
1

Multitarget Simultaneous Localisation and

Mapping of a Sensor Network
Ángel F. García-Fernández, Mark R. Morelande, Jesús Grajal

Abstract

This paper addresses the problem of simultaneously localising multiple targets and estimating the

positions of the sensors in a sensor network using particle filters. We develop a new technique called

Multitarget Simultaneous Localisation and Mapping (MSLAM) that has better performance than the

well-known FastSLAM when there are several targets in the surveillance area. The proposed algorithm

is based on the Parallel Partition particle filter, especially designed for multiple target tracking, and the

Truncated Unscented Kalman Filter for updating the sensors’ positions.

Index Terms

Multitarget SLAM, Particle filters, Sensor Networks, Tracking, Truncated Unscented Kalman filter.

I. INTRODUCTION

There has been a significant interest in wireless sensor networks over the past few years due to a

broad range of applications related to homeland security, environmental monitoring and biological species

tracking among other fields of use [1]. These networks are composed of inexpensive sensors that collect

data and usually report it to a fusion center through a wireless channel [2], [3].

When the network is deployed in the surveillance area, the positions of the sensors might not be

accurately known. For instance, in battlefield surveillance, the sensor network might have to be deployed

Copyright (c) 2011 IEEE. Personal use of this material is permitted. However, permission to use this material for any other

purposes must be obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

Ángel F. García-Fernández and Jesús Grajal are with Departamento de Señales, Sistemas y Radiocomunicaciones, ETSI

Telecomunicación, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain. email: {agarcia,

jesus}@gmr.ssr.upm.es

Mark R. Morelande is with the Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville,

Victoria 3010, Australia. email: mrmore@unimelb.edu.au



2

quickly and, therefore, there could be large uncertainty in the positions of the sensors unless they have a

built-in GPS. In most cases, this option is not feasible because of its power consumption and the increase

in the price of the sensors.

The main objective of this paper is to develop a centralised algorithm for tracking multiple targets in

such a scenario. However, this aim can be achieved more accurately by simultaneously estimating the

sensors’ positions. Thus, we address the problem of simultaneously estimating the positions of multiple

targets and localising the sensors based on the sensors’ measurements from a Bayesian point of view.

This problem has previously been addressed for a single target in [4], [5] and is also related to the

Simultaneous Localisation and Mapping (SLAM) problem in robotics in which the robot estimates a

map of the environment, i.e., the positions of the so-called landmarks, and its position based on its own

measurements [6]–[8]. In the following discussion, we will use the acronyms R-SLAM for SLAM in

robotics and SN-SLAM for SLAM in sensor networks, while in the rest of the paper, we will use SLAM

instead of SN-SLAM as context permits.

There have been two main approaches to tackle the R-SLAM problem: Kalman-filter-type algorithms

(KSLAM) [7], [9] and particle-filter-type algorithms (FastSLAM or FSLAM) [10], [11]. KSLAM esti-

mates the state of the robot at the current time and the positions of the landmarks based on previous

measurements using a Kalman filter (KF). However, this algorithm has two main problems. The first one

is that it is based on Kalman filtering so its result is optimal for linear/Gaussian models but good

performance and convergence are not guaranteed for nonlinear/non-Gaussian models. Moreover, the

posterior correlation among landmarks’ positions should be taken into account to build a more accurate

map [12] as the current robot state and landmarks’ positions conditioned on the past measurements are

correlated. The computational expense of doing this is quadratic in the number of landmarks. On the

contrary, FSLAM aims to estimate the whole robot trajectory, rather than the current robot state, using a

particle filter [13]. It can be shown that, conditioned on the whole robot trajectory, the landmarks’ positions

are independent. Then, FSLAM uses approximate Rao-Blackwellisation [14] so that the posterior pdf of

the map conditioned on a given particle is approximated by a set of independent Gaussians. This results

in linear complexity in the number of landmarks, rather than the quadratic complexity that would be

necessary if the landmarks’ positions were correlated [7].

Information filtering [8] and smoothing [15] have also been applied to R-SLAM. These methods allow

sparsification of the information matrix to be exploited in reducing computation. Information filtering

estimates the state of the robot at the current time, as does KSLAM, while smoothing estimates the whole

robot trajectory to exploit factorisation as in FSLAM with the difference that [15] uses batch processing.



