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Abstract: This paper presents and validates a novel approach to designing an active controller for 

a small-scale experimental structure subjected to the action of multiple moving loads. Many of the 

numerically validated active control methods presented in literature assume that the synthesized 

control solution can be applied directly to the structure. When a real structure is investigated, the 

closed-loop stability and performance of the system is affected by the actuators’ dynamics and by 

the signal-to-noise ratio. In some cases when the structure is complex, the model used for the 

structure can have controllability and observability problems. In this study an active control solution 

is designed using a simplified model and then it is experimentally validated. The control voltage 

dependent on the measured displacement signals is fed back to the structure via electrodynamic 

actuators. The objective of the control is to reduce the structure’s deflection under the action of the 

loads at sensors’ locations. Numerical and experimental results prove that using linear or cubic 

displacement feedback control the vibration amplitudes can be significantly reduced. The controller 

can tolerate speed variations, but it always needs to include compensation in order to increase the 

stability margins of the controlled system. The linear displacement feedback has a better 

performance at low values of the deflection whereas the cubic displacement feedback shows a better 

robustness performance at high values of moving masses and speed variations. 

 

Keywords: moving load; active vibration control; linear displacement feedback; nonlinear 

displacement feedback; experimental validation 

1. Introduction 

Vibration control of flexible structures subjected to time varying loads is a problem relevant to 

vehicle/pedestrian-bridge interaction, maglev guideways, overhead cranes or catenary-pantograph 

interaction dynamics [1-7]. Recent years have seen a strong emphasis on increasing structural 

efficiency and reducing structures’ weight. Achievement of these design requirements presents a 

complex set of challenges for structural engineers as structures become more flexible and this can 

lead to excessive vibration levels. The literature presents a wide range of solutions for vibration 

control of structures subjected to moving loads, and they range from passive solutions which have 

the advantage of simplicity and low cost to active control methods. It was shown that passive or 

semi-active solutions [8-11] could provide increased damping in the system and mitigate the steady-

state vibration response. An active vibration solution, on the other hand is usually designed to 

provide a stronger control action on a shorter time interval. Using active control, the maximum 
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structure deflection or acceleration can be constrained within prescribed limits and a more flexible 

control action for a structure subjected to fast changing loads can be provided.  

One of the main difficulties when modelling the interaction dynamics and particularly when 

designing a controller for a structure acted upon by moving loads resides in the fact that the action 

of the loads is time varying. This imposes certain requirements for the controller which needs a very 

quick action to react to rapidly varying loads. Therefore, the action of the controller should address 

mostly the excitation rather than the structure’s parameters. 

The research literature presents a wide range of theoretical algorithms for structures under moving 

loads modelled as Euler-Bernoulli beams proposed by different researchers [12-18]. Many of these 

studies presented solutions based on modal space models. For instance, Sloss et al. [12] proposed a 

displacement-proportional feedback control with the objective of confining the maximum midspan 

deflection within prescribed limits. The time-varying aspect of the problem was considered in 

Nikkhoo et al. [13] where an optimal control algorithm with variable state-feedback gain was used. 

The study analysed the numerical response of the structure under different moving masses. Liu et 

al. [14] studied the problem considering probabilistic uncertainties. The control problem was 

formulated as a tracking problem by Lin and Trethewey [15]. They proposed a strategy based on a 

combination of open-loop and closed-loop controls. The state-space equations of the system were 

formulated based on a finite element model, which had the advantage that the states were physically 

measurable variables as compared with a formulation based on a modal model. Other studies looked 

at problems of robust or optimal control [16,17] 

 

When the load moves at constant speed, the control problem can be formulated as a terminal time 

problem. Using this approach, Stancioiu and Ouyang [18] showed that for a particular placement of 

the actuators underneath the supporting structure, a control solution with time-varying gains would 

improve the displacement response of the structure as compared with a typical linear time-invariant 

solution with constant gains. Theoretical solutions for single span structures based on hybrid 

methods or time-delay control for structures with nonlinearities were also studied [19,20]. Bani-

Hani and Alawneh [21] investigated two linear quadratic Gaussian controllers designed to regulate 

the post-tensioned tendon forces of a bridge subjected to a moving oscillator. Many of the open 

loop control solutions can present stability and robustness problems. Wasilewski and Pisarski [22] 

proposed an adaptive control solution where the controller took into account the speed variations of 

the loads. Kong et al. [23] presented control solutions for an experimentally validated model of a 

maglev vehicle. The objective of the controller was the reduction of the air gap fluctuations and the 

vertical accelerations of the cabin. The supporting structure was modelled as a simply supported 

Euler-Bernoulli beam. They proposed a Kalman estimator for the states of the system which 

combined modal response of the supporting structure, vehicle cabin displacements and velocities 

and current in the electromagnetic suspension.  

 

Although there is an impressive body of works on theoretical aspects of control design, to the 

authors’ best knowledge, there are fewer examples of experimental studies of active control with 

application to bridge dynamics and the general moving load problem. Auperin et al. [24] proposes a 

solution based on integral force feedback implemented using a hydraulic actuator. The feasibility of 

a full-scale active vibration control system based on independent modal space control was studied 

by Shelley et al. [25]. The structural control system was implemented using a proof-mass hydraulic 

actuator, on a full-scale steel-truss highway bridge with a very good response reduction. They also 
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pointed out some of the maintenance and safety requirements of such a solution. Casado et al. [26] 

presented an active absorber solution for a real four-span footbridge structure. Similar solutions for 

an existing flexible stress-ribbon footbridge were presented by Moutinho et al. [27] whereas Patten 

et al. [28] designed a semi-active hydraulic vibration absorber for a single-lane test bridge. The 

performance of the actuator was tested on two different setups: one with a single actuator located at 

midspan and the second with two actuators, the latter of which showed better improvement of the 

response.  

