1	A Systematic Review of Anticoagulation Strategies for Patients With Atrial Fibrillation in
2	Critical Care.
3	
4	Alexandra J Nelson ¹ , Brian W Johnston ^{2,4} , Alicia AC Waite ² , Gedeon Lemma ³ , Ingeborg D
5	Welters ^{1,2,4}
6	¹ Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University
7	of Liverpool, Liverpool, United Kingdom
8	² Intensive Care Unit, Royal Liverpool University Hospital, Liverpool, United Kingdom
9	³ School of Medicine, University of Liverpool, Liverpool, United Kingdom
10	⁴ Liverpool Centre of Cardiovascular Science, Liverpool, United Kingdom
11	
12	Corresponding Author: Professor Ingeborg D Welters MD/PhD, MA, University of Liverpool,
13	Email address: <u>I.welters@liverpool.ac.uk</u>
14	Telephone: +44 151 706 3191
15	
16	
17	
18	
19	
20	
21	
22	

23 Abstract

24	Background. Atrial fibrillation (AF) is the most common cardiac arrhythmia in critically
25	ill patients. There is a paucity of data assessing the impact of anticoagulation strategies on
26	clinical outcomes for general critical care patients with AF. Our aim was to assess the existing
27	literature to evaluate the effectiveness of anticoagulation strategies used in critical care for AF.
28	Methodology. A systematic literature search was conducted using MEDLINE,
29	EMBASE, CENTRAL and PubMed databases. Studies reporting anticoagulation strategies for
30	AF in adults admitted to a general critical care setting were assessed for inclusion.
31	Results. Four studies were selected for data extraction. A total of 44087 patients were
32	identified with AF, of which 17.8-49.4% received anticoagulation. The reported incidence of
33	thromboembolic events was 0-1.4% for anticoagulated patients, and 0-1.3% in non-
34	anticoagulated patients. Major bleeding events were reported in three studies and occurred in
35	7.2-8.6% of the anticoagulated patients and in up to 7.1% of the non-anticoagulated patients.
36	Conclusions. There was an increased incidence of major bleeding events in
37	anticoagulated patients with AF in critical care compared to non-anticoagulated patients. There
38	was no significant difference in the incidence of reported thromboembolic events within studies
39	between patients who did and did not receive anticoagulation. However, the outcomes reported
40	within studies were not standardised, therefore, the generalisability of our results to the general
41	critical care population remains unclear. Further data is required to facilitate an evidence-based
42	assessment of the risks and benefits of anticoagulation for critically ill patients with AF.
43	Keywords: Atrial fibrillation, anticoagulation, critical care, intensive care, new-onset atrial
44	fibrillation.

45 Introduction

46 Atrial fibrillation (AF) is the most common cardiac arrythmia in the critical care population^{1,2}. 47 Nearly one third of patients admitted to critical care have a diagnosis of pre-existing atrial 48 fibrillation (PEAF) or develop new-onset atrial fibrillation (NOAF) during their admission¹. AF 49 can result in rapid ventricular rates, leading to decreased cardiac output and haemodynamic 50 compromise which may acutely decompensate already unstable critically ill patients^{1,3}. Reduced 51 blood velocity in the left atrium, as a result of inefficient atrial systole, predisposes patients with 52 AF to cardiac and systemic emboli, which can cause a significant disease burden both in critical care and long term^{4,5}. AF in the critical care setting is associated with a two to fivefold increased 53 54 risk of mortality, and a twofold increased risk of stroke^{1,6}. 55 In addition to well-known risk factors for AF, such as advancing age, hypertension, ischaemic 56 heart disease, heart failure and valvular disease, there are specific factors related to critical illness that predispose patients to the development of NOAF^{1,2}. These factors include electrolyte 57 58 abnormalities, hypoxaemia, adrenergic overstimulation, progressive autonomic dysfunction, 59 acute systemic inflammation, sepsis and shock^{1,2}. Changes in autonomic activity, resulting from 60 vasopressor administration and electrolyte disturbances, can lead to increased atrial ectopic 61 impulses and subsequent NOAF³. 62 Chronic comorbid conditions associated with AF, such as hypertension, ischaemic heart disease and pulmonary diseases are common in patients admitted to critical care⁷. Furthermore, critical 63 64 illness predominantly affects adults above the age of 65 years which matches the age-related risk

65 for developing AF in the general population⁸.

66 Oral anticoagulation for thromboembolism prophylaxis is a key component of managing AF in

67 the general population, however, no specific guidelines currently exist for the use of

68 anticoagulation in the critical care setting⁹. Internationally, clinicians are guided in the 69 management of AF by recommendations from the National Institute for Health and Care Excellence (NICE), the European Cardiology Society and the American Heart Association ¹⁰⁻¹². 70 71 With regard to anticoagulation for NOAF; these guidelines recommend the use of validated tools 72 to assess thromboembolic risk (e.g. CHA₂DS₂-VASc) and bleeding risk (HAS-BLED) to stratify 73 patients that may benefit from systemic anticoagulation through prevention of thromboembolic 74 events such as stroke¹⁰. However, the risk-benefit tools used to aid decision making about 75 anticoagulation, including CHA2DS2-VASc and HAS-BLED, have not been validated in critical 76 care populations¹³. A recent retrospective study showed that CHA2DS2-VASc and HAS-BLED 77 scores were not associated with stroke or major bleeding and were unable to predict these events 78 ¹⁴. Therefore, decisions around anticoagulation strategies in critical care populations are complex 79 and challenging. There are currently no recommendations relating specifically to the rational therapy of AF in the critical care setting^{13,15}. Critically ill patients may be at increased risk of 80 81 bleeding, whilst simultaneously being hypercoagulable due to the abnormal haemostasis that is 82 associated with critical illness¹³. In critically ill patients thrombocytopenia is seen in is up to 44% of patients and is associated with a four- to fivefold increased risk of bleeding¹⁶. Other factors 83 84 contributing to this acquired coagulopathy include severe sepsis, disseminated intravascular coagulation, prolonged global coagulation times and reduced levels of coagulation inhibitors¹⁶. 85 86 Additionally, critically ill patients are at a greater risk of thromboembolism due to 87 immobilisation, inflammation, mechanical ventilation and dehydration^{17,18}. Furthermore, the 88 potential need for urgent procedures and invasive devices, such as arterial lines and central 89 venous catheters, poses an additional challenge in effectively anticoagulating these patients and 90 must be considered when making anticoagulation decisions¹⁹. Major bleeding occurs in over 5%

