias given in Equation (16) is obtained. We start by
defining the replacement rate in the complete network. For ecological dynamics
are suppressed, we only need to consider population states with one individual
on each site. The position of residents and mutants does not matter in these
states due to site homogeneity. Therefore, states with the same number of
mutants k (which means there are N − k residents) are lumped together and
referred to by this number. We are interested in the rate at which the system
transitions from some state k to a state with an additional type u individual; i.e.
with k − (−1)u mutants. The replacement rate for such a transition is denoted
qk,u. For NBD, this is given by

qk,u = k(N − k)

(
sβuw

δ1−u + γ1−u,u
δ0 + δ1 + γ0,1 + γ1,0

+ δ1−u
βu

β0(N − k − u) + β1(k − 1 + u)

)
.

29



The bias is then given by

rk =
qk,0
qk,1

.

F Showing strict order in bias for complete net-
work

Here we want to show that Equation (17), r
(i)
k > r

(ii)
k > r

(iii)
k , holds for the

complete network. From Table 4 we have

r
(i)
k =

β0
β1

(N − k − 1)β0 + kβ1
(N − k)β0 + (k − 1)β1

,

r
(ii)
k =

δ β0

(N−k)β0+(k−1)β1
+ β0w

1
2

δ β1

(N−k−1)β0+kβ1
+ β1w

1
2

,

r
(iii)
k =

β0
β1
.

The denominator in all three cases is strictly positive because we are assuming
that β0, β1, δ,N, k, w are strictly positive, and that k ∈ {1, . . . , N − 1}. Let

xk = (N − k − 1)β0 + kβ1 and yk = (N − k)β0 + (k − 1)β1.

We then have that

r
(i)
k > r

(ii)
k ⇔ β0

β1

xk
yk

>
δ β0

yk
+ β0w

1
2

δ β1

xk
+ β1w

1
2

⇔ β0β1

(
δ +

wxk
2

)
> β0β1

(
δ +

wyk
2

)
⇔ xk > yk

⇔ β1 > β0.

Similarly, we have that

r
(ii)
k > r

(iii)
k ⇔

δ β0

yk
+ β0w

1
2

δ β1

xk
+ β1w

1
2

>
β0
β1

⇔ β0β1

(
δ

yk
+ w

1

2

)
> β0β1

(
δ

xk
+ w

1

2

)
⇔ xk > yk

⇔ β1 > β0.

Since r
(i)
k > r

(ii)
k and r

(ii)
k > r

(iii)
k , we have that r

(i)
k > r

(iii)
k . Therefore, Equation

(17) holds when β1 > β0, which we have assumed is true for an advantageous
mutant invading a resident population.

G Average fixation probability in star network

Here we show how to calculate the average fixation probability in the star net-
work, where it is used in Section 5.1.2. In the star network, we only consider
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population states with one individual on each site as ecological dynamics are
suppressed. In such states, the position of residents and mutants present on
leaves does not matter, since the leaves are identical. The population state is
then given by (u, k) where u is the centre individual’s type and k is the number
of mutants on leaves (N − 1 − k is the number of residents on leaves). Since
u ∈ {0, 1}, in state (u, k) there are 1−u ≤ k ≤ N − 1−u mutants on the leaves
provided that there is at least one mutant and resident in the population. Let
r(u, k, u′, k′) be the rate of transitioning from state (u, k) to (u′, k′). We only
need to consider the two transitions where a change in state occurs. First, for
NBD a type u centre can replace a type 1− u leaf with rate

r(u, k, u, k − (−1)u) = k1−u(N − 1− k)u
(
swcβu

δ1−u + γ1−u,u
δ0 + δ1 + γ0,1 + γ1,0

+ δ1−u

)
.

(30)

Second, a type u centre is replaced by a type 1− u leaf with rate

r(u, k, 1− u, k) = k1−u(N − 1− k)u
(
swlβ1−u

δu + γu,1−u
δ0 + δ1 + γ0,1 + γ1,0

+ δu
β1−u

(N − 1− k)β0 + kβ1

)
.

(31)

Using these rates, we can calculate the average fixation probability. In Had-
jichrysanthou et al [27], the average fixation probability is given by

ρ̄star =
ρstar(centre) + (N − 1)ρstar(leaf)

N
.

Here, ρstar(centre) is the fixation probability of a mutant starting in the centre
and ρstar(leaf) is the fixation probability of a mutant starting in a leaf. They are
given by

ρstar(centre) =
p(1, 0, 1, 1)

A(1, N − 1)
and ρstar(leaf) =

p(0, 1, 1, 1)

A(1, N − 1)
(32)

where

A(l,m) = 1 +

m−1∑
j=l

p(1, j, 0, j)

j∏
k=l

p(0, k, 0, k − 1)

p(1, k, 1, k + 1)
.

and

p(u, k, u, k − (−1)u) =
r(u, k, u, k − (−1)u)

r(u, k, u, k − (−1)u) + r(u, k, 1− u, k)
,

p(u, k, 1− u, k) =
r(u, k, 1− u, k)

r(u, k, u, k − (−1)u) + r(u, k, 1− u, k)
.

