Supplementary Materials

Table S1. Quality assessment checklist.
Table S2. Quality assessment details.
Table S3. Meta-analysis results of differences in resting state brain activity between ET and HC after excluding Ha et al. 2015.

Table S4. Subgroup meta-analysis results in medication-free ET patients showing hyper- and hypoactivity of brain regions.

Table S5. Subgroup meta-analysis results in studies in ET patients with head tremor showing hyper- and hypoactivity of brain regions.

Table S6. Subgroup meta-analysis results in studies with threshold correction showing hyper- and hypoactivity of brain regions.

Table S7. Subgroup meta-analysis results in studies using fMRI methods showing hyper- and hypoactivity of brain regions.

Table S8. Jackknife sensitivity analysis of subgroup meta-analysis in medication-free ET patients.
Table S9. Jackknife sensitivity analysis of subgroup meta-analysis in ET patients with head tremor.
Table S10. Jackknife sensitivity analysis of subgroup meta-analysis in studies with correction threshold.

Table S11. Jackknife sensitivity analysis of subgroup meta-analysis in studies using fMRI methods.

Table S12. Jackknife sensitivity analysis of meta-analysis results after excluding Ha et al. 2015.

Table S1. Quality assessment checklist (when criteria were partially met, 0.5 points assigned).

Category 1: Participants

Score (0/0.5/1)

1. Patients were evaluated prospectively, specific diagnostic criteria were applied, and demographic data were reported.
2. Comparison participants were evaluated prospectively psychiatric and medical illnesses were excluded.
3. Important variables (e.g., age, sex, illness duration, onset, medication status, handedness) were checked either by stratification or statistically.
4. Sample size per group >10.

Category 2: Methods for image acquisition and analysis
5. Whole brain analysis was automated with no a priori regional selection.
6. Coordinates reported in a standard space.
7. The imaging technique used was clearly described so that it could be reproduced.
8. Measurements were clearly described so that they could be reproduced.

Category 3: Results and conclusions

9. Statistical parameters for significant and important non-significant differences were provided.
10. Conclusions were consistent with the results obtained and the limitations were discussed.

TOTAL/10

Table S2. Quality assessment scores of included studies.

Studies	1	2	3	4	5	6	7	8	9	10	Total
Jenkins et al., 1993	1	0.5	1	0.5	1	1	1	1	1	0.5	8.5
Wills et al., 1994	1	0	1	0	1	1	1	1	1	0.5	7.5
Czarnecki et al., 2011	1	1	1	0	1	1	1	1	1	1	9
Fang et al., 2013	1	0.5	1	1	1	1	1	1	1	1	9.5
P. Wang et al., 2015	1	1	1	0.5	1	1	1	1	1	1	9.5
Ha et al., 2015	1	1	1	1	1	1	1	1	1	0.5	9.5
Benito-León et al., 2015	1	1	1	1	1	1	1	1	1	1	10
Fang et al., 2015	1	1	1	1	1	1	1	1	1	1	10
Yin et al., 2016	1	1	1	1	1	1	1	1	1	1	10
L. Wang et al., 2018	1	1	1	1	1	1	1	1	1	1	10
P. Wang et al., 2018	1	0	1	1	1	1	1	1	1	1	9
Song et al., 2013	1	1	1	1	1	1	1	1	1	0.5	9.5
Li et al., 2020	1	1	1	1	1	1	1	1	1	1	10

Table S3. Meta-analysis results of differences in resting state brain activity between ET and HC after excluding Ha et al. 2015.