Dniewicz et al. [29] proposed a semi-active solution and pointed out several drawbacks of using 

controllable dampers which usually have complex velocity-force relations and the proposed 

solutions can have sensitivity to system parameters variation. Pisarski [30] proposed a semi-active 

control solution with rotational magnetorheological dampers. The rotational motion of the dampers 

was transformed to translational motion using a kinematic mechanism. These methods were tested 

on small-scale experimental models.  

Both active and semi-active control solutions come with added complexity and potentially increased 

maintenance cost. There can also be connection problems that can result in loss of the signal from 

sensors which will make the actuator or the semi-active device inactive [25]. The importance of an 

active system for vibration suppression, even at an increased cost was emphasised by many authors. 

The interest in active control increases when dealing with light and flexible structures [26, 27, 31, 

33].  In this case, the actuation solutions require less energy and the forces required for control are 

smaller with important effects on the cost and maintenance. On the other hand, it can provide 

effective control for structures with significant parameters uncertainties [32]. A particularly 

important case where an active solution is attractive is when the control problem and the objective 

is formulated and aims at controlling the output response against the effect of the external 

disturbances, in this case the moving loads acting on the structure, which is one of the main 

objectives of this study. 

Many of the active strategies proposed in the research literature and validated numerically assume 

that the designed control solution can be applied directly to the structure. In many of the 

investigations the solution relies on a full knowledge of the states, which in the case of a modal 

space model for the supporting structure cannot be measured. For this reason, a practical solution 

based on this strategy would require an estimator, which can be difficult to implement due to the 

required fast acquisition and control times even when the dynamic system modelling the structure is 

observable.  

The dynamics of the actuation can also present challenges as it may reduce the stability limits of the 

system. Depending on the type of the actuation some control strategies, mainly those based on 

bang-bang or on fast switching of the control action cannot be easily achieved. There is always a 

trade-off between the numerical solution performance and its implementation. An equally 

challenging problem when dealing with a complex structure is the fact that an accurate model may 

present controllability and observability issues which makes a state-design time-varying control-

based strategy very difficult, if not impossible, to use. 

The aim of this study is the design of an active controller for a light flexible structure under the 

action of time-varying loads that opposes directly the effect of the loads. It presents and implements 

an active control solution designed for a small-scale structure modelled as a four-span simply 

supported beam under the action of moving loads. The complexity of the structure including the 

actuators’ dynamics does not allow the direct use of a state-feedback control and a simplified model 

is used for preliminary design and tuning of the controller.  
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Although the structural system itself is stable, in most cases the inclusion of the actuator’s dynamics 

changes the stability margins of the system, therefore the control solution needs to include a 

compensator. The main assumption for the proposed control method is that the individual spans can 

be tested and tuned as single-input single-output systems and it is justified by the fact that the 

influence of the actuator to adjacent spans is very small. 

For the uncompensated system, the negative displacement feedback, as compared with positive 

displacement or negative velocity feedback, provides better results as the dynamics of the moving 

load – structure interaction requires an increased control effort when the structure is under the 

action of the moving loads. A solution based on positive displacement feedback or velocity 

feedback will improve the damping properties of the system and the free vibration transient 

response but will have little effect on the shape and maximum deflection of the structure when the 

beam is under the action of moving loads. On the other hand, the use of the velocity feedback 

becomes difficult when the signal-to-noise ratio is high. 

The control solution obtained and experimentally tested provides a good improvement of the 

beam’s deflection at sensors locations, but the requirement of a control gain selected to match the 

magnitude of the load leaves the problem open to an adaptive control method. The chosen example 

also shows that the implementation of the method using displacement laser transducers and 

electrodynamic actuation has certain limitations. 

2 Experimental setup and structural control model identification 

2.1 Experimental setup 

The supporting structure investigated is a continuous four-span simply supported thin plate of 

length 𝐿 =3640 mm with constant section 10.1×3 mm2 and constant span length 𝐿𝑆. The structure is 

similar to the structure described and modelled in previous studies [5, 6].  Based on the results from 

these studies the structure is modelled as a Euler-Bernoulli beam and the torsional modes are 

neglected. Each span is actuated by one Data Physics GW V4 modal shaker placed close to the mid-

span coordinate. The first two spans of the structure are represented in Fig. 1. The moving 

structures are two miniature carriages with rigid suspensions that enter the beam at different arrival 

times 𝑡𝑗 and at different speeds 𝑣𝑗 . 

The carriages can be loaded with steel blocks (Fig. 2). The total mass of the moving structures with 

loads can be changed from 4.4 kg up to around 14 kg by changing or combining the blocks. 

 

 
 

𝑣𝑗(𝑡 − 𝑡𝑗) 

𝑥a1 

𝑥a2 

𝐿𝑆 

𝑥 
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Fig. 1. Schematic of the experimental setup. Two spans of the supporting structure with one 

carriage moving at constant speed 𝑣𝑗  in 𝑥 - direction. 

 

The structure is equipped with Micro-Epsilon optoNCDT1401 laser displacement sensors located at 

0.54, 1.23, 2.39 and 2.98 m along the beam (one for each span) and it is actuated by four Data 

Physics GW V4 Modal shakers (also one for each span).   

 

Fig. 2. Experimental setup 

 

2.2 Structural Model Identification 

A similar experimental setup with a plastic guide rail and moving balls modelled as moving masses 

was validated in Stancioiu et al. [5]. Yang et al. [6] presented a more detailed model of the 

supporting structure with brass guiding rails using finite elements. The model was cross validated 

against modal test data and experimental moving load tests.  

