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ABSTRACT 

Rickettsia bacteria have traditionally been considered as the aetiologic agent of 

deadly arthropod-borne diseases in humans and livestock. However, more recent studies 

have discovered Rickettsia as non-vertebrate pathogens that are actually important to 

invertebrate evolution as symbionts. Recently, Rickettsia in the ‘torix’ clade were 

described from glossiphoniid leeches. This clade has since been observed to infect a wide 

range of invertebrate species and is thought to be most common in host species 

associated with freshwater habitats. This leads to a general hypothesis that torix 

Rickettsia are a common endosymbiont of freshwater taxa. However, this hypothesis is 

yet to be formally tested. To assess this hypothesis, I firstly investigated in-depth a 

freshwater-associated insect order, the Odonata (dragonflies and damselflies), in which 

torix Rickettsia had not been previously recorded. This study revealed the first incidence 

of torix Rickettsia in odonates, present in roughly 10% of the screened species. Maternal 

transmission of this endosymbiont was observed in a damselfly (Coenagrion puella), and 

this strain has likely driven mtDNA introgression between the insect and its sister species 

(C. pulchellum). Then, I expanded the screen to test for torix Rickettsia in other 

invertebrate taxa and compared the infection frequency between freshwater and 

terrestrial communities. Fisher’s exact test indicated that the proportions of infected 

species from freshwater community is significantly higher than the terrestrial group in 

three representative insect orders. In addition to this broad screen, torix Rickettsia in a 

few blood-feeding insects are recorded for the first time, including mosquitos (Anopheles 

plumbeus), black flies (Simulium aureum) and the common bed bug (Cimex lectularius). 

Bed bugs were then established as a model system to study biological impacts of torix 

Rickettsia carriage. Symbionts in the bed bug were transmitted via matrilines only. There 

were no signs of reproductive parasitism, sex ratio distortion or cytoplasmic 

incompatibility phenotypes. Torix Rickettsia only express mild parasitic impacts on C. 

lectularius biology by slowing development time and reducing fecundity. Finally, this 

thesis raises three questions for onward study; i) why torix Rickettsia are abundant in 

freshwater biomes, ii) how do torix strains transition into terrestrial species and iii) how 

torix Rickettsia are associated with broad spectrum of eukaryotic hosts. Possible 

scenarios for these three questions are discussed for future study. 
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1.1 Heritable endosymbionts 

Studies of the biology of animals, plants and fungi in recent decades have 

recognised the importance of including microbial symbionts as part of individual 

biology, and by extension, their importance in treatments of ecology and evolution. 

Many aspects of biology – from digestion through to defence against infection – are 

impacted by microbial partners, and as a consequence many of these bacteria are 

also involved in the adaptive process as a co-evolutionary partner [1]. The nature of 

the interactions is diverse. In evolutionary terms, some symbiotic microbes are 

deleterious to the fitness of their host. Other multicellular organisms can survive 

without microbes but are less fit compared to when microbes are associated. Finally, 

some organisms need the microbial symbiosis to survive, they are obligately 

dependent [2]. 

In many invertebrate species, and in plants and fungi, symbiotic microbes 

may transmit vertically, from a female to her offspring. Often existing for millions of 

years as host associated heritable microbes, they have adapted to live as 

endosymbiont inside host cells. This adaptation commonly limits the full functional 

metabolic capabilities of the microbes (by reducing the genome size 2 to 4 times 

smaller when compared to their relative free-living form [3, 4]) to be a strictly 

obligate endosymbiotic form. That is, the bacteria lose their capacity to reproduce 

outside the host cells. Heritable microbes, with their tiny genomes commonly retain 

only the genes essential to maintain their core physiology and cell replication 

capacity, and the biochemical synthesis associated with symbiosis with the host [4].  

1.1.1 Primary and secondary endosymbionts 

Some eukaryotic organisms cannot survival independently of their 

symbionts due to their limited metabolic capability. They thereby require a symbiotic 

partner as an endosymbiont to supplement some nutritional compounds or 

biochemical molecules for their development and survival. These endosymbionts will 

be obligate themselves, live inside the host cells as a ‘primary endosymbiont’ (P-

endosymbiont), which enable their host to inhabit otherwise inaccessible niches. 

There are many examples of these primary endosymbiont/host interactions e.g., the 
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pea aphid (Acyrthosiphon pisum) and its obligate bacteria Buchnera [5], the common 

bed bug (Cimex lectularius) and its endosymbiont Wolbachia [6], the carpenter ant 

(Campotonus floridanus) with the endosymbiont Blochmannia [7], and the tsetse fly 

(Glossina morsitans) with its endosymbiont Wigglesworthia glossinidia [1]. This host-

symbiont relationship has formed through co-evolutionary process over several 

million years, such that neither the host nor symbiont are viable without one another. 

In this case, it is common to see that the host provides a special organ to harbour 

their primary endosymbionts, i.e., ‘bacteriome’. The bacteriome (or previously called 

‘mycetome’) comprise lots of bacteriocytes that are infected with high numbers of 

endosymbionts. The locations of these organs are varied, e.g., in digestive tracts [8, 

9], abdominal cavity [6, 10, 11], and salivary glands [8], depending on the host species 

and the service function of the symbionts. 

In contrast to these mutually dependent interactions, there are other 

endosymbionts that facultatively live inside host cells but do not form the obligate 

mutualistic relationship. These bacteria exist as a ‘secondary endosymbiont’ (S-

endosymbiont) in which the host is viable in the absence of them. Examples of these 

are Rickettsia endosymbiont in the pea aphid (A. pisum) [12], γ-proteobacteria (BEV-

like symbiont) in the common bed bug (C. lectularius) [6] and Sodalis endosymbiont 

in the tsetse fly (G. morsitans) [13]. These symbionts could be found either dispersed 

throughout host body (e.g., in haemocoel) or association with bacteriomes where the 

p-symbionts are present. Some biological impacts of these endosymbionts have been 

observed, with a variety of negative and positive impacts on host biology. For 

instances, they can manipulate host reproduction, become a parasitic agent reducing 

host fitness and service the host biology as beneficial symbionts, for instance 

providing protection. 
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1.1.2 Symbionts that manipulate host reproduction 

The transmission of heritable microbes is generally restricted to the 

maternal lineage (uniparental inheritance). The lack of transmission through male 

hosts may select for symbiont traits that favour the production and survival of female 

hosts. This action commonly only benefits the symbionts, by increasing the chance to 

transmit. Selection favours strains that cause their host to produce high numbers of 

females, through ‘sex-ratio distortions’. Sex-biased manipulative mechanisms can be 

induced through several processes, i.e., feminisation, parthenogenesis induction and 

male-killing phenotype (see examples in Table 1.1). As has already been said, the 

imbalance of sex is commonly costly to the host. In male-killing mechanism, 50% of a 

progeny brood (the sons) die. This means the female mothers have also lost 50% of 

their reproductive energy to produce the dead males. In parthenogenesis induction, 

the embryos are formed without sexual recombination, which makes the lineage lose 

variation and likely to become extinct in the medium term, due to the accumulation 

of deleterious mutations (Muller’s ratchet) [14, 15]. 
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Table 1.1 Incidence of reproductive parasitism (RP) in invertebrate hosts. 

Endosymbionts 
Host 

References 
Order Species 

¨ Feminization    

Wolbachia Class: Insecta   
 Hemiptera Zyginidia pullula [16] 
 Lepidoptera Eurema hecabe [17, 18] 
  E. mandarina [19, 20] 

 Class: 
Malacostaca 

  

 Isopoda Armadillidium vulgare [21] 
  Cylisticus convexus [22] 

  Sphaeroma rugicauda [23] 
Cardinium Class: Insecta   
 Hymenoptera Encarsia hispida [24] 
 Class: Arachnida   
 Trombidiformes Brevipalpus californicus [25] 

  B. phoenicis [26] 
Microsporidia Class: 

Malacostraca 
  

 Amphipoda Gammarus duebeni [27] 
    

¨ Male killing    

Wolbachia Class: Insecta   
 Coleoptera  Adalia bipunctata [28] 
  Coccinella undecimpunctata [29] 
  Tribolium madens [30] 
 Diptera Drosophila bifasciata [31, 32] 
  D. borealis [33] 
  D. innubila [34] 

 Lepidoptera Acraea encedon [28, 35] 
  A. encedana [36] 
  Hypolimnas bolina [37] 
  Ostrinia furnacalis [38] 
  O. orientialis [39] 
  O. scapulalis [40] 
  O. zaguliaevi [39] 

 Class: Arachnida   
 Araneae Oedothorax gibbosus [41] 

 Pseudoscorpionida Cordylochernes scorpioides [42] 
Spiroplasma Class: Insecta   
 Neuroptera Mallada desjardinsi [43] 
 Coleoptera  Adalia bipunctata [44] 
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  Anisosticta 

novemdecimpunctata 

[45] 

  Harmonia axyridis [46, 47] 
 Hemiptera Acyrthosiphon pisum [48, 49] 
 Lepidoptera Danaus chrysippus [50] 
  Ostrinia zaguliaevi [51] 
 Diptera Drosophila nebulosa [52] 
  D. neocardini [53] 
  D. melanogaster [54, 55] 
  D. ornatifrons [53] 
  D. paraguayensis [53] 
  D. wilistoni [56] 
Rickettsia Class: Insecta   
 Coleoptera Adalia bipunctata [44, 57, 58] 
  A. decempunctata [44] 
  Brachys tessellatus [59] 
  Propylea japonica [60] 
Arsenophonus Class: Insecta   
 Hymenoptera Nasonia vitripennis [61] 
Flavobacteria Class: Insecta   
 Coleoptera Adonia variegata [62] 
  Coccinula sinensis [63] 
  Colemegilla maculata [64] 
Microsporidia Class: Insecta   
 Diptera Anopheles quadimaculatus [65, 66] 
Hamiltonella Class: Insecta   
 Coleoptera Chilomenes sexmaculata [67] 
    

¨ Parthenogenesis    

Wolbachia Class: Insecta   

 Hymenoptera Aphytis diaapidis [68, 69] 

  A. lingnanensis [68, 70] 

  Aponanagyrus diversicornis [71] 

  Asobaara japonica [72] 

  Diploepsis rosae [73] 

  Encarsia formosa [74] 

  Eretmocerus mundus [75] 

  Gronotoma micromorpha [76] 

  Muscidifurax uniraptor [77, 78] 

  Leptopilina clavipes [79] 

  Telenomus nawai [80] 

  Trichogramma 

brevicapillium 

[81] 

  T. chilonis [82] 
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  T. cacoeciae [83] 

  T. cordubensis [81, 82] 

  T. deion [81, 82] 

  T. embryophagum [81, 82] 

  T. evanescens [81, 82] 

    

  T. kaykai [84] 

  T. oleae [82] 

  T. platneri [81, 82] 

  T. pretiosum [81, 82] 

 Thysanoptera  Franklinothrips vespiformis [85] 

 Class: Arachnida   

 Trombidiformes Bryobia sp. [86] 

  B. praetiosa [86] 
Cardinium Class: Insecta   
 Hymenoptera Encarsia berlesei [87] 

  E. critina [87] 

  E. hispida [87] 

  E. pergandiella [87] 

  E. protransvena [87] 
Rickettsia Class: Insecta   
 Hymenoptera Neochrysocharis formosa [88, 89] 

  Pnigalio soemius [90] 
    

¨ Cytoplasmic Incompatibility   

Wolbachia Class: Insecta   
 Hemiptera Laodelphax striaellus [91] 
  Orius strigicollis [92] 
 Diptera Ades albopictus [93-95] 
  Bactrocera oleae [96] 
  Ceratitis capitata [97] 
  Culex pipiens [98-101] 
  Drosophila melanogaster [55, 102] 
  D. simulans [102, 103] 
  D. pseudotakahashii [104] 
 Lepidoptera Eurema hecabe [105] 
  Colias erate poliographus [106] 
 Hymenoptera Cardiocondyla obscurior [107] 
  Habrobracon hebetor [108] 
  Nasonia giraulti [109] 
  N. longicornis [109] 
  N. vitripennis [109] 
  Spalangia endius [110] 
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Cardinium Class: Insecta   
 Hymenoptera Encarsia pergandiella [111] 
  E. suzannae [112] 
Rickettsiella Class: Arachnida   
 Araneae Mermessus fradeorum [113] 
    

 

 

1.1.3 Cytoplasmic incompatibility (CI) 

 Reproductive parasitic activity does not solely involve sex ratio distortion but 

can also be expressed in the phenotype of CI, in which there is embryonic death when 

paternal hosts carry the symbiont infection but maternal hosts do not. The 

mechanisms behind this trait are varied. The incompatible modification can occur at 

a pre-fertilization step during a male spermatogenesis [114] to the level of post-

fertilization during embryogenesis [115, 116]. There are two basic types of CI based 

on crossing relationships. Unidirectional CI involves only one symbiont strain. It 

occurs when an infected male mates with an uninfected female, but it is rescued 

when the female is infected with the same symbiont strain as male. Bidirectional CI 

involves two symbiont strains. In this case incompatibility is observed when males 

and females are infected with different symbiont strains. The mating between 

incompatible strains lead to the offspring death (Figure 1.1).  

 The phenomenon of CI selects against uninfected lineages, which become 

sterilized in incompatible matings. As the infected females can mate either with 

infected or non-infected males and produce viable offspring, infected lineages are 

selected for (see more examples in Table 1.1). 
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Figure 1.1 Two basic types of cytoplasmic incompatibility. (A) Unidirectional CI occurs 
when infected male mates with uninfected female. All other cases are compatible to 
form viable offspring. (B) Bidirectional CI occurs when mating males and females are 
infected with different strain of endosymbionts. 
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1.1.4 Fitness impacts of symbiont association 

 Despite the interspecies interaction between symbionts and hosts falling 

along the parasitism-mutualism continuum, the symbiont always benefits from the 

host as a vehicle for transmission; whether the host benefits however varies. 

Harbouring endosymbionts by default will always lead to a fitness cost to the host 

because of the additional energy need to keep the bacteria alive. However, this cost 

can be balanced by the symbiont conferring fitness benefit (see example in Table 1.2). 

 Commonly, the impact of symbionts on host fitness is established by 

comparing the biology of hosts with and without symbiont association [1, 72, 117, 

118]. This process is sometimes challenging as many study systems are hard to 

maintain in laboratory conditions and some host species have multiple symbiotic 

partners whose individual influences may be hard to dissociate. Antibiotic treatments 

have been used for curing a symbiont to create non-infected host lines [1, 12, 72, 

118-120], but these can be a problematic because it is difficult to distinguish between 

the effect of the antibiotic or the effect of losing the symbiont [121]. Further, they 

may be impossible to use in the presence of an obligatory association. However, 

recent studies can also predict the roles of symbionts from an investigation of 

symbiont genomes and their predicted capacities [2, 122, 123]. Nevertheless, the role 

of symbionts remains poorly understood in many cases.  
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Table 1.2 Examples of biological impacts of endosymbiont on invertebrate hosts 
 

Symbionts Host Biological fitness Ref. 

¨ Benefits    
    

Wolbachia Class: Insecta   
 Order: Diptera   
 Drosophila 

melanogaster 
Protection against RNA virus [124-

126] 
  Increase fecundity in the flies 

from temperate regions, but 
this effect is opposite to the 
flies from tropical regions 

[127] 

 Order: Hemiptera   
 Cimex lectularius Supplement essential B-

vitamin  
[6] 

 Order: Hymenoptera   
 Asobara tabida Necessary for oogenesis [128] 
    

Wigglesworthia Class: Insecta   
 Order: Diptera   
 Glossina sp. Supplement essential B-

vitamin 
[129] 

    

Blattabacterium Class: Insecta   
 Order: Blattarea   
 Periplaneta americana Provisional role on 

supplementing essential 
nutrition 

[122] 

    

Arsenophonus Class: Insecta   
 Order: Hemiptera   
 Nilapavata lugens Pesticide resistance [130] 
    
    
Buchnera Class: Insecta   
 Order: Hemiptera   
 Acythosiphon pisum Supplement essential amino 

acids 
[131, 
132] 

 Sitobion avenae Supplement essential 
nutrition on wing dimorphism 

[118] 

    
Regiella  Class: Insecta   
 Order: Hemiptera   
 Acythosiphon pisum Protection against fungus [133, 

134] 
    
Rickettsia Class: Clitellata   
 Subclass: Hirudinea   
 Torix targoi Potentially increase body size [135] 
 Hemiclepsis 

marginata 
Potentially increase body size [135] 
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 Class: Arachnida   
 Order: Ixodida   
 Ixodes pacificus Provisional role in folate 

synthesis for the tick 
[123] 

    

 Class: Insecta   
 Order: Psocoptera   
 Liposcelis 

bostrychophila 
Obligate to oogenesis [10] 

 Order: Hemiptera   
 Bemesia tabaci Thermotolerance [136, 

137] 
    

Streptomyces Class: Insecta   
 Order: Hymenoptera   
 Philanthus triangulum Protection against fungus [138] 
    

Spiroplasma Class: Insecta   
 Order: Diptera   
 Drosophila 

melanogaster 
Protection against a parasitoid 
wasp 

[139] 

 D. neotestacea Protection against nematodes [140] 
    

Cardinium Class: Insecta   
 Order: Hemiptera   
 Encarsia inaron Increase male reproduction 

and survival 
[141] 

    

¨ Costs    
    

Wolbachia Class: Insecta   
 Order: Hemiptera   
 Encarsia inaron Reduce fecundity [141] 
    

Hamiltonella  Class: Insecta   
defensa Order: Hemiptera   
 Rhopalosiphum padi Reduce feeding efficiency of 

insect 
[142] 

    

Rickettsia Class: Arachnida   
 Order: Araneae   
 Erigone atra Limits host dispersion, 

potentially reduce gene flow  
[143] 

    

 Class: Insecta   
 Order: Hymenoptera   
 Spalangia endius Reduce fecundity [110] 
    

Cardinium Class: Insecta   
 Order: Hemiptera   
 Encarsia inaron Reduce fecundity [141] 
    

Spiroplasma Class: Insecta   
 Order: Hemiptera   
 Laodelphax striaellus Reduce fertility [91] 
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1.2 Rickettsia 

Rickettsia is a genus in the order Rickettsiales within the alpha-

proteobacteria. All bacteria in this genus are gram-negative, nonspore-forming and 

strictly intracellular symbionts of eukaryotic host cells [144, 145]. The bacterial genus 

‘Rickettsia’ was named after a superb pathologist, Howard Taylor Ricketts (1871-

1910), who pioneered studies of Rocky Mountain spotted fever [146, 147], a deadly 

rickettsiosis disease. During and immediately after the World War I, the outbreak of 

epidemic typhus rickettsiosis caused millions of deaths. Since then, Rickettsia have 

been recognised as arthropod-borne diseases that can significantly impact 

humankind, and which were untreatable before the development of antibiotics. 

1.2.1 Rickettsia in the aspects of arthropod borne disease 

Historically, Rickettsia were classified into three major groups according to 

serological characteristics from infected patients: typhus, spotted-fever and scrub-

typhus groups [148]. With a new genomic classification, based on the sequence of 

fifteen proteins, they were divided into four major groups, i.e., spotted-fever, typhus, 

transitional and ancestral group (Figure 1.2) [149]. All of these pathogenic Rickettsia 

use blood-feeding arthropods, e.g., ticks, mites, louse and fleas, as the vectors for 

their transmission. Following the arthropods bite (or a case that they leave infected 

faeces on the scratched skin), Rickettsia disseminate into the blood and infect the 

vascular endothelium of skin and many internal organs (e.g., brain, lungs, heart and 

kidneys) [145]. They invade into the host cells by phagocytosis, the same entry mode 

used in arthropod host cells [145]. Common symptoms in people infected with 

Rickettsia include high fever, rash and cutaneous necrosis [145]. In 1994, Rickettsia 

was found in association with insects as an endosymbiont [57]. This strain, which was 

a male-killing heritable microbe from ladybird beetles, was phylogenetically ancestral 

to all known clades at the time and did not transmit to vertebrates. A number of 

related strains have been observed in recent times, and it is now recognised that 

Rickettsia are a common invertebrate symbiont [144, 150]. 
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Figure 1.2 Phylogeny of pathogenic Rickettsia. The inferred topology is estimated 
under parsimony of fifteen R. felis proteins involved in metabolic pathways, obtained 
from the study of Gillespie et al. [151]. All the analysed Rickettsia spp. are classified 
into four group, i.e., spotted fever (SFG), transition (TRG), typhus (TG) and ancestral 
(AG). The middle columns are diseases in the accidental human host, the hosts and 
arthropod vectors of each Rickettsia spp. Image adapted from Fuxelius et al. [149]. 
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1.2.2 Arthropod-associated Rickettsia  

 The vast majority of Rickettsia strains live as endosymbionts in arthropods 

and are not vertebrate pathogens. In contrast, they have been observed to play 

important roles in arthropod ecology, evolution and behaviour. The first incidence of 

this strain discovered in a ladybird (Adalia bipunctata) by the observation of Werren 

et al. in 1994 [57]. This strain can manipulate reproduction in the beetle host by 

inducing a male-killing phenotype in infected females. Rickettsia have been 

highlighted as one group of the endosymbiotic bacteria that impacts on insect 

evolution. Like other endosymbionts, Rickettsia can be observed in a wide range of 

eukaryotic species [144, 150] and can be transmitted through host generations 

vertically or through occasional inter species transfers [152]. 

1.2.3 Transmission patterns and impact on host biology 

 In the field of epidemiology, horizontal transmission of Rickettsia seems to 

be the major route of disease spread [153]. However, the inheritance of this 

vertebrate pathogen via transstadial and vertical transmission seems to be a factor 

that maintains the symbionts in the arthropod vectors [150]. In most cases, Rickettsia 

are obligate or facultative endosymbionts of their invertebrate hosts, which can be 

in the form of parasitic or mutualistic relationships. 

 Whilst vertical transmission dominates arthropod-Rickettsia symbiosis, 

interactions may also be established when the invertebrate hosts acquire the 

symbionts from environment or their diet. For instance, the sweet potato whiteflies 

(Bemisia tabaci) can receive Rickettsia from the consumption of infected plants [152, 

154]. In this case, Rickettsia and the insect hosts form a facultative mutualistic 

relationship in which the hosts provide shelter and symbionts provide protection 

from other pathogenic bacteria (see table 1.2) [155]. This mixed transmission mode 

(vertical and horizontal) is also observed in the case of plant pathogenic Rickettsia 

(papaya bunchy top disease) which has a leaf hopper (Empoasca papayae) as a vector 

[156].  

 Most invertebrate-associated Rickettsia are acquired strictly through the 

maternal line, which indicates an occurrence of co-evolution of Rickettsia with their 
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host. In these cases, Rickettsia are likely to have influences on host survival and 

reproduction. The influences can be expressed across the parasitism-mutualism 

continuum. For example, in the pea aphid (Acyrthosiphon pisum), vertically inherited 

Rickettsia improve the insect’s resistance against Pandora, a pathogenic fungus 

[157], while related strains help to increase fecundity [158], thermotolerance [136] 

stimulate oogenesis [10] and increase body size [135]. On the other hand, Rickettsia 

can form a parasitic relationship with their host. For example, Rickettsia can alter 

biological fitness (e.g., slowing host development [110], see Table 1.2) or develop into 

a reproductive parasitism (e.g., male-killing phenotype [57] and parthenogenesis 

induction [90], see Table 1.1). Like other symbioses, the type of relationship and host 

impacts vary depending on the symbiont strains and host species. 

1.2.4 Host range 

 Rickettsia were originally recognised as causing arthropod-borne diseases. 

Most hosts of the vertebrate pathogenic Rickettsia are blood-feeding arthropods, 

e.g., ticks (Amblyomma sp. and Demacentor sp.[159, 160]), human lice (Pediculus 

hominis corporis [161]) and fleas (Xenopsylla cheopis and Ctenocephalides felis [162, 

163]). Nevertheless, recent intensive molecular studies have found Rickettsia in wide 

range of eukaryotic organisms. Rickettsia’s host spectrum ranges from Protista, i.e., 

amoeba (Nuclearia pattersonii) [164] to invertebrates in the Animalia Kingdom (e.g., 

leeches, spiders and insects [144]). Additionally, Rickettsia species have also been 

reported infection in plant as reservoir hosts [152, 156]. However, in this section I will 

focus on host groups that are invertebrates, which are better studied. At the time of 

commencing this thesis, the majority of Rickettsia host species were from the insect 

orders Hemiptera, Coleoptera, Diptera and Hymenoptera. Other insect orders have 

been observed as hosts, but at lower frequency [144].  

 Although the range of hemipteran hosts known to carry Rickettsia is 

taxonomically narrow, the insects in this group that host Rickettsia are mainly 

phloem-feeding insects which have an impact in agricultural and pest management 

fields. Previous reports were related to the discovery of plant pathogenic Rickettsia 

in the past (papaya leafhopper host) [156]. A closely related Rickettsia of those were 



 17 

also found in aphids (Acyrthosiphon pisum) [12, 165] and whiteflies (Bemisia tobachi) 

[166] and distantly related strains were observed in leafhoppers (e.g., Nephotettix 

cincticeps [11], Macrosteles striifrons and M. sexnotatus [167]). Hymenopterans have 

also been reported as host species in several parasitoid and gall wasps, e.g., family 

Eulophidae [90, 168] 

 Coleopterans and dipterans that are hosts for Rickettsia have a much wider 

species range. Rickettsia have been reported within the insect spectrum that 

comprise the species that live or are associated with freshwater and terrestrial 

ecosystems. A few water beetles in the family Dytiscidae (Deronectes sp.) were 

reported in association with Rickettsia strains that were abundant in other 

freshwater species [169]. Other families that live on land (e.g., Curculionidae [170-

172] and Coccinellidae [57, 173]) have been widely reported with other Rickettsia 

strains. The Diptera are another hot-spot for Rickettsia symbionts. Many species of 

dipteran are human ectoparasites, e.g., Culicidae (mosquitoes) [174], 

Ceratopogonidae (biting midges) [175, 176], Glossinidae (tsetse fly) [177], and 

Psychodidae (sand fly) [178]. In addition, some of these are non-haematophagous 

dipterans, e.g., Dolichopodidae and Empididae (long-leg fly) [179]. Apart from these 

insect orders, there are a variety of other insect groups which have been reported for 

hosting non-vertebrate pathogenic Rickettsia, e.g., Collembola [180], Psocoptera 

[10], Neuroptera [181], Lepidoptera [182] and Siphonaptera [183]. 

 A particular hot-spot for Rickettsia presence is the Arachnida. Rickettsia 

have been observed in the Ixodidae [184], Acaridae [185], and Araneae [186]. The 

first two orders commonly harbour vertebrate pathogenic Rickettsia while the last is 

a hot-spot for non-pathogenic strains to vertebrates [186-189]. Freshwater species, 

e.g., Amphipoda [190] and non-arthropod invertebrates (i.e., Hirudinea in Annelida) 

[9, 135] have also been observed to carry Rickettsia. 

1.2.5 Diversity of Rickettsia 

Our understanding of the genetic diversity of Rickettsia has expanded, first 

since the development of PCR, and more recently next-generation sequencing. In the 

past, Rickettsia were identified into species levels by the identification generally 
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based on 16S rRNA sequence with the assumption that sequences of >97% identity 

represent the same species [191]. However, it is more complex and difficult to classify 

endosymbiont Rickettsia into species level or designate a new species name, due to 

the fact that some strains have broad variations when they live in different hosts 

[150, 175, 181]. Another simple approach for endosymbiont classifications is likely to 

identify the strain according to host species rather than define the strain with the 

specific epithet [150, 175, 181].  

To date, Rickettsia have been classified into 9 major groups based on studies of 

Weinert et al. 2009 [182], Weinert 2015 [144] and Castelli et al. 2016 [192], with the 

exclusion of Hydra group [144, 182], which is now considered as Candidatus Megaira 

(a Rickettsia sister genus) [192]. Vertebrate pathogenic strains are affiliated in 

transitional, typhus, spotted fever, canadensis and bellii groups (Figure 1.3). Strains 

lacking a vertebrate infection phase were found in the other groups, as well as the 

bellii group (shared with pathogens). The bellii clade represent a diverse assemblage 

of strains from arthropod hosts, while the rhyzobius, meloidae and adalia clades 

currently have a narrower spectrum of recognised host organisms. It is now clear the 

torix clade comprises the largest diversity of host organisms, from amoebae through 

leeches, to an array of arthropods (amphipods, spiders and insects, Figure 1.3). 
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Figure 1.3 Phylogeny of Rickettsia based on 16S rRNA and gltA gene with molecular 
clock dating. Topologies indicate relationship among Rickettsia lineages. On the right-
side showing illustrations of representative host groups. Bootstrap support is given 
on the node. The image is adapted from Weinert et al. [144] and Castelli et al. [192]. 
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1.3 Torix group Rickettsia  

 The increased number of Rickettsia studies reporting the presence of torix 

Rickettsia has produced a wider appreciation of this group of bacteria and the 

invertebrates that harbour them [150]. Whilst the number of recorded symbioses 

involving torix group strains are growing, our understanding of host preferences and 

biological impacts of the symbionts is poorly established [9, 169, 175, 182].  

1.3.1 Incidence of torix group Rickettsia 

 Torix group Rickettsia were originally described in two freshwater Japanese 

leech species, i.e., Torix targoi and Hemicrepsis marginata in the study of Kikuchi et 

al. [9]. Both host species are members of family Glossiphoniidae. Rickettsia 

localization was observed in epidermal cells, and in the oesophagus and intestine of 

T. tagoi. The freshly hatched offspring of this leech species all carried Rickettsia 

infection suggesting the symbionts are inherited via vertical transmission. A later 

study in 2005 [135] found another Torix leech species (T. tukubana) hosted Rickettsia. 

