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Truncated Unscented Kalman Filtering
Ángel F. García-Fernández, Mark R. Morelande, Jesús Grajal

Abstract—We devise a filtering algorithm to approximate the
first two moments of the posterior probability density function
(PDF). The novelties of the algorithm are in the update step. If
the likelihood has a bounded support, we can use a modified
prior distribution that meets Bayes’ rule exactly. Applying a
Kalman filter (KF) to the modified prior distribution, referred
to as truncated Kalman filter (TKF), can vastly improve the
performance of the conventional Kalman filter, particularly when
the measurements are informative relative to the prior. The
application of the TKF to practical problems in which the
measurement noise PDF has unbounded support is achieved by
imposing several approximating assumptions which are valid only
when the measurements are informative. This implies that we
adaptively choose between an approximation to the KF or the
TKF according to the information provided by the measurement.
The resulting algorithm based on the unscented transformation
is referred to as truncated unscented KF.

Index Terms—Bayes’ rule, Kalman filter, nonlinear filtering.

I. INTRODUCTION

Filtering refers to the estimation of the state of a process
based on indirect measurements obtained of that process over
time. The minimum mean square error (MMSE) estimator
of the state requires knowledge of the posterior probability
density function (PDF), i.e., the PDF of the state given the
measurements [1]. For most problems of interest the posterior
PDF is intractable so approximations are required. The poste-
rior PDF is often approximated in a recursion which involves
two steps: prediction and update [2]. In the prediction step,
the PDF of the state at the current time given all previous
measurements is approximated. This PDF is referred to as
the prior PDF. The probabilistic relationship between the
measurement and the state is encapsulated by the likelihood.
The update step involves using the likelihood along with
Bayes’ rule and the prior PDF to approximate the posterior
PDF.

We focus on the update step because this is where the main
difficulties lie in nonlinear filtering approximation. It has been
shown in [3] that the prediction of an approximation to the
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posterior does not increase the error in the resulting prior
approximation. No such guarantee exists for the update step.
In fact, in many cases the update step can potentially result in
a significantly higher error. An important example in which
the update can induce large errors is when the measurements
are precise compared to the prior [3].

A large variety of nonlinear filtering approximations have
been proposed. The following discussion is not intended
to be an exhaustive account but rather concentrates on the
most influential techniques. In recent times, the increased
availability of computing power has led to a lot of interest
in sequential Monte Carlo methods, or particle filters (PFs)
[4], [5]. PFs obtain a weighted sample from the posterior by
drawing from an importance density. An important virtue of
PFs is that they provide an asymptotically exact approximation
of the posterior PDF as the sample size tends to infinity [6].
However, the performance of a PF for a finite sample size may
be poor. Similar comments apply to point-mass filters based
on deterministic grid approximations [7], [8]. For this reason
there is still considerable interest in computationally efficient
Gaussian approximations.

Once a Gaussian approximation to a non-Gaussian pos-
terior PDF is adopted, the possibility of optimal inference
disappears. Even so, there are many problems for which a
Gaussian approximation can be of sufficient fidelity to provide
estimates of similar accuracy to PFs at a fraction of the
computational expense. The mean and covariance matrix of the
Gaussian approximation are often obtained by approximating
the Kalman filter (KF) recursion, although other methods
have been suggested [9], [10]. The most well-known of the
KF approximations is the extended KF (EKF) which uses
a linearised approximation to the measurement function [1].
More accurate approximation of the moments required for the
KF recursion can be obtained using numerical integration. This
is the approach adopted by the unscented KF (UKF) [11], [12],
cubature KF (CKF) [13], [14], linear regression KF (LRKF)
[15] and the Gauss-Hermite filter [16] among others [17],
[18]. Some interesting relations among some of these KF-type
algorithms are given in [19].

The aforementioned methods suppose that the KF provides
a good approximation to the posterior and it is therefore
desirable to approximate the KF equations as closely as possi-
ble. However, in certain conditions, e.g., if the measurements
are sufficiently precise, the KF approximates the posterior
poorly [20], [21]. When this happens the performance of a KF
approximation cannot be greatly improved by simply using a
more accurate approximation method, as in the UKF compared
to the EKF. Instead, the approach used to find an accurate
but computationally efficient Gaussian approximation to the
posterior must be reconsidered.
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The key contributions of this paper are as follows. First
we propose the notion that the performance of the KF can
be improved by applying the KF update to a modified prior.
This is formalised in the truncated Kalman filter (TKF) which
applies to likelihoods with a bounded, connected support [22].
The TKF involves applying the usual KF update to a prior
truncated by the likelihood. A theoretical analysis for the
case of a cubic measurement is presented to demonstrate
the potential of this idea. There are two barriers to an exact
implementation of the TKF. First, although it can be argued
that all real likelihoods are of bounded support since no
real sensor can provide an infinitely large measurement, most
models assume a likelihood with unbounded support. Second,
the moments required in the TKF recursion are generally
intractable. The second contribution is the development of a
practical algorithm based on the TKF which addresses these
issues. The resulting algorithm is of similar computational
expense to other Gaussian approximations but is demonstrated
to have much better performance in a number of examples.

The rest of the paper is organised as follows. In Section
II, we review the update stage of the KF for nonlinear
measurements. In Section III, we introduce the TKF. In Section
IV, we address the TKF approximation for unbounded noise
support and the TUKF. Numerical examples examining the
filter performance are provided in Section V. Finally, conclu-
sions are drawn in Section VI.

II. KALMAN FILTER FOR NONLINEAR MEASUREMENT
MODELS

In this section, we analyse the update phase of a Kalman
filter for nonlinear measurement models. We assume the
following measurement equation:

z = h (x) + η (1)

where x ∈ Rnx is the state, z ∈ Rnz is the measurement, h (·)
is a nonlinear function and η is a zero mean measurement
noise with any PDF. One should note that we assume the
measurement noise is additive for the clarity of presentation
although this is not the general case [12]. We also denote by
p0 (·) the prior distribution of x. The MMSE estimator x̂pos
of x given z is [1]:

x̂pos = E [x |z ] (2)

whose mean square error matrix is

Ppos = E
[
(x− x̂pos) (x− x̂pos)

T |z
]

(3)

which depends on the measurement and its trace is the MMSE
given that specific measurement. Calculating (2) and (3) is our
ultimate objective as they are the first two moments of the
posterior. Yet, they are very difficult to calculate as we need
to know the posterior.

