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Abstract
In engineering stretchable electronics, an intermediate layer between a thin stiff film and a substrate can enhance the adhesion of the film and modulate its buckling shape. Capturing buckling behaviour of the tri-layer film/intermediate layer/substrate structure is essential for designing stretchable electronics. In this paper, considering the shear stress between the film and intermediate layer and using the complete mathematical form of the longitudinal displacement of the film, an improved theoretical model of the buckled tri-layer structure is established and the total energy of this tri-layer structure is derived. Based on the total energy, two buckling regimes, global (Euler) buckling and local wrinkling, influenced by the intermediate layer, are studied. Since local wrinkling is a desirable buckling pattern for stretchable electronics, accurate solutions of buckling wavelength of local wrinkling and the critical strain applied for inducing it are determined and verified by a finite element analysis. The influence of the intermediate layer on the wrinkling instability of the tri-layer structure is analysed. These results will aid in the design and manufacture of film/substrate-type stretchable electronics.
Keywords: Stretchable electronics; Tri-layer structure; Local wrinkling; Global buckling

1. Introduction 
In recent years, tremendous efforts have been dedicated to developing stretchable electronic devices (Chen et al., 2019; Fu et al., 2018; Khang et al., 2006; Kim et al., 2017; Lee et al., 2020; Li et al., 2020a; Li et al., 2019b; Ma et al., 2013; Ma et al., 2020; Rogers et al., 2020; Yokota et al., 2016), which have the characteristics of stretchability/flexibility, bendability and portability and so on. Adhering a stiff thin film on a pre-stretched soft elastic substrate to produce wrinkling patterns is one of the most important and widely-used strategies in the manufacture of stretchable electronic devices (Andres et al., 2018; Chen et al., 2017; Chen et al., 2018; Fu et al., 2019; He et al., 2017; Huang et al., 2005; Kim et al., 2019; Reese et al., 2020; Song et al., 2008; Xu et al., 2015; Xu et al., 2014; Xu et al., 2016; Zhang and Yin, 2018; Zhang et al., 2019b). In real applications, surface wrinkling of a tri-layer structure (a thin film on a bi-layer compliant substrate) is a dominant structural feature and has more benefits in engineering, compared with a single-layer substrate (Hattori et al., 2014; Li et al., 2020b; Limbert and Kuhl, 2018; Nolte et al., 2006; Won et al., 2020; Yin et al., 2020; Yoo et al., 2018; Zhang et al., 2019a; Zhao et al., 2020). Here, several recent investigations have demonstrated that an intermediate layer is needed to bond the thin film layer to the compliant elastic substrate layer, which can not only enhance the adhesion of the bi-layer substrate (Tran et al., 2019), but also improve the strength and robustness of the tri-layer structure (Cheng et al., 2014). On the other hand, due to the introduction of the intermediate layer, the morphology evolution of film/substrate structure could be unpredictable, and some unexpected phenomena might appear, such as premature wrinkling (Béfahy et al., 2010; Lejeune et al., 2016b). In particular, when the thickness of the substrate is great, the bi-layer compliant substrate has an important influence on the performance of the film-substrate-based stretchable electronic devices (Wang et al., 2020). Hence, for their better design, it is essential to gain a good understanding of the elasticity of the tri-layer structure.
For a thin film-intermediate layer-soft substrate structure, many researchers have studied its wrinkling morphology. By means of a theoretical analysis and numerical simulations, Jia et al. (2012) investigated the wrinkling of a bilayer film resting on an infinite compliant substrate, and their results showed that by modulating the Young’s modulus of the intermediate layer, the surface wrinkling of the composite structure would be transformed from one buckling regime (wrinkling of a bilayer as a whole on a homogeneous substrate) to another (wrinkling of the top single layer resting on a composite substrate), which is a novel approach to realise surface pattern switching. Considering the effect of the intermediate layer on the performance of the stretchable electronics, and based on the energy method, Cheng and his co-authors (2014) established an analytical model for the stiff thin film on a bi-layer compliant substrate structure, and they studied its buckling and post-buckling behaviours. From their results, one can find that with an intermediate layer on the top of the compliant elastic substrate, the characteristics of the stretchable electronics are more robust and stronger. Accounting for the interfacial layer between the film and the substrate, Lejeune et al. (2016a; 2016b) created a novel model to capture surface instability of the multi-layer structure, and their analytical solutions and numerical results provided an improved understanding of the influence of the multiple interfacial layers on the global behaviour of that structure. 
Based on the above literature review, one can find that those investigations treated the substrate as a semi-infinite space. There are few works in the open literature which discuss the effect of the finite thickness of a substrate on the wrinkling shape of the tri-layer structure. Recently, Wang et al. (2020) studied the buckling behaviour of the stiff thin film on a bi-layer substrate with a finite thickness. Based on the energy method, they established its theoretical model and discussed the influences of the finite thickness and the Young’s modulus of the bi-layer substrate on buckling wavelength and critical buckling strain. Their results showed that the bi-layer substrate would degenerate to a single layer substrate when the intermediate layer is very thin or very thick. However, as found in Wang et al. (2008), for a relatively thin substrate, global buckling could be observed in experiments, as opposed to local buckling in a thin film on an elastomeric substrate. Li et al. (2019a) established an analytical model for a stiff film bonded to the freestanding single-layer finite-thickness substrate, and they investigated the buckling behaviour of this structure. Their results showed that the local wrinkling and global buckling modes of that structure could be determined in terms of the bending stiffness ratio of the stiff film to the substrate and the ratio of the substrate thickness to the stiff film length. 
From the aforementioned review, one can find that there is no study on the buckling behaviour (especially for distinguishing the buckling regimes between local wrinkling and global buckling) of the tri-layer structure (a film layer on an intermediate layer of finite thickness on a soft substrate), which considers the shear stress between the film and the intermediate layer and the complete form of longitudinal displacement of the film. Hence, this manuscript aims to focus on this topic, predict the buckling shape of local wrinkling and find out how to influence the buckling regimes (whether local wrinkling or global buckling takes place). The outline of this manuscript is organized as the following: in section 2, taking the shear stress between the film and the intermediate layer and the complete mathematical form of the longitudinal displacement of the film into account, a tri-layer model is established; in section 3, to distinguish the buckling regimes between local wrinkling and global buckling of this improved tri-layer structure, its buckling behaviour is analysed; the influence of the intermediate layer on its wrinkling instability are discussed in section 4, and the main conclusions are summarized in section 5.