This study also revealed the potential roles of torix Rickettsia in enlarging body-size 

of the three leech species. 

1.3.2 Torix Rickettsia hosts 

Currently, hosts of torix Rickettsia are mainly organisms from freshwater 

ecosystems, e.g., protists [164], hirudineans [9, 135], crustaceans [190, 193] and 

other freshwater associated insects [169, 175, 182]. On the other hand, some hosts 

are terrestrial, e.g., diplopods [194], arachnids [186] and terrestrial insects [155, 165, 

195, 196], although these are considered to be in a minority. This has led to the 

‘freshwater hot-spot’ hypothesis [182], that torix Rickettsia might be more abundant 

in freshwater than terrestrial communities. However, there are some freshwater 

invertebrates that potentially harbour torix Rickettsia where there has been no 

record (e.g., insects of the order Odonata). Additionally, this hypothesis has not yet 

been directly tested, through an unbiased screen completed comparing freshwater 

and terrestrial communities. 
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1.4 General objectives, study system and directions for this thesis 

 Torix Rickettsia are likely abundant in the freshwater biome, but our 

knowledge of this group remains poor. The odonates represent a freshwater insect 

group that is diverse and well known but has yet to be observed as a host of torix 

Rickettsia. Odonates are commonly used as an ecological model, understanding 

symbioses in this group is important. Further, the freshwater hot-spot hypothesis has 

yet to be formally tested: it has emerged from a review of the records that have been 

published, rather than a hypothesis driven study. Finally, the biological impact of torix 

Rickettsia in their host species are very poorly understood, and there is a need to 

establish a model study system. These lead to the objectives and hypotheses of this 

thesis.  

1.4.1 Chapter 2: Diversity of Rickettsia in order Odonata 

 To explore incidence and prevalence of torix Rickettsia in insects in the order 

Odonata (dragonflies and damselflies), I investigate the presence of torix Rickettsia 

infection using a PCR assay screen of diverse odonate species from South America 

and Europe. These data are combined with the sequence of marker genes to establish 

the diversity of infections. For one case study, Coenagrion puella, I visualise the 

symbiont within the host using fluorescence in situ hybridisation (FISH) to establish 

the likelihood of heritable symbiosis. Finally, a case study is developed indicating 

Rickettsia may drive the lack of a mtDNA barcoding gap between two species, C. 

puella and C. pulchellum.  

1.4.2 Chapter 3: Screening of freshwater and terrestrial arthropod taxa 

 In this chapter, the hypothesis of ‘freshwater hot-spot’ is tested through a 

screening approach, comparing aquatic and terrestrial species. This study will utilize 

both newly collected material and historically curated DNA template from a previous 

study to allow the incidence of Rickettsia in these two biomes to be established. The 

approach is based on PCR assays, combined with Sanger sequencing of products to 

confirm phylogenetic affiliation of the strains discovered.  
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1.4.3 Chapter 4: Incidence of torix Rickettsia in the common bed bug 

 A key deficit in our understanding of torix Rickettsia symbiosis are the 

biological impacts on their host. This deficit is caused by a lack of a laboratory model 

for analysis. In Chapter 3, I revealed the presence of torix Rickettsia infection in the 

common bed bug (Cimex lectularius) from curated DNA templates collected from the 

laboratory colony in University of Sheffield. In this chapter, I establish the utility of a 

bed bug-Rickettsia system to explore the distribution of torix Rickettsia across 

populations and in individual tissues. I screened through various laboratory bed bug 

populations that were originally collected from Africa, Mainland Europe and Great 

Britain with PCR assays alongside with a screening of cimicid allies. The FISH approach 

was used to localise the symbiont infection in bed bug tissue. Male and female C. 

lectularius from infected and uninfected lines were allowed to mate for observing the 

transmission passage in the offspring.  

1.4.4 Chapter 5: Torix Rickettsia-Bed bug interaction 

 The previous chapter established the presence of Rickettsia infected and 

uninfected lineages of bedbugs that were otherwise isogenic. This affords the 

capacity to determine the biological influences of Rickettsia, which would otherwise 

be impossible (because antibiotic treatment would disrupt the obligate symbiosis 

with Wolbachia). I investigated a few biological impacts of the symbiont on bed bugs. 

Impacts on host life history and fecundity were compared between the two lines (i.e., 

development time, fecundity, body-size and longevity) and evidence of reproductive 

parasitism assessed (i.e., sex-ratio distortion and CI).  

 The thesis ends with a discussion, which summarises the findings of the 

thesis, and details key knowledge gaps for onward study. 

  



 23 

CHAPTER 2 

Incidence and diversity of torix Rickettsia –  

Odonata symbioses 
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2.1 ABSTRACT 

Heritable microbes are an important component of invertebrate biology, 

acting both as beneficial symbionts and reproductive parasites. Whilst most previous 

research has focussed on the ‘Wolbachia pandemic’, recent work has emphasised the 

importance of other microbial symbionts. In this study, I present a survey of odonates 

(dragonflies and damselflies) for torix group Rickettsia, following previous research 

indicating that this clade is common in other aquatic insect groups. PCR assays were 

used to screen for a broad range of odonates from two continents and revealed 8 of 

75 species tested were infected with Rickettsia. I then conducted further deeper 

screening of UK representatives of the Coenagrionidae damselfly family, revealing 6 

of 8 UK coenagrionid species to be positive for torix Rickettsia. Analysis of Rickettsia 

gene sequences supported multiple establishments of symbiosis in the group. Some 

strains were shared between UK coenagrionid species that shared mtDNA barcodes, 

indicating a likely route for mitochondrial introgression between sister species. There 

was also evidence of coinfecting Rickettsia strains in two species. FISH analysis 

indicated Rickettsia were observed in the ovarioles, consistent with heritable 

symbiosis. In conclusion, torix Rickettsia represent an important associate of 

odonates, being found in a broad range of species from both Europe and South 

America. There is evidence that coinfection can occur, vertical transmission is likely, 

and that symbiont movement following hybridization may underpin the lack of 

‘barcoding gap’ between well-established species pairs in the genus. Future work 

should establish the biological significance of the symbioses observed. 
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2.2 INTRODUCTION 

2.2.1 General introduction to Odonata 

Insects in the order Odonata are cosmopolitan and highly diverse. There are 

6,298 species around the world have been described to date [198]. The insects in this 

order are called ‘odonates’ for the comprehensive term. They can be classified into 

three suborders. The smallest and mostly neglected suborder is Epiophlebioptera 

[199], which consists of only three species and includes the member of the extinct 

suborder Anisozygoptera [200]. The other two main suborders are well known, i.e., 

suborder Zygoptera or ‘damselflies’ and Anisoptera or ‘dragonflies.’ Dragonflies and 

damselflies are ecologically important taxa especially for conservation and citizen 

sciences as they can be easily identified and used as indicators for monitoring 

biodiversity and the health of freshwater habitat [201, 202].  

Like other hemimetabolous insects, odonate larvae molt into adults without 

pupal eclosion. The aquatic larvae need 5-14 molts before metamorphosis to flying 

adults in terrestrial habitats [203-205]. Odonates are associated with freshwater 

ecosystem over their whole lifecycle. The larvae live as predators under the water, 

feeding on small fishes and aquatic invertebrates [203]. Because of the wide variation 

in breeding seasons, the durations of the odonate life cycle are varied, ranging from 

multivoltine, a group of odonate species that can produce few generations within 

one year, to partivoltine, species that need more than two years to complete one 

generation [206]. When metamorphosis has begun, the final naiad stadium needs to 

switch from a gill-breathing to an air-breathing insect. They need to migrate onto 

vegetation or other objects above the water. When the adult form emerges from the 

exuviae, the abdomen is elongated, and the wings that are generated from the wing 

buds of naiad thoracic dorsum are expanded [206]. The structure of thoracic muscles 

that connect straight to their wings possess a special wing movement in odonates. 

This movement is effective enough to support the powerful flight ability which 

benefits them to live in the terrestrial habitats as aerial predators. Most adults are 

generalist predators feeding on small insects, e.g., order Diptera (small flies, 

mosquitoes and midges), Coleoptera (small beetles), Hemiptera (plant hoppers and 
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small bugs), Lepidoptera (small butterflies) and Hymenoptera (honey bees and ants) 

[207]. Apart from this, the wings also support them in long-distance over continental 

migrations, which are successful in many dragonfly species [208, 209].  

2.2.2 Dispersion across geographical area 

One of the most marked ‘achievements’ of the insects in this order are 

migrations. Many dragonfly species can be found across continental regions; for 

examples, the common green darner (Anax junius) and the wondering glider (Pantala 

flavescens) [208, 209]. The latter species is common in almost all continents; and 

holds the record of the longest-distance migratory insect of the world [209]. This 

species can be observed in far distanced tectonic plates, e.g., north-eastern America 

[210], north-eastern China [211], over the Baltic sea [212] and Amsterdam Island in 

the South Indian ocean [213]. Damselflies are contrary, according to the small size of 

their wing spans, making damselfly mobility less effective than that of dragonflies 

when they are dispersing toward geographical barriers, especially the habitats that 

are isolated from the main continental regions like islands. The geographical 

formation of islands enhances allopatric speciation for many organisms that have 

become limited in their distributions once they have been introduced onto an island 

[214]. With the influence of the geographical barrier, some damselfly species become 

endemic on particular islands [215] or even develop a unique phenotype, like asexual 

reproduction [216, 217]. 

The North American damselfly, Ischnura hastata, has been recorded as the only 

species of Odonata that has developed the phenotype of thelytokous 

parthenogenesis in populations that live on the Azores Islands [217]. A previous study 

has observed driving factors for this phenotypic adaptation and found that the 

parthenogenesis in this species was influenced by an apomictic mechanism when the 

damselflies speciated in the islands [216]. There was no evidence of endosymbionts 

involvement in this phenotype [216], unlike in cases of parthenogenesis in other 

invertebrates [72, 86, 87, 90]. However, some damselfly species have a wide 

distribution range, especially the areas where large tectonic plates are close or 

connected. For example, the azure damselfly (Coenagrion puella), a member of family 
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Coenagrionidae, have wide distribution in Europe. They are commonly distributed 

across Great Britain, mainland Europe and northern Africa, and classified by the IUCN 

as having Least Concern (LC) status at the global assessment scale [218]. 

Nevertheless, at the edge populations of northern Africa, e.g., Morocco and Algeria, 

the number of the populations are scarce [219], which resulted in unique genotypic 

variations [220] due to founder effects from the disconnect of this tectonic plate from 

mainland Europe. Moreover, the limited distribution of damselflies when they 

encounter geographical barriers, may this potentially be involved as a driving factor 

in the speciation of Zygoptera, which make damselflies are more diverse than 

dragonflies [198]. 

2.2.3 Family Coenagrionidae in British Isles 

One of the big zygopteran families is Coenagrionidae, sometime called ‘a pond 

damselfly’ as they are the major odonates that inhabit lentic ecosystems. The family 

consists of 1,353 species around the world [198]. There are 13 species distributed 

throughout Great Britain and Ireland, comprising the genera Ceriagrion, Coenagrion, 

Enallagma, Erythromma, Ischnura and Pyrrhosoma [221]. According to the colour of 

male adults, they are known as ‘red and blue damselflies’. There are only a few 

common species widespread throughout the British Isles, e.g., Large red damselflies 

(Pyrrhosoma nymphula), Common blue damselflies (Enallagma cyathigerum) and 

Azure damselflies (Coenagrion puella). Indeed, almost half of the UK coenagrionid 

species are restricted residents, found in few locations. For instance, Small red 

damselflies (Ceriagrion tenellum) are found only in the southern part of Great Britain, 

and Irish damselflies (Coenagrion lunulatum) are found only in Ireland [221]. Most of 

the coenagrionid damselflies in the genus Coenagrion have restricted distributions 

and have become protected species, e.g., the Southern damselflies (C. mercuriale) 

and the Norfolk damselflies (C. armatum); the latter one is believed to be extinct from 

UK [221]. However, there are two common sister species of Coenagrion genus that 

disperse in many locations in British Isles, i.e., C. puella and C. pulchellum.  

 

 



 28 

2.2.4 Mitochondrial DNA introgression of the two sister Coenagrion species 

The azure damselflies (C. puella) and variable damselflies (C. pulchellum) are 

similar in their morphology. The adult male of Coenagrion damselflies are easily 

distinguished by comparing the shape of the black mark on 2nd abdominal segment 

[221] (Figure 2.1). Nevertheless, the mark of variable damselflies are diverse. Thus, 

the species are more difficult to identify when they are both found in the same 

location. Coenagrion puella are more abundant and have wider distribution than C. 

pulchellum. A decline in number of C. pulchellum has been observed. One of the 

hypotheses for this phenomenon is focused on hybridisation events when the two 

sister species are sympatric [222].  

Hybridisation likely reflects negative consequences; a decrease in population 

size of a weaker species is likely, usually when the two interbreeding populations are 

unequal [223]. More strong genetic evidence in the two sister damselflies was 

provided in the study of Freeland and Conrad in 2002 [224]. They revealed the limited 

haplotypes variation of the two species in sympatric localities. One of the three 

haplotypes indicated the evidence of mtDNA introgression between the two species 

which supported the hybridisation hypothesis. However, the study of Lowe et al. in 

2008 [225] showed more stronger genetic evidence using 12 microsatellite markers, 

which revealed the divergence of this sister species in the sympatric populations and 

concluded that ‘they do not hybridise’ [225]. It should be noted that, when the two 

species have introgressed identical mtDNA haplotypes, but they do not interbreed, 

this might be indicating the slow process of sympatric speciation [226, 227] or that 

the introgression is driven by a biotic factor, e.g., endosymbiont induction [228].  
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Figure 2.1 Illustrations of two sister Coenagrion species. the A: Azure damselfly (C. 
puella) and B: Variable damselfly (C. pulchellum) and their distribution in UK. The 
common markings on the dorsal back of 2nd abdominal segment, where the arrows 
are pointed. This mark of male adult is generally used as a morphological character 
to identify Coenagrion species. The UK distribution maps of the two species are 
modified from ‘NBN Atlas occurrence download at http://nbnatlas.org. Accessed 23 
September 2020’. 
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2.2.5 Symbionts in odonates 

Odonates have recently been revealed as hosts for Wolbachia [229-231], the 

best-known heritable symbiont, which is estimated to infect over 50% of insect 

species [232]. In South-east Asia, 4 out of 33 screened odonate species harboured 

Wolbachia symbionts [230], while 16 odonates species from Indian populations were 

observed with high infection prevalence (~70%) [229]. For the South Pacific area, 

populations of Nesobasis and Melanesobasis damselflies that were distributed 

among the Fiji archipelago, were found to be a hot-spot for Wolbachia infection from 

an in-depth screen [231]. The study also investigated the biological impact of 

Wolbachia on the damselfly hosts, but there were no reproductive manipulations 

(e.g., feminization and parthenogenesis induction) observed in the system. However, 

the authors have suggested that Wolbachia might be one of the factors that drove 

the radiation of the two damselfly genera [231]. The commonness of this 

endosymbiont infection is seemingly moderate for this cosmopolitan insect. With the 

behaviour and ecology of odonates, they may potentially acquire other 

endosymbionts from the freshwater biomes and from their prey, but surveys for 

other members of the Rickettsiales have yet to be completed. 

2.2.6 Torix Rickettsia, an endosymbiont in a freshwater biome 

Whilst Wolbachia is not the only bacterial symbiont of insects, it is the best 

studied of terrestrial and, to a lesser extent, freshwater taxa [188]. The 

documentation for endosymbionts in freshwater insects is particularly poor when 

compared to terrestrial insects, with the notable exception of mosquitoes [233]. 

Recently, the presence of torix Rickettsia has been noted in a variety of aquatic 

invertebrate taxa. First discovered in Torix leeches [9, 135], hot-spots of torix 

Rickettsia have been observed in Culicoides biting midges [175], deronectid diving 

beetles [169] and dolichopodid flies [179]. To date, the impact of symbionts from this 

group on host biology is unclear, with the exception of bark lice (Cerobasis 

guestfalica), in which Rickettsia infection is associated with parthenogenetic 

reproduction by the host [10]. However, the symbiont infection is a potentially 

important aspect of biology that has generally been overlooked in aquatic insects. 
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2.2.7 Aims 

Odonates are ecologically important species in freshwater habitats that also 

have potential to acquire Rickettsia bacteria from other members of the freshwater 

community. With their pronounced dispersal ability, they are likely to allow symbiont 

to hitchhike to other geographical areas. Investigating the incidence of Rickettsia in 

these cosmopolitan insects could help enrich biological and ecological knowledge of 

both symbiotic bacteria and odonate hosts. Exploratory research will hopefully 

encourage further studies in this aspect of insect-endosymbiont evolution. 

To investigate the incidence of Rickettsia infection in odonates, I screened 

odonate samples with PCR assays. The screened species combined a broad sweep of 

biogeographical and taxonomic diversity. I also explored infection in-depth with a 

greater number of individuals in a damselfly family Coenagrionidae in the UK, which 

were readily available for collection. I performed FISH analysis of Rickettsia tropism 

in Coenagrion puella to establish if the symbiont is present in developing oocytes and 

thus determine the likelihood of vertical transmission. 
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2.3 METHODS 

2.3.1 Sample collection and genomic DNA preparation 

Existing odonate DNA and preserved leg material from previous studies [234-

241] were sent to the laboratory in University of Liverpool to test the presence of 

Rickettsia (Table 2.1). These samples cover UK, South America, Mainland Europe and 

the Azores islands.  

Several fresh specimens were collected in UK during 2016-2018. Sampling 

locations were observed only in UK, Cheshire, Merseyside and Hampshire (Table 2.1). 

Adult odonates were sampled using a butterfly net (12” diameter). The nymphs were 

collected from ponds that have aquatic weeds and from small streams with slow 

running water, using a pond dipping net (25x25 cm with 1 mm mesh size). The adults 

were identified directly in the field and then preserved in 100% EtOH, but the nymphs 

were preserved and brought back to the laboratory for identification. 

All the preserved specimens (both nymphs and adults) were rinsed with fresh 

100% EtOH. Legs from individual samples were cut with a sharp sterilised forceps and 

air dried in a room temperature. The leg materials were extracted for DNA using a 

Promega Wizard® Genomic DNA Purification kit (A1120, Promega, UK) adapted from 

the manufacture protocol. Briefly, the leg tissues were homogenised in 1.5 ml 

centrifuge tube with 150 µl of Nuclei Lysis solution. Non-relevant proteins were then 

precipitated by adding 50 µl of Protein Precipitation solution and kept the tube on 

ice for 5 min. The tube was centrifuged at 16,000 g for 4 min, and the supernatant 

containing the DNA was gently transferred into a new 1.5 ml centrifuge tube. DNA 

was precipitated by adding 200 µl of 100% Iso-propanol, which was mixed gently and 

centrifuged again at 16,000 g for 2 min. The supernatant was discarded, leaving a 

white DNA pellet in the tube. The pellet was washed with 200 µl of 70% EtOH twice, 

then centrifuged at 16,000 g for 2 min for each time. Finally, the supernatant was 

discarded, the DNA pellet was air dried and resuspended in 100 µl of molecular 

graded water. All DNA templates were stored at -20oC. 
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The analysed material covered a total of 374 individuals from 80 species within 

8 families, from the UK, South America, mainland Europe and the Azores (Table 2.1). 

The screen separated into two sections; 1) broad screen and 2) focussed UK 

coenagrionids screen. In the broad screen, 307 odonate samples covering 75 species 

were screened for Rickettsia infection to enable a global view of the infection 

prevalence (Table 2.1). After the detection of high infection frequency in two 

damselfly species in the family Coenagrionidae from the broad screen (in Results 

section), this generated an expansion of the focussed screen to include other UK 

coenagrionid damselflies. The Focussed screen observed 112 individuals of 8 UK 

damselfly species within the family Coenagrionidae (3 species from the broad screen; 

Coenagrion puella, Enallagma cyathigerum and Ischnura elegans, and 5 additional 

species; Coenagrion pulchellum, C. mercuriale, Ceriagrion tenellum, Erythromma 

najas, and Pyrrhosoma nymphula) to enable an in-depth view of the prevalence 

within species and any sex bias in presence (Table 2.1). The Rickettsia infections in 

the focussed screen were also subjected to further MLST analysis to observe their 

haplotype diversity in 5 house-keeping genes. 
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Table 2.1 Odonate samples. The broad screen includes 75 species covering South America, mainland Europe, the Azores and the UK. The focussed 
screen observed 8 coenagrionid species from the UK (3 species from broad screen and 5 species in addition), highlighted in bold. In Collection 
column, ‘a’ indicates the specimens that were freshly collected in this study, ‘b’ indicates the samples that were obtained from previous studies 
(see section 2.3.1). N indicates the total number of insects/species that passed the QC test in PCR assays (see section 2.3.2). 

No. Species Family Location Collection N Adult Nymph 
Broad Global Screen       

   

  Suborder Anisoptera (Dragonflies)    
   

1 Anax imperator Aeshnidae Italy, Spain, Azores and continental 
Portugal 

b 14 5 9 

2 Oxygastra curtisii Corduliidae Tojal, Portugal b 1 1 - 
3 Cannaphila vibex Libellulidae Maquipucuna, Ecuador b 1 1 - 
4 Erythrodiplax amazonica Libellulidae Tiputini Ecuador b 1 1 - 
5 E. kimminsi Libellulidae Tiputini Ecuador b 3 3 - 
6 E. unimaculata Libellulidae Tiputini Ecuador b 1 1 - 
7 Libellula depressa Libellulidae Ness Gardens, Cheshire, UK a 1 0 1 
8 Orthemis cultriformis Libellulidae Tiputini, Ecuador b 1 1 - 
9 Sympetrum fonscolombii Libellulidae Azores, Portugal; Sardinia, Italy b 22 13 9 

10 Trithemis annulata Libellulidae Pontevedra, Spain b 1 - 1 
  Suborder Zygoptera (Damselflies)    

   

11 Calopteryx haemorrhoidalis Calopterygidae Italy, Portugal, Spain  b 8 8 - 
12 Ca. splendens Calopterygidae Frosinone, Italy b 2 2 - 
13 Haetarina sp. Calopterygidae  Peru b 1 1 - 
14 Acanthagrion quadratum Coenagrionidae Xalapa Mexico b 3 3 - 
15 Aeolagrion sp. Coenagrionidae Pará, Brazil b 1 1 - 
16 A. axine Coenagrionidae Napo, Ecuador b 3 3 - 
17 A. inca Coenagrionidae Pacaya-Samiria, Loreto, Peru b 1 1 - 
18 Argia joergenseni Coenagrionidae Argentina b 2 2 - 
19 A. kokama Coenagrionidae Tiputini, Ecuador b 1 1 - 
20 Bromeliagrion sp. Coenagrionidae Pará, Brazil b 1 1 - 
21 B. fernandezianum Coenagrionidae Tiputini Ecuador b 1 1 - 
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22 B. rehni Coenagrionidae Tiputini, Ecuador b 1 1 - 

23 
Coenagrion puella Coenagrionidae Ness Gardens, Cheshire and Sefton park 

Merseyside, UK 
a 28 12 16 

24 
Enallagma cyathigerum Coenagrionidae Ness Gardens, Cheshire and Sefton park, 

Merseyside, UK 
a 7 7 - 

25 Ischnura elegans  Coenagrionidae Ness Gardens, Cheshire, UK a 10 10 - 
26 I. graellsii Coenagrionidae Galicia b 18 18 - 

27 
I. hastata Coenagrionidae Azores (Portugal), Dominican Republic, 

Jamaica, Cuba, Mexico, Florida 
b 43 43 - 

28 Leptobasis vacillans Coenagrionidae Santiago de Cuba, Cuba b 2 2 - 
29 Metaleptobasis brysonima Coenagrionidae Pará, Brazil b 1 1 - 
30 M. mauffrayi Coenagrionidae Tiputini, Ecuador b 3 3 - 
31 M. quadricornis Coenagrionidae Pará, Brazil b 1 1 - 
32 Phoenicagrion karaja Coenagrionidae Pará, Brazil b 3 3 - 
33 Telebasis carmesina Coenagrionidae Minas Gerais, Brazil b 1 1 - 
34 T. dominicana Coenagrionidae Represa Chalons, Cuba b 3 3 - 
35 T. salva Coenagrionidae Morelos, México b 2 2 - 
36 Heteragrion bariai Megapodagrionidae Napo, Ecuador b 1 1 - 
37 Hypolestes clara Megapodagrionidae Jamaica b 12 12 - 
38 H. hatuey Megapodagrionidae Arroyo Bermejo, Dominican Republic b 10 10 - 
39 H. trinitatis Megapodagrionidae Cuba b 10 10 - 
40 Oxystigma sp. Megapodagrionidae Pará, Brazil b 1 1 - 
41 Philogenia sp. Megapodagrionidae Napo, Ecuador b 1 1 - 
42 Chalcopteryx rutilans Polythoridae Trocha Quebrada, Peru b 1 1 - 
43 Cora sp. Polythoridae Panguana, Peru b 1 1 - 
44 Polythore aurora Polythoridae Iquitos, Peru b 1 1 - 
45 P. lamerceda Polythoridae Peru b 3 3 - 
46 P. ornata Polythoridae Pampa Hermosa, Peru b 6 6 - 
47 P. picta Polythoridae Pozuzo, Peru b 7 7 - 
48 P. spaeteri Polythoridae Panguana, Peru b 4 4 - 
49 P. victoria Polythoridae Pozuzo, Peru b 9 9 - 
50 Drepanoneura sp. Protoneuridae Napo, Ecuador b 3 3 - 
51 D. muzoni Protoneuridae Tiputini, Ecuador b 2 2 - 
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52 Epipleoneura metallica Protoneuridae Mato Grosso, Brazil b 3 3 - 
53 E. fuscaenea Protoneuridae Guyana b 2 2 - 
54 E. humeralis Protoneuridae Tiputini, Ecuador b 4 4 - 
55 E. machadoi Protoneuridae Mato Grosso, Brazil b 2 2 - 
56 E. williamsoni Protoneuridae Minas Gerais, Brazil b 1 1 - 
57 Neoneura sp. Protoneuridae Pará, Brazil b 2 2 - 
58 N. amelia Protoneuridae Veracruz Mexico b 1 1 - 
59 N. bilinearis Protoneuridae Guyana b 1 1 - 
60 N. confudens Protoneuridae Guyana b 2 2 - 
61 N. denticulata Protoneuridae Pará, Brazil b 1 1 - 
62 N. joana Protoneuridae Guyana b 2 2 - 
63 N. myrthea Protoneuridae Guyana b 2 2 - 
64 N. maria Protoneuridae Cuba b 3 3 - 
65 N. sylvatica Protoneuridae Mato Grosso, Brazil b 1 1 - 
66 Phasmoneura sp. Protoneuridae Mato Grosso, Brazil b 1 1 - 
67 P. exigua Protoneuridae Mato Grosso, Brazil b 1 1 - 
68 Protoneura sp. Protoneuridae Pará, Brazil b 1 1 - 
69 P. caligata Protoneuridae Topes de Collantes, Cuba b 1 1 - 
70 P. capillaris Protoneuridae Dos Bocas, Cuba b 1 1 - 
71 P. klugi Protoneuridae Tiputini, Ecuador b 1 1 - 
72 P. sanguinipes Protoneuridae Dominican Republic b 3 3 - 
73 P. viridis Protoneuridae Jamaica b 1 1 - 
74 Psaironeura sp. Protoneuridae Pará, Brazil b 1 1 - 
75 P. tenuissima Protoneuridae Tiputini, Ecuador b 4 4 - 

Additional UK coenagrionid damselflies for the Focussed Screen  
   

1 Coenagrion mercuriale Coenagrionidae New Forest, Hampshire, UK b 30 30 - 
2 C. pulchellum Coenagrionidae Norfolk, UK b 20 20 - 
3 Ceriagrion tenellum Coenagrionidae New Forest, Hampshire, UK a 5 - 5 
4 Erythromma najas Coenagrionidae Cheshire, UK b 5 5 - 
5 Pyrrhosoma nymphula Coenagrionidae Ness Gardens, Cheshire, UK a 7 7 - 
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2.3.2 Broad screen in geographic taxa with PCR assays 

All DNA samples was quality checked (QC) to confirm that the DNA samples 

contained amplifiable DNA template after storage/preparation. DNA QC was 

performed using the mtDNA barcoding primers LCO_2190 / HCO_2198 [242] and 

C1J_1718 / C1N_2191 [243] (Table 2.2). These primer pairs amplify approximately 

680 and 470-bp product size respectively in the Cytochrome oxidase subunit 1 (COI) 

gene region. The cycling conditions are in the legend of Table 2.2.  

For samples passing QC, Rickettsia presence was assayed using Rickettsia-

specific primers amplifying a) a section of the bacterial 16S rRNA gene: Ri170_F / 

Ri1500_R designed by Küchler et al. [169], b) the citrate synthase gene (gltA); 

RiGltA405_F / RiGltA1193_R designed by Pilgrim et al. [175] (Table 2.2). These 

primers have been shown to amplify across currently known Rickettsia groups but 

not cross amplify other alphaproteobacteria. Cycling conditions were the same as 

described on Table 2.2. Nuclease free water was used as a negative control to ensure 

there were no false positive amplifications, and genomic DNA of Culicoides newsteadi 

obtained from Pilgrim et al. [175] as a positive control. For each species where a 

positive amplicon was obtained, amplicons were cleaned of primers and 

unincorporated nucleotides with ExoSAP-IT kit (E1050, New England Biolabs, US), and 

Sanger sequenced from a subset of individuals. The sequence was then used (a) to 

confirm the amplicon was a Rickettsia gene product, and (b) to allow estimation of 

the relatedness of the strains found. These verified positives samples were also used 

as positive controls in the later screens. All the DNA sequences were deposited in the 

European Nucleotide Archive (ENA) at EMBL-EBI database. 
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Table 2.2 PCR primer and fluorescence probe sequences that were used in this study. 
The rickettsial fluorescence probe is labelled with a fluorophore, in the square 
bracket, at 3’ end. All the primers were used in the following PCR conditions; initial 
denaturation at 95 °C for 5 min, followed by 35 cycles of denaturation (94°C for 30s), 
annealing (Tm°C for 30s), extension (72°C for 120s), and a final extension at 72°C for 
7 min. The annealing temperature was varied by the primers. 