91	of critically ill patients and is associated with a higher risk of in-hospital death. As a
92	consequence, thromboembolic prophylaxis for AF in critical care cannot be managed in the same
93	way as in non-critically ill patients ²⁰ . Hence, further research is required to facilitate the
94	development of management guidelines for AF in the critical care setting.
95	There is a paucity of data assessing the impact of different anticoagulation strategies on clinical
96	outcomes for general critical care patients with AF, both NOAF and PEAF ²¹ . A nationwide
97	survey of intensive care clinicians revealed that 63.0% of clinicians would not routinely
98	anticoagulate critically ill patients with NOAF, while 30.8% would consider anticoagulation if
99	NOAF persisted beyond 72 hours, rather than the 48 hours recommended by guidelines ^{9,12,22} .
100	Despite international guidance, a large variation in practice exists between critical care
101	clinicians, representing the unique challenges of managing AF in critically unwell patients ^{11,12,22} .
102	A consensus on an effective anticoagulation strategy for AF has therefore not yet been reached,
103	with current practice largely based on observational studies and expert opinion ³ . This systematic
104	review is designed to evaluate the effectiveness of anticoagulation strategies for AF in the critical
105	care setting.
106	

107 Methods

108 **Protocol and registration**

109 This systematic review was conducted in accordance with The Cochrane Collaboration

110 principles of Systematic Reviews and reported following the Preferred Reporting Items for

- 111 Systematic Reviews and Meta-Analyses (PRISMA) guidelines^{23,24}. The protocol for this
- 112 systematic review is registered with the International Prospective Register of Systematic

113 Reviews (PROSPERO) database (registration number: CRD42020158237). A full publication of
114 this protocol is available²⁵ (PMID: 33082186, doi:10.1136/ bmjopen-2020-037591).

115

116 Eligibility criteria

117 All quantitative studies reporting anticoagulation strategies for AF in adults (>18 years) admitted 118 to a general critical care unit or high dependency unit were assessed for inclusion. Study 119 selection was unrestricted by language. Non-randomised, randomised, prospective and 120 retrospective studies were eligible for inclusion, however, qualitative studies, case studies, 121 editorials, letters, practice guidelines, grey literature, abstract only reports, reviews and 122 commentaries were excluded. In order to comparatively assess the outcome measures, included 123 studies had both an anticoagulated and a non-anticoagulated group of patients with AF in critical 124 care. Studies including patients that had undergone cardiothoracic surgery were excluded, as 125 were studies based in service-specific intensive care units (ICU) (such as coronary care units, 126 surgical ICUs and paediatric ICUs), acute medical units and emergency departments. Studies 127 including patients who had been commenced on anticoagulation for a reason other than AF or 128 had an inherited or pre-existing bleeding or clotting disorder who could not be disentangled from 129 the entire cohort were also excluded.

130

131 Data sources and search strategy

A comprehensive broad literature search was conducted with the assistance of a health
information specialist. Databases were accessed via NICE Healthcare Database Advanced
Search (HDAS) using OpenAthens in October 2019. Studies were identified by searching
Medical Literature Analysis and Retrieval System Online (MEDLINE), Excerpta Medica

database (EMBASE), the Cochrane Central Register of Controlled Trials (CENTRAL) and
PubMed. A full description of the search strategy used in HDAS is included (Supplementary
Table 1).

139

140 Data extraction and study selection

141 The results of studies identified from the search strategy were exported to Endnote X9 (Clarivate 142 analytics) and any duplicates were removed (AN). All citations were then imported into the 143 Covidence systematic review platform (Veritas Health Innovation, Melbourne, Australia). Two 144 reviewers (AN and GL) independently screened the titles and abstracts of the identified studies 145 from the search strategy and any potentially relevant studies were then screened against inclusion 146 and exclusion criteria. Reference lists of included studies were screened to identify any other 147 eligible studies and authors were contacted if clarification regarding the data and/or methodology 148 was required. Any discrepancies or conflicts in this screening process were resolved by 149 discussion and subsequent input from a third senior reviewer (BWJ). Data was extracted 150 independently by one researcher (AN) and reviewed by a second researcher (GL). The following 151 information was extracted from studies: 1) study characteristic, including title, authors, journal, 152 publication date; 2) study design and methodology, including study type, study period and 153 number of participants; 3) population characteristics: age, sex, setting, patient comorbidities, 154 number of patients with AF; 4) recruitment procedures; and 5) the outcome measures and 155 reported findings in each study. The extracted data was documented in a series of study tables for 156 analysis.

157

158 **Outcome measures**

159	The primary outcome measures were the percentage of patients anticoagulated for treatment of
160	AF in a critical care setting and the anticoagulation strategy they received. Secondary outcome
161	measures included the incidence of any thromboembolic events (defined as stroke, transient
162	ischaemic attacks (TIAs), mesenteric ischaemia, acute limb ischaemia and pulmonary embolism)
163	during critical care admission; the development of a major bleeding event (defined by the
164	included study); length of stay (LOS) on ICU; and mortality on ICU, mortality at 28 days, 90
165	days and 365 days post discharge to identify both short and long term mortality. Other data
166	abstracted included the use of any risk stratification scores for anticoagulation such as
167	CHA2DS2-VASc and HAS-BLED, and risk stratification scores for critical illness such as
168	APACHE II or SOFA.
169	
170	Assessment of bias
171	Risk of bias in the identified studies was assessed using a modified Newcastle-Ottawa Scale
172	(NOS), a scoring system for non-randomised trials ²⁶ . The NOS is used to assess a study on three
173	broad perspectives: the selection of the study groups; the comparability of groups; and the
174	ascertainment of the outcome of interest. Although we did not identify any randomised
175	controlled trials, we had planned to use the revised Cochrane Collaborations Risk of Bias (RoB2)
176	tool to assess bias in those studies ²⁵ , using the criteria outlined in the Cochrane Handbook of
177	Systematic Reviews of Invention ²⁷ .
178	
179	Results

180 Study identification

Our literature search identified 1119 studies, of which 1081 were excluded following title and abstract screening. Full text review was undertaken for the 38 remaining studies and a further 34 studies were excluded. Four studies were progressed for data abstraction. We did not undertake meta-analysis due to the limited number of studies and their heterogeneity, which would have made statistical comparisons unmeaningful. As such, the results are presented as a narrative synthesis of the available data. Figure 1 represents a flowchart of the study identification process including the reasons for exclusion after full text review.

