
Threshold-based Network Structural Dynamics1

Evangelos Kipouridis2

BARC, University of Copenhagen, Universitetsparken 1, Copenhagen, Denmark3

kipouridis@di.ku.dk4

Paul G. Spirakis5

Department of Computer Science, University of Liverpool, UK6

Computer Engineering and Informatics Department, University of Patras, Greece7

P.Spirakis@liverpool.ac.uk8

Kostas Tsichlas9

Computer Engineering and Informatics Department, University of Patras, Greece10

ktsichlas@ceid.upatras.gr11

Abstract12

The interest in dynamic processes on networks is steadily rising in recent years. In this paper,13

we consider the (α, β)-Thresholded Network Dynamics ((α, β)-Dynamics), where α ≤ β, in which14

only structural dynamics (dynamics of the network) are allowed, guided by local thresholding rules15

executed in each node. In particular, in each discrete round t, each pair of nodes u and v that are16

allowed to communicate by the scheduler, computes a value E(u, v) (the potential of the pair) as a17

function of the local structure of the network at round t around the two nodes. If E(u, v) < α then18

the link (if it exists) between u and v is removed; if α ≤ E(u, v) < β then an existing link among u19

and v is maintained; if β ≤ E(u, v) then a link between u and v is established if not already present.20

The microscopic structure of (α, β)-Dynamics appears to be simple, so that we are able to21

rigorously argue about it, but still flexible, so that we are able to design meaningful microscopic22

local rules that give rise to interesting macroscopic behaviors. Our goals are the following: a)23

to investigate the properties of the (α, β)-Thresholded Network Dynamics and b) to show that24

(α, β)-Dynamics is expressive enough to solve complex problems on networks.25

Our contribution in these directions is twofold. We rigorously exhibit the claim about the26

expressiveness of (α, β)-Dynamics, both by designing a simple protocol that provably computes the27

k-core of the network as well as by showing that (α, β)-Dynamics is in fact Turing-Complete. Second28

and most important, we construct general tools for proving stabilization that work for a subclass of29

(α, β)-Dynamics and prove speed of convergence in a restricted setting.30

2012 ACM Subject Classification Networks → Network dynamics31

Keywords and phrases network dynamics, stabilization32

Note: All missing proofs are described in a clearly marked appendix to be read at the discretion of33

the reviewers.34

mailto:kipouridis@di.ku.dk
mailto:P.Spirakis@liverpool.ac.uk
mailto:ktsichlas@ceid.upatras.gr

2 Threshold-based Network Structural Dynamics

1 Introduction35

The interplay between the microscopic and the macroscopic in terms of emergent behavior36

shows an increasing interest. The most striking examples come from biological systems that37

seem to form macroscopic structures out of local interactions between simpler structures (e.g.,38

computation of shortest paths by Physarum Polycephalum [24] or the maximal independent39

set by fly’s nervous system [1]). The underlying common characteristic of these systems40

is the emergent behavior in the macroscopic level out of simple local interactions at the41

microscopic level. This is one of the reasons why the last years there is a surge in the analysis42

and design of elementary and fundamental primitives in distributed systems under restrictive43

assumptions on the model [9]. In some of these examples, the dynamic processes are purely44

structural with respect to the network. These examples include network generation models45

[7, 30], community detection [33], "life-like" cellular automata [28], robot motion [26] and go46

all the way up to fundamental physics as a candidate model for space [31, 32]. In view of47

this recent trend, a stream of work is devoted to the study of such dynamics per se, without48

a particular application in mind (e.g., [14]). Motivated by such a plethora of examples, we49

study the stabilization properties of protocols that affect solely the structure of networks.50

Henceforth, we will use the term dynamic network to represent networks that change due51

to some process, although in the literature one can find other terms like adaptive networks,52

time-varying networks, evolving networks and temporal networks that essentially refer to53

the same general idea of time-dependent networks w.r.t. structure and states. The study54

of the processes that drive dynamic networks and their resulting properties has been the55

focus of many different fields but in general one can discern between two distinct viewpoints56

without excluding overlappingness: a) complex systems viewpoint: (physics, sociology,57

ecology, etc.) the main focus is on modelling (e.g., differential/difference equations, cellular58

automata, etc. - see [27]) and qualitative analysis (by means of mean field approximations,59

bifurcation analysis etc.). The main questions here are of qualitative nature and include60

phase transitions, complexity of system behavior, etc. Rigorous analysis is not frequent61

and simulation is the main tool for providing results. b) computational viewpoint:62

(mainly computer science and communications) the main focus is on the computational63

capabilities (computability/complexity) of dynamic networks in various settings and with64

different assumptions. The main approach in computer science is based on rigorous proofs65

while in communications it is based on experimentation.66

When designing local rules aiming at some particular global/emergent behavior, it is67

usually difficult, or at the very least cumbersome, to prove correctness [9]. This is why68

most studies in complex systems of this sort are based on experimental evidence for their69

correctness. Thus, it is very important to prove general results about protocols, and not70

argue about them in a case-by-case fashion. In this paper, we study a dynamic network71

driven by a simple protocol that is executed in each node in a synchronous manner. The72

protocol is the same for all nodes and can only affect the structure of the network and not the73

state of edges or nodes. The locality of the protocol is defined with respect to the available74

interactions for each node that are defined by a scheduler. We define the (α, β)-Dynamics in75

Section 2 and we also discuss related work. In Section 3, we discuss a particular protocol that76

computes the α-core and the (α− 1)-crust [8] of an arbitrary provided network. In Section 477

we provide guarantees on the speed of stabilization for a subclass of (α, β)-Dynamics while78

in Section 5 we provide a proof of stabilization for a more general class of such protocols.79

In this way, we provide general results for (α, β)-Dynamics that may be directly applied80

elsewhere, e.g., in the case of restricted Network Automata [28]. In Section 6 we prove that81

(α, β)-Dynamics is Turing-Complete. Finally, in Section 7 we discuss some extensions of the82

E. Kipouridis, P. Spirakis and K. Tsichlas 3

proposed model and we conclude in Section 8.83

2 Preliminaries84

Assume that an undirected simple network G(0) = (V,E(0)) evolves over time (discrete time)85

based on a set of rules. We represent the network at time t by G(t) = (V,E(t)). We denote86

the distance between two nodes u, v in G(t) as d(t)(u, v). Let n = |V |, m(t) = |E(t)| and let87

NG(t)(u) be the set of all neighbors of node u and dG(t)(u) be the degree of node u in network88

G(t). We define
∣∣E(t)(u, v)

∣∣ to be the number of edges between u and v at time t (either89

0 or 1), and more generally
∣∣E(t)(U)

∣∣ to be the number of edges between nodes in the set90

U ⊆ V at time t. It follows that
∣∣E(t)(NG(t)(u) ∩NG(t)(v))

∣∣ is the number of edges between91

common neighbors of u and v at time t. Let G[S] represent the induced subgraph of the92

node set S ⊆ V . The potential of a pair of nodes u and v at round t is a function related to93

this pair and is represented by E(t)
G(t)(u, v) : G(t)[S]→ <, for some S ⊆ V . The domain of the94

potential is the induced subgraph G(t)[S] defined by the set of nodes S that are at the local95

structure around nodes u and v. This local structure is defined explicitly by the potential96

function. In this paper, S consists all nodes that are within constant distance from u or97

from v (the constant is 1 throughout the paper, except for Section 6 where it is 3). We write98

E(t)(u, v) or E(u, v) when the network and the time we are referring to are clear from the99

context. An example of such a function defined in [33] that is used to detect communities in100

networks is the following:101

E(u, v) = |NG(t)(u) ∩NG(t)(v)|+ |E(t)(u, v)|+ |E(G[NG(t)(u) ∩NG(t)(v)])|102

The potential is equal to the number of common neighbors between u and v plus the number103

of edges between them (0 or 1) plus the number of edges between the common neighbors of104

u and v. The set S contains all nodes that are at distance at most 1 from u and v.105

Finally, let f : N2 → R be a continuous function having the following two properties: i)106

Non-decreasing, that is f(x, y + ε) ≥ f(x, y) for ε > 0 (similarly f(x+ ε, y) ≥ f(x, y)) and ii)107

Symmetric, f(x, y) = f(y, x). The second property is related to the fact that we consider108

undirected networks. We call these functions proper.109

2.1 (α, β)-Dynamics - Thresholded Network Dynamics110

Informally, the (α, β)-Thresholded Network Dynamics ((α, β)-Dynamics henceforth) in its111

general form is a discrete-time dynamic stateless network of agents G(t) = (V,E(t)). It is112

stateless because the dynamics driven by the protocol depend only on the structure of the113

network and not on state information stored in each node/edge. The dynamics involve the114

edges of the network while the set of agents is static. All interactions are pairwise and are115

defined by a scheduler. For each interaction, the two involved nodes execute a protocol116

that affect the edge between them. The execution of the protocol and all communication is117

carried out on the network G(t), while the scheduler is responsible for the determination of118

the interactions that activate the execution of the protocol between pairs of nodes in G(t).119

The protocol is consistent, in the sense that it comes to the same decision about the120

existence of the edge between u and v, both when executed in u and in v. This requires121

the potential of an arbitrary edge (u, v) to be computationally symmetric, in the sense that122

E(u, v) is the same when computed in u and in v. The execution evolves in synchronous123

discrete time rounds. In the following, the edge e(t) is also used as a boolean variable. In124

particular, when e(t) = 0 then e(t) /∈ E(t), while e(t) = 1 means that e(t) ∈ E(t). Let α and β125

be parameters that correspond to a lower and an upper threshold respectively. Initially, the126

4 Threshold-based Network Structural Dynamics

network G(0) is given as well as the constant thresholds α and β. Formally, (α, β)-Dynamics127

is a triple (G(0),S,A(α, β)) defined as follows:128

G(0) = (V,E(0)) : A network of nodes V and edges E(0) between nodes at time 0. This is129

the network where the dynamic process concerning the edges is performed. Each node130

v ∈ V has a distinct id and maintains a routing table with all its edges.131

S : The scheduler that contains the pairwise interactions between nodes. We represent it132

by a possibly infinite series of sets of pairwise interactions C(t). Each set C(t) contains133

the pairwise interactions between nodes activated at time step t in the network G(t).134

An interaction between nodes u and v, assumes direct communication between u and v135

irrespectively of whether u and v are connected by an edge in G(t). In the following, by136

slightly abusing notation, we will refer to C(t) as the scheduler for time step t.137