The first modelling assumption made in this case, based on previous results [5] is that the 

supporting structure can be modelled as a Euler-Bernoulli beam. For this experiment, two guiding 

rails were glued on top of the beam. This increased the rigidity of the beam as compared with the 

model presented in [5] where the guiding rails were made of plastic and had little effect on the 

transverse rigidity of the structure. In this respect, modal tests and finite element models were used 

to find an equivalent beam section that can model the structure with the two brass rails as an Euler-

Bernoulli beam with the required level of accuracy. 

Under this assumption the equation of motion governing the dynamic deflection of the structure is: 

𝐸𝐼
𝜕4𝑤

𝜕𝑥4
(𝑥, 𝑡) + 𝜌𝐴

𝜕2𝑤

𝜕𝑡2
(𝑥, 𝑡) + 𝜌𝐴𝑐

𝜕𝑤

𝜕𝑡
(𝑥, 𝑡) = 𝑓L(𝑥, 𝑡) + 𝑓A(𝑥, 𝑡) 

 

(1) 

where 𝐸𝐼 and 𝜌𝐴 are the flexural rigidity and mass per unit length of the beam , 𝜌𝐴𝑐 represents a 

mass proportional damping, in a later stage 𝑐 will be represented as 2𝜋𝜁𝜔𝑛 with 𝜔𝑛 the nth natural 

frequency of the structure and 𝜁 a constant damping ratio ,  𝑓L(𝑥, 𝑡) represents the dynamic loading 

of the structure and 𝑓A(𝑥, 𝑡) the action of the shakers which also includes the control effort. 

The second assumption made is that the carriage’s action over the beam can be modelled as the 

action of a moving mass, ignoring the effects of mass moment of inertia of the carriage as the ratio 

between one beam span and the carriage wheelbase is 910/124.  

Moving Structure 

Modal Shaker Laser Sensor Supports 

Roadway with guiding rails 
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Using this second assumption the effect of the dynamic forces acting on the structure can be 

modelled as the effect of the action of 𝑛 masses 𝑚𝑗 moving at independent speeds 𝑣𝑗 , which enters 

the beam at times, 𝑡𝑗: 

𝑓L(𝑥, 𝑡) = − ∑ 𝑚𝑗(�̈�(𝑥𝑗(𝑡), 𝑡) + g)𝐺(𝑣𝑗 , 𝐿, 𝑡𝑗)𝛿 (𝑥 − 𝑥𝑗(𝑡))

𝑛

𝑗=1

 (2) 

In this equation 𝐺(𝑣𝑗 , 𝐿, 𝑡𝑗) is a windowing function equal to 1 when the carriage of mass 𝑚𝑗 moves 

along the beam and zero when it steps outside of the beam’s length; the dot denotes the total 

derivative with respect to time. The term 𝛿(𝑥 − 𝑥0) is the Dirac Delta function. When the carriages 

are not present on the structure the dynamic loading is 𝑓𝐿(𝑥, 𝑡) = 0. 

When the friction between the moving parts of the carriage is important, the speed is no longer 

constant along the beam and it is assumed to decay linearly in time: 𝑣𝑗 = 𝑣𝑗0 − 𝑎𝑗(𝑡 − 𝑡𝑗) , where 

𝑣𝑗0 and 𝑎𝑗 are the initial velocity and the constant deceleration along the beam. 

In this case the moving coordinate is: 𝑥𝑗(𝑡) = 𝑣𝑗0(𝑡 − 𝑡𝑗) − 𝑎𝑗(𝑡 − 𝑡𝑗)
2

/2  and the dynamic force 

becomes: 

𝑓L(𝑥, 𝑡) = − ∑ 𝑚𝑗 (−𝑎𝑗

𝜕𝑤

𝜕𝑥
(𝑥𝑗(𝑡), 𝑡) + (𝑣𝑗0 − 𝑎𝑗(𝑡 − 𝑡𝑗))

2 𝜕2𝑤

𝜕𝑥2
(𝑥𝑗(𝑡), 𝑡)

𝑛

𝑗=1

+ 2 (𝑣𝑗0 − 𝑎𝑗(𝑡 − 𝑡𝑗))
𝜕2𝑤

𝜕𝑥𝜕𝑡
(𝑥𝑗(𝑡), 𝑡) +

𝜕2𝑤

𝜕𝑡2
(𝑥𝑗(𝑡), 𝑡)  

+ g) 𝐺(𝑣𝑗0, 𝑎𝑗 , 𝐿, 𝑡𝑗)𝛿 (𝑥 − 𝑣𝑗0(𝑡 − 𝑡𝑗) +
𝑎𝑗

2
(𝑡 − 𝑡𝑗)

2
) 

(3) 

The action of the modal shakers positioned on the structure at coordinates 𝑥a𝑖 is modelled as: 

𝑓A(𝑥, 𝑡) =  ∑(𝑘𝑖𝑤(𝑥, 𝑡) + 𝑐𝑖�̇�(𝑥, 𝑡))𝛿(𝑥 − 𝑥a𝑖)

𝑁a

𝑖=1

− ∑ 𝑓c𝑖𝛿(𝑥 − 𝑥a𝑖)

𝑁a

𝑖=1

 (4) 

The first component models the shakers as spring-damper systems with spring and damping 

constants 𝑘𝑖 and 𝑐𝑖. The second component is the control effort 𝑓c𝑖 at each span (𝑁a = 4) and it is 

the response of the shaker to a voltage input.  