Target organisms: 
gene 

Primer/ 
probe name Sequence (5’-3’) Tm 

(oC) 
Product 
size (bp) Ref. 

Odonates mitochondrial markers     

Cytochrome c 
oxidase subunit I, 
COI 

C1J_1718 GGA GGA TTT GGA AAT TGA TTA GT 
52 470 [244] 

C1N_2191 CAG GTA AAA TTA AAA TAT AAA CTT CTC G 

Cytochrome c 
oxidase subunit I, 
COI 

LCO_2190 GGT CAA CAA ATC ATC AAG ATA TTG G 
52 680 [242] 

HCO_2198 TAA ACT TCAG GGT GAC CAA AAA ATC A 

Odonates nuclear markers     

Arginine 
methyltransferase, 
PRMT 

ARG_F4 TCG ACT CGT ATG CGC ATT TCG G  
52 760 [241] ARG_R3 TGC CAC CTT CCT AAT AGA GCT C  

Phosphoglucose 
isomerase,  
PGI 

Cp pgi 2191 F CTG CTG ACT TCA TAG CCC CTG TAA  
56 745 [241] 

Cp pgi 1455 R GGC CCC WAG AGT AAA AGG TGT GAC  

Myosin light chain, 
MLC 

Myo_F1u ACT TCA CCC AAC TGC TCAC  
47 320 [241] 

Myo_R1cm CAT CAT CGA ATG ACT TGA 

Rickettsia      

16S ribosomal 
RNA,  
16S rRNA 

Ri170_F GGG CTT GCT CTA AAT TAG TTA GT 
54 1.1k [169] 

Ri1500_R ACG TTA GCT CAC CAC CTT CAG G 

Citrate synthase, 
gltA 

RiGltA405_F GAT CAT CCT ATG GCA 
54 786 [175] 

RiGltA1193_R TCT TTC CAT TGC CCC 

ATP synthase 
subunit alpha, 
atpA 

RiAtpA327_F GTC GGT AAA GCA TTG CTT GGT 
54 977 [175] 

RiAtpA1309_R ATT GAT CCT GCT TCA ATA 

Cytochrome c 
oxidase subunit I, 
coxA 

RiCoxA317_F ATA GGT GCA CCG GAT ATG GC 
54 1021 [175] 

RiCoxA1409_R CCG ATA GAT GAT ACC ATA TTC CA 

Outer membrane 
protein,  
ompA 

Ri17kD_F TCT GGC ATG AAT AAA CAA GG 
54 319 [175] 

Ri17kD_R ACT CAC GAC AAT ATT GCC C 

Rickettsia probe      

rRNA probe RickB1 CCA TCA TCC CCT ACT ACA-[ATTO 633] - - [10] 
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2.3.3 Focussed screen in UK coenagrionids with PCR assays 

I focussed on 8 coenagrionid species from the UK. Specimens of the 3 UK 

species, Coenagrion pulchellum, C. mercuriale and Erythromma najas, were obtained 

from the previous studies (see section 2.3.1). Five UK coenagrionid species (i.e., 

Coenagrion puella, Ceriagrion tenellum, Enallagma cyathigerum, Ischnura elegans 

and Pyrrhosoma nymphula) were freshly collected from Hampshire, Cheshire and 

Merseyside areas (Table 2.1). These samples were prepared and screened as 

described above to obtain Rickettsia marker sequences. Additionally, host 

mitochondrial barcodes were sequenced to confirm species identity, alongside 

additional nuclear DNA markers to distinguish between the sister species Coenagrion 

puella and C. pulchellum. For distinction between C. puella/pulchellum, the Myosin 

light chain (MLC), Arginine methyltransferase (PRMT) and Phosphoglucose isomerase 

(PGI) genes were amplified and sequenced (Table 2.2), the PCR protocols were 

adapted from Ferreira et al. [241]. 

2.3.4 Multi-locus sequence typing (MLST) in UK coenagrionids 

To allow a more in-depth study of Rickettsia diversity in the UK coenagrionid 

group, Rickettsia infections detected were further characterized by sequencing three 

additional loci; ATP-synthase (atpA), 17kDa antigenic protein (ompA) and COI loci, to 

create a five loci allelic profile, allowing multi-locus sequence typing (MLST). The PCR 

conditions of these genes are in the Table 2.2. The PCR primers were designed by 

Pilgrim et al. [175]. 

2.3.5 Fluorescence in-situ hybridization (FISH) 

Evidence for heritable symbiosis was investigated in C. puella by using 

fluorescence in-situ hybridization (FISH) to ascertain the presence/absence of 

Rickettsia in ovarian tissues. Methods were adapted from Sakurai et al. [12]. Briefly, 

internal organs of three female C. puella (target species, Rickettsia positive) and three 

female Ischnura elegans (non-Rickettsia infected species) were dissected and fixed in 

Carnoy’s solution (chloroform: ethanol: acetic acid, 6: 3: 1) overnight. Tissues were 

then cleared with 6% H2O2 in ethanol for 12 hr or until the tissue were translucent 

(whichever was longer). Ovary material was then selected, and hybridization 
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conducted through incubating the tissues overnight in a hybridization buffer (20mM 

Tris-HCl pH 8.0, 0.9M NaCl, 0.01% Sodium dodecyl sulphate and 30% formamide) with 

10 pmol/ml of rickettsial rRNA specific probe, rickB1 [10] (Table 2.2). After 

incubation, tissues were washed in buffer (0.3M NaCl, 0.03 M sodium citrate and 

0.01% sodium dodecyl sulphate), mounted onto a slide using VECTASHIELD® Antifade 

with DAPI (H-1200-10, Vectorlabs, UK) as a mounting medium, and visualised under 

a confocal microscope, 880 BioAFM (on 880 LSM platform, ZEISS, Germany). 

2.3.6 Diversity and relatedness of odonate Rickettsia 

The phylogenetic relatedness of Rickettsia strains found in odonates based on 

16S rRNA and gltA genes were estimated using MEGA X [245, 246]. I selected several 

published sequences of Rickettsia from NCBI GenBank, including representatives 

varying in range from close to far distance relations to the strains in this study, based 

on BLAST homology. The distant relative group consisted of several vertebrate 

pathogenic Rickettsia and other insect endosymbionts which are known to belong to 

other clades. Occidentia massiliensis was chosen for the outgroup for this Rickettsia 

topology. Sequences were manually checked and aligned using MUSCLE algorithm 

with default settings [247]. The relationships between these strains were estimated 

through the Maximum Likelihood approach using MEGA X under the K2+I and 

T92+G+I model for 16S rRNA and gltA gene, respectively. Support for individual nodes 

was tested with 1000 bootstrap replicates. 
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2.4 RESULTS 

2.4.1 Prevalence of Rickettsia in broad and focussed screen 

The initial broad screen of odonate material detected Rickettsia amplicons in 8 

of the 75 species screened (Table 2.3), which represented 4 of 8 families included in 

the screening (50% of the screened families were infected). Positive material was 

derived from UK, South America, Mainland Europe and the Azores, indicating a broad 

geographic basis to the symbiosis. When observed in-depth in the focused screen, 

four further Rickettsia symbioses were detected in the five additional UK species of 

Coenagrionidae tested in the focused screening (Table 2.3), resulting in a total of 6 of 

8 UK coenagrionids testing positive. 

In cases where infection was detected within a species, the fraction of 

individuals testing positive for Rickettsia varied from 9 to 100% (Table 2.4). In two of 

the species with more than one sample, C. puella and Enallagma cyathigerum, 100% 

of the screened individuals were infected. In cases where the individual sex was 

known (i.e., template derived from adults), there was no evidence of Rickettsia 

infection being biased to one host sex. 
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Table 2.3 Screening results of Rickettsia-positive species from broad screen and focused UK coenagrionids screen (the species that are highlighted 
in bold). The focused screen combined all coenagrionid species from the broad and additional screened from Table 2.1. In Collection column, ‘a’ 
indicates the specimens that were freshly collected in this study, ‘b’ indicates the samples that were obtained from previous studies (see section 
2.3.1). Inside the brackets is the number of screened individuals, and outside is the number of infected individuals 

No. Species Family Location Collection N Adult Nymph 
Broad Global Screen            

Suborder Anisoptera (Dragonflies)           
1 Libellula depressa Libellulidae Ness Gardens, Cheshire, UK a 1(1) 0 1(1) 

2 Sympetrum fonscolombii Libellulidae Azores, Portugal; Sardinia, Italy b 2(22) 1(13) 1(9) 

Suborder Zygoptera (Damselflies)           
3 Coenagrion puella Coenagrionidae Ness Gardens, Cheshire and Sefton 

park, Merseyside, UK 
a 28(28) 12(12) 16(16) 

4 Enallagma cyathigerum Coenagrionidae Ness Gardens, Cheshire and Sefton 
park, Merseyside, UK 

a 7(7) 7(7) - 

5 Polythore lamerceda Polythoridae Peru b 1(3) 1(3) - 

6 P. picta Polythoridae Pozuzo, Peru b 1(7) 1(7) - 

7 Drepanoneura muzoni Protoneuridae Tiputini, Ecuador b 1(2) 1(2) - 

8 Neoneura sylvatica Protoneuridae Mato Grosso, Brazil b 1(1) 1(1) - 

Additional UK coenagrionid damselflies for the Focussed Screen         
1 Coenagrion mercuriale Coenagrionidae New Forest, Hampshire, UK b 19(30) 19(30) - 

2 C. pulchellum Coenagrionidae Norfolk, UK b 15(20) 15(20) - 

3 Erythromma najas Coenagrionidae Cheshire, UK b 1(5) 1(5) - 

4 Pyrrhosoma nymphula Coenagrionidae Ness Gardens, Cheshire, UK a 4(7) 4(7) - 
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Table 2.4 Summary of Rickettsia positive species by sex identified across the broad screen and focused screen (the species are highlighted in 
bold). Where multiple locations specified, the origin of the positive sample is marked with a superscript number indication the number of 
infections found there. Asterisks indicate those UK coenagrionid species where the Rickettsia strains were successfully sequenced for all five 
MLST loci. 

No. Species  Family Location N 
Adult 

Nymph % 
infected Male Female Unknown 

United Kingdom                 
1 Libellula depressa Libellulidae Ness Gardens, Cheshire, UK 1(1) - - - 1(1) 100 
2 Coenagrion puella* Coenagrionidae Ness Gardens, Cheshire18 and 

Sefton park, Merseyside10, UK 28(28) 8 (8) 4 (4) - 16(16) 100 

3 C. pulchellum* Coenagrionidae Norfolk, UK 15(20) - - 15(20) - 75 
4 C. mercuriale* Coenagrionidae New Forest, Hampshire, UK 19(30) 12 (20) 7 (10) - - 63 
5 Enallagma cyathigerum* Coenagrionidae Ness Gardens, Cheshire4 and 

Sefton park Merseyside3, UK 7(7) 6(6) 1 (1) - - 100 

6 Erythromma najas Coenagrionidae Cheshire, UK 1(5) 1 (5) - - - 20 
7 Pyrrhosoma nymphula* Coenagrionidae Ness Gardens, Cheshire, UK 4(7) 4 (7) - - - 57 

South America                 
8 Drepanoneura muzoni Protoneuridae Tiputini, Ecuador 1(2) 1 (1) 0 (1) - - 50 
9 Neoneura sylvatica Protoneuridae Minas Gerais, Brazil 1(1) 1(1) - - - 100 

10 Polythore lamerceda Polythoridae Peru 1(3) 0 (1) 1 (2) - - 33 
11 P. picta Polythoridae Pozuzo, Peru 1(7) 1 (6) 0 (1) - - 14 

Mainland Europe and the Azores               
12 Sympetrum fonscolombii Libellulidae Azores, Portugal2; Villasimius, 

Sardegna, Italy 2(22) 0 (6) 1 (4) 0(3) 1(9) 9 
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2.4.2 Diversity and relatedness of odonate Rickettsia 

Eleven Rickettsia strains from 12 infected odonate species successfully 

produced gltA amplicons, while 16S amplicons were observed from 9 of 12 infected 

species. All the sequenced amplicons were used in phylogenetic analysis by 

reconstructing 16S rRNA (Figure 2.2) and gltA topology (Figure 2.3), except the 

Rickettsia strain from a damselfly Drepanoneura muzoni that produced a low quality 

of DNA sequence for the both genes. The Rickettsia infections detected all belong to 

the torix clade of Rickettsia. The infections were diverse, with multiple strains found 

in odonates, all of them closely allied to Rickettsia strains found in other invertebrate 

taxa.  

 



 45 

 
Figure 2.2 Phylogenetic tree of Rickettsia based on 16S rRNA gene. Sequences from 
screened odonate species, marked with coloured shapes, alongside reference DNA 
sequences of other Rickettsia groups obtained from GenBank (accession numbers in 
brackets). The tree was constructed in MEGA X by maximum likelihood, with K2+I 
model. Numbers above branches indicate bootstrap values from 1000 resampling 
events. Labels indicate the host species from which the symbiont amplicon was 
obtained. 
 
 
 

      Rickettsia endosymbiont of Coenagrion pulchellum strain B [LR780464]---

Rickettsia endosymbiont of Macrolophus sp. [HE583203]---------------------------

      Rickettsia endosymbiont of Pyrrhosoma nymphula [LR780462]---------------

      Rickettsia endosymbiont of Coenagrion puella strain B [LR780460]----------

Rickettsia endosymbiont of Culicoides newsteadi [KY777733]-------------------

Rickettsia endosymbiont of Deronectes delarouzei [FM955312]-----------------

      Rickettsia endosymbiont of Sympetrum fonscolombii [LR780466]-----------

Rickettsia endosymbiont of Deronectes platynotus [FM177868]-------------------

Rickettsia limoniae [AF322442]------------------------------------------------------------------

      Rickettsia endosymbiont of Coenagrion puella strain A [LR780459]--------------

      Rickettsia endosymbiont of Enallagma cyathigerum [LR780461]----------------

      Rickettsia endosymbiont of Coenagrion mercuriale [LR780463]-----------------

      Rickettsia endosymbiont of Coenagrion pulchellum strain A [LR780465]------

      Rickettsia endosymbiont of Polythore lamerceda [LR780467]---------------------

      Rickettsia endosymbiont of Polythore picta [LR780468]----------------------------

Rickettsia endosymbiont of Bemisia tabaci [MG063879]---------------------

Rickettsia endosymbiont of Nephotettix cincticeps [AB702995]-----------------------

Rickettsia endosymbiont of Hemiclepsis marginata [AB066352]--------------

Rickettsia endosymbiont of Torix tagoi [AB066351]----------------------------

Rickettsia endosymbiont of Torix tukubana [AB113214]----------------------------

Rickettsia endosymbiont of Rhyzobius litura [FJ609388]----------------------

Rickettsia endosymbiont of Pseudomallada ventralis [MF156633]----------

Rickettsia bellii [NR036774]---------------------------------------------------

Rickettsia endosymbiont of Brachys tessellatus [FJ609393]------

Rickettsia felis [GQ329872]--------------------------------------------

Rickettsia prowazekii [NR044656.2]----------------------------------------- 

Rickettsia rickettsii [L36217]---------------------------------------------------
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Figure 2.3 Phylogenetic tree of Rickettsia based on gltA gene. Sequences from 
screened odonate species, marked with coloured shapes, alongside reference DNA 
sequences of other Rickettsia groups obtained from GenBank (accession numbers in 
brackets). The tree was constructed in MEGA X by maximum likelihood, with T92+G+I 
model. Numbers above branches indicate bootstrap values from 1000 resampling 
events. Labels indicate the host species from which the symbiont amplicon was 
obtained. 
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2.4.3 MLST 

 The MLST study of the UK coenagrionid species infected with Rickettsia 

revealed the presence of four closely related Rickettsia strains falling into two 

clusters, as established in the MLST profiles (Table 2.5). The data also revealed that 

the sister species C. puella and C. pulchellum, which share a mtDNA COI haplotype 

(but are distinct at nuclear loci, data not shown), share two Rickettsia strains, strain 

A and B, (Table 2.5). In these two species there was a mix of dual (strain A and B) and 

single (only strain A) Rickettsia infected individual damselflies (Coinfection was 

observed in five of 10 C. puella, and two of three C. pulchellum). There were no 

individuals of either species infected with single Rickettsia strain B. Focussed analysis 

of 10 C. puella and 3 C. pulchellum individuals revealed an individual was either 

repeatedly monomorphic, or repeatedly polymorphic, across five loci (five individuals 

of each type, see Appendix Table S1). The polymorphisms observed were largely at 

synonymous sites, indicating retained functionality of the gene product. 

 

 
Table 2.5 MLST allelic profiles of Rickettsia from five coenagrionid species in UK. For 
any gene locus, sequences with the same number are identical. Strain is defined as 
identity across all loci. 

Species 
MLST allelic profiles 

16S rRNA gltA ompA atpA coxA Strain 

Coenagrion puella strain A 1 1 1 1 1 A 

C. puella strain B 2 2 2 2 2 B 

C. pulchellum strain A 1 1 1 1 1 A 

C. pulchellum strain B 2 2 2 2 2 B 

C. mercuriale 1 1 1 1 1 A 

Pyrrhosoma nymphula 2 3 2 2 2 C 

Enallagma cyathigerum 1 1 1 3 1 D 
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2.4.4 Tropism of torix Rickettsia 

The tissue-mounted fluorescence in situ hybridization revealed a cellular 

tropism of torix Rickettsia in C. puella. The signal of Rickettsia (ATTO-633 fluorophore) 

was detected throughout the ovary tissues of C. puella, mostly in the nuclei and 

cytoplasmic area of both mature and early developing oocytes, while the signal was 

absent in the non-infected species, I. elegans (Figure 2.4).  

 

 

 
 
Figure 2.4 Fluorescence in situ hybridization (FISH) images of damselfly ovaries. FISH 
showing the localisation of torix Rickettsia in A Coenagrion puella (Rickettsia positive) 
and B Ischnura elegans (Rickettsia negative) oocytes. Red colour (ATTO633 label) 
represents Rickettsia signal and blue areas (DAPI) damselfly nuclei. Infection is 
observed throughout the ovary tissue of C. puella, mostly in oocytes (oc) and early 
differentiated oocytes (white arrowhead), but no signal of the symbiont was 
observed in the ovary of the Rickettsia-negative species, I. elegans; fc, follicular 
epithelial cells; n, nucleus of oocyte. 
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2.5 DISCUSSION 

There are numerous heritable microbe taxa that circulate in insects which play 

important roles as partners and antagonists. While the majority of studies have 

focused on the ‘global pandemic’ of Wolbachia and its consequences for host biology, 

ecology and evolution [248]; other heritable symbionts remain less well studied, 

particularly in freshwater insects. Here, I examined odonates for just one such 

symbiont – torix group Rickettsia.  

2.5.1 The ‘big picture’ of torix Rickettsia in odonates 

Within the global screen, Rickettsia was found in 8 of 75 odonate species 

(10.7%) and for the focussed UK screen, and in 6 of 8 (75%) species from the 

coenagrionid family. The Rickettsia infections discovered all fall into the torix group, 

a basal group of Rickettsia with high levels of diversity, previously highlighted as 

common in other aquatic invertebrates [135, 169, 175]. The fraction of infected 

species in this screen is likely to be an underestimate as there are two systematic 

biases likely to produce false negative results. First, symbiont infections vary in 

prevalence within species, and can infect a minority of individuals. The limited 

number of individuals tested for some of the species screened will miss some species 

with low or intermediate levels of infection. Second, the material available for testing 

was commonly derived from legs. Symbiont infection that is strongly localised within 

a host individual (and not present in hemocytes) will appear as negative when leg 

material is screened. Thus, an estimation of the fraction of infected species will be an 

underestimate. Further, although this data record of more infections in species of UK 

coenagrionids than elsewhere, could also be a product of a greater sampling 

intensity. What is clear, however, is that whilst odonates are hosts to Rickettsia, and 

they carry torix group strains like other freshwater invertebrates [175]. 

2.5.2 The limits of torix Rickettsia screening 

The study of torix Rickettsia/insect symbioses is a relatively young field of 

research, with this diverse group only first described in 2002 [9]. Thus, despite now 

being known to be widespread, data on the biology of these symbioses is absent or 
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extremely limited. For instance, within-host titres are unknown, meaning I do not 

know how many cells have to be present to be able to detect an infection. However, 

Rickettsia distribution in insect tissues is commonly diffuse, including haemocytes, 

Malpighian tubules, gut lining, and in oocytes, where they seem to invade through 

the follicular epithelium and, unusually, they have also been found in sperm [249]. 

2.5.3 Diversity of Rickettsia at spatial scale 

The symbioses in this study were found in representative species from the two 

odonate suborders: Zygoptera (damselfly) and Anisoptera (dragonfly). These species 

belong to four different families and derive from both Europe and South America 

(Tables 2.3 and 2.4). Sequence analysis revealed a wide diversity in Rickettsia 

infections and are not monophyletic within Odonata, suggesting the Rickettsia-

odonate symbiosis has multiple origins. The odonate Rickettsia grouped together 

with strains found in other host species, e.g., Deronectes water beetle, Araneus orb-

weaving spider, Culicoides biting midge and Cimex common bedbug (Figure 2.2 and 

2.3). There also appeared to be a hot-spot in UK coenagrionids, in which four MLST 

strains from two clusters were observed, with two of these strains present in several 

species. The MLST study of Rickettsia is a recent initiative, introduced by Pilgrim et 

al. in 2017 [175]. Therefore, more fine scale comparisons between the Rickettsia 

strains in this chapter with those found in other insect orders are limited in scope, 

due to lack of multi locus data from other taxa. However, this geographically confined 

clade may reflect symbiont movement between co-occurring odonate species or 

derivation from a common local source [224]. 

2.5.4 Double infections in the two sister coenagrionids 

The presence of double peaks in sequences of Rickettsia marker genes in C. 

puella and C. pulchellum provide evidence of coinfection, where a single individual 

carried two strains of Rickettsia. Individuals either show one sequence of strain A at 

all markers, or two sequences mixing of strain A and B at all markers (with two strains 

identified). Variable loci can either be the product of two infecting symbiont strains, 

or a single symbiont alongside a symbiont genome insertion into the insect 

chromosome [250]. That the amplicons represent two symbionts, rather than a 
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symbiont and a nuclear insertion of symbiont genetic material, is implied by the 

nature of the variants. The majority of variable sites observed are synonymous 

differences (e.g., in GltA gene has 16 SNP in 715 bps, of which 14 are synonymous 

and 2 non-synonymous), that indicate retained functionality of the gene (Appendix 

Table S1). Retained functionality is expected for a symbiont copy (where function is 

required) rather than a nuclear insert (which is expected to pseudogenize). 

Coinfections are well known for Wolbachia [251] but are less commonly recorded for 

other symbionts; however, they are clear in this system. 

2.5.5 Torix Rickettsia as a cause of mtDNA introgression  

Within the UK group, I observed a pair of Rickettsia strains shared by the sister 

species pair C. puella and C. pulchellum. This species pair is robustly supported in 

analysis of nuclear markers [220, 241] but shares a mtDNA barcode [224]. Shared 

mtDNA barcodes for otherwise distinct species pairs commonly reflects introgression 

of the mtDNA across the species boundary [228]. This process is known to be driven 

by Wolbachia in other cases [252, 253]. Whilst hybridization is considered very 

uncommon between these species [225], mitochondrial introgression requires only 

a single hybridization event, and it is likely that both the shared mtDNA and symbiont 

in this case reflect a history of symbiont movement across the species barrier, along 

with accompanying mtDNA. This process produces distinct species, divergent at 

nuclear markers, that then have no mtDNA ‘barcoding gap’, as observed in the case 

of C. puella and C. pulchellum. An immediate implication of these results is that 

screening for Wolbachia alone is not sufficient to rule out symbiont-mediated 

introgression of mtDNA. 

2.5.6 The evidence of maternal inheritance 

Torix Rickettsia are considered likely to show maternal inheritance, and in some 

cases also show paternal transmission [249]. In this system, Rickettsia were visible in 

C. puella ovarioles under FISH microscopy, making maternal inheritance very likely. 

Additionally, infection was detected in both larvae and adults, which implies vertical 

transmission (Table 2.4). Thus, these data supports the idea that Rickettsia is a 

heritable symbiont in odonates, as inferred for other taxa [144, 150, 175, 249]. 
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The significance of the symbiosis is uncertain. Vertical transmission through 

eggs ties Rickettsia transmission to odonate survival and reproduction, and thus 

selects for symbiont contribution to host function [117]. Heritable symbiont are 

commonly important contributors to organismal function but the impact of torix 

Rickettsia on their host is poorly understood. However, sex-ratio distortion mediated 

by Rickettsia is unlikely in odonates, as there were no obvious male/female host 

biases in Rickettsia presence in species where large numbers of individuals were 

collected. Indeed, the symbionts were absent in the only odonate species known to 

have thelytokous parthenogenesis (Ischnura hastata from the Azores islands) [216]. 

These data, by exclusion, indicate that symbionts are likely retained in odonate hosts 

by some other means, which should be explored further. 
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2.6 CONCLUSION 

This chapter revealed the first incidence of Rickettsia infection in insects of 

Odonata. All the odonate-associated Rickettsia were affiliated to the torix clade with 

diverse strains, found across dragonflies and damselflies over three geographic 

regions. Damselflies of the family Coenagrionidae from Great Britain were observed 

as a hot-spot for the endosymbiont. FISH imaging revealed torix Rickettsia were 

present in oocytes of the azure damselfly (Coenagrion puella). It can be assumed that 

the symbionts are inherited via a vertically transmitted route. The evidence of double 

Rickettsia strain infections with the same pattern in the sister species C. puella and 

C. pulchellum indicated that torix Rickettsia could have driven mtDNA introgression 

between the two species. This could represent a further symbiont that can disrupt 

mtDNA barcoding studies. Finally, not the majority of odonate species are infected 

with torix Rickettsia, but this study demonstrated that torix Rickettsia have already 

established with this freshwater associated insect group and this may support the 

hypothesis that freshwater invertebrates are a hot-spot for torix Rickettsia. 

Observations for torix Rickettsia in a broad spectrum of invertebrate host species 

from freshwater and terrestrial communities may help to test this hypothesis. 
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CHAPTER 3 

Are freshwater invertebrates a hot-spot  

for torix Rickettsia symbionts? 

 

 

 

 

Publication and author contributions 

All data in this chapter has contributed to a publication with Dr Jack Pilgrim 

as first author, University of Liverpool, in GigaScience with a pre-print on Authorea 

under Pligrim et al. [254] Incidence of torix Rickettsia in Anopheles plumbeus was 

discovered in PCR assays by Dr Jack Pilgrim from his collections. All DNA extraction, 

PCR screen and data analysis within this chapter were performed by me. 
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3.1 ABSTRACT 

 Torix Rickettsia were first described from Torix targoi leeches. The records of 

torix Rickettsia since this time led to the generation of the hypothesis that torix 

Rickettsia are more common and widespread in freshwater than terrestrial 

invertebrates. In this chapter, I present a test of this hypothesis, screening a range of 

freshwater and terrestrial species for torix Rickettsia using PCR assays, with 

confirmation of putative positive samples through amplicon sequence. Nine strains 

of torix Rickettsia were detected in 57 species of freshwater species, compared to 8 

strains found in 112 terrestrial species of invertebrates. Statistical analysis supported 

the freshwater hot-spot hypothesis. However, some terrestrial taxa – like spiders – 

also harbour torix Rickettsia commonly. The potential drivers of this pattern are 

discussed. 
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3.2 INTRODUCTION 

In the previous chapter, I observed that around 10% of odonate species carried 

torix Rickettsia. This group of insects is abundant in almost all freshwater habitats. 

Some strains of the symbionts that were closely related were from different 

geographical origins, or even from different insect species. This indicated that 

Rickettsia is distributed among and moves between odonate species, and probably 

between odonates and other taxa. This scenario indicates the possibility of spread 

more widely amongst members of the aquatic invertebrate community.  

3.2.1 Non-pathogenic Rickettsia in insects 

Whilst Wolbachia has represented the focus of insect-endosymbiont research, 

Rickettsia are also found frequently in many insects and other invertebrate species. 

Originally considered as infectious agents vectored by arthropods [255], Rickettsia 

are generally now recognised as endosymbionts of insects that influence hosts 

reproduction and biological fitness [57, 89, 110, 135]. Rickettsia heritable symbiosis 

of with insects was first documented in a study in the late of 20th century [57], as the 

causal agent of the male-killing phenotype in the two-spotted ladybird (Adalia 

bipunctata). The strain of this Rickettsia was later named Adalia and established as a 

group that covered a few related strains thought to exhibit the male killing 

phenotypes in other beetle species [57]. The current view of Rickettsia diversity 

includes multiple groups, e.g., bellii, meloidae, rhyzobius, transitional and torix [144, 

150, 182]. For some of these, there is a good account of the Rickettsia-host 

interaction, but in many cases, our knowledge remains sparse [144]. 