2. Theoretical modelling





A theoretical model to characterize the buckling behaviour of the tri-layer structure, which consists of a stiff thin film resting on a finite compliant substrate with a finite intermediate layer, is established. Fig.1 shows a tensile pre-strain strategy, which is used to realise the fabrication of the stiff thin film on a finite-thickness bi-layer compliant substrate. The thin film is bonded to a flat, pre-strained bi-layer soft substrate (Fig. 1a). Then, upon the releasing of the pre-strain, the bi-layer substrate shrinks, which leads to compression in the film to generate two different buckling regimes (Fig. 1b and 1c), as observed in experiments (Wang et al., 2008; Li et al., 2019a). A Cartesian coordinate system is chosen and the origin O is located at the interface between the bottom of the intermediate layer and the top of the soft substrate. The thicknesses of the film, the intermediate layer, and the substrate are represented by,  and , respectively;  represents the film width, and the final length of the structure is . Here, one needs to assume that all the interfaces between any two layers are perfectly attached. To better predict the buckling shape of the tri-layer structure and get more accurate solutions of buckling wavelength and critical strain that causes local wrinkling, the shear stress at the interface of the film and the intermediate layer, and the complete form of longitudinal displacement of the film are taken into account. 
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Figure 1. The schematic illustration of an intermediate layer between a thin stiff film and a compliant substrate. (a) a stiff film bonded to a pre-stretched bi-layer substrate; (b) global buckling and (c) local wrinkling due to release of tensile pre-strain.

2.1 Equilibrium of the thin stiff film

To derive the equilibrium equation of the thin stiff film, the film is treated as an Euler-Bernoulli beam. The longitudinal strain at the neutral axis of the film  is defined as (Huang et al., 2005),

[bookmark: ZEqnNum200323] 	 	






where  is the in-plane compressive strain due to the relaxation of the pre-stretched bi-layer substrate, is the longitudinal displacement at the neutral axis upon release of the pre-strain, and  is the transverse deflection ( and  are the buckling amplitude and wavenumber,  is buckling wavelength, to be determined later).