188

189 Study characteristics

190 One prospective and three retrospective observational studies were included in our review (Table 1); the respective patient population sizes of each study were 115^{21} , 325^{15} , 38582^{28} and 57110^{29} 191 192 (Table 2). We contacted all authors for clarification of individual methodology and outcomes of 193 their study, particularly mortality at 30 and 365 days, illness severity scores, and type of 194 therapeutic anticoagulants used. However, no additional data could be made available for further 195 analysis. We included one study, by Walkey et al., representing a patient population not exclusively based in ICU²⁸. However, all 38,582 patients included in this study had sepsis and 196 197 AF. Of these, 62% of study participants were ICU patients and 39% received vasopressors 198 during their admission, highlighting that the majority of these patients were critically ill and 199 haemodynamically unstable²⁸. This study matched the eligibility criteria on all other aspects, and 200 represents a population of predominantly critically ill patients, thus providing a large invaluable 201 data set amongst the limited number of studies available. In the largest study by Gamst et al.²⁹, 202 the adult population was defined as 15+ years, which was outside the limits of our inclusion 203 criteria of adults \geq 18 years. Exact figures for the population between 15 and 18 years in this

study were not documented, and therefore could not be disaggregated from the data. It was established by communication with the author that the 15 to 18 year old patients included in the study would have minimal effect on the results obtained, hence the study was included. There were considerable differences within the methodology of each paper, precluding progression to meta-analysis. The assessment of risk of bias for each study is outlined in Table 3²⁶. There were two high quality studies scoring seven stars^{28,29}, one fair quality study scoring five stars²¹ and one poor quality study scoring four stars out of a maximum of nine stars¹⁵.

211

212 Anticoagulation use and exposure

213 Table 4 summarises the patient characteristics of individual studies. Anticoagulation use in 214 patients and the risk scores associated with the corresponding patient populations is shown in 215 Table 5. The reported percentages of patients receiving therapeutic anticoagulation for AF in the four studies was 17.8%¹⁵, 30.4%²¹, 35.3%²⁹ and 49.4%²⁸. Anticoagulant exposure in the study by 216 217 Kanji et al.¹⁵ included therapeutic doses of unfractionated heparin (UH), low molecular weight 218 heparin (LMWH) and enteral anticoagulants. The study by Walkey et al.²⁸ included patients 219 receiving an initial therapeutic dose of parenteral (subcutaneous or intravenous) anticoagulation 220 and patients with PEAF who initially received oral anticoagulants. The results from the patients 221 receiving oral anticoagulation²⁸ in this study were not robust enough to perform instrumental 222 variable estimations of risk of stroke or bleeding events. As such, the results regarding oral anticoagulation have to be interpreted with caution²⁸. The study by Darwish et al.²¹ included 223 224 warfarin, UH, and enoxaparin and identified that warfarin and UH dosing was challenging, with 225 subtherapeutic levels in up to 50% of patients during their ICU admission. Warfarin was the most common oral anticoagulant, prescribed in two studies to $69\%^{21}$ and $89\%^{28}$ of patients 226

during their ICU admission. All patients receiving anticoagulation in the study by Gamst et al.²⁹,

228 were prescribed vitamin K antagonists (VKA) pre-admission to ICU, however the administration

of other anticoagulants was not recorded. Enoxaparin was the most common initial parenteral

- anticoagulant, prescribed for 50% of patients in the study by Walkey et al^{28} .
- 231

232 **Risk identification**

- 233 The annual risk of stroke in patients with AF, as determined by CHADS₂ or CHA₂DS₂-VAS_c
- scoring systems, was reported in two studies^{21,28}. Darwish et al.²¹ revealed anticoagulated

patients had a mean CHADS₂ score of 3.43, whilst non-anticoagulated patients had a mean score

of 3.05. The CHADS₂ scores reported in both populations place them in the 'high risk of stroke'

237 category, but only 30% of these patients received anticoagulation. The most common reason that

anticoagulation was not continued in ICU was an increased INR (>3), with 24% of patients

239 having had their warfarin discontinued on admission to ICU²¹. There was no significant

240 difference in CHA₂DS₂-VAS_c scores for the anticoagulated and non-anticoagulated populations

in the study by Walkey et al.²⁸, with poor discrimination of the risk of ischaemic stroke during

sepsis between these populations (C statistic = 0.526). Walkey et al. demonstrated that the

anticoagulated population were younger (p < 0.001) and less likely to have prior bleeding events

(p<0.001), acute haematological failure (p<0.001), acute kidney failure (p<0.001), chronic

kidney disease (p<0.001), cancer (p<0.001) or metabolic acidosis (p<0.002)²⁸. Patients who

246 received parenteral anticoagulation had significantly fewer comorbidities and acute conditions

than the non-anticoagulated population²⁸. There is no indication in either of these studies that

248 calculated risk scores were used to aid the decision of whether anticoagulation should be

249 prescribed. Table 6 summarises the primary and secondary study outcomes.

