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Two-dimensional spin-orbital magnets with strong exchange frustration have recently been predicted to facilitate
the realization of a quantum critical point in the Gross-Neveu-SO(3) universality class. In contrast to previously
known Gross-Neveu-type universality classes, this quantum critical point separates a Dirac semimetal and a
long-range-ordered phase, in which the fermion spectrum is only partially gapped out. Here, we characterize
the quantum critical behavior of the Gross-Neveu-SO(3) universality class by employing three complementary
field-theoretical techniques beyond their leading orders. We compute the correlation-length exponent a, the
order-parameter anomalous dimension [𝜙 , and the fermion anomalous dimension [𝜓 using a three-loop 𝜖

expansion around the upper critical space-time dimension of four, a second-order large-𝑁 expansion (with the
fermion anomalous dimension obtained even at the third order), as well as a functional renormalization group
approach in the improved local potential approximation. For the physically relevant case of 𝑁 = 3 flavors
of two-component Dirac fermions in 2+1 space-time dimensions, we obtain the estimates 1/a = 1.03(15),
[𝜙 = 0.42(7), and [𝜓 = 0.180(10) from averaging over the results of the different techniques, with the displayed
uncertainty representing the degree of consistency among the three methods.

I. INTRODUCTION

A quantum critical point is a continuous phase transition
at absolute zero temperature, driven by some nonthermal
parameter, such as pressure, doping, or magnetic field. In many
cases, such a transition is characterized by fluctuations of a
local order parameter alone. The behavior of the system near
criticality can then be understood via the quantum-to-classical
mapping, which relates the universal properties of the quantum
transition in 𝑑 spatial dimensions to those of a corresponding
thermal transition in 𝑑 + 𝑧 dimensions. Here, the dynamical
critical exponent 𝑧 corresponds to the relative scaling of the
correlation time and the correlation length near criticality [1].
In the search for transitions beyond this quantum-to-classical
paradigm, quantum critical points that are characterized not only
by order-parameter fluctuations, but in addition feature gapless
fermion degrees of freedom, occupy center stage [2]. The
presence of low-energy fermion fluctuations at such a transition
prevents a naive mapping to a corresponding classical critical
point. Such a fermionic quantum critical point therefore usually
realizes a novel quantum universality class, characterized by a
set of universal exponents that significantly differs from those
of the usual bosonic universality classes.

In this context, the (2+1)-dimensional Gross-Neveu-type
universality classes have received significant attention in recent
years [3–19]. They describe transitions between a symmetric
Dirac semimetal phase, in which the Fermi surface consists
of isolated linear band-crossing points, and a long-range or-
dered phase, in which a microscopic symmetry of the model
is spontaneously broken. Such quantum transitions can be
realized in systems of interacting fermions on 𝜋-flux or hon-
eycomb lattices [20–36], and may be of potential relevance
for the physics of graphene-based materials [37–39]. In the
Gross-Neveu transitions studied so far, all Dirac cones become

simultaneously gapped out in the long-range-ordered phase. In
the case of a continuous-symmetry breaking, this leaves behind
the bosonic Goldstone modes alone as low-energy excitations.
If only a discrete symmetry is broken, it leads to a full gap in
the spectrum of the ordered phase.

In this work, we focus on a different family of Gross-Neveu
transitions, at which the fermion spectrum is only partially
gapped out. In particular, we study the critical behavior of
the Gross-Neveu-SO(3) universality class. This universal-
ity class describes a transition between a symmetric Dirac
semimetal phase featuring SO(3) symmetry and 𝑁 gapless
Dirac fermions, where 𝑁 is an integer multiple of three, and
a long-range-ordered phase, in which SO(3) is spontaneously
broken and 2𝑁/3 Dirac cones are gapped out. Importantly,
𝑁/3 Dirac cones remain gapless throughout the ordered phase,
as illustrated in Fig. 1.
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FIG. 1. Quantum phase diagram of the (2 + 1)-dimensional Gross-
Neveu-SO(3) model as function of tuning parameter 𝑚2. The theory
exhibits a quantum critical point between a Dirac semimetal and a
long-range-ordered phase in which two Dirac cones acquire a mass
gap, while one remains gapless, as depicted in the insets. In this work,
we provide improved estimates for the universal exponents 1/a, [𝜙 ,
and [𝜓 , characterizing this universality class.
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Such a continuous quantum transition has recently been
demonstrated to be realizable in frustrated spin-orbital magnets
in two spatial dimensions [40]. Here, the low-energy fermion
excitations arise from fractionalization of the microscopic spin
and orbital degrees of freedom. Spin-orbital models hence real-
ize a fractionalized counterpart of the Gross-Neveu-type transi-
tions, dubbed Gross-Neveu*. The fractionalized Gross-Neveu*
transitions differ from the ordinary Gross-Neveu transitions in
the universal finite-size spectrum [40–42]. However, in con-
trast to the situation in the fractionalized bosonic universality
classes [43, 44], at a Gross-Neveu* transition, two independent
universal exponents, such as the order-parameter anomalous
dimension [𝜙 and the correlation-length exponent a, feature
the same values as in the transition’s ordinary counterpart. As a
consequence of the hyperscaling relations, this then implies that
the exponents 𝛼, 𝛽, 𝛾 and 𝛿 in a fractionalized Gross-Neveu*
universality class also agree with those of the corresponding
ordinary Gross-Neveu universality class. We are particularly
interested in the transition between a symmetric Z2 quantum
spin-orbital liquid on the honeycomb lattice and a symmetry-
broken phase, in which the spins order antiferromagnetically,
while the orbital degrees of freedom remain disordered [40].
The Z2 quantum spin-orbital liquid can be understood as a
generalization of Kitaev’s quantum spin liquid [45], in which
the number of Majorana fermions coupling to the Z2 gauge
field is tripled [46]. At low energy, it realizes a Dirac semimetal
phase with 𝑁 = 3 two-component complex fermions and SO(3)
flavor symmetry. In the long-range-ordered phase, the SO(3)
symmetry is spontaneously broken and two out of the three
Dirac cones become gapped out, while the third one remains
gapless. This partially gapped phase can be understood as a
spin-1 antiferromagnet [40].

The purpose of this work is to provide refined estimates
for the critical exponents characterizing the (2+1)-dimensional
Gross-Neveu-SO(3) universality class. To this end, we compare
the results of three complementary advanced field-theoretical
approaches. We use a chain of computer-algebra tools devel-
oped in the context of high-energy physics [47–56] to determine
the critical behavior within an 𝜖 expansion around the upper
critical space-time dimension of four at three-loop order. Fur-
ther, by solving the Schwinger-Dyson equations directly at
the critical point [57–60], we compute the correlation-length
exponent a and the order-parameter anomalous dimension [𝜙

at order O(1/𝑁2) in the large-𝑁 expansion; the fermion anoma-
lous dimension [𝜓 is determined at order O(1/𝑁3) by making
use of the large-𝑁 conformal bootstrap technique [9, 61–64].
Finally, by employing the functional renormalization group
(FRG) in the derivative-expansion scheme, we compute the
critical behavior of the Gross-Neveu-SO(3) universality class at
the level of the improved local potential approximation (LPA′).

The rest of the paper is organized as follows: In Sec. II, we
discuss the effective field theory describing the Gross-Neveu-
SO(3) universality class. The 4 − 𝜖 and 1/𝑁 expansions are
discussed in Secs. III and IV, respectively, while the FRG
calculations are described in Sec. V. In Sec. VI, we present
and compare the results of the three different approaches. The
paper concludes with a short summary and outlook in Sec. VII.
Technical details are deferred to three appendices.

II. MODEL

The continuum field theory describing the Gross-Neveu-
SO(3) universality class is given by the action 𝑆 =

∫
d𝐷𝑥L

with [40]

L = �̄�𝛾`𝜕`𝜓 +
1
2
𝜙𝑎

(
−𝜕2

` + 𝑚2
)
𝜙𝑎

+ _(𝜙𝑎𝜙𝑎)2 − 𝑔𝜙𝑎�̄�
(
12𝑁 /3 ⊗ 𝐿𝑎

)
𝜓 (1)

in 𝐷 Euclidean space-time dimensions. Here, we have
assumed the summation convention over repeated indices
` = 0, . . . , 𝐷 − 1 and 𝑎 = 1, 2, 3. We use conventions in
which the Dirac matrices 𝛾` form a 2𝑁-dimensional represen-
tation of the Clifford algebra, {𝛾`, 𝛾a} = 2𝛿`a12𝑁 , such that 𝑁
corresponds to the number of two-component fermion flavors.
The spinor 𝜓 and its Dirac conjugate �̄� ≡ 𝜓†𝛾0 have 2𝑁 compo-
nents each. The interaction Lagrangian comprises the SO(3)-
counterpart of the Heisenberg-Yukawa interaction [13, 65],
parameterized by its Yukawa coupling 𝑔, and a quartic boson
self-interaction with coupling _. As in the standard Gross-
Neveu-Yukawa models [66], the Dirac matrices commute with
the Yukawa vertex operator, [𝛾`,12𝑁 /3 ⊗ 𝐿𝑎] = 0. The 3 × 3
matrices 𝐿𝑎 are generators of SO(3) in the fundamental rep-
resentation, corresponding to spin 1. The order-parameter
field 𝜙𝑎 is a scalar under space-time rotations, but transforms
as a vector under SO(3). In 𝐷 = 2 and 𝐷 = 3 space-time
dimensions, this requires that 𝑁 is a multiple of three, whereas
in 𝐷 = 4, 𝑁 would need to be a multiple of six in any physical
realization. However, in what follows, it will prove to be useful
to compute the critical behavior for general 2 < 𝐷 < 4 and
arbitrary 0 ≤ 𝑁 ≤ ∞, allowing one to analytically continue also
to noninteger values of both 𝐷 and 𝑁 . As Aslamazov-Larkin
diagrams vanish for the ungauged Gross-Neveu models [67],
the critical exponents a, [𝜙 , and [𝜓 do not depend on whether
the theory is defined in terms of reducible or suitable copies of
irreducible fermion flavors [68].