A(α, β) : The protocol executed in each round by each node participating in the pairwise138

interactions defined by the scheduler C(t) in order to update network G(t) to network139

G(t+1). The (α, β)-Dynamics is defined for the following family of protocols:140

Protocol A(α, β) at node u for a pairwise interaction (u, v) ∈ C(t):141

Compute the potential E(u, v).142

1. If E(u, v) < α then edge (u, v)(t+1) = 0.143

2. If α ≤ E(u, v) < β then edge (u, v)(t+1) = (u, v)(t).144

3. If E(u, v) ≥ β then edge (u, v)(t+1) = 1.145

The computational capabilities of each node are similar to a LOG-space Turing machine.146

Each node has two different memories, the input memory as well as the working memory.147

The input memory contains the local structural information of the network necessary for148

the computation of the potential function at node u. The potential function reads the input149

memory and its value is computed by using the working memory. We allow only protocols150

that require polynomial time w.r.t. the size of the input memory keeping the working memory151

logarithmic (asymptotically) in size w.r.t. the size of the input memory.152

The complexity of the protocol depends solely on the definition of the potential function,153

since the rest of the protocol are simple threshold comparisons. Similarly to dynamics [9] -154

although no relevant formal definition exists [10] - we require our protocol to be simple and155

lightweight and to realize natural, local and elementary rules subject to the constraint that156

structural dynamics are considered. To this end, we require the potential function to respect157

the following constraints:158

1. The potential function has access to a small constant distance c away from the two159

interacting nodes.160

2. The potential function must be indistinguishable with respect to the nodes - thus not161

allowing for special nodes (e.g., leaders) [10].162

3. The potential function must be network-agnostic, in the sense that it is designed without163

having any access to the topology of G(0).164

These restrictions combined with the computational capabilities of nodes do not allow the165

protocol to use shortcuts for computation in terms of hardwired information in the potential166

function (node ids) or in terms of replacing large subgraphs by other subgraphs.167

In each round, the protocol is executed in the nodes that participate in the pairwise168

interactions (u, v) determined by the scheduler. A pairwise interaction between nodes u and169

v requires the computation of the potential between the two nodes and then a decision is170

made as for the edge between them based on the thresholds α and β. Each round of the171

computation for node u (symmetrically for v) is divided into the following phases: (1) u sends172

messages to its local neighborhood (with the exception of v, if edge (u, v) exists) requesting173

information related to the computation of the potential function, (2) u receives the requested174

E. Kipouridis, P. Spirakis and K. Tsichlas 5

information and stores it in the input memory, (3) u sends its information to v, (4) u receives175

v’s information and stores it in the input memory, (5) u computes the potential using the176

working memory and (6) it decides as for the edge (u, v) w.r.t. thresholds.177

The consistency of the protocol guarantees that the result of its execution is the same178

for u and v. In accordance to the Local model, there is no restriction on the size of the179

messages. Finally, direct communication is assumed (in phases (3) and (4)) between the180

interacting nodes u and v irrespectively of the existence of edge (u, v). In the example of181

the potential function given in Section 2, each round executes at u (symmetrically for v) as182

follows: (1) u sends messages to all its neighbors, (2) u receives messages carrying information183

about its neighbors and their edges, (3) u sends its gathered information to v, (4) u receives184

the gathered information from v, (5) u computes the potential between u and v and (6) it185

makes a decision about edge (u, v) and appropriately updates its connection information.186

(α, β)-Dynamics is stateless, in the sense that the dynamics driven by the algorithm A187

consider only the structure of the network. No states that are stored at nodes or edges are188

considered in the dynamic evolution expressed by (α, β)-Dynamics. Although nodes have189

memory to store connections to their neighbors that change due to the dynamic process and190

to store the additional information required for the computation of the potential function,191

no additional states are used to impose changes in the network. As a result, the network192

G(t) completely defines the configuration of the system at time t. We say that G(t) yields193

G(t+1), when a transition takes place from G(t) to G(t+1) after time step t, represented as194

G(t) C(t)

−−−→ G(t+1), which is the result of the A protocol for all pairwise interactions encoded195

in C(t). Similarly, we write G(t) G(t′), for t′ > t, if there exists a sequence of transitions196

G(t) C(t)

−−−→ G(t+1) C(t+1)

−−−−→ · · · C(t′−1)

−−−−−→ G(t′). An execution of (α, β)-Dynamics is a finite or197

infinite sequence of configurations G(0), G(1), G(2), . . . such that for each t, G(t) yields G(t+1),198

where G(0) is the initial network.199

We say that the algorithm converges or stabilizes when ∃t such that ∀t′ > t it holds that200

G(t) = G(t′), meaning that the network does not change after time t. The output of the201

(α, β)-Dynamics is the network that results after stabilization has been reached. The time202

complexity of the protocol is the number of steps until stabilization. The time complexity203

of the protocol is heavily depending on C(t). If, for example, there exists a T where for all204

t ≥ T it holds that C(t) is always the null set, then the algorithm stabilizes although it would205

not stabilize for a different choice of C(t). To avoid stalling, we employ the weak fairness206

condition [2, 3] that essentially states that all pairs of nodes interact infinitely often, thus207

imposing that the scheduler cannot avoid a possible change in the network. In the case of208

the protocol described in Section 3, we will be very careful as to the definition of C(t) w.r.t.209

time complexity while for our stabilization theorems we either assume a particular C(t) or210

allow it to be arbitrary. However, in the latter case we do not claim bounds on the time211

complexity, only eventual stabilization. Note that it is not our goal in this paper to solve the212

problem of termination detection.213

At this point, a discussion on the scheduler S is necessary. The scheduler C(t) at time214

t supports parallelism since it is a set of pairwise interactions that has size at most
(

n
2
)
.215

Thus, many pairwise interactions may be activated in each step. For example, consider the216

case where all
(

n
2
)
possible edges are contained in C(t). This means that simultaneously217

the potential is computed for all possible pairwise interactions and the edges are updated218

analogously. In [33], a serialization of this case is used to detect communities in networks. In219

general, we may assume anything about the scheduler (adversarial, stochastic, etc.). Arguing220

about an arbitrary set of pairwise interactions for each t is the most general case, since A can221

make no assumption at all about the pairwise interactions that will be activated within each222

6 Threshold-based Network Structural Dynamics

round but the fairness condition must be employed in order to argue about stabilization.223

On a more technical note, the scheduler has two different but not necessarily mutually224

exclusive uses. On the one hand, the scheduler models restrictions set by the environment225

on the interactions (e.g., random interactions in a passive model). On the other hand, it is226

used as a tool for analysis reasons, to describe the communication links that the protocol A227

enforces on G(t) (e.g., when a node communicates with all nodes at distance 2). The scheduler228

cannot and should not cheat, that is to be used in order to help A carry out the computation.229

In this paper, we present some general results w.r.t. the choice of the scheduler. For example,230

C(t) may be adversarial for all t, satisfying the fairness condition, while our algorithms are231

still able to stabilize (see Sections 3 and 5). Although (α, β)-Dynamics may seem to be a232

rather restricting setting, the freedom in defining the potential and the parameters α and β233

allow us for a very rich behavior - in fact, we show that (α, β)-Dynamics is Turing-Complete.234

2.2 Related Work235

The main work on dynamic networks stems either from computer science or from complex236

systems and is inherently interdisciplinary in nature. In the following, we only highlight237

results that are directly related to ours (a more extensive discussion can be found in [21]).238

In computer science, a nice review of the dynamic network domain is in [23] that proposes239

a partitioning of the current literature into three subareas: Population Protocols ([3, 4]),240

Powerful Dynamic Distributed Systems (e.g., [25]) and models for Temporal Graphs (e.g.,241

[12]). (α, β)-Dynamics can be compared to Population Protocols, where anonymous agents242

with only a constant amount of memory available interact with each other and are able to243

compute functions, like leader election. Their scheduler determines the set of pairs of nodes244

among which one will be chosen for computation at each time step. The choice is made245

by a scheduler either arbitrarily (adversarial scheduler) or uniformly at random (uniform246

random scheduler). The uniform scheduler is used for designing various protocols due to the247

probabilistic accommodations for analysis it provides. The major differences to our approach248

are with respect to dynamics and the scheduler. Population protocols study state dynamics249

while in our case we study stateless structural dynamics. In addition, in our approach, the250

scheduler consists of a set of pairwise interactions, thus allowing for many computations251

between pairs of nodes during a time step (parallel time). This parallelism of the scheduler252

may "artificially" reduce the number of rounds but it can also complicate the protocol leading253

to interesting research questions. Similarly to population protocols, the notion of dynamics254

[10, 9] that refers to distributed processes that resemble interacting particle systems considers255

simple and lightweight protocols on states of agents. (α, β)-Dynamics could be cast in such256

a framework as purely structural dynamics that on the one hand supports simple, uniform257

and lightweight protocols while on the other hand requires necessarily the communication258

of structural information between nodes. In the same manner, motivated by population259

protocols, the Network Constructors model also studies state dynamics that affect the260

structure of the network resulting in structural dynamics as well, and thus it is much closer261

to (α, β)-Dynamics. In [21, 22] the authors study what stable networks can be constructed262

(like paths, stars, and more complex networks) by a population of finite-automata. Among263

other complexity related results they also argue that the Network Constructors model is264

Turing-Complete. Our main differences to the network constructors model are the following:265

1. Our motivation comes from the complex systems domain as well, and thus we are266

more interested in as general as possible convergence/stabilization theorems apart from267

particular network constructions (like the α-core in our case).268

2. They use states for the structural dynamics while in our case the dynamics are stateless.269

E. Kipouridis, P. Spirakis and K. Tsichlas 7

This means that Network Constructors use states that change according to the protocol,270

which in turn drive the structural changes of the network (coupled dynamics). In our case,271

we use only the knowledge of the structure of the network to make structural changes.272

3. They always start from a null network while we start from an arbitrary one.273

A similar notion is graph relabeling systems [19], where one chooses a subgraph and changes it274

based on certain rules. These systems are usually applied on static graphs but they have also275

been applied to dynamic graphs as well [11]. The focus in this case is to impose properties on276

the dynamic graphs so that a particular computation is possible, assuming adversarial dynamic277

graphs. (α, β)-Dynamics is also related - in fact can easily simulate - to graph generating278

models. The Barabási–Albert model [7] can be simulated by simply setting A to add an279

edge between two nodes in G(t) for each interacting pair in C(t). These interacting pairs in280