3

However, these methods are based on the linearisation of the process and measurement equations and,

then, their performance is expected to be poor in highly nonlinear scenarios. Another approach to dealing

with the R-SLAM problem is via finite set statistics in which the map is represented by a random set [16]–

[18]. Within this framework, an approximation to the posterior pdf of the map conditioned on the robot

trajectory based on the Gaussian mixture Probability Hypothesis Density (PHD) filter [19] outperforms

FSLAM using real data in environments with high clutter [16]–[18]. The use of this formulation to

represent the map is also adopted in [20] although assuming the robot pose is known.

SN-SLAM is equivalent to R-SLAM considering that now the entities that sense (sensors/robots) are

static and the ones which are measured (targets/landmarks) are dynamic. If we solved this problem via

KSLAM, the KF recursive equations would be similar but using the new dynamic models. Conversely, the

direct application of FSLAM to SN-SLAM, i.e., approximating the sensors’ positions by particles and the

targets’ states by Gaussians, is not appropriate as particle filters are not easily applied to the estimation of

static parameters [21]. In addition, the number of sensors in a sensor network is usually high. Then, the

positions of the sensors is a vector of large dimension and the particle filter will vastly suffer from the

curse of dimensionality [22]. Therefore, it is better to approximate the whole trajectories of the targets

by particles, as they are the dynamic part of the model, and conditioned on them, the sensors’ positions

approximated by a set of independent Gaussians. Thus, in principle, we can easily adapt the algorithms

for R-SLAM to SN-SLAM. We should also note that the formulations that use information smoothing

[15] or finite sets statistics [16]–[18] can also deal with moving landmarks although their generalisations

have not been done yet.

There is an important difference between both problems using particle-filter-type algorithms when

there are multiple robots/targets. In both SN-SLAM and R-SLAM, it is assumed that the sensing en-

tities measure the sensed entities independently of other sensing entities. Then, in R-SLAM, a robot’s

measurement only depends on its (dynamic) state and the landmarks, where the posterior of the state is

represented by single-entity particles. Then, a particle filter in R-SLAM could approximate the dynamic

states using single-entity particles even in a multiple robot set-up. This is because a robot can build a

map without considering other robots although merging individual maps would improve map estimation

[23]. In SN-SLAM, a sensor’s measurement depends only on its position and the states of all the targets.

As a result, targets cannot be considered separately and the posterior of the (dynamic) state must be

represented by multiple-entity particles. To summarise, the primary difference between R-SLAM and

SN-SLAM is that single-entity particles cannot be used in SN-SLAM as we have to account for all the

targets to build the map.



4

The FSLAM method has two shortcomings: one applies to both R-SLAM and SN-SLAM while the

other applies only to its generalisation to multitarget SN-SLAM. The first problem is that accurately

estimating the whole robot/target trajectory using a particle filter is impractical as we are trying to estimate

a quantity of increasing dimension. Therefore, it does not produce consistent estimates in the long-term

because of the degeneracy of the particles [24]. Nevertheless, FSLAM has been shown to work well in

most real and simulated scenarios without having to propagate a covariance matrix of large dimensions

[11]. The second problem arises because FSLAM was originally designed to deal with single-entity

particles. As such, its application to multitarget SN-SLAM does not readily permit the use of techniques

which have been found to be essential for computationally efficient approximation of the posterior in

multitarget situations. One such technique is subparticle crossover [25]–[29]. It takes advantage of the

structure of multiple-entity particles and it is not compatible with FSLAM as explained in Section III.

Subparticle crossover allows the propagation of the multitarget particles, which are made of subparticles,

each one representing a target state, by mixing subparticles of different particles.

In this paper, we develop a new SLAM algorithm for sensor networks based on particle filtering when

there are multiple targets. As mentioned in the previous paragraph, a well-known important element

of efficient multitarget particle filtering is subparticle crossover [25]–[29]. Therefore, we develop an

algorithm referred to as Multitarget SLAM (MSLAM) which permits its application. The key feature of

this algorithm is that the distribution of the sensor positions is computed conditional on only the most

recent multitarget state rather than the trajectories of multitarget states, as in FSLAM. The result of this is

a map mixing step in which the map from each of the particles are combined. Computationally efficient

implementation of this idea requires certain approximations, to be described in Section III.