3.2.2 Torix group Rickettsia 

The increased number of Rickettsia studies reported in recent decades has 

produced a wider appreciation of this group of bacteria and the invertebrates that 

harbour them [144]. Amongst these publications, many groups of Rickettsia have 

been observed, but there has been a recent appreciation that many of the symbioses 

lie in the ‘torix group’, a group originally found in leech and a few other freshwater 

organisms [9, 150]. Neither their host preferences nor biological impacts of the 
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symbionts themselves have been comprehensively studied whereas the number of 

recorded symbioses involving torix group strains are growing [135, 144, 175, 197].  

Currently, the hosts of torix Rickettsia are mainly organisms from freshwater 

ecosystems, e.g., protists [164], hirudineans [9, 135], amphipods [256] and other 

aquatic insects [175, 197]. On the other hand, some terrestrial hosts are also known, 

e.g., diplopods [194], arachnids [143, 186] and terrestrial insects [11, 12, 257], though 

these are considered to be in a minority. This has led to the ‘aquatic hot-spot’ 

hypothesis [182], that torix Rickettsia might be more abundant in freshwater than 

the terrestrial communities. However, this hypothesis has not yet been clearly 

investigated through an unbiased screen comparing between the two environments. 

3.2.3 Aims 

 In this study I completed a survey of the prevalence of torix Rickettsia in 

various invertebrates from the freshwater and the terrestrial community. Infection 

with symbionts was determined through PCR assays and the strain of infection 

identified by Sanger sequencing of marker genes. The results of this screen were used 

to test the freshwater hot-spot hypothesis. Further to this, the phylogenetic 

relatedness of the Rickettsia strains was estimated, to investigate whether there is 

greater sharing of symbiont strains within communities (freshwater or terrestrial) 

than between.  
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3.3 METHODS 

3.3.1 Invertebrates collections 

Whole specimens of freshwater and terrestrial invertebrates were obtained 

from direct sampling and contributor collections. For direct sampling, invertebrates 

were collected from the Kielder Forest and Ness Botanical Garden in late 2016 – 2017 

and from the New forest in 2017 (Table 3.1 and 3.2). Terrestrial invertebrates were 

collected by random sweep from grass and bushes using a sweep net (12” diameter). 

Freshwater invertebrates were sampled from ponds and small steams, using a pond 

dipping net (25x25 cm with 1 mm mesh size). All specimens were preserved in 100% 

EtOH and brought back to the laboratory for identification. 

Morphological identification was used to initially classify these animals to 

species level; if not, at least a family group or a genus group would be noted. 

However, some species were noted as ‘unknown sp.’ if they could not be identified 

from morphological and molecular identification (see section 3.3.2). Several 

identified freshwater specimens were additionally contributed by Craig Macadam, 

Bug life Conservation Director. These specimens were preserved and sent in 15 ml 

tubes filled with 100% EtOH, separated by each species/ tube. Several non-biting 

midges and a mosquito (Anopheles plumbeus) were contributed by Dr Jack Pilgrim, 

University of Liverpool (Table 3.1). All the specimens were preserved in 100% EtOH 

and kept at 4oC in a dark cold room until DNA extraction was processed.  

Specimens were rinsed with 100% EtOH and then air dried before the DNA 

extraction. Some specimens were initially dissected for abdomen when the body was 

thick, or the body length was longer than 0.5 mm (Table 3.1 and 3.2). For invertebrate 

specimens where the body size was smaller than 0.5 mm, the whole body was used 

for DNA extraction. Genomic DNA was extracted using Promega Wizard DNA 

purification kit (A1120, Promega, UK), adapted from the manufacturer protocol (see 

section 2.3.1 in Chapter 2). DNA pellets were resuspended in molecular graded water 

and kept at -20oC until use. 



 59 

Additionally, invertebrate samples in DNA extracts from the study of Duron et 

al. in 2008 [188], which have been held in University of Liverpool laboratory at -80 

°C, were used in this study. His collections were from the UK and Europe and were 

strongly biased to terrestrial invertebrates (101 species were terrestrial, Table 3.2, 

and only 14 species were freshwater invertebrates, Table 3.1).  

Species were defined as ‘freshwater’ either if the species was retrieved from 

within the freshwater biome, or if the species is known to have an aquatic phase 

within the life cycle or live in semi aquatic ecosystems (e.g., wet soil and mosses). 

Other species were defined as ‘terrestrial’.  
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Table 3.1 Freshwater invertebrate species that were screened in this study. The 
species are separated in groups based on their classification nomenclature. They 
were collected from different times and localities. DNA were either extracted from 
the whole body (w) or dissected abdomen (d). In collection, ‘a’ indicates the species 
were collected in fresh specimens in this study, ‘b’ indicates the species in DNA 
extracts that were obtained from Duron et al. [188]. 

Invertebrate groups 
and Species Location Year N Source 

of DNA Collection 

Ephemeroptera      

1 Baetis muticus Stirling, Scotland, UK 2017 3 w a 

2 B. rhodani Stirling, Scotland, UK 2017 3 w a 

3 Cloeon dipterum Ness Gardens, Cheshire, UK 2016 3 w a 

4 Ecdyonurus sp.1 Stirling, Scotland, UK 2017 5 d a 

5 Ecdyonurus sp.2 Ness Gardens, Cheshire, UK 2016 3 d a 

6 E. venosus Ness Gardens, Cheshire, UK 2016 6 d a 

7 Leptophlebia vespertina New Forest, Hampshire, UK 2016 1 w a 

8 Paraleptophlebia submaginata Stirling, Scotland, UK 2017 3 w a 

9 Rhithrogena semicolorata Stirling, Scotland, UK 2017 3 w a 

Trichoptera      

10 Hydropsyche sp. Stirling, Scotland, UK 2017 3 d a 

11 Polycentropus flavomaculatus Ness Gardens, Cheshire, UK 2017 3 d a 

12 Rhyacophila dorsalis Stirling, Scotland, UK 2017 3 d a 

Plecoptera      

13 Amphinemura sulcicollis Stirling, Scotland, UK 2017 3 d a 

14 Dinocras cephalotes Stirling, Scotland, UK 2017 3 d a 

15 Isoperla grammatica Stirling, Scotland, UK 2017 3 d a 

16 Perla bipunctata Stirling, Scotland, UK 2017 3 d a 

Hemiptera      

17 Corixa punctata Ness Gardens, Cheshire, UK 2016 1 d a 

18 Gerris sp. Montferrier sur Lez, France 2006 12 w b 

19 G. thoracicus Ness Gardens, Cheshire, UK 2016 1 d a 

20 Hydrometra stagnorum Montferrier sur Lez, France 2006 20 w b 

21 Nepa cinerea Montferrier sur Lez, France 2006 3 w b 

22 Notonecta glauca Ness Gardens, Cheshire, UK 2016 2 d a 

23 Plea minutissima Notre Dame de Londres, France 2006 8 w b 

24 Sigara lateralis Notre Dame de Londres, France 2006 6 w b 

25 S. striata Ness Gardens, Cheshire, UK 2006 2 d a 

Diptera      

26 Aedes sp. Ness Gardens, Cheshire, UK 2017 8 w a 

27 A. albopictus Roma, Italy 2005 20 w b 
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28 Anopheles plumbeus Chester Zoo, Cheshire, UK 2017 2 w a 

29 Chironomidae sp. Ness Gardens, Cheshire, UK 2016 4 w a 

30 Chironomus sp. Ness Gardens, Cheshire, UK 2016 4 w a 

31 C. acidophilus Ness Gardens, Cheshire, UK 2017 1 w a 

32 C. plumosus Notre Dame de Londres, Franc 2006 20 w b 

33 Culex pipiens  
(ssp. quinquefasciatus) 

Puerto Viejo de Talamanca,  

Costa Rica 

2006 20 w b 

34 C. pipiens pipiens St Nazaire de Pézan, France 2006 20 w b 

35 Eristalinus sp. Cheshire, UK 2016 3 d a 

36 Eristalis tenax Montpellier (grotte du zoo), 

France 

2002 7 w b 

37 Glyptotendipes sp. Ness Gardens, Cheshire, UK 2016 1 w a 

38 Hilara sp. Sefton park, Merseyside, UK 2017 3 w a 

39 Simulium aureum New Forest, NewHampshire, UK 2017 1 w a 

40 S. ornatum N/A 2003 12 w b 

41 Tipula sp. UK 2006 10 w b 

42 T. oleracea UK 2006 13 w b 

43 Zavrelimyia sp. Kielder Forest,  

Northumberland, UK 

2017 1 w a 

Coleoptera      

44 Agabus bipustulatus Ness Gardens, Cheshire, UK 2017 3 d a 

45 Guignotus pusillus Notre Dame de Londres,  

France 

2006 12 w b 

46 Unknown sp.1 Ness Gardens, Cheshire, UK 2017 2 w a 

47 Unknown sp.2 Ness Gardens, Cheshire, UK 2017 3 w a 

Acarina      

48 Unknown sp. Ness Gardens, Cheshire, UK 2017 3 w a 

Isopoda      

49 Asellus aquaticus Ness Gardens, Cheshire, UK 2016 3 d a 

Amphipoda      

50 Gammarus pulex Stirling, Scotland, UK 2017 3 d a 

51 Crangonyx pseudogracilis Ness Gardens, Cheshire, UK 2016 6 d a 

Gastropoda      

52 Radix balthica Ness Gardens, Cheshire, UK 2016 3 w a 

53 Planorbis sp. Ness Gardens, Cheshire, UK 2016 3 w a 

55 Galba truncatula Laboratory in University of 

Liverpool, Merseyside, UK 

2017 20 w a 

Hirudinea      

55 Erpobdella octaculata Ness Gardens, Cheshire, UK 2016 2 d a 

56 Hemiclepsis marginata Ness Gardens, Cheshire, UK 2017 1 d a 

Tricladida      

57 Unknown sp. Ness Gardens, Cheshire, UK 2016 1 w a 
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Table 3.2. Terrestrial invertebrate species that were screened in this study. The 
species are separated in groups based on their classification nomenclature. They 
were collected from different times and localities. DNA were either extracted from 
the whole body (w) or dissected abdomen (d). In collection, ‘a’ indicates the species 
were collected directly for this study, ‘b’ indicates the species in DNA extracts that 
were obtained from Duron et al. [188]. 

Invertebrate groups 
and Species Location Year N 

Source 
of DNA Collection 

Araneae      

1 Agelenopsis aperta Tennessee N/A 12 w b 

 2 Alopecosa pulverulenta Berne, Germany N/A 16 w b 

 3 Amaurobius fenestralis Montpellier, France 2006 16 w b 

 4 Araneus diadematus Beerse, Belgium N/A 19 w b 

  

 
Greater London, UK N/A 8 w b 

5 Argiope bruennichi Hamburg, Germany N/A 7 w b 

 6 A. lobata Spain N/A 7 w b 

  

 
Israel N/A 4 w b 

 7 Cyclosa conica Brandenburg, Germany N/A 11 w b 

 8 Dysdera crocata Montpellier, France 2006 2 w b 

 9 Enoplognatha ovata Greater London, UK N/A 20 w b 

 10 Erigone arta Ness Gardens, Cheshire, UK 2017 1 w a 

 11 Evarcha falcata Beerse, Belgium N/A 5 w b 

 12 Holochnemus pluchei Montpellier, France 2006 7 w b 

 13 Hylyphantes graminicola Ness Gardens, Cheshire, UK 2017 1 w a 

 14 Larinioides cornutus Greater London, UK N/A 6 w b 

 15 L. sclopetarius Hamburg, Germany N/A 17 w b 

 16 Linyphia triangularis Berlin, Germany N/A 9 w b 

  

 
Greater London, UK N/A 6 w b 

17 Lycosa sp. Ness Gardens, Cheshire, UK 2017 2 d a 

 18 Metellina mengei  Greater London, UK N/A 13 w b 

 19 M. segmentata Brandenburg, Germany N/A 9 w b 

 20 Neriene clathrata Beerse, Belgium N/A 13 w b 

 21 N. peltata Ness Gardens, Cheshire, UK 2017 1 w a 

 22 Pachygnatha degeeri  Berne, Germany N/A 11 w b 

 23 P. listeri  Beerse, Belgium N/A 17 w b 

 24 Pardosa lugubris Darmstadt, Germany N/A 20 w b 

 25 P. pullata  Brandenburg, Germany N/A 20 w b 

 26 P. purbeckensis Belgium N/A 19 w b 

 27 Pholcus phalangoides Berlin, Germany N/A 20 w b 

 28 Pisaura mirabilis Greater London, UK N/A 12 w b 
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 29 Tetragnatha sp. New Forest, Hampshire, UK 2017 3 d a 

 30 T. montana Greater London, UK N/A 20 w b 

 31 Xysticus cristatus Cambridgeshire, UK N/A 16 w b 

 32 Unknown sp. Ness Gardens, Cheshire, UK 2017 2 w a 

Opiliones      

33 Leiobunum rotundum Feurs, France 2006 6 w b 

Ixodida      

34 Ixodes uriae Hornøya, Norway 2005 19 w b 

35 Rhipicephalus microplus New Caledonia, France 2003 1 w b 

Scorpiones      

36 Euscorpius flavicaudis St Nazaire de Pézan, France 2006 1 NA b 

Diplopoda      

37 Ommatoiulus sp. Ness Gardens, Cheshire, UK 2016 1 d a 

Neuroptera      

38 Unknown sp. Ness Gardens, Cheshire, UK 2017 1 d a 

Mecoptera      

39 Panorpa sp. Ness Gardens, Cheshire, UK 2017 2 d a 

Orthoptera      

40 Calliptamus italicus Notre Dame de Londres, 

France 

2016 18 NA b 

 41 Chorthippus brunneus UK 2006 20 NA b 

 42 Gryllomorpha dalmatina Montpellier, France 2006 2 NA b 

Blattaria      

43 Loboptera decipiens Montpellier, France 2006 17 NA b 

Mantodea      

44 Iris oratoria St Nazaire de Pézan, France 2006 6 NA b 

 45 Mantis religiosa Feurs, France 2006 3 NA b 

Dermaptera      

46 Forficula auricularia Feurs, France 2006 9 w b 

Hemiptera      

47 Aphis fabae  Montpellier, France 2006 12 w b 

 48 A. nerii Montpellier, France 2006 8 w b 

 49 Baizongia pistaciae Viols le Fort, France 2006 12 w b 

 50 Cicadella viridis L'Olme, France 2006 16 w b 

 51 Cimex lectularius Yorkshire, UK 2008 12 w b 

 52 Elasmucha grisea Greater London, UK 2006 16 w b 

 53 Graphosoma italicum Montpellier, France 2006 12 w b 

 54 Lygaeus equestris Montpellier, France 2006 12 w b 

 55 Notostira elongata L'Olme, France 2006 11 w b 

 56 Pyrrhocoris apterus Montpellier, France 2006 11 w b 

 57 Rhyparochromus vulgaris Castelnaudary, France 2006 20 w b 
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Coleoptera      

58 Anaspis frontalis Hérault, France 2004 12 w b 

 59 Anthaxia sp. Mont Barri, France 2004 16 w b 

 60 A. nitidula Mont Barri, France 2004 20 w b 

 61 Calvia 
quattuordecemguttata 

Greater London, UK 2006 6 w b 

 62 Capnodis tenebrionis Montpellier, France 2006 1 w b 

 63 Cetonia aurata Feurs, France 2006 3 w b 
  

Mont Barri, France 2004 12 w b 

 64 Chrysolina varians Mont Barri, France 2004 18 w b 

 65 Clytus arietis Mont Barri, France 2004 20 w b 

 66 Dermestes sp. Mont Barri, France 2004 20 w b 

 67 D. tessellatocollis Liverpool City Centre, 

Merseyside, UK 

2016 2 w a 

 68 Gastrophysa sp. Greater London, UK 2006 20 w b 

 69 Geotrupes stercorarius  Mont Barri, France 2004 3 w b 

 70 Larinus scolymi Aldira de Irmeros, Spain 2005 12 w b 

 71 Leptinotarsa decemlineata Feurs, France 2006 10 w b 

 72 Mordellistena sp. Mont Barri, France 2004 10 w b 

 73 Oedemera sp.  Mont Barri, France 2004 20 w b 

 74 Oncocerna sp. Mont Barri, France 2004 20 w b 

 75 Pseudovadonia livida Mont Barri, France 2004 19 w b 

 76 Phyllobius argentatus Mont Barri, France 2004 15 w b 

 77 Stenopterus sp. Mont Barri, France 2004 20 w b 

Diptera      

78 Braula coeca Ouessant, France 2002 4 w b 

 79 Chorisops tunisiae Montpellier, France 2003 8 w b 

 80 Delia antiqua N/A N/A 11 w b 

 81 D. platura N/A N/A 11 w b 

 82 D. radiacum N/A N/A 10 w b 

 83 Gasterophilus intestinalis France N/A 10 w b 

 84 Hippobosca equina Restinclières, France 2006 15 w b 

 85 Lonchoptera lutea Ness Gardens, Cheshire, UK 2017 3 w a 

86 Medetera petrophila St Bauzille de Putois, France 2003 12 w b 

 87 Musca domestica L'Olme, France 2006 20 w b 

 88 M. vitripennis Notre Dame de Londres, 

France 

2003 8 w b 

 89 Neomyia cornicina Notre Dame de Londres, 

France 

2003 8 w b 

 90 Protocalliphora sp. Corse, France 2003 2 w b 

 91 P. azurea Montpellier, France 2005 12 w b 

 92 Psila rosae N/A N/A 11 w b 

 93 Stomoxys calcitrans  Le Malzieu, France 2001 11 w b 
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Lepidoptera      

94 Chilo phragmitella Feurs, France 2006 10 w b 

 95 Euplagia quadripunctaria Feurs, France 2006 2 w b 

 96 Pieris brassicae Feurs, France 2006 7 w b 

 97 Plodia interpunctella Montpellier, France 2006 12 w b 

 98 Thymelicus lineola Greater London, UK 2006 15 w b 

 99 T. sylvestris Greater London, UK 2006 2 w b 

 100 Triodia sylvina Montpellier, France 2006 4 w b 

Hymenoptera      

101 Amblyteles armatorius St Nazaire de Pézan, France 2006 1 w b 

 102 Amegilla albigena St Nazaire de Pézan, France 2006 13 w b 

 103 A. ochroleuca St Nazaire de Pézan, France 2006 3 w b 

 104 Anthidium florentinum St Nazaire de Pézan, France 2006 6 w b 

 105 Apis mellifera UK 2006 9 w b 

 106 Bombus terrestris NW, Switzerland 2006 20 w b 

 107 Diplolepis rosae L'Olme, France 2006 2 w b 

 108 Formica lugubris UK 2006 10 w b 

 109 Pachycrepoideus sp. UK N/A 94 w b 

 110 Polistes dominula St Nazaire de Pézan, France 2006 4 w b 

 111 P. nimpha St Nazaire de Pézan, France 2006 19 w b 

 112 Sceliphron caementarium St Nazaire de Pézan, France 2006 3 w b 
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3.3.2 PCR assays for torix Rickettsia 

To investigate the infection of torix Rickettsia in invertebrates, DNA templates 

were first tested for amplifiable DNA quality using the invertebrate mtDNA markers 

(LCO_1490/HCO_2198 [242] and C1J_1718/C1N_2191 [243] primers) in a 

conventional PCR assays as described in Chapter 2 (Table 2.2). The amplicons from 

COI regions were cleaned with ExoSAP-IT kit (E1050, New England Biolabs, US) and 

Sanger sequenced. These mitochondrial haplotypes were used to identify and 

confirm the invertebrate species by searching the sequences against the DNA 

barcodes database from GenBank, NCBI, under BLAST algorithm. 

Samples passing this QC were then tested for Rickettsia in conventional PCR 

assays using rickettsial-specific primers base on 16S ribosomal RNA (16S rRNA) and 

citrate synthase subunit A (gltA) gene as described in Chapter 2 (Table 2.2). Where 

positive amplicons in the Rickettsia-specific assays were obtained, these were 

cleaned with ExoSAP-IT kit (E1050, New England Biolabs, US) and Sanger sequenced 

to validate the amplicon as a true positive, and to allow inference of the relatedness 

of any strains found. The sequences of 16S rRNA and gltA gene were deposited in the 

European Nucleotide Archive (ENA) at EMBL-EBI database, the accession numbers 

are provided in Table 3.3. 

3.3.3 Phylogenetic analysis 

Sequence chromatograms of 16S rRNA and gltA genes were trimmed of 

primer sequence and edited in UGENE [258]. All the sequences were exported to 

fasta format and searched against the NCBI database to find close relatives, as 

ascertained by BLAST homology. This homology was used to establish if the 

amplicons were of rickettsial origin. The sequence of markers from closely related 

strains from other invertebrate hosts were retrieved, and the relatedness within the 

torix group then estimated. Rickettsia strains from other clades were selected to 

represent the sister group to the torix clade. Occidentia massiliensis was used as the 

outgroup for both topologies. All selected sequences were aligned using the MUSCLE 

algorithm with its default setting in MEGA X [245, 246]. The Maximum Likelihood 
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phylogeny for both genes were estimated in MEGA X with 1000 rapid bootstrap 

replicates under K2+I and T92+G+I model for 16S rRNA and gltA gene respectively 

3.3.4 Statistical analysis  

 It is known that there are taxonomic hot-spots for endosymbiont infection, 

with for instance spiders being a known hot-spot for a range of microbial symbionts 

[186-189] I therefore performed analyses that were matched at a taxonomic level 

(i.e., each taxon was represented in both the aquatic and terrestrial pools). To this 

end, the incidence of torix Rickettsia was first compared in all insects. However, 

within insects, there is taxonomic heterogeneity between freshwater and terrestrial 

biomes (e.g., Ephemeroptera, Plecoptera in freshwater only, Lepidoptera in 

terrestrial only). I therefore focussed the analysis to matching insect orders, present 

in both the freshwater and terrestrial community. Three insect orders, Hemiptera, 

Diptera and Coleoptera, fulfilled this criterion with good representation from each 

biome. For each case, the ratios of ‘infected:non-infected’ species between 

freshwater and terrestrial communities were compared in a Fisher’s exact test at p-

value ≤0.05 using the statistical platform R (version 3.6.1, 2019) [259]. 
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3.4 RESULTS 

3.4.1 Prevalence of torix Rickettsia in invertebrates 

 Screening of freshwater invertebrates revealed 10 out of 57 species (17.54%) 

were positive for endosymbiont DNA in PCR assays. The positive species comprised 9 

insect species and one mollusc. DNA sequence confirmed that all but one of the 

infected strains were Rickettsia that lie within the torix group (9 of 57 species, 

15.79%) (Table 3.3). The final sequence, which was a 16S rRNA amplicon from Corixa 

punctata, has a closest BLAST match to a Trichorickettsia, a genus within the 

Rickettsiacae. The list of positive freshwater species is shown in Table 3.4. 

 For terrestrial invertebrates, PCR assays evidenced Rickettsia infection in 10 

out of 112 species (8.93%) with a mix of insect and spider hosts (4 and 6 species 

respectively) (Table 3.3). Rickettsia from 8 host species (2 insects and 6 spiders) were 

identified as lying within the torix clade (8 of 112 species, 7.14%, while the other two 

host species carried Rickettsia from the rhyzobius and bellii group. The list of positive 

terrestrial species is shown in Table 3.5. 

 
 
Table 3.3 Summary of screened freshwater vs terrestrial invertebrates. A number in 
the bracket is the number of all Rickettsia positive, while a number in front of the 
bracket represents only the number of torix Rickettsia positive. 

 Community Total 
species 

Infected 
species 

Total 
individuals 

Infected 
individual 

Year 
range 

Geographical 
range 

Invertebrates 

Freshwater 57 9(10) 321 13(14) 
2002-

2017 

Central 

America 

Europe and 

UK 

Terrestrial 112 8(10) 1,291 44(54) 
2001-

2017 

Europe 

and UK 
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Table 3.4 Freshwater invertebrate species testing positive in the PCR screen where 
the strains were confirmed by the amplicon sequencing. Number in front of the 
brackets are the number of infected individuals, while the number inside the brackets 
indicate the number of tested individuals. Collection, ‘a’ indicates that the species 
were collected in this study. The accession numbers for markers are provided where 
the strains successfully produced the gene amplicons. 

Invertebrate groups 
and Species Location Collection N Strain Accession numbers 

16S rRNA gltA 
Trichoptera       

1 Rhyacophila dorsalis Stirling, Scotland, 
UK 

a 2(3) torix LR812278 LR812254 

Hemiptera 
 

     

2 Corixa punctata Ness Gardens, 
Cheshire, UK 

a 1(1) Trichorickettsia LR961641 N/A 

3 Sigara striata Ness Gardens, 
Cheshire, UK 

a 1(2) torix LR812279 LR812255 

Diptera  
     

4 Anopheles plumbeus Chester Zoo, 
Cheshire, UK 

a 2(2) torix LR813675 LR813676 

5 Chironomidae sp. Ness Gardens, 
Cheshire, UK 

a 1(4) torix LR812269 LR812246 

6 Glyptotendipes sp. Ness Gardens, 
Cheshire, UK 

a 1(1) torix LR812271 LR812248 

7 Hilara sp. Sefton park, 
Merseyside, UK 

a 1(3) torix LR812272 LR812249 

8 Simulium aureum New Forest, 
Hampshire, UK 

a 1(1) torix LR812280 LR812256 

9 Zavrelimyia sp. Kielder Forest, 
Northumberlan, 
UK 

a 1(1) torix LR812281 LR812257 

Gastropoda  
     

10 Galba truncatula Cheshire,  
UK 

a 3(20) torix - LR812258 
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Table 3.5 Terrestrial invertebrate species that tested positive in the PCR screen and 
where the strains were identified by the amplicon sequencing. The number in front 
of the brackets are the number of infected individuals, while the number inside the 
brackets indicate the number of tested individuals. Collection, ‘a’ indicates that the 
species were collected in this study, ‘b’ indicates the species that were obtained in 
DNA extracts from Duron et al. [188]. Accession numbers are provided when the 
strains successfully produced gene amplicons. 

Invertebrate groups and Species Location Collection N Strain 
Accession numbers 

16S rRNA gltA 

Araneae   
 

   

1 Amaurobius fenestralis Montpellier, 

France 

b 1(6) torix LR899445 LR961638 

2 Hylyphantes graminicola Ness Gardens, 

Cheshire, UK 

a 1(1) torix N/A LR961639 

3 Linyphia triangularis Berlin, Germany b 9(9) torix LR812273 LR812250 

4 Pholcus phalangoides Berlin, Germany b 17(20) torix LR812275 LR812251 

5 Pisaura mirabilis Greater London, 

UK 

b 1(12) torix N/A LR812252 

6 Pardosa lugubris Darmstadt, 

Germany 

b 1(20) torix N/A LR961640 

Hemiptera  
     

7 Cimex lectularius Yorkshire, UK b 12(12) torix LR828195 LR828196 

Coleoptera  
     

8 Phyllobius argentatus Mont Barri, 

France 

b 4(15) rhizobius LR812276 N/A 

Diptera  
     

9 Protocalliphora azurea Montpellier, 

France 

b 12(12) torix LR812277 LR812253 

Hymenoptera  
     

10 Pachycrepoideus sp. UK b 6(94) bellii LR812274 - 
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3.4.2 Freshwater vs terrestrial hosts 

 To reduce taxonomic ‘hot-spot’ biases, I first compared the incidence of 

Rickettsia infection in aquatic vs terrestrial insects. Fisher’s exact test analysis 

rejected the null hypothesis of equal representation, with freshwater taxa having a 

higher representation of species with torix Rickettsia than terrestrial (p-value = 0.013, 

infection in 8 of 47 freshwater versus 2 of 75 terrestrial species respectively, Figure 

3.1 A).  

Examining the narrower phylogenetically controlled set (the three matched 

insect orders), revealed the infection of torix Rickettsia in 7 of 31 freshwater (22.6%) 

and 2 of 53 terrestrial insects (3.8%) (Table 3.6). Fisher’s exact test analysis again 

rejected the null hypothesis of equal representation with freshwater taxa again 

having a higher representation of species with torix Rickettsia than terrestrial 

(Fisher’s exact test, p-value = 0.025, Figure 3.1 B). 

 

 

Table 3.6 Summary of screened freshwater vs terrestrial invertebrates from the three 

focussed insect orders. A number in front of the brackets represents the number of 

torix Rickettsia positive. A number in the bracket is the number of total screened 

species/individuals. 

Insect 
Order Community No. 

species 
No. 

individual Year range Geographical range 

Hemiptera 
Freshwater 1(9) 2(55) 2006-2016 Europe and UK 

Terrestrial 1(11) 12(142) 2006-2008 Europe and UK 

Diptera 
Freshwater 6(18) 7(150) 2002-2017 

Central America, 
Europe and UK 

Terrestrial 1(16) 12(156) 2001-2017 Europe and UK 

Coleoptera 
Freshwater 0(4) 0(20) 2006-2017 Europe and UK 

Terrestrial 0(20) 0(279) 2004-2016 Europe and UK 

Total 
insects 

Freshwater 7(31) 9(225)   

Terrestrial 2(47) 24(577)   
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Figure 3.1 Prevalence of torix Rickettsia in freshwater and terrestrial invertebrates. 
A: Comparisons between freshwater and terrestrial species from all insect orders. 
Fisher’s exact test revealed a significant difference between the proportion of 
infected species from the two types of host communities (p-value = 0.013). B: 

Comparisons between freshwater and terrestrial species from three insect orders; 
Hemiptera, Diptera and Coleoptera. The proportion of infected species was 
significantly different between the two host groups (Fisher’s exact test; p-value = 
0.025). Error bars represent 95% confidence intervals derived from binomial 
sampling. 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.0

0.2

0.4

0.6

0.8B

Freshwater Terrestrial
 (8/47) (2/74)

Freshwater Terrestrial
 (7/31) (2/47)

Pr
op

or
tio

n 
of

 in
fe

ct
ed

 s
pe

ci
es

0.0

0.2

0.4

0.6

0.8
Pr

op
or

tio
n 

of
 in

fe
ct

ed
 s

pe
ci

es
A



 73 

3.4.3 The relatedness of Rickettsia  

 There were 15 Rickettsia strains from 19 infected host invertebrates (8 from 

freshwater and 7 from terrestrial community) that successfully produced 16S 

amplicons and retrieved sequences. Reconstruction of 16S rRNA phylogeny indicated 

that the strains were mostly placed in torix group Rickettsia with a mix of freshwater 

and terrestrial invertebrates. Two terrestrial insect hosts, the short-nosed weevil 

(Phyllobius argentatus) and the parasitoid wasp (Pachycrepoideus sp.) were affiliated 

in rhyzobius and bellii clades, respectively. (Figure 3.2).  