C(t) are specified based on the stochastic preferential-attachment mechanism. Similarly, the281

Watts-Strogatz model [30] can be simulated by starting with a regular ring lattice and then282

in each step set the appropriate edges stochastically in C(t) to rewire them.283

In the study of complex systems, one of the tools used for modeling is cellular automata.284

Cellular automata use simple update rules that give rise to interesting patterns [6, 15].285

Structurally Dynamic Cellular Automata (SDCA) that couples the topology with the local286

site 0/1 value configuration were introduced in [17]. They formalize this notion and move to287

an experimental qualitative analysis of its behaviour for various parameters. They left as an288

extension (among others) of SDCA purely structural CA models in which there are no value289

configurations as it holds in the (α, β)-Dynamics studied in this paper. A model for coupling290

topology with functional dynamics was given in [28], termed Functional Network Automata291

(FNA), and was used as a model for a biological process. They also defined the restricted292

Network Automata (rNA), which as (α, β)-Dynamics allows only for stateless structural293

network dynamics. rNA forces every possible pair of interactions to take place, meaning that294

for all t it holds that C(t) contains all
(

n
2
)
possible edges of the n nodes. All their results are295

qualitative and are based on experimentation. By using the machinery built in Section 5296

we show that for the family of protocols we consider, rNA always stabilizes. To further297

stimulate the reader as for the need of looking at (α, β)-Dynamics, the author in [26] looked298

at modular robots as an evolving network with respect only to their topology. The author299

defined a graph topodynamic, which in fact is a local program common to all modules of300

the robot, that turns a tree topology to a chain topology conjecturing that stabilization is301

always achieved but to the best of our knowledge it is still unresolved.302

3 Taking the Minimum303

As a motivation and exhibition of (α, β)-Dynamics, we first discuss the following interesting ex-304

ample. We define the potential of a pair of nodes u and v as E(u, v) = min{dG(t)(u), dG(t)(v)},305

that is the potential is equal to the minimum degree of the two nodes. This potential function306

respects all constraints described in 2.1.307

It is interesting to notice the similarity of our process, and the process of acquiring the308

k − core (or complementary the (k − 1)− crust) of a simple undirected graph [8, 29].309

I Definition 1. The k-core H of a graph G is the unique maximal subgraph of G such that310

∀u ∈ H it holds that degH(u) ≥ k. All nodes not in H form the (k − 1)-crust of G.311

The k-core plays an important role in studying the clustering structure of networks [20]. In312

[8] it was proved that the following process efficiently computes the k-core of a graph:313

I Lemma 2. Given a graph G and a number k, one can compute G’s k-core by repeatedly314

deleting all nodes whose degree is less than k.315

8 Threshold-based Network Structural Dynamics

The following theorem states that stabilization to the k-core is achieved for an arbitrary316

scheduler S. Furthermore, the stabilization occurs after O(m) rounds of changes in the317

network, where m is the number of edges in G. Note that this is not the time complexity of318

the protocol, since there may be many idle rounds between rounds with changes, depending319

on the scheduler.320

I Theorem 3. When E(u, v) = min{dG(t)(u), dG(t)(v)}, (α, β)-Dynamics for any value of321

α ≤ n− 1 < β and any scheduler S, stabilizes in a network where all isolated nodes form the322

(α− 1)-crust and the rest the α-core of G(0) in O(m) rounds where changes happen, where323

m is the number of edges in G(0).324

Proof. First of all, even if a node connects with any other node, its degree will be n − 1.325

Thus, it holds that min{d(u), d(v)} ≤ n − 1 < β. This ensures that no edge will ever be326

created by the (α, β)-Dynamics. Thus, only deletions of edges can be performed. As a result,327

the maximum number of rounds where a change happens is a straightforward O(m). What328

we need to show is that the output of the protocol is a network where all isolated nodes329

belong to the (α− 1)-crust of G(0) and the rest of the nodes belong to the α-core of G(0).330

To prove our claim we change slightly the algorithm described in Lemma 2 to process331

edges instead of nodes. This change is made so that the (α, β)-Dynamics described in this332

section will be in fact a realization of this main memory algorithm and thus its output will333

be the α-core of G(0). Indeed, one can compute G’s α-core by repeatedly deleting all edges334

for which one of its endpoints has degree < α. The procedure stops when there is no such335

remaining edge, that is, all edges have endpoints with degree ≥ α. The order in which the336

edges are considered is irrelevant. It is easy to see that this algorithm computes the α-core337

of the given network and in fact it is the (α, β)-Dynamics described in this section. J338

A final note concerns the time complexity. Note that the aforementioned theorem does339

not state anything about the time complexity of the protocol, it just states the maximum340

number of rounds where a change happens. We can compute the time complexity if we341

describe the scheduler. If we assume that ∀t : C(t) = E(t), that is the scheduler contains all342

edges and only those of the G(t) network then the time complexity is O(n). This is because,343

at each round it is guaranteed that one node will become isolated unless stabilization has344

been achieved. Similarly, if we assume a uniform scheduler that chooses one pair of nodes345

uniformly at random in each time step, then the (α, β)-Dynamics stabilizes in O(mn2 logm)346

steps by a simple application of the coupon collector problem on the selection of edges.347

4 (α, β)-Dynamics with α = β and a Proper Potential Function on348

the Degrees349

We study the (α, β)-Dynamics where the potential is any symmetric non-decreasing function350

on the degrees of its two endpoints. We prove that in this case (α, β)-Dynamics stabilizes351

while the time complexity is O(n), assuming that α = β and that for all t, C(t) contains all352 (
n
2
)
possible pairwise interactions. All proofs can be found in Appendix A. More formally, we353

define the potential of a pair (u, v) to be E(u, v) = f(dG(t)(u), dG(t)(v)), where f is a proper354

(symmetric and non-decreasing in both variables) function. Since f is proper, the potential355

function is computationally symmetric and thus the protocol is consistent.356

For the network G(t), let R(t)(u, v) be an equivalence relation defined on the set of nodes357

V for time t, such that (u, v) ∈ R(t) iff dG(t)(u) = dG(t)(v). The equivalence class R(t)
i358

corresponds to all nodes with degree d(R(t)
i), where i is the rank of the degree in decreasing359

order. This means that the equivalence class R(t)
1 contains all nodes with maximum degree360

E. Kipouridis, P. Spirakis and K. Tsichlas 9

in G(t). Assuming that n = |V |, the maximum number of equivalence classes is n− 1, since361

the degree can be in the range [0, n− 1] and no pair of nodes can exist that have degree 0362

and n− 1 simultaneously. Let |G(t)| be the number of equivalence classes in network G(t).363

We prove by induction that in this setting, (α, β)-Dynamics always stabilizes in at most364

|G(0)|+ 1 steps. To begin with, the clique Kn as well as the null graph Kn both stabilize in365

at most one step, for any value of β. The following renormalization lemma describes how the366

number of equivalence classes is reduced and is crucial to the induction proof.367

I Lemma 4. If d(R(t)
1) = n− 1, ∀t ≥ c, c ∈ N, and the subgraph G(c) \R(c)

1 stabilizes for any368

value of β and proper function f , then G(c) stabilizes as well. Similarly, if d(R(t)
|G(t)|) = 0,369

∀t ≥ c, c ∈ N, and the subgraph G(c) \R(c)
|G(c)| stabilizes for any value of β and proper function370

f , then G(c) stabilizes as well. The time it takes for G(c) to stabilize is the same as the time371

it takes for the induced subgraph to stabilize for both cases.372

The following theorem establishes that the dynamic process stabilizes in linear time.373

I Theorem 5. When α = β, f is proper, E(u, v) = f(dG(t)(u), dG(t)(v)), and the scheduler374

contains all
(

n
2
)
possible pairwise interactions in each time step, (α, β)-Dynamics with input375

G(0) stabilizes in at most |G(0)|+ 1 steps.376

5 (α, β)-Dynamics Stabilization for Arbitrary Scheduler377

In this section, we prove stabilization (with no speed bound) for any α ≤ β in an adversarial378

setting where the scheduler S may be completely arbitrary subject to the fairness condition.379

In addition, we further generalize by changing the definition of potential, from E(u, v) =380

f(dG(t)(u), dG(t)(v)) to E(u, v) = f(gG(t)(u), gG(t)(v)), for a family of functions gG : Rk →381

R, k ∈ N. We call a function gG(u) degree-like if it only depends on the neighborhood NG(u)382

of node u and has the following property: assuming that the neighborhood of node u at time383

t is NG(t)(u), and the neighborhood of v at time t′ is NG(t′)(v), and NG(t)(u) ⊇ NG(t′)(v),384

then we require that gG(t)(u) ≥ gG(t′)(v). The reason we extend the notion of degree is to385

represent more interesting rules as shown in the toy model of social dynamics of Section 7.386

The potential function is computationally symmetric since f is proper and g is common387

for u and v. The protocol in Section 4 is a special case of this protocol, where g is the degree388

of the node, the scheduler contains all
(

n
2
)
possible pairwise interactions at each time step389

and α = β. To show stabilization we need the following definition:390

I Definition 6. A pair (t,D) is |D| −Done if t ∈ N, D ⊆ V and ∀u ∈ D it holds that their391

neighborhood does not change after time t. That is, NG(t′)(u) = NG(t)(u), for t′ ≥ t.392

Our stabilization proof repeatedly detects |D| − Done pairs with increasing |D|. When393

D = V , all neighborhoods do not change, and thus the process stabilizes.394

I Lemma 7. If there exists a |D| −Done pair (t,D) at round t with |D| < |V |, then ∃t′ > t395

such that at round t′ there exists a (|D|+ 1)−Done pair (t′, D′).396

Proof. We denote by t1 ≥ t the round where there is some node u 6∈ D such that gG(t1)(u) ≥397

g
G

(t′1)(v), for all t′1 ≥ t1 and v 6∈ D. If there are many choices for t1 and u, we pick any398

t1 and u such that u has the highest degree possible. Note that, later in time (say at399

t′1 > t1), it is entirely possible that u’s neighborhood shrinks and thus its g value drops400

(g
G

(t′1)(u) < gG(t1)(u)). It is guaranteed that t1 exists, as there are finitely many graphs with401

|V | nodes, and finitely many nodes. Thus, there are finitely many values of gG(u) to appear402