A further contribution of this paper arises in the approximation of the map posterior. Traditionally,

KF approximations such as the Extended Kalman Filter (EKF) [7], [10], [11] or the Unscented Kalman

Filter (UKF) [9] have been used. It is known that measurement nonlinearities become significant when

the measurement noise variance is small compared to the prior variance [30]. In this case, a KF does not

provide a reliable, accurate approximation of the posterior. However, applying a KF to a modified prior,

which is a mixture of the original prior and a truncated version of it, could provide a vast improvement

in the approximation to the posterior [31]. This algorithm is called Truncated Kalman filter (TKF) and

its aim is to reduce the variance of the prior so that measurement nonlinearities become milder and

the KF applied to the modified prior approximates the posterior properly. In practice, the TKF can

be approximately realised using the Truncated Unscented Kalman Filter (TUKF) [31], [32]. It will be

shown that MSLAM combined with TUKF provides a vast improvement in performance compared to



5

conventional techniques in multitarget situations.

This paper is organised as follows. The target dynamic and measurement model are explained in

Section II. In Section III, the differences between FSLAM and MSLAM are outlined. How to sample

the positions of the targets, update the targets’ velocities and calculate the particles’ weights is addressed

in Section IV. The Bayes’ rule approximation to update the sensors’ positions is shown in Section V.

Simulation results are provided in Section VI. Finally, conclusions are drawn in Section VI.

II. PROBLEM STATEMENT

We assume there are a fixed and known number of targets, t, in the surveillance area. The state of

target i is described at time k by the four-dimensional vector xk
i =

[
xki ,

.
x
k
i , y

k
i ,

.
y
k
i

]T
where

[
xki , y

k
i

]T
is the position vector and

[
.
x
k
i ,

.
y
k
i

]T
is the velocity vector and the superscript T means transpose. The

multitarget state vector is formed by stacking the individual target state vectors into one vector Xk =[(
xk
1

)T
,
(
xk
2

)T
, ...,

(
xk
t

)T ]T . We also assume there are M stationary sensors. The position of sensor i is

described by the two-dimensional vector mi = [mx,i, my,i]
T . The multisensor state vector is formed by

stacking the individual sensor positions into one vector m =
[
mT

1 , mT
2 , . . . , mT

M

]T . Therefore, our aim

is the recursive approximation of p
(
Xk, m

∣∣z1:k ) where z1:k =
(
z1, z2, ..., zk

)
refers to the collection

of measurements up to time k, and zi is the set of measurements at time i. To do so, firstly we develop

the dynamic model of targets and the measurement model of the sensors.

The dynamic model of the targets is the nearly-constant velocity model [33]:

p
(
Xk+1

∣∣∣Xk
)

=

t∏
j=1

N
(
xk+1
j ; F · xk

j , Q
)

(1)

F = I2 ⊗

 1 τ

0 1

 (2)

Q = σ2uI2 ⊗

 τ3/3 τ2/2

τ2/2 τ

 (3)

where it is assumed that the movements of the targets are independent, N (x; x, Q) is the Gaussian

pdf evaluated at x with mean x and covariance matrix Q, Im is the m × m identity matrix, ⊗ is the

Kronecker product and σ2u is the continuous-time process noise intensity [33].

The vector zk =
[(

zk1
)T
,
(
zk2
)T
, . . . ,

(
zkM
)T ]T contains the measurements from the sensors at time

k and zkj is the measurement from sensor j at time k. Measurements are independent in each sensor and



6

do not depend on targets’ velocities:

p
(
zk
∣∣∣Xk, m

)
=

M∏
r=1

p
(
zkr

∣∣∣Pk, mr

)
(4)

where Pk is the vector with all the targets’ positions.