 The topology for the gltA gene phylogeny revealed 17 strains (9 from 

freshwater and 8 from terrestrial groups) allocated to the torix group Rickettsia. The 

strains that were affiliated to the rhyzobius and bellii clades, according to 16S rRNA 

topology, failed to produce gltA amplicons (Figure 3.3). 
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Figure 3.2 ML phylogenetic tree based on 16S rRNA gene. The topology is 
reconstructed with K2+I model in MEGA X. The strains found in this study are marked 
with coloured circles. The majority of Rickettsia endosymbionts from this study are 
in torix group. Rickettsia strains found in Phyllobius argentatus and Pachycrepoideus 
sp. are affiliated with rhizobius and bellii clades, respectively. Numbers on the nodes 
indicate bootstrap value of 1000 replicates. Scale bar represents the rate of 
nucleotide substitution per site. 
 
 
 
 
 

 Rickettsia endosymbiont of Simuleum aureum [LR812280]  --------------------------------------

 Rickettsia endosymbiont of Nephotettix cincticeps [AB702995]-----------------------------------

 Rickettsia endosymbiont of Rhycophila dorsalis [LR812278] --------------------------------------

 Rickettsia endosymbiont of Protocalliphora azurea [LR812277] ---------------------------------

 Rickettsia endosymbiont of Cimex lectularius [LR828195] -----------------------------------------

 Rickettsia endosymbiont of Pholcus phalangoides [LR812275] ----------------------------------

 Rickettsia endosymbiont of Amaurobius fenestralis [LR899445]  ---------------------------------

 Rickettsia endosymbiont of Hemiclepsis marginata [AB066352]-----------------------------

 Rickettsia endosymbiont of Torix tagoi [AB066351]------------------------------------

 Rickettsia endosymbiont of Torix tukubana [AB113214]-----------------------------------------

 Rickettsia endosymbiont of Bemisia tabaci [MG063879]--------------------------

 Rickettsia endosymbiont of Sigara striata [LR812279] ---------------------------------------

 Rickettsia endosymbiont of Anopheles plumbeus [LR813675] -----------------------------------

 Rickettsia endosymbiont of Chironomidae sp. [LR812269] ---------------------------------------

 Rickettsia endosymbiont of Enallagma cyathigerum [LR780461]---------------------------------

 Rickettsia limoniae [AF322442]-----------------------------------------------------------------------------

 Rickettsia endosymbiont of Glyptotendipes sp. [LR812271] ---------------------------------------

 Rickettsia endosymbiont of Deronectes platynotus [FM177868]---------------------------

 Rickettsia endosymbiont of Hilara sp. [LR812272] --------------------------------------------

 Rickettsia endosymbiont of Linyphia triangularis [LR812273] ---------------------------------

 Rickettsia endosymbiont of Zavrelimyia sp. [LR812281] ----------------------------------------

 Rickettsia endosymbiont of Coenagrion puella [LR780460]-------------------------------------

 Rickettsia endosymbiont of Macrolophus sp. [HE583203]---------------------------------------

 Rickettsia endosymbiont of Culicoides newsteadi [KY777733]-----------------------------

 Rickettsia endosymbiont of Rhyzobius litura [FJ609388]------------------------

 Rickettsia endosymbiont of Pseudomallada ventralis [MF156633]------------

 Rickettsia endosymbiont of Phyllobius argentatus [LR812276] ---------------

 Rickettsia bellii [NR036774]--------------------------------------------------------

 Rickettsia endosymbiont of Brachys tessellatus [FJ609393]-----------

 Rickettsia endosymbiont of Pachycrepoideus sp. [LR812274] -------

 Rickettsia typhi [L36221]---------------------------------------------------

 Rickettsia felis [GQ329872]--------------------------------------------

 Rickettsia rickettsii [L36217]---------------------------------------------------------

 Rickettsia japonica [L36213]-----------------------------------------------------

 Occidentia massiliensis [NR149220]--------------------------------

98

90

64

100

93

69

61

53

64

99

42

0.010

Transition

Spotted fever

Torix

Rhizobius

Bellii

Typhus

Occidentia
(outgroup)

Host community
Freshwater
Terrestrial

16S rRNA gene



 75 

 

 
 

Figure 3.3 ML phylogenetic tree based on gltA gene. The topology is reconstructed 
with T92+G+I model as the best nucleotide substitution model, implemented in 
MEGA X. The strains found in this study were marked with coloured circles. All of 
Rickettsia endosymbionts that were amplified from gltA primers are affiliated with 
torix group. Numbers on the nodes indicate bootstrap value of 1000 replicates. Scale 
bar represents the rate of nucleotide substitution per site. 
 

  

 Rickettsia endosymbiont of Araneus diadematus [DQ231490]--------------------

 Rickettsia endosymbiont of Deronectes platynotus [FM177878]-----------------

 Rickettsia endosymbiont of Coenagrion puella [LR780469]------------------------

 Rickettsia endosymbiont of Zavrelimyia sp. [LR812257] --------------------------

 Rickettsia endosymbiont of Pardosa lugubris [LR961640] -------------------------

 Rickettsia endosymbiont of Linyphia triangularis [LR812251] --------------------

 Rickettsia endosymbiont of Culicoides newsteadi [KY765375]------------------

 Rickettsia endosymbiont of Hilara sp. [LR812249] ---------------------------------

 Rickettsia endosymbiont of Phyllodromia melanocephala [JQ925609]-----------

 Rickettsia endosymbiont of Chironomidae sp.[LR812246] ---------------------------

 Rickettsia endosymbiont of Anopheles plumbeus [LR813676] ----------------------

 Rickettsia endosymbiont of Enallagma cyathigerum [LR780471]-------------------

 Rickettsia endosymbiont of Glyptotendipes sp. [LR812248] -------------------------

 Rickettsia endosymbiont of Sigara striata [LR812255] ----------------------------------

 Rickettsia endosymbiont of Libellula depressa [LR780481]----------------------------

 Rickettsia endosymbiont of Cimex lectularius [LR828196]-----------------------------------------

 Rickettsia endosymbiont of Nosopsyllus laeviceps [KX457954]----------------------------------

 Rickettsia endosymbiont of Nephotettix cincticeps [KU586334]-----------------------------------

 Rickettsia endosymbiont of Hilara interstincta [JQ925614]----------------------------------------

 Rickettsia endosymbiont of Pholcus phalangoides [LR812251] ----------------------------------- 

 Rickettsia endosymbiont of Protocalliphora azurea [LR812253] ----------------------------------

 Rickettsia endosymbiont of Bemisia tabaci [MG063880]------------------------------------------

 Rickettsia endosymbiont of Amaurobius fenestralis [LR961638] --------------------------------

 Rickettsia endosymbiont of Hylyphantes graminicola [LR961639] -------------------------------

 Rickettsia endosymbiont of Pisaura mirabilis [LR812252]---------------------------------------- 

 Rickettsia endosymbiont of Galba truncatula [LR812258]----------------------------------------

 Rickettsia endosymbiont of Rhyacophila dorsalis [LR812254] ----------------------------------

 Rickettsia endosymbiont of Simulium aureum [LR812256] --------------------------------------

 Rickettsia endosymbiont of Rhyzobius litura [FJ666753]-------------------------------------------------------------------------------------------------

 Rickettsia endosymbiont of Pseudomallada ventralis [MF156688]-------------------------------------------------------------------------------------------

 Rickettsia bellii [DQ146481-------------------------------------------------------------------------------------------------]

 Rickettsia endosymbiont of Brachys tessellatus [FJ666758]------------------------------------------------------

 Rickettsia typhi [U59714]----------------------------------------------------------------------------------------------------------------

 Rickettsia felis [JQ674484]-------------------------------------------------------------------------------------------------------

 Rickettsia rickettsii [KF742602]-------------------------------------------------------------------------------------------------

 Rickettsia japonica [AY743327]--------------------------------------------------------------------------------------------------

 Occidentia massiliensis [NZ CANJ01000001]----------------------------------------
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3.5 DISCUSSION 

 Recent studies have discovered many invertebrate-associated Rickettsia. 

Many of the recently published Rickettsia sequences are affiliated in ‘torix’ clade, 

which originated from the finding of Rickettsia in the leech Torix targoi [9]. Other 

related strains within this clade derive from other leech species [135], amoeba [164], 

spiders [260], deronectid beetles [169], biting midges [175] and odonates [197]. 

Weinert et al. in 2009 [182] revealed the diversity of Rickettsia, and delineated 12 

groups, including the torix clade. They hypothesized that ‘torix Rickettsia are more 

abundant in freshwater ecosystems’ based on the infection evidence of several 

freshwater organisms. The records since this date are consistent with this hypothesis 

[175, 193, 197, 256, 257], but a formal unbiased tested has not been made.  

 This study surveyed torix Rickettsia infection in invertebrate hosts from two 

major communities, freshwater and terrestrial ecosystems, to test this hypothesis. I 

compared the proportion of infected species between the two host communities. 

The results revealed first that torix Rickettsia were found widely in taxa within the 

aquatic biome, adding Gastropoda to the list of taxa carrying the symbiont infection. 

Analysing samples matched for taxonomy supported the hypothesis that torix 

Rickettsia were more abundant in freshwater hosts than terrestrial taxa.  

3.5.1 Diversity of torix Rickettsia  

 The majority of Rickettsia endosymbionts found in this study are affiliated 

with the torix clade. This clade comprises the strains from other invertebrates, e.g., 

leeches (Torix targoi, T. tukubana and Hemiclepsis marginata), a biting midge 

(Culicoides newstedi), a diving beetle (Deronectes platynotus), a leaf hopper 

(Nephotettix cincticeps), a white fly (Bemisia tabaci), a spider (Araneus diadematus), 

a human flea (Nosopsyllus laeviceps) and odonates (Coenagrion puella, Enallagma 

cyathigerum and Libellula depressa), etc (Figure 3.2 and 3.3). It could be seen that all 

Rickettsia strains were retrieved from a mix of freshwater and terrestrial invertebrate 

hosts. 
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This close relationship between the torix Rickettsia from both host 

communities (albeit based on two marker sequences) indicates the movement of 

Rickettsia across invertebrate species and between biomes (Figure 3.2 and 3.3). For 

instances, Rickettsia endosymbiont of a caddis fly, Rhyacophila dorsalis, are clustered 

in the same group of the strains found in spiders (e.g., Amaurobius fenestralis and 

Pardorsa lugubris) and a common bed bug (Cimex lectularius). These symbionts seem 

to have a close relation to each other while their hosts are phylogenetically distant. 

This movement naturally occurs when the host acquires symbionts through 

horizontal transmission events [261, 262]. Many symbionts are horizontally 

transferred over an evolutionary timescale. This process expands both the number 

and range of host species [263]. Direct agents for the horizontal transfer may involve 

parasitism events (e.g., parasitic wasps, twisted wings, and water mites) [262, 264-

266]. Acquisition may also occur via the food chain when the invertebrates feed and 

digest their food plants or prey [154, 262, 267, 268].  

3.5.2 The driving pattern of torix Rickettsia infection 

This study indicates that freshwater ecosystems represent a hot-spot for torix 

group Rickettsia. This includes semi-aquatic invertebrates where only a part of their 

lifecycle is in the aquatic realm, e.g., crane fly and biting midge. How this pattern 

arises is uncertain. One possibility is that water itself is the medium enabling 

horizontal transmission to happen. A second possibility is that microeukaryotes 

within the water may be a common source – for instance amoebae [164, 269]. This 

horizontal transmission within the protozoans was found in ‘Candidatus Megaira’, a 

relative of the genus [270]. Finally, infection might be horizontally passed through 

other freshwater species via the food web. Freshwater hosts with a terrestrial phase 

(e.g., caddis flies, midges, odonates) may also act as a bridge to the terrestrial 

community. 

3.5.3 Freshwater vs terrestrial, sampling bias between communities 

The data revealed that insect species from the aquatic community were more 

likely to carry Rickettsia than ones from the terrestrial community. It is important to 

determine whether this result could be a result of sampling bias rather than an actual 
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difference. It is known that symbiont infections can reside in a fraction of the 

population, and thus increased sampling would likely elevate the chance of finding a 

symbiont infection in a focal species. However, the results indicating evidence of torix 

Rickettsia abundance in freshwater biome were conservative on this criterion. Based 

on the aspect of sampling intensity, generally, most invertebrate species from 

freshwater biome were sampled with lower numbers when compare to the sample 

sizes of those from terrestrial habitats. For instance, the mean sample size of 

freshwater hemipterans, dipterans and coleopterans were 6.1, 8.34 and 5.0 

individuals/species respectively, while terrestrial hemipterans, dipterans and 

coleopterans were sampled at mean intensity 12.9, 9.8 and 13.3 individuals/species 

respectively. From this, it could be said that sampling alone would have biased 

records of Rickettsia-infected individuals to species from the land and make it less 

likely to detect the infection in freshwater samples as there were fewer numbers of 

individual samples per species. Thus, the true Rickettsia incidence in freshwater 

communities may be even higher than the results reported in this study, and the 

excess of Rickettsia associations in aquatic compared to terrestrial species more 

pronounced than observed here. 

3.5.4 Detection of torix Rickettsia from contaminated gut contents  

In this study, all DNA templates were retrieved from either the whole body or 

dissected abdomen of the invertebrates. There might be a chance to detect torix 

Rickettsia from contaminated digestive tract contents (e.g., small insect foods or 

microeukaryotes [164, 269]) instead of the host tissue-associated torix Rickettsia, 

which may lead to a mis-interpretation of an infection incidence. In order to reduce 

such a risk, a few criteria were also considered, to validate the endosymbionts. First, 

to ensure that the DNA templates were retrieved from the actual host species, rather 

than a mix of various host organism in the gut, the DNA sequences from COI gene 

were checked. Second, the brightness of Rickettsia amplicons on the gel 

electrophoresis were visually determined. The brightness of the amplicons likely 

reflected that the infection titres were high enough to be retrieved within the host 

tissue. Then, the chromatogram of gltA and 16S rRNA gene sequences were also 

checked for quality. However, although these seemed to help reduce the risk, they 
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still allowed the chance of mis-detection to occur. Alternatively, an investigation by 

selecting least contaminated tissues (e.g., legs or upper parts of the body) and 

increasing a number of samples/species would be more helpful to ensure that the 

detection of the endosymbiont is from the actual host species. 

3.5.5 Torix Rickettsia a symbiont of vector and blood-feeder invertebrates 

 Some of the torix Rickettsia found in this study (Figure 3.2 and 3.3) noted a 

few host species of the symbionts that are haematophagous ectoparasites of 

vertebrates and a potential vector of trematodes and nematodes.  

A freshwater snail (Galba truncatula), that hosts for torix Rickettsia in this 

study, has been reported as an intermediate host for a variety of trematodes and 

nematodes [271-273]. The infection of torix Rickettsia was likely genuine in this snail 

population, as a contamination of Rickettsia in their foods (i.e., algae) was not 

detected (from a personal observation). However, the prevalence of Rickettsia 

infection in this snail (Table 3.4) - three of twenty specimens were positive in the PCR 

assays - indicates low level of infection frequency in this laboratory populations. An 

exploration through a larger sample size might help reveal a segregation of torix 

Rickettsia in this vector species. 

The DNA sequences retrieved from Genbank consist of Rickettsia from a mix 

of freshwater and terrestrial blood-feeding invertebrates. Glossiphoniid leeches (T. 

targoi, T. tukubana and H. marginata) are in freshwater ecosystems feeding on fish, 

amphibians, reptiles and mammals [9]. Biting midge (Culicoides newsteadi), a semi-

aquatic species and gerbil flea (Nosopsyllus laeviceps), a terrestrial parasite, both 

feed on mammals and birds [274, 275]. Similarly, the strains found in this study are a 

mix of both communities. The black fly (Simulium aureum) is a lotic species [276]. The 

mosquito (Anopheles plumbeus) is freshwater species with adults that feed on 

humans and birds [277]. Finally, a human bed bug (Cimex lectularius) was infected, a 

terrestrial specialist ectoparasite whose diet is restricted to the blood of humans 

[278]. These blood-feeding associated Rickettsia seem to have significant impact in 

medical areas, especially the latter two insect species. 
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Although torix Rickettsia could be found in several blood-feeding 

invertebrates, there was no statistical evidence to support that this endosymbiont is 

particularly prevalent in these animals. I, therefore, further examined ratios between 

number of torix Rickettsia infection in blood-feeding dipteran species vs non blood-

feeding dipterans. The comparisons indicated no statistical significance between the 

two ratios (Fisher’s exact test, p-value = 0.584, torix Rickettsia infection in blood-

feeding dipterans = 2/7, in non-blood-feeding dipterans = 4/26). 

However, Anopheles plumbeus and C. lectularius are good candidate models 

to observe the influences of torix Rickettsia on these insect vectors as they have the 

potential to be established in laboratory systems. The leeches and biting midge 

associated Rickettsia have already had their biological aspects investigated, including 

the vectors-symbiont interactions [135, 175]. Further intensive study on torix 

Rickettsia in either of these two insect vectors will help to understand the roles of 

endosymbiont in aspects of host-symbiont biology. 

3.5.6 Non torix Rickettsia 

 Apart for the detection of torix Rickettsia in this study, other Rickettsia strains, 

i.e., rhyzobius and bellii are also observed (Figure 3.2). The bellii strain was detected 

from the parasitioid wasp Pachycrepoides sp., which is related to a strain that was 

observed to cause thelytokous parthenogenesis in another parasitiod wasp species 

(Pnigalio soemius) [90]. Moreover, Rickettsia in this group was also found in a 

whitefly (Bemesia tabaci), the host species that were recently reported as another 

host for torix Rickettsia in the study of Wang et al. in 2020 [257]. This latter study also 

suggested evidence of horizontal movement of the symbiont via the plant-mediated 

system.  

Rickettsia endosymbiont of a weevil (Phyllobius argentatus) is grouped in 

rhyzobius clade (Figure 3.2). This clade was also reported in other beetles and known 

to be common in Neuroptera (lacewings) [181]. However, the biological impact from 

this group has yet to be observed, except the suggestion of strict vertical transmission 

from the lacewing’s ancestral species. 
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Finally, the allied bacterial group Trichorickettsia was detected in a lesser 

water boatman (Corixa punctata) under the PCR assays. The BLAST analysis revealed 

the closest related strain was Candidatus Trichorickettsia mobilis, a cytoplasmic 

intracellular bacterium of Paramecium nephridiatum [279]. The bacterium is a 

member of order Rickettsiales (Alphaproteobacteria), which this genus is believed to 

be the sister clade of Rickettsia genera [280] and commonly associates with 

freshwater protist ciliates [281]. The detection of Trichorickettsia suggests the 

association may not exist within the insect tissue, but the insect host may already 

have accidentally acquired the ciliate hosts inside their digestive tracts. The 

discovering of Trichorickettsia in this study also implies the broad range amplifiability 

of the 16S rRNA primers. The variable site of this pair and the priming site on 16S 

region of Trichorickettsia may need to be revised, even though this primer set has 

been validated in the previous studies and confirmed the specificity to 16S rRNA 

region of Rickettsia, not other genera in Rickettsiales [169, 175].  
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3.6 CONCLUSION 

It has been hypothesised that torix Rickettsia are generally associated with 

freshwater organisms. This study revealed the first statistical evidence of the torix 

Rickettsia abundance in the freshwater biome. Although the comparisons were 

based on closely phylogenetical taxa within only several insect orders, the sampling 

bias towards terrestrial individuals/species suggests the estimate conservative. Most 

of the detected symbiont strains in this study were identified as torix Rickettsia, 

which were highly diverse across freshwater and terrestrial host species. This study 

also highlighted that torix Rickettsia is a common endosymbiont of haematophagous 

invertebrates, e.g., Anopheles plumbeus and Cimex lectularius, which the vector 

hosts have potential important role in disease. Therefore, in the next Chapter, I will 

perform an investigation with more intensive examination of the symbiosis between 

the common bed bug, C. lectularius, and torix Rickettsia and establish this as the host-

symbiont system for more in-depth studies in future. 
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CHAPTER 4 

Torix Rickettsia: a maternally inherited endosymbiont  

in the common bed bugs (Cimex lectularius) 
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All results in this chapter, except FISH imaging (Figure 4.8), is in press at 
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Bayreuth, Germany, and Dr Sophie Evison, University of Nottingham. Bed bug 

crossing in transmission mode experiment was conducted by Dr Oliver Otti and Dr 
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4.1 ABSTRACT 

The common bed bug, Cimex lectularius, is a human pest that has globally 

infested domestic habitats, and is known to be symbiosed by the obligative α-

proteobacterium (Wolbachia) and a facultative γ-proteobacterium (BEV-like 

symbiont). The previous chapter highlighted the presence of Rickettsia as an 

additional, previously unrecognised, facultative alpha-proteobacterial symbiont of 

this species. However, the biological aspects of the interaction between the bug and 

Rickettsia have not yet been determined. In this study, I first revealed that Rickettsia 

is likely common in C. lectularius, present in 13 of 21 lab populations (61.9%) 

originally collected from three geographical areas, Africa, Europe and Great Britain. 

The phylogenetic trees based on 16S rRNA and gltA gene sequences illustrated that 

these strains are identical and affiliated with the torix clade. Crossing studies were 

completed and indicated the Rickettsia is maintained in C. lectularius generations via 

maternal but not paternal passage. Fluorescence in-situ hybridisation in the infected 

bed bugs showed infection in ovaries and other somatic tissues, and the presence of 

Rickettsia signals in bacteriomes where Wolbachia and BEV-like symbionts are also 

located. Being vertically inherited, bed bug-associated Rickettsia influences on C. 

lectularius biology merit ongoing investigation.  
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4.2 INTRODUCTION 

4.2.1 General introduction to bed bug biology 

The common bed bug (Cimex lectularius) is a wingless hematophagous insect 

belonging to order Hemiptera, family Cimicidae. The insects in this family feed on the 

blood of many vertebrates including humans [278, 283, 284]. Bed bugs are common 

in temperate regions, and have re-infested globally over recent decades [285, 286] 

(more details for each region in Doggett et al. [287]). They are an important pest, as 

they have significant medical, social and economic impacts [288-291]. Infestation 

with C. lectularius is mainly a discomfort to human lifestyle, as the species has not 

yet been observed to be a natural vector of any arthropod-borne diseases [291-295]. 

Bed bugs are dorsoventrally flattened, oval shape and reddish-brown to light 

brown colour. The adults are 4.0-5.0 mm long and 1.5-3.0 mm wide [285, 296]. 

Females are bigger than males in general and have more rounded abdomen (Figure 

4.1). Like the other hemimetabolous hemipterans, bed bugs develop from nymph to 

adult with incomplete metamorphosis [297]. There are five nymphal stages before 

entering into the adulthood. In each stage they take 5-8 days to molt into the next 

stadium, at least one sufficient blood intake is enough for each subsequent molting 

[298, 299]. Typically, the life cycle (egg to egg) takes 5 weeks at 75-80% RH and 28-

32oC [285]. Female adults lay whitish fertile eggs (1 mm long) in clusters. Adult bed 

bugs may live for 1-2 years [292, 300], but will be less if they live in unsuitable 

conditions [301] and when blood meals are inaccessible [285, 299]. Bed bugs are 

naturally nocturnal but may feed in daytime if they are hungry. The feeding frequency 

is varied depending on their digestion rate, surrounding temperature, host 

availability and reproductive cycle [299, 302]. 
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Figure 4.1 Pictures of the common bed bug (C. lectularius). Dorsal view of adult male 
(A) and female (B) on 1 mm grids. 

 

The blood meal stimulates the reproductive system of the adults to be ready 

for copulation, egg production in females and sperm production in males [303]. The 

mating system of C. lectularius and its allies is unique, known as ‘traumatic 

insemination’. Rather than inserting the stylus-liked genital organ (paramere) into 

female genitalia, the bed bug male intromittent organ will insert right into female 

abdominal sternite at a suture area (Figure 4.2 A and B) through the body wall where 

the special sperm receiving organ called ‘mesospermalege’ is located underneath. 

This mating event is believed to activate ovarian development in females (Figure 4.2) 

[303]. The injected sperm will leave mesospermalege and migrate via haemocoel to 

sperm repository organ (seminal conceptacle) using oxygen gradients in 

haemolymph [304]. When ovarian development is completed, the sperm will be 

moved to ovaries (Figure 4.2), where fertilization takes place. 
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Figure 4.2 Reproductive organs of the common bed bug (C. lectularius). A: The 
intromittent organs of male. B: The abdominal sternite suture of female where 
mesospermalege (ms) is allocated underneath the exoskeleton. C & D: The 
illustrations show reproductive organs and bacteriomes (b) allocations in male and 
female. ov = ovary, ovd = oviduct, sc = sperm conceptacle, sr = sperm reservoir, sv = 
seminal vesicle, t = testis. 
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4.2.2 Diversity of Cimicidae and human bed bugs 

All the member of insects in this family are obligate blood feeders and live as 

natural ectoparasite of mostly warm-blooded animals, e.g., bats and birds [305, 306]. 

There are approximately 110 described cimicid species [283] from 6 subfamilies [185, 

307], i.e., Primicimicinae, Latrocimicinae, Cimicinae, Cacodminae, Haemato-

siphoninae and Afrocimicinae. Three species are considered as specialist human 

ectoparasites. Leptocimex boueti, a member of subfamily Cacodminae, is associated 

with people in South Africa [308]. The other two species are in subfamily Cimicinae, 

the common bed bug (C. lectularius) and its cousin tropical bed bug (C. hemipterus), 

which infests many countries in temperate and equatorial areas, respectively [278, 

307].  

4.2.3 Wolbachia as the primary endosymbiont  

Bed bugs are obligatory blood feeders over their entire life history, a diet 

which is considered depauperate in B vitamins. This narrowed food preference of the 

ectoparasitic niche requires other living organisms to supplement their insufficient 

nourishment which they can neither produce nor obtain from their host. Many 

cimicid species associate with Wolbachia endosymbionts [309-314], and these have 

been found to synthesize Biotin, an inaccessible B-vitamin compound [6, 315]. This 

endosymbiont has a mutualistic relationship with the bug, in which the bug provides 

a special organ called a ‘bacteriome’ for harbouring them [6, 316].  

Bed bug associated Wolbachia belongs in the F supergroup. The strain is a 

close relation to A, B and D supergroups found in other insects and nematodes 

associations [314, 317]. The distinctiveness that makes this strain differ from others 

is that the genome contains complete pathways encoding biotin and riboflavin 

synthesis, the major components of vitamin B7 and B12, synthetic pathways [2, 315]. 

Although the titre of these symbionts is dynamic in C. lectularius populations and 

each instar stadium [318], bed bugs that are dissociated with the bacteria (cured with 

rifampicin antibiotics) will no longer maintain their biological fitness, e.g., decreasing 

in fecundity and slowing in development, unless the diet is artificially supplemented 

with vitamins [6]. 
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4.2.4 BEV-like symbiont and Rickettsia, the facultative endosymbionts  

Besides harbouring Wolbachia as the primary endosymbionts, C. lectularius 

also form facultative interactions with a second bacterium. A γ-proteobacterium was 

first described at the same time as Wolbachia by Hypša and Aksoy [311] from ovaries 

of C. lectularius. This rod-shaped bacterium is originally identified and cultivated from 

leafhopper, Euscelidius variegatus, also known as ‘BEV’ (the bacterium of E. 

variegatus) [319-321]. The BEV-like symbiont is likely common in insects in the order 

Hemiptera [6, 311, 320]. Despite the fact that Wolbachia and BEV-like symbiont are 

the major endosymbiont groups in many bed bug populations, a study from more 

than 90 years ago already revealed the first incidence of Rickettsia, another 

endosymbiont, as a potential parasitic endosymbiont associated with bed bugs. 

Rickettsia, described by Arkwright et al. in 1921 [322], were found in cells of 

mesospermalege and Malpighian tubes under a light microscope. The study 

described two form of Rickettsia, motile thread-like and non-motile coccus forms, 

thought the motile form seems to be BEV-like symbiont in other studies [6, 319-321]. 

A few later studies noted the presence of Rickettsia in C. lectularius but haven’t 

highlighted the endosymbiont biology of this interaction [323, 324].  

More recently, Potts et al. [325] observed Rickettsia associated with bed bugs 

as an endosymbiont from natural populations in UK and USA using PCR assays with 

rickettsial specific primers based on citrate synthase gene (gltA) [326]. The genetic 

evidence showed that this strain is closely related to the Rickettsia found in a gerbil 

flea (Nosopsyllus laeviceps) [183]. However, the study did not establish the biology 

of the endosymbiosis and the interactions between the bacterium and the host. 