The normal stress  and shear stress  at the interface of the film and the intermediate layer can be expressed as (Huang et al., 2005),

	 	

[bookmark: ZEqnNum986793]	 	






where  denotes the effective Young’s modulus of the film.  and  are Young’s modulus and Poisson’s ratio of the film. In previous studies, the shear stress at the interface between the film and the intermediate layer is either ignored (for example, in Cheng et al., 2014), or assumed to be  (for example, in Wang et al., 2020) that would be incomplete. In order to capture the buckling behaviour of tri-layer structure more accurately, considering the complete form of longitudinal displacement of the film (which should consist of and ), the normal stress and shear stress acting on the interface can be assumed as the sum of the following harmonic functions,

	 	

[bookmark: ZEqnNum194135]	 	




where unknown constants , ,  and  will be determined later.

2.2 Equilibrium of the intermediate layer and the substrate
To obtain the solutions of the plane strain problem for the intermediate layer and the soft substrate, the Airy stress function is adopted. The equilibrium equations for stresses are known as,

	 	




where  , and   are the stresses in terms of the Airy stress function , which satisfies (Wang et al., 2020),

[bookmark: ZEqnNum339072]	 	


where  is the gradient operator. As the transverse deflection of the film is defined as when buckled, and considering the displacement continuity conditions, the Airy stress function of the intermediate layer could be assumed as,

[bookmark: ZEqnNum987293]	 	


where and  are coefficients to be determined from the boundary conditions of the intermediate layer in subsection 2.3.
By using Eq. , the stresses in Eq.  can be re-expressed as,

[bookmark: ZEqnNum254382]	 	
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Because the film’s transverse deflection is described by , the displacement fields of the intermediate layer can be expressed as,

	 	


where  and  satisfy the following conditions,

		

		
The Airy stress function of the substrate could be assumed as,

		


where and  are coefficients to be determined by the boundary conditions of the substrate in subsection 2.3.

2.3 The boundary conditions
Considering the shear stress between the film and intermediate layer and the complete form of the longitudinal displacement of the intermediate layer due to the complete form of the longitudinal displacement of the film, the boundary conditions of the intermediate layer are given as,

[bookmark: ZEqnNum254121]		



where ,  and  are to be determined.
Submitting Eqs. (9-11) and Eqs. (13-14) into Eq. , the following algebraic equations can be obtained,

[bookmark: ZEqnNum874697]		
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Solving Eq.  and Eq. , the coefficients  and  can be obtained in terms of , , , ,  and . The normal and shear stresses of the intermediate layer at the interface  can be expressed as, respectively,

		

where  are given in Eq. (A1) in the Appendix  .
The boundary conditions of the compliant substrate are given as,

		

Following the similar procedure for the intermediate layer, the normal and shear stresses at the interface of the intermediate layer and the substrate at  for the substrate can be expressed as,

	 	

where  are given in Eq. (A2) in the Appendix  .
The equilibrium conditions at the interface between the intermediate layer and the soft substrate require,

	 	
which leads to

[bookmark: ZEqnNum136273]	 	


where  and are given in Eq. (A3) in the Appendix  Eq. (A3).

The displacements and normal stresses at the top of the intermediate layer () can be obtained as,

	 	

	 	

where  are given in Eq. (A4) in the Appendix.
The longitudinal displacement at the neutral axis is,

[bookmark: ZEqnNum813099]	 	




One needs to mention that the forms of the longitudinal displacement of the film  in previous works by other researchers were either  (Wang et al., 2020) or  (Huang et al., 2005). However, the analytical form of  in this work is complete.
According to the equilibrium conditions in Eq.  and Eq.  at the interface between the thin film and the intermediate layer, the shear stress can be expressed as,

[bookmark: ZEqnNum295837]	 	




Substituting , Eq.  and Eq.  into Eq. , the relations between , and  can be expressed as follows, 

	 	
Thus, the longitudinal displacement at the neutral axis of the film can be re-written as,

	 	

3. Energy method and buckling regime analysis 



To determine the buckling regimes of the tri-layer structure, the energy method is utilized. The total energy (per unit length) of the tri-layer structure consists of the bending energy  and membrane energy  of the film per unit length and average strain energy  of the intermediate layer and the soft substrate. Based on the above-derived expressions of the displacements, normal and shear stresses in subsections 2.1, 2.2, and 2.3, those energies can be calculated as, respectively,

	 	

	 	

	 	
Thus, the total energy of the buckled tri-layer structure is given as,

[bookmark: ZEqnNum795760]	 	
where 





From Eq. , it is easy to see that when , the total energy becomes minimal at , implying that the stiff thin film does not buckle and remains flat at this condition. When  , on the other hand, the  tri-layer structure would buckle at,

[bookmark: ZEqnNum354385]	 	
where



Submitting Eq.  into Eq. , the total energy could be re-expressed as a function of wavenumber ,
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As stated in Huang et al. (2005), the wavenumber of the tri-layer structure also minimises the total energy, and one can find that the functions  and  of the total energy are dependent on the wavenumber  from Eq. . To distinguish the buckling regimes of the structure,  and  as functions of  are plotted in Figs. 2 and 3, respectively. The parameters are chosen as: ,, ,,,,  (Wang et al. 2020).