10 Threshold-based Network Structural Dynamics

after time t. Additionally, the fairness condition guarantees that the pairwise interaction403

between u and v will be eventually activated. The core idea is that either u’s neighborhood404

stays the same in all subsequent rounds (and thus D is extended by u), or some edge is lost405

along the way. But if the other endpoint w of the edge cannot preserve an edge with u, which406

maximizes g, then it does not preserve any other edge, and thus D can be extended by w.407

More formally, if u never drops any edge after t1, then its neighborhood can only grow408

or stay the same. But if its neighborhood grows, due to the properties of function g, its409

value will not drop and the degree of u will increase. However, the way we picked u does410

not allow this. We conclude that the neighborhood of u does not change after time t1, and411

thus we can extend D by {u}, that is (t1, D ∪ {u}) is (|D| + 1) −Done. Else, let t2 > t1412

be the first time step that a neighbor w of u in G(t2−1) is not a neighbor of u in G(t2).413

Since u’s neighborhood stays the same until t2 − 1, it follows that gG(t1)(u) = gG(t2−1)(u).414

We argue that the neighborhood of w does not grow at all subsequent time steps, that415

is N
G

(t′2)(w) ⊇ N
G

(t′2+1)(w), t′2 ≥ t2 − 1. To prove this, we show that w never forms416

a new edge after t2 − 1. Suppose it does at t′2 + 1 for the first time. Then w forms417

an edge with some node v 6∈ D, due to the definition of D. However, we know that418

β ≥ α > f(gG(t2−1)(u), gG(t2−1)(w)) = f(gG(t1)(u), gG(t2−1)(w)) ≥ f(g
G

(t′2)(v), g
G

(t′2)(w)) due419

to f being non-decreasing and g being degree-like, which is a contradiction.420

We conclude that the neighborhood of w can only shrink after time t2. But there are421

only finitely many options for the neighborhood of w, and thus there is a time t3 ≥ t2 where422

the neighborhood of w is the same in all subsequent graphs. Therefore, we can extend D by423

{w}, that is (t3, D ∪ {w}) is (|D|+ 1)−Done. J424

I Theorem 8. For E(u, v) = f(gG(t)(u), gG(t)(v)), (α, β)-Dynamics stabilizes for any α ≤ β,425

proper function f , degree-like function g and arbitrary scheduler S subject to the fairness426

condition.427

Proof. It trivially holds that (0, ∅) is 0 −Done. By applying Lemma 7 once, we increase428

the size of D by 1. Thus, by applying it |V | times, we end up with a |V | −Done pair (t, V).429

Since all neighborhoods stay the same for all future steps, G(t′) = G(t) for all t′ ≥ t. J430

Theorem 8 can directly prove stabilization of the protocol in Section 3.431

6 Turing-Completeness432

In this section we describe the (α, β)-Dynamics that is able to simulate Rule 110, an one-433

dimensional Cellular Automaton (CA) that Cook proved to be Turing-Complete [13] (for a434

discussion on CA and Rule 110, see Appendix B.1). Thus, we prove that (α, β)-Dynamics is435

Turing-Complete as well, meaning that it is computationally universal since it can simulate436

any Turing machine (or in other terms any algorithm). All proofs of theorems and lemmas437

in this section can be found in Appendix B.2.438

I Definition 9. Rule 110 is an one-dimensional CA. Let cell(t)(i) be the binary value of the439

i-th cell at time t. If cell(t)(i) = 0, then cell(t+1)(i) = cell(t)(i+ 1). Else, cell(t+1)(i) is 0 if440

cell(t)(i− 1) = cell(t)(i+ 1) = 1, and 1 otherwise.441

Let CN (t)(u, v) = |NG(t)(u) ∩NG(t)(v)| be the number of common neighbors of u and v442

at time t, and CE(t)(u, v) =
∣∣E(G[CN (t)])

∣∣ be the number of edges between the common443

neighbors of u and v at time t. For the following simulation we assume w.l.o.g. that α = β444

and that the scheduler S contains all possible
(

n
2
)
interactions, for all time steps. The445

potential between nodes u and v is defined as follows:446

E. Kipouridis, P. Spirakis and K. Tsichlas 11

E(t)(u, v) =

β + 60 + CE(t)(u, v)− CN (t)(u, v) if 66 ≤ CN (t)(u, v) + |E(t)(u, v)| ≤ 70
β + 12− CE(t)(u, v) if CN (t)(u, v) + |E(t)(u, v)| = 71
β − |E(t)(u, v)| if 40 ≤ CN (t)(u, v) ≤ 41
β − 1 + |E(t)(u, v)| otherwise

447

The first 2 branches are the ones that are actually related to Rule 110, and are used448

only in Lemma 11. The rest of them are only used in Lemma 10 and ensure technical449

details, namely that some pairs of nodes always flip the status of their connection (branch450

3), effectively providing us with a clock, and some of them always preserve it (branch 4).451

As required, computing the function only uses a constant number of words in the working452

memory, which have logarithmic size in bits compared to the input memory (which contains453

the neighborhoods of u and v), and requires polynomial time in the size of the input memory.454

For example, to compute CN (t)(u, v), one could iterate over all pairs (u′, v′) such that455

u ∈ NG(t)(u), v ∈ NG(t)(v), and increment a counter initially set to zero, every time u′ = v′.456

Similarly, to compute CE(t)(u, v), one can iterate over quadruples u′, u′′, v′, v′′ and increment457

a counter whenever u′ = v′, u′′ = v′′ and there exists an edge between u′ and u′′. Additionally,458

the potential function only depends on nodes at a constant distance (at most 1) from either459

u or v, and it is network-agnostic (not assuming access on the topology of G(0)). Finally it460

is computationally symmetric and thus the protocol is consistent.461

Informally, our simulation of Rule 110 consists of the following steps. First, we design462

a primitive cell-gadget (henceforth PCG) that stores binary values, but fails to capture463

Rule 110 since it doesn’t distinguish between the left and the right cell. Then, by making464

use of the PCG as a building block, we build the main cell-gadget (henceforth CG) that is465

used to simulate a single cell of the CA. Then, each time step from Rule 110 is simulated466

using 2 rounds of the (α, β)-Dynamics; on the first round, some PCGs acquire their proper467

value while on the second round, the rest of the PCGs copy the correct value from the ones468

that already acquired it. Finally, the two steps are merged into one in order to achieve469

stabilization of the dynamics when Rule 110 has also stabilized.470

For clarity purposes, we slightly abuse notation, and we count the rounds of the (α, β)-471

Dynamics by multiples of 0.5 instead of 1. Thus, we write that the sequence of configurations472

is G(0), G(0.5), G(1)..., where configurations G(t+0.5), for t ∈ N, are transitional states of the473

network and have no correspondence with cell states of the CA.474

In order to construct the PCG and the CG, we first construct two auxiliary gadgets, the475

always-on (x, y)-gadget and the flip (x, y)-gadget. The always-on (x, y)-gadget is simply a476

clique of 22 nodes. 20 of them have no edges to other nodes in the network, while 2 of them477

(namely x and y) may be connected with other nodes. The flip (x, y)-gadget is basically478

two always-on (x, y)-gadgets, with nodes x and y being the same for both gadgets, with479

the exception that the edge between x and y may not exist. See Figure 1 for both of these480

gadgets. We later show that, under certain conditions, the edge between x and y always481

exists in an always-on gadget, and flips its state at each time step, in a flip gadget.482

A PCG consists of a pair of nodes (h, l), such that the existence of an edge between483

them corresponds to value 1 and otherwise it corresponds to value 0, and 60 auxiliary nodes484

a1, . . . a60. Furthermore, for each of the 120 pairs of the form (h, ai) and (l, ai), there exists485

a corresponding flip gadget. When we have two different PCGs, say A and B, we write486

A(h), A(l), A(a1), . . . , A(a60) for the nodes of A and similarly B(h), B(l), B(a1), . . . , B(a60)487

for the nodes of B. We write A(t) to denote the value of A at time t; in other words488

A(t) = |E(t)(A(h), A(l))|.489

12 Threshold-based Network Structural Dynamics

1 2 20. . .

x y

1 2 20. . .

x y

21 22 40. . .

h

l

160 . . . 60′1′ . . .
h′

l′

Figure 1 To the left, we have an always-on (x, y) gadget. In the middle, we have a flip (x, y)
gadget; the dotted line between (x, y) denotes that this particular edge may or may not exist. To
the right, we have two PCGs. The dashed lines denote flip gadgets, the dotted lines denote that
these particular edges may or may not exist. The continuous lines denote always-on gadgets; these 4
always-on gadgets is how we connect PCGs.

In order to connect two different PCGs (say A and B) we add 4 always-on gadgets: the490

always-on (A(h), B(h)) gadget, the always-on (A(h), B(l)) gadget, the always-on (A(l), B(h))491

gadget and the always-on (A(l), B(l)) gadget, as shown in Figure 1. Intuitively, this relates492

CE(t)(A(h), A(l)) to the sum of values of the connected PCGs.493

The i-th CG that corresponds to the i-th cell (we write CG(i)) consists of 4 PCGs, which494

we identify as A1(i), A2(i), B1(i) and B2(i). At time t = 0, the edge in each flip gadget495

of A1(i), A2(i) exists, while the edge in each flip gadget of B1(i), B2(i) does not exist. We496

connect each Aj(i) with each Bk(i) (4 connections in total, where each connection uses 4497

always-on gadgets, as depicted in Figure 1). In order to connect CG(i) (cell i) with CG(i+ 1)498

(cell i+ 1) we connect Aj(i) with Aj(i+ 1), and Aj(i) with Bj(i+ 1). A CG is said to have499

value 0 if all 4 of its PCGs are set to 0 and 1 if all PCGs are set to 1. We guarantee that500

no other case can occur in G(t), t ∈ N, although this is not guaranteed for the intermediate501

configurations G(t+0.5), t ∈ N.502

To conclude the construction of G(0), each cell of Rule 110 corresponds to a CG in G(0),503

and neighboring cells have their corresponding CGs connected. Finally, we set the value of504

its CG (that is the value of its 4 PCGs) equal to the initial value of the corresponding cell.505