4.2.5 Incidence of Rickettsia in C. lectularius in this study 

The Rickettsia screen in Chapter 3 identified, Rickettsia in all twenty C. 

lectularius DNA samples. The bed bug samples (population name ‘F4’) were originally 

collected from London and established in the laboratory in University of Sheffield in 

2006 (see Table 4.1 in the method). Then, in 2018, I explored more individuals from 

the same Sheffield laboratory stock, and infection was observed to remain but be 

sporadic within the population (mixed infected/uninfected individuals). This mixed 
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infection led to the idea of establishing Rickettsia infected and Rickettsia uninfected 

bed bugs lineages to observe the biology of Rickettsia endosymbiont and Rickettsia-

bed bug interactions, a scenario that could not be completed using antibiotics, as 

these would eliminate Wolbachia that are vital for C. lectularius.  

4.2.6 Aims  

Bed bugs represent a good subject to establish a model system of Rickettsia-

host interactions as they are easily maintained in lab conditions and their life cycle is 

short. As noted in Chapter 3, C. lectularius are potentially associated with Rickettsia 

endosymbiont, and this leads to the first aim, to examine the infection prevalence 

over cosmopolitan populations. Following this, the presence of infected and 

uninfected isolines of Rickettsia provides a good opportunity to study and understand 

the general biology of bed bug-associated Rickettsia. 

In this chapter, I undertook PCR assays and Sanger sequencing to observe the 

prevalence and diversity of torix Rickettsia across C. lectularius populations and other 

cimicid species. This would allow me to understand the relationship of the torix 

Rickettsia strains from this study and other Rickettsia strains from different 

invertebrate host species. I also investigated the transmission pattern of the 

symbionts, with a particular view of establishing whether paternal transmission – 

observed in another torix Rickettsia-insect symbiosis [249]– is also observed in bed 

bugs. Finally, I localised the infection of this symbiont in C. lectularius tissues. These 

observations of torix Rickettsia biology will further be useful to acknowledge and 

predict the biological effects on the host biology. 
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4.3 METHODS 

4.3.1 Bed bug populations and other Cimicidae collections 

Bed bug populations used in this study were collected in different areas and 

different years in Europe and Africa, and then maintained in the laboratory (Table 

4.1). Two populations are of unknown origin in the wild. Population S1 has been 

maintained at the Universities of Bayreuth and Sheffield for >20 years and before 

that for >40 years at the London School of Hygiene and Tropical Medicine. The other 

population of unknown origin were received from Bayer labs (Germany) in 2006 and 

have been in the lab ever since. 

DNA template of various cimicid species were obtained from the recently 

published bed bug phylogeny by Roth et al. [305] (Table 4.2). For each species, the 

DNA template was acquired as 10 µl extracted genomic DNA in 0.2 µl tubes from 

Steffen Roth (University Museum of Bergen, Norway) and Prof. Klaus Reinhardt (TU 

Dresden, Germany), which were stored in -20oC until use. Voucher specimens of 

some species are stored in the collection of the University Museum of Bergen 

(ZMNB), Norway. 

4.3.2 Genomic DNA extraction 

A pair of male/female of C. lectularius from each population (Table 4.1) were 

sent in absolute ethanol tubes to the lab in University of Liverpool for DNA extraction. 

The samples were rinsed with clean absolute ethanol and air dried. To avoid 

contamination with gut microbes, the bugs were decapitated with sterilized forceps 

and only the head and/or the upper part (from the head to the thorax, including legs) 

would be taken for DNA extraction. Genomic DNA was extracted from the selected 

body part using Promega Wizard® Genomic DNA Purification kit (A1120, Promega, 

UK), adapted from the manufacturer protocol (see section 2.3.1 in Chapter 2). DNA 

pellets were dissolved with 100 ul of molecular water and stored at -20oC for future 

use. 
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Table 4.1 Cimex lectularius laboratory populations. A male and female/population 
were sent for Rickettsia screening. Except for Bayer and S1, all populations originated 
from independent infestations in private homes or youth hostels (Populations H1 and 
YMCA). The time when they were established in the lab in University of Sheffield are 
shown in year.  
 

Population name Origin of place 
Year established 

 in Sheffield 

H1 Budapest, Hungary 2010 

C1 Coventry, UK 2010 

Bayer Germany 2006 

S1 London School of Tropical Medicine 1996 

London heavy London, UK 2006 

F11 London, UK 2006 

F4 London, UK 2006 

F10 London, UK 2006 

YMCA London, UK 2010 

K12 Nairobi, Kenya 2008 

K4 Nairobi, Kenya 2008 

K22 Nairobi, Kenya 2010 

K25 Nairobi, Kenya 2010 

K26 Nairobi, Kenya 2010 

K19 Nairobi, Kenya 2010 

K20 Nairobi, Kenya 2010 

K7 Nairobi, Kenya 2008 

K5 Nairobi, Kenya 2008 

K30 Nairobi, Kenya 2010 

BG1 Sofia, Bulgaria 2010 

K17 Watamu, Kenya 2010 
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Table 4.2 The cimicid allies of C. lectularius. This Cimicidae collection was either 
collected from wild or curated in a museum, compiled by Robert Leslie Usinger (U) 
and privet donors (P), the Essig Museum of Entomology, University of California, 
Burkeley. The specimens were originally collected from different localities and times. 
 

Subfamily Species N Source Locality Year of 
collection 

Afrocimicinae Afrocimex constrictus 3 wildP Kenya 2005 

Primicinae Bucimex chilensis 1 museumU Chile 2013 
 

Primicimex cavernis 1 museumU Mexico 2015 

Haematosipho-

ninae 

Ornithocoris pallidus 1 N/A USA, South Carolina 2010 

 
Acanthocrios furnarii 1 N/A Brazil 2010 

 
Psitticimex uritui 1 N/A Argentina 2008 

 
Cyanolicimex patagonicus 1 N/A Argentina 2003 

 
Cimexopis nyctalis 1 N/A USA 2016 

 
Hesperocimex sonorensis 1 N/A Mexico 2017 

 
H. coloradensis 1 museumP Los Alamos County, 

N.Mex. 

1971 

Cimicinae Paracimex inflatus 1 museumU Kavieng, Papua 

New Guinea 

1966 

 
P. borneensis 1 N/A Borneo 2015 

 
Cimex pipistrelli 1 N/A Hanau, Germany 2004 

 
C. hemipterus 1 museumU Taiwan Before 1966 

 
C. hirundinis 1 N/A Switzerland N/A 

Cacodminae Aphrania elongata 1 N/A Senegal 2012 
 

A. vishnou 1 museumU Phnom Penh, 

Cambodia 

1952 

 
Cacodmus villosus 1 N/A Kenya 2005 

 
Loxapsis malayensis 1 museumU Tasik Bera, Pahang, 

Malaysia 

1962 

 
Leptocimex duplicatus 1 N/A Israel 2002 

 
L. boueti 1 N/A N/A N/A 
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4.3.3 Rickettsia screening across C. lectularius lab populations and other Cimicidae 

The DNA samples were initially tested for their amplifiable quality, using the 

combination of invertebrate mtDNA barcoding primers, forward; C1J_1718 and 

reverse; HCO_2198 to amplify approximately 380 bp product size in the Cytochrome 

oxidase subunit I gene (COI) of the bed bug using PCR. The primer sequences and the 

PCR conditions are provided on Table 4.3. It has to be noted that in my preliminary 

screen, the primer pair of LCO_1490/HCO_2198 [242] and C1J_1718/C1N_2191 [243] 

that were used to amplify COI regions of odonates and other invertebrates in Chapter 

2 and 3 failed to amplify the bed bug’s COI.  

Samples that passed the quality check were then screened for Rickettsia 

infections using Rickettsia specific primers based on the 16S rRNA gene: 

Ri170_F/Ri1500_R and the citrate synthase gene (gltA); RiGltA405_F/ RiGltA1193_R 

(Table 4.3). The conditions were same as described in Table 4.3, save the annealing 

temperature was changed to 54oC, the conditions were adapted from Pilgrim et al. 

[175]. The DNA sequences of both genes were deposited in the European Nucleotide 

Archive (ENA) at EMBL-EBI database. 

4.3.4 Estimating the phylogenetic affiliation of Rickettsia 

The 16S rRNA and gltA amplicons from PCR assays were cleaned with the 

ExoSAP-IT kit (E1050, New England Biolabs, US) and Sanger sequenced. The sequence 

chromatograms were trimmed and edited in UGENE [258]. All the sequences were 

exported to fasta format and searched against other Rickettsia strains on NCBI 

database to find close relatives ascertained by BLAST homology. The sequence of 

these markers from closely related strains from other invertebrate hosts were 

retrieved and estimated for the relatedness. Other Rickettsia strains from other 

clades, e.g., Rickettsia bellii and vertebrate pathogens were selected to represent the 

sister group to the torix clade. Occidentia massiliensis was use as the outgroup for 

both topologies. All the selected sequences were aligned with Rickettsia sequences 

in this study using MUSCLE algorithm with its default setting in MEGA X [245, 246]. 

The Maximum Likelihood phylogeny for both genes were estimated in MEGA X with 
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1000 rapid bootstrap replicates under T92+I and K2+I model for gltA and 16S gene 

respectively. 

4.3.5 Transmission mode 

To investigate the vertical transmission mode of torix Rickettsia, I used two 

bed bug lab populations, S1 and F4, in which I found the sporadic infections with 

infected and uninfected individuals throughout the populations. Males and females 

were randomly selected to establish 65 and 49 mating pairs for S1 and F4 

respectively, from which the offspring were reared. The parents and 5-10 randomly 

selected first instar nymphs were screened for torix infection status using the PCR 

assays as described above. The first-instar nymphs were tested individually to gain 

insight into vertical transmission efficiency, and whole bodies were used for 

template. Then, the impact of parental infection status (mother infected, father 

infected) on progeny infection status was assessed. 

4.3.6 Establishment of iso-female lines and bed bug culture 

From the transmission mode experiment above, the infection status of 

offspring from each mating pair was revealed. Four Rickettsia-free and four 

Rickettsia-infected isolines from each of the two populations were used for crossing 

to establish isofemale lines which they then would be kept under constant 

conditions. New generations were set up regularly, i.e., at a 6- to 8-week interval. 

Each new generation was started with randomly picked virgin female and virgin male. 

All bed bugs were maintained in a CT room at 26±1°C, at about 70% relative humidity 

with a cycle of 12L:12D. All individuals in this study were virgin prior to experiments. 

The feeding, maintenance and generation-of-virgin-individual’s protocols follow 

Reinhardt et al. [327] 

4.3.7 Endosymbiont tropism 

To localise torix Rickettsia and other symbionts within the C. lectularius body, 

I used the FISH technique adapted from Sakurai et al. [12] and Pilgrim et al. [175]. 

The bacteriome and reproductive tissue in virgin male and female adults were 

investigated, as well as the whole body of first instar nymphs from the torix-free and 
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torix-infected F4 and S1 lines. Tissues were dissected in 0.5M PBS at pH 7.4 and 

preserved immediately in Carnoy’s solution (chloroform: ethanol: glacial acetic acid 

= 6:3:1) overnight. The nymphs were preserved in the solution without dissection. All 

tissue samples were cleared by incubating in 6% H2O2 in ethanol for 12 hr, for the 

whole-body nymph was incubated until the body was transparent (up to 24-48 hr). I 

then used a tungsten micro-needle to make micropores in the nymph cuticle to allow 

the fluorescent probes to pass through the cuticle during the hybridization step. The 

samples were hybridised by incubating the tissues overnight in a hybridization buffer 

(20mM Tris-HCl pH 8.0, 0.9M NaCl, 0.01% Sodium dodecyl sulfate 30% formamide) 

with 10 pmol/ml of these symbionts rRNA specific probes for Rickettsia [10], 

Wolbachia [6] and Gamma proteobacteria (BEV-like symbiont) [6] (Table 4.3). Nuclei 

fluorescent staining, Hoechst 33342 (H1399, Invitrogen, Carlsbad, USA), was used to 

visualise the bed bug tissues.  After incubation, tissues were washed in buffer (0.3M 

NaCl, 0.03 M sodium citrate, 0.01% sodium dodecyl sulfate) and mounted onto a slide 

using VECTASHIELD® Antifade (H-1000, Vectorlabs, UK) as a mounting medium. Slides 

were then observed under a confocal microscope, 880 Bio AFM (on 880 LSM 

platform, ZEISS, Germany). 
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Table 4.3 PCR primer and fluorescent probe sequences that were used in Chapter 4 
and 5. All the fluorescence probes are labelled with a fluorophore, in the square 
brackets, at 5’ end except RickB1 probe, labelled at 3’ end. All the primers were used 
in the following PCR conditions; initial denaturation at 95 °C for 5 min, followed by 
35 cycles of denaturation (94°C for 30s), annealing (Tm°C for 30s), extension (72°C 
for 50s), and a final extension at 72°C for 7 min. The annealing temperature was 
varied by the primers. 
 

Target 
organisms, 

gene 

Primer/ 
probe Name 

Sequence (5’-3’) Tm 
(oC) 

Product 
size (bp) 

Ref. 

Bed bug and cimicid allies: PCR primers    

Cytochrome c 

oxidase subunit I, 

COI 

C1J_1718 GGA GGA TTT GGA AAT TGA TTA GT 
52 480 

[242] 

HCO_2198 TAA ACT TCA GGG TGA CCA AAA AAT CA [243] 

Rickettsia: PCR primers    

16S ribosomal 

RNA, 16S  
Ri170_F GGG CTT GCT CTA AAT TAG TTA GT 

54 1.1k [175] 
Ri1500_R ACG TTA GCT CAC CAC CTT CAG G 

Citrate synthase, 

gltA 

RiGltA405_F GAT CAT CCT ATG GCA 
54 786 [175] 

RiGltA1193_R TCT TTC CAT TGC CCC 

BEV-like symbiont: PCR primers    

16S ribosomal 

RNA,  
16S 

BEVF GCA CAA GGG AGG TTG CTC CCC  
57 420 [6] 

BEVR CAG CAA GGT TAT TAA CCT TAC TG 

DNA gyrase  
subunit B,  
gyrB 

CLBEV1F CAC GGG GTA GAT ACC GAT TA 
54 310 * 

CLBEV1R ATG GCG TCT TTA ACT GTC AC 

Endosymbionts: rRNA probes    

γ-proteobacteria CimexSec1229R [AlexaFluor555]-TTG CTC TCG CGA GGT CGC TT   [6] 

Rickettsia RickB1 CCA TCA TCC CCT ACT ACA-[ATTO 633]   [10] 

Wolbachia 
TsWo1187Rl [AlexaFluor488]-CTC GCG ACT TTG CAG CCC A   

[6] 
TsWol944R [AlexaFluor488]-AAC CGA CCC TAT CCC TTC G   

* The primers are designed in this this study 
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4.4 RESULTS 

4.4.1 Incidence of torix Rickettsia in C. lectularius lab populations 

DNA extractions from each C. lectularius population and all cimicid allies passed 

QC, with good amplicons in the COI amplification. Thirteen out of twenty-one C. 

lectularius populations tested positive with Rickettsia infection with both 16S rRNA 

and gltA primers. These populations have their origin in Africa, mainland Europe and 

UK (Table 4.4). Both male and female individuals were found to be infected in most 

cases where infection was detected. In the initial screen, only the female individual 

was scored as infected in populations S1 and BG1; however, infection in males was 

observed in both populations on deeper screening. 

4.4.2 Rickettsia in other cimicid species 

DNA samples of bed bug allies passed the quality check procedure, and these 

were tested for Rickettsia infection in PCR assays. The PCR results indicated that just 

only one species, Afrocimex constrictus (subfamily Afrocimicinae), was positive with 

Rickettsia infection in all three samples (Table 4.5). However, the rickettsial PCR only 

produced gltA amplicons for this species, despite repeated attempts at 16S 

amplification. 
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Table 4.4 Rickettsia infection in C. lectularius stock populations in Bayreuth lab. Males 
in the brackets (M) indicate the infections were detected later when these 
populations were screened with more individuals. Asterisks in population name 
indicate that these populations were selected for transmission mode experiment and 
established as the iso-female lines. 
 

Population 

name 
Origin of place 

Year established 

 in Sheffield 

Male /Female 

(M/F) positive 

H1 Budapest, Hungary 2010 neither 

C1 Coventry, UK 2010 neither 

Bayer Germany 2006 neither 

S1* London School of Tropical Medicine 1996 (M)/F 

London heavy London, UK 2006 neither 

F11 London, UK 2006 neither 

F4* London, UK 2006 M/F 

F10 London, UK 2006 neither 

YMCA London, UK 2010 neither 

K12 Nairobi, Kenya 2008 M/F 

K4 Nairobi, Kenya 2008 M/F 

K22 Nairobi, Kenya 2010 M/F 

K25 Nairobi, Kenya 2010 M/F 

K26 Nairobi, Kenya 2010 M/F 

K19 Nairobi, Kenya 2010 M/F 

K20 Nairobi, Kenya 2010 M/F 

K7 Nairobi, Kenya 2008 M/F 

K5 Nairobi, Kenya 2008 M/F 

K30 Nairobi, Kenya 2010 M/F 

BG1 Sofia, Bulgaria 2010 (M)/F 

K17 Watamu, Kenya 2010 neither 
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Table 4.5 Rickettsia infection in cimicid allies. Only Afrocimex contrictus was positive 
for the Rickettsia in the PCR screen. 

Subfamily Species N Locality Year of 
collection Infection 

Afrocimicinae Afrocimex constrictus 3 Kenya 2005 + 

Primicinae Bucimex chilensis 1 Chile 2013 - 
 

Primicimex cavernis 1 Mexico 2015 - 

Haematosiphoninae Ornithocoris pallidus 1 USA, South Carolina 2010 - 
 

Acanthocrios furnarii 1 Brazil 2010 - 
 

Psitticimex uritui 1 Argentina 2008 - 
 

Cyanolicimex patagonicus 1 Argentina 2003 - 
 

Cimexopis nyctalis 1 USA 2016 - 
 

Hesperocimex sonorensis 1 Mexico 2017 - 
 

H. coloradensis 1 Los Alamos County, N.Mex. 1971 - 

Cimicinae Paracimex inflatus 1 Kavieng, Papua New Guinea 1966 - 
 

P. borneensis 1 Borneo 2015 - 
 

Cimex pipistrelli 1 Hanau, Germany 2004 - 
 

C. hemipterus 1 Taiwan <1966 - 
 

C. hirundinis 1 Switzerland N/A - 

Cacodminae Aphrania elongata 1 Senegal 2012 - 
 

A. vishnou 1 Phnom Penh, Cambodia 1952 - 
 

Cacodmus villosus 1 Kenya 2005 - 
 

Loxapsis malayensis 1 Tasik Bera, Pahang, 

Malaysia 

1962 - 

 
Leptocimex duplicatus 1 Israel 2002 - 

 
L. boueti 1 N/A N/A - 
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4.4.3 Estimating the phylogenetic affiliation of Rickettsia 

 The 16S rRNA sequences alignment of all Rickettsia strains from the C. 

lectularius populations indicated that these strains were identical (based on 985 bp 

sequence length information, accession number; LR828195). The topology of 16S 

rRNA gene showed the Rickettsia strain of C. lectularius is affiliated in torix group 

(Figure 4.3), which is closely related to Rickettsia endosymbiont of Nephotettix 

cinticeps leafhopper. These strains are monophyletic (albeit with low bootsrap 

support) with other Rickettsia endosymbionts of glossiphoniid leeches, i.e., 

Hemiclepsis marginata, Torix tukubana and T. tagoi, and also potentially form a sister 

clade with a Rickettsia endosymbiont of a common blue damselfly (Enallagma 

cyathigerum) and a Rickettsia endosymbiont of Culicoides newsteadii biting midge.  

The alignment of those gltA sequences (746 bp) of Cimex lectularius also 

showed no variable sites across all Rickettsia positive populations. Moreover, the 

sequences of the gltA amplicons from both C. lectularius and A. constrictus (accession 

numbers; LR828196-LR828197) were also identical. On gltA topology, these strains 

are closely related to a Rickettsia endosymbiont of the flea, Nosopsyllus laeviceps and 

sister of the clade containing Rickettsia endosymbiont of Culicoides newsteadii biting 

midge (Figure 4.4). 
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Figure 4.3 Maximum likelihood phylogenetic trees generated from 16S rRNA gene 
(sequences showing the position and relatedness of Rickettsia endosymbiont of C. 
lectularius in this study (arrowhead) with other relative strains that obtained from 
NCBI (the GenBank accession numbers are in the square brackets). The bootstrap 
values expressed as the percentage of 1000 replicates are shown at the nodes. The 
bar indicates substitution of nucleotides per position. 
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Figure 4.4 Maximum likelihood phylogenetic trees generated from gltA gene 
sequences showing the position and relatedness of a Rickettsia endosymbiont of C. 
lectularius and A. constictus found in this study (arrow head) with a Rickettsia 
endosymbiont of C. lectularius from Potts et al. [325] (accession no. MN7881222) and 
other relative strains that obtained from NCBI (the GenBank accession numbers are 
in the square brackets). The bootstrap values expressed as the percentage of 1000 
replicates are shown at the nodes. The bar indicates substitution of nucleotides per 
position. 
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4.4.4 Transmission mode 

All 49 crosses of the F4 line produced offspring, while 55 out of 65 crosses 

from line S1 were successful. The parents who produced the offspring were test for 

Rickettsia infection. The frequency of infected individuals in the F4 population was 

lower than that of S1 (F4: 14 of 49 mother, and 20 of 49 fathers carried the symbiont; 

S1 population, 48 of 55 mothers, and 50 of 55 fathers carried the symbiont). The 

Rickettsia infection status for each family was categorised into four groups according 

to parental infection status. 

Rickettsia transmission to progeny was consistently observed where either 

both parents (R+ x R+) or just the mother (R+ x R-) tested positive for torix Rickettsia 

(R+ x R+: F4: 8 crosses, S1: 45 crosses; R+ x R-: F4: 6 crosses, S1: 3 crosses, Figure 4.5). 

In these cases, all 310 tested nymphs had acquired infection, indicating vertical 

transmission through females was highly efficient (Binomial confidence intervals for 

vertical transmission efficiency 0.988-1.000). No progeny tested positive for 

Rickettsia infection in families where only the father was infected (R-x R+: F4: 12 

crosses, S1: 5 crosses), nor were any Rickettsia positive individuals recovered from 

crosses where neither parent was infected (R- x R-: F4: 23 crosses, S1: 2 crosses). 

These data indicate that maternal infection is necessary and sufficient for the 

presence of Rickettsia in progeny, and there is no evidence of paternal inheritance. 
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Figure 4.5 Transmission mode of C. lectularius associated Rickettsia. The bars indicate 
proportion of infected offspring in each crossing group. The four crosses were sorted 
by infection status of the parents, female x male (R+ x R+: 8 crosses for F4, 45 for S1; 
R+ x R-: 6 crosses for F4, 3 for S1; R-x R+: 12 crosses for F4, 5 for S1; for R- x R-: 23 
crosses for F4, 2 for S1). Number of tested offspring are given on the bars. None of 
infected offspring was observed from Rickettsia-free mother groups (R- x R+ and R- x 
R-). 
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4.4.5 Localization of torix Rickettsia in adults 

FISH detected Rickettsia throughout ovaries and bacteriome tissues (Figure 

4.6, 4.8 and 4.9 D - E). In adult females, the distribution of the Rickettsia signal was 

intense in the trophic core of the tropharium and in oocytes. Alongside Rickettsia in 

this area, the filamentous BEV-like symbiont and Wolbachia were also observed. In 

comparison to the other symbionts, Rickettsia were more widely distributed in the 

ovaries. I observed them also in nurse cells and follicular epithelial cells (Figure 4.6 C-

D). Rickettsia signals were absent in Rickettsia-free bed bugs (Figure 4.7). Symbiont 

signals failed to be detected in male reproductive tissues in this study, except the 

somatic bacteriome where only the BEV-like symbiont and Wolbachia are observed 

(Figure 4.8). 

4.4.6 Localization of torix Rickettsia in first instars 

Rickettsia signals were found in somatic tissue of the abdominal areas of first 

instar bed bugs, alongside the BEV-like symbiont (Figure 4.9). At low magnification, 

the strongest signal (green colour) was emitted by Wolbachia reflecting the intense 

infection of bacteriome organs (Figure 4.9 B). Rickettsia and the BEV-like symbiont, 

however, could also be seen at this low magnification but poorly resolved. At higher 

magnification, Rickettsia is clearly visible in the bacteriome alongside Wolbachia and 

the BEV-like symbiont as all the three signals were reliably present in this tissue 

(Figure 4.9 D - E). In Rickettsia-free samples only the signals of Wolbachia and the 

BEV-like symbiont were present, while Rickettsia signals were absent (Figure 4.9 C). 
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Figure 4.6 FISH images of adult Rickettsia-infected female ovaries. A: Bright field 
image of one-sided ovaries. The blue line represents the outline of one ovariole. n = 
nucleus of oocyte, t = tropharium part, v = vitellarium part, fb = follicular body, oc = 
oocyte, sb = syncytial body, ovl = lateral oviduct, ovm = mesodermal oviduct. B: FISH 
shows the presence of the three symbionts, i.e., Wolbachia (green), BEV-like 
symbionts (yellow) and Rickettsia (red) in ovaries. Blue colour represents nuclei of 
bed bug cells. The signals of three symbionts are concentrated in tropharium areas. 
Small rectangles indicate the magnified fields of tropharium and vitellarium portions, 
showing in C and D, respectively. Rickettsia (filled triangles) and BEV-like symbionts 
(open triangles) are also detected in syncytial body and mesodermal oviduct at low 
densities. C: Enlarged detail of the tropharium portion. It is covered by a membrane 
of inner sheath cells (isc). The three symbionts distribution can be detected at very 
high density all along the trophic core (tc) area. Wolbachia are likely packed in 
bacteriocytes (bc) which are distinctive to the adjacent nurse cells (nc), while 
Rickettsia and filamentous BEV-like symbionts are more scattered. D: Enlarged detail 
of vitellarium portion. All three symbionts invade the oocyte, forming a cluster at the 
posterior pole of the oocyte. Rickettsia signals are scattered insertions in the follicular 
epithelium (fe) of the oocyte. 
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Figure 4.7 FISH images of ovaries from Rickettsia-free female adult A: Ovaries of torix-
free bed bug. Only Wolbachia (green) and BEV-like symbionts (yellow) are present. 
Blue colour represents nuclei of bed bug cells. The small rectangle represents the 
tropharium and vitellarium parts of one ovariole showing in B. B: Enlarged field of 
partial upper ovariole. It is covered by a membrane of inner sheath cells (isc). 
Wolbachia are packed in bacteriocyte (bc) before entering the oocyte (oc), while BEV-
like symbionts are loosely diffused. The signals of the two symbionts are intensive in 
trophic core (tc) and in oocyte. None of Rickettsia signals (red) are detected here. fe 
= follicular epithelium, nc = nurse cells. 
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Figure 4.8 Bacteriome of adult C. lectularius. A: FISH revealed co-occurring of 
Wolbachia (green), filamentous BEV-like symbiont (yellow) and Rickettsia (red) in 
Rickettsia-infected female. The boundary of bacteriome is easily defined by the 
present of Wolbachia signals in multiple bacteriocytes with multiple oval-shaped 
nuclei. B: Bacteriome of Rickettsia-free male. The signals of Rickettsia are absent, 
with only Wolbachia and BEV-like symbionts observed. n = nucleus of bacteriocytes. 
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Figure 4.9 FISH image of the whole-mounted first instars. A: The nymph under 
transmitted light. B-C: FISH detection of symbionts in Rickettsia-infected (B) and 
Rickettsia-free instars (C). The ball-shaped in green colour represents strong 
Wolbachia signals indicate where bacteriome allocation in abdomen. Rickettsia 
infection showing in red where the filled arrowhead present in B but absent in C. b = 
bacteriome. D: Higher magnification of bacteriome of Rickettsia-infected instar. All 
the three symbionts can be detected in this organ. Wolbachia, BEV-like symbionts 
and Rickettsia are in green, yellow and red respectively. The blue colour represents 
nuclei of bed bug cells. E: The same field as D but only the Rickettsia channel remains. 
The blue line indicates the bacteriome boundary. 
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4.5 DISCUSSION 

4.5.1 Torix Rickettsia in Cimex lectularius and another cimicid 

This study revealed the frequency and transmission biology of torix Rickettsia 

in a blood-feeding insect. Cimex lectularius are notorious pests of humans [287]. In 

pest management field, it is important to understand bed bug biology in all the 

possible aspects in order to cope with its infestation [287, 328]. Studying 

endosymbiont association is a potentially powerful tool to overcome its infestation 

[329]. Generally, the majority of studies investigate its primary endosymbiont 

‘Wolbachia’, because this symbiont is known to have the strong vital effects on the 

bugs [284, 310, 315]. In this study, I have assessed another facultative endosymbiont 

‘Rickettsia’ to extend our perspectives on endosymbiont biology and symbiont-host 

interactions in this important pest species. 

The detection of a single torix Rickettsia strain in cosmopolitan bed bugs 

indicates that one main strain of this symbiont circulates in this species worldwide. 

This finding also appears in the recent study of Potts et al. [325]. The Rickettsia strains 

was investigated in C. lectularius from UK and USA field collections, all of which reveal 

identical gltA haplotype (accession no: MN788122 as the representative strain 

sequence) which is 98.39% similar (NCBI BLAST) to the strain found in my study. There 

are 6 SNP detected (3 at the beginning of 5’ and another 3 in the 3’ end) between the 

sequences from the two studies. These positions correspond with the priming site for 

PCR, indicating the differences may be artefactual, and simply reflect the primer 

sequence used for amplification. Thus, it is likely that the Rickettsia strain found in 

Potts et al. [325] is actually identical to the torix Rickettsia strain in this study. 

Whilst a single strain of Rickettsia was present, not all individuals carried the 

Rickettsia. It was observed that some of the laboratory cultures lacked Rickettsia. 