251 Thromboembolic events

252 The definition of thromboembolic events varied in the studies reviewed. Thromboembolic events 253 included were defined as the following: a diagnosis of ischaemic stroke; embolism or thrombosis 254 in extremities, mesenteric arteries or any unspecified arteries²⁹; ICD-9CM codes for ischaemic stroke²⁸; embolic stroke¹⁵; and the incidence of any stroke type during ICU admission²¹. The 255 256 study by Gamst et al.²⁹ calculated the adjusted cumulative risk ratio (CRR) for arterial 257 thromboembolism at 30 and 365 days post-admission to critical care among patients with PEAF 258 who took VKAs pre-admission compared to those who did not. The adjustments for 259 confounding were the risk factors included in the CHA₂DS₂-VAS_c score: congestive heart failure, 260 hypertension, age, diabetes mellitus, previous stroke, vascular disease and sex. Patients 261 anticoagulated with a VKA pre-admission to critical care were found to have an adjusted CRR of 262 0.57 (95% CI 0.26-1.25) at 30 days and 0.76 (95% CI 0.50-1.16) at 365 days post-admission to critical care, indicating a reduced risk of arterial thromboembolic events. Walkey et al.²⁸ carried 263 264 out a propensity-score matched analysis including 13505 patients with AF who had or had not 265 received parenteral anticoagulation and demonstrated that there was no significant difference in 266 the incidence of ischaemic stroke; 1.3% of parentally anticoagulated patients and 1.4% of non-267 anticoagulated patients developed an ischaemic stroke, with a relative risk (RR) of 0.94 (95% CI 0.77-1.15)²⁸. Patients who received initial oral anticoagulants experienced lower rates of stroke 268 269 (0.5% compared to 1.3% in patients not receiving oral anticoagulation, RR 0.46, 95% CI 0.32-0.66)²⁸. No patients were diagnosed with stroke in the studies by Darwish et al. and Kanji et al., 270 though their populations were much smaller in size, totalling 115²¹ and 325¹⁵ patients 271 272 respectively.

274 Bleeding events

275 Bleeding complications were more frequent in the anticoagulated patients than in the non-

- anticoagulated patients in the three studies that reported bleeding events. Walkey et al.²⁸ defined
- 277 clinically significant bleeding using ICD-9CM bleeding codes and reported that bleeding
- 278 occurred more often in the parentally anticoagulated population (8.6%) compared to in the non-
- anticoagulated population (7.2%) (RR 1.21, 95% 1.10-1.32). Patients receiving oral
- anticoagulation in this study experienced lower rates of bleeding compared to matched patients
- who did not receive any anticoagulation (5.2% and 6.0% respectively, RR 0.85, 95% CI 0.74-
- 282 0.97)²⁸. Kanji et al.¹⁵ reported 8.6% of patients receiving anticoagulation reported bleeding,

283 requiring interruption of their anticoagulation and blood transfusion. Incidence of bleeding was

not recorded for the non-anticoagulated population of this study¹⁵. Darwish et al.²¹ reported one

fatal central nervous system haemorrhage and one non-fatal gastrointestinal haemorrhage in the

- group of 35 patients who were anticoagulated; there were no incidents of bleeding in the group
- 287 of 80 non-anticoagulated patients.

288

289 Length of stay

Mean LOS on ICU was only reported in one study²¹ and was 8.7 ± 9.2 days for non-

anticoagulated and 7.2 \pm 6.7 days for anticoagulated patients. This difference was not statistically significant (p=0.718)²¹.

²⁹⁴ Mortality

295 We initially planned to investigate short- and long-term mortality in patients at 28 days, 90 days 296 and 365 days. However, long term mortality data was only reported by Gamst et al.²⁹ who 297 reported mortality at 30 days and 365 days. We chose to modify our outcome measures to report 298 mortality on ICU, at 30 days and 365 days. Darwish et al.²¹ reported no significant difference in 299 mortality on ICU, where 26% of the anticoagulated population and 34% of the non-300 anticoagulated population died during admission²¹. Gamst et al.²⁹ reported a significantly lower 301 mortality and relative risk (RR) of death at 30 days and 365 days post-admission to ICU for the 302 patients anticoagulated with VKA pre-admission compared to the non-VKA users²⁹. 30-day 303 mortality was 22.9% (21.3-24.6) in the pre-admission VKA users and 30.6% (28.9-32.4) in the 304 non-VKA users (RR 0.91, 95% CI 0.82-1.00)²⁹. 365-day mortality was 35.4 % (33.5-37.3), in the 305 pre-admission VKA users and 46.3% (44.4-44.8) in the non-VKA users (RR 0.91, 95% CI 0.85-306 $(0.97)^{29}$. The RR of death was adjusted for age, sex, comorbidities and services provided by the 307 general practitioner.

308

309 Discussion

310 This is the first systematic review assessing the current evidence for anticoagulation strategies in 311 critically ill patients with AF. Previous reviews have investigated the epidemiology, treatment 312 and prevention of AF and the risk factors, treatment and outcomes of NOAF, however, there is a lack of literature focusing specifically on anticoagulation in the critical care setting^{30,31}. This 313 314 systematic review demonstrates that an array of anticoagulation strategies are used for AF in 315 critical care, and only 17.8-49.4% of the patients received therapeutic anticoagulation. In the 316 studies reporting the specific anticoagulants prescribed, the most common were warfarin and 317 enoxaparin. Anticoagulated populations had lower 30 and 365 day mortality rates post-admission

318	to critical care; however, this data was only extracted from one study ²⁹ . This study by Gamst et
319	al. included patients with PEAF who were anticoagulated with VKA pre-admission to critical
320	care and did not consider other forms of anticoagulation initiated or discontinued in critical care
321	nor patients that developed NOAF ²⁹ . This must be taken into consideration when interpreting the
322	results. Critically ill patients are subject to bleeding events due to the associated coagulopathy,
323	thrombocytopenia and platelet dysfunction that may occur in critical illness ²⁰ . There was an
324	increase in clinically significant bleeding in the anticoagulated population compared to the non-
325	anticoagulated population ^{15,21} , however, there was no difference in the rate of thromboembolic
326	events between patients receiving and not receiving anticoagulation ²⁸ .
327	Anticoagulant exposure varied between the studies and only two studies specified the
328	anticoagulant doses prescribed ^{15,28} . The variation in type of anticoagulant, the lack of clarity
329	about doses and monitoring practices used, in addition to the potential for other factors such as
330	augmented renal clearance to alter the effectiveness of anticoagulation, may all have influenced
331	the incidence of thromboembolic and bleeding events documented in the studies ³² . Therefore, the
332	effects of anticoagulation on the adverse outcomes (arterial thromboembolic events in ICU,
333	bleeding events, 30-day and 365-day mortality) remain unclear. Given the low number of
334	selected studies and their retrospective nature, it was not possible to investigate outcomes of
335	different anticoagulants, for example, parenteral versus oral anticoagulants. The four studies did
336	not clearly define treatment doses of individual anticoagulants and therefore the safety and
337	efficacy of different anticoagulant prescriptions could not be assessed. Future prospective studies
338	should define clear outcome measures including dosing regimens of anticoagulants to allow
339	comparison between different cohort studies and to increase the validity of conclusions drawn.