Notice that all our gadgets are defined for a single time-step, namely for t = 0. One506

could imagine that in subsequent time-steps, nodes contained in the same gadget in G(0)
507

are no longer connected in the same way (effectively destroying the gadget), or even that508

new gadgets are formed. The following lemma shows that this is not the case. Informally,509

it shows that no new gadgets are created, and that the only difference between graphs at510

different time steps concern edges that do not destroy the existing gadgets. For example,511

in the definition of a flip gadget, there is only one pair of nodes (its two special nodes) for512

which it does not matter whether they share an edge or not; the lemma shows that between513

nodes that belonged in the same flip gadget in G(0), only this special pair may change its514

connection (existence or not of an edge between them) through time.515

I Lemma 10. If there exists a flip (x, y)-gadget connected to an Aj(i) PCG in G(0), then516

the edge (x, y) at time t exists if and only if t ∈ N ∪ {0}. Similarly, if there exists a flip517

(x, y)-gadget connected to a Bj(i) PCG in G(0), then the edge (x, y) exists if and only if518

t 6∈ N ∪ {0}. Finally, all other edges exist at any time step if and only if they exist in G(0),519

with the exception of edges between (h, l) nodes of a PCG.520

Our next step is to discuss how (h, l) edges of PCGs change. The number of common521

neighbors of an h, l pair of an Aj(i) is CN (t)(h, l) = 70, for all integer time steps t and522

valid i, j, as it has 5 neighboring PCGs (each contributing 2), and 60 auxiliary nodes within523

the PCG (by Lemma 10). For non-integer time steps t + 0.5, t ∈ N ∪ {0}, by Lemma 10,524

E. Kipouridis, P. Spirakis and K. Tsichlas 13

the 60 auxiliary nodes are not connected with h and l, and so CN (t)(h, l) = 10. Similarly,525

the number of common neighbors of an (h, l) pair of a Bj(i) is CN (t)(h, l) = 66, for all526

non-integer t and valid i, j, and CN (t)(h, l) = 6 for integer t.527

Furthermore, for all t, it holds that CE(t)(Aj(i)(h), Aj(i)(l)) = 8 +A
(t)
j (i− 1) +B

(t)
1 (i) +528

B
(t)
2 (i) +A

(t)
j (i+ 1) +B

(t)
j (i+ 1), as the edges between common neighbors are the internal529

edges of connected PCGs, plus the connection between A
(t)
j (i − 1) and B

(t)
j (i) (4 edges),530

plus the connection between A(t)
j (i+ 1) and B(t)

j (i+ 1) (4 edges). Similarly, for a Bj(i) we531

have that CE(t)(Bj(i)) = 4 +A
(t)
j (i− 1) +A

(t)
1 (i) +A

(t)
2 (i).532

I Lemma 11. It holds that A(t)
j (i) = B

(t)
j (i) = cell(t)(i) for j ∈ {1, 2} and all i, t ∈ N.533

The following corollary is a straightforward consequence of this lemma.534

I Corollary 12. It holds that cell(t)(i) = CG(t)(i).535

The above construction simulates Rule 110. The only problem is that it takes two time536

steps to simulate a single time step of Rule 110, meaning that even if Rule 110 converges,537

our construction infinitely flips between two different configurations, due to the flip gadgets,538

and as a result it does not stabilize. To overcome this problem, we use the aforementioned539

construction and make changes that allow us to remove the intermediate steps in the540

simulation, that is the steps t+ 0.5, t ∈ N ∪ {0}.541

I Theorem 13. The (α, β)-Dynamics is Turing-Complete.542

7 Extensions543

We briefly discuss two straightforward extensions of (α, β)-Dynamics and provide related544

examples. To begin with, we can add static information to nodes/edges (e.g., weights). This545

information is encoded by the potential function and does not change with time. The degree-546

like function defined in Section 5 can be used to assign a time-independent importance factor547

(e.g. a known centrality measure in G(0)) while letting g(u) be the sum of these factors of548

nodes in NG(t)(u). To demonstrate it, we provide a small example with a toy model inspired549

by Structural Balance Theory [16] of networks with friendship and enmity relations [5].550

This example is more reminiscent of population dynamics rather than distributed protocols.551

Assume that the network of agents corresponds to people (nodes) with friendship relations552

(edges). Each agent v is defined by how nice she is n(v), how extrovert she is x(v) as well as553

by the set of her enemies EN (v). We wish to design a model that captures how friendships554

change in this setting when enemies do not change1 as well as when friendships are lost in555

case of very few common friends, while friends are made in the opposite case.556

To define the social dynamics we need to define the scheduler and the potential function557

that essentially describe our toy model. The scheduler captures the enforced by the model558

interactions between the agents. This toy model is only for the purpose of highlighting our559

convergence results and we do not claim to realistically capture certain social phenomena.560

The scheduler is defined as follows: (a) if two agents u and v are enemies then they never561

become friends (no pairwise interaction between them in C(t), for any t), (b) if two agents562

u and v are not connected by an edge in G(t) (they are not friends) but their distance is563

at most the sum of their extrovertedness, then they interact - that is, if at time t it holds564

1 The permanence of enmity is in fact not exactly compatible with structural balance theory on networks.

14 Threshold-based Network Structural Dynamics

that 1 < dist(u, v) ≤ x(u) + x(v) then there is an edge (u, v) in C(t), (c) if two agents are565

connected by an edge in G(t), then there is a pairwise interaction between them in C(t) if566

their number of common friends is ≤ γ. If their common friends are > γ then their friendship567

is strong and it will not be affected at this round, and thus no edge in C(t) is introduced.568

This concludes the description of the scheduler.569

As for the potential function, we define the potential between u and v in G(t) to be570

E(u, v) = (n(u) +
∑

w∈N(u) n(w)) + (n(v) +
∑

w∈N(v) n(w)), capturing our intuition that571

friendships are created or stopped based on how nice the two agents and their neighbors572

are. This is a computationally symmetric function and thus the protocol is consistent. The573

function g corresponds to the sum of the niceness of a node plus the niceness of its neighbors574

and thus it is degree-like. The function f is proper since it is a simple sum between u and575

v w.r.t. the output of the function g in each node. Thus, (α, β)-Dynamics on this social576

network stabilizes by Theorem 8 (the proof holds without any modification, even in this577

somewhat extended version of (α, β)-Dynamics). Theorem 8 also allows us to add any rules578

w.r.t. the scheduler S like imposing a maximum number of friends, allowing for additional579

random connections (to achieve long-range interaction), etc. Similarly, we can change the580

definition of potential and still prove stabilization as long as the assumptions of Theorem 8581

are valid. If these assumptions are violated, as it would be in the case of a potential function582

that applies to a subset of neighbors (e.g., common neighbors between u and v), then a583

new analysis is required to prove stabilization, if stabilization can be reached. Finally, the584

scheduler allows us to remove the assumption of permanence on enmity by allowing under585

certain conditions particular pairwise interactions, thus dynamically changing the set EN (v).586

Another straightforward generalization is to allow for general stateless protocols A587

targeting at providing algorithmic solutions for specific problems. An example of such a588

generalization is given below for constructing a spanning star. We show in simple terms589

the stateless approach when compared to state-dependent approaches for constructing a590

network (e.g., Network Constructors model [21, 22]). In some sense, we already provide591

such an example of explicit network construction in the case of the α-core. We assume a592

uniform random scheduler, that is, in our model we assume that in each time step a pairwise593

interaction is chosen uniformly at random. In [21] they provide a simple protocol that uses594

states on the nodes, which starting from the null graph it constructs the spanning star595

in optimal Θ(n2 logn) expected time. We discuss a protocol A that computes a spanning596

star starting from any network. It is reminiscent of the random copying method [18] for597

generating power law networks. It would be interesting to find out whether hub-and-spoke598

networks (essentially star networks) can be generated by some similar social process. In this599

case, the probability of choosing pairwise interactions should be related to the degree of the600

involved nodes, leading to the definition of a non-uniform random scheduler.601

To describe the protocol let u and v be two nodes that interact at time t as determined602

by the scheduler. If no edge exists between them, an edge (u, v) is added. Assume w.l.o.g.603

that d(t)
G (u) > d

(t)
G (v). Then, the protocol dictates that all edges of v are to be moved to u.604

In case d(t)
G (u) = d

(t)
G (v) 6= 1, we break symmetry (symmetry breaking was also needed in [21]605

by the scheduler) by tossing a fair coin in each node as to which node is going to transfer606

its neighbors. The nodes communicate the result of their toss and if found equal no change607

happens in the current round, otherwise we again move all edges from the one node to the608

other. If d(t)
G (u) = d

(t)
G (v) = 1 then let x and y be the only neighbors of u and v respectively.609

If d(t)
G (x) = d

(t)
G (y) = 1, x and y toss a fair coin and if it happens to be different one of these610

nodes will be the root of a tree with three leaves. Otherwise, the same process is applied on x611

and y as in u and v. Note that in this case the degrees of x and y cannot be both equal to 1.612

E. Kipouridis, P. Spirakis and K. Tsichlas 15

On the positive side, the difference of this protocol to the one given in [21] is that no613

state dynamics are used and we start from an arbitrary network. However, on the negative614

side, a pairwise interaction between u and v may affect all nodes up to distance 2 since no615

states are used that could allow us to move these edges incrementally in future interactions.616

Correctness is proved based on the observation that in each round when a leaf node has its617

degree increased then the connected components of the network are reduced, otherwise either618

a node becomes a leaf or nothing happens due to the symmetry breaking mechanism. Because619

of this stalling due to symmetry breaking, the time complexity analysis is more involved but620

we conjecture only by a polylogarithmic factor away from the one in [21] (due to moving the621

edges). The protocol could be simplified in order to change only the neighborhood of u and622

v, but the time complexity would increase substantially. To exploit parallel time, we could623

allow for more interactions per round as long as those are not affecting each other.624

8 Conclusion625

(α, β)-Dynamics are stateless structural dynamics of a network. The protocol allows for two626

thresholds that affect the existence of the edges in the pairwise interactions determined by627

the scheduler at each time step. Since the dynamics are purely structural, the output of628

the protocol is another network, and thus (α, β)-Dynamics can be considered as a network629

transformation process. Such a process for example has been used in [33] to detect communi-630

ties. In fact, the authors wondered whether conditional convergence could be proved. It is a631

matter of technical details to show that for regular networks one can choose α and β such632

that the protocol never stabilizes.633

For future research, it would be very interesting to look at the notion of parallel time634

in (α, β)-Dynamics. Another interesting research direction is to see the effect of higher635

order structural interactions as well as look at how the model is affected when messages636

are restricted in size (in accordance to the Congest model from distributed computing).637