Interestingly, lines F4 that was isolated in 2006 in Sheffield all carried Rickettsia, but 

these same lineages were polymorphic for infection when samples were obtained in 

2018. Thus, the infection had segregated during laboratory passage. These data 

contrast with the worldwide maintenance of the essential Wolbachia symbiont of C. 

lectularius (wCle) [6, 312].  
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What is the origin of Rickettsia infection in bed bugs? The horizontal 

transmission of symbionts in a host shift event is a classical theory to explain the 

distribution of single endosymbiont strain that then spreads across insect host 

populations. The secondary endosymbiont could occasionally undergo horizontal 

transmission by unknown route [330]. In such cases, C. lectularius are the 

ectoparasites of warm-blood animals, so this could be by Rickettsia-free bed bugs 

acquiring the symbionts by feeding on Rickettsia-infected hosts. Alternately, 

infection could be derived from uncharacterised parasitoid insects. However, the 

initial source and route of acquisition are unclear. In terms of spread, one possible 

scenario could be that the Rickettsia have symbiosed the host since the Cimex 

ancestors before the speciation and colonisation has begun. Alternately, it may have 

arisen more recently, and then spread associated with intercontinental movement of 

bed bugs associated with human movement. 

It was also noted that torix Rickettsia, identical at the genetic loci sequenced, 

was also found in the bat bug (Afrocimex constrictus). This phenomenon is similar to 

the sharing of torix strains by two damselflies from different genus, Coenagrion 

puella and Erythromma najas (Chapter 2). These data indicate that the endosymbiont 

does jump across host species, but whether this is direct, or through the wider 

community, is not established. 

4.5.2 Maternal inheritance 

It is typical for inherited endosymbionts to be transmitted maternally 

between host generations [331, 332], and bed bug associated torix Rickettsia was 

maternally inherited in the assays presented. In the experiments presented, maternal 

inheritance occurred with 100% fidelity – all 310 progenies from infected females 

carried the infection. However, the segregation of the symbiont during 12 years of 

laboratory passage indicates some level of inefficient maternal inheritance. Thus, I 

can conclude that whilst vertical transmission through females is very high, it does 

not occur with 100% fidelity. 

In contrast, no paternal transmission was observed in this study, despite 

paternal males carrying infection (from the PCR assays), and previous evidence of 
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Rickettsia in male sperm containers [324]. However, the symbiont could not be 

passed to their progeny, suggesting that bed bug sperm morphology might not yet 

be suitable for the Rickettsia carriage at this time point of their co-evolutionary 

process. The situation contrasts with the leafhopper- associated Rickettsia case, In 

Nephotettix cincticeps, torix Rickettsia can transmit biparentally, with 70% father-

progeny and 100% mother-progeny transmission rates. The Rickettsia are found in 

nuclei areas of sperm counterparts without interrupting the sperm functions [249]. 

Notably, the Rickettsia in the leafhopper has the capacity for intranuclear infection, 

which likely is necessary for paternal inheritance. Beside the plant hopper, paternal 

transmission is also observed in a tsetse fly-associated Sodalis symbiont [333], a 

group of gamma proteobacteria. Paternal inheritance has also been noted for 

symbionts in the genus Megaira, the sister taxa to Rickettsia [334]. Generally, 

intranuclear infection is present in a range of endosymbiotic bacteria, e.g., 

Nucleococcus, Chlamydia, gamma and alpha proteobacteria [335]. This trait is 

observed quite widely in the Rickettsiacae, but is labile, being present in some 

symbioses but not others [335]. 

Paternal inheritance of endosymbionts is also known to be limited by the 

host’s sperm counterpart capacity [336]. On the other hand, the finding of a strong 

maternally inherited pathway in this study, bed bug and Rickettsia potentiates 

conflict with respect to host sex, as males are evolutionary dead ends for maternal 

inheritance [337, 338]. This will be further invested in the next chapter. 

4.5.3 Symbionts in the bacteriomes 

 Insects commonly live mutualistically with endosymbionts to facilitate each 

other. Insect hosts provide a bacteriome as an organ for harbouring their 

endosymbionts in many cases [6, 11, 316, 332, 339]. In previous histological studies, 

the bacteriocytes of C. lectularius are harbourage of two bacteriome-associated 

endosymbionts, the primary endosymbiont Wolbachia and secondary BEV-like 

endosymbiont [6]. 

In this study, I additionally examined the tropism of Rickettsia, alongside 

Wolbachia and BEV-like symbionts, in these organs. Overall, the bacteriome FISH 
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image indicates a high signal intensity for Wolbachia. Rickettsia was present in the 

bacteriome, but the three symbionts were spatially intermixed within the 

bacteriomes from the z-stack layer images. This result contrasts with the localization 

the symbiont community in the leafhopper, N. cincticeps [11]. There are three 

endosymbionts involved in this community. Two are major essential bacteriome-

associated endosymbionts, Sulcia bacterium and β-proteobacterium. They live 

separately in two different morphological bacteriocytes that located in the outer and 

inner region of the bacteriome, respectively. Although, this study lacks a visual 

evidence of Rickettsia infection in other somatic tissues (e.g., haemolymph, 

excretory, digestive and immune systems), the consistent detection of Rickettsia 

infection in head and leg materials during the transmission experiment indicate the 

infection is diffusely present. Rickettsia infection in legs is likely to be derived from 

haemolymph, as has been reported in other Rickettsia-host systems [340-342] 

including in N. cincticeps [196]. 

The specific territory of the symbiont infection in the bacteriome might imply 

a more specific function of those symbionts for their host [343, 344]. Investigating in-

depth in the bed bug bacteriomes might help to understand the distribution of these 

three endosymbionts and could potentially predict the biological impacts of these 

endosymbionts on the host or the interaction effects among themselves. 

The presence of Rickettsia in bacteriocytes presents a route for achieving 

maternal inheritance. Wolbachia vertical transmission in this system is associated 

with movement of a bacteriocyte towards the ovary, and then fusing to deliver a 

symbiont cargo (Figure 4.6 C-D, 4.7 B and Appendix Figure S1 B and D with higher 

magnification and a different layer of bacteriocytes from z-stack image). The 

presence of Rickettsia in the bacteriome likely allows this symbiont to hitch-hike to 

the ovary to gain vertical transmission. However, having established in the ovary, 

Rickettsia and Wolbachia show distinct patterning, with Wolbachia retained in 

discrete clumps, but Rickettsia being more diffuse. 
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4.5.4 Interaction and the potential role of the three symbionts 

The co-existence of these three endosymbionts within the same host might 

have the direct or indirect effects towards the host biology, or alternatively an 

interaction effect within among themselves [345]. This has not yet been studied. 

However, the presence of the different organisms within the same habitat provides 

an arena for positive and interference outcomes [346].  

Wolbachia is well recognized as B-vitamin supplement provider for C. 

lectularius whereas the other two secondary endosymbionts, BEV-like symbiont and 

Rickettsia have not yet been documented [6]. BEV-like symbionts are thought to be 

a non-essential endosymbiont of C. lectularius as noted by Hosakawa et al. in 2010 

[6] where it is sporadically found in C. lectularius populations [6, 311, 347]. The BEV-

like baterium appears to be a motile symbiont of C. lectularius in description of Louise 

et al. in 1973 [348]. Moreover, Arkwright et al. in 1921 [322] have also described the 

thread-like motile phase of Rickettsia found in the bug under light microscopic study 

and suspected it as parasitic endosymbiont, and likely represents BEV-like symbiont 

associated with C. lectularius. Thus, it could be said under this uncertain scenario 

that, the potential parasitic endosymbionts mentioned in Arkwright et al. in 1921 

[322] refer to BEV-like bacterium or Rickettsia or it could be both of the symbionts 

that have been showing a mildly parasitic interactions to the insect host.  

4.5.5 Could Rickettsia alter bed bug biology? 

The biological impact of Rickettsia on bed bug biology is currently not known. 

Few recent examples of the biological impact of torix Rickettsia can be found in 

glossiphoniid leeches and Cerobasis booklouse cases. In the former case, they 

demonstrated that torix Rickettsia had a direct effect on the body size of the three 

leech host species, with infected individuals being larger [135]. The second case, torix 

Rickettsia seemed to be associated with a parthenogenesis induction [10]. Recent 

study has examined the genome sequence of the endosymbiont of Culicoides 

newsteadi, the relative strain to bed bug-associated Rickettsia. No evidence of the 

capacity for positive facilitation, e.g., B-vitamin gene provisioning capacity, was 
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observed. However, the genome possesses unique features of genes that potentially 

associated with host invasion and adaptation [175].  

Commonly, investigating the impact of a symbiont requires comparison of 

infected and uninfected lineages, identical in genetic background. These are usually 

obtained through antibiotic treatment, but this is not easily achieved in host species 

where there is an obligate symbiont association. The polymorphism observed in F4 

and S1 in this chapter does allow such a comparison, as natural segregation in lab 

passage has produced isolines with and without Rickettsia. These isolines will then 

be used for determining the effects of torix Rickettsia carriage in the next chapter. 
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4.6 CONCLUSION 

In this Chapter I revealed more in-depth perspective of bed bug associated 

Rickettsia biology. The study observed the prevalence of Rickettsia in Cimex 

lectularius populations, with 61.9% of screened lab populations carrying this 

symbiont. The strains found in the cosmopolitan populations are likely identical 

based on the 16S rRNA and gltA genes, and affiliated in ‘torix’ clade. This strain is also 

found in C. lectularius allied species, the African bat bug, A. contrictus. The reason  

why these two species shared the potential similar Rickettsia strain is unclear. This 

bed bug-associated Rickettsia is only transmitted via maternal passage; whilst adult 

males were observed to be infected, they couldn’t transmit the symbionts to their 

offspring. The torix Rickettsia was observed in ovaries and bacteriome, which they 

coinhabit with other endosymbionts, Wolbachia and BEV-like symbiont. The strict 

maternal inheritance suggested Rickettsia might play some role in bed bug 

reproduction or influence some biological impacts of the bed bug hosts. These 

impacts will be investigated in the next chapter 
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CHAPTER 5 

The impact of torix Rickettsia on the development 

and reproduction of the common bed bug 

(Cimex lectularius) 
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All results in this chapter, except body size and longevity experiments (Figure 
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of Bayreuth, Germany). Body size measurement was completed by me with advice of 

Dr Oliver Otti. The experiments above were held at University of Bayreuth, Germany. 

All molecular experiments and data analysis were completed by me at University of 
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5.1 ABSTRACT 

In the previous chapter I revealed the existence of the facultative Rickettsia 

symbionts in Cimex lectularius populations. This bacterium is transmitted via 

maternal passage and is present in the bacteriome and reproductive tissues of the 

adult bedbug. Vertical transmission partially aligns the fitness of symbiont and host, 

and can select for symbiont contribution to host function. Contrastingly, maternal 

inheritance may select for reproductive parasitism. I here report the results of 

experiments comparing the biology of infected/uninfected bed bugs from two 

isolines, examining evidence for the presence of general biological fitness and 

reproductive manipulation phenotypes. The results did not support the hypothesis 

that torix Rickettsia were acting as reproductive parasites, but did indicate Rickettsia 

infection has negative effects on bed bug fecundity and development time. These 

results lead to the question of the ‘missing factors’ maintaining Rickettsia in the 

population. 

 

  



 120 

5.2 INTRODUCTION 

 When two organisms are living together in symbiosis, the symbiont can have 

multiple impacts on the biology of the host [346]. Bacterial endosymbionts may 

provide essential resources or services that benefit host fitness [6, 10, 133, 139, 157], 

or may place a metabolic cost on the host [110, 141, 195], or could cause a 

deleterious impact through reproductive manipulations [24, 57, 86, 108, 349]. These 

effects are varied depending on different species partnerships and the way that 

endosymbionts are inherited, i.e., biparental, only paternal or only maternal 

transmissions. 

5.2.1 Being maternal inherited symbionts 

Vertical transmission through maternal passage aligns the fitness and 

transmission of the symbionts to female host survival or reproduction [350]. The 

dependence on female (rather than male) hosts can lead to the evolution of 

reproductive parasitism [349]. Reproductive parasitism can be expressed in different 

ways, e.g., distorting sex-ratio of the host populations by inducing feminization [351], 

a male-killing phenotype [57] or inducing parthenogenesis [90] (See more details and 

related examples of the reproductive parasitism in Chapter 1 section 1.1.2). Sex-bias 

towards female may benefit the bacterial symbiont by increasing the chance that the 

symbionts are in the healthy female hosts to pass their bacterial descendants into 

new host generations. In contrast, for the host perspective, these phenotypes may 

reduce general host fitness. Male-killing involves the death of 50% of progeny; 

parthenogenesis induction prevents sexual recombination. Commonly, sex ratio 

distorters select for host traits that prevent their action by suppressor genes [349]. 

In addition, there is another common symbiont-induced reproductive 

modification in insects, cytoplasmic incompatibility (CI). This phenomenon prevents 

the host from successfully forming viable embryos when the infected male mates 

with non-infected females, or with females carrying a different symbiont strain (See 

more details in Chapter 1 section 1.1.3). These parasitic symbionts only benefit 

infected females, as the infected females can mate with either infected or non-

infected males and they can produce viable offspring, while the symbionts decrease 
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the fitness of infected male and non-infected female hosts [352]. Cytoplasmic 

incompatibility was originally described as a phenotype of Wolbachia [101], but has 

since been observed more widely, having been recorded in Cardinium and 

Rickettsiella symbionts [111-113, 353]. 

Negative effects of these symbionts do not always occur in these symbiosis 

systems, and in many cases carrying a symbiont improves host fitness. A wide variety 

of ‘services’ are provided by symbiont e.g., providing protection against natural 

enemies [155, 195], xenobiotics resistance [354, 355], anabolic roles, such as 

provision of vitamins/essential amino acids [2, 5, 6, 356, 357]. These phenotypes may 

occur alongside, or independently, of reproductive parasitism. 

5.2.2 The effects of Rickettsia carriage 

Studies in the last decades have documented the roles of Rickettsia 

endosymbionts on the biology of a few invertebrate hosts. In 1994, it was first 

discovered that Rickettsia in ladybirds (Adalia bipunctata) can exist strictly as 

vertically transmitted endosymbionts of arthropods [57], without a mammalian 

transmission phase. This Rickettsia symbiont induced a male-killing phenotype in the 

ladybird, which caused female-bias to the population of the insect. This phenotype is 

lethal to male offspring by preventing the development of male embryos [52, 61]. 

Another case of reproductive parasitism could be found in parasitic wasps (Pnigalio 

soemius) in which the Rickettsia induce the female wasp to become parthenogenesis 

[90]. However, Rickettsia has never been observed as an agent causing cytoplasmic 

incompatibility events as reported in Cardinium, Rickettsiella and Wolbachia  

In contrast to this parasitic nature, some Rickettsia strains have been observed 

to have a direct benefit for their host. In aphids, Rickettsia infection improves host 

defence against fungal pathogens [155]. Some Rickettsia have an essential role in 

development of early insect oocytes [10] and may influence the growth by increasing 

the body size of the host [135]. Genome sequence evidence indicates that the 

Rickettsia in the tick Ixodes pacificus has a complete pathway for folate biosynthesis, 

indicating a potential benefit to symbiont presence in this system [123]. In contrast 

to these positive benefits, some Rickettsia strains can influence negative 



 122 

performance of the host. For example, pea aphids (Acyrthosiphon pisum) associated 

with Rickettsia are likely to have lighter body weight and produce fewer offspring 

than those without Rickettsia [12]. However, the roles of Rickettsia symbionts are 

poorly documented when compared to the catalogue of species in which host-

Rickettsia symbioses have been observed.  

A major impediment to discovering the role of Rickettsia in host biology is the 

presence of suitable model host systems. In order to analyse the impact of a 

symbiont, the biology of Rickettsia infected and uninfected host individuals must be 

compared. This requires first, a host system that is tractable in the laboratory, and 

second, the presence of symbiont-infected and uninfected individuals to study [6, 

358, 359]. These comparisons would need to be made either on a common ‘isoline’ 

genetic background, or in a randomized variable background. The presence of 

infected/uninfected individuals may occur naturally [135] but may also require curing 

in the laboratory. Even for model species, this may be difficult to achieve for cases 

where the host has additional symbioses with required microbial partners. 

5.2.3 Aims 

In the previous chapter, two laboratory populations of the bed bug, S1 and 

F4, were observed to be composed of both Rickettsia infected and Rickettsia 

uninfected individuals. Individual families were isolated in order to establish sublines 

of each, with and without Rickettsia. In this chapter, I use these sublines to compare 

the biology of Rickettsia-infected and Rickettsia-uninfected individuals. Within this, I 

examine evidence of reproductive parasitism (sex-ratio distortion, cytoplasmic 

incompatibility) and life history impacts (development rate, fecundity, body size and 

longevity). 
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5.3 METHODS 

5.3.1 Isofemale lines and bed bug culture 

Based on the infection status of offspring from the transmission mode 

experiment in the previous chapter, four Rickettsia-free (R-) and four Rickettsia-

infected (R+) isolines were established from each of populations, F4 and S1. These 

isofemale lines of known Rickettsia infection state were then kept under constant 

conditions, in a CT room at 26±1°C, at about 70% relative humidity with a cycle of 

12L:12D. New generations were set up regularly, i.e., at a 6- to 8-week interval. Each 

new generation was started with a randomly picked virgin female and virgin male. All 

bed bugs were maintained in the CT room with the conditions described as above. All 

individuals in our study were virgin prior to experiments. The feeding, maintenance 

and generation-of-virgin-individuals protocols follow Reinhardt et al. [327]. 

5.3.2 Segregation of BEV-like symbiont 

Additionally, all isofemale lines were tested for the presence of the BEV-like 

symbionts. In the last chapter, I noted that previous studies have observed the 

presence of BEV-like symbionts as another facultative endosymbionts, but how they 

segregate has never been observed in bed bug populations [6, 347]. Presence in the 

R+ and R– lineages of F4 and S1 was therefore assessed, in order to establish that 

BEV-like symbiont and Rickettsia status did not covary (and therefore confound 

interpretation as to the source of differences). 

The analysis of BEV-like symbiont presence was performed using a PCR assay. 

Two pairs of PCR primers were used in this test. The first pair was BEVF and BEVR 

(Table 4.3 in Chapter 4), which amplified a partial region of 16S rRNA gene, based on 

the gene sequence of bacteria of the leaf hopper (Euscelidius variegatus) as described 

in Degnan et al. [321]. The second pair, CLBEVF and CLBEVR (Table 4.3) amplified 

segment of DNA gyrase subunit B (gyrB), designed in this study. The symbiont assays 

are the same as rickettsial screen described in Chapter 4 (PCR conditions are provided 

in the legend of Table 4.3). The amplicon products from the both genes were cleaned 
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with ExoSAP-IT kit (E1050, New England Biolabs, US) and Sanger sequenced to 

confirm the BEV-like symbiont strains. 

5.3.3 Development time and sex ratio in a common garden experiment 

A 7-day-old virgin male and female from each isofemale line were put 

together in a plastic pot and allowed to mate. Individuals from both sexes were fully 

fed as post-eclosion adults, and immediately prior to mating, which ensured gamete 

production until day 7. Once offspring hatched from the eggs laid, ten of 1st instar 

nymphs were collected from each pot (4 R+ and 4 R- sublines for each of S1 and F4, 

N = 160 total). Eight fresh plastic pots with filter paper and ventilation pores on the 

lids were prepared to house the nymphs. Ten Rickettsia-infected or ten Rickettsia-

free nymphs were randomly put into each pot and presented with the opportunity 

to feed with human blood every three days. As soon as the first 5th instar nymph was 

observed in a pot, eclosion was checked every day. Freshly eclosed adults were then 

removed from the pot and post hoc screened for Rickettsia infection status using the 

PCR method described in Chapter 4 (PCR primers for Rickettsia in Table 4.3). The 

number of days between placement into the pot and the last hatching event, i.e., 

removal from the pot, represents the development time. The sexes of individuals 

were determined when the bugs reached the adult stage. Sex ratio (number of 

female:male) was calculated and compared between the two infection status, R+ and 

R- individuals, which were identified with the PCR assays. 

5.3.4 Fecundity 

To measure the effect of Rickettsia infection on fecundity, a full factorial 

crossing scheme of female x male were used (i.e., R+xR+, R+xR-, R-xR+ and R-xR-). For 

this, same-aged individuals (a 7-day-old virgin male and female) were put together in 

a pot and allowed to mate and feed weekly. Every week, all the eggs were collected 

and put in a fresh pot, which was fed weekly until 5th instar nymphs were observed. 

Same-aged 5th instars were then fed and placed into a 96-well plate until they 

reached adulthood. Seven-day-old virgin adults were then used in a full factorial 

crossing experiment. Prior to the experiment, females were fed twice, the last time 

on the day of mating, and males once, on the day of hatching. To avoid inbreeding 
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effects, each isofemale line was crossed with every other line, but not with itself. To 

have equal sample sizes for within versus between Rickettsia-free and Rickettsia-

infected crosses, one cross was randomly left. Like this, each isofemale line was 

crossed with three Rickettsia-free lines and with three Rickettsia-infected lines (N = 

96 crosses). Matings were staged, monitored and interrupted after 60s as described 

earlier in Reinhardt et al. [360]. Interrupted matings standardise sperm number 

because of the linear relationship between copulation duration and sperm number 

[361]. A standardised sperm number was desirable since spermatozoa trigger the 

release of an oviposition-stimulating hormone from the corpora allata [362] and 

could potentially influence lifespan through differential egg production. The use of 

60s standard matings also allows comparability with other studies. 

After mating, the females were kept individually in 15ml plastic tubes 

equipped with a piece of filter paper for egg laying. Females were fed weekly and the 

number of fertile and infertile eggs counted in weekly intervals. Fertile and infertile 

eggs were distinguished, and the onset of laying and fertilization senescence 

determined following Reinhardt et al. in 2009 [363]. The onset of infertility can be 

precisely obtained as the time point when the second infertile egg was laid, to allow 

for one accidental fertilization failure. Fertile eggs are taut and whitish with visible 

eye spots of the developing embryo. Infertile eggs normally collapse soon after being 

laid and are greyish. The number of fertile eggs was used to investigate the fecundity 

of crosses. 

5.3.5 Cytoplasmic Incompatibility (CI) 

To determine the occurrence of CI, the number of fertile eggs produced by 

females from different crossing combinations were observed [310]. When fertile eggs 

are laid, it implies that the embryos in the eggs have already passed the critical point 

of CI. It has been observed that about one-third of embryogenesis happens within 

the ovaries before the eggs are laid [278]. I expected that if Rickettsia induces CI in 

bed bugs, the proportion of fertile eggs will be lowest in the group in which only 

males from Rickettsia-infected line were crossed (R- x R+). 
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5.3.6 Body size 

Mature adult males and females of R+ and R- lines from F4 and S1 populations 

were collected after the eclosion between 1 to 3 days old. At this point their cuticles 

have been sclerotized properly, allowing accurate body measurement. The width of 

the pronotum was selected as the criterion for body measurement (Figure 5.1). 

Measuring this character can precisely describe bed bug body size in which this 

character has highly positive corelation with other characters of body extremities 

[284]. Moreover, this hardened region is constant in shape and could be repeatedly 

measured without effects from the recent feeding [364]. Individual bed bugs were 

ventrally placed and adjusted posture on the reference grid which was immobilized 

by covering with a lightweight glass petri dish over the bug. Then its entire body field 

was photographed under a stereomicroscope (Leica M165C, Germany). The 

photographs were measured for the width of pronotum using FIJI program [365], a 

ruler tool was standardized by the reference scale of each image. 

 

 

Figure 5.1 Pronotum width of the common bed bug. White arrow line indicates the 
width of pronotum, the character is used as the representative of C. lectularius body 
size in the effect of Rickettsia on C. lectularius body size. 
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5.3.7 Longevity 

 To observe the effect of Rickettsia on longevity of C. lectularius, the bed bugs 

were maintained at a raised temperature to shorten longevity to be tractable 

(lifespan at standard rearing can exceed a year). The temperature was set at 30oC 

conditions. However, this temperature is not high enough to alter the titre of 

Wolbachia (the temperature that affected Wolbachia was observed at 36oC [366]). 

 Adult C. lectularius (N= 24 for each male R+, male R-, female R+ and female 

from both F4 and S1, N= 192 total) were randomly selected to be the subjects for this 

experiment. Each bug was assigned to be in an individual well of 96-well plates (two 

plates mixed of infection lines and populations) with a small filter paper in the bottom 

of each well and a rubber lid with ventilation pores on the top. The date that a bug 

was placed in the well was marked for the start date. Observation was conducted 

over a 4-month-period. During the first 2 weeks, live/dead status was observed once 

a week and after that the observation was performed every day. From this, longevity 

was calculated.   

5.3.8 Statistical analysis 

Data were analysed using the statistical platform R (version 3.6.1, 2019) [259] 

under the packages ‘lme4’ [367] and ‘survival’ [368]. The analysis of development 

time, fecundity and body size measurement were done by fitting linear mixed-effects 

models (LMMs) using the ‘lmer’ function, while sex ratio and cytoplasmic 

incompatibility were fitted in generalised linear mixed effect model (GLMMs) using 

‘glmer’ function with binomial family. The experiment on longevity was analysed 

using the Cox proportional hazards model [369] in ‘coxph’ function.  

For the development time and sex ratio, I fitted ‘pot’ as a random effect of 

mixed effect models, while ‘infection status’ and bed bug ‘populations’ were fitted as 

the main effect in all cases. The factor ‘sex’ was also included as a fixed effect 

explaining development time. The ratio of ‘female:male’ and ‘number of 

fertile:infertile eggs’ were set as the response variable in the sex ratio and fecundity 

test, respectively. 



 128 

In fecundity and CI analyses, ‘infection status’ was broken down into ‘male 

infection status’ and ‘female infection status’ as these two factors represented cross 

types (female x male; R+ x R+, R+ x R-, R- x R+, R- x R-), alongside the main factor 

‘population’. Family of origin was modelled as a random effect.  

The body size measurement, ‘pronotum width’ was fitted as the response 

variable. The ‘family of origin’ of individual bed bug was fitted as a random effect. 

Infection status, population and sex were fitted as fixed effects of LMMs. 

For the longevity experiment, ‘survival probability’ was estimated using the 

Kaplan-Meier method in ‘survfit’ and ‘Surv’ function. The proportion of dead 

individuals was fitted as the response variable. Infection status, population and sex 

were fitted as independent factors in the Cox proportional hazards model. 

Non-significant effects were removed from all models until the minimum 

adequate model was attained. Likelihood ratio tests (LRTs) were performed by 

comparing a null model with the minimum adequate models of LMMs, GLMMs and 

the Cox proportional hazards model using ‘anova’ function, considering χ2 with 

critical p-value at 0.05. The normality and homoscedasticity of residuals of the LMMs 

was validated before the final interpretation as well as a validation of the 

proportional hazard assumptions. 
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5.4 RESULTS 

5.4.1 Segregation of BEV-like symbiont  

All the screened samples (R+ and R-) tested positive for BEV-like symbionts in 

the PCR assays. The alignment of sequences 16S rRNA and gyrB genes suggested that 

only a single strain of the symbiont was found in both F4 and S1 populations. 

5.4.2 Development of the instars and sex ratio 

Development time showed a different pattern between the populations. In 

F4 the development times were similar across all four crosses (Figure 5.2). S1 showed 

a substantial difference between the development time of R+ and R- females, 

whereas R+ and R- males were the same. The full model analysis (including 

interaction terms between sex, population and Rickettsia infection status) was not a 

significantly better fit than the model without interaction terms with only infection 

factor (LRT χ2(4) =5.554, p=0.235). The impact of individual terms was then examined 

in models without an interaction term. The only significant explanatory variable was 

‘infection’ (LRT of models with and without infection term: χ2(1) = 5.177, p = 0.023). 

First instar-adult period for Rickettsia-infected individuals increased by 0.59±0.26 

days (Mean±SD). The R+ bed bugs took 26.7±2.00 days to reach adulthood while the 

R- bugs took 25.9±2.15 days. The minimum adequate model of LMMs for 

development time analysis was:  

development time ~ infection+(1|pot). 

There was no impact of Rickettsia infection status on sex ratio of offspring 

(LRT: χ2(1) = 0.0003, p = 0.985) (Figure 6). Female: male ratio of the R- group was 

0.84±0.29 and 0.93 ±0.67 for the R+ group. There was no interaction effect between 

infection status and population of origin (LRT: χ2(1) = 0.078, p = 0.780). The minimum 

adequate model of GLMMS for sex ratio analysis was: 

cbind (number of females, number of males) ~ infection+(1|pot), error=binomial. 
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Figure 5.2 Median development time in days of C. lectularius from the first instar to 
adulthood for males and female individuals of Rickettsia-free (R-, light blue) and 
Rickettsia-infected (R+, dark blue) groups from population F4 (top) and S1 (below). 
Rickettsia infection has a significant effect on development time (LRT: χ2(1) = 5.177, 
p = 0.023). Boxes indicate the 25 and 75 percent quartiles respectively, the whiskers 
show minimum and maximum values. Open circles indicate potential outliers using 
the interquartile range (IQR) criterion, considered by R. 
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Figure 5.3 Median sex ratio (number of female:male) of the Rickettsia-free and 
Rickettsia-infected C. lectularius adults from the two populations. The sexes were 
identified from adult bed bugs. There was no significant difference in the sex ratio 
between R- and R+ group at p = 0.05. Total number of males and females are shown 
above the boxes. Boxes indicate the 25 and 75 percent quartiles respectively, the 
whiskers show minimum and maximum values. Open circles indicate potential 
outliers using the interquartile range (IQR) criterion, considered by R. 
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5.4.3 Fecundity and CI 

The analysis of fecundity (total fertile eggs) by Likelihood ratio comparison of 

LMMs indicated that there was no evidence of an interaction effect between the 

three factors, i.e., population, male and female infection status (LRT: χ2(3) = 5.781, p 

= 0.216), and these terms were dropped from the model. The final model detected 

Rickettsia infection in the female parent as the sole significant explanatory variable 

for fecundity (LRT: χ2(1) = 4.576, p = 0.032). Infected females were likely to produce 

fewer fertile eggs (R+ x R+ = 86.80 ± 34.30, R+ x R- = 89.70 ± 28.30) compared to 

uninfected females (R- x R+ = 107.00 ± 34.90, R- x R- 109.00 ± 34.60, Figure 5.4 A). 