The zero-temperature phase diagram of the Gross-Neveu-
SO(3) model as a function of the tuning parameter 𝑚2 can
be understood on the level of mean-field theory, see Fig. 1.
In this case, the fluctuations of the order parameter 𝜙𝑎 are
neglected. Formally, this correspond to the strict limit 𝑁 →∞.
For 𝑚2 > 0, the ground state is symmetric and the spectrum
consists of 𝑁 gapless Dirac cones. For 𝑚2 < 0, the order
parameter field acquires a finite vacuum expectation value
〈𝜙𝑎〉 ≠ 0 and the SO(3) flavor symmetry is spontaneously
broken. However, since 𝐿𝑎 has a zero eigenvalue, only 2𝑁/3 of
the Dirac cones acquire a mass gap, while the remaining 𝑁/3
Dirac cones remain gapless throughout the long-range-ordered
phase. In this work, we demonstrate that the mean-field picture
remains qualitatively correct for finite values of 𝑁 , but the
corresponding critical exponents characterizing the universality
class receive sizable corrections to their mean-field values.

The field theory defined in Eq. (1) derives from a gradient
expansion of a spin-orbital model on a honeycomb lattice
with bond-dependent Kitaev and Heisenberg interactions at a
quantum critical point between a Z2 spin-orbital liquid and an
antiferromagnet [40]. Here, the itinerant fermionic degrees
of freedom arise from fractionalization of the local moments
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and interact via an emergent Z2 gauge field. Density matrix
renormalization group calculations suggest that the gauge field
excitations are gapped at the transition and thus do not contribute
to the long-range behavior. Besides the order-parameter field
𝜙𝑎, the only low-energy degrees of freedom are therefore
the gapless fermion fields 𝜓 and �̄�. The example proposed
in Ref. [40] corresponds to 𝑁 = 3 two-component Dirac
fermion flavors in 𝐷 = 3 space-time dimensions. However,
implementations with larger values of 𝑁 with and without
fractionalization are conceivable as well.

III. 4 − 𝝐 EXPANSION

The field theory defined in Eq. (1) has an upper critical
space-time dimension 𝐷up = 4, where both, the Yukawa
coupling 𝑔 and the quartic bosonic self-interaction _, become
simultaneously marginal. This allows for a controlled expansion
in 𝐷 = 4 − 𝜖 dimensions. In this section, we report our
calculation of the renormalization group functions at three-
loop order. Furthermore, we extract the correlation-length
exponent a, the boson anomalous dimension [𝜙, and the
fermion anomalous dimension [𝜓 at order O(𝜖3).

A. Method

We define the bare Lagrangian upon replacing fields and
couplings in Eq. (1) by their bare counterparts 𝜓 ↦→ 𝜓0, 𝜙𝑎 ↦→
𝜙𝑎,0, 𝑔 ↦→ 𝑔0 and _ ↦→ _0. The renormalized Lagrangian reads

L = 𝑍𝜓�̄�𝛾
`𝜕`𝜓 − 𝑍𝜙�̄�𝜓𝑔`

𝜖 /2𝜙𝑎�̄�
(
12𝑁 /3 ⊗ 𝐿𝑎

)
𝜓

+
𝑍𝜙

2
(𝜕`𝜙𝑎)2 +

𝑍𝜙2

2
𝑚2𝜙𝑎𝜙𝑎 + 𝑍𝜙4_`𝜖 (𝜙𝑎𝜙𝑎)2 , (2)

with the renormalization constants 𝑍𝜓, 𝑍𝜙, 𝑍𝜙�̄�𝜓, 𝑍𝜙2 , and
𝑍𝜙4 . The kinetic terms in the renormalized and bare Lagrangian
can be related to each other upon identifying 𝜓0 =

√︁
𝑍𝜓𝜓 and

𝜙0 =
√︁
𝑍𝜙𝜙. The energy scale ` parametrizes the renor-

malization group flow. It is introduced upon shifting the
couplings 𝑔2 ↦→ `𝜖 𝑔2 and _ ↦→ `𝜖 _ after the integration over
(4− 𝜖)-dimensional spacetime. The renormalized mass and the
renormalized couplings are then related to the corresponding
bare quantities as

𝑚2 = 𝑚2
0𝑍𝜙𝑍

−1
𝜙2 , (3)

𝑔2 = 𝑔2
0`
−𝜖 𝑍2

𝜓𝑍𝜙𝑍
−2
𝜙�̄�𝜓

, (4)

_ = _0`
−𝜖 𝑍2

𝜙𝑍
−1
𝜙4 . (5)

In the following, we compute all renormalization constants
up to three-loop order. To that end, we employ dimensional
regularization and the modified minimal substraction scheme
(MS). This amounts to the evaluation 1,815 Feynman diagrams.
To this end, we use a sophisticated chain of computer algebra
tools originally developed for loop calculations in high-energy
physics: First, the Feynman diagrams are generated by the
program QGRAF [47, 48]. These are further processed by the

programs q2e and exp [49, 50], which allow one to reduce the
diagrammatic expressions to single-scale Feynman integrals.
Algebraic structures from the Clifford algebra and the SO(3)
generators are contracted in FORM [51–53]. Finally, the Feynman
integrals are rewritten in terms of known master integrals via
integration-by-parts identities [54]. Herein, the vertex functions
are computed by setting one or two external momenta to zero
and subsequently mapping to massless two-point functions,
which are implemented in MINCER [55, 56].

B. Flow equations

The beta functions for the squared Yukawa coupling 𝑔2 and
the quartic scalar coupling _ are defined as

𝛽𝑔2 =
d𝑔2

d ln `
, 𝛽_ =

d_
d ln `

. (6)

It is convenient to further rescale the couplings as 𝑔2/(8𝜋2) ↦→
𝑔2 and _/(8𝜋2) ↦→ _, such that the 𝛽 functions at three loop
order read

𝛽𝑔2 = −𝜖𝑔2 + 2
3
(𝑁 + 6)𝑔4

− 1
2
𝑔2 [(7 + 6𝑁)𝑔4 + 80𝑔2_ − 80_2]

+ 10𝑔6_(5𝑁 + 24) + 10𝑔4_2 (48 − 5𝑁) − 440𝑔2_3

+ 6Z3𝑔
8 (𝑁 + 3) + 1

8
𝑔8 (6𝑁2 + 37𝑁 − 118) , (7)

𝛽_ = −𝜖_ + 44_2 − 1
3
𝑔2𝑁 (𝑔2 − 4_)

+ 1
3
𝑔2𝑁 (5𝑔4 + 4𝑔2_ − 88_2) − 1104_3

+ 1
72

{
−3𝑔8𝑁 (66𝑁 + 19) + 2𝑔6_𝑁 (562𝑁 − 4761)

− 48𝑔4_2𝑁 (22𝑁 − 521) + 49632𝑔2_3𝑁 + 3469248_4

− 36Z3
[
𝑔4𝑁 (7𝑔4 + 120𝑔2_ − 792_2) − 56832_4]} .

(8)

Here, Z𝑠 = Z (𝑠) is the Riemann zeta function. We have sorted
the terms in Eqs. (7) and (8) such that the first lines show the
tree level and one-loop contributions, the second lines show
the two-loop contributions, and the remaining lines show the
three-loop contributions. The wave function renormalization
functions 𝛾𝜙 and 𝛾𝜓 are defined as 𝛾𝜙/𝜓 = d ln 𝑍𝜙/𝜓/(d ln `).
At three-loop order they read

𝛾𝜙 =
2
3
𝑁𝑔2 + 40_2 − 4

3
𝑁𝑔4 + 41𝑔6𝑁2

36

+ 𝑔2

24
𝑁 (21𝑔4 + 400𝑔2_ − 1200_2) − 440_3 , (9)

𝛾𝜓 = 𝑔2 − 2𝑁 + 1
4

𝑔4

− 𝑔2

48
[
𝑔4 (4𝑁2 − 84𝑁 − 9) − 960𝑔2_ + 2640_2] .

(10)
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Finally, we consider the mass renormalization function as
𝛾𝜙2 = d ln 𝑍𝜙2/(d ln `), which at three-loop order reads

𝛾𝜙2 = −20_ − 2
3
𝑁𝑔4 + 40

3
𝑁𝑔2_ + 240_2 + 61

3
𝑁𝑔6

− 130
3

𝑁𝑔4_ − 160𝑁𝑔2_2 − 4
9
𝑁2𝑔4 (7𝑔2 − 15_)

− 2Z3𝑁𝑔4 (𝑔2 + 50_) − 12920_3 . (11)

The corresponding 𝛽 function for the bosonic mass is then
computed from the dimensionless mass �̃�2 = `−2𝑚2 as

𝛽�̃�2 = (2 − 𝛾𝜙 + 𝛾𝜙2 )�̃�2 . (12)

We note that in the limit 𝑔2 → 0, we recover the three-loop
results for the O(3)-symmetric real scalar 𝜙4 theory [69].

C. Critical exponents

The above 𝛽 functions feature several renormalization group
fixed points, i.e., coupling values 𝑔2

★ and _★ at which the
flow vanishes, 𝛽𝑔2 (𝑔2

★, _★) = 𝛽_ (𝑔2
★, _★) = 0. At the fixed

points, the system becomes scale invariant, giving rise to
quantum critical behavior. We find that the Gaussian fixed
point at (𝑔2

★, _★) = (0, 0) and the purely bosonic Wilson-Fisher
fixed point (𝑔2

★, _★) = (0, _★) are characterized by two and one
relevant directions within the critical plane �̃�2 = 0, respectively.
They are thus unstable and cannot be accessed in a system with
a single control parameter without fine tuning. We further find
a pair of interacting fixed points at finite 𝑔2

★ ≠ 0, one of which
is fully infrared stable. To the leading order, the corresponding
critical couplings are

(𝑔2
★, _★) =

(
3

2(𝑁+6) ,
√
𝑁 2+120𝑁+36−𝑁+6

88(𝑁+6)

)
𝜖 + O(𝜖2) , (13)

in agreement with the previous calculation [40]. The corre-
sponding higher-order contributions up toO(𝜖3) are lengthy but
straightforward expressions that can be obtained from Eqs. (7)
and (8) analytically, and will be used in the following.

The critical behavior is determined by the renormalization
group flow at and near the stable fixed point. The anomalous
dimensions are given by the wave function renormalization
functions 𝛾𝜓 and 𝛾𝜙 at the fixed point,

[𝜓 = 𝛾𝜓 (𝑔2
★, _★) , [𝜙 = 𝛾𝜙 (𝑔2

★, _★) . (14)

The inverse of the correlation-length exponent is extracted from
the flow of the bosonic mass, which acts as tuning parameter,

1
a
=

d𝛽�̃�2

d�̃�2

����
(𝑔2

★,_★)
= 2 − [𝜙 + 𝛾𝜙2 (𝑔2

★, _★) . (15)

The full expressions for general 𝑁 are given in Appendix A.
Electronic versions of the exponents are also available as
Supplemental Material for download [70].