Finally, inspired by the computation of the α-core in Section 3, a very interesting question is638

to look at more involved problems w.r.t. emergent behavior from simple protocols.639

References640

1 Y. Afek, N. Alon, O. Barad, E. Hornstein, N. Barkai, and Z. Bar-Joseph. A biological solution641

to a fundamental distributed computing problem. Science, 331:183–5, 2011.642

2 D. Alistarh and R. Gelashvili. Recent algorithmic advances in population protocols. SIGACT643

News, 49(3):63–73, 2018.644

3 D. Angluin, J. Aspnes, Z. Diamadi, M.J. Fischer, and R. Peralta. Computation in networks of645

passively mobile finite-state sensors. Distributed Computing, 18(4):235–253, 2006.646

4 D. Angluin, J. Aspnes, D. Eisenstat, and E. Ruppert. The computational power of population647

protocols. Distributed Computing, 20(4):279–304, 2007.648

5 T. Antal, P.L. Krapivsky, and S. Redner. Social balance on networks: The dynamics of649

friendship and enmity. Physica D: Nonlinear Phenomena, 224(1):130 – 136, 2006.650

6 P. Arrighi and G. Dowek. Free fall and cellular automata. In Developments in Computational651

Models, volume 204 of EPTCS, pages 1–10, 2015.652

7 A. Barabási and R. Albert. Emergence of scaling in random networks. Science, 286(5439):509–653

512, 1999.654

8 V. Batagelj, A. Mrvar, and M. Zaversnik. Partitioning approach to visualization of large655

graphs. In Graph Drawing, volume 1731 of LNCS, pages 90–97. Springer, 1999.656

9 L. Becchetti, A. Clementi, and E. Natale. Consensus dynamics: An overview. SIGACT News,657

51(1):58–104, 2020.658

16 Threshold-based Network Structural Dynamics

10 L. Becchetti, A. Clementi, E. Natale, F. Pasquale, and L. Trevisan. Find your place: Simple659

distributed algorithms for community detection. In SODA ’17, page 940–959, 2017.660

11 A. Casteigts, S. Chaumette, and A. Ferreira. Characterizing topological assumptions of661

distributed algorithms in dynamic networks. In Structural Information and Communication662

Complexity, pages 126–140. Springer, 2010.663

12 A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro. Time-varying graphs and664

dynamic networks. International Journal of Parallel, Emergent and Distributed Systems,665

27(5):387–408, 2012.666

13 M. Cook. Universality in elementary cellular automata. Complex Systems, 15(1), 2004.667

14 M. Gadouleau. On the influence of the interaction graph on a finite dynamical system. Natural668

Computing, 19(1):15–28, 2020.669

15 B. Gärtner and A.N. Zehmakan. (biased) majority rule cellular automata. CoRR,670

abs/1711.10920, 2017.671

16 F. Heider. The psychology of interpersonal relations. John Wiley and Sons, 1958.672

17 A. Ilachinski. Structurally Dynamic Cellular Automata, pages 29–71. Springer US, 2018.673

18 R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tompkins, and E. Upfal. The web674

as a graph. In PODS ’00, page 1–10, 2000.675

19 I. Litovsky, Y. Métivier, and E. Sopena. Graph relabelling systems and distributed algorithms.676

Handbook of Graph Grammars and Computing by Graph Transformation, 3:1–56, 1999.677

20 F.D. Malliaros, C. Giatsidis, A.N. Papadopoulos, and M. Vazirgiannis. The core decomposition678

of networks: theory, algorithms and applications. VLDB Journal, 29(1):61–92, 2020.679

21 O. Michail and P.G. Spirakis. Simple and efficient local codes for distributed stable network680

construction. Distributed Computing, 29(3):207–237, Jun 2016.681

22 O. Michail and P.G. Spirakis. Network constructors: A model for programmable matter. In682

SOFSEM ’17, pages 15–34, 2017.683

23 O. Michail and P.G. Spirakis. Elements of the theory of dynamic networks. Communications684

of the ACM, 61(2):72–72, January 2018.685

24 T. Nakagaki, H. Yamada, and Á. Tóth. Maze-solving by an amoeboid organism. Nature,686

407:470, 09 2000.687

25 R. O’Dell and R. Wattenhofer. Information dissemination in highly dynamic graphs. In688

DIALM-POMC ’05, pages 104–110, 2005.689

26 S. Saidani. Self-reconfigurable robots topodynamic. In Proceedings of the 2004 IEEE Int.690

Conference on Robotics and Automation, ICRA, volume 3, pages 2883 – 2887 Vol.3, 01 2004.691

27 H. Sayama and C. Laramee. Generative Network Automata: A Generalized Framework for692

Modeling Adaptive Network Dynamics Using Graph Rewritings, pages 311–332. Springer, 2009.693

28 D.M.D. Smith, J.-P. Onnela, C.F. Lee, M.D. Fricker, and N.F. Johnson. Network au-694

tomata: Coupling structure and function in dynamic networks. Advances in Complex Systems,695

14(03):317–339, 2011.696

29 G. Szekeres and H. Wilf. An inequality for the chromatic number of a graph. Journal of697

Combinatorial Theory, 4:1–3, 1968.698

30 D.J. Watts and S.H. Strogatz. Collective dynamics of ’small-world’ networks. Nature,699

393(6684):440–442, 1998.700

31 S. Wolfram. A New Kind of Science. Wolfram Media Inc., 2002.701

32 S. Wolfram. A class of models with the potential to represent fundamental physics, 2020.702

arXiv:2004.08210.703

33 Y. Zhang, J. Wang, Y. Wang, and L. Zhou. Parallel community detection on large networks704

with propinquity dynamics. In ACM SIGKDD ’09, pages 997–1006, 2009.705

http://arxiv.org/abs/2004.08210

E. Kipouridis, P. Spirakis and K. Tsichlas A.1

A (α, β)-Dynamics with α = β and a Proper Potential Function on706

the Degrees707

In this case we study (α, β)-Dynamics where the potential of a pair of nodes is any symmetric708

non-decreasing function on the degrees of its two endpoints, as happens with Section 3.709

We prove stabilization as well as that the number of steps needed until stabilization is710

O(n), assuming α = β. More formally, we define the potential of a pair (u, v) to be711

E(u, v) = f(dG(t)(u), dG(t)(v)), where f is a proper (symmetric and non-decreasing in both712

variables) function. The scheduler S is fixed and contains all
(

n
2
)
possible pairwise interactions.713

For the graph G(t), let R(t)(u, v) be an equivalence relation defined on the set of nodes V714

for time t, such that (u, v) ∈ R(t) if and only if dG(t)(u) = dG(t)(v). The equivalence class R(t)
i715

corresponds to all nodes with degree d(R(t)
i), where i is the rank of the degree in decreasing716

order. This means that the equivalence class R(t)
1 contains all nodes with maximum degree717

in G(t). Assuming that n = |V |, the maximum number of equivalence classes is n− 1, since718

the degree can be in the range [0, n − 1] and no pair of nodes can exist that have degree719

0 and n− 1 simultaneously. Let |G(t)| be the number of equivalence classes in graph G(t).720

Before moving to the proof, we give certain properties of the dynamic process that hold for721

all t ≥ 1, that is they hold after at least one round of the process (initialization). These722

properties will be used in the proof for stabilization.723

From a bird eye’s view of what follows, we notice that in this framework two nodes behave724

in the same way if their degrees are the same, due to the definition of the potential function.725

Furthermore, if at any time a node u has degree at least as large as the degree of another726

node v, then it will form at least as many edges in the next time step, thus preserving the727

relative order of their degrees. These observations help us define some equivalence classes728

related to the degrees of the nodes, whose properties allow us to inductively prove our upper729

bounds. This intuition is formalized in the following properties:730

B Property 1. If dG(t)(u) ≥ dG(t)(w), then dG(t+1)(u) ≥ dG(t+1)(w), for all t ≥ 1.731

Proof. For any neighbor v of w in G(t+1) it holds that E(t)(v, w) ≥ β. Then it also holds that732

E(t)(v, u) ≥ β, since f is non-decreasing, which means v is also a neighbor of u in G(t+1). J733

Nodes that have the same degree at time t, share the same neighbors at time t+ 1.734

B Property 2. If dG(t)(u) = dG(t)(w), then NG(t+1)(u) = NG(t+1)(w).735

Proof. As in the proof of Property 1, due to the equality of the degrees, it also holds that736

any neighbor v of u is a neighbor of w and respectively any neighbor v of w is a neighbor of737

u. J738

In the following, we discuss properties related to equivalence classes.739

B Property 3. The number of equivalence classes in G(t+1) is less than or equal to the740

number of equivalence classes in G(t).741

Proof. By Property 2, nodes that belong to the same equivalence class at time t > 0 will742

always belong to the same equivalence class for all t′ > t. J743

B Property 4. If G(t+1) has the same number of equivalence classes as G(t), then ∀i,744

|R(t)
i | = |R

(t+1)
i |, where |R(t)

i | is the number of nodes in the equivalence class R(t)
i .745

A.2 Threshold-based Network Structural Dynamics

Proof. Suppose that the above does not hold. Then, there is some i for which |R(t)
i | 6= |R

(t+1)
i |.746

This means that there must be two nodes in some equivalence class R(t)
j that landed to747

different classes in G(t+1). However, Property 2 implies that this is impossible. J748

The following lemma shows how equivalence classes behave w.r.t. edge distribution.749

I Lemma 4. If an arbitrary node u in R(t)
i is connected with some node w in R(t)

j , then u750

is connected with every node x in every equivalence class R(t)
k , such that k ≤ j and t > 0.751

Proof. Due to Property 1, for all nodes x ∈ R(t)
k it holds that dG(t)(x) ≥ dG(t)(w) and so752

they are also neighbors of u. J753

We prove by induction that this (α, β)-Dynamics always stabilizes in at most |G(0)|+ 1754

steps. To begin with, it is obvious that the clique Kn as well as the null graph Kn both755

stabilize in at most one step, for any value of β. The following renormalization lemma756

describes how the number of equivalence classes is reduced and is crucial to the induction757

proof.758

I Lemma 5. If d(R(t)
1) = n− 1, ∀t ≥ c, c ∈ N, and the subgraph G(c) \R(c)

1 stabilizes for any759

value of β and proper function f , then G(c) stabilizes as well. Similarly, if d(R(t)
|G(t)|) = 0,760