341 Additionally, there were different definitions of outcome measures within the four studies 342 included in this review. Thromboembolic events recorded were based on a variety of 343 thromboembolic outcomes including a diagnosis of ischaemic stroke; embolism or thrombosis in 344 extremities, mesenteric arteries or any unspecified arteries²⁹; ICD-9CM codes for ischaemic stroke²⁸; embolic stroke¹⁵; and the incidence of any stroke type during ICU admission²¹. 345 346 Similarly, there was variation in the defined outcomes of bleeding events in the three studies 347 reporting haemorrhage. Walkey et al.²⁸ defined clinically significant bleeding using ICD-9CM bleeding codes, Kanji et al.¹⁵ reported bleeding requiring interruption of anticoagulation and 348 blood transfusion and Darwish et al.²¹ did not provide a defined outcome of bleeding events. 349 350 Therefore, It is difficult to draw meaningful and valid conclusions regarding events such as 351 bleeding/haemorrhage and thromboembolic events, as there was significant heterogeneity in 352 defining these outcomes in the four studies. Not all studies reported the proposed outcome 353 measures, therefore the sample size available for analysis and inferences was limited.

354 There were two studies reporting the risk of stroke using the CHA₂DS₂-VAS_c or CHADS₂. Both 355 studies included patients who reached the threshold score for commencing anticoagulation 356 therapy, however, there is no indication in either of these studies that calculated risk scores were 357 used to aid the decision of whether anticoagulation should be prescribed. There remains a lack of 358 clarity in initiating anticoagulation in these "at risk" patients, which is also reflected in other 359 studies. A recent study reported AF outcomes for critically ill patients admitted to step down 360 units. CHA2DS2-VASc scores were not associated with the occurrence of stroke or TIA and 361 failed to predict these thromboembolic events¹⁴.

363

This systematic review aimed to assess both NOAF and PEAF together to cumulate the outcomes associated with AF during critical care admission. However, the data for postadmission mortality at 30 and 365 days are based solely on one study²⁹, which included only patients with PEAF. Although there is evidence that NOAF is an independent risk factor for

increased mortality and risk of stroke during critical illness and sepsis^{1,33}, the available data did

369 not allow discrimination between these two subtypes of AF with regards to outcomes.

368

370 Mortality at 28 days and 90 days was not reported in any of the studies, therefore it was excluded 371 from analysis. The protocol for this review outlined the intention to review the incidence of 372 thromboembolic events, including stroke²⁵, TIAs, mesenteric ischaemia, acute limb ischemia and pulmonary embolism. Only one study²⁹ reported the risk of arterial thromboembolism (including 373 374 embolism or thrombosis in the extremities), whilst the other three studies reported stroke 375 incidence only^{15,21,28}. Diagnosis of stroke may have been underreported as clinical examination 376 and diagnostic testing in critically ill patients receiving mechanical ventilation and sedative medications may be limited³⁴. The two studies by Darwish et al. and Walkey et al.^{21,28} focused 377 378 on septic patients only, which may have affected the outcome results in these studies. There is 379 evidence that sepsis affects the coagulation cascade with both prothrombotic and antithrombotic 380 effects, therefore, it is impossible to determine whether the adverse outcomes documented in 381 these studies are related to anticoagulation strategies or the underlying sepsis³⁵.

The largest study by Gamst et al.²⁹ with 5065 patients did not report the incidence of
thromboembolic events, incidence of major haemorrhage or other anticoagulation-related
complications, LOS and mortality on ICU, thus limiting its comparability with other studies. For
analysis of the data reported, percentage values were used for universal comparisons between

studies. In order to avoid overrepresentation of outcomes in the small cohort studies by Kanji et al. and Darwish et al.^{15,21}, careful interpretation is required when comparing these to the large cohort studies by Walkey et al. and Gamst et al.^{28,29}. Adjustment for confounding factors were made by both authors^{28,29} through propensity-score matched analysis and calculation of relative risk respectively. This may have introduced bias in comparison with the other studies^{15,21} as a result of unadjusted confounding factors, such as age, sex, diabetes mellitus, previous stroke and hypertension.

393 Clinical diversity was evident with variability in the participants, interventions, settings and the measured outcomes in each study. The largest study²⁹ included admissions with sepsis inside and 394 outside ICU, while the other studies^{15,21,28} reported mixed ICU populations (surgical versus 395 396 medical versus cardiac surgery). Due to this variability and the limited number of studies, the 397 data available for extraction was insufficient to perform statistical analysis between studies, and 398 as such meta-analysis was not feasible. Given the nature of the study designs, power analysis 399 was not included. Our systematic review also identified methodological diversity with varying 400 risk of bias scores as reflected in the Newcastle Ottawa assessment scores. The varying bias in 401 the studies further jeopardises the reliability of inferences made collectively on the effectiveness 402 of anticoagulation strategies for AF in the general critical care setting.

403 Conclusion

404 A variety of anticoagulation regimens are currently used to treat critically ill patients with AF.
405 There is limited evidence available regarding anticoagulation strategies in critically ill patients.
406 We cannot confirm an optimal strategy due to the limited number of available studies, variation
407 in study methodology, differences between patient populations included, and a lack of

408	standardisation of study outcomes. We could not identify any randomised clinical trials for this
409	review, which clearly represents a gap in the available evidence. Further high quality studies and
410	well planned randomised trials investigating the effectiveness and safety of anticoagulation in
411	critically ill patients with AF are urgently needed, , with standardised outcomes to facilitate
412	comparison and the development of evidence based guidance.
413	Ethics approval and consent to participate
414	Not applicable.
415	
416	Consent for publication
417	Not applicable.
418	
419	Availability of data and material
420	Not applicable.
421	
422	Conflicts of interest
423	The authors declare there are no competing interests.
424	
425	Funding
426	There was no funding received by any institution to carry out this research.
427	
428	Authors' contributions
429	The protocol was conceived and designed by IW, BWJ and AW. AN conducted primary
430	screening and data collection, reviewed by BJW and GL. Data extraction, analysis and

- 431 preparation of the manuscript was conducted by AN. IW, BWJ, AW and AN read and approved
- 432 the final manuscript.