From the results in Fig. 2, it can be noted that when  increase from  to , the function  is monotonically decreasing and positive. When , the value of the function  is 100 times smaller than 1 and can be neglected in Eq. . Thus, the expression of the total energy Eq.  of the tri-layer structure can be re-expressed as, 

[bookmark: ZEqnNum649034]	 	
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Fig. 2 as a function of  for different thickness ratios.





From Eq. , it is clear that the total energy is dependent on , and it is a quadratic function of  . Apparently, when  , the total energy in Eq.  is minimised with respect to the wavenumber , which determines the buckling regimes of the tri-layer structure (Li et al., 2019a).
To distinguish the buckling regimes of the tri-layer structure and evaluate the influences of the thicknesses of the film, the intermediate layer, and the substrate layer on buckling regimes, Fig. 3 is plotted. 








Fig. 3a shows the effect of the thickness ratio  of the intermediate layer to the film on buckling regimes, where the thickness ratio   of the substrate layer to the film is set as 1. From Fig. 3a, it is easy to see that when the value of the ratio  is smaller than 182 (numerically obtained), the function  is a monotonically increasing function (blue line with solid circles) of  (line with solid circles), which implies that when  and   ,  is minimized. In other words, the buckling regime of the tri-layer structure is only global buckling (as Fig. 1b).















However, when the thickness ratio   is greater than 182 (numerically obtained), the buckling regime of the tri-layer structure is either the global buckling or the local wrinkling, which could be observed from the result (line with solid squares) in Fig. 3a and be determined by comparing the values of a function (equivalent to comparing the total energy) corresponding to two buckling regimes. The function   with respect to   has a minimum point (red pentagon) corresponding to local wrinkling (line with solid squares) (Li et al., 2019a). Meanwhile, the value of the function  of the global buckling is determined by. If the function value  at  corresponding to the local wrinkling is smaller than f at corresponding to the global buckling (the yellow region), local wrinkling occurs; otherwise, the buckling regime of the tri-layer structure is global buckling (the orange region). In order to distinguish the two buckling patterns more clearly, the critical length  is given, as seen in Fig. 3. When  (green dashed line in the orange region), (i.e., ), the value of the function  is smaller than its minimum value  for local wrinkling, then global buckling occurs; otherwise, the tri-layer structure exhibits local wrinkling (green solid line with solid square in the yellow region). 


In Fig. 3b, the thickness ratio is taken as 1 and   is the variable. Fig. 3b depicts the effect of variable thickness ratio of the substrate to the film on the transition between global buckling and local wrinkling, and shows the result which is similar to the influence of thickness ratio of the intermediate layer to the film.
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Fig. 3 as a function of for different thickness ratios.




To a further clarification about the local wrinkling and global buckling, and a deeper understanding of the relationship between the critical length  and the ratios  and ,  the transition between global buckling and local wrinkling is illustrated in Fig. 4. 




In Fig. 4a, the ratio  is taken as one. From this figure, one can clearly observe that when the ratio  is smaller than 182 (numerically obtained), the buckling regime of the structure is global buckling (the blue region). Once that ratio is greater than 182, (that is to say, the thickness of the intermediate is increased), the buckling regime of the structure is determined by the structure’s length . As presented in Fig. 4a, the thicker the intermediate layer, the smaller value of  , implying that to form the global buckling regime, the longer the structure should be.




In Fig. 4b, the ratio is taken as one and the ratio is the variable. When comparing the results in Fig. 4b with those in Fig. 4a, one can find that the phase diagram is much more influenced by the thickness ratio . When the ratio  is greater than 108 (numerically obtained), to produce global buckling, the thickness of the soft substrate layer needs to be increased.

In Fig. 4c, the thickness ratio is set as 500, which is 500 times greater than that in Fig. 4a. From Fig. 4c, it is very interesting to note that the critical length   has been increased by more than ten times. Thus, for a fixed structure’s length, the thicker the intermediate layer, the more easily local wrinkling occurs. 