For 𝑁 = 3, which corresponds to the situation relevant for
the spin-orbital models [40], the exponents read

1
a
= 2 − 5

√
5+9

22 𝜖 + 937
√

5−3182
31944 𝜖2

+
264

(
576665−306864

√
5
)
Z3+5132520

√
5−113996279

834888384
√

5
𝜖3 + O(𝜖4)

≈ 2 − 0.917𝜖 − 0.0340𝜖2 − 0.0735𝜖3 + O(𝜖4) , (16)

[𝜙 = 1
3 𝜖 +

80
√

5+89
2904 𝜖2 − 351384Z3+66393

√
5−357226

6324912 𝜖3 + O(𝜖4)

≈ 0.333𝜖 + 0.0922𝜖2 − 0.0338𝜖3 + O(𝜖4) , (17)

[𝜓 = 1
6 𝜖 +

105
√

5+79
8712 𝜖2 − 234256Z3+72458

√
5−187711

8433216 𝜖3 + O(𝜖4)

≈ 0.167𝜖 + 0.0360𝜖2 − 0.0303𝜖3 + O(𝜖4) . (18)

We note that the above expansions are asymptotic series with
vanishing radius of convergence. It is reassuring, however, that
the coefficients of the two- and three-loop corrections are still
small compared to the one-loop values. For comparison with
the large-𝑁 expansion, we also state the expressions that we have
obtained upon further expanding the general (4− 𝜖)-expansion
results in 1/𝑁 . We obtain

1
a
= 2 − 𝜖 −

[
9𝜖 − 39

4 𝜖
2 + 9

16 𝜖
3] 1

𝑁

+
[
459𝜖 − 5895

8 𝜖2 + 27
32 (153 − 184Z3)𝜖3] 1

𝑁2

+ O(𝜖4, 1/𝑁3) , (19)

[𝜙 = 𝜖 +
[
−6𝜖 + 15

4 𝜖
2 + 21

16 𝜖
3] 1

𝑁

+
[
36𝜖 − 261

8 𝜖2 − 9
32 (72Z3 + 95)𝜖3] 1

𝑁2

+ O(𝜖4, 1/𝑁3) , (20)

[𝜓 =
[ 3

2 𝜖 −
9
8 𝜖

2 − 9
32 𝜖

3] 1
𝑁
+
[
−9𝜖 + 369

16 𝜖
2 − 513

64 𝜖
3] 1

𝑁2

+
[
54𝜖 − 4023

16 𝜖2 + 243
32 (33 − 4Z3)𝜖3] 1

𝑁3

+ O(𝜖4, 1/𝑁4) . (21)

For any fixed 𝑁 , we extract estimates for the physical dimension
𝜖 = 1 by employing standard Padé approximants

[𝑚/𝑛] = 𝑎0 + 𝑎1𝜖 + · · · + 𝑎𝑚𝜖𝑚
1 + 𝑏1𝜖 + · · · + 𝑏𝑛𝜖𝑛

, (22)

with 𝑚, 𝑛 ∈ {0, 1, 2, 3} and 𝑚 + 𝑛 = 3. The coefficients
𝑎0, . . . , 𝑎𝑚 and 𝑏1, . . . , 𝑏𝑛 are obtained from matching the
Taylor series of [𝑚/𝑛] order by order with the 𝜖 expansions.
The discussion of the resulting estimates for 1/a, [𝜙, and [𝜓
for different values of 𝑁 is deferred to Sec. VI.
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IV. 1/𝑵 EXPANSION

In the limit of a large number of fermion flavors 𝑁 → ∞,
the fluctuations of the order-parameter field 𝜙𝑎 freeze out,
which allows us to compute the critical exponents in arbitrary
2 < 𝐷 < 4 in a systematic expansion in powers of 1/𝑁; this is
the topic of the present section.

A. Method

To achieve this, we have applied the large-𝑁 critical point
method developed in Refs. [57, 58, 62] for the scalar O(𝑁)
model and later extended to the Gross-Neveu universality class
in Refs. [59, 63, 64, 71–73]. As the latter formalism has already
been applied to variations of the Gross-Neveu model, we will
highlight only the key differences here. Indeed given the strong
overlap with the Gross-Neveu-SU(2) (= chiral Heisenberg)
model that the present SO(3) study is similar to, we refer the
reader to Ref. [9] for the finer details of the technique.

One of the first steps is to recognize that the Lagrangian
which serves as the basis for the method of Refs. [57, 58, 62]
is that of the universal theory that resides at the stable fixed
point in all dimensions 2 < 𝐷 < 4. It is a simpler version of
Eq. (1) in that only the fermion kinetic term and the three-point
vertex are the essential ones needed to define the canonical
dimensions of the fields at the fixed point, together with a
quadratic term in the boson field. Specifically,

Luniv = �̄� /𝜕𝜓 − 𝜙𝑎�̄�
(
12𝑁 /3 ⊗ 𝐿𝑎

)
𝜓 + 1

2
𝜙𝑎𝜙𝑎 , (23)

where /𝜕 ≡ 𝛾`𝜕` with 𝛾` again being (2𝑁) × (2𝑁) Dirac
matrices, such that the spinors 𝜓 and �̄� have 2𝑁 components,
as in the original Lagrangian [Eq. (1)]. The scalar 𝜙𝑎 has
been rescaled since at criticality the perturbative coupling
constant is fixed and does not run. The quartic interaction
present in Eq. (1) is required in four dimensions to ensure
renormalizability. Its contribution in Luniv is automatically
accounted for through closed fermion loop diagrams with four
external boson fields [74]. The other main aspect of the setup
concerns the algebra of the SO(3) generators 𝐿𝑎, which satisfy
the relation

(𝐿𝑎)𝑖 𝑗 (𝐿𝑎)𝑘𝑙 = 𝛿𝑖𝑙𝛿 𝑗𝑘 − 𝛿𝑖𝑘𝛿 𝑗𝑙 . (24)

We have used this in determining the group-theory factors
associated with the Feynman diagrams that contribute to the
large-𝑁 formalism.

In general, the method of Refs. [57, 58, 62] entails ana-
lyzing the behavior of various Schwinger-Dyson equations
in the approach to criticality. At the stable fixed point, the
propagators of the fields have a simple scaling behavior where
the exponent of the propagator corresponds to the full scaling
dimension. Specifically, in coordinate space the propagators

0 = π−1 + +

0 = ψ−1 + +

φ−1

FIG. 2. Skeleton Schwinger-Dyson two-point functions used to
determine [𝜓 at O(1/𝑁2). Dashed inner lines correspond to critical
fermion propagators [Eq. (25)] and wiggly inner lines correspond to
critical boson propagators [Eq. (26)].

take the asymptotic forms

𝜓(𝑥) ∼ 𝐴/𝑥
(𝑥2)𝛼

[
1 + 𝐴′(𝑥2)_

]
, (25)

𝜙(𝑥) ∼ 𝐵

(𝑥2)𝛽
[
1 + 𝐵′(𝑥2)_

]
, (26)

where we have used the name of the field as a shorthand for the
propagator at criticality, with the scaling exponents

𝛼 = 1
2 (𝐷 + [𝜓) , 𝛽 = 1 − [𝜓 − 𝜒 . (27)

Here, [𝜓 is the fermion anomalous dimension, which has
been computed to three loops at criticality in the previous
section. The anomalous dimension of the boson-fermion vertex
is denoted by 𝜒 so that

[𝜙 = 4 − 𝐷 − 2[𝜓 − 2𝜒 . (28)

In addition to these leading exponents, each propagator includes
a correction term involving the exponent _. At criticality,
this exponent corresponds to the correlation-length exponent
as 1/a = 2_. The canonical dimension of _ is (𝐷 − 2)/2.
The quantities 𝐴, 𝐵, as well as 𝐴′ and 𝐵′ are 𝑥-independent
amplitudes. The first two always appear in the combination
𝐴2𝐵, but this plays an intermediate role in deriving exponents.
The first terms of the respective equations in Fig. 2 represent
the asymptotic scaling forms of the two-point functions and
have been given in Ref. [59]. They are derived from Eqs. (25)
and (26) and have a similar scaling form to these, although 𝐴

and 𝐵 occur in the denominator.

1. Skeleton Schwinger-Dyson equations

To determine the anomalous dimensions of the two fields, one
focuses on the two-point Schwinger-Dyson equations shown
in Fig. 2, as well the three-point vertex function, for which the
first correction is depicted in Fig. 3. For both the two- and
three-point functions the contributing diagrams are computed
with the asymptotic propagators, Eqs. (25) and (26). Since
the power of the leading term of each propagator includes
the nonzero anomalous dimensions of Eq. (27), there are no
self-energy corrections on the contributing diagrams in order
to avoid double counting. By evaluating the diagrams and
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FIG. 3. Leading-order skeleton Schwinger-Dyson three-point function
used to determine 𝜒 at O(1/𝑁).

solving the equations of Fig. 2 self-consistently (eliminating
the product 𝐴2𝐵 in the process), one obtains an expression for
[𝜓 at O(1/𝑁2). The value of 𝜒 at O(1/𝑁) is required for this
to ensure that no ln(𝑥2) terms remain after renormalization.
This value for 𝜒 is deduced from the scaling behavior of the
diagram of Fig. 3. Moreover, this produces [𝜙 at O(1/𝑁) as a
corollary from Eq. (28). For the next order of 𝜒, one extends
the critical-point evaluation of the higher-order diagrams to
the three-point function, which are given by the decorations of
the leading-order diagram of Fig. 3 with vertex corrections, as
well as the non-planar and three-loop diagrams shown in Fig. 4.
This produces 𝜒 and hence [𝜙 at O(1/𝑁2).

Once we have established the anomalous dimensions of the
fields at O(1/𝑁2), the correction to scaling terms in Eqs. (25)
and (26) can be included in order to determine 1/a via the
determination of _. Since the correction terms involve (𝑥2)_,
the two-point Schwinger-Dyson consistency equation contains
terms of different dimensions. These split into terms which
are independent of the correction to scaling amplitudes, 𝐴′ and
𝐵′, and those that are not. It is the latter ones that determine _
to O(1/𝑁2) [58], since a consistency equation can be formed
from the 2 × 2 matrix defined by the coefficients of 𝐴′ and 𝐵′

in each equation of Fig. 2. Finding the solution to the equation
formed by setting the determinant of this matrix to zero defines
the consistency equation. For the Gross-Neveu universality
classes there is a known complication in that while all the
propagators of the diagrams of Fig. 2 include the correction
terms, extra diagrams are needed due to the same reordering
that arises in the original Gross-Neveu-Z2 (= chiral Ising)
model [59, 63, 72, 73]. This necessitates the inclusion of the
higher-order Feynman diagram as given in Fig. 4 of Ref. [9],
but with the appropriate group factor for the present model.