434 Acknowledgements

- 435 We would like to thank Angela Hall, librarian at the Royal Liverpool University Hospital, for her
- 436 assistance with the literature search.
- 437
- 438 References
- 439 1. Bosch NA, Cimini J, Walkey AJ. Atrial Fibrillation in the ICU. *Chest.* 2018;154(6):1424440 1434.
- 441 2. Malik A, Candilio L, Hausenloy DJ. Atrial fibrillation in the intensive care setting.
 442 *Journal of the Intensive Care Society*. 2013;14(2):141-149.
- Walkey AJ, Hogarth DK, Lip GYH. Optimizing Atrial fibrillation management from ICU
 and beyond. *Chest.* 2015;148(4):859-864.
- 445 4. Gorczyca I, Wozakowska-Kaplon B, Starzyk K, Szpotowicz A, Stec A. Evaluation of the
 446 recommended prevention of thrombosis in hospitalised patients with atrial fibrillation and
 447 high thromboembolism risk. *Kardiol Pol.* 2018;76(3):625-632.
- 448 5. Nadzeya Kuzniatsova, Lip GYH. Prevention of Thromboembolism in Atrial Fibrillation
 449 Patients. *European Cardiology Review*. 2011;7(1).
- 450 6. Arrigo M, Bettex D, Rudiger A. Management of atrial fibrillation in critically ill patients.
 451 *Crit Care Res Pract.* 2014;2014:840615-840615.
- 452 7. Esper AM, Martin GS. The impact of comorbid [corrected] conditions on critical illness.
 453 *Crit Care Med.* 2011;39(12):2728-2735.
- B. Digitial N. Hospital Admitted Patient Care and Adult Critical Care Activity.
 https://files.digital.nhs.uk/F2/E70669/hosp-epis-stat-admi-summ-rep-2018-19-rep.pdf.
 Published 2019. Accessed2021.
- 457 9. National Collaborating Centre for Chronic Conditions. Atrial fibrillation: national clinical
 458 guideline for management in primary and secondary care. . In. London: Royal College of
 459 Physicians; 2014.
- 460 10. Gilligan DM, Ellenbogen K, Epstein E. Atrial Fibrillation: Management Clinical
 461 Guideline: CG180 Web site. <u>https://www.nice.org.uk/guidance/cg180</u> Published 2014.
- 462 Updated August 2014. Accessed2019.
- 463 11. January Craig T, Wann LS, Calkins H, et al. 2019 AHA/ACC/HRS Focused Update of
 464 the 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial
 465 Fibrillation. J Am Coll Cardiol. 2019;74(1):104-132.
- 466 12. Hindricks G, Potpara T, Dagres N, et al. 2020 ESC Guidelines for the diagnosis and
 467 management of atrial fibrillation developed in collaboration with the European
- 468 Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and

469		management of atrial fibrillation of the European Society of Cardiology (ESC)
470		Developed with the special contribution of the European Heart Rhythm Association
471		(EHRA) of the ESC. European Heart Journal. 2020.
472	13.	Poli D, Antonucci E, Pengo V, Testa S, Palareti G. Comparison of HAS-BLED and
473	101	HAS-BED Versus CHADS ₂ and
474		CHA ₂ DS ₂ VASC Stroke and Bleeding Scores in Patients With
475		Atrial Fibrillation. American Journal of Cardiology. 2017;119(7):1012-1016.
476	14.	Falsetti L, Proietti M, Zaccone V, et al. Impact of atrial fibrillation in critically ill patients
477	11.	admitted to a stepdown unit. European Journal of Clinical Investigation.
478		2020;50(11):e13317.
479	15.	Kanji S, McIntyre L, Williamson DR, Yaghchi BM, Albert M. Epidemiology and
480	15.	management of atrial fibrillation in medical and noncardiac surgical adult intensive care
481		unit patients. Journal of Critical Care. 2012;27(3):326.
482	16.	Levi M, Opal SM. Coagulation abnormalities in critically ill patients. <i>Critical Care</i> .
483	10.	2006;10(4):222.
484	17.	Ejaz A, Ahmed MM, Tasleem A, et al. Thromboprophylaxis in Intensive Care Unit
485	17.	Patients: A Literature Review. <i>Cureus</i> . 2018;10(9):e3341-e3341.
485	18.	Lyaker MR, Tulman DB, Dimitrova GT, Pin RH, Papadimos TJ. Arterial embolism. Int J
480	10.	<i>Crit Illn Inj Sci.</i> 2013;3(1):77-87.
488	19.	Sibley S, Muscedere J. New-onset atrial fibrillation in critically ill patients. <i>Canadian</i>
489	19.	respiratory journal. 2015;22(3):179-182.
489	20	1 75 7 7
490 491	20.	Lauzier F, Arnold DM, Rabbat C, et al. Risk factors and impact of major bleeding in
491 492		critically ill patients receiving heparin thromboprophylaxis. <i>Intensive Care Medicine</i> .
	21	2013;39(12):2135-2143.
493	21.	Darwish OS, Strube S, Nguyen HM, Tanios MA. Challenges of Anticoagulation for
494 495		Atrial Fibrillation in Patients With Severe Sepsis. Annals of Pharmacotherapy.
495 406	\mathbf{r}	2013;47(10):1266-1271.
496 407	22.	Chean CS, McAuley D, Gordon A, Welters ID. Current practice in the management of
497		new-onset atrial fibrillation in critically ill patients: a UK-wide survey. <i>PeerJ</i> .
498	22	2017;5:e3716.
499 500	23.	Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic
500	24	reviews and meta-analyses: the PRISMA statement. <i>BMJ</i> . 2009;339:b2535.
501	24.	Hutton B, Salanti G, Caldwell DM, et al. The PRISMA extension statement for reporting
502		of systematic reviews incorporating network meta-analyses of health care interventions:
503	25	checklist and explanations. Ann Intern Med. 2015;162(11):777-784.
504	25.	Johnston B, Nelson A, Waite AC, Lemma G, Welters I. Anticoagulation strategies in
505		critical care for the treatment of atrial fibrillation: a protocol for a systematic review and
506	26	meta-analysis. <i>BMJ Open</i> . 2020;10(10):e037591.
507	26.	Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the
508		quality of nonrandomized studies in meta-analyses. <i>European Journal of Epidemiology</i> .
509	07	2010;25(9):603-605.
510	27.	Higgins JPT TJ, Chandler J, et al. Cochrane Handbook for systematic reviews of
511	20	interventions. In: Chichester: John Wiley & Sons; 2019.
512	28.	Walkey AJ, Quinn EK, Winter MR, McManus DD, Benjamin EJ. Practice Patterns and
513		Outcomes Associated With Use of Anticoagulation Among Patients With Atrial
514		Fibrillation During Sepsis. JAMA cardiology. 2016;1(6):682-690.