∀t ≥ c, c ∈ N, and the subgraph G(c) \R(c)
|G(c)| stabilizes for any value of β and proper function761

f , then G(c) stabilizes as well. The time it takes for G(c) to stabilize is the same as the time762

it takes for the induced subgraph to stabilize for both cases.763

Proof. The main idea is that we consider two different sets of nodes: R(c)
1 and V \ R(c)

1 .764

Due to our hypothesis, at all future time steps the edges between these two groups, and the765

edges with both endpoints in R(c)
1 are fixed. Concerning the edges with both endpoints in766

V \R(c)
1 , we can almost study this subgraph independently. That’s because the effect of R(c)

1767

on V \R(c)
1 is completely predictable: it always increases the degree of all nodes by the exact768

same amount. The same reasoning applies for R(c)
|G(c)|.769

More formally, by Property 1, for all t ≥ c it holds that R(t)
1 ⊆ R

(t+1)
1 . This means770

that the nodes in R(c)
1 are always connected to every node after time c. As a result, for all771

u ∈ V \R(c)
1 it holds that their degree in the induced subgraph G(t) \R(c)

1 is dG(t)(u)− |R(c)
1 |.772

Thus, the decision for the existence of an edge (u, v), where u, v ∈ G(t) \R(c)
1 is the following:773

E(t)(u, v) = f(d
G(t)\R(c)

1
(u) + |R(c)

1 |, dG(t)\R(c)
1

(v) + |R(c)
1 |) ≥ β774

which can be written as:775

E(t)(u, v) = g(d
G(t)\R(c)

1
(u), d

G(t)\R(c)
1

(v)) ≥ β776

where777

g(x, y) = f(x+ |R(c)
1 |, y + |R(c)

1 |)778

Clearly, g is a proper function assuming that f is a proper function. Thus, the choice779

of whether the edge exists between u and v is equivalent between G(t) and G(t) \ R(c)
1 by780

appropriately changing f to g. But due to our hypothesis G(c) \ R(c)
1 stabilizes, and thus781

G(c) also stabilizes in the same number of steps. Note that we need not compute g since this782

is only an analytical construction; the dynamic process continues as defined. The proof of783

the second part of the lemma is similar in idea but much simpler since function f does not784

change due to the fact that the removed nodes have degree 0. J785

E. Kipouridis, P. Spirakis and K. Tsichlas A.3

The following theorem establishes that this (α, β)-Dynamics stabilizes in linear time.786

I Theorem 5. When α = β, f is proper, E(u, v) = f(dG(t)(u), dG(t)(v)), and the scheduler787

C(t) contains all
(

n
2
)
possible pairwise interactions, (α, β)-Dynamics stabilizes on given G(0)

788

in at most |G(0)|+ 1 steps.789

Proof. By Property 3 we have that |G(1)| ≤ |G(0)|. Therefore, it suffices to prove that (α, β)-790

Dynamics stabilizes in at most |G(1)|+ 1 steps, or equivalently that it stabilizes in at most791

|G(1)| steps after time 1; for technical reasons, we prove that for any t0 > 0, (α, β)-Dynamics792

stabilizes in at most |G(t0)| steps after t0. This is necessary for some of the needed tools to793

work (for example Lemma 4, which doesn’t work for time 0).794

We prove our claim inductively, on the number of equivalence classes at time t0. For the795

base case, if |G(t0)| = 1, then we have a regular graph. If f(d(R(t0)
1), d(R(t0)

1)) < β, we get796

that G(t0+1) is the null graph Kn, which indeed stabilizes because f(d(R(t0+1)
1), d(R(t0+1)

1)) =797

f(0, 0) ≤ f(d(R(t0)
1), d(R(t0)

1)) < β. Similarly, if f(d(R(t0)
1), d(R(t0)

1)) ≥ β we get that798

G(t0+1) is the complete graph Kn, which stabilizes because f(d(R(t0+1)
1), d(R(t0+1)

1)) =799

f(n− 1, n− 1) ≥ f(d(R(t0)
1), d(R(t0)

1)) ≥ β.800

For the inductive step, suppose that |G(t0)| > 1. If |G(t0+1)| < |G(t0)|, then the lemma801

follows by our inductive hypothesis. Else, we discern two cases, namely whether f(n−1, 0) < β802

or f(n− 1, 0) ≥ β.803

We begin with the case f(n − 1, 0) < β. If at some time step t ≥ t0 it holds that804

d(R(t)
|G(t)|) = 0, then for all t′ ≥ t it still holds that d(R(t′)

|G(t′)|) = 0. To see this, notice805

that if it does not hold, then there exists a minimal t′ > t such that a node u ∈ R(t)
|G(t)|806

has degree d(t′)(u) > 0. But this means that there exists some vertex v 6= u such that807

f(d(t′−1)(v), d(t′−1)(u)) = f(d(t′−1)(v), 0) ≥ β. But since d(t′−1)(v) ≤ n−1, and f(n−1, 0) <808

β, we reach a contradiction.809

By the above observation and Lemma 5, it immediately follows that if d(R(t0)
|G(t0)|) = 0 or810

d(R(t0+1)
|G(t0+1)|) = 0, then our lemma holds.811

Therefore, we are only left with the case where |G(t0+1)| = |G(t0)| and no node has degree812

0, neither in G(t0) nor in G(t0+1). For any i, the i-th equivalence class of G(t0) and the i-th813

equivalence class of G(t0+1) have the same number of nodes, by Property 4. If they also814

have the same degree, then Lemma 4 shows that the two graphs are equal, and thus we have815

stabilization in 0 steps.816

By Lemma 4, each of the |G(t0)| equivalence classes at time t0 has only |G(t0)|+ 1 possible817

values for its degree, and, by definition, no two classes have the same degree. However, one818

of these values is 0, which we ruled out for any equivalence class, meaning that there are only819

|G(t0)| possible values for the |G(t0)| pairwise disjoint degrees. The same argument can be820

made for t0 + 1. However, by Property 4, we get that the possible values for both time steps821

are the same, concluding that for all i ∈ {1, . . . , |G(t0)|}, we have d(R(t0)
i) = d(R(t0+1)

i).822

The case f(n − 1, 0) ≥ β is completely similar. If at some time step t ≥ t0 it holds823

that d(R(t)
1) = n − 1, then for all t′ ≥ t it still holds that d(R(t′)

1) = n − 1. To see this,824

notice that if it does not hold, then there exists a minimal t′ > t such that a node u ∈ R(t)
1825

has degree d(t′)(u) < n − 1. But this means that there exists some vertex v 6= u such826

that f(d(t′−1)(u), d(t′−1)(v)) = f(n − 1, d(t′−1)(v)) < β. But since d(t′−1)(v) ≥ 0, and827

f(n− 1, 0) ≥ β, we reach a contradiction.828

By the above observation and Lemma 5, it immediately follows that if d(R(t0)
1) = n− 1829

or d(R(t0+1)
1) = n− 1, then our lemma holds. Therefore, we are only left with the case where830

|G(t0+1)| = |G(t0)| and no node has degree n− 1, neither in G(t0) nor in G(t0+1).831

A.4 Threshold-based Network Structural Dynamics

Therefore, we are only left with the case where |G(t0+1)| = |G(t0)| and no node has degree832

0, neither in G(t0) nor in G(t0+1). For any i, the i-th equivalence class of G(t0) and the i-th833

equivalence class of G(t0+1) have the same number of nodes, by Property 4. If they also834

have the same degree, then Lemma 4 shows that the two graphs are equal, and thus we have835

stabilization in 0 steps.836

By Lemma 4, each of the |G(t0)| equivalence classes at time t0 has only |G(t0)|+ 1 possible837

values for its degree, and, by definition, no two classes have the same degree. However, one838

of these values is n− 1, which we ruled out for any equivalence class, meaning that there are839

only |G(t0)| possible values for the |G(t0)| pairwise disjoint degrees. The same argument can840

be made for t0 + 1. However, by Property 4, we get that the possible values for both time841

steps are the same, concluding that for all i ∈ {1, . . . , |G(t0)|}, we have d(R(t0)
i) = d(R(t0+1)

i).842

J843

B Turing-Completeness844

B.1 Cellular Automata and Rule 110845

An one-dimensional cellular automaton, or, as called by Wolfram, an elementary cellular846

automaton, is a discrete model of computation. It consists of an one-dimensional grid of847

infinitely many cells, each containing a binary value. The value of all cells is updated848

synchronously, in discrete time steps. Each cell updates its value based on its own value and849

the values of its two neighboring cells.850

Since the new value of each cell depends on 3 binary values, there are only 8 different851

cases for this update. We write 001 for the case where the left neighbor’s value and the852

current value of a cell is 0 while the right neighbor’s value is 1, 101 for the case where853

both neighbors have value 1 while the current value is 0, and so on. Wolfram proposed the854

following numbering scheme for elementary cellular automata. Suppose we create a binary855

number whose most significant bit is the updated value of a cell in case 111, the second most856

significant bit is the updated value in case 110, and so on until the least significant bit, the857

updated value in case 000. If we acquire number X by translating this binary number to858

decimal, then this particular cellular automaton is Rule X.859

Therefore, Rule 110 is the cellular automaton corresponding to the binary number860

01101110; simply put, the updated value of a cell is equal to its right neighbor’s value, if its861

current value is 0. Else, it is 0 iff both its neighbors have value 1. What is interesting about862

Rule 110 is that although it is very easy to describe, Cook proved it to be Turing-Complete863

[13]. One shall think of the initial configuration of the cells to contain both the program and864

its input; if the Turing machine corresponding to the program would halt on this input, then865

Rule 110 stabilizes to a state that keeps on repeating forever. From this state, one is able866

to directly retrieve what the Turing machine would output. This allows us to prove Turing867

Completeness for some model of computation by just showing that it is able to simulate Rule868

110, which is much simpler than a Turing machine.869

B.2 Proofs of Turing Completeness section870

For reference in the proofs that follow, Figure 2 depicts how CG(i) (cell i) is connected to871

CG(i+ 1) (cell i+ 1) and CG(i− 1) (cell i− 1).872

I Lemma 10. If there exists a flip (x, y)-gadget connected to an Aj(i) PCG in G(0), then873

the edge (x, y) at time t exists if and only if t ∈ N ∪ {0}. Similarly, if there exists a flip874

(x, y)-gadget connected to a Bj(i) PCG in G(0), then the edge (x, y) exists if and only if875