2. Large-𝑁 conformal bootstrap technique

Finally, we have been able to apply what is termed the large-𝑁
conformal bootstrap technique to compute theO(1/𝑁3) term of
[𝜓 . This method was originally developed for the O(𝑁) scalar
model in Ref. [62] using the early work of Refs. [61, 75, 76]. It
was subsequently extended to the Gross-Neveu-Z2 universality
class in Refs. [63, 64, 71] and more recently to the Gross-
Neveu-SU(2) (= chiral Heisenberg) model in Ref. [9] and the
Gross-Neveu-U(1) (= chiral XY) model in Ref. [77]. We

refer readers to that later article for more details of the large-𝑁
conformal bootstrap technique for the present context. However,
it is worth noting some of the key aspects of the approach.
Rather than focusing on the skeleton Schwinger-Dyson two-
point functions, the underlying self-consistency equations that

+ + +

+

FIG. 4. Diagrams contributing to large-𝑁 conformal bootstrap formal-
ism to deduce [𝜓 at O(1/𝑁3). Black dots refer to Polyakov conformal
triangles, see Ref. [9] for details.

ultimately produce [𝜓 at O(1/𝑁3) are derived from the vertex
functions. By contrast to the two-point function approach,
one is in effect performing perturbation theory in the vertex
anomalous dimension 𝜒. The relevant diagrams are given in
Fig. 4. Again, while there is no dressing on the propagators,
there are no vertex corrections unlike the diagrams in Fig. 2.
Instead, the contributions that underlie the vertex structure are
subsumed into the black dots, which denote Polyakov conformal
triangles. These are designed in such a way that the sum of the
critical exponents of the propagators connected to the vertex is
(𝐷 + 1). This value means that all the scalar-fermion vertices
are unique in the sense of conformal integration [59, 63, 72, 73].
It is hence possible to evaluate all the diagrams to the necessary
order to determine [𝜓 at O(1/𝑁3).

B. Critical exponents

Having summarized the large-𝑁 critical point formalism,
we are now in a position to discuss the results. Expressions
in general space-time dimensions 2 < 𝐷 < 4 for all the
exponents we have determined are presented in Appendix B
and electronically as Supplemental Material [70]. However,
the 𝜖 expansion of the large-𝑁 expressions must agree with the
explicit three-loop exponents derived from the renormalization
group functions at the stable fixed point. Therefore, if we
expand each of [𝜓 , [𝜙 , and 1/a around 𝐷 = 4 − 𝜖 , we find



7

1
a
= 2 − 𝜖 +

[
−9𝜖 + 39

4 𝜖
2 − 9

16 𝜖
3 − 9

64 (1 + 16Z3)𝜖4 + 3
256 (208Z3 − 144Z4 − 3)𝜖5] 1

𝑁

+
[
459𝜖 − 5895

8 𝜖2 + 27
32 (153 − 184Z3)𝜖3 + 27

64 (320Z5 − 276Z4 + 1376Z3 + 203)𝜖4

+ 9
1792 (4795 − 90496Z5 + 6720Z2

3 − 123984Z3 + 33600Z6 + 86688Z4)𝜖5] 1
𝑁2 + O(𝜖

6, 1/𝑁3) , (29)

[𝜙 = 𝜖 +
[
−6𝜖 + 15

4 𝜖
2 + 21

16 𝜖
3 + 3

64 (11 − 32Z3)𝜖4 + 3
256 (80Z3 − 96Z4 + 19)𝜖5] 1

𝑁

+
[
36𝜖 − 261

8 𝜖2 − 9
32 (72Z3 + 95)𝜖3 + 9

64 (472Z3 − 108Z4 + 45)𝜖4 + 9
256 (97 − 288Z5 + 1416Z4 − 1248Z3)𝜖5] 1

𝑁2

+ O(𝜖6, 1/𝑁3) , (30)

[𝜓 =
[ 3

2 𝜖 −
9
8 𝜖

2 − 9
32 𝜖

3 + 3
128 (16Z3 − 3)𝜖4 + 9

512 (16Z4 − 16Z3 − 1)𝜖5] 1
𝑁

+
[
−9𝜖 + 369

16 𝜖
2 − 513

64 𝜖
3 − 9

128 (128Z3 + 69)𝜖4 + 9
512 (1008Z3 − 384Z4 − 89)𝜖5] 1

𝑁2

+
[
54𝜖 − 4023

16 𝜖2 + 243
32 (33 − 4Z3)𝜖3 + 27

256 (2184Z3 − 216Z4 + 493)𝜖4 + 27
1024 (6552Z4 − 576Z5 − 20024Z3 − 2375)𝜖5] 1

𝑁3

+ O(𝜖6, 1/𝑁4) . (31)

All terms to O(𝜖3) agree exactly with Eqs. (19)–(21), which is
a highly non-trivial check on our 𝐷-dimensional expressions.
In the above equations, we have included additional terms to
O(𝜖5) to provide checks for future higher-loop computations.

With this check of the 𝐷-dimensional exponents satisfied,
we can now deduce their values in the 1/𝑁 expansion in fixed
𝐷 = 2 + 1 space-time dimensions. We find

1
a
= 1 − 16

𝜋2𝑁
+ 324𝜋2 + 2624

3𝜋4𝑁2 + O(1/𝑁3)

≈ 1 − 1.62114
𝑁

+ 19.92200
𝑁2 + O(1/𝑁3) , (32)

[𝜙 = 1 − 20
𝜋2𝑁

+ 2(81𝜋2 − 1028)
3𝜋4𝑁2 + O(1/𝑁3)

≈ 1 − 2.02642
𝑁

+ 1.56428
𝑁2 + O(1/𝑁3) , (33)

[𝜓 =
4

𝜋2𝑁
+ 304

3𝜋4𝑁2

+ 972𝜋2 ln(2) + 255𝜋2 − 10206Z3 − 3796
9𝜋6𝑁3 + O(1/𝑁4)

≈ 0.40528
𝑁

+ 1.04029
𝑁2 − 0.79721

𝑁3 + O(1/𝑁4) . (34)

In effect, three terms in the expansion of each exponent are
available, but involve different powers of 1/𝑁 . We note that
the leading two terms of 1/a and the leading terms of [𝜙 and
[𝜓 are the same as those of the Gross-Neveu-SU(2) model [9].
However, the O(1/𝑁2) term of 1/a is nearly twice that of
its SU(2) counterpart and the coefficients of the subsequent
terms of [𝜙 and [𝜓 are also significantly larger here, with the
exception of the O(1/𝑁2) term in [𝜙 .

For extrapolating the large-𝑁 series to finite 𝑁 , we again use

Padé approximants

[𝑚/𝑛] = 𝑎0 + 𝑎1𝑁
−1 + · · · + 𝑎𝑚𝑁−𝑚

1 + 𝑏1𝑁−1 + · · · + 𝑏𝑛𝑁−𝑛
, (35)

where now 𝑚, 𝑛 ∈ {0, 1, 2} (𝑚, 𝑛 ∈ {0, 1, 2, 3}) and 𝑚 + 𝑛 = 2
(𝑚 + 𝑛 = 3) for 1/a and [𝜙 ([𝜓). The numerical estimates for
different values of 𝑁 are discussed in Sec. VI.

V. FUNCTIONAL RENORMALIZATION GROUP

Finally, as the physical case of interest 𝐷 = 2 + 1 and 𝑁 = 3
lies outside the regimes in which the 𝜖 and 1/𝑁 expansions are
strictly controlled, we also employ the FRG as a complementary
approach to estimate the critical exponents.

A. Method

The FRG is a method to compute the quantum effective
action Γ[Φ], which is the generating functional of one-particle
irreducible (1PI) Green’s functions [78]. Here, Φ corresponds
to a collective field variable, which comprises all individual
fields contained in the theory. In the Gross-Neveu-SO(3) case,
we have Φ = (𝜙𝑎, 𝜓, �̄�). The effective action contains all
quantum fluctuations, in the sense that

Γ[Φ] = − ln
∫

1PI
DΦ′e−𝑆 [Φ+Φ

′ ] , (36)

where 𝑆 refers to the microscopic action and the subscript
reminds that only 1PI diagrams are allowed to contribute to
the path integral. The key idea of the renormalization group
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approach is to perform this integration step by step. To this end,
one extends the action 𝑆 by a scale-dependent regulator term,

𝑆 ↦→ 𝑆𝑘 = 𝑆 +
∫
𝑞

Φ′(−𝑞)𝑅𝑘 (𝑞)Φ′(𝑞) (37)

which leads to the corresponding effective average action
Γ𝑘 [Φ]. The raison d’être of the regulator 𝑅𝑘 (𝑞) is to suppress
“slow” fluctuation modes Φ′(𝑞) with momenta 𝑞 . 𝑘 in the
path integral; as such, it needs to satisfy 𝑅𝑘 (𝑞 � 𝑘) = 𝐶𝑘 > 0
for 𝑘 > 0, with 𝐶𝑘→∞ → ∞. For 𝑘 → 0, we demand that all
modes should be integrated out and thus 𝑅𝑘→0 (𝑞) = 0 for all
momenta 𝑞. The average action Γ𝑘 then interpolates between
the microscopic action 𝑆 at the ultraviolet cutoff 𝑘 → Λ→∞
and the full quantum effective action Γ in the infrared limit
𝑘 → 0. The advantage of the scale-dependent formulation is
that the 1PI path-integral prescription for Γ𝑘 can be traded for
an evolution equation in functional space, to wit

𝜕𝑡Γ𝑘 =
1
2

Str
𝜕𝑡𝑅𝑘

Γ
(2)
𝑘
+ 𝑅𝑘

, (38)

which is known as the Wetterich equation [79]. Here, we have
introduced the scale derivative 𝜕𝑡 ≡ 𝑘𝜕𝑘 , Γ(2)

𝑘
is the Hessian

Γ
(2)
𝑘

=

−→
𝛿

𝛿Φ>
Γ𝑘

←−
𝛿

𝛿Φ
, (39)

and the supertrace operator STr extends the usual trace by
accounting for Fermi-Dirac statistics thus:

STr ©«
𝐵 ∗ ∗
∗ 𝐹1 ∗
∗ ∗ 𝐹2

ª®¬ = Tr 𝐵 − Tr
(
𝐹1 ∗
∗ 𝐹2

)
. (40)

See Refs. [78, 80–82] for introductory expositions on the
method, and Refs. [83–85] for reviews on applications to
interacting many-body systems. The Wetterich equation itself
is exact, but generically not exactly soluble.