We also assume that the sensors are equipped with Na antennas aiming at different known di-

rections [θ1, θ2, . . . , θNa
]T which measure the amplitude of the signal coming from those directions

independently [34]. Therefore, the measurement in sensor r at time k is represented by a vector zkr =[
zkr,1, z

k
r,2, . . . , z

k
r,Na

]T
where each component represents the measurement in an antenna. We assume

Gaussian noise so that

p
(
zkr

∣∣∣Pk, mr

)
=

Na∏
l=1

N
(
zkr,l; z

k
r,l, σ

2
z

)
(5)

where σ2z = 1 without loss of generality and the expected value of the amplitude is:

zkr,l =

√√√√ t∑
j=1

SNR (dj,r,k) · exp
(
−β (g (ϑj,r,k, θl))

2
)

(6)

where

g (ϑ, θ) = mod (ϑ− θ + π, 2π)− π (7)

SNR (d) =

 SNR0 d ≤ d0
SNR0d2

0

d2 d > d0
(8)

dj,r,k =

√(
xkj −mx,r

)2
+
(
ykj −my,r

)2
(9)

ϑj,r,k = arctan
ykj −my,r

xkj −mx,r
+


0 xkj −mx,r ≥ 0

π ykj −my,r ≥ 0, xkj −mx,r < 0

−π ykj −my,r < 0, xkj −mx,r < 0

(10)

and g (ϑ, θ) is a modular subtraction of angles ϑ and θ that accounts for angle wrapping [35], β is a

parameter that controls the radiation pattern of the antenna, SNR0 is the maximum signal-to-noise ratio

produced by a single target in a sensor, and d0 is the saturation distance. We should note that dj,r,k is

the distance from target j to sensor r at time k, ϑj,r,k is the angle formed by the target j in relation to

sensor r and the positive side of the x axis at time k, SNR (dj,r,k) is the maximum signal-to-noise ratio

produced by target j in sensor r at time k and the exponential term in (6) indicates the radiation pattern

of the antenna.



7

We also assume that we have some prior knowledge about the targets and sensors. That is, we assume

that the prior at time 0 for target j is p
(
x0
j

)
and for sensor r is:

p (mr) = N
(
mr; m0

r , Θ0
r

)
(11)

where m0
r and Θ0

r are the prior mean and covariance matrix of sensor r.

III. FSLAM VERSUS MULTITARGET SLAM

In this section, we explain the characteristics of FSLAM, the reasons why it is not appropriate to deal

with a multitarget scenario and we introduce MSLAM to address its deficiencies.

A. FSLAM

FSLAM is based on the approximation of the pdf

p
(
X0:k, m

∣∣∣z1:k) = p
(
P0:k

∣∣∣z1:k) p(V0:k, m
∣∣∣P0:k, z1:k

)
(12)

where X0:k refers to the collection of the multitarget states from time 0 to k, V0:k represents the targets’

velocities from time 0 to k and P0:k represents the targets’ positions from time 0 to k. The posterior

pdf of the targets’ positions is approximated using a particle filter [36]. We should note that, according

to our model, the relationship between the targets’ velocities and positions is linear and Gaussian and

the measurements do not depend on the velocity. Then, we can apply Rao-Blackwellisation removing

the velocities from the particle filter and calculating their pdf conditioned on the positions by a KF

[14], [27]. In addition, FSLAM approximates the pdf of the positions of the sensors conditioned on the

complete trajectories of the targets and the measurements by set of independent Gaussians, with linear

complexity [10], [11]. Thus, the pdf of the multitarget positions from time 0 to k is represented by particles

and the conditional pdfs of the positions of the sensors and the velocities are represented using Rao-

Blackwellisation via KFs applied to each particle. However, sampling the complete multitarget trajectory

in a proper way is impractical because of its increasing dimension and sampling degeneracy. This problem

is more pronounced in a multitarget set-up, as it is even more difficult to sample the complete trajectory

because the dimension of the state vector is larger and, consequently, particle degeneracy is more acute.

A representation of the propagation of the particles using FSLAM for multiple targets is shown in

Fig. 1 where the last three time instants have been depicted for two particles. As we are sampling the

complete trajectory, to form particle i at a time we must propagate simultaneously all the targets of the

same particle at the previous time. This implies that we cannot mix different subparticles (part of the



8

Time k-2 Time k-1

Particle i

Particle j

Time k

Map 

particle i

Map 

particle j

Figure 1 – FSLAM adapted to multiple targets. Each particle is represented by three boxes. Each box represents

the part of the particle (subparticle) corresponding to a target. The whole multitarget particle has to be propagated

at once as indicated by the arrows. Also, each particle has its own map independent of the maps of the rest of

the particles.

particle that represent one target) to form the new particles, as we will do in the following subsection.