In this case the actuators (DataPhysics GW V4 Modal Shaker and PA30E Power Amplifier) under 

the voltage 𝑢𝑖 < 10 𝑉 are modelled as first order systems [34,35] with the transfer function from 

the control voltage input (𝑢𝑖) to the actuation force (𝑓c𝑖) given by: 

𝑓c𝑖 =
𝛽

𝛾 + 𝑠
𝑢𝑖 (5) 

which corresponds to the state-space representation: 

𝑓ċ𝑖 = −𝛾𝑓c𝑖 + 𝛽 𝑢𝑖 

𝑦 = 𝑓c𝑖 
(6) 

The response of the structure will be assessed by the time history of beam deflections at the laser 

sensor positions, 𝑤(𝑥s𝑖, 𝑡). A numerical approximation of the solution of beam deflection will be 

sought as: 

𝑤(𝑥, 𝑡) =  𝛙T(𝑥)𝐪(𝑡) (7) 

where the vectors 𝐪(𝑡) and 𝛙(𝑥) are the modal coordinates, and the normal modes of the beam 

structure [5] without the viscoelastic supports. The effect of the shakers modelled as elastic supports 

is included as forces acting at 𝑥a𝑖 locations. 
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By using the orthogonality of the beam’s mode functions, a full set of equations can be written in 

modal coordinates as: 

(𝐌 + 𝚫𝐌(𝑡))�̈�

= −(𝐊 + 𝐊a + 𝚫𝐊(𝑡))𝐪 − (𝐃 + 𝐃a + 𝚫𝐃(𝑡))�̇�

+ [𝛙(𝑥a1) … 𝛙(𝑥a4)]𝐟c − ∑ 𝑚𝒋g 𝛙(𝑥𝑗(𝑡))

𝑛

𝑗=1

 

𝐟�̇� = −𝛾𝐈𝟒𝐟𝐜 + 𝛽𝐈𝟒𝐮 

(8) 

The number of actuators in this investigation is limited to four, one for each span, and 𝐟𝐜 and 𝐮 are 

the vectors of output forces 𝑓c𝑖 and input voltages 𝑢𝑖 at each actuator. The addition of any 

compensator in the feedback path will change the last equations of system (8) including 

supplementary states describing the dynamics of the compensator. 

The time invariant part of the structural model (8) is defined by the modal matrices of the beam 

structure 𝐌, D, and K [34,35] and 𝐊a and 𝐃a. The matrices 𝐊a and 𝐃a model the action of the 

shakers and are explicitly given by: 

𝐊a = ∑ 𝑘𝑖

4

𝑖=1

𝛙(𝑥a𝑖)𝛙T(𝑥a𝑖) 

𝐃a = ∑ 𝑐𝑖

4

𝑖=1

𝛙(𝑥a𝑖)𝛙T(𝑥a𝑖) 

(9) 

 

The system matrices in Equation (8) have also a time-varying part Δ𝐌(𝑡), Δ𝐃(𝑡) and Δ𝐊(𝑡), 

describing the action of the moving carriages. The time-dependent matrices Δ𝐌(𝑡), Δ𝐃(𝑡) and 

Δ𝐊(𝑡) for carriages moving at varying speeds 𝑣𝑗 = 𝑣𝑗0 − 𝑎𝑗(𝑡 − 𝑡𝑗) are explicitly defined by: 

Δ𝐌(𝑡) = ∑ 𝑚𝑗𝛙(𝑣𝑗𝑡)𝛙T(𝑣𝑗𝑡)𝐺(𝑣𝑗 , 𝐿, 𝑡𝑗)

𝑛

𝑗=1

 

Δ𝐃(𝑡) = 2 ∑ 𝑚𝑗(𝑣𝑗0 − 𝑎𝑗(𝑡 − 𝑡𝑗))

𝑛

𝑗=1

𝛙(𝑣𝑗𝑡) (𝛙′(𝑣𝑗𝑡))
T

𝐺(𝑣𝑗 , 𝐿, 𝑡𝑗) 

Δ𝐊(𝑡) = ∑ 𝑚𝑗𝛙(𝑣𝑗𝑡) ((𝑣𝑗0 − 𝑎𝑗(𝑡 − 𝑡𝑗))
2

𝛙′′(𝑣𝑗𝑡) − 𝑎𝑗𝛙′(𝑣𝑗𝑡))

T

𝐺(𝑣𝑗 , 𝐿, 𝑡𝑗)

𝑛

𝑗=1

 

(10) 

After the time instant when the carriages leave the beam, or before the next one moves on the beam 

𝑓𝐿(𝑥, 𝑡) = 0, the structure vibrates freely. The dynamic equations in modal coordinates are time-

invariant: 

𝐌�̈� = −(𝐊 + 𝐊a)𝐪 − (𝐃 + 𝐃a)�̇� + [𝛙(𝑥a1) … 𝛙(𝑥a4)]𝐟c 

𝐟�̇� = −𝛾𝐈𝟒𝐟𝐜 + 𝛽𝐈𝟒𝐮 
(11) 

and have as initial conditions the final values of the solutions of Equation (8). This way equations 

(8) and (11) characterise the controlled system, with or without the action of the moving carriages, 

whereas the non-controlled system equations are: 

(𝐌 + 𝚫𝐌(𝑡))�̈� = −(𝐊 + 𝐊a + 𝚫𝐊(𝑡))𝐪 − (𝐃 + 𝐃a + 𝚫𝐃(𝑡))�̇� − ∑ 𝑚𝒋g 𝛙(𝑣𝑗𝑡)

𝑛

𝑗=1

 (12) 

The output equations representing the numerically estimated deflection signals at the laser sensors’ 

positions 𝑥s𝑖 are: 
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𝑦(𝑥s𝑖, 𝑡) = 𝛙T(𝑥s𝑖)𝐪(𝑡) (13) 

Equations (8) and (10) together with the outputs (13) show two stages of the same system. The first 

stage is when the beam is under the action of the moving loads. In this stage, the controller has a 

stronger action aimed mainly at reducing the effect of the loads. The second stage is when the 

supporting structure vibrates freely as a linear time-independent system and just an increase in the 

damping ratio of the system can be enough to improve the system’s response. Many researchers 

have considered separate actions for these two stages [18,19,32]. 