In the absence of a small control parameter for the physical
case of 𝑁 = 3 and 𝐷 = 3, here we pursue an ansatz in the spirit
of a derivative expansion of the effective average action,

Γ𝑘 =

∫
d𝐷𝑥

[
𝑍𝜓,𝑘 �̄�𝛾

`𝜕`𝜓 +
1
2
𝑍𝜙,𝑘 (𝜕`𝜙𝑎)2

− 𝑔𝑘𝜙𝑎�̄�(12𝑁 /3 ⊗ 𝐿𝑎)𝜓 +𝑈𝑘 (𝜚)
]
, (41)

where we have introduced the SO(3)-invariant 𝜚 = 1
2𝜙𝑎𝜙𝑎.

General field-dependence of renormalization group functions
is allowed only in the effective average bosonic potential 𝑈𝑘 ,
which is assumed to carry no explicit momentum dependence.
Pure fermionic interactions, such as four-fermion terms, that
may be generated in the nonperturbative regime, are neglected.
The next-to-leading order contributions come from the kinetic
terms, whose scale-dependences are approximated by field-
independent renormalization constants 𝑍Φ,𝑘 ; all higher-order
terms in the gradient expansion are neglected. This truncation
of the effective average action is commonly referred to as

“improved local potential approximation” (LPA′). It has been
proven to yield reliable results in a number of similar Gross-
Neveu-Yukawa-type models [12, 13, 86–94]. Extensions of
this approximation for the present class of models have been
discussed in Refs. [14, 15, 17, 95]. A final approximation entails
choosing a suitable ansatz for the effective average potential.
Here, we employ two different expansion techniques; we have
verified that our numerical results from the two approaches
converge to the same values within the error bars.

1. Taylor expansion of effective potential

A simple ansatz is a truncated Taylor expansion

𝑈𝑘 (𝜚) =
𝑛/2∑︁
𝑖=1

1
𝑖!
_𝑖,𝑘 𝜚

𝑖 , (42)

where we have assumed that the fixed point is located in the
symmetric regime, such that the minimum of the potential is
at 𝜚 = 0. If this assumption is violated at the fixed point, i.e.,
𝑈 ′(0) < 0, an alternative expansion

𝑈𝑘 (𝜚) =
𝑛/2∑︁
𝑖=2

1
𝑖!
_̂𝑖,𝑘 (𝜚 − 𝜚0,𝑘 )𝑖 (43)

is more expedient; this is called the spontaneously symme-
try broken (SSB) regime. In the above, 𝜚0,𝑘 is the (scale-
dependent) location of the minimum of 𝑈𝑘 (𝜚). It is related to
the vacuum expectation value (VEV) of the order parameter
by 𝜌0,0 = 1

2 〈𝜙𝑎〉2. Note that the linear term in the Taylor
expansion is absent, since 𝜕𝑈 (𝜚)/𝜕𝜙𝑎 = 𝜙𝑎𝑈

′(𝜚), and hence
𝑈 ′(𝜚0) = 0 if 𝜚0 ≠ 0 is a local minimum.

For practical computations, the ansatz (42) is truncated at
some finite order 𝑛 ∈ 2N. This defines the so-called LPA𝑛′.
The validity of this polynomial truncation can be checked
a posteriori by verifying convergence of the results upon
increasing 𝑛. The expansion of the effective potential introduces
a plethora of coupling constants, of which _1 = 𝑚2 > 0 is
proportional to the squared boson mass and _2 = 4!_ is the
quartic boson self-coupling. Inclusion of the higher-order
couplings _𝑖>2 is a minimal way to incorporate nonperturbative
corrections in space-time dimensions 𝐷 < 4, in addition to the
effects from the nonperturbative propagator, cf. Eq. (38).

The flow of the bosonic self-couplings are determined from
the flow of 𝑈𝑘 (𝜚) by differentiating successively with respect
to 𝜚. In the symmetric regime, this is straightforward to
implement:

𝜕𝑡_𝑖 =
[
(𝜕𝜚)𝑖𝜕𝑡𝑈𝑘 (𝜚)

]
𝜚→0 (𝑖 ∈ N>1). (44)

The corresponding system of equations in the SSB regime is
given by

𝜕𝑡 _̂𝑖 =
[
(𝜕𝜚)𝑖𝜕𝑡𝑈 (𝜚)

]
𝜚→𝜚0

+ _̂𝑖+1𝜕𝑡 𝜚0 (𝑖 ∈ N>2), (45)

and has to be supplemented by a flow equation for the VEV:

𝜕𝑡 𝜚0 = − 1
_̂2

[
𝜕𝜚𝜕𝑡𝑈 (𝜚)

]
𝜚→𝜚0

. (46)

The latter follows from 𝑈 ′(𝜚0) = 0 in the SSB regime [88].
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2. Pseudospectral decomposition of effective potential

In the context of the present work, we aim at systematically
comparing the results from different quantum-field-theoretical
methods between two and four dimensions. In particular, to-
wards two dimensions, we have to be careful about a possible
breakdown of the convergence of a local expansion in the effec-
tive potential. This is related to the canonical dimensionality of
the operators or couplings in the local expansion, i.e., the terms
∝ _𝑖 𝜚

𝑖 . More specifically, the canonical dimension [·] of the
bosonic field 𝜙 is given by [𝜙] = (𝐷 −2)/2, i.e., the dimension
of the operator 𝜚𝑖 is (𝐷 − 2)𝑖. Therefore, the corresponding
coupling _𝑖 scales as [_𝑖] = 𝐷 − (𝐷 − 2)𝑖. Lowering the
dimension towards 𝐷 = 2 means that more and more couplings
with higher 𝑖 become canonically relevant until they all have
the same canonical dimension of two in 𝐷 = 2. Depending
on the model and the specific fixed point, this behavior can
severely limit the reliability of a finite-order local expansion in
the bosonic operators.

In lieu of a local Taylor expansion for the effective potential,
non-local expansion schemes can be advantageous in terms of
tractability, accuracy, and fast convergence. An approximation
scheme that has been explored in the context of FRG fixed-point
and flow equations is based on pseudospectral methods [96].
Importantly, these methods facilitate, e.g., an efficient and high-
precision resolution of global aspects of the effective potential
including the correct description of a model’s asymptotic
behavior [15, 17, 97–102].

In the present case of the fixed point equation for the effective
potential, we need to find an approximate solution to an ordinary
differential equation in one variable defined on the domain
R+ ≔ [0,∞). To that end, we can expand the effective potential
𝑈 (𝜚) into a series of Chebyshev polynomials, where the domain
of 𝑈 (𝜚) is decomposed into two subdomains, i.e., [0, 𝜚m] and
[𝜚m,∞). The expansion then reads as

𝑈 (𝜚) ≈

∑𝑛𝑇

𝑖=0 𝑡𝑖𝑇𝑖

(
2𝜚
𝜚m
− 1

)
, 𝜚 ≤ 𝜚m ,

𝑈∞ (𝜚)
∑𝑛𝑅

𝑖=0 𝑟𝑖𝑅𝑖 (𝜚 − 𝜚m) , 𝜚 ≥ 𝜚m .
(47)

Here, the 𝑇𝑖 (𝑥) are the Chebyshev polynomials of the first kind,
and the 𝑅𝑖 (𝑥) = 𝑇𝑖

(
𝑥−𝐿
𝑥+𝐿

)
are rational Chebyshev polynomials

with a free parameter 𝐿 which parameterizes the compact-
ification in the argument 𝑥. Further, 𝑈∞ (𝜚) is the leading
asymptotic behavior of the effective potential for large field
arguments, i.e., 𝜚 →∞, which we obtain from the dimensional
scaling terms in the flow equation. The matching point 𝜚m
separates the subdomains and is another free parameter that
has to be chosen large enough such that the minimum of the
effective potential appears for 𝜚 = 𝜚0 < 𝜚m. We can use 𝐿

and 𝜚m to optimize numerical convergence. The values of the
effective potential and its derivatives for all field arguments 𝜚

are straightforwardly obtained by employing efficient recursive
algorithms [96]. In fact, we only need a relatively small number
of expansion coefficients 𝑡𝑖 and 𝑟𝑖 due to fast convergence of
the series.

For the determination of the coefficients 𝑡𝑖 and 𝑟𝑖 in the
Chebyshev expansion, we use the collocation method, i.e., we
insert the ansatz in Eq. (47) into the flow Eq. (38) and evaluate it

on a given set of collocation points. The collocation points are
chosen to be the nodes of the highest Chebyshev polynomials
in the respective domain, and we add the origin 𝜚 = 0. Finally,
to accomplish smoothness, we implement matching conditions
for the values of the effective potential and its derivatives at
𝜚m. The resulting set of algebraic equations is then solved with
the Newton-Raphson method. In practice, we actually expand
the derivative of the dimensionless effective potential 𝑢′(𝜚)
along these lines, and we optimize 𝐿 and 𝜚m as well as the
number of collocation points until we reach convergence in our
numerical results. For the present model, we observe numerical
convergence of the first four significant digits already starting
at 𝑛𝑇 = 𝑛𝑅 = 9 and, as a sanity check, we have increased the
number of collocation points up to 18 in each subdomain for
selected cases.

The anomalous dimensions of the quantum critical point are
then obtained directly from the fixed-point solution of 𝑢′(𝜚)
using the FRG flow equations specified in the next section.
To obtain the inverse correlation-length exponent, we use
the pseudospectral expansion from the first subdomain, i.e.,
𝜚 < 𝜚m, rewriting it as a local expansion around its minimum.
With the latter expansion, we then calculate the stability matrix
and extract the eigenvalues at the fixed-point potential. The
largest positive eigenvalue is the inverse correlation-length
exponent.