Conversely, the updated mean of the KF provides the linear
MMSE estimator of x given z, x̂u,0 [23]:

x̂u,0 = x̂p,0 + Ψ0S
−1
0 (z− ẑ0) (4)

where x̂p,0 is the mean of the prior distribution of x and

ẑ0 = E [z] =

ˆ
E [z |x ] p0 (x) dx (5)

S0 = cov [z] =

ˆ
E
[
(z− ẑ0) (z− ẑ0)

T |x
]
p0 (x) dx (6)

Ψ0 = cov [x, z] =

ˆ
E
[
(x− x̂p,0) (z− ẑ0)

T |x
]
p0 (x) dx

(7)
The updated covariance matrix given by the KF, Pu,0, is

Pu,0 = Pp,0 −Ψ0S
−1
0 ΨT

0 (8)

where Pp,0 is the covariance of the prior distribution of x.
As shown in Chapter 12 in [23], Pu,0 is the mean square
error matrix averaged over all possible measurements even in
a nonlinear set-up:

Pu,0 = E
[
(x− x̂u,0) (x− x̂u,0)

T
]

(9)

In filtering problems, x̂u,0 and Pu,0 are usually regarded
as approximations of the first two moments of the posterior,
x̂pos and Ppos, as if one assumes that the variable (x, z) is
jointly Gaussian, the KF update is equivalent to Bayes’ rule
[16]. However, when the measurement function is nonlinear,
there is no guarantee that x̂u,0 and Pu,0 are close to x̂pos and
Ppos. In fact, using a second order Taylor approximation, it
can be shown that measurement nonlinearities become more
significant for smaller measurement noise variance and larger
prior variance. This applies not only to the EKF [20], [24] but
also more generally to the KF [21]. Then, in such conditions,
all the algorithms that are based on Kalman filtering, such as
the UKF, CKF, EKF or Monte Carlo KF (MCKF) are expected
to approximate the posterior poorly. By MCKF we denote a
KF in which the integrals (5), (6) and (7) are calculated via
Monte Carlo simulation using samples from the prior.

A. Illustration of the KF’s deficiencies

We think it is very important to illustrate the problems
of Kalman filtering with nonlinear measurements models to
understand the paper. Then, let us consider a range-bearing
measurement model [5]:

zr =
√
x2 + y2 + ηr (10)

zθ = arctan
(y
x

)
+ ηθ (11)

where z = [zr, zθ]
T , x = [x, y]

T represents the position
of a target, ηr is the measurement noise for the range with
variance σ2

r , ηθ is the measurement noise for the bearing
with variance σ2

θ and these noises are zero-mean Gaussian
distributed and independent. In this case, we use circular sums
and subtractions when performing these operations on the
angle measurement, zθ [25]. The objective is to approximate
the first two moments of the posterior as they correspond to the
MMSE estimator and the covariance matrix of the estimation
error, equations (2) and (3). We analyse the case when p0 (·)
is Gaussian with mean x̂p,0 = [5, 5]

T and covariance matrix
Pp,0 = 36I2 where Im is the m×m identity matrix. Besides,
the noise parameters are σr = 1 m and σθ = 2π/180 rad. For
the UKF, we use Ns = 2nx + 1 sigma points and the weight
of the sigma point located on the mean of p0 (·) is 1/3. For
the MCKF, we use 2 ·104 samples of the prior to approximate
(5), (6) and (7).
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Figure 1: Samples from the posterior PDF and 3σ-ellipses for
the true posterior and conventional KF-type algorithms. All
conventional KF-type approximations are rather inaccurate.

In Fig. 1, we plot 2 · 104 samples of the posterior PDF,
which are obtained using Bayes’ rule. This is the PDF we
want to approximate after receiving a certain measurement.
The 3σ-ellipse of the posterior is shown in red colour. We
use this ellipse as it represents the first two moments of the
posterior [1]. For linear/Gaussian models, the KF’s ellipse
coincides with the ellipse of the posterior. However, in this
nonlinear example, the ellipses given by the EKF, UKF,
CKF or MCKF are rather inaccurate compared to the ellipse
of the posterior. The results illustrate an important concept:
improved approximation of the KF does not necessarily lead
to improved approximation of the posterior. The MCKF with
20000 samples is by far the most accurate approximation of
the KF. However it is arguably the worst approximation to
the posterior. This suggests that any efforts to improve the
accuracy of the KF moment approximations, as in the UKF
and CKF, will not necessarily improve overall performance
especially when nonlinearities are significant. In the rest of
the paper, we develop an algorithm to approximate the first
two moments of the posterior based on approximating the
measurement noise PDF as one with bounded support.

III. TRUNCATED KALMAN FILTER WITH BOUNDED NOISE
SUPPORT

In this section, we present the ideas behind the truncated
Kalman filter (TKF). In subsection III-A, we justify applying
the KF to a modified prior PDF instead of the real prior PDF
so as to improve the performance of the estimation when some
conditions are met. In subsection III-B, we provide an example
in which the advantages of using the TKF over the KF are
demonstrated.

A. Theory

We write the state vector as x =
[
aT , bT

]T
, where a ∈

Rna , b ∈ Rnb and nx = na + nb, such that the measurement
equation is

z = h (a) + η (12)

where h (·) is a function of some elements of the state. The
TKF is derived under the assumptions:

A1 The measurement function h (·) is a continuous, bijec-
tive function.

A2 The PDF of the additive noise has a bounded, connected
support:

pη (η) = 0 if η /∈ Iη ⊂ Rnz (13)

where Iη is an nz-dimensional connected region.
Due to Assumption A2, the PDF of the measurement

conditioned on the state can be written as

p (z |x ) = p (z |a ) = pη (z− h (a))χIη (z− h (a)) (14)

where χIη (·) is the indicator function on the subset Iη .
Due to Assumption A1, (14) can be written as:

p (z |x ) = pη (z− h (a))χIx(z) (x) (15)

where

Ix (z) =

{
x

∣∣∣∣x =
[(

h−1 (z− η)
)T
, bT

]T
, η ∈ Iη, b ∈ Rnb

}
(16)

= Ia (z)× Rnb (17)

The set Ix (z) depends on the current measurement z, the
support of the measurement noise Iη and the inverse function
of h (·). The posterior PDF of x applying Bayes’ rule and (15)
is:

p (x |z ) ∝ p (z |x ) · p0 (x) = pη (z− h (a))χIx(z) (x) p0 (x)
(18)

A usual approach to approximate the first two moments of
the posterior is to apply a Kalman filter using p0 (·) as the
prior (KF). However, (18) can be rewritten as

p (x |z ) ∝ p (z |x ) p1 (x; z) (19)

where

p1 (x; z) =
1

ε1
p0 (x)χIx(z) (x) (20)

and ε1 is a normalising constant and p1 (·) is a modified
“prior” PDF, which is parameterised by z. We should note
that p1 (·) is a truncated version of p0 (·) and the result of
applying Bayes’ rule, equations (18) and (19), is the same if
we use p0 (·) or p1 (·). This is illustrated in Fig. 2.

Equation (19) suggests an alternative approach to KF using
p1 (·) as the prior, what we call the truncated KF (TKF).
It should be noted that this approach does not calculate the
conventional KF moments, i.e., (5), (6) and (7) as these are
calculated with respect to p0 (·). The motivation behind this
approach is that measurement nonlinearities are less significant
when the prior variance is low [20], [21], [24]. Then, the use
of p1 (·) instead of p0 (·) aims to reduce the variance of the
prior PDF [26] so that the effect of nonlinearities is decreased.
Therefore, the KF applied to p1 (·) is expected to have higher
performance than the KF applied to p0 (·), especially, for
informative measurements.
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Figure 2: Graphical representation of p0 (x), p1 (x; z) and
p (z |x ) in one dimension. When the likelihood has a bounded
support, Bayes’ rule will exactly be met by the “prior” PDFs:
p0 (x) and p1 (x; z).

B. Example

In this example we show the benefits of using p1 (·) rather
than p0 (·) as the prior when the KF and TKF are tractable.
That is, integrals (5), (6) and (7) can be calculated analytically
for p0 (·) and p1 (·). Consider a random parameter x, whose
prior is p0 (x) = N

(
x; x̂p,0, σ

2
p,0

)
(Gaussian PDF with mean

x̂p,0 and variance σ2
p,0 evaluated at x), which generates the

measurement
z = ax3 + η (21)

where a ∈ R is a known parameter and η ∼ U[−∆/2,∆/2]

(uniform PDF in the interval [−∆/2,∆/2]). We compare the
RMS errors of estimating x for both methods noting that the
information provided by the measurement about x is higher
when z increases as the likelihood is narrower. Consequently,
the KF is expected to provide high errors for high values of
z.