3. Simplified disturbance control model for the problem of moving loads 

The main control objective in this investigation focuses on the reduction of the supporting 

structure’s deflection at sensor’s locations along the structure. This is an objective similar to the one 

used by Sloss et al. [12]. In many applications of the moving load problem related to bridge 

vibration the objective is formulated in midspan accelerations, but this objective will not be studied 

here. 

The modal space system of a complex supporting structure like the one investigated here has a high 

number of states in relation to the number of inputs and outputs. This affects the controllability and 

the observability of the system and makes many of the state-space control methods difficult to apply 

directly. In particular a feedback control solution for a system where the states are modal space 

variables (modal displacements and velocities) is even more difficult to design as there is no direct 

access to the states via measurements. The solution of an observer, available only when the 

observability of the system is not compromised, may not be an option due to the requirement of fast 

acquisition and control rates by the physical controller.  

The practical control solution required for this investigation needs also to consider the noisy 

measured deflection responses as inputs to the controller. As opposed to many previously published 

theoretical studies, the design method used now requires greater attention to stability margins and 

the sensors’ noise. 

A simplified model of the interaction can be obtained modelling the dynamic loading (2) as: 

𝑓L(𝑥, 𝑡) = − ∑ 𝑚𝑗g 𝐺(𝑣𝑗 , 𝐿, 𝑡𝑗)𝛿 (𝑥 − 𝑥𝑗(𝑡))

𝑛

𝑗=1

 (14) 

The main assumption in this case is that the carriages can be approximated as moving forces. This is 

a simplification of the model presented in the first section, but it is used only for the control design. 

For different moving speeds and masses tested the moving force model shows a difference of 

maximum deflection of less than 4% when compared with experimental data. The final control 

solution is numerically tested against the full numerical model and against the experimental model 

considering variations in loads distribution. 

In a first approach to design, the system considered consists of a supporting structure with only one 

span and one actuator located at a given coordinate 𝑥a. The structure is under the action of a force 

that moves at constant speed; therefore, the dynamic system associated with this problem is time 

invariant. The model also considers the actuator as an active support with an active and passive 

state, similar to the real case presented in paragraph 2.  

With the same notations, the system of equations that governs the dynamics of the problem is given 

by: 

𝐌�̈� + (𝐃 + 𝐃a)�̇� + (𝐊 + 𝐊a)𝐪 = −𝛙(𝑣𝑡)𝑚g + 𝛙(𝑥a)𝑓c 

𝑓ċ = −𝛾𝑓c + 𝛽𝑢 

(15) 



9 

 

In this investigation the model of the actuator is a first order filter with a very low time constant 𝜏 =

1/𝛾 ≈ 0.03 seconds. As a consequence, this has little effect on a low frequency signal, but as the 

frequency increases towards 47 Hz the magnitude of the signal decays with 20 dB/decade. 

The control design method in this investigation has as objective the active reduction of the 

deflection at 𝑥s under the action of the moving load 𝛙T(𝑣𝑡)𝑚g.  

The action of the moving load is explicitly given by 𝑓d𝑖 = 𝑚g sin(𝑖𝜔𝑡) for i= 1 to the mode number 

and 𝜔 = 𝑣/𝐿. For simplicity, in this paragraph 𝑚g = 1 N. 

In Laplace space the modified equation, using 𝑓d𝑖 forces as disturbances, can be written as: 

[𝑠2𝐌 + 𝑠(𝐃 + 𝐃𝐚) + (𝐊 + 𝐊𝐚)]𝐐(𝑠) = 𝐁𝐝 𝐅𝐝 + 𝛙T(𝑥a)
𝛽

𝑠 + 𝛾
𝑈(𝑠) 

(16) 

where the matrix 𝐁𝐝  is the identity matrix of appropriate order. The output of the system consists 

of beam deflection at a given coordinate 𝑥s.  

 
Fig. 3. Block diagram of the simplified system, only two modes considered in this 

representation. 

 

The deflection of the structure is caused by the action of the force 𝐅𝐝. For the open-loop system 

shown in Fig. 3, when the control action is zero, the response of the system is simply the deflection 

at the measured location under the action of the force. In an open-loop setup when the control input 

is the negative of the disturbance, the maximum deflection will reduce. The reduction depends on 

the scaling of the control action. The design of the controller also needs to consider the saturation 

limits on the voltage input to the actuator. 

In the numerical case considered here, a control function that follows only the first disturbance 

force 𝑓d1, proportional to the first mode 𝜓1(𝑣𝑡) is shown to improve the response of the open loop 

system both in displacement and velocity. It is also possible to use tuning methods to add a 

compensator to the system. 

An open loop control architecture can be a feasible solution and it was shown in numerical 

examples [18] that for simple structures it can provide solutions when the problem is formulated as 

terminal time optimal control, but it has a couple of known disadvantages when it comes to 

practical implementation. First of all, it requires information about the kinematics of the motion of 

the load, in particular the exact entry time and the moving speed. If this information is not precise 

and accurate it may negatively affect the performance, although the numerical example used in this 

investigation showed to accommodate small speed variations. One other disadvantage is that it 

assumes the shape of the control input is known, which for the case of a more complex structure 

may require complex off-line calculations. 