For the cases in Table 3, ρ̄star is given by:

ρ̄
(i)
star =

1
N
N−1
N + N−1

N
β1

(N−2)β0+2β1

1 +

N−2∑
j=1

β0
(N − j)β0 + jβ1

j∏
k=1

(N − k)β0 + kβ1
(N − 1− k)β0 + (k + 1)β1

,
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ρ̄
(ii)
star =

1
N

swcβ1/2+δ

s(wcβ1+wlβ0)/2+δ
N
N−1

+ N−1
N

swlβ1/2+δ
β1

(N−2)β0+β1

s(wlβ1+wcβ0)/2+δ
(N−2)β0+2β1
(N−2)β0+β1

1 +
∑N−2
j=1

swlβ0/2+δ
β0

(N−1−j)β0+jβ1

s(wlβ0+wcβ1)/2+δ
(N−j)β0+jβ1

(N−1−j)β0+jβ1

∏j
k=1

swcβ0/2+δ
swcβ1/2+δ

s(wcβ1+wlβ0)/2+δ
(N−k)β0+kβ1

(N−1−k)β0+kβ1

s(wcβ0+wlβ1)/2+δ
(N−1−k)β0+(k+1)β1

(N−1−k)β0+kβ1

,

ρ̄
(iii)
star =

1
N

wcβ1

wcβ1+wlβ0
+ N−1

N
wlβ1

wlβ1+wcβ0

1 +

N−2∑
j=1

wlβ0
wlβ0 + wcβ1

(
β0
β1

wcβ1 + wlβ0
wcβ0 + wlβ1

)j .

H Proof for star network

Here we want to show that Equation (17) holds for the star network when
N →∞. In case (i) we have that

lim
N→∞

ρ̄
(i)
star = 0.

In case (ii) we have that

lim
N→∞

ρ̄
(ii)
star =

wlβ1

wlβ1+wcβ0+2δ

1 +
wlβ0

wlβ0 + wcβ1 + 2δ

∞∑
j=1

(
wcβ0 + 2δ

wcβ1 + 2δ

wcβ1 + wlβ0 + 2δ

wcβ0 + wlβ1 + 2δ

)j .
The denominator in this case converges to

1 +
ar

1− r

where

a =
wlβ0

wlβ0 + wcβ1 + 2δ
,

r =
wcβ0 + 2δ

wcβ1 + 2δ

wcβ1 + wlβ0 + 2δ

wcβ0 + wlβ1 + 2δ
.

Let

x =
wlβ1

wlβ1 + wcβ0 + 2δ
,

we therefore have that

lim
N→∞

ρ̄
(ii)
star =

x(1− r)
1 + r(a− 1)

.

In case (iii) we have that

lim
N→∞

ρ̄
(iii)
star =

xδ=0(1− rδ=0)

1 + rδ=0(aδ=0 − 1)

where xδ=0, aδ=0, rδ=0 are x, a, r with δ = 0. We have that

lim
N→∞

ρ̄
(ii)
star < lim

N→∞
ρ̄
(iii)
star
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if r > rδ=0, a < aδ=0, x < xδ=0, which is indeed the case since β1 > β0 and
δ > 0 (in case (ii)). This therefore gives

lim
N→∞

ρ̄
(i)
star < lim

N→∞
ρ̄
(ii)
star < lim

N→∞
ρ̄
(iii)
star

as required.

I Simulation Details

The Gillespie alogrithm [23, 24] is used to simulate the evolutionary process
described by the infinitesimal generator (Equation (2)),

Lφ(S) =
∑
i∈S

∑
n∈X

[1− µ(i)]b(i, n,S)[φ(S ∪ {(Ui, n)})− φ(S)]

+
∑
i∈S

∑
n∈X

µ(i)b(i, n,S)

∫
Rl

[φ(S ∪ {(w, n)} − φ(S)]M(Ui, w)dw

+
∑
i∈S

d(i,S)[φ(S \ {i})− φ(S)].

Let T (k) be the time and S(k) be the state of the population after k events
have taken place. The following steps are followed for the simulation.

1. Determine the time, T (k + 1), when a new event happens as follows,

T (k + 1) = T (k)− ln(U(0, 1))

λk

where

λk =
∑
i∈S(k)

∑
x∈X

b(i, x, S(k)) + d(i, S(k)).

and U(0, 1) is a random number uniformly distributed in the range (0, 1).

2. Determine the state, S(k + 1), when a new event takes place:

• Birth without mutation: Ii gives birth to an offspring of the same
type onto site n with probability

[1− µ(i)]
b(i, n, S(k))

λk
,

then

S(k + 1) = S(k) ∪ {(Ui, n)}.

• Birth with mutation: Ii gives birth to an offspring of type w onto
site n with probability

µ(i)M(Ui, w)
b(i, n, S(k))

λk
,

then

S(k + 1) = S(k) ∪ {(w, n)}.

33



• Death: Ii dies with probability

d(i, S(k))

λk
,

then

S(k + 1) = S(k) \ {i}.

3. Repeat step 1 and 2 as necessary.

To solve the hitting probability (Equation (11)),
Lcρ(S) = 0 S /∈M∪R,
ρ(S) = 0 S ∈ R,
ρ(S) = 1 S ∈ M,

we set T (0) = 0 and S(0) = S such that S /∈ M ∪R, and then repeat steps 1
and 2 in the above alogrithm until we hit a state in M or R. If we run Nsim

simulations, out of which Nmut hit a state inM, then the hitting probability is
given by

ρ(S) =
Nmut

Nsim
.
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