In this case, Ix (z) =

[
3

√
z−∆/2
a , 3

√
z+∆/2
a

]
and thus

p1 (x; z) =
1

ε1
N
(
x; x̂p,0, σ

2
p,0

)
χIx(z) (x) (22)

We can calculate integrals (5), (6) and (7) analytically
for p0 (·) and p1 (·). The RMS errors of the KF and TKF
estimators averaged over the posterior PDF for a particular
measurement also admit a closed form expression. The ana-
lytical expressions can be found in [27].

We analyse the case where a = 0.1, x̂p,0 = 3, σ2
p,0 = 10 and

∆ ∈ {10, 50, 100}. We plot the RMS error for an update step
of the KF and TKF against the measurement values that occur
for x ∈ [x̂p,0 − 3σp,0, x̂p,0 + 3σp,0] and the size of Ix (z) in
Fig. 3. When the measurement is lower than ∆/2, i.e., the
size of Ix (z) is large, the KF and TKF perform similarly.
When the measurement is higher than ∆/2, Ix (z) gets smaller
and the RMS error of the KF increases considerably. There
is one value of the measurement for which the KF’s RMS
error drops even for very informative measurements. This is
because the estimate given by the KF is a linear function of the
measurement, see (4), and for very informative measurements,
the posterior mean is close to x = 3

√
z/a as the likelihood is
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Figure 3: (a) RMS errors of the KF and TKF and (b) size of
Ix (z) plotted against the measurement for different values of
∆. The TKF outperforms the KF especially when the size of
Ix (z) is small.

narrow and concentrated around this point. Then, in our case,
for z > 0, there is one point in which the KF estimate is close
to the posterior mean for informative measurements producing
a low RMS error but it increases rapidly.

On the other hand, the TKF performs much better in general.
In addition, the higher the measurement is or the lower ∆ is,
the smaller the size of Ix (z) is, and the TKF improvement
over the KF is more significant as the measurement is more
informative. The reason for this is that the smaller the size of
Ix (z) is, the variance of p1 (·) gets smaller compared to the
variance of p0 (·) [26] and, therefore, the KF applied to p1 (·)
should work better.

IV. TRUNCATED KALMAN FILTER WITH UNBOUNDED
NOISE SUPPORT

In this section, we apply the TKF ideas when the mea-
surement noise support is unbounded. However, it should be
noted that in reality the measurement noise support is always
bounded as no noise can provide an infinitely large value. It
is only the models which assume unbounded measurement
noise support for convenience. Firstly, we reconsider the
example of Section III-B and demonstrate that truncating the
measurement noise PDF and applying the TKF can provide
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a significant performance improvement over the KF with
nonlinear measurement models. Note that this truncation puts
more confidence into the measurement as the measurement
noise assumed by the filter is actually lower than the real
one. Secondly, we analyse the effect of some approximations
that are made for general measurement models and introduce
a variant of the TKF. Thirdly, we propose the truncated
unscented Kalman filter (TUKF) as an approximation to the
TKF for general problems.

A. Truncation of the measurement noise
One possible way of using the TKF’s ideas when the

measurement noise PDF support is unbounded is to truncate
it and directly apply the method of Section III. The truncated
noise PDF pηT (·) is calculated neglecting the areas where the
original noise PDF pη (·) is low according to a threshold Γη

pηT (η) =
pη (η)

εη
χ pη(η)

pη(0)
>Γη

(η) (23)

where εη is the normalising constant such that its integral is
one.

Assuming the noise support is bounded when it is not
and using the TKF provides a high performance gain in
comparison with the KF for informative measurements. The
implication is that it is a better approximation to Bayes’ rule
to truncate the noise and apply the TKF than approximating
Bayes’ rule using the KF. To demonstrate this, we reconsider
the example of Section III-B for 4 = 100 but using a zero-
mean Gaussian noise with variance 42/12, i.e., a noise with
the same mean and variance but with unbounded support.
The RMS error is calculated via Monte Carlo simulation
using 10000 samples from the prior and is shown in Fig.
4(a) for different values of Γη . Note that the main drop
in the RMS error occurs for the measurements that make
Ix (z) decrease considerably as happened in Fig. 3. It is
also important to notice that for low values of z (uninfor-
mative measurements), the KF and TKF have roughly the
same performance. Therefore, Fig. 4(a) shows that it can be
beneficial to truncate the noise PDF and apply the TKF if
the measurement function is nonlinear. It should be noted
that if the truncation threshold is too high, TKF performance
decreases and does not outperform the KF for all measurement
values. In this example, if Γη < 0.4, the TKF outperforms the
KF.

B. Practical approach: use of a mixture
In the example of Section IV-A, we set a truncation thresh-

old Γη and applied the TKF steps: calculate Ix (z), the first
two moments of p1 (·) and the KF moments for p1 (·). In
a general scenario, neither of these steps is possible without
several approximations. As explained in the next section, the
approximations used to calculate p1 (·) are:

AP1 The measurement function h (·) is locally linear.
AP2 The marginal prior of a, p0 (a), is constant over the

region Ia (z).
AP3 The measurement noise satisfies η ∼ UIη where Iη is

such that the truncated noise has the same first two moments
as the real noise E [η] = 0 and cov [η] = R.

0 50 100 150
0

1

2

3

4

5

6

7

Measurement

R
M

S
 e

rr
o
r

Γ
η
=0.001

Γ
η
=0.01

Γ
η
=0.1

KF

(a)

0 50 100 150
0

1

2

3

4

5

6

7

Measurement

R
M

S
 e

rr
o
r

AP12 Γ
η
=0.001

AP12 Γ
η
=0.01

AP12 Γ
η
=0.1

AP123

KF

(b)

0 50 100 150
0

1

2

3

4

5

6

7

Measurement

R
M

S
 e

rr
o
r

TUKF α=1

TUKF

UKF

α

(c)

Figure 4: RMS error plotted against the measurement for the
KF and the TKF for different values of Γη: (a) Without
approximations (b) With different approximations (c) Proposed
practical algorithm: TUKF with α = 1, with adaptive α and
UKF. The TUKF with adaptive α generally outperforms the
UKF.

The implications of AP1 and AP2 are the following: for
informative measurements, AP1 and AP2 are reasonable as
the likelihood is narrow and the approximated TKF should
work better than the KF but, for uninformative measurements,
AP1 and AP2 are inaccurate as the likelihood is broad and the
approximated TKF should work worse than the KF. This can
be checked in Fig. 4(b) where the RMS error of the estimator
under AP1 and AP2 to calculate p1 (·) is shown1. It can be
seen that, as the measurement becomes more informative, i.e.
as z increases, the RMSE for the TKF under AP1 and AP2
approaches the RMSE obtained by the TKF with truncated

1The linearisation of AP1 is done around the value that maximises the
likelihood as explained in Section IV-C1. Once p1 (·) is approximated under
AP1 and AP2, the TKF moments are calculated analytically.
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measurement noise. However, for less informative measure-
ments, the performance of the TKF deteriorates significantly
compared to both the TKF with truncated measurement noise
and the KF. These observations support the notion that AP1
and AP2 are reasonable for informative measurements but
should not be applied for uninformative ones.