Brain region	MNI coordinates			SDM	P	No. of	Cluster breakdown (no. of voxels)
	X	Y	Z				
Patients with essential tremor $>$ healthy controls							
R postcentral gyrus	34	-40	56	3.301	~ 0	2593	R precentral gyrus, BA 6 (575)
							R postcentral gyrus, BA 3 (395)
							R precentral gyrus, BA 4 (296)
							R inferior parietal (excl. supramarginal \& angular) gyri, BA 40 (272)
							R postcentral gyrus, BA 4 (151)
							R inferior parietal (excl. supramarginal \& angular) gyri, BA 2 (101)
							R postcentral gyrus, BA 2 (91)
							R superior frontal gyrus, dorsolateral, BA 6 (72)
							R postcentral gyrus, BA 6 (41)
							R superior parietal gyrus, BA 2 (36)
							R superior parietal gyrus, BA 40 (35)
							R precentral gyrus, BA 3 (24)
							R postcentral gyrus, BA 40 (19)
L precentral gyrus	-42	0	44	2.405	0.000125408	245	L precentral gyrus, BA 6 (188)
L inferior frontal gyrus	-40	26	-14	2.029	0.000955284	101	L inferior frontal gyrus, orbital part, BA 47 (48)
							L inferior frontal gyrus, orbital part, BA 38 (27)
Patients with essential tremor < healthy controls							
L insula	-42	-12	16	1.806	0.000464976	451	L rolandic operculum, BA 48 (146)
							L insula, BA 48 (144)
							L heschl gyrus, BA 48 (65)
							L superior temporal gyrus, BA 48 (21)
L cerebellum, hemispheric lobule IV/V	-20	-42	-26	1.740	0.000671923	265	L cerebellum, hemispheric lobule IV/V, BA 37 (92)
							L cerebellum, hemispheric lobule IV/V, BA 30 (80)
							Middle cerebellar peduncles (42)
							L fusiform gyrus, BA 37 (18)
R insula	42	-14	10	1.476	0.002655208	109	R insula, BA 48 (45)
							R Rolandic operculum, BA 48 (24)
							R Heschl gyrus, BA 48 (17)

Table S4. Subgroup meta-analysis in medication-free ET patients showing hyper- and hypoactivity of brain regions.

Brain region	MN	I coord	dinates	$\overline{\mathrm{SDM}}$	P	No. of voxels	Cluster breakdown (no. of voxels)	
		Y	Z					
Patients with essential tremor $>$ healthy controls								
R postcentral gyrus	38-38		52	2.617	~ 0	1229	R postcentral gyrus, BA 3 (341)	
			R precentral gyrus, BA 6 (192)					
			R precentral gyrus, BA 4 (168)					
			R postcentral gyrus, BA 4 (145)					
			R inferior parietal (excl. supramarginal \& angular) gyri, BA 40 (132)					
			R inferior parietal (excl. supramarginal \& angular) gyri, BA 2 (77)					
			R postcentral gyrus, BA 2 (58)					
			R postcentral gyrus, BA 6 (49)					
			R precentral gyrus, BA 3 (28)					
			R postcentral gyrus, BA 40 (25)					
			R superior parietal gyrus, BA 2 (11)					
Cerebellum, vermic lobule III		-42		-2	1.810	0.001496136	106	Cerebellum, vermic lobule IV / V (50)
								Cerebellum, vermic lobule IV / V, BA 27 (17)
								Cerebellum, vermic lobule III (13)
Patients with essential tremor < healthy controls								
R insula	36	-6		8	2.142	0.000132620	653	R insula, BA 48 (290)
								R lenticular nucleus, putamen, BA 48 (137)
								R striatum (35)
								R Rolandic operculum, BA 48 (30)
								R insula (12)
L insula	-42	-10		18	2.099	0.000162542	634	L insula, BA 48 (229)
								L Rolandic operculum, BA 48 (179)
			L superior temporal gyrus, BA 48 (59)					
			L Heschl gyrus (16)					
			L insula (12)					

BA, Brodmann area; ET, essential tremor; L, left; MNI, Montreal Neurological Institute; R, right; SDM, signed differential mapping. Regions with fewer than 10 voxels are not reported in the cluster breakdown.

Table S5. Subgroup meta-analysis in ET patients with head tremor showing hyper- and hypoactivity of brain regions.