In almost all the practical cases a feedback control action is preferred. Due to the fact that the 

deflection response of the system is similar to the shape of the control used as input for the open-

loop control (Fig. 3), the system is completed by closing the lower forward path in a loop feeding 

 

𝐇(𝑠) 
𝛾

𝑠 + 𝛼
 

𝐁𝐝 

𝛙T(𝑥𝑎) 

𝐅𝐝 

𝛙T(𝑥𝑠) 

𝐪(𝑡) 𝑤(𝑥𝑠, 𝑡) 

𝑢(𝑡) 
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back the measured deflection output to the controller. The deflection signal, measured with laser 

sensors contains a certain amount of noise, which can be modelled as a band-limited white noise. 

Although the uncompensated closed-loop structural dynamic system is always stable, the addition 

of the dynamics of the actuator changes the characteristics of the response and reduces the stability 

margins. The stability problem can be also negatively affected by the high level of noise.  

 

A direct output feedback, with no compensation will reduce the damping in the system and increase 

the amplitude of the small oscillations in the system, which becomes a problem for the multi-span 

structure. Depending on the value of the feedback gain, the system operates at small stability 

margins. In order to improve the response and increase the stability margins, the system is 

compensated by adding proportional and derivative compensation (Fig. 4). The system response can 

be simulated in Simulink and the tuning of the compensators can be achieved interactively using 

Control System Designer App. For reduced order models, a state-feedback numerical solution for a 

linear regulator with an objective quadratic in deflection and control effort can be obtained. The 

tuning tasks for the deflection feedback design can be formulated in time or frequency using the 

response of the linear regulator as the target. 

 
Fig. 4. Compensated displacement feedback response 

 

The response of the system modelled as a continuous system is improved and also shows a good 

reduction of the level of noise. For a real zero (−𝐾P/𝐾D) positioned closer to the origin than the 

actuator’s pole the stability margins of the system are improved. The architecture based on dSpace 

and Simulink cannot realize directly the controller shown in Fig. 4. In this case a pole is added 

further away on the real axis and the compensator structures becomes: (𝐾D𝑠 + 𝐾P)/(1 + 0.001𝑠). 

The closed-loop system shows a good reduction of deflection, comparable with the deflection 

obtained using state-feedback design and is able to deal with sensor noise (Fig. 5). 

𝐇(𝑠) 

 

𝛙T(𝑥𝑠) 

 

𝛾(𝐾D𝑠 + 𝐾P)

𝑠 + 𝛼
 𝛙T(𝑥𝑎) 

 

𝐁𝐝 

Sensor noise 
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Fig. 5. Deflection response of the non-controlled system (continuous blue line), closed-loop 

deflection feedback (dotted green line) and closed-loop state-feedback control (LQR) (dashed 

yellow line) 

 

When the system is under the action of a set of loads with different speeds 𝑣𝑗  and different masses 

𝑚𝑗, the amplitude and the frequency of the equivalent load needs to be changed to 𝑓d𝑖 =

𝐴𝑗 sin(𝑖𝜔𝑗𝑡), where 𝐴𝑗 = 𝑚𝑗g/𝑚g is given a set of values between 0.6 and 1.3, and 𝜔𝑗 = 𝑣𝑗/𝐿 lies 

between 3 and 6 rad/s. The amplitude of the deflection response shows certain variation. 

In order to strengthen the effect of the control when the mass is heavier, a nonlinear control action 

is considered. 

The control action 𝑢(𝑡) is proportional to 𝑤3(𝑥s, 𝑡) and the setup uses a similar compensation to the 

case of linear control action. The effect of the controller reduces the variation in the response for 

heavier loads but has a weaker action when the amplitude of the response is smaller (Fig. 6). 

 

 
Fig. 6. Responses under closed-loop control action: linear (continuous blue line), nonlinear 

(dotted green line) displacement feedback as shown in the legend 
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Numerically the performance of the systems can be compared with the performance of a linear 

quadratic regulator (Fig. 7).  

 

 
Fig. 7. Comparison of linear quadratic control and deflection feedback control, blue continuous 

line – linear quadratic control, green dotted line – linear deflection feedback, orange dashed line – 

cubic deflection feedback 

 

From this simplified model it can be seen that the effect of the actuator impacts on the stability 

margins of the closed-loop system, therefore a direct deflection feedback cannot be used. The 

controller architecture needs tuning and additional compensation.  

In the case of the multiple span beam structure, this method can apply under the assumption that the 

effect of a controller applied at one span has little effect on the adjacent spans. The case of a multi-

span beam requires further attention as the position of the actuators and sensors which influences 

the position of the zeros of the system can affect the stability margins of the structural system even 

if the dynamics of the actuator is ignored.  

The same principles can apply for this case but due to the complexity of the structure in order to 

keep the stability margins of the systems within reasonable values supplementary compensation is 

added on the forward path. The addition of a lead compensator in the forward path increases the 

stability margins. The response of the linear displacement feedback shows that in the case of a 

single-span structure an improvement on the deflection response (Fig. 8). The controller can tolerate 

sensor noise. For the simulation shown in Fig. 8, 5% noise was added to the feedback loop. 
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Fig. 8. Compensated deflection feedback for a four-span beam, dotted green line – without 

control, continuous blue line – with control, a – deflection at first span, b – deflection at the 

second span 

 

The comparison between the nonlinear (cubic) feedback and the linear feedback is shown in Fig. 9. 

The structure is subjected to a set of moving loads with different entry times. 

 
Fig. 9. Comparison between linear (continuous green line) and nonlinear (dotted blue line) 

deflection feedback; a - first spans, b – second span of the structure. 
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The response of the structure follows the same pattern for the case of a single-span structure. The 

cubic deflection control works better at high amplitudes, but the linear feedback has a higher 

capacity to reduce low level amplitude values. 