Considering only AP1 and AP2, we still need to set a
truncation threshold, which becomes less important as the
measurement is more informative. However, AP3 simplifies
the algorithm as it approximates the measurement noise PDF
by a uniform PDF and, therefore, the truncation threshold is
not necessary. The exact form of Iη is not needed in the
practical algorithm, see Section IV-C. The RMS error under
AP1, AP2 and AP3 is also shown in Fig. 4(b). AP3 might
seem restrictive but, as shown in Fig. 4(b), it does not have an
important effect on performance compared to the RMS error
under AP1 and AP2. This suggests that the error introduced
by approximating the measurement noise PDF as uniform is
low compared to the error introduced by approximations AP1
and AP2. It is clear from Fig. 4(b) that once AP1 and AP2 are
applied, the TKF should only be used selectively, specifically
when the measurements are informative. The way we propose
to solve this problem is based on reconsidering Bayes’ rule
with bounded noise support, equation (18). It is shown in [22]
that the prior

p2 (x; z) = α0p1 (x; z) + (1− α0) p0 (x) (24)

where α0 ∈ [0, 1] also meets Bayes’ rule exactly for bounded
noise support. The parameter α0 introduces a degree of
freedom that allows several techniques to approximate the first
two moments of the posterior. The KF uses α0 = 0 and the
TKF α0 = 1. However, (24) suggests another equally valid
option: apply a KF update to p0 (·) (conventional KF), another
KF update to p1 (·) (TKF) and merge both results to form the
final approximation to the posterior. Then, denoting the mean
and covariance matrix of p1 (·) as x̂p,1 and Pp,1, the updated
mean and covariance matrix are (see Chapter 2 in [5]):

x̂u,2 = αx̂u,1 + (1− α) x̂u,0 (25)

Pu,2 =α
[
Pu,1 + (x̂u,1 − x̂u,2) (x̂u,1 − x̂u,2)

T
]

+ (1− α)
[
Pu,0 + (x̂u,0 − x̂u,2) (x̂u,0 − x̂u,2)

T
]

(26)

where α ∈ [0, 1] maintains the degree of freedom of α0. It
is shown in [27] that α = α0/ [α0 + (1− α0) ε1] where ε1

comes from (20). As α0 ∈ [0, 1] and ε1 ∈ [0, 1], α ∈ [0, 1]
is another parameter that we can choose freely and, therefore,
we can forget α0 and ε1. The results of Fig. 4(b) suggest
that the TKF should be favoured when the measurements
are informative and the KF should be emphasised for un-
informative measurements. This corresponds to choosing α
close to one for informative measurements and nearly zero
for uninformative measurements. In the following section we
propose an algorithm for approximating (25) and (26) and
adaptively selecting α.

C. Truncated unscented Kalman filter

A closed form solution of the TKF is rarely tractable
because of the calculation of the region Ix (z) and integrals
(5)-(7) for p0 (·) and p1 (·). Then, we need to resort to
approximations: the first one to approximate the first two
moments of p1 (·) and the second one to approximate the
moments (5), (6) and (7) with respect to p0 (·) and p1 (·).
These issues and the selection of α are addressed in this
section.

1) Approximation of the first two moments of p1 (·):
The calculation of p1 (·), which requires the calculation of
Ia (z), does not have an analytical expression in general. In
this subsection, we explain how to approximate the first two
moments of p1 (·) as they are everything we need to know
about p1 (·) in the practical implementation of the filter, as
will be explained in Section IV-C2.

Firstly, we need to approximate Ia (z). To this end, we use
AP1 such that the measurement function h (·) is approximated
using a first-order Taylor series around a = ã (z). We choose
ã (z) = arg maxa p (z |a ) because it is the most probable
observable state according to the measurement and p1 (·) is
located around it. When A1 holds, the measurement noise is
additive and zero-mean Gaussian distributed, the value of a
that maximises the likelihood is ã (z) = h−1 (z). Therefore:

h (a) ≈ h (ã (z)) + H̃ (a− ã (z)) (27)

where
H̃ =

[
∇ahT (a)

]T ∣∣∣
a=ã(z)

(28)

is the Jacobian of h (a) evaluated at ã (z). Approximating
h−1 (·) using (27), ã (z) = h−1 (z) and substituting them into
(16), we get:

Ia (z) =
{

a
∣∣∣a = ã (z)− H̃−1η, η ∈ Iη

}
(29)

Then, (20) becomes

p1 (x; z) = p1 (a, b; z) =
1

ε1
χIa(z) (a) p0 (b |a ) p0 (a) (30)

Under Approximation AP2, (30) can be written as

p1 (a, b; z) =
1

ε2
χIa(z) (a) p0 (b |a ) (31)

where ε2 is a normalising constant. Integrating out variable b
in (31):

p1 (a; z) =
1

ε2
χIa(z) (a) (32)

Under AP3, Appendix A shows that the mean µa,1 and
covariance matrix Σa,1 of p1 (a; z) are

µa,1 =

ˆ
ap1 (a; z) da = ã (z) (33)

Σa,1 =

ˆ (
a− µa,1

) (
a− µa,1

)T
p1 (a; z) da = H̃−1R

(
H̃−1

)T
(34)

Noting that p0 (x) = p0 (a, b), the mean x̂p,0 and covari-
ance matrix Pp,0 of p0 (·) is partitioned as

x̂p,0 =

[
E [a]
E [b]

]
=

[
µa,0
µb,0

]
(35)
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Pp,0 =

[
cov [a] cov [a, b]

cov [b, a] cov [b]

]
=

[
Σa,0 Σab,0

ΣT
ab,0 Σb,0

]
(36)

Lastly, as shown in Appendix B, the mean x̂p,1 and covari-
ance matrix Pp,1 of p1 (a, b; z) are:

x̂p,1 =

[
µa,1
µb,1

]
(37)

Pp,1 =

[
Σa,1 Σab,1

(Σab,1)
T

Σb,1

]
(38)

where
µb,1 = µb,0 + ΣT

ab,0Σ
−1
a,0

(
µa,1 − µa,0

)
(39)

Σab,1 = Σa,1

(
Σ−1
a,0

)T
Σab,0 (40)

Σb,1 =Γ−
(
µb,1 − µb,0

) (
µb,1 − µb,0

)T
+ ΣT

ab,0Σ
−1
a,0

[
Σa,1 +

(
µa,1 − µa,0

) (
µa,1 − µa,0

)T ]
×
(
Σ−1
a,0

)T
Σab,0 (41)

and
Γ = Σb,0 −ΣT

ab,0Σ
−1
a,0Σab,0 (42)

2) Approximation of the prior moments: This subsection
describes how to approximate the moments (5), (6) and (7)
with respect to p0 (·) and p1 (·). These approximations are
based on the unscented transformation (UT) [11], or more
precisely, on the UT for conditionally linear models [28]. The
PDFs p0 (·) and p1 (·) can be written as:

pj (a, b) = p0 (b |a ) pj (a) (43)

where j ∈ {0, 1} and we highlight that the conditional PDF
of b given a is the same for both PDFs because the truncation
is applied to a.