This hinders the process of sampling efficiently because the more targets there are, the more difficult it

is to sample adequately as the dimension of the state increases [22]. In general, any sampling procedure

that propagates all the targets within a particle at once will be compatible with FSLAM and we will be

able to approximate (12). For example, particles are propagated using the prior in [10], while in [11], it

is done using an EKF approximation to the optimal importance density. In Fig. 1, it is also illustrated that

each particle has its own map conditioned on the whole past trajectory of that particle that is independent

of the maps of the rest of the particles.

Another problem with FSLAM is that it suffers map degeneracy. This arises because the map posterior

is computed conditional on the trajectory of the target states. Resampling ensures that all particles at the

current time have a common ancestor at some previous time. Sensors that have not been approached by

any target since this time will have the same posterior means and covariance matrices for all particles,

see Fig. 2. Some techniques proposed to alleviate this problem deal with the resampling step [37], [38] or

use parameter estimation rather than Rao-Blackwellisation for the map [39]. Instead, we have developed

the algorithm MSLAM, which is explained in the next subsection, to lower the effect of these two

shortcomings.



9

1

2

3

1

2

3

Time k-3 k-2 k-1 k

Figure 2 – Map degeneracy in FSLAM: The red line indicates the target trajectory. The target state is represented

by three particles at each time step. The arrows indicate who is the parent of a particle at the previous time

step. The star denotes a real sensor position and the triangles denote its mean position for a particle. The dotted

line indicates the coverage of the sensor. Therefore, the sensor position is only updated at time k−3 remaining

unaltered thereafter. At time k− 3, each particle has a different mean position for the sensor. However, at time

k all the particles have the same mean position for the sensor that is one of the initial means as the three

particles have a common ancestor and, thus, map degeneracy appears.

B. Multitarget SLAM

The algorithm we develop here, MSLAM, was designed to propagate the particles of the targets more

efficiently than FSLAM and to mitigate the map degeneracy problem. To this end, we use the Parallel

Partition method (PP) to propagate the particles [28]. This method was designed to properly deal with

multitarget tracking with low computational burden. The use of this method implies that we need to

resort to a map mixing step that reduces the effect of map degeneracy as we will explain hereafter.

The PP method uses a technique called subparticle crossover. This refers to the mixing of parts of

different particles to form new ones in the propagation step. This way the effect of particle degeneracy is

lowered and the filter can work with fewer particles in a multitarget tracking set-up [25]–[29]. However,

carrying out subparticle crossover implies that we are not sampling the complete trajectories of all the

targets as we get the best subparticles of each target to represent the new state. This implies that FSLAM,

approximating (12), cannot be used as we are not sampling the complete multitarget trajectory. The way

the PP method propagates the particles is shown in Fig. 3. As we mix different parts of the particles at

time k − 1 to form the new particles at time k, it is obvious that we also need to mix the maps of the

particles at time k− 1 when we get the particles at time k. This map mixing step is one of the novelties

of our algorithm compared to FSLAM.



10

Time k-1 Time k

Particle i

Particle j

Figure 3 – Subparticle crossover for three targets: A particle at time k can be made up of the propagation of

the tracks that belonged to different particles at time k − 1. The circles inside each subparticle stand for the

first-stage weight of the subparticle bj,i in (24). At time k, we tend to form particles with subparticles that

have a high weight.

As opposed to FSLAM, MSLAM aims to compute

p
(
Xk, m

∣∣∣z1:k) = p
(
Pk
∣∣∣z1:k) p(Vk, m

∣∣∣Pk, z1:k
)

(13)

It can be seen that the main difference between MSLAM and FSLAM is that in (13) we approximate

the pdf of the current multitarget state, while in (12), we approximate the pdf of the complete multitarget

trajectories. As in FSLAM, we use a particle filter approximation for the target positions such that (13)

becomes:

p
(
Xk, m

∣∣∣z1:k) ≈ Npar∑
i=1

wk
i δ
(
Pk −Pk

i

)
p
(
Vk, m

∣∣∣Pk
i , z1:k

)
(14)

where Npar is the number of particles, δ (·) is the Dirac delta, Pk
i is particle i that represents the positions

of the targets at time k and wk
i is its weight. We assume that the pdf p

(
Vk, m

∣∣Pk
i , z1:k

)
is:

p
(
Vk, m

∣∣∣Pk
i , z1:k

)
=

t∏
j=1

N
(
vk
j ; vk

j,i,Σ
k
j,i

)
·

M∏
r=1

N
(
mr; m

k
r,i,Θ

k
r,i

)
(15)

where vk
j is the velocity of target j at time k, vk

j,i and Σk
j,i are the mean and covariance matrix

approximation of the velocity of target j for particle i and, mk
r,i and Θk

r,i are the mean and covariance

matrix approximation of sensor r position for particle i.