A variability study run for a set of random loads with random constant speeds shows that the 

performance of the controller using linear deflection feedback is comparable with the performance 

of the linear quadratic controller (Fig. 10). For the nonlinear feedback controller, the variability of 

the deflection response is lower. The pattern shown in Fig. 10.b repeats for the third and fourth 

spans of the structure. 

 
Fig. 10. Variability plot of the deflection response for system with no control action (no control), 

linear deflection feedback (LinF), cubic deflection feedback (nonLF) and equivalent linear 

quadratic regulator (LQR); a – first span, b – second span. 

 

The values of the random constant speeds show no correlation to the maximum deflection response 

(Fig. 11 a,b,c), but the values of the loads show a strong correlation with the response (Fig. 11 

d,e,f). 

 
Fig. 11. Correlation between the speed and maximum deflection (a,b,c) and moving load and 

maximum deflection (d,e,f) for system with no control action (a,d), linear deflection feedback 

(b,e) and cubic deflection feedback (c,f) 
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The numerical values used for the simplified models reflect the structural parameters of the 

laboratory structure. Numerical simulation showed that a controller based on negative deflection 

feedback can improve the response of the system to the action of the moving loads but due to poor 

stability margins it cannot be applied directly. It also showed that in the case of a structure with 

multiple spans, the control gains need to change at different spans, with a lower gain for the first 

span. 

4. Numerical and experimental results  

The system equations in state-space form are solved using MATLAB. The analogue to digital 

conversion, processing and digital to analogue conversion for the experimental data is implemented 

using a dSpace 1104 R&D controller board.  

The measured signals 𝑤(𝑥s𝑖, 𝑡) collected by the laser sensors located at coordinates 𝑥s𝑖 along the 

beam are low-pass-filtered and scaled to millimetres. Due to the simplified model of the actuator 

and the high signal-to-noise ratio, the controller shows a higher tendency to destabilise the system. 

In order to strengthen the effect of the feedback and the spread of the controller gain values, at 

higher deflection, the cubic dependence of the displacement is also tested. For an objective function 

formulated in terms of maximum deflection value a nonlinear control action is expected to improve 

the performance as it strengthens the control action for heavier moving loads as compared with a 

linear displacement feedback action. 

4.1 Structural model validation 

The validity of the numerical model of the structure under the action of the moving carriages when 

the actuators are switched off can be verified by comparing numerically calculated deflection values 

𝑤(𝑥s𝑖, 𝑡) at sensor locations and experimentally measured values. Fig. 12 shows a comparison 

between the numerical and the experimental data for the case when two carriages are travelling 

along the beam. The numerical values of the two masses used for the numerical model are: 𝑚1 = 5.1 

kg and 𝑚2 = 5.1 kg. The carriages are launched with initial speeds estimated at 𝑣10  = 1.28 m/s and 

𝑣20 = 1.29 m/s. The time delay is estimated at 2.88 s. 
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Fig. 12 Time history of beam’s deflection at the four sensor locations for two masses moving 

along the beam, no control action, blue solid line – numeric, green dotted line – experimental 

data 

 

The predicted deflections follow closely the experimentally measured time histories but the later 

have additional high-frequency oscillations which cannot be captured by the model. It can be also 

seen that the deflection at the first sensor is about 20% higher than the deflection at the location of 

the other three sensors. 

4.2 Structural active control model validation 

The numerical model for the dynamics of the carriage-structure interaction when the linear 

displacement feedback controller’s action is used is compared in Fig. 13 with the experimentally 

obtained data. 

The numerical values used for the two masses are the same as for the example studied before. The 

initial moving speeds of the two carriages in this example are estimated at: 𝑣10 = 1.22 m/s and 𝑣20 

= 1.12 m/s and the time delay between the launches is 2.22 s. The only noticeable discrepancies 

between the simulated and experimentally measured data are a small overshoot of the former, which 

appears when a carriage moves from one span to another (Fig. 13). The recorded maximum values 

for deflection are about -0.8 mm for the first span and -0.6 mm for the rest of the beam.  
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Fig. 13. Time history of the deflection at sensor location for two masses moving along the 

beam, linear feedback control, blue solid line – numeric, green dotted line – experimental 

data 

4.3 Experimental assessment of the control action 

A comparison between the experimentally measured deflections at sensor coordinates for the 

controlled and uncontrolled structure is shown in Fig. 14. The two carriages are launched at slightly 

different initial velocity values.  

The uncontrolled structure has greater values in both the maximum deflection and the overshoot 

when the mass passes by one of the beam’s supports. These are both significantly reduced when the 

structure is controlled.  

The maximum values of the deflection are shown in Fig. 14 e and it can be seen that the highest 

value of the deflection occurs at the first span. After the first span the maximum deflection 

decreases, and it becomes almost constant. A higher value for the first span is also observed for the 

case when only one carriage travels along the beam. 

On average, the reduction in absolute values of the maximum deflection obtained is 33% for the 

first span and then increases to over 37% (Fig. 14 e). 

The control effort estimated using the force measured at the actuator positions (𝑓a𝑖) is shown in Fig. 

15. The force measured for the case when the structure is not controlled (blue line) shows only the 

reaction of the beam. When the structure is under control action, the shaker produces an additional 

force filtered by its own dynamics proportional to the deflection and opposing it. 
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Fig. 14. Time history of deflection response at sensor positions for experimentally determined 

data (a,b,c,d), minimum values of the measured deflections in mm (e), dotted green line – 

controlled system, continuous blue line – no control. 

 

The maximum values of this extra force are estimated and used to assess the control effort. Fig. 15 e 

shows that the maximum force occurs at the last span. This is also the case when the beam is under 

the action of only one carriage. 

The relative differences between the deflection responses and forces at the four locations for the 

two states of the system (control and no control) are shown in Table 1.  