The first integral to approximate is (5). Substituting (12)
and (43) into (5), (5) can be written as:

ẑj =

ˆ
h (a) p0 (b |a ) pj (a) dadb (44)

Integrating out b:

ẑj =

ˆ
h (a) pj (a) da (45)

The UT approximation to (45) proceeds by selecting Ns
sigma points A1

j , ...,A
Ns
j along with weights w1, ..., wNs .

These sigma points and weights can be found using any of
the methods discussed in [12]. In all the implementations, we
use Ns = 2na + 1 sigma points and the weight of the sigma
point located on the mean is 1/3. The transformed sigma-points
are calculated as

Zij = h
(
Aij
)
, i = 1, ..., Ns (46)

Then, the UT approximation to (45) is

ẑj =

Ns∑
i=1

wiZij (47)

The second integral to approximate is (6):

Sj =

ˆ
E
[
(z− ẑj) (z− ẑj)

T |x
]
p0 (b |a ) pj (a) dadb

(48)
Substituting (12) into (48), we get

Sj = R +

ˆ
(h (a)− ẑj) (h (a)− ẑj)

T
pj (a) da (49)

The UT approximation to (49) can be calculated using (46):

Sj = R +

Ns∑
i=1

wi
(
Zij − ẑj

) (
Zij − ẑj

)T
(50)

The third integral we need to approximate is (7):

Ψj =

ˆ
E
[
(x− x̂p,j) (z− ẑj)

T |x
]
p0 (b |a ) pj (a) dadb

=

ˆ ([
a
b

]
− x̂p,j

)
(h (a)− ẑj)

T
p0 (b |a ) pj (a) dadb

(51)
Integrating out b and taking into account that υb (a) is given

by (75):

Ψj =

ˆ ([
a

υb (a)

]
− x̂p,j

)
(h (a)− ẑj)

T
pj (a) da

(52)

Let X ij =
[(
Aij
)T
,
(
υb
(
Aij
))T ]T

for i = 1, ..., Ns. Then,
(52) can be approximated as [28]

Ψj =

Ns∑
i=1

wi
(
X ij − x̂p,j

) (
Zij − ẑj

)T
(53)

3) Selection of α: Approximations AP1 and AP2 are ac-
curate for informative measurements but inaccurate for un-
informative measurements. Therefore, the degree of freedom
given by α, which was obtained from Bayes’ rule as indicated
in Section IV-B, should be chosen such that it favours p1 (·)
when its variance is small (this indicates that the measurement
is informative) compared to the variance of p0 (·). Then, we
propose to use the following rule that meets these require-
ments:

α =
γtr (Σa,0)

γtr (Σa,0) + (1− γ) tr (Σa,1)
(54)

where γ ∈ [0, 1] is a parameter that controls the weights of the
traces of the covariance matrices to select α and tr (A) denotes
the trace of matrix A. When the information about a measured
from the data is high compared to the prior [29], which means
that tr (Σa,1) is low compared to tr (Σa,0), α → 1. On the
contrary, when the information about a measured from the
data is low, which means that tr (Σa,1) is high compared
to tr (Σa,0), α → 0, and the TUKF boils down to a UKF.
The steps of the TUKF are shown in Table I and the RMS
error for the example using γ = 0.1 is given in Fig. 4(c).
Comparing this figure with Figs. 4(a) and (b), it is clear that
the TUKF with α = 1 approximates the TKF under AP1,
AP2 and AP3, the UKF is approximating the KF and our
method is approximating the TKF exploiting the degree of
freedom given by α outperforming the UKF. The key to the
close correspondence between the performances of the TUKF
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Table I: Truncated Unscented Kalman Filter update phase steps

• Apply a UKF to p0 (·) (characterised by xp,0 and Pp,0)

– Select sigma points A1
0, ...,A

Ns
0 .

– Compute the transformed sigma points Z1
0 , ...,Z

Ns
0 using (46).

– Approximate ẑ0, S0 and Ψ0 using (47), (50) and (53).
– Calculate x̂u,0 and Pu,0 using (4) and (8).

• Apply a UKF to p1 (·) (characterised by xp,1 and Pp,1)
– Calculate xp,1 and Pp,1 using (37) and (38).
– Select sigma points A1

1, ...,A
Ns
1 .

– Compute the transformed sigma points Z1
1 , ...,Z

Ns
1 using (46).

– Approximate ẑ1, S1 and Ψ1 using (47), (50) and (53).
– Calculate x̂u,1 and Pu,1 using ẑ1, S1 and Ψ1 in (4) and (8).

• Calculate α using (54).
• Approximate the first two moments of the posterior using (25) and (26).

and the TKF is that the TUKF seeks to approximate the TKF
only in conditions where the TKF performs significantly better
than the KF, i.e., when the measurements are informative.
When the measurements are uninformative, the TUKF seeks
to approximate the KF which performs similarly to the TKF.

4) Single Point TUKF (SP-TUKF): In [22], we presented
a modification of the TUKF which adds only one extra
sigma-point to the collection of sigma-points given by the
UKF. It should be noted that the TUKF really improves the
estimate given by conventional KF-type algorithms when the
information of the measurement is very high compared to
the information of the prior. In that case, the region Ia (z)
is very small. Then, another version of the algorithm uses a
single sigma-point to represent p1 (a; z) chosen such that it
matches the mean of p1 (a; z), given by (33). In this case, we
approximate the first two moments of p2 (a; z) = αp1 (a; z)+
(1− α) p0 (a), given by the sigma-point representation, and
then apply only one KF update to p2 (a; z). The problem with
this scheme is that if α → 1, the filter becomes unstable as
the covariance matrix of p2 (·) tends to be singular. The way
to solve it is to use αsp rather than α such that

αsp = αmax · α (55)

where αmax < 1 is the maximum value αsp can take and α
is given by (54). The steps of this version of the algorithm
are shown in [22]. The computational burden of this version
of the algorithm is lower than the TUKF as we only perform
one KF update. However, it requires an extra parameter αmax
and it does not attain the performance of the TUKF.

D. Discussion on the TUKF

It should be kept in mind that, despite the similarity in
nomenclature, the proposed method differs in a fundamental
way from other Gaussian approximations such as the EKF,
UKF and CKF. These filters all seek to approximate the KF
recursion by an accurate approximation of (5)-(7). As we have
demonstrated in Section II this is not always a desirable goal.
Instead, the proposed method is based on the approximation of
the TKF, which applies the KF recursion to a truncated prior.
The impossibility of applying the TKF in general leads to a
practical algorithm for adaptively switching between TKF and
KF approximations. The use of the TKF approximation when
warranted, i.e., when measurements are sufficiently precise,

results in considerable performance improvement compared
to KF approximations, as will be seen in Section V.

Its main limitation though is that it is not such a general
tool as conventional KF-type algorithms, which can always be
used, as the current form of the algorithm requires h (·) to be a
bijective function of some elements of the state. Nevertheless,
if h (·) is not bijective the posterior could be multimodal and
none of the conventional KF-type algorithms would provide
an accurate representation of the posterior, as they represent a
unimodal distribution.

How to generalise the algorithm when h (·) is not bijective
is well worth exploring and will be a topic for future research.
In this case, there are several disconnected regions of the state
space that are likely to produce a given measurement. Then,
we would need to truncate p0 (·) in each one of these regions,
apply a KF to each truncated distribution and represent the
posterior as a Gaussian mixture.

In this paper, we approximate p0 (·) and p1 (·) using the
sigma-points given by the UKF. However, if we used the CKF
or other methods, the foundations of the algorithm would be
the same and it would only imply minor changes. We have
chosen the UKF as it is the method that is used more widely.