A similar phenomenon could be observed in Fig. 4d. As the thickness of the intermediate layer is 500 times greater than that of the stiff film, for the fixed intermediate layer’s thickness, the global buckling mode would easily take place when the length of the tri-layer structure  is longer.
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Fig. 4 Transition between global buckling and local wrinkling of the tri-layer structure.

From these results in Fig. 4, it is clear that the intermediate layer could modulate the buckling behaviour of the tri-layer structure, in the form of global buckling and local wrinkling. Since a wrinkling film tolerates large deformation without failure during static and dynamic loading, local wrinkling can help to maintain excellent electronic properties of the film of brittle inorganic materials. Hence, for stretchable electronic devices, the local wrinkling pattern is the more desirable buckling regime, and buckling wavelength and critical strain are two of the most important properties for a local wrinkling pattern. Hence, the effects of the thickness and Young’s modulus of the intermediate layer on those two parameters are investigated in the next section.

                
4. Buckling analysis of local wrinkling







In this section, buckling wavelength and critical strain of local wrinkling are further investigated. From Eq. , it is easy to see that critical strain  for the onset of local wrinkling is . It should be noted that the point  (red pentagon) in Fig. 3 corresponds to local wrinkling. Hence the dimensionless buckling wavelength  can be obtained from the abscissa of point , and the ordinate of the point  is the critical strain . In addition, the influences of the thickness, Young’s modulus, and Poisson’s ratio of the intermediate layer on the local wrinkling’s wavelength and critical strain are explored.

4.1 Verification studies
In order to validate the results in this manuscript, the same parameters are chosen from (Jia et al., 2012) and given in Table 1.

Table 1. The parameters of the tri-layer structure (Jia et al., 2012).
	

	

	

	

	

	

	

	

	


	

	

	

	

	

	

	

	

	




In Table 2, the wavelengths of the local wrinkling pattern obtained by the proposed model and a finite element analysis (FEA) are compared with those in (Jia et al., 2012; Wang et al., 2020). From Table 2, it is easy to find that the result obtained by the proposed model has good agreement with those published papers. In addition, since the shear stress at the interface between the film and the intermediate layer, and the complete form of longitudinal displacement of the film are considered, the numerical wavelength obtained by the proposed model has better agreement with that obtained by the FEA using ABAQUS. 
As illustrated in Fig. 5, a two-dimensional finite element model is established using the commercial software package ABAQUS to validate the accuracy of the solutions obtained in Section 3. Around 20000 8-node plane-strain quadrilateral reduced integration elements (CPE8R) for the soft substrate, 50000 CPE8R for the intermediate layer, and 8000 CPE8R for the stiff thin film are used in modelling the tri-layer structure, respectively. The very small element sizes around the interfaces will ensure the convergence of finite element analysis. 
[image: ]
Figure. 5 Finite element meshes for the tri-layer structure.

Table 2. The wrinkling wavelength for the tri-layer structure. 
	Method
	
Wrinkling wavelength

	Jia et al., (2012)
	66.38

	 Wang et al., (2020)
	66.14

	 Current theoretical results
	66.84

	Finite element analysis
	66.82


 

As reported by Béfahy et al. (2010) and Lejeune et al. (2016b), the presence of the intermediate layer would introduce some unforeseen effects, such as premature instability. Hence, in the following subsection, the influences of the intermediate layer’s thickness, Young’s modulus, and Poisson’s ratio on local wrinkling behaviour are discussed.

4.2 Influences of thickness of intermediate layer 












To reveal the influence of the intermediate layer’s thickness on the wrinkling instability of the tri-layer structure, Figs. 6 and 7 are shown, where the results are obtained using these parameters: and  To ensure local wrinkling, a very thick substrate is used. Fig. 6a illustrates the variation in buckling wavelength with  for different models. It can be seen that as the value of the ratio  increases, buckling wavelength increases. In addition, from Fig. 6, one can also note that when  is smaller than 1, buckling wavelength and critical strain are independent of the intermediate layer thickness. On the other hand, when  is greater than 300 (numerically obtained), buckling wavelength and critical strain both reach a plateau, and the effect of the substrate is negligible. This can be easily understood since the intermediate layer can be considered infinitely thick for a thin film when the intermediate layer thickness is over three hundred times the film thickness. In both cases, the results of the present model degenerate to a bi-layer structure, and buckling wavelength and critical strain of the proposed model display great agreement with other published bi-layer models (which treated the soft substrate as an infinite-thickness substrate, for example, in Huang et al. (2005).