The imposition of posterior independence and Gaussianity on the velocities and sensors’ positions in

(15) involve some approximations which will be described in the following sections. Nevertheless, we

are going to demonstrate in the simulations of Section VI that for a multitarget scenario making these



11

approximations has much better results than trying to estimate the complete trajectories of the targets

with FSLAM.

There are two main reasons for this. The first one is that MSLAM can be applied with the PP method,

which was specifically designed to reduce the number of particles in multiple target tracking. Recall

that PP method cannot be applied with FSLAM because FSLAM requires sampling of the complete

trajectories of all targets. Then, the approximation of p
(
Pk
∣∣z1:k ) using MSLAM is expected to be

better than the approximation of p
(
Pk
∣∣z1:k ) using FSLAM when there are multiple targets. The second

one is, as the dimension of Pk is much lower than the dimension of P0:k, which is a vector of increasing

dimension, the particle filter approximation of the pdf p
(
Pk
∣∣z1:k ) will be considerably better than the

approximation of p
(
P0:k

∣∣z1:k ) [22]. The difficulty of approximating p
(
P0:k

∣∣z1:k ) gives rise to the map

degeneracy problem which was introduced in subsection III-A and illustrated in Figure 2. Then, as the

posterior pdf of the map in MSLAM depends on the particle approximation of p
(
Pk
∣∣z1:k ) rather than

p
(
P0:k

∣∣z1:k ), sample degeneracy is much less likely to adversely affect estimation of the map than in

FSLAM. A better approximation of the posterior pdfs of current position of the targets and the map

implies that MSLAM should perform better than FSLAM in a multiple target set-up.

We need to address two issues to completely define MSLAM. The first one is how to propagate the

particles that represent the positions, which is done using the PP method, and the second is how to

update the conditional pdfs of the targets’ velocities and sensors’ positions. In other words, we need an

approximation of the posterior pdf at time k + 1 in a similar form of (14) and (15) based on the pdf at

time k, (14) and (15), and the model description in Section II. These subjects are addressed in the next

sections.

IV. APPROXIMATION OF THE TARGET STATE POSTERIOR

In this section, we explain how to sample the targets’ positions, how to update the targets’ velocities

and how to calculate the weights of the particles.

A. Sampling the targets’ positions

As we stated in the introduction, we use the PP method to sample the targets’ positions. The PP method

works with a posterior pdf for the multitarget state that can be factorised as [28]:

p
(
Xk
∣∣∣z1:k) ∝ t∏

j=1

Npar∑
i=1

δ
(
pk
j − pk

j,i

)
p
(
vk
j

∣∣∣pk
j,i, z1:k

)
(16)



12

where, according to (15),

p
(
vk
j

∣∣∣pk
j,i, z1:k

)
= N

(
vk
j ; vk

j,i,Σ
k
j,i

)
(17)

and pk
j is the position of target j at time k, pk

j,i is the position of target j in particle i and ∝ indicates

proportionality. It should be noted that (16) does not necessarily hold for a group of closely spaced

targets as their positions conditioned on the measurements could be dependent. However, assumptions of

this kind are quite common in multitarget tracking algorithms such as the well-known Joint Probabilistic

Data Association Filter (JPDAF) [40].