It should also be mentioned that there are some works
that deal with Kalman filtering when the prior is truncated
or there are inequality constraints [30], [31]. However, their
approach and motivation have nothing to do with ours. In
[30], the posterior is truncated because of the inequality
constraints of the model. They apply a conventional KF with
a linear/Gaussian model and, then, they calculate the first two
moments of the truncated distribution. In [30], they provide
an example with nonlinear measurement function but they
linearise the measurement function like an EKF. In [31], the
prior is truncated but they use linear/Gaussian models. Then,
these methods do not try to address the problems of KF with
nonlinear measurement models, they apply a conventional KF
when either the prior or the posterior is truncated.

V. NUMERICAL EXAMPLES

In this section, we present three numerical examples to show
the benefits of using the TUKF. Other examples can be found
in [22], [32]. The first example is the range-bearing scenario
introduced in Section II. We provide a detailed analysis on
how the algorithms approximate the posterior in the update
phase without accounting for filtering. The second example
deals with a tracking scenario with the same measurement
model and, lastly, we analyse a univariate nonstationary growth
model. These two examples are included to show the perfor-
mance benefits of the TUKF in filtering scenarios. In all the
simulations, we use a TUKF with γ = 0.1 and an SP-TUKF
with αmax = 0.8. Besides, the RMS errors are calculated with
respect to the true state, they do not refer to the RMS errors
estimated by the filters.

A. Range-bearing case

Firstly, we go back to the range-bearing scenario introduced
in Section II to highlight the shortcomings of Kalman filtering
with nonlinear measurement models. It should be recalled that
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Figure 5: The TUKF and SP-TUKF approximate the first two
moments of the posterior much better than conventional KF-
type algorithms

the prior is perfectly known. For the sake of illustration, we
redraw Fig. 1 in Fig. 5 but adding the ellipses corresponding
to the TUKF and the SP-TUKF. It is clear that the TUKF
approximation of the first two moments of the posterior is
much more accurate than the rest of the algorithms.

Now we proceed to analyse this scenario more deeply
plotting the Kullback-Leibler (KL) divergence assuming the
statistics are Gaussian between the posterior PDF and the
different algorithms. For the purposes of this comparison, an
accurate approximation to the posterior is obtained by drawing
2 · 104 samples from the prior and weighting the samples
according to the likelihood.

The KL divergence is obtained for several positions of the
prior mean, x̂p,0, and true locations of the target to analyse
the influence of the prior mean and the true location of the
target on performance. In order to plot the results, we define
9 points forming a square grid whose side is 5 meters around
the prior mean each one labelled as in Fig. 6. We analyse
three scenarios with a different prior means x̂p,0: [10, 10]

T ,
[20, 20]

T and [30, 30]
T . The rest of the parameters are those

indicated in Section II.
In this case, ã (z) = [zr cos zθ, zr sin zθ]

T . Also, the trace
of the covariance matrix of p1 (·), which is needed to obtain
α, can be calculated using (34):

tr (Σa,1) = σ2
r + σ2

θz
2
r (56)

Then, in this example, the amount of information we get
from the measurement depends only on z2

r . When zr is low,
i.e., the target is closer to the radar, conventional KF-type
algorithms approximate the posterior worse than when the
target is far afield.

The KL divergence for the true position of the target
according to the labels in each scenario are shown in Figs.
7(a), (c) and (e), respectively, noting that the y-axis changes
in the figures for the clarity of presentation. The TUKF
and SP-TUKF have better performance than the MCKF, the
UKF and the CKF in all the scenarios. EKF performance is
quite variable, sometimes performs quite well while others its
performance is the worst one. There is no doubt that this is
not a desirable property of an algorithm. In the first scenario,

Prior mean

1 2 3

4 5 6

7 8 9

Figure 6: Labelling of the true target positions around the prior
mean forming a square grid of side 5 m.

the MCKF has worse performance than the UKF and the
CKF on the whole. Besides, the performance of these three
filters is far from the performance attained by the TUKF and
SP-TUKF as in this case the target is located close to the
origin and the measurement carries a lot of information. In
the second scenario, the TUKF works better than the rest
of the algorithms in spite of the fact that the measurement
carries less information than in the first scenario. Finally, in
the third scenario, TUKF and SP-TUKF outperforms all the
conventional KF-type algorithms but their differences have
been reduced as the measurement does not carry so much
information as before. In addition, the performance of TUKF
is usually higher than the performance of SP-TUKF except for
the third scenario.

It should also be pointed out that the MCKF is usually
outperformed by the UKF and the CKF in these cases. When
the number of samples of the MCKF tends to infinity, its
updated mean and covariance matrix converge to the updated
mean and covariance matrix of the KF (given by the integrals
(5), (6) and (7)). However, in nonlinear systems a close
approximation to the KF does not necessarily imply a close
approximation to the posterior PDF. This is clearly evident in
Fig. 5.

The RMSE for the true position of the target according
to the labels in each scenario are shown in Figs.7 (b), (d)
and (f), noting that the y-axis changes in the figures. The
estimate to calculate the RMSE for Bayes’ rule is obtained
using the mean of the posterior PDF. As happened with the
KL divergence, RMSE of the EKF is quite variable. In the first
scenario, Figure 7(b), the RMSE for the TUKF and SP-TUKF
are generally much lower than the RMSE of the rest of the
filters as the information of the measurement is high and is
quite close to the RMSE attained by Bayes’ rule. In the second
scenario, Figure 7(d), the RMSE for the TUKF and SP-TUKF
are lower than the RMSE of the rest of the filters but the
differences are closer as the measurement is less informative.
Lastly, in scenario 3, Figure 7(f), where the measurement is
much less informative, all the filters have roughly the same
RMSE although the TUKF and SP-TUKF posteriors are closer
to the real posterior as pointed out when analysing the KL
divergence, Figure 7(e). It can be confusing that the posterior
mean, which is given by Bayes’ rule, is not always the best
estimator for some values of the state. However, the posterior
mean is the MMSE estimator conditioned on a value of the
measurement not the true value of the state, see Section II, so
its performance does not have to be the best one for a given
value of the state. In fact, a blind estimator that estimates
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Figure 7: Range-bearing update: (a) KL divergence and (b) RMSE for scenario 1. (c) KL divergence and (d) RMSE for scenario 2.
(e) KL divergence and (f) RMSE for scenario 3. The TUKF and SP-TUKF vastly outperform the conventional KF-type algorithms in
scenario 1. In scenario 3, all the algorithms give roughly the same RMSE although the KL divergence is slightly lower for the TUKF
and SP-TUKF as the measurement has much less information than in scenarios 1 and 2.
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Table II: Averaged RMSE for range-bearing scenarios

MCKF UKF CKF EKF SP-TUKF TUKF Bayes’ rule
Scenario 1 3.85 3.89 3.91 4.46 1.48 1.25 1.14
Scenario 2 2.09 2.11 2.09 2.19 1.43 1.45 1.42
Scenario 3 2.01 2.02 2.01 2.05 1.78 1.79 1.77

always the same value regardless of the measurement will
achieve zero error when the true value of the state coincides
with this blind estimate although its performance is very poor
in general. To clarify this, we show the averaged RMSE for
all the algorithms in Table II. As expected, the lowest error
is given by Bayes’ rule followed by the TUKF and SP-TUKF
and, in general, EKF error is the highest.