The minimum adequate model of LMMs for fecundity analysis was: 

fertile eggs ~ female infection status+(1|female family of origin/population) + 

(1|male family of origin/population). 

The relative ratio of fertile:infertile eggs was analysed in GLMMs to ascertain 

if there was any evidence of cytoplasmic incompatibility. The likelihood ratio 

comparisons indicated no evidence of heterogeneity associated with Rickettsia 

infection in either male (LRT: χ2(1) = 0.593, p = 0.441) or female parents (LRT: χ2(1) = 

1.174, p = 0.279). There was no evidence of an interaction term between male 

infection x female, evidenced by the statistical equivalence of models with and 

without an interaction term (LRT: χ2(4) = 6.725, p = 0.151, Figure 5.4 B). The minimum 

adequate model of LMMs for CI analysis was:  

Cbind (fertile eggs, infertile eggs) ~ female infection status + male infection status + 

(1|female family of origin/population) + (1|male family of origin/population). 
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Figure 5.4 Fecundity and CI. A: Median number of fertile eggs of C. lectularius from 
population F4 and S1 from the four cross combinations. Rickettsia-infected female 
crosses (R+ x R+ and R+ x R-) produced significantly fewer fertile eggs when compare 
to other crosses (LRT: χ2(1) = 4.576, p = 0.032). B: Median proportion of fertile eggs 
of C. lectularius from the two populations. There was no interaction effect of male 
and female infections on the ratio of fertile:infertile eggs from the GLMMs analysis 
at p = 0.05, indicating there was no evidence of CI. Number of crosses completed are 
shown under the cross group. Boxes indicate the 25 and 75 percent quartiles 
respectively, the whiskers show minimum and maximum values. Open circles indicate 
potential outliers using the interquartile range (IQR) criterion, considered by R. 
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5.4.4 Body size 

The body size of C. lectularius was estimated by the width of pronotum of the 

bugs. The pronotum width were fitted in LMMs as the dependent variable. There was 

no evidence of an interaction effect between the three factors, i.e., population, sex 

and infection status (LRT: χ2(4) = 5.4178, p = 0.2422). Only sex had a significant 

influence on body size of C. lectularius (LRT: χ2(1) = 157.9700, p < 0.001). In both 

populations, females have a wider pronotum (1.67 ± 0.07 mm for F4 and 1.62 ± 0.07 

mm for S1) than males (1.57 ± 0.08 mm for F4 and 1.51 ± 0.05 for S1; Figure 5.5). 

Infection with Rickettsia and population did not have a significant effect on body size 

of C. lectularius (LRT: χ2(1) = 2.2803, p = 0.131 and χ2(1) = 2.108, p < 0.1465, 

respectively). The minimum adequate model of LMMs for body size analysis was:  

pronotum width ~ sex + (1|family of origin). 

5.4.5 Longevity 

 Likelihood ratio test of the Cox proportional hazards models indicated that 

there was no interaction effect between infection status, sex and population (LRT: 

χ2(4) = 8.5028, p = 0.0748). The longevity of C. lectularius are not affected by 

Rickettsia infection (LRT: χ2(1) = 2.535, p < 0.111) and population (LRT: χ2(1) = 2.051, 

p < 0.1521) in 30oC rearing condition. Only the sex of the bed bugs had a significant 

effect on longevity at 30oC (LRT: χ2(2) = 51.555, p < 0.001; Figure 5.6). Female bed 

bugs had longer longevity (78.2 ± 2.4 days for F4 and 79.2 ± 2.2 for S1) than males 

(62.1 ± 1.9 days for F4 and 64.8 ± 2.0 days for S1). The minimum adequate model of 

Cox proportional hazards model for longevity analysis was:  

Surv (days, survival status) ~ sex.  
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Figure 5.5 Body size of C. lectularius of different sex and Rickettsia infection status. 
The body size was estimated from the width of pronotum (in millimetre) of the male 
and female adults in Rickettsia infected (R+) and Rickettsia-free (R-) lines from 
populations F4 (top) and S1 (below). Likelihood ratio of linear mixed effect models 
indicated no evidence that Rickettsia infection affected the width of pronotum (LRT: 
χ2(1) = 2.2803, p = 0.131). Boxes indicate the 25 and 75 percent quartiles respectively, 
the whiskers show minimum and maximum values. Open circles indicate potential 
outliers using the interquartile range (IQR) criterion, considered by R. 
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Figure 5.6 Kaplan-Meier survival curve of C. lectularius. The survival curves estimate 
longevity of male and female adults C. lectularius in Rickettsia-infected (R+) and 
Rickettsia-free (R-) lines from F4 (A) and S1 (B) populations. Likelihood ratio of the 
Cox hazard models indicated that Rickettsia infection does not affect longevity of C. 
lectularius in 30oC (LRT: χ2(1) = 2.535, p < 0.111). Only sex has a significant effect on 
longevity of bed bugs at 30oC (LRT: χ2(1) = 51.555, p < 0.001). The curves illustrate 
that females (lighter colour lines) have longer longevity than males (darker colour 
lines) in both populations. 
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5.5 DISCUSSION 

 Maternally inherited endosymbionts are likely to have impacts on their host 

biology. Controlled experimental analysis of the impact of torix Rickettsia on their 

host have not been previously completed. In this study, I utilised the presence of 

infected/uninfected Rickettsia lines of two bedbug populations to determine the 

influence of Rickettsia on the host in terms of both reproductive parasitism (sex ratio 

distortion, CI) and a variety of life history parameters (development rate, adult body 

size, fecundity and longevity). These experiments revealed no evidence of positive 

effects on host performance, no evidence of reproductive parasitism, but slightly 

pathogenic effects of Rickettsia carriage. 

5.5.1 Impact of other symbionts 

 One caveat to these results is that they are performed on two particular 

genetic backgrounds, rather than across a broad range of backgrounds. Both 

backgrounds harboured the BEV-like symbiont. Thus, the conclusions made are 

specific to this background. It is possible, and important to investigate, if the results 

are distinct when the BEV-like symbiont is not present.  

It is typical that when different strains of symbiont co-exist there may be an 

interaction among them, either direct or indirect [345]. The presence of other 

symbionts can certainly alter the titre of focal strains, and likely also modify the 

biological impacts [110, 141, 370]. However, curing the BEV-like symbiont is not 

straightforward, as any intervention must not impact Wolbachia, the required 

symbiont [6]. It may be possible to transinfect Rickettsia instead or find a line where 

Rickettsia has segregated (as in F4/S1) but the BEV-like symbiont is not present. 

 The experiments either demonstrated no detectable effect of the Rickettsia, 

or mild deleterious impacts. The nature of this seems compatible with a low 

physiological cost to carrying Rickettsia, which may be either direct metabolic 

activity, or through interference with host systems, or with Wolbachia function. The 

Rickettsia is not overtly pathological but does impose a cost to the host under 

laboratory conditions. The results are similar to those observed in the Spalangia-
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Rickettsia interaction, where Rickettsia (again in the presence of Wolbachia) was 

associated with a one-day developmental delay, but did not induce changes in either 

sex ratio or CI [110]. 

5.5.2 Consequence of Rickettsia segregation 

These data indicate that we are missing important aspects of the symbiosis. 

In Chapter 4, it was noted that Rickettsia infection passed with very high fidelity from 

mother to offspring in the laboratory crosses, but that segregation has occurred over 

the ten years between 2006 and 2018 in the Sheffield laboratory. If segregation 

occurs, it is expected that the Rickettsia would progressively be lost in the absence 

of beneficial effects or reproductive parasitism. The symbionts are generally selected 

to be retained within the host matriline if they have a role on host reproductions or 

conferring an advantage to host fitness [371]. 

However, these experiments found no evidence for beneficial effects. This 

contrast makes it likely that subtle beneficial effects do exist but are either too small 

to be detected in this study, or are ecologically dependent – they occur but not in the 

confines of the laboratory. Resistance to xenobiotics (e.g., insecticides), thermal 

sensitivity, resistance to natural enemies (e.g., bacterial, viral pathogens) have all 

been observed in other studies of symbiosis [124-126, 155, 157, 372] and should be 

tested in this one. 
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5.6 CONCLUSION 

 The segregation of torix Rickettsia within Cimex lectularius laboratory 

populations from the previous chapter were used to examine the biological impacts 

of symbiosis in this study. Under the laboratory conditions, bed bugs with Rickettsia-

infected (R+) developed significantly slower and produced fewer fertile eggs than the 

Rickettsia-free line (R-). This negative effect seemed to reduce benefits for both male 

and female hosts and so reflects a mild parasitic relationship. However, no 

reproductive parasitic phenotypes were observed, with both sex-ratio distortion and 

cytoplasmic incompatibility being excluded. Finally, these results are representing 

only a few perspectives of torix Rickettsia in C. lectularius host system. Further 

studies on how torix Rickettsia alter host benefits (e.g., providing xenobiotic 

resistance and protections) and observing them through their genomic structure are 

worth exploring as well as other dimensions of the symbiosis. 
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6.1 OVERVIEW 

  Since the discovery of non-vertebrate pathogenic Rickettsia in 1994, 

Rickettsia have been increasingly recognised as a clade of arthropod-associated 

symbiont, which play an important role in host biology. In 2002, a new clade of 

Rickettsia – the torix group – was first described from leeches. Since this time, torix 

group Rickettsia have been detected in a broad range of eukaryotic taxa, especially 

in freshwater-associated groups, which led to first an investigation of their presence 

in Odonates, and second, testing the hypothesis that freshwater taxa represent a hot-

spot for infection. Importantly, despite the building evidence that torix Rickettsia 

were common invertebrate symbionts, the biological impact on the host is very 

poorly characterised. The thesis addressed this issue through developing a Rickettsia-

bed bug system for study. 

Consistent with the aquatic hot-spot hypothesis, I observed torix Rickettsia in 

Odonata with diverse strains that found across dragonfly and several damselfly 

species over three geographic regions. Damselflies in the family Coenagrionidae were 

observed as a hot-spot for this symbiont. FISH imaging indicated torix Rickettsia were 

present in ovary tissue of the azure damselfly (Coenagrion puella), and thus likely 

inherited via a vertically transmitted route. Sharing of symbiont strains between the 

sibling species Coenagrion puella and C. pulchellum indicated that Rickettsia has likely 

driven mtDNA introgression between the species and represents a further symbiont 

that can disrupt mtDNA barcoding studies. 

Following this, the freshwater hot-spot hypothesis was tested. Insect orders 

from freshwater communities were more commonly associated with torix Rickettsia 

than terrestrial samples. The study additionally indicated a number of novel taxa for 

torix Rickettsia. Most significant here is the finding of a Rickettsia symbiosis in a 

Gastropod mollusc, an animal group with few previous records of symbiosis. 

Additionally, the screen revealed a second potential hot-spot in blood-feeding 

insects, including mosquitoes, black flies and bed bugs. The medical and veterinary 

significance of these host species, combined with the potential impact of symbiosis 
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on vector competence, makes these an interesting set of symbioses for onward 

study. 

One of the species highlighted as a host to torix Rickettsia was the nuisance 

human ectoparasite, the common bed bug (Cimex lectularius). Bed bugs and one of 

their allied species, the African bat bug (Afrocimex contrictus) were observed to carry 

a potential identical torix Rickettsia strain, based on the 16S rRNA and gltA 

sequences. The C. lectularius system was developed for onward study. Maternal 

inheritance was observed to be the only transmission route for this symbiont, with 

lack of paternal inheritance contrasting with the only previous study of inheritance 

patterns. The infection localised in oocytes and bacteriomes, the former consistent 

with successful maternal inheritance, and the latter providing an arena for 

interaction with the obligate symbiont Wolbachia, as well as permitting the use of 

Wolbachia transmission mechanisms – involving bacteriocyte movement – to 

establish in the ovary.  

I then used the segregation of Rickettsia within bed bug laboratory 

populations to examine the biological basis of symbiosis. Bed bugs with Rickettsia-

infected (R+) developed significantly slower and produced fewer fertile eggs than the 

Rickettsia-free line (R-). These finding suggested the form of their facultative 

relationship is a mild parasitism. However, no reproductive parasitic phenotypes 

were observed, with both sex-ratio distortion and cytoplasmic incompatibility being 

excluded.  
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To summarise: 

i) Torix Rickettsia are common symbiotic partners of invertebrates, infecting 

diverse invertebrate taxa which now includes gastropods and Odonates. 

ii) These symbioses likely drive mtDNA introgression, and thus join Wolbachia as 

a factor that may disrupt barcoding studies. 

iii) PCR screening data supports the aquatic hot-spot hypothesis within insects.  

iv) There is evidence of Rickettsia infection in many haematophagous species, 

including pest and vector species. 

v) The bed bug system represents a useful model for investigating biological 

impacts, as it has segregating lines that are isogenic apart from Rickettsia, and 

can be kept in the laboratory. 

vi) The Rickettsia within bed bugs are not reproductive parasites, but a positive 

phenotypic effect could not be determined. 
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6.2 FUTURE DIRECTION 

6.2.1 Why is the freshwater biome a hot-spot for torix Rickettsia infection? 

 Even though this study revealed statistical evidence that freshwater-

associated insects are a hot-spot for torix Rickettsia, the drivers of this pattern are 

not clear. It could be that the common water medium supports the movement of this 

endosymbiont. However, water alone cannot maintain the survival of these bacteria 

as they are obligate intracellular symbionts. Thus, microeukaryotic hosts that are 

common in water possibly play an important role in the movement of torix Rickettsia, 

and unusually torix Rickettsia are known to infect both microeukaryotes and 

invertebrates. In order to explain this pattern, I will propose two possible models 

based on the distribution pattern of endosymbionts from microeukaryotes.  

Micro-eukaryotic Source Model: 

Castelli et al. in 2016 [192] infer the ancestral Rickettsiaceae are generally 

retrieved from microeukaryotes. Indeed, the majority of non-Rickettsia members are 

known solely from microeukaryotes (Trichorickettsia, Gigarickettsia, 

Phycorickettsia), or are strongly biased to these taxa (Candidatus Megaira). An 

implication of this is that horizontal transmission of these bacteria can frequently 

occur among phylogenetically distant host species [270, 373]. If we include torix 

Rickettsia within this, then the aquatic environment provides a rich source of 

potential symbiotic partners as well as an avenue for symbiont movement.  

The Rickettsia relative, Candidatus Megaira (previously Hydra group of 

Rickettsia), emerged roughly 220 mya before the emergence of torix clade (Figure 1.3 

in Chapter 1). This bacterium is a major endosymbiont in microeukaryotes living in 

both oceans and freshwaters, e.g., green algae [374-376], amoebae [377], ciliates 

[378, 379], and cnidarians [380, 381]. These organisms are primitive in body plan and 

are important in many trophic chains [382, 383]. The presence of related strains in 

evolutionary disparate host species make it very likely that Candidatus Megaira are 

horizontally transmitted within the aquatic ecosystem [270, 384], and by extension 
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this supports a similar route for torix Rickettsia of microeukaryotes transmitting into 

freshwater invertebrate species at higher trophic levels (Figure 6.1 A). 

Against the hypothesis of microeukaryote involvement are the relative rarity 

of torix strains in microeukaryotes, one in the amoeba Nuclearia pattersoni [164], the 

other in Pompholyxophrys [269]. Are these rare records a true indication that torix 

Rickettsia are uncommon in microeukaryotes, or is there a bias against finding them 

from lack of screening or other focal studies? Screening for torix Rickettsia in the 

broad spectrum of those primitive micro-eukaryotes would give more resolution on 

distribution patterns of torix Rickettsia and the relatedness among these strains will 

help to understand the movement and potential emerging point of torix clade. 

Invertebrate Circulation Model: 

 An alternate theory is that torix Rickettsia were introduced to aquatic 

invertebrates millions of years ago, and their incidence in this group is associated 

with horizontal transfer amongst invertebrate members of the community (Figure 

6.1 B). Here, torix Rickettsia may have established initially from microeukaryotic 

hosts, but the spread within the community is largely from host shifts from one 

invertebrate species to another. For instance, shared ectoparasites and predators 

may enable the horizontal distribution among multicellular taxa. 

  



 146 

 

 

Figure 6.1 Transmission theory of torix Rickettsia. A: Micro-eukaryotic Source Model 
has the infection horizontally spreading (dash arrow) from amoeba to other 
advanced eukaryotes, species ‘a’, ‘b’ and ‘c’. B: Illustration indicates Invertebrate 
Circulation Model by the first infection horizontal spreading from amoeba to 
advanced eukaryote species ‘a’. Then the infected species ‘a’ transmit the infection 
to species ‘b’ and ‘c’ via transfer between invertebrate species. 
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6.2.2 Why do torix Rickettsia have such a broad host range? 

 Non-torix Rickettsia are found in arthropods [144, 150, 182], in contrast to 

Megaira that is hosted by a diverse range of aquatic microeukaryotes [270]. 

However, torix Rickettsia hosts cover a broad-spectrum of microeukaryotes (i.e., 

amoebae) to non-arthropod (mollusc and leech) and arthropod taxa. The factors that 

drive these endosymbiont transitions from microeukaryote to multicellular taxa is 

unclear. A key feature required to persist in multicellular taxa with a differentiated 

germline is the capacity to locate and invade this tissue, a tropism not required in 

host species with fission or other simpler forms of reproduction (budding). Even in 

simple multicellular taxa, such as Volvox, Megaira simply infects all cells including the 

germ line [375]. Thus, evolution to utilize invertebrates likely involves germ line 

targeting mechanisms. This, however, does not explain why other Rickettsia are 

restricted to arthropods.  

It may be possible to examine the transitions through an in-depth 

comparative genomic study of torix and their relatives Rickettsiaceae, other 

arthropod-associated Rickettsia clades and Megaira. A previous genomic study of 

torix Rickettsia was performed for the strain associated with biting midges (Culicoides 

newsteadi) [175]. The draft genome revealed a complete gene family of the Pentose 

Phosphate Pathway (PPP). The PPP helps to maintain carbon homeostasis to retain a 

function in glycolysis and to reduce oxidative stress [385]. This gene family is 

functional in some parasites that need the PPP to reduce oxidative stress when they 

invade the host [386]. Notably, this is a common property of torix Rickettsia and 

Megaira [175]. However, some features of this gene family are absent in other 

arthropod-associated Rickettsia suggested it was independently lost during the 

transition to be an arthropod endosymbiont [175]. This function may help torix 

Rickettsia succeed in infecting a wide range of eukaryotic host taxa. Further genomic 

investigations in other torix Rickettsia strains, and indeed Megaira, may help to 

understand features enabling a broad host range in this clade.  
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6.2.3 From aquatic to the land 

The emergence of the torix clade still needs further investigation to indicate 

whether their origin is from aquatic or terrestrial ecosystems, even though the theory 

of horizontal transmission from aquatic-microeukaryotes is likely. An extension of 

this is how torix Rickettsia emerged from aquatic microeukaryote-associated 

Rickettsiaceae to invade the terrestrial biomes. Three scenarios might be considered 

(Figure 6.2). 

1.) The transition occurred when aquatic macroeukaryote species 

horizontally transmit to terrestrial hosts via predation or parasitism. The species that 

have both aquatic and terrestrial phases might be involved in the infection spreading 

onto the land species, e.g., trichopterans and odonates. These will commonly be 

consumed by spiders living near water. 

2.) The transition occurred when aquatic species evolved a terrestrial 

lifestyle, thus the terrestrial taxa acquire infection through vertical transmission. 

Whilst this may have occurred historically, the diverse range of terrestrial hosts [254] 

indicates that vertical transmission cannot account for most cases. 

3.) The transition occurred when aquatic microeukaryotes horizontally 

transmit to terrestrial eukaryotes via predation or parasitism. This may be 

hypothesised that the terrestrial hosts accidentally acquired aquatic micro-

eukaryotes carrying torix Rickettsia, for instance, through drinking water and 

decomposing detritus [387]. 
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Figure 6.2 Transition patterns of torix Rickettsia from aquatic associated host to 
terrestrial host species. (1) The transition occurred when aquatic macro-eukaryote 
species horizontally transmit (dash line) to terrestrial eukaryotes via predation or 
parasitism. (2) The transition occurred when aquatic macro-eukaryote species 
vertically transmit to terrestrial eukaryotes via speciation (solid lines). (3) The 
transition occurred when aquatic micro-eukaryotes horizontally transmit to 
terrestrial eukaryotes via predation or parasitism. 
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6.2.4 Biological impacts of torix Rickettsia 

Many studies have reported potential hosts for torix Rickettsia, but few have 

examined the impact of this endosymbiont infection on their host individual. This 

thesis demonstrated basic features of torix Rickettsia carriage based on the studies 

of two insect host systems, damselflies and the common bed bug. Overall, both cases 

revealed impacts that are negative.  

In the bed bug, expression of mild parasitic impacts was observed: The results 

revealed that torix Rickettsia slowed development time and reduced fecundity. Even 

though these impacts are not directly lethal to the insects, they significantly decrease 

the certain fitness parameters and potentially affect other biological aspects of the 

insect. 

However, torix Rickettsia infection have also been reported for positive 

effects in other host-symbiont systems. In the case of glossiphoniid leeches [135], 

torix Rickettsia could have positive impacts on the host leeches: they are associated 

with increasing body size. Whilst the mechanism and consequence of enlarging the 

body is unknown, this phenotype is known to be associated with improved leech 

reproduction [388].  

Finally, in the bed bug system, it is likely that there are ‘hidden benefits’. The 

symbiont does show vertical transmission loss at a low rate and does not exhibit 

reproductive parasitism. Thus, if the symbiont is to be maintained, there must either 

be a low level of infectious transfer, or there must be a positive fitness on bed bug 

reproduction. Future research on this system in immune regulations and protection 

roles of this endosymbionts (e.g., resistance to xenobiotics and protective against 

pathogens) may help to understand whether toix Rickettsia confer an ecologically 

contingent benefit to their bed bug hosts.  
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Appendix Table S1 SNP sites across MLST genes from ten Coenagrion puella and 
three C. pulchellum individuals, with non-synonymous substitution sites marked in 
bold. Non-synonymous/synonymous substitutions of each gene are in the bracket. 

 

atpA 
660 bps (12/38) 

ID 
Variable sites 

4 16 25 28 34 37 43 59 65 68 70 75 79 91 94 97 106 

C. puella 

1 T T C G A A G T C A T A C G T C T 

2 C/T C/T C/T A/G A/C A/G C/G G/T A/C A/G C/T A/C C/G A/G C/T C/T C/T 

3 T T C G A A G T C A T A C G T C T 

4 C/T C/T C/T A/G A/C A/G C/G G/T A/C A/G C/T A/C C/G A/G C/T C/T C/T 

5 C/T C/T C/T A/G A/C A/G C/G G/T A/C A/G C/T A/C C/G A/G C/T C/T C/T 

6 T T C G A A G T C A T A C G T C T 

7 T T C G A A G T C A T A C G T C T 

8 T T C G A A G T C A T A C G T C T 

9 C/T C/T C/T A/G A/C A/G C/G G/T A/C A/G C/T A/C C/G A/G C/T C/T C/T 

10 C/T C/T C/T A/G A/C A/G C/G G/T A/C A/G C/T A/C C/G A/G C/T C/T C/T 

C. pulchellum 

1 T T C G A A G T C A T A C G T C T 

2 C/T C/T C/T A/G A/C A/G C/G G/T A/C A/G C/T A/C C/G A/G C/T C/T C/T 

3 C/T C/T C/T A/G A/C A/G C/G G/T A/C A/G C/T A/C C/G A/G C/T C/T C/T 

ID 109 112 128 130 137 175 184 223 224 225 226 250 276 277 284 289 307 

C. puella 

1 T C A A C G C T G G T T G G G A G 

2 C/T C/T A/C A/G A/C G/T C/T C/T A/G A/G C/T C/T A/G A/G A/G A/T A/G 

3 T C A A C G C T G G T T G G G A G 

4 C/T C/T A/C A/G A/C G/T C/T C/T A/G A/G C/T C/T A/G A/G A/G A/T A/G 

5 C/T C/T A/C A/G A/C G/T C/T C/T A/G A/G C/T C/T A/G A/G A/G A/T A/G 

6 T C A A C G C T G G T T G G G A G 

7 T C A A C G C T G G T T G G G A G 

8 T C A A C G C T G G T T G G G A G 

9 C/T C/T A/C A/G A/C G/T C/T C/T A/G A/G C/T C/T A/G A/G A/G A/T A/G 

10 C/T C/T A/C A/G A/C G/T C/T C/T A/G A/G C/T C/T A/G A/G A/G A/T A/G 

C. pulchellum 

1 T C A A C G C T G G T T G G G A G 

2 C/T C/T A/C A/G A/C G/T C/T C/T A/G A/G C/T C/T A/G A/G A/G A/T A/G 

3 C/T C/T A/C A/G A/C G/T C/T C/T A/G A/G C/T C/T A/G A/G A/G A/T A/G 
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ID 319 322 343 346 349 373 397 406 409 418 430 440 445 517 601 652   

C. puella 

1 G T T A C G C T T T C T T G G T  

2 A/G A/T A/T A/C C/T A/G C/T A/T C/T C/T C/T C/T G/T A/G G/T C/T  

3 G T T A C G C T T T C T T G G T  

4 A/G A/T A/T A/C C/T A/G C/T A/T C/T C/T C/T C/T G/T A/G G/T C/T  

5 A/G A/T A/T A/C C/T A/G C/T A/T C/T C/T C/T C/T G/T A/G G/T C/T  

6 G T T A C G C T T T T T T G G T  

7 G T T A C G C T T T T T T G G T  

8 G T T A C G C T T T T T T G G T  

9 A/G A/T A/T A/C C/T A/G C/T A/T C/T C/T C/T C/T G/T A/G G/T C/T  

10 A/G A/T A/T A/C C/T A/G C/T A/T C/T C/T C/T C/T G/T A/G G/T C/T  

C. pulchellum 

1 G T T A C G C T T T T T T G G T  

2 A/G A/T A/T A/C C/T A/G C/T A/T C/T C/T C/T C/T G/T A/G G/T C/T  

3 A/G A/T A/T A/C C/T A/G C/T A/T C/T C/T C/T C/T G/T A/G G/T C/T   

  

16S gltA  
1029 

bp 715 bp (2/14) 

ID 
 Variable sites 

15 27 33 40 74 123 129 130 192 216 228 234 246 296 390 444 453 

C. puella 

1 A A A T C T T C G A C T C T G T T 

2 A/G A/G A/G G/T C/T C/T C/T C/T A/G A/G C/T C/T C/T A/T A/G C/T C/T 

3 A A A T C T T C G A C T C T G T T 

4 A/G A/G A/G G/T C/T C/T C/T C/T A/G A/G C/T C/T C/T A/T A/G C/T C/T 

5 A/G A/G A/G G/T C/T C/T C/T C/T A/G A/G C/T C/T C/T A/T A/G C/T C/T 

6 A A A T C T T C G A C T C T G T T 

7 A A A T C T T C G A C T C T G T T 

8 A A A T C T T C G A C T C T G T T 

9 A/G A/G A/G G/T C/T C/T C/T C/T A/G A/G C/T C/T C/T A/T A/G C/T C/T 

10 A/G A/G A/G G/T C/T C/T C/T C/T A/G A/G C/T C/T C/T A/T A/G C/T C/T 

C. pulchellum 

1 A A A T C T T C G A C T C T G T T 

2 A/G A/G A/G G/T C/T C/T C/T C/T A/G A/G C/T C/T C/T A/T A/G C/T C/T 

3 A/G A/G A/G G/T C/T C/T C/T C/T A/G A/G C/T C/T C/T A/T A/G C/T C/T 

  

CoxA OmpA 
          

624 bp (0/5) 242 bp 
(2/2) 

                    

ID 
Variable sites 

          

104 143 246 264 311 64 235           

C. puella 
          

1 A A C C G G A 
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2 A/G A/G C/T C/T A/G A/G A/G 
          

3 A A C C G G A 
          

4 A/G A/G C/T C/T A/G A/G A/G 
          

5 A/G A/G C/T C/T A/G A/G A/G 
          

6 A A C C G G A 
          

7 A A C C G G A 
          

8 A A C C G G A 
          

9 A/G A/G C/T C/T A/G A/G A/G 
          

10 A/G A/G C/T C/T A/G A/G A/G 
          

C. pulchellum 
          

1 A A C C G G A 
          

2 A/G A/G C/T C/T A/G A/G A/G 
          

3 A/G A/G C/T C/T A/G A/G A/G 
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Appendix Figure S1: FISH images of bed bugs ovaries. A: Tropharium portion of 
Rickettsia-infected line. Rectangle indicated the enlarged field showing in B. B: Upper 
layer of z-stacks from the enlarged field of A showing nucleus (n) of a bacteriocyte 
(bc) with the presence of the three symbionts; Wolbachia (green), BEV-like symbiont 
(yellow) and Rickettsia (red). C: Tropharium portion of Rickettsia-free line. Rectangle 
indicated the enlarged field showing in D. D: Upper layer of z-stacks from the 
enlarged field of C showing nucleus of a bacteriocyte with the presence of only 
Wolbachia and BEV-like symbiont.  
 
 

 