Using (1), integrating out the states of the targets at time k and applying the Bayes’ rule in (16), the

updated pdf for the positions (the pdf we want to obtain samples from) is

p
(
Pk+1

∣∣∣z1:k+1
)
∝ p

(
zk+1

∣∣∣Pk+1, z1:k
) t∏

j=1

Npar∑
i=1

N
(
pk+1
j ; p

k+1|k
j,i ,Ξk+1

11,j,i

)
(18)

where

N
(
pk+1
j ; p

k+1|k
j,i ,Ξk+1

11,j,i

)
=

ˆ
p
(
pk+1
j

∣∣∣pk
j,i, vk

j

)
N
(
vk
j ; vk

j,i,Σ
k
j,i

)
dvk

j (19)

and p
k+1|k
j,i = pk

j,i + τvk
j,i and Ξk+1

11,j,i = τ2Σk
j,i + Qp are the predicted mean and covariance matrix, and

Qp is the process noise covariance matrix for the position elements according to (3).

The PP method samples an auxiliary variable for each target such that

p
(
Pk+1, a

∣∣∣z1:k+1
)
∝ p

(
zk+1

∣∣∣Pk+1, z1:k
) t∏

j=1

N
(
pk+1
j ; p

k+1|k
j,aj

,Ξk+1
11,j,aj

)
(20)

where a = [a1, ..., at]
T , with aj ∈ {1, ..., Npar}, indicates that we are choosing the component aj on

the mixture given by the posterior, equation (18), for target j [28]. The idea of sampling in a higher

dimension has traditionally been used, for instance, in the auxiliary particle filter, and can report a lot

of benefits [13], [41]. We should note that integrating out the auxiliary variables in (20), we get (18) so

this definition of auxiliary variables is sound. Then, if we draw a sample from the joint density (20) and

then discard the part of the sample that corresponds with a, then we are producing a sample from (18)

as required.

If we draw Pk+1
i , ai =

[
ai1, . . . , a

i
t

]T from an importance density q (·) for i = 1, . . . , n, the updated

weights are calculated as:

wk+1
i ∝

p
(
zk+1

∣∣∣Pk+1
i , z1:k

)∏t
j=1N

(
pk+1
j,i ; p

k+1|k
j,ai

j
,Ξk+1

11,j,ai
j

)
q
(
Pk+1

i , ai |z1:k+1
) (21)



13

The importance density in the PP filter is [28]:

q
(
Pk+1, a

∣∣∣z1:k+1
)

=

t∏
j=1

bj

(
pk+1
j

)
N
(
pk+1
j ; p

k+1|k
j,aj

,Ξk+1
11,j,aj

)
(22)

where bj
(
pk+1
j

)
are the first-stage weights for target j. The PP method suggests that bj

(
pk+1
j

)
should

be selected proportional to [28]:

p
(
zk+1

∣∣∣pk+1
j , P̂

k+1|k
−{j} , z

1:k
)

=

ˆ
p
(
zk+1

∣∣∣pk+1
j , P̂

k+1|k
−{j} , m

)
p
(
m
∣∣∣pk+1

j , P̂
k+1|k
−{j} , z

1:k
)

dm (23)

where P̂
k+1|k
−{j} represents the predicted positions of the targets averaged over all the particles except for

target j. The first-stage weights are used to determine which single target sub-particles will be used to

construct multitarget particles. These weights should be such that sub-particles which well-represent a

given target are selected with high probability. At the same time, the weight assigned to a sub-particle

should account for the influence of neighbouring targets. Eq. (23) fulfils both these requirements by using

the likelihood of a multitarget state composed of a sample from the transition prior for the sub-particle

in question and the particle filter approximation of the predicted positions of the remaining targets.

The problem with (23) is that it is computationally demanding to calculate. For every pk+1
j , the

approximation to the posterior pdf of the map p
(
m
∣∣∣pk+1

j , P̂
k+1|k
−{j} , z

1:k
)

changes and we need to

approximate an integral based on it. Then, to lower the computational burden, we propose to use:

bj

(
pk+1
j

)
∝

M∏
r=1

ˆ
p
(
zk+1
r

∣∣∣pk+1
j , P̂

k+1|k
−{j} , mr

)
N
(
mr; m

k
r , Θk

r

)
dmr (24)

where
{
mk

1, Θk
1, . . . ,m

k
M , Θk

M

}
refers to the set of means and covariance matrices that represent an

independent Gaussian approximation to the marginal pdf of the map at time k, which is obtained by

integrating out the positions and velocities in (14). Finally, the integral in (24) is approximated using the

unscented transformation [42]. The steps of the approximate sampling procedure of the PP method are

shown in Table I and a thorough explanation is given in [28].