B. Target tracking with range-bearing measurements

In the previous example, we highlighted the improvement
in performance of the TUKF over conventional KF-type algo-
rithms only in the update equation. In this example, we show
the performance benefits in a dynamic system. We analyse
target tracking using range-bearing measurements from a radar
located at the origin of the coordinate system. The state vector
at time k is xk =

[
ak,bk

]T
where ak is the position vector

and bk is the velocity vector. The measurement model is given
by (10) and (11) but bearing in mind that the position vector
in this example is ak.

The dynamic model of the target is the nearly-constant
velocity model [1]:

p
(
xk+1

∣∣xk ) = N
(
xk+1; F · xk, Q

)
(57)

F =

(
1 τ
0 1

)
⊗ I2 (58)

Q = σ2
u

(
τ3/3 τ2/2
τ2/2 τ

)
⊗ I2 (59)

where N (x; x, Q) is the Gaussian PDF evaluated at x with
mean x and covariance matrix Q, ⊗ is the Kronecker product,
τ is the sampling period and σ2

u is the continuous-time process
noise intensity [1].

The scenario we use to evaluate the performance of the
algorithms is represented in Fig. 8(a). We also show the
distance from the radar to the target at each time step in
Fig. 8(b). This is important because conventional KF-type
algorithms are expected to perform worse than the TUKF
when the target gets close to the radar as explained in Section
V-A. The sampling period of the trajectory is τ = 1 s,
σu = 10 m/s3/2 and there are l = 140 time steps in the
simulation. This trajectory corresponds to one realisation of the
dynamic system described by (57). We evaluate the tracking
performance calculating the RMS of the position error by a
Monte Carlo simulation with m = 200 realisations.

The prior PDF of the target’s state is:

x0 v N
(
x0; x0,Q

)
(60)

where, in each Monte Carlo run, x0 is drawn from a Gaussian
distribution whose mean is the real state of the target at time
0 and whose covariance matrix is Q.
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Figure 8: Scenario for range-bearing tracking: (a) Target tra-
jectory: The initial target position is represented by a blue
circle. The target position and direction of movement every
10 time steps are represented by arrows. The radar location
is represented by a red cross. (b) Distance from the target to
the radar at each time step.

We are going to compare the proposed algorithms, TUKF
and SP-TUKF, with six algorithms for tracking: UKF, CKF,
EKF, MCKF (2 · 104 samples), Rao-Blackwellised UKF (RB-
UKF) [28] and a PF based on sampling importance resampling
with 10000 particles [2]. The parameters of the algorithms are
the same as in the previous example. The RMS position plotted
against time is shown in Fig. 9(a). As expected, EKF, UKF,
CKF, MCKF and RB-UKF perform poorly when the target
gets close to the radar at around time steps 40 and 80, see
Fig. 8(b). This is due to the fact that the likelihood function
is very narrow compared to the prior and conventional KF-
type algorithms do not perform properly [20]. In a dynamic
system, this can lead to filter divergence as happens at around
time 80. In this case, conventional KF-type algorithms manage
to recover the track around 10 time steps later. However,
TUKF and SP-TUKF provide a much more accurate estimate
of the trajectory as they can deal with situations when the
information given by the measurement is very high. They do
it by adaptively calculating the parameter α that allows us to
identify when the measurement carries a lot of information and
conventional KF-type algorithms fail. The value of α plotted
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Figure 9: (a) RMS position error plotted against time. When
the target is close to the radar (around time steps 40 and
80), SP-TUKF and TUKF vastly outperform conventional KF
approximations. (b) Value of α plotted against time for the
TUKF. When the target gets closer to the radar, α increases.

against time is shown in Fig. 9(b). When the distance from
the radar to the target increases, α decreases, as the informa-
tion provided by the measurement is lower and conventional
KF-type algorithms perform well. As expected, the PF also
attains a low error at all time steps but with a much higher
computational expense.

We show the robustness of our algorithms with respect to γ
in Table III. One should note that for the SP-TUKF, γ = 1 does
not mean that we reject the information of the prior, as with
the TUKF, because αsp cannot be one, see (55). Recall that
γ ∈ [0, 1] is used in the calculation of the weight α given to the
truncated prior. A low value of γ tends to reduce the weight
given to the truncated prior while a high value of γ tends to
place more emphasis on the truncated prior. The results of
Table III show that the performances of the SP-TUKF and
TUKF do not vary greatly for γ > 0 although slightly better
performance is obtained for smaller values of γ. It should be
noted that even with small values of γ the weight α given to
the truncated prior can be large, provided the measurements
are sufficiently precise. This can be seen in Figure 9(b) which
shows that large values of α are selected even with γ = 0.1.
Also, Table III shows that the performance of the TUKF with

γ = 0.1 is very close to the PF performance.
We also include the averaged RMS position error over time

for different measurement noise parameters in Table IV where
we have underlined the cases in which the error is much higher
than for the PF. We analyse cases in which the measurement is
very informative and others in which it is very uninformative
to show that our method is robust in all situations. Firstly,
one should note that SP-TUKF and TUKF are very close
to PF performance especially for informative measurements.
They outperform the conventional KF-type algorithms in all
cases, especially, when the measurement is informative. This
demonstrates the power of both SP-TUKF and TUKF in
nonlinear filtering problems. When the measurement is very
uninformative, all filters behave similarly, cases: 2, 5 and 8,
except for the EKF that gives higher errors. Moreover, among
the conventional KF-type algorithms, MCKF has the most
robust performance as it never diverges and EKF diverges
more frequently than the rest.

C. Univariate nonstationary growth model (UNGM)

We analyse the univariate nonstationary growth model
(UNGM) characterised by:

p
(
xk
∣∣xk−1

)
= N

(
xk; fk

(
xk−1

)
, Q
)

(61)

fk
(
xk−1

)
=
xk−1

2
+

25xk−1

1 + (xk−1)
2 + 8 cos (1.2k) (62)

p
(
zk
∣∣xk ) = N

(
zk;

(
xk
)3

20
, R

)
(63)

This model is analysed in [2], [9] but with a measurement
function that depends on

(
xk
)3

rather than
(
xk
)2

so that it is
bijective. We use the same parameters as in [9]. That is, we
use Q = 1 and R = 1, data was generated using x0 = 0.1
and the prior PDF at time step 0 is x0 v N

(
x0; 0, 1

)
.

The true state we use in the simulations with 100 time
steps is plotted in Fig. 10. We analyse the performance of
the algorithms using Monte Carlo simulation with 200 runs.
We should realise that, in this case, the measurement function,
given by (63), depends on the whole state so RB-UKF cannot
be applied here. The parameters of the algorithms are the same
as in the previous examples.