However, as shown in the subfigure of Fig. 6a and Fig. 7a, if the thickness of the intermediate layer is in the range of , wavelengths obtained by the proposed model has better agreement with those obtained by the FEA, which indicates that the intermediate layer’s thickness has a significant influence on buckling wavelength.




Fig. 7b demonstrates the effect of the thickness ratio  on the critical strain of the local wrinkling pattern. It can be observed that the critical strain  decreases as the thickness ratio  increases. Clearly, the intermediate layer plays an important role in the critical strain when the thickness ratio is in the range of . From Fig. 7b, one can easily see that the critical strains obtained by the proposed model and the FEA have better agreement, compared with the model of the intermediate layer as an infinite substrate. 
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Fig. 6 Buckling wavelength and critical strain with respect to 
the thickness ratio of the intermediate layer and film.
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Fig. 7. The detailed view of figure 6.


4.3 Influence of Young’s modulus of intermediate layer 









To explore the influence of the intermediate layer’s Young’s modulus on wavelength and critical strain, the parameters are set as:  
Fig. 8 shows the variations of wavelength and critical strain with the intermediate layer’s Young’s modulus for the tri-layer structure. From the results of Fig. 8, it can be observed that the intermediate layer’s Young’s modulus has an important influence on wavelength and critical strain. With the increase of its Young’s modulus, the wavelength has a trough point, while the critical strain would increase. Furthermore, when the intermediate layer is modelled as a finite-thickness substrate in the proposed model, the present result has better agreement with that obtained by FEA, compared with other published models (e.g., Jia et al., 2012; Wang et al., 2020).

[image: ] [image: ]
Fig. 8 Buckling wavelength and critical strain as functions of 
Young’s modulus of the intermediate layer.

4.4 Influence of Poisson’s ratio of the intermediate layer 








To get a clear understanding of the influence of the Poisson’s ratio of the intermediate layer on the buckling wavelength and the critical strain, Fig. 9 is plotted and the parameters are set as:  

From the results in Fig. 9, it is found that with the increase of the Poisson’s ratio of the intermediate layer , the buckling wavelength decreases but the critical strain increases.
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Fig. 9 Buckling wavelength and critical strain as functions of
Poisson’s ratio of the intermediate layer.
From the results of Figs. 6, 7, 8, and 9, one can conclude that the intermediate layer has a strong influence on the local wrinkling behaviour of the tri-layer structure. The findings of how these geometrical and material properties affect the buckling regimes of the stiff thin films are significant in designing robust stretchable electronics.

5. Conclusions
In this paper, an analytical model for a stiff thin film bonded on a soft finite-thickness bilayer substrate (an intermediate layer and a compliant substrate) all as linear elastic materials, is established. The mechanisms for global bucking and local wrinkling can be distinguished and determined. The model includes the interfacial shear stress between the film and the intermediate layer, and considers the complete mathematical form of the longitudinal displacement of the film. Thus, more accurate results of the critical strain for buckling of the tri-layer structure and buckling wavelength can be obtained. From detailed numerical analyses, some important conclusions are summarized as follows:
1. To distinguish global buckling and local wrinkling observed on finite-thickness tri-layer elastic structures by other researchers, a critical structural length related to the thickness and the Young’s modulus of the film, the intermediate layer and the compliant substrate, is obtained. 
2. For local wrinkling, the thickness and the Young’s modulus of the intermediate layer are found to be capable of modulating buckling wavelength and the critical strain. The thicker the intermediate layer, the larger buckling wavelength, and the smaller the critical strain (which was discovered to lead to premature instability by some researchers in the past). With the increase of the Young’s modulus of the intermediate layer, the buckling wavelength of the tri-layer structure is non-monotonic and has a minimum, and the critical strain monotonically increases, which could prevent premature instability. 
3.  The theoretical results from the presented model are shown to be in better agreement with the finite element results than other published models of the tri-layer structure.
The results of this paper provide a deeper understanding of the morphology evolution of the tri-layer structure and will aid the design of robust stretchable electronics.
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Appendix 



The expressions of  are given as the following,










The expressions of  are given as the following,





The coefficients of the expressions  are given as follows,





The expressions of  are given as the following,
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