- 515 29. Gamst J, Christiansen CF, Thomsen RW, Rasmussen BS, Rasmussen LH. Pre-existing
 516 atrial fibrillation and risk of arterial thromboembolism and death in intensive care unit
 517 patients: A population-based cohort study. *Critical Care*. 2015;19(1).
- 30. Yoshida T, Fujii T, Uchino S, Takinami M. Epidemiology, prevention, and treatment of
 new-onset atrial fibrillation in critically ill: a systematic review. *J Intensive Care*.
 2015;3(1):19.
- 31. Bedford JP, Harford M, Petrinic T, Young JD, Watkinson PJ. Risk factors for new-onset
 atrial fibrillation on the general adult ICU: A systematic review. *Journal of Critical Care*.
 2019;53:169-175.
- 524 32. Dobesh PP, Trujillo TC. Coagulopathy, Venous Thromboembolism, and Anticoagulation
 525 in Patients with COVID-19. *Pharmacotherapy*. 2020.
- 33. Walkey AJ, Wiener RS, Ghobrial JM, Curtis LH, Benjamin EJ. Incident Stroke and
 Mortality Associated With New-Onset Atrial Fibrillation in Patients Hospitalized With
 Severe Sepsis. *JAMA*. 2011;306(20):2248-2254.
- 529 34. Cumbler E. In-Hospital Ischemic Stroke. *Neurohospitalist.* 2015;5(3):173-181.
- Anderson FA, Jr., Spencer FA. Risk factors for venous thromboembolism. *Circulation*.
 2003;107(23 Suppl 1):I9-16.
- 532 Figure captions
- 533 Figure 1: PRISMA flowchart of studies selected in the systematic review.

Author, year	Study design	Study period	Journal	Number of	Setting
				patients	
Kanji et al.,	Retrospective,	2006	Journal of Critical	325	Mixed
2012	observational		Care		medical/surgical
					ICU
Darwish et al.,	Retrospective,	2004-2009	Annals of	115	General ICU
2013	observational		Pharmacotherapy		
Gamst et al.,	Prospective,	2005-2011	Journal of the	57110	All ICU centres
2015	observational		American Medical		
			Association:		
			Cardiology		
Walkey et al.,	Retrospective,	2010-2013	Journal of the	38582	NS
2016	observational		American Medical		
			Association:		
			Cardiology		

Table 1: Study characteristics

ICU intensive care unit, *NS* not specified

Author, year	Intervention	Comparators	Inclusion	Exclusion	Illness Severity	Risk score	Outcome measures
					Analysis	analysis	
Kanji et al.,	Direct current	No	Adults admitted	Patients	APACHE II	NS	Incidence and time of rate
2012	cardioversion,	treatment	to ICU with AF	recovering from			and rhythm control,
	pharmacological	plus		cardiac surgery			development of a
	rhythm conversion,	standard					pulmonary embolism,
	pharmacological rate	care					embolic stroke or MI, LOS
	control and systemic						in hospital and ICU,
	anticoagulation for						disposition and mortality.
	thromboembolism						
	prevention						
Darwish et al.,	Anticoagulation for	No	Adults admitted	Patients with	Patients	CHADS ₂	Incidence of bleeding, HIT
2013	thromboembolism	treatment	to general ICU	contraindications	requiring		stroke, LOS in hospital and
	prevention	plus	with AF and	for	mechanical		ICU and mortality
		standard	sepsis	anticoagulation	ventilation		
		care					

 Table 2 Eligibility criteria, intervention and outcome measures of studies

Gamst et al.,	ICU therapies	Patients	Adults* admitted	NS	NS	CHA2DS2-	Arterial thromboembolism
2015	including RRT,	admitted to	to general ICU			VAS _c	and mortality at 30 days and
	inotropes, NIV,	ICU without	with AF				365 days post ICU
	mechanical	a diagnosis					admission
	ventilation.	of AF					
	Preadmission therapies						
	including statins,						
	aspirin, VKA, beta						
	blockers, CCB,						
	digoxin and						
	amiodarone						
Walkey et al.,	Anticoagulation for	No	Adults with	Patients with	NS	CHA2DS2-	In-hospital ischaemic stroke
2016	thromboembolism	treatment	sepsis and AF	other indications		VAS _c	and bleeding incidence
	prophylaxis	plus		for			
		standard		anticoagulation			
		care					

*Age 15+ years. AF atrial fibrillation, ICU intensive care unit, NS not specified, MI myocardial infarction, LOS length of stay, HIT heparin induced

thrombocytopenia, NIV non-invasive ventilation, VKA vitamin K antagonist, RRT renal replacement therapy, CCB non dihydropyridine calcium channel blocker.

	Selection ^a	Comparability ^b	Outcomes ^c	Total
Kanji et al., 2012	***	-	*	4
Darwish et al., 2013	****	-	*	5
Gamst et al., 2015	***	*	***	7
Walkey et al., 2016	****	**	*	7

Table 3 Newcastle Ottawa Assessment Scale for assessment of bias.

* Represents the number of stars appointed after assessment

^a Selection was assessed based on the representativeness of the anticoagulated cohort, identification of the nonanticoagulated cohort, ascertainment of anticoagulant exposure and demonstration that the measured primary outcomes were not present at the start of the study. The maximum score for the selection component is 4. ^b Comparability was assessed by examining whether the study controlled for age, sex and patient comorbidities. The maximum score for comparability is 2.