The RMS error plotted in log scale against time for the
algorithms are shown in Fig. 11(a). We have represented
the first twenty time steps for the clarity of representation.
TUKF and SP-TUKF have a much higher performance than
conventional KF-type algorithms and their performance is
close to PF’s. In this case, the error given by the EKF is the
highest one. We also plot the value of α against time for the
first twenty time steps for the TUKF in Fig. 11(b). Comparing
Fig. 11(b) with Fig. 10, it can be seen that α is larger when∣∣xk∣∣ increases as the measurement is more informative. We
also show the averaged RMS error over time in Table V.
Highest performance is provided by the PF closely followed
by the TUKF. The EKF, MCKF, UKF and CKF are far from
the performance of SP-TUKF and TUKF.
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Table III: Averaged RMS position error over time for different values of γ (range-bearing)

γ
Algorithm 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
SP-TUKF 8.48 5.85 5.93 5.98 6.01 6.03 6.05 6.07 6.09 6.10 6.12

TUKF 8.48 5.74 5.84 5.94 6.02 6.09 6.16 6.22 6.28 6.33 6.38
UKF 8.19
CKF 8.02

MCKF 8.04
EKF 6.48

RB-UKF 8.48
PF 5.70

Table IV: Averaged RMS position error over time for different measurement noise parameters

Case σr(m) σθ (rad) SP-TUKF TUKF UKF CKF MCKF EKF RB-UKF PF
1 1 0.2π/180 1.19 1.18 5.10 136.57 5.76 192.12 128.08 1.34
2 1 20π/180 38.29 37.62 38.33 37.98 38.28 50.15 37.93 33.21
3

√
10 0.2π/180 3.19 3.18 161.11 222.31 7.35 99.47 251.3 3.26

4
√
10 2π/180 6.55 6.45 11.26 9.86 9.36 7.35 10.21 6.34

5
√
10 20π/180 38.58 37.82 38.71 38.24 38.51 44.51 38.35 33.31

6
√
0.1 0.2π/180 0.71 0.70 4.70 3.19 5.27 128.31 2.78 0.96

7
√
0.1 2π/180 5.77 5.66 7.27 7.93 8.24 5.92 6.54 5.86

8
√
0.1 20π/180 38.25 37.61 38.31 37.86 38.24 51.32 37.91 34.22
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Figure 10: True state for the univariate nonstationary growth
model

Table V: Averaged RMS error over time (UNGM)

Algorithm SP-TUKF TUKF UKF CKF MCKF EKF PF
RMS 0.81 0.64 3.86 7.46 3.84 26.94 0.61

VI. CONCLUSIONS

We have developed a new approach to approximate the first
two moments of the posterior in nonlinear systems with a
bijective measurement function. We do it by approximating
the PDF of the measurement noise by a truncated one and
approximating Kalman filter equations applied to a mixture
of the prior and a truncated version of the prior. On the
whole, our approach should achieve better performance than
any conventional Kalman-filter-type algorithms if the system
sometimes provides very informative nonlinear measurements
compared to the prior. As we have demonstrated in the paper, if
we get a very informative measurement, conventional Kalman-
filter-type algorithms do not work properly.

Its drawback is that it is not such a general tool as
conventional Kalman-filter-type algorithms as it requires the
measurement function to be bijective. However, our approach
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Figure 11: UNGM scenario for the first 20 time steps: (a) RMS
error plotted in log scale against time: The TUKF and SP-TUKF
have a much higher performance compared to conventional KF-
type algorithms. (b) Value of α for the TUKF: When

∣∣xk∣∣
increases, α increases as the measurement is more informative.
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can be generalised when the measurement function is not
bijective. In this case, there would be several disconnected
regions of the state space that are likely to produce a given
measurement. Then, we would need to truncate p0 (·) in each
one of these regions, apply a Kalman filter to each truncated
distribution and represent the posterior as a Gaussian mixture.
How to select the weights of this mixture will be addressed in
a future work. The study of the consistency of the proposed
algorithm is also a topic for future research.

APPENDIX A
In this appendix, we calculate the mean µa,1 and covariance

matrix Σa,1 of p1 (a; z), which is given by (32). Firstly, we
calculate ε2:

ε2 =

ˆ
χIa(z) (a) da (64)

Changing the variable inside the integral using

a = ã (z)− H̃−1u (65)

we get

ε2 =

ˆ
χIa(z)

(
ã (z)− H̃−1u

) ∣∣∣det
(
H̃−1

)∣∣∣du (66)

where
∣∣∣det

(
H̃−1

)∣∣∣ is the absolute value of the determinant

of H̃−1. Using (29), (66) becomes

ε2 =
∣∣∣det

(
H̃−1

)∣∣∣ ˆ χIη (u) du =
∣∣∣det

(
H̃−1

)∣∣∣ |Iη| (67)

where |Iη| indicates the area of the support of the measurement
noise. The mean of p1 (a; z) is

µa,1 =
1∣∣∣det

(
H̃−1

)∣∣∣ |Iη|
ˆ

aχIa(z) (a) da (68)

Using the change of variables of (65), we obtain

µa,1 =
1∣∣∣det

(
H̃−1

)∣∣∣ |Iη|
ˆ (

ã (z)− H̃−1u
)
χIη (u)

∣∣∣det
(
H̃−1

)∣∣∣du

(69)
Using the fact that the mean of the measurement noise is

zero and using Approximation AP3:
1

|Iη|

ˆ
uχIη (u) du = 0 (70)

equation (69) becomes

µa,1 = ã (z) (71)

Using the same procedure, the covariance matrix of p1 (a; z)
is

Σa,1 =
1∣∣∣det

(
H̃−1

)∣∣∣ |Iη|
ˆ

(a− ã (z)) (a− ã (z))
T
χIa(z) (a) da

=
1∣∣∣det

(
H̃−1

)∣∣∣ |Iη|
ˆ (

H̃−1u
)(

H̃−1u
)T

χIη (u)
∣∣∣det

(
H̃−1

)∣∣∣du

(72)
In Section IV-C, the covariance matrix of the noise is R.

Then, (72) becomes

Σa,1 = H̃−1R
(
H̃−1

)T
(73)

APPENDIX B

In this appendix, we calculate the first two moments of
p1 (a,b; z) considering we know the first two moments of
p0 (a,b) and p1 (a; z), given by (35), (36), (33) and (34). The
truncation only affects the part of the PDF that corresponds
with a, see (16). Then, this implies that the conditional PDF
of b given a is not affected by the truncation. To emphasise
this, we can write:

p1 (a,b; z) = p1 (a; z) p0 (b |a ) (74)

Assuming that p0 (a,b) is Gaussian [1]

υb (a) , E [b |a ] = µb,0 + ΣT
ab,0Σ

−1
a,0

(
a− µa,0

)
(75)

Γ , cov [b |a ] = Σb,0 −ΣT
ab,0Σ

−1
a,0Σab,0 (76)

Now, we calculate the first two moments of p1 (a,b; z)
given by (37) and (38). The mean µb,1:

µb,1 =

ˆ
bp1 (a,b; z) dadb =

ˆ
bp0 (b |a ) p1 (a; z) dadb

=

ˆ
E [b |a ] p1 (a; z) da (77)

Using (75) and (33) in (77):

µb,1 = µb,0 + ΣT
ab,0Σ

−1
a,0

(
µa,1 − µa,0

)
(78)

The cross-covariance Σab,1:

Σab,1 =

ˆ (
a− µa,1

) (
b− µb,1

)T
p0 (b |a ) p1 (a; z) dadb

(79)
Using (75) in (79):

Σab,1 =

ˆ (
a− µa,1

) (
µb,0 + ΣT

ab,0Σ
−1
a,0

(
a− µa,0

)
− µb,1

)T
× p1 (a; z) da (80)

Expanding the terms in (79) and using (34)

Σab,1 = Σa,1

(
Σ−1
a,0

)T
Σab,0 (81)

Lastly, using a similar procedure, the covariance matrix Σb,1

can be calculated and is given by (41).
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