B. Flow equations

For convenience, we introduce dimensionless versions of
renormalized couplings and the effective potential, to wit:

�̃�2 = 𝑍−1
𝜙,𝑘𝑍

−2
𝜓,𝑘 𝑘

𝐷−4𝑔2
𝑘 , 𝑢( �̃�) = 𝑘−𝐷𝑈𝑘 (𝑍−1

𝜙,𝑘 𝑘
𝐷−2 �̃�),

(48)

where �̃� = 𝑍−1
𝜙,𝑘

𝑘𝐷−2𝜚 (and likewise for the VEV 𝜚0) and
we have suppressed the indices indicating the scale depen-
dence for simplicity. In the following, we shall work solely
with dimensionless quantities, and leave the “tilde” implicit.
Furthermore, we define the bosonic and fermionic anoma-
lous dimensions in usual fashion, [𝜙,𝑘 = −𝜕𝑡𝑍𝜙,𝑘/𝑍𝜙,𝑘 and
[𝜓,𝑘 = −𝜕𝑡𝑍𝜓,𝑘/𝑍𝜓,𝑘 . The FRG flow equations can be derived
by inserting the ansatz (41) into the Wetterich equation (38) and
comparing coefficients. In particular, evaluating for constant
𝜙𝑎 = (0, 0,

√︁
2𝜚) yields the flow equation for the effective

potential

𝜕𝑡𝑢(𝜚) = −𝐷𝑢(𝜚) + (𝐷 − 2 + [𝜙)𝜚𝑢′(𝜚)
+ 2𝑣𝐷ℓ (B) ,𝐷0 (𝑢′(𝜚) + 2𝜚𝑢′′(𝜚); [𝜙)

+ 4𝑣𝐷ℓ (B) ,𝐷0 (𝑢′(𝜚); [𝜙)

− 4𝑣𝐷
[

2𝑁
3 ℓ
(F) ,𝐷
0 (2𝜚𝑔2; [𝜓) + 𝑁

3 ℓ
(F) ,𝐷
0 (0; [𝜓)

]
.

(49)

The factor 𝑣𝐷 ≔ [2𝐷+1𝜋𝐷/2Γ(𝐷/2)]−1 arises from integration
over the surface of the sphere in 𝐷-dimensional Fourier space.
The threshold functions ℓ (B) ,𝐷0 and ℓ (F) ,𝐷0 involve the remaining
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radial integration and encode the details of the regularization
scheme, see Ref. [78] for formal definitions. While the first
line of Eq. (49) represents the tree-level flow, the second and
third line arise from the fluctuations of the one Higgs mode
with mass 2𝜚𝑢′′(𝜚) and the two Goldstone modes respectively,
in full agreement with the Gross-Neveu-SU(2) case [13]. In
the fermion bubble contribution (last line), the first term cor-
responds to the 2𝑁/3 gapped modes with mass 2𝜚𝑔2, and
the second term to the 𝑁/3 modes that remain gapless in the
presence of a constant background 𝜚.

The definition of the Yukawa coupling is actually ambiguous
in the SSB regime, as in general the fermions couple differently
to Higgs and Goldstone modes. Assuming the coupling to
the Goldstone modes (due to their masslessness) to be the
one primarily important for critical behavior [13, 95], we
determine the flow of the Yukawa coupling by projecting onto
𝜙1�̄�(𝐿1 ⊗ 12)𝜓 and obtain

𝜕𝑡𝑔
2 = (𝐷 − 4 + [𝜙 + 2[𝜓)𝑔2

+ 8𝑣𝐷ℓ (FB) ,𝐷
11 (2𝜚0𝑔

2, 𝑢′0; [𝜓 , [𝜙)𝑔4

− 16𝑣𝐷 𝜚0𝑢
′′
0 ℓ
(FBB) ,𝐷
111 (2𝜚0𝑔

2, 𝑢′0, 𝑢
′
0 + 2𝜚0𝑢

′′
0 ; [𝜓 , [𝜙)𝑔4.

(50)

Likewise, comparison of coefficients for the kinetic terms gives
the anomalous dimensions,

[𝜙 =
32𝑁𝑣𝐷

3𝐷
𝑚
(F) ,𝐷
4 (2𝜚0𝑔

2; [𝜓)𝑔2

+ 16𝑣𝐷
𝐷

𝑚
(B) ,𝐷
22 (𝑢′0, 𝑢

′
0 + 2𝜚0𝑢

′′
0 ; [𝜙)𝜚0𝑢

′′
0

2 (51)

[𝜓 =
16𝑣𝐷
3𝐷

[
𝑚
(FB) ,𝐷
12 (0, 𝑢′0; [𝜓 , [𝜙)

+ 𝑚 (FB) ,𝐷
12 (2𝜚0𝑔

2, 𝑢′0; [𝜓 , [𝜙)

+ 𝑚 (FB) ,𝐷
12 (2𝜚0𝑔

2, 𝑢′0 + 2𝜚0𝑢
′′
0 ; [𝜓 , [𝜙)

]
𝑔2. (52)

Here, ℓ (FB) ,𝐷
11 , 𝑚 (F) ,𝐷4 , 𝑚 (B) ,𝐷22 and 𝑚

(FB) ,𝐷
12 are further thresh-

old functions defined in Ref. [78].
In this work, we use a linear cutoff, which satisfies an

optimization criterion [103], as well as a sharp cutoff [95] for
comparison. For these regulators, the threshold functions are
known analytically, see, e.g., the appendix of Ref. [95] for an
overview.

As a consistency check, we derive, in the limit of small
𝜖 = 4 − 𝐷, the one-loop flow equations of Ref. [40]. Since the
latter employed Wilsonian RG with a sharp cutoff, we need
to insert [104] the threshold functions corresponding to the
sharp cutoff in the flow equations (49)–(52). We assume the
fixed-point effective potential lies in the symmetric regime.
Assuming furthermore that fixed-point couplings 𝑔2

★ = O(𝜖),
_𝑛,★ = O(𝜖𝑛−1) are parametrically small, we may neglect all
higher-order couplings _𝑖>2 in the flow of the effective potential
above (i.e., we work in LPA4′). Thus,

𝜕𝑡_1 = (−2 + [𝜙)_1 − 10𝑣𝐷
_2

1 + _1
+ 16

3
𝑣𝐷𝑁𝑔2 , (53)

𝜕𝑡_2 = (−𝜖 + 2[𝜙)_2 + 22𝑣𝐷
_2

2
(1 + _1)2

− 32
3
𝑣𝐷𝑁𝑔4 , (54)

and

𝜕𝑡𝑔
2 = (−𝜖 + [𝜙 + 2[𝜓)𝑔2 + 8𝑣𝐷

𝑔4

1 + _1
, (55)

with [𝜙 = 32
3

𝑣𝐷
𝐷
𝑁𝑔2 and [𝜓 = 16 𝑣𝐷

𝐷
𝑔2/(1 + _1)2. We then

rescale the couplings _2 → _2/(4𝑣𝐷) and 𝑔2 → 𝑔2/(4𝑣𝐷) and
take into account that 𝑣𝐷 = 1

32𝜋2 + O(𝜖). Upon identifying
_1 ≡ 𝑚2 and _2 ≡ 4!_, Eqs. (53)–(55) coincide precisely with
the one-loop flow equations given in Ref. [40].

A fixed point of the FRG flow equations is given by 𝜕𝑡𝑔
2 = 0

and 𝜕𝑡𝑢(𝜚) = 0 for all 𝜚 > 0. Employing the polynomial
expansion of the average potential yields (𝑛+2)/2 coupled non-
linear equations for the (𝑛 + 2)/2 couplings (𝑔2, _1, . . . , _𝑛/2)
or (𝑔2, 𝜚0, _̂2, . . . , _̂𝑛/2) depending on regime. In arbitrary
fixed space-time dimension 2 < 𝐷 < 4, these equations can be
solved iteratively [13]. In 𝐷 = 3, we always find a unique fixed
point that is characterized by a single relevant direction in the
renormalization group sense. Upon increasing the dimension
towards 𝐷 ↗ 4, this fixed point is adiabatically connected to
the infrared stable fixed point of the one-loop flow in the 4 − 𝜖
expansion. We discuss the corresponding critical exponents in
the following section, together with the results of the other two
approaches.

VI. DISCUSSION

The quantum critical point is characterized by a set of univer-
sal exponents. In this work, we focus on the leading exponents
a and [𝜙, as well as the fermion anomalous dimension [𝜓.
Here, the exponent a determines the divergence of the corre-
lation length b upon approaching the quantum critical point,
while the boson and fermion anomalous dimensions [𝜙 and
[𝜓 govern the scaling forms of the respective correlators. We
emphasize that the fermionic correlator is not gauge invariant
in the spin-orbital models and therefore [𝜓 does not correspond
to an observable quantity in this setting. However, as the Gross-
Neveu-SO(3) universality may in principle also be realized in a
model of interacting fermions, in which case [𝜓 is measurable,
we also discuss this quantity here. Subleading quantities that
control the corrections to scaling upon approaching the quan-
tum critical point, such as 𝜔, can in principle also be computed
within our approaches, but are left for future work.

Figure 5 shows our results for 1/a, [𝜙 , and [𝜓 as a function
of space-time dimension 2 < 𝐷 < 4 for 𝑁 = 3 flavors of
two-component Dirac fermions, which is the case relevant for
the spin-orbital models. Since the 4− 𝜖 and large-𝑁 expansions
are per se only valid asymptotically for vanishing expansion
parameter, we have employed different Padé approximants,
marked as “[𝑚/𝑛]” with integer 𝑚 and 𝑛 in the plots (note
that 𝑛 = 0 simply corresponds to the naïve extrapolation of the
series expansion to finite 𝜖 or 1/𝑁). The difference between
the different Padé approximants provides a simple estimate for
the systematic error of the extrapolation to finite 𝜖 and 1/𝑁 ,
respectively. For the same purpose, in the FRG calculation, we
have applied two different regularization schemes, marked as
“lin” for the linear cutoff and “sh” for the sharp cutoff. We note
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FIG. 5. Critical exponents of the Gross-Neveu-SO(3) universality class as a function of space-time dimension 𝐷 for 𝑁 = 3 flavors of
two-component Dirac fermions from three-loop 4 − 𝜖 expansion, second-order 1/𝑁 expansion (third-order for [𝜓), and FRG in LPA16′ using
linear (lin) and sharp (sh) regulators. [𝑚/𝑛] correspond to different Padé approximants.
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FIG. 6. Same as Fig. 5, but as a function of two-component Dirac fermion flavors 𝑁 in fixed space-time dimension 𝐷 = 3.

that in the sharp-cutoff scheme, there is no stable fixed point for
2.104 < 𝐷 < 2.366 as a consequence of fixed-point collisions
at the lower and upper bound of this interval. In this cutoff
scheme, the fixed point in 𝐷 = 2 + 𝜖 dimensions for small 𝜖
is therefore not adiabatically connected to the fixed point in
𝐷 = 4−𝜖 dimensions. We also note that in both cutoff schemes,
the FRG fixed point for 𝑁 = 3 is located in the symmetric regime
for 𝐷 = 2 + 𝜖 and 𝐷 = 4 − 𝜖 for small 𝜖 , but in the symmetry-
broken regime for 𝐷 = 3. This leads to discontinuities in 1/a
at those values of 𝐷, at which the minimum of the fixed-point
potential becomes finite, see left panel of Fig. 5. Reassuringly,
we observe that all curves approach each other near the upper
critical space-time dimension 𝐷up = 4, as it should be [13].