^c Outcomes were assessed by examining how the outcome was assessed, the follow-up period and follow up response. The maximum score for outcomes is 3.

Author,	Mean age, y	/ears	Number of	Male sex with	Comorbidities of patients with AF,
year	(range)		Patients	AF, n (%)	n (%)
			with AF		
Kanji et	NOAF	PEAF	325	189 (58)	CHF: 61 (19)
al., 2012					HTN: 87 (58)
	72 (12.5)	74 (9.2)	_		Stroke: 43 (13)
					DM: 74 (23)
					CAD: 126 (39)
					VHD: 22 (7)
					Asthma: 23 (7)
					COPD on HO: 17 (5)
					Cardiomyopathy: 22 (7)
					Chronic renal insufficiency: 40
					(12)
					Chronic renal failure: 14 (4)
Darwish et	81 (9.5)		115	47 (41)	CHF: 64 (56)
al., 2013					HTN: 95 (83)
					Stroke/TIA: 78 (68)
Gamst et	75 (67-81) ^a		5065	3162 (62)	CHF: 1714 (34)
al., 2015					HTN: 2457 (49)
					TIA: 359 (7)
					DM: 830 (27)
					VHD: 1215 (24)
					PAD: 824 (16)
					MI: 1056 (20)
					CLD: 1136 (26)
					CKD: 518 (10)

Table 4 Characteristics of patients with atrial fibrillation in selected studies

					IHD: 1724 (34)
					Angina pectoris:1506 (30)
					Cerebrovascular disease: 1217 (24)
					Hemiplegia: 35 (1)
					Dementia: 109 (2)
					Connective tissue disease: 360 (7)
					Liver disease: 160 (3)
					Cancer: 1233 (24)
Walkey et	А	A'	38582	18976 (49)	CHF: 15504 (40)
al., 2016	73 (11.7)	76	-		HTN: 26839 (70)
		(11.7)			Stroke: 1316 (3)
					DM: 13864 (36)
					CAD/MI: 12502 (32)
					CLD: 15130 (39)
					CKD: 12667 (33)
					VHD: 5358 (14)
					PVD: 5126 (13)
					Prior bleeding: 3775 (10)
					Cancer: 5326 (14)
					Dementia: 2752 (7)

NOAF new-onset atrial fibrillation, *PEAF* pre-existing atrial fibrillation, *A* anticoagulated patient cohort, *A'* non-anticoagulated patient cohort, *CHF* congestive heart failure, *HTN* hypertension, *TIA* transient ischaemic attack, *DM* diabetes mellitus, *CAD* coronary artery disease, *VHD* valvular heart disease, *PAD* peripheral artery disease, *MI* myocardial infarction, *CLD* chronic lung disease, *CKD* chronic kidney disease, *, PVD* peripheral vascular disease, *COPD on HO* chronic obstructive pulmonary disease on home oxygen, *IHD* ischaemic heart disease.

^a Median age (interquartile range)

Author, year	Number of	Patients	Anticoagulation	Risk score (mean±SD)			
	patients with	receiving	strategy,	А	A'		
	AF	anticoagulation,					
		n (%)	n (%)				
Kanji et al.,	325	58 (17.8)	NS	NS	NS		
2012							
Darwish et al.,	115	35 (30.4)	Warfarin 24 (69)	3.43 ±1.17 ^a	3.05 ±1.18ª		
2013			UH 10 (29)				
			LMWH 1 (2)				
Gamst et al.,	5065	2500 (49.4)	VKA 2500 (100)	NS	NS		
2015							
Walkey et al.,	38582	13611° (35.3)	Enoxaparin 6991	3.40 ±1.5 ^b	3.60 ±1.5 ^b		
2016			(50)				
			Heparin 5004				
			(35)				
			Dalteparin 1296				
			(9) Fondaparinux				
			830 (6)				
		8289 ^d (89.2)	Warfarin 8289 (89)	-			
			Dabigatran 722 (8)				
			Rivaroxaban 282				
			(3) Apixaban				
			1 (0)				

Table 5 Anticoagulation use and corresponding risk score values

AF atrial fibrillation, A anticoagulated patient cohort, A' non-anticoagulated patient cohort, SD standard

deviation, NS not specified

^a CHADS₂ score

	^b CHA ₂ DS ₂ -VAS _c score
	° Number of patients receiving an initial or subcutaneous anticoagulant in doses greater than prophylactic
	dose for venous thromboembolism
	^d Number of patients with PEAF receiving an initial oral anticoagulant
550	
551	
552	
553	
554	
555	
556	
557	
558	
559	
560	
561	
562	
563	
564	
565	
566	
567	
568	
569	

Table	6	Study	Outcomes
-------	---	-------	----------

Author,	Number of	Incidence	ncidence of any		Major bleeding event/		Length of stay on		ICU mortality,		30 day mortality, n (%)		365 day mortality, n (%)	
years	vears patients with AF		thromboembolic		anticoagulation		ICU, mean (days)		n (%)					
	who received	event, n (%)		complication, n (%)										
	anticoagulation n	A A'		A	A'	A A'		A A'	A'	А	A'	A	A'	
	(%)													
Kanji et	58 (17.8)	0 (0)	0 (0)	5 (8.6)	NS]	NS	NS		NS		NS		
al., 2012														
Darwish	35 (30.4)	0 (0)	0 (0)	2 (5.7)	0 (0)	7.2 ± 6.7	8.7 ± 9.2	9 (26)	27 (34)		NS		NS	
et al,.														
2013														
Gamst et	2500 (49.4)]	NS	N	IS]	NS]	NS	573 (23)	785 (31)	885 (35)	1188 (46)	
al., 2015														
Walkey	13611 (35.3)	174 (1.3)	185 (1.4)	1163 (8.6)	979 (7.2)]	NS]	NS		NS		NS	
et al,														
2016ª														

A anticoagulated population A' non-anticoagulated population, NS not specified

^a Results reported using propensity matched scores which matched 13505 of 13611 (99.2%) of anticoagulated patients and 13505 of 24971 (54.1%) of non-anticoagulated patients