BA, Brodmann area; ET, essential tremor; L, left; MNI, Montreal Neurological Institute; R, right; SDM, signed differential mapping.
Regions with fewer than 10 voxels are not reported in the cluster breakdown.

Table S6. Subgroup meta-analysis in studies with threshold correction showing hyper- and hypoactivity of brain regions.

Table S7. Subgroup meta-analysis results in studies using fMRI method showing hyper- and hypoactivity of brain regions.

Brain region	MNI coordinates			SDM	P	No. of	Cluster breakdown (no. of voxels)
	X	Y	Z				
Patients with essential tremor $>$ healthy controls							
R postcentral gyrus	36	-40	54	2.723	~ 0	1736	R precentral gyrus, BA 6 (357)
							R postcentral gyrus, BA 3 (285)
							R precentral gyrus, BA 4 (194)
							R inferior parietal (excl. supramarginal \& angular) gyri, BA 40 (191)
							R postcentral gyrus, BA 4 (172)
							R inferior parietal (excl. supramarginal \& angular) gyri, BA 2 (118)
							R postcentral gyrus, BA 2 (71)
							R superior frontal gyrus, dorsolateral, BA 6 (69)
							R postcentral gyrus, BA 6 (41)
							R superior parietal gyrus, BA 2 (28)
							R superior parietal gyrus, BA 40 (19)
							R precentral gyrus, BA 3 (17)
							R postcentral gyrus, BA 40 (12)
Patients with essential tremor < healthy controls							
L cerebellum, hemispheric lobule VI	-38	-50	-28	2.005	0.000387549	1855	L cerebellum, hemispheric lobule VI, BA 37 (473)
							L fusiform gyrus, BA 37 (232)
							L cerebellum, crus I (202)
							L cerebellum, hemispheric lobule IV / V, BA 37 (184)
							Middle cerebellar peduncles (157)
							L cerebellum, hemispheric lobule VI (87)
							L cerebellum, crus I, BA 37 (79)
							L cerebellum, hemispheric lobule IV / V, BA 30 (70)
							L cerebellum, crus I, BA 19 (62)
L insula	-42	-12	16	1.965	0.000487208	448	L insula, BA 48 (171)
							L rolandic operculum, BA 48 (157)
							L heschl gyrus, BA 48 (59)
							L superior temporal gyrus, BA 48 (13)
							L postcentral gyrus, BA 48 (11)

 Regions with fewer than 10 voxels are not reported in the cluster breakdown.

Table S8. Jackknife sensitivity analysis of subgroup meta-analysis in medication-free ET patients.

Discarded studies	Hyperactivity region		Hypoactivity region	
	R postcentral gyrus	cerebellar Vermis	R insula	L insula
Jenkins et al., 1993	Y	Y	Y	Y
Wills et al., 1994	Y	Y	Y	Y
Fang et al., 2013	Y	Y	Y	N
Fang et al., 2015	Y	Y	Y	Y
Yin et al., 2016	Y	N	Y	Y
L. Wang et al., 2018 ${ }^{\text {a }}$	Y	N	Y	Y
	Y	Y	Y	Y
Li et al., 2020	Y	N	Y	N
Total Y	8/8	5/8	8/8	6/8

${ }^{\text {a }}$ two data sets included.
Y, Yes; N, No; Y, brain regions were significant in jackknife analysis; N, brain regions not significant in jackknife analysis. Abbreviations: ET, essential tremor; L, left; R, right.

Table S9. Jackknife sensitivity analysis of subgroup meta-analysis in ET patients with head tremor.