Figure 6 shows the critical exponents for the physical dimen-
sion 𝐷 = 2 + 1 as a function of the flavor number 𝑁 . For 𝑁
sufficiently large and increasing, the deviations between the
different approaches decrease for increasing 𝑁 and vanish in
the limit 𝑁 →∞ as expected. Note that for large 𝑁 , the fixed
point in the FRG calculation is again located in the symmetric
regime, in analogy to the behavior of the Gross-Neveu-Z2
model [12, 87]. The transition from symmetry-broken to sym-
metric regime upon increasing 𝑁 is accompanied by a jump
in 1/a, similar to the transition as a function of 𝐷 discussed
above.

The numerical estimates for the physical dimension 𝐷 = 2+1
are given in Table I for 𝑁 = 3 and in Tables II–III for larger
values of 𝑁 . Note that some Padé approximants develop
unphysical poles as a function of the expansion parameter,
which render them unreliable as extrapolations of the asymptotic
series expansion. The corresponding entries are hence labelled

“sing.” in the tables. Note also that the maximally asymmetric
Padé approximants [0/𝑛] cannot fulfil the boundary conditions
needed to extrapolate [𝜓 in both expansions, as well as [𝜙 in
the (4 − 𝜖)-expansion. Such non-existent approximants are
marked as “n.-e.” in the tables. Overall, we observe a fair
agreement of the estimates from the three different approaches.
In order to obtain final estimates for the three exponents from the
combination of the three different approaches we first average
over the values of the different approximants and regularization
schemes, respectively, within a given approach. Thus, for
both the 4 − 𝜖 and large-𝑁 expansions, we average over all
well-behaved Padé approximants. The naïve extrapolations,
which formally constitute [𝑚/0]-type Padé approximants, are
included in the respective average if and only if they are
sandwiched by two well-behaved “proper” Padé approximants
[𝑚1/𝑛1], [𝑚2/𝑛2] with 𝑛1, 𝑛2 ≠ 0. For the FRG calculation, we
average first between the Taylor expansion and pseudospectral
decomposition results for a given regulator, and then average
over the two regulators. The last step is to average over the
three methods, which then yields our final best-guess estimates.
The spread of the three mean values provides a rough estimate
for the accuracy of our final result. We emphasize that this
procedure may potentially underestimate the systematic error
involved in the different calculations and should therefore only
be understood simply as a measure of consistency of the three
approaches. For the physically relevant case of 𝑁 = 3 flavors
of two-component Dirac fermions in 𝐷 = 2 + 1 space-time
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TABLE I. Critical exponents for the Gross-Neveu-SO(3) universality
class for 𝑁 = 3 flavors of two-component fermions in 𝐷 = 2 + 1
space-time dimensions as relevant for the spin-orbital model on the
honeycomb lattice [40] from three-loop 4− 𝜖 expansion, second-order
1/𝑁 expansion (third-order for [𝜓), and functional renormalization
group. [𝑚/𝑛] correspond to different Padé approximants. For the
(4 − 𝜖)-expansion results (1/𝑁-expansion results), we have refrained
from showing approximants that exhibit a singularity in 𝐷 ∈ (2, 4)
[in 𝑁 ∈ (0,∞)], marked with “sing.”; those that do not exist are
marked “n.-e.”. A dash (—) signifies that the approximant either
entails the computation of terms which go beyond the scope of this
work, or conversely does not exhaust all the terms computed in the
preceding sections. To obtain the FRG results in LPA′, we have
treated the bosonic effective potential using a Taylor expansion [i.e.,
LPA𝑛′, with 𝑛 ≤ 16 (28) for the linear (sharp) regulator; the error bars
correspond to the uncertainty in extrapolating to 𝑛→∞] as well as a
pseudospectral decomposition in terms of Chebyshev polynomials.

𝑁 = 3 1/a [𝜙 [𝜓

4 − 𝜖 expansion naïve 0.97516 0.39181 0.17234
[1/2] 0.94472 0.40086 0.16458
[2/1] sing. 0.36989 0.18622
[0/3] 1.09000 n.-e. n.-e.

1/𝑁 expansion naïve 2.67318 0.49833 —
[1/1] 0.89397 0.46276 —
[0/2] sing. 0.51074 n.-e.
naïve — — 0.22116
[1/2] — — 0.12337
[2/1] — — 0.22716
[0/3] — — n.-e.

FRG Taylor linear 1.1901(10) 0.38781(6) 0.15068(8)
sharp 1.209(4) 0.3434(5) 0.1966(6)

pseudospectral linear 1.18974 0.38781 0.15072
sharp 1.20465 0.34340 0.19649

TABLE II. Same as Table I, but for 𝑁 = 6.

𝑁 = 6 1/a [𝜙 [𝜓

4 − 𝜖 expansion naïve 0.86069 0.61414 0.09720
[1/2] 0.81514 0.60023 0.10216
[2/1] 0.96700 0.61484 0.12551
[0/3] 1.01291 n.-e. n.-e.

1/𝑁 expansion naïve 1.28320 0.70572 —
[1/1] 0.91136 0.70076 —
[0/2] 1.26614 0.71005 n.-e.
naïve — — 0.09275
[1/2] — — 0.08341
[2/1] — — 0.09317
[0/3] — — n.-e.

FRG Taylor linear 0.9294(6) 0.66947(6) 0.073170(17)
sharp 0.926(3) 0.6598(4) 0.08257(16)

pseudospectral linear 0.92961 0.66948 0.073165
sharp 0.93245 0.65980 0.082570

TABLE III. Same as Table I, but for 𝑁 = 12. For the FRG results, we
have omitted the error bars corresponding to the uncertainty in the
extrapolation of the Taylor expansion of the effective potential, as they
are smaller than 2 × 10−5.

𝑁 = 12 1/a [𝜙 [𝜓

4 − 𝜖 expansion naïve 0.84820 0.80614 0.04095
[1/2] 0.82616 0.80659 0.05391
[2/1] 0.91427 0.80775 sing.
[0/3] 0.99001 n.-e. n.-e.

1/𝑁 expansion naïve 1.00325 0.84199 —
[1/1] 0.93326 0.84134 —
[0/2] 0.98522 0.84280 n.-e.
naïve — — 0.04054
[1/2] — — 0.03995
[2/1] — — 0.04056
[0/3] — — n.-e.

FRG Taylor linear 0.93660 0.85180 0.02992
sharp 0.93282 0.85700 0.02941

pseudospectral linear 0.93660 0.85180 0.02992
sharp 0.93282 0.85700 0.02941

dimensions [40], we obtain the critical exponents as

𝑁 = 3 : 1/a = 1.03(15), [𝜙 = 0.42(7), [𝜓 = 0.180(10).
(56)

Equation (56) represents the main result of this work. As there
appears to be no dangerously irrelevant coupling in the theory,
we expect hyperscaling to be satisfied. The critical exponents
𝛼, 𝛽, 𝛾, and 𝛿 can then be obtained from a and [𝜙 with the help
of the usual hyperscaling relations [105]. For completeness,
we also quote the estimates obtained for larger values of 𝑁 ,
which may be relevant for models with microscopic fermionic
degrees of freedom,

𝑁 = 6 : 1/a = 0.98(10), [𝜙 = 0.66(5),
[𝜓 = 0.094(18), (57)

and

𝑁 = 12 : 1/a = 0.93(4), [𝜙 = 0.83(4),
[𝜓 = 0.041(12). (58)

VII. SUMMARY AND OUTLOOK

In this work, we have investigated the critical behavior of
the (2 + 1)-dimensional Gross-Neveu-SO(3) universality class
in terms of the universal critical exponents a, [𝜙, and [𝜓 by
means of different sophisticated field-theoretical techniques.
The fractionalized counterpart of the Gross-Neveu-SO(3) uni-
versality class, dubbed Gross-Neveu-SO(3)*, may be realized in
spin-orbital magnets with strong exchange frustration [40]. In
contrast to the fractionalized bosonic universality classes [43],
in the fractionalized fermionic universality classes, not only
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the correlation-length exponent a, but also the order-parameter
anomalous dimension [𝜙 agrees with the value of the corre-
sponding conventional fermionic universality class. This allows
us to obtain estimates for both Gross-Neveu-SO(3) and Gross-
Neveu-SO(3)* from the same calculation. We emphasize,
however, that the fermionic correlator is not gauge invariant in
the spin-orbital model. Our estimate for the fermion anoma-
lous dimension [𝜓 therefore applies only to the conventional
Gross-Neveu-SO(3) universality class.

The Gross-Neveu-SO(3) theory is different from the pre-
viously studied Gross-Neveu-type models, as it features a
symmetry-breaking transition between two semimetallic phases,
with only a partial gap opening in the ordered phase. This leads
to values for the critical exponents that strongly differ from
those of the semimetal-to-insulator Gross-Neveu transitions [4].
In particular, the order-parameter anomalous dimension [𝜙
in the Gross-Neveu-SO(3) model is significantly smaller than
[𝜙 in any of the other Gross-Neveu-type models for the same
number of fermion flavors. These difference may be readily
observable in numerical simulations of suitable lattice models.

For the future, it would be interesting to study further proper-
ties of the Gross-Neveu-SO(3) universality class. In particular,
it might be worthwhile to examine the finite-size spectrum
on the torus, which was recently investigated in the conven-
tional Gross-Neveu-Z2 universality class [30], both in the
conventional Gross-Neveu-SO(3) and the fractionalized Gross-
Neveu-SO(3)* cases.