E. Kipouridis, P. Spirakis and K. Tsichlas A.5

Figure 2 Each circle represents a PCG and each line represents a connection between PCGs
(4 always-on gadgets) as in Figure 1. Only connections relevant to A1(i), A2(i), B1(i), B2(i) are
shown. The 4 connections in the second column (again each one is 4 always-on gadgets) are internal
connections of CG(i). All other connections correspond to how CG(i− 1) is connected with CG(i)
and CG(i) is connected with CG(i+ 1). We prove that these connections are always preserved.

t 6∈ N ∪ {0}. Finally, all other edges exist at any time step if and only if they exist in G(0),876

with the exception of edges between (h, l) nodes of a PCG.877

Proof. We prove our claim using induction on the time step t. The base case t = 0 holds878

by the construction of G(0). Suppose our claim holds for time step t− 0.5, we show that it879

also holds for time step t. We first prove our claim for the pairs of nodes sharing an edge in880

G(0), except for the pairs (h, l) of PCGs, as the Lemma makes no claim about them. Notice881

that it suffices to argue about always-on and flip gadgets, as this is the only way we added882

non-(h, l) edges to G(0).883

Let us first focus on the nodes that, at G(0), are contained in the same always-on (x, y)-884

gadget. We argue that for any two such nodes x′, y′, the edge between them exists on885

time step t, except possibly for the (x, y) edge; more formally, the unordered pair {x′, y′} is886

assumed to be different from {x, y}. By definition of the always-on gadget and the inductive887

hypothesis, x′ and y′ have exactly 20 common neighbors in G(t−0.5), and thus they continue888

sharing an edge in G(t). Concerning the x, y nodes of the gadget, we take cases depending on889

whether they also happen to be the two special endpoints of a flip (x, y) gadget in G(0) or890

not. In the former case, by the inductive hypothesis, they have between 40 and 41 common891

neighbors in G(t−0.5), depending on the existence of edges not defined by our induction892

hypothesis. Thus, these edges always flip their status at t, as the lemma dictates. In the893

latter case they have between 20 and 24 common neighbors in G(t−0.5), depending on the894

existence of edges not defined by our induction hypothesis. Thus, these edges continue to895

exist in G(t).896

We are only left to argue about pairs of nodes with no edge connecting them in G(0).897

For a non-existent edge to become existent, it must be that its two endpoints have at least898

40 common neighbors, by the potential function. But, by the inductive hypothesis and899

the construction of G(0), this only happens for endpoints x, y for which there exists a flip900

(x, y)-gadget (we already argued about such cases) and for endpoints h, l of some PCG (for901

which case our lemma does not claim anything). Thus, no other edge is ever created. J902

A.6 Threshold-based Network Structural Dynamics

I Lemma 11. It holds that A(t)
j (i) = B

(t)
j (i) = cell(t)(i) for j ∈ {1, 2} and all i, t ∈ N.903

Proof. It holds that A(0)
j (i) = B

(0)
j (i) = cell(0)(i) by the initialization of our construction.904

Suppose that A(t)
j (i) = B

(t)
j (i) = cell(t)(i) for an integer t ≥ 0. By using induction we show905

that the lemma holds for time t+ 1.906

First of all, we prove that A(t+0.5)
j (i) = cell(t+1)(i). If cell(t)(i) = 0, then it holds that907

cell(t+1)(i) = cell(t)(i + 1) = A
(t)
j (i + 1) = B

(t)
j (i + 1), due to our inductive hypothesis.908

Furthermore, due to our inductive hypothesis it holds that A(t)
j (i) = B

(t)
1 (i) = B

(t)
2 (i) =909

0. Thus, since CN (t)(Aj(i)(h), Aj(i)(l)) = 70 and |E(t)(Aj(i)(h), Aj(i)(l))| = 0 (there910

is no edge between the (h, l) nodes in Aj(i)) the potential between the pair of nodes is911

E(t)(Aj(i)(h), Aj(i)(l)) = CE(t)(Aj(i)(h), Aj(i)(l)) + β − 10. To find the potential of the912

pair of nodes Aj(i) we compute:913

CE(t)(Aj(i)(h), Aj(i)(l)) = 8 +A
(t)
j (i− 1) +B

(t)
1 (i) +B

(t)
2 (i) +A

(t)
j (i+ 1) +B

(t)
j (i+ 1) =914

915

8 + cell(t)(i− 1) + 2cell(t)(i+ 1)916

Thus, it follows that the potential of Aj(i)(h) and Aj(i)(l) is β+cell(t)(i−1)+2cell(t)(i+1)−2,917

which is at least β if and only if cell(t)(i+ 1) = 1. Thus, in the case where cell(t)(i) = 0 we918

proved that indeed it holds that A(t+0.5)
j (i) = cell(t+1)(i).919

We use a similar reasoning for the case where cell(t)(i) = 1. In particular, since920

CN (t)(Aj(i)) = 70 and |E(t)(Aj(i))| = 1 (there is an edge between the (h, l) nodes in Aj(i))921

the potential between the pair of nodes is E(t)(Aj(i)(h), Aj(i)(l)) = β + 12− CE(t)(Aj(i)).922

We compute:923

CE(t)(Aj(i)(h), Aj(i)(h)) = 8 +A
(t)
j (i− 1) +B

(t)
1 (i) +B

(t)
2 (i) +A

(t)
j (i+ 1) +B

(t)
j (i+ 1) =924

925

= 10 + cell(t)(i− 1) + 2cell(t)(i+ 1)926

Thus, it follows that the potential of Aj(i)(h) and Aj(i)(l) is E(t)(Aj(i)) = β + 2− cell(t)(i−927

1)− 2cell(t)(i+ 1), which is less than β if and only if cell(t)(i− 1) = cell(t)(i+ 1) = 1. This928

proves that A(t+0.5)
j (i) = cell(t+1)(i).929

It also holds that A(t+1)
j (i) = cell(t+1)(i), because CN (t+0.5)(Aj(i)(h), Aj(i)(l)) = 10, and930

thus A(t+1)
j (i) = A

(t+0.5)
j (i). Similarly, B(t+0.5)

j (i) = B
(t)
j (i) as CN (t)(Bj(i)(h), Bj(i)(l)) = 6.931

The potential of Bj(i) at time t+ 0.5 is (recall that CN (t)(Bj(i)(h), Bj(i)(l)) = 66):932

E(t+0.5)(Bj(i)(h), Bj(i)(l)) = CE(t+0.5)(Bj(i)(h), Bj(i)(l)) + β − 6 =933

934

β + 2A(t+0.5)
j (i) +A

(t+0.5)
j (i− 1)− 2935

This is at least β if and only if A(t+0.5)
j (i) = 1, which proves that B(t+1)

j (i) = cell(t+1)(i). J936

I Theorem 13. The (α, β)-Dynamics is Turing-Complete.937

Proof. By Lemma 10 and Corollary 12 it follows that Rule 110 would be correctly simulated938

by the particular (α, β)-Dynamics constructed above, if the transitional non-integer time939

steps were missing, and thus the convergence of an instance of Rule 110 would mean the940

stabilization of the constructed (α, β)-Dynamics . To achieve this, we simulate the two steps941

of the constructed (α, β)-Dynamics in one step based on the observation that the defined942

potential for each pair of nodes x, y depends only on the graph induced by the nodes at943

distance at most 1 from either x or y. As a result, if nodes x and y at time step t could944

E. Kipouridis, P. Spirakis and K. Tsichlas A.7

’guess’ what this induced graph would look like in the transitional, non-integer, time step945

t+ 0.5, they could immediately use this to deduce their potential in time step t+ 0.5.946

We are left to argue about how x and y get information about this induced graph.947

Notice that a node u may get connected with another node v at any time step t′ only if948

d(t′−0.5)(u, v) ≤ 2. Thus, in order for x and y to be able at time step t, to know this induced949

graph at time step t+ 0.5, it suffices to compute the connections at time t+ 0.5 between950

all nodes u for which min{d(t)(x, v), d(t)(y, v)} ≤ 2. In turn, in order to compute such a951

potential, they need to have information about nodes at distance 1 from these nodes that lie952

at distance at most 2. In conclusion, it suffices to access all nodes at distance at most 3 at953

time t; notice that by Lemma 10 and the construction of G(0), there is a constant number of954

such nodes, for any pair (x, y) and time t.955

Therefore, the new (α, β)-Dynamics starts with the same G(0) and computes the new956

potential between any two nodes x, y in two conceptual steps. In the first step, it uses the old957

potential function, and information from nodes at distance at most 3 from either of them, to958

compute how the graph induced by all nodes u for which min{d(t)(x, u), d(t)(y, u)} ≤ 2 would959

look like at time t+0.5. Then, by applying the old potential function on this computed graph,960

it computes the final potential between x and y, effectively simulating the transitional time961

step. Therefore, the potential function only acquires information from nodes at a constant962

distance (at most 3) from either x or y, as required. It is also clear that it is network-agnostic,963

or in other words that it is designed without access to the topology of G(0).964

To see that this new potential function is computationally symmetric, notice that the965

auxiliary graph is computed both by x and by y by accessing the same information and using966

the same computationally symmetric potential function, meaning both x and y end up with967

the same auxiliary graph. Then, they apply the same computationally symmetric function968

on this graph, meaning that they acquire the same value.969

Finally, we have shown that at any time step, each node only has a constant number970

of neighbors. Therefore, the auxiliary graph also has a constant number of nodes, and we971

only need a constant number of words to represent the auxiliary graph. The computation972

of each such edge in the auxiliary graph, as well as the final computation, uses the old973

potential function; all these computations are using the same working memory. Thus,974

the new potential function respects the restriction of having a working memory at most975

(asymptotically) logarithmic in size, compared to the input memory (which contains the976

neighborhoods of u and v), since the old potential function does as well. The time needed is977

also polynomial in the input size, as the same holds for the time needed to compute the old978

potential function.979

J980

	Introduction
	Preliminaries
	(a,b)-Dynamics - Thresholded Network Dynamics
	Related Work

	Taking the Minimum
	(a,b)-Dynamics with a=b and a Proper Potential Function on the Degrees
	(a,b)-Dynamics Stabilization for Arbitrary Scheduler
	Turing-Completeness
	Extensions
	Conclusion
	(a,b)-Dynamics with a=b and a Proper Potential Function on the Degrees
	Turing-Completeness
	Cellular Automata and Rule 110
	Proofs of Turing Completeness section