Discarded studies	Hyperactivity region			Hypoactivity region		
	R postcentral gyrus	L frontal gyrus	inferior precentral gyrus		L cerebellum	L insula
Fang et al., 2013	Y	Y	Y	Y	N	
Fang et al. 2015	N	N	Y	N	Y	
Yin et al., 2016	Y	Y	Y	Y	Y	
L. Wang et al., 2018	Y	Y	Y	Y	Y	
P. Wang et al., 2018	Y	Y	Y	Y	Y	
Song et al., 2013	Y	Y	Y	Y	Y	
Li et al., 2020	Y	Y	Y	Y	Y	
Total Y	$6 / 7$	$6 / 7$	$7 / 7$	$6 / 7$	$6 / 7$	

$\overline{\mathrm{Y}, \mathrm{Yes} ; \mathrm{N}, \mathrm{No} ; \mathrm{Y} \text {, brain regions were significant in jackknife analysis; } \mathrm{N} \text {, brain regions not significant in jackknife analysis. }}$ Abbreviations: ET, essential tremor; L, left; R, right.

Table S10. Jackknife sensitivity analysis of subgroup meta-analysis of studies with correction threshold.

Discarded studies	Hyperactivity region	Hypoactivity region
	R postcentral gyrus	L insula
Jenkins et al., 1993	Y	Y
Wills et al., 1994	Y	Y
Fang et al., 2013	Y	Y
Fang et al., 2015	Y	Y
Yin et al., 2016	Y	Y
L. Wang et al., 2018	Y	Y
	Y	Y
P. Wang et al., 2018	Y	Y
Li et al., 2020	Y	Y
Total Y	$9 / 9$	$9 / 9$

${ }^{\text {a }}$ two data sets included.
Y, Yes; N, No; Y, brain regions were significant in jackknife analysis; N, brain regions not significant in jackknife analysis. Abbreviations: ET, essential tremor; L, left; R, right.

Table S11. Jackknife sensitivity analysis of subgroup meta-analysis in studies using fMRI method.

Discarded studies	Hyperactivity region				
	R postcentral gyrus		H cerebellum		L insula
Fang et al., 2013	Y	Y	N		
P. Wang et al., 2015	Y	Y	Y		
Benito-león et al., 2015	Y	Y	Y		
Fang et al., 2015	Y	Y	Y		
Yin et al., 2016	Y	Y	Y		
L. Wang et al., 2018	Y	Y	Y		
	Y	Y	Y		
P. Wang et al., 2018	Y	Y	Y		
Li et al., 2020	Y	Y	N		
Total Y	$9 / 9$	$9 / 9$	$7 / 9$		

${ }^{\text {a }}$ two data sets included.
Y, Yes; N, No; Y, brain regions were significant in jackknife analysis; N, brain regions not significant in jackknife analysis. Abbreviations: ET, essential tremor; L, left; R, right.

Table S12. Jackknife sensitivity analysis of meta-analysis results after excluding Ha et al. 2015.

Discarded studies	Hyperactivation regions			Hypoactivation regions		
	R	L	L	L	L	R
	PoCG	PreCG	IFG	INS	Cerebellum	INS
Jenkins et al., 1993	Y	Y	Y	Y	Y	Y
Wills et al., 1994	Y	Y	Y	Y	Y	Y
Czarnecki et al., 2011	Y	Y	Y	Y	Y	Y
Fang et al., 2013	Y	Y	Y	N	N	N
P. Wang et al., 2015	Y	Y	Y	Y	Y	Y
Benito-león et al., 2015	Y	Y	Y	Y	N	N
Fang et al., 2015	Y	Y	N	Y	Y	Y
Yin et al., 2016	Y	Y	Y	Y	Y	Y
L. Wang et al., 2018 ${ }^{\text {a }}$	Y	Y	Y	Y	Y	N
	Y	Y	Y	Y	Y	Y
P. Wang et al., 2018	Y	Y	Y	Y	Y	Y
Song et al., 2013	Y	Y	N	Y	Y	Y
Li et al., 2020	Y	Y	Y	N	Y	N
Total Y	13/13	13/13	11/13	11/13	11/13	9/13

${ }^{\text {a }}$ two data sets included.
Y, Yes; N, NO; "Yes" indicates that the brain regions were significant in the jackknife analysis; "No" indicates that the brain regions were not significant in the jackknife analysis.