ACKNOWLEDGMENTS

We are grateful to Sreejith Chulliparambil, Xiao-Yu Dong,
Urban Seifert, Hong-Hao Tu, and Matthias Vojta for illumi-

nating discussions and collaborations on related topics. We
thank Matthias Steinhauser for correspondence and for pro-
viding us with the programs q2e and exp to carry out the
three-loop calculations. Figures 2, 3, and 4 were drawn with
the axodraw package [106]. S.R. and L.J. acknowledge sup-
port by the Deutsche Forschungsgemeinschaft (DFG) through
SFB 1143 (project A07, project id 247310070), the Würzburg-
Dresden Cluster of Excellence ct.qmat (EXC 2147, project id
390858490), and the Emmy Noether program (JA2306/4-1,
project id 411750675). J.A.G. was supported by the DFG
through a Mercator Fellowship. M.M.S. acknowledges support
by the DFG through SFB 1238 (projects C02 and C03, project
id 277146847).

Appendix A: Critical exponents for 𝑵 ≥ 3 in 4 − 𝝐 expansion

In this appendix, we give the full expressions for the critical
exponents from the 4 − 𝜖 expansion at three-loop order for
arbitrary 𝑁 ≥ 3. These are also provided electronically in
the ancillary file GNSO3-exponents.m of the Supplemental
Material [70]. The file contains the series in 𝜖 ≡ eps for the
inverse correlation length exponent a−1 ≡ nuinveps as well as
the boson and fermion anomalous dimensions [𝜙 ≡ etaphieps
and [𝜓 ≡ etapsieps, respectively. Further, we use 𝑁 ≡ n in
the file. The full expressions are

1
a

= 2 − 17𝑁 + 5(𝑠 + 6)
22(𝑁 + 6) 𝜖 + 820𝑁4 − 𝑁3 (820𝑠 − 172050) − 𝑁2 (19032𝑠 − 65745) − 18𝑁 (7417𝑠 − 111450) − 179280(𝑠 + 6)

10648(𝑁 + 6)3𝑠
𝜖2

+ 3
10307264(𝑁 + 6)5𝑠3

{
130160𝑁8 − 40𝑁7 (3254𝑠 − 792723) − 42𝑁6 (615046𝑠 − 62828375)

+ 𝑁5 (38744100900 − 1283135016𝑠) − 90𝑁4 (76274956𝑠 + 4047257499) − 27𝑁3 (650749372𝑠 + 61741071045)
+ 324𝑁2 (690975808𝑠 − 10686990915) − 972𝑁 (39813404𝑠 + 2231925285) − 32313945600(𝑠 + 6)

+ 88
(
𝑁3 + 126𝑁2 + 756𝑁 + 216

) [
2960𝑁5 + 𝑁4 (417300 − 2960𝑠) − 150𝑁3 (1598𝑠 − 31167)

− 9𝑁2 (181016𝑠 − 2657505) − 162𝑁 (15058𝑠 − 43965) + 3836160(𝑠 + 6)
]
Z3

}
𝜖3 + O(𝜖4) , (A1)

[𝜙 =
𝑁

𝑁 + 6
𝜖 + 3

968(𝑁 + 6)3
[
1010𝑁2 + 𝑁 (200𝑠 − 867) + 120(𝑠 + 6)

]
𝜖2

+ 3
468512(𝑁 + 6)5𝑠

[
− 44590𝑁5 + 6𝑁4 (41594𝑠 − 1353735) + 15𝑁3 (494903𝑠 + 858426) + 72𝑁2 (342319𝑠 − 6404430)

+ 27𝑁 (829517𝑠 + 593640) + 11171520(𝑠 + 6) − 3162456
(
𝑁2 + 9𝑁 + 18

)
𝑁𝑠Z3

]
𝜖3 + O(𝜖4) , (A2)
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[𝜓 =
3

2(𝑁 + 6) 𝜖 +
3

1936(𝑁 + 6)3
[
−736𝑁2 + 5𝑁 (2𝑠 + 123) + 600𝑠 + 9045

]
𝜖2

− 9
937024(𝑁 + 6)5𝑠

[
1570𝑁5 + 32𝑁4 (866𝑠 + 13605) + 3𝑁3 (457279𝑠 + 9071670) + 𝑁2 (65284110 − 55782𝑠)

+ 𝑁 (330505920 − 39115413𝑠) + 81(339000 − 719473𝑠) + 3162456
(
𝑁2 + 9𝑁 + 18

)
𝑠Z3

]
𝜖3 + O(𝜖4) , (A3)

where we have abbreviated 𝑠 B
√
𝑁2 + 120𝑁 + 36.

Appendix B: Critical exponents for 2 < 𝑫 < 4 in 1/𝑵 expansion

In this appendix, we record the full 𝐷-dimensional expres-
sions for the various critical exponents that have been computed
in the large-𝑁 expansion. These are also provided electroni-
cally in the ancillary file GNSO3-exponents.m as Supplemental
Material [70]. The file contains the series in 1/𝑁 ≡ 1/n for the
inverse correlation length exponent a−1 ≡ nuinvn as well as
the boson and fermion anomalous dimensions [𝜙 ≡ etaphin
and [𝜓 ≡ etapsin, respectively. We denote the numerical
coefficients of the 1/𝑁 series as

𝜒 =

∞∑︁
𝑛=0

𝜒𝑛

(
1
𝑁

)𝑛
, _ =

∞∑︁
𝑛=0

_𝑛

(
1
𝑁

)𝑛
, [𝜓 =

∞∑︁
𝑛=0

[𝑛

(
1
𝑁

)𝑛
,

(B1)

The leading-order terms are identical in all Gross-Neveu-like
universality classes,

𝜒0 = 0 , _0 = ` − 1 , [0 = 0 , (B2)

where we have abbreviated ` ≡ 𝐷/2. To order O(1/𝑁), we
recover the expressions that were originally determined in
Ref. [40],

𝜒1 =
`

2(` − 1) [1 , _1 = −(2` − 1)[1 , (B3)

where

[1 = − 3Γ(2` − 1)
`Γ(1 − `)Γ(` − 1)Γ2 (`)

. (B4)

At next order, we have

[2 =

[
(3` − 2)
2(` − 1)Ψ(`) +

13`2 − 12` + 2
4`(` − 1)2

]
[2

1 , (B5)

𝜒2 =

[
`(3` − 2)
4(` − 1)2

Ψ(`) − `(4`2 − 3` − 2)
4(` − 1)2

+ 9`2Θ(`)
8(` − 1)

]
[2

1 ,

(B6)

for the field anomalous dimensions, while the correction to the
exponent relating to a is

_2 =

{
3`(`2 − 2` + 4)

4(` − 1) (` − 2)2[1
− 32`6 − 178`5 + 349`4 − 265`3 − 14`2 + 128` − 32

8(` − 1)2 (` − 2)2
Ψ(`)

− 7`2 (2` − 3)
8(` − 1) (` − 2)

[
Ψ2 (`) +Φ(`)

]
− 3`2 (4`2 − 27` + 28)

8(` − 1) (` − 2) Θ(`)

+ 64`8 − 528`7 + 1650`6 − 2375`5 + 1367`4 + 218`3 − 632`2 + 256` − 32
16`(` − 1)3 (` − 2)2

}
[2

1 . (B7)

At this order, derivatives of the Euler Γ function arise, which is apparent in the functions
Ψ(`) = 𝜓(2` − 1) − 𝜓(1) + 𝜓(2 − `) − 𝜓(`) , Θ(`) = 𝜓 ′(`) − 𝜓 ′(1) , (B8)

where 𝜓(𝑧) = d lnΓ(𝑧)/(d𝑧) is the Euler 𝜓 function. Finally, the large-𝑁 conformal bootstrap formalism produced

[3 =

{
3(3` − 2)2
8(` − 1)2

Ψ2 (`) + (3` − 2)2
8(` − 1)2

Φ(`) − 8`7 − 5`6 − 8`5 − 182`4 + 414`3 − 288`2 + 80` − 8
16`2 (` − 1)4

− 4`5 − 7`4 − 101`3 + 178`2 − 88` + 12
8`(` − 1)3

Ψ(`) + 3`3 + 24`2 + 12` − 8
32(` − 1)2

[
Θ(`) + 1

(` − 1)2

]
+ 9`2

8(` − 1)

[
Θ(`) + 1

(` − 1)2

]
Ψ(`) + 9`2

16(` − 1)Ξ(`)
[
Θ(`) + 1

(` − 1)2

]}
[3

1 , (B9)

where an additional function Ξ(`) appears. It is related to a
particular two-loop self-energy diagram that was defined as

𝐼 (`) in Eq. (16) of Ref. [62] and is connected to Ξ(`) by

𝐼 (`) = − 2
3(` − 1) + Ξ(`) . (B10)
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FIG. 7. Comparison of the results for the boson and fermion anomalous
dimensions obtained from the FRG using both the Taylor expansion
in LPA16′, and the pseudospectral decomposition with 𝑛𝑇 = 𝑛𝑅 = 9
collocation points. The curves match almost perfectly in the whole
range 2 < 𝐷 < 4. Top panels: Linear (lin) cutoff. Bottom panels:
Sharp (sh) cutoff. In the sharp cutoff scheme, there is no stable fixed
point between 2.104 < 𝐷 < 2.366.

In Ref. [107] it was shown to be related to derivatives with
respect to the parameter dependence of an 4𝐹3 hypergeometric
function and its 𝜖 expansion was given to very high orders near
two and four space-time dimensions. The three-dimensional
value was given in Ref. [62] as

𝐼 ( 32 ) = 2 ln 2 − 21
𝜋2 Z3 . (B11)

Appendix C: Convergence of pseudospectral and Taylor
expansions

In Sec. V A, we have introduced two different expansion
schemes to find approximate solutions for the FRG flow and the
fixed points of the effective potential, i.e., a finite-order Taylor
expansion and an expansion based on a pseudospectral decom-
position using Chebyshev polynomials. While the advantage
of the Taylor expansion is its simple implementation which
has proven to work well for many purposes, the Chebyshev ex-
pansion may provide superior convergence properties in some
cases, e.g., going towards two dimensions (see the discussion in
the main text). To check the reliability of our FRG calculations,
we directly compare the results from the Taylor expansion and
the pseudospectral expansion for the anomalous dimensions for
2 < 𝐷 < 4, see Fig. 7. We find excellent agreement between
the results from the Taylor expansion and the pseudospectral
methods in the whole range of dimensions between two and
four.
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