 

Table 1. Relative difference for deflection at sensor’s positions and force at actuator position for 

two carriages launched along the beam 

Relative difference 1st 2nd 3rd 4th 

Maximum Midspan Deflection [%] 33 39 37 39 

Maximum Force [%] 41 47 49 42 
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All these results are similar to the case when only one mass of 5.1 kg travels along the beam. The 

relative differences between the case when the structure is not controlled and controlled are shown 

in Table 2. 

 

Table 2. Relative difference between controlled and uncontrolled structural response for one 

carriage launched along the beam (5.1 kg) 

Relative difference 1st 2nd 3rd 4th 

Maximum Midspan Deflection [%] 30 40 41 39 

Maximum Force [%] 38 40 49 41 

 

 
Fig. 15. Time history of experimentally measured actuator forces (a,b,c,d), maximum force in N 

(e); dotted green line – controlled system, continuous blue line – no control. 

 

For these tests it can be seen that in both cases there is an average deflection reduction of about 

40% except for the first span where this falls to about 30%. The recorded force shows an increase of 

about 40% for all the spans except the third where the force increase is 50% but with no significant 

effect on the deflection. The signal from the controller is amplified by a DataPhysics PA30E Power 

Amplifier before being sent to the modal shaker. Although the amplifier’s potentiometer is 

manually set in the same position for all the channels it is possible that small amplification gain 

variations may occur. 
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To get a better insight into how the controller’s effect is affected by moving speed and mass 

variability, a carriage with different loads is launched at random initial speeds along the beam. For a 

launching speed varying between 1.11 and 1.46 m/s and a mass variation between 5.2 and 5.9 kg 

the maximum deflection values and maximum force values are represented in Fig. 16. 

The observed trends for the deflection response with higher values at the first span remain but the 

controller’s action shows a more robust performance as the variability in the deflection response 

reduces (Fig. 16 b). From the force variation boxplots (Fig. 16 c and d) it can be seen that the 

controller contribution (assessed by the difference between the forces at shaker’s positions 

measured for the non-controlled and controlled systems) for the first span is only about 6 to 7 N 

whereas for the rest of the spans this increases to about 10 N. 

 
Fig. 16. Variability of deflection response at sensor’s position (a,b) and force at shakers’ 

position (c,d) at the four spans for one carriage launched along the beam with different loads 

and initial conditions. 

 

Increasing the mass of the moving structure changes slightly the patterns observed in Fig. 16. For a 

mass varying between 9.5 and 10.98 kg moving at speeds varying between 0.9 and 1.33 m/s the 

variability observed in the response increases. The absolute value of the maximum deflection 

increases on average by about one mm. The same change of patterns is true for the relative 

differences between the responses of the controlled and uncontrolled structure (Table 3). 

 

Table 3. Relative differences between deflection at sensor positions and between forces at actuators 

position for one carriage launched along the beam (9.5 kg) 
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Relative difference 1st 2nd 3rd 4th 

Maximum Midspan Deflection [%] 21 41 31 30 

Maximum Force [%] 24 68 44 46 

4.4 Nonlinear control action 

In order to obtain a better robustness of the response, a cubic dependence on the deflection (22) is 

tested. For the theoretical model, cubic dependence of the deflection, increases the control action 

for larger displacements but has a smaller influence on the small deflection range.  

For the experimental tests run with masses over 9 kg, the nonlinear control action improves the 

maximum deflection response and the robustness of the deflection performance. Fig. 17 shows the 

variability of the response for a mass variation between 9.5 and 11 kg for the three cases 

considered: no control, linear displacement control and nonlinear (cubic) displacement control. 

 
Fig. 17. Variability of deflection at sensor’s position (a,b,c) and force at shakers’ position 

(d,e,f) at the four spans for one carriage travelling along the beam with different loads and 

initial velocities. 

 

For an increase of the moving load mass to 15.5 kg the actuators reach saturation and the linear 

model does no longer give an accurate response. 

5. Conclusions 

This paper addresses the problem of active vibration control of a multi-span structure under the 

action of multiple moving carriages both from a numerical and experimental perspective. The 
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background of this problem includes industrial applications as single-lane bridge-vehicle dynamic 

interaction and is concerned with the mitigation of excessive deflection levels under heavy traffic. 

The assumptions that the supporting structure can be modelled as a Euler-Bernoulli beam and the 

carriages as moving masses prove accurate for this investigation. Two displacement feedback 

methods for vibration control of this four-span beam are studied. The objective of the control is to 

reduce the maximum deflection of the structure under the action of the loads. The first of the 

methods scales and applies the feedback output from the displacement sensors to the dynamic 

actuators. The second method uses a cubic displacement signal. The experimental application of 

both methods requires the addition of a compensator to the system. The design and tuning of the 

compensation were achieved using a simplified model. 

These two methods are extensively investigated numerically and experimentally. It is shown by 

numerical simulation validated by experimental tests on a small-scale stand that both methods can 

effectively reduce the vibration response of the structure under moving masses and that the active 

control implementation based on laser deflection sensors and modal shakers provides an effective 

method for reducing the maximum deflections at given locations for low and medium masses acting 

on the structure. Moreover, the nonlinear (cubic) displacement feedback affords a better control 

action for high deflection. 

Some of the practical aspects that need to be taken into account when the method is implemented 

experimentally are pointed out. The electromagnetic actuation supplies a reasonably fast and a large 

magnitude response force but is less efficient when the mass of the moving loads increases. The 

stability margin of the system does not allow the necessary increase in the control gain. This limits 

the effectiveness of the solution for high values of the moving mass, which would simulate the 

action of very heavy vehicles. On the other hand, the deflection signals measured by laser sensors 

show a poor signal-to-noise ratio. 
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