B. Update of the targets’ velocities

Once we have drawn the particles of the positions at time k+1, we explain how to update the velocities

of the targets. It is shown in Appendix I that:

p
(
Vk+1

∣∣∣Pk+1, z1:k
)
∝

t∏
j=1

Npar∑
i=1

N
(
uk+1
j ; uk+1

j,i ,Ξk+1
j,i

)
(25)

where uk+1
j =

[
pk+1
j ,vk+1

j

]T
and

uk+1
j,i =

[
pk
j,i + τvk

j,i,v
k
j,i

]T
(26)



14

Table I – Parallel Partition Subroutine for Multitarget SLAM

PP Subroutine for target j

• For each particle i = 1, ..., Npar:

– Get a sample for the position p∗j,i v N
(
pk+1
j ,p

k+1|k
j,i ,Ξk+1

11,j,i

)
.

– Calculate bj
(
p∗j,i
)

using (24).

• Normalise bj
(
p∗j,i
)

to sum to one over i = 1, ...Npar .

• Resampling step for each track. For each particle i = 1, ..., Npar:

– Sample an index p from the distribution defined by bj
(
p∗j,l
)

over l = 1, ..., Npar .

– Set pk+1
j,i = p∗j,p and the parent’s index aij = p.

Ξk+1
j,i =

 Ξk+1
11,j,i Ξk+1

12,j,i

Ξk+1
21,j,i Ξk+1

22,j,i

 =

 τ2Σk
j,i + Qp τΣk

j,i + Qpv

τΣk
j,i + Qvp Σk

j,i + Qv

 (27)

where Qp, Qv are the covariance matrices of the positions and velocities, and Qpv is the covariance

matrix between the positions and velocities according to (3).

Equation (25) can be written as

p
(
Vk+1

∣∣∣Pk+1, z1:k
)

=

t∏
j=1

Npar∑
i=1

ρ1,i

(
pk+1
j

)
N
(
vk+1
j ; v

k+1|k
j,i

(
pk+1
j

)
,Σ

k+1|k
j,i

)
(28)

where

ρ̃1,i

(
pk+1
j

)
= N

(
pk+1
j ; p

k+1|k
j,i ,Ξk+1

11,j,i

)
(29)

and ρ1,i
(
pk+1
j

)
are the normalised ρ̃1,i

(
pk+1
j

)
so that they sum to one in the variable i and, v

k+1|k
j,i

(
pk+1
j

)
and Σ

k+1|k
j,i are calculated using the fundamental equations of linear estimation [33]:

v
k+1|k
j,i

(
pk+1
j

)
= vk

j,i + Ξk+1
12,j,i

(
Ξk+1

11,j,i

)−1 (
pk+1
j − p

k+1|k
j,i

)
(30)

Σ
k+1|k
j,i = Ξk+1

22,j,i −Ξk+1
12,j,i

(
Ξk+1

11,j,i

)−1
Ξk+1

21,j,i (31)

Then, according to (28), the posterior of the targets’ velocities is a product of Gaussian mixtures. As

for the next step of the recursion, see (16) and (17), we assume the velocity of a target is approximated

by a Gaussian pdf, we approximate each Gaussian mixture in (28) by a Gaussian pdf [13]:

p
(
Vk+1

∣∣∣Pk+1, z1:k
)
≈

t∏
j=1

N
(
vk+1
j ; vk+1

j,i ,Σk+1
j,i

)
(32)

where

vk+1
j,i =

Npar∑
p=1

ρ1,p

(
pk+1
j

)
v
k+1|k
j,p

(
pk+1
j

)
(33)



15

Σk+1
j,i =

Npar∑
p=1

ρ1,p

(
pk+1
j

)
·
[
Σ

k+1|k
j,p +

(
v
k+1|k
j,p

(
pk+1
j

)
− vk+1

j,i

)(
v
k+1|k
j,p

(
pk+1
j

)
− vk+1

j,i

)T]
(34)

It should be mentioned that approximating a Gaussian mixture by independent Gaussian pdfs has

traditionally been done in the tracking community, for instance, in the well-known JPDAF [40].

C. Calculation of the particles’ weights

In subsection IV-A, we explained how to propagate the particles using the PP method. Here, we show

how to calculate their weights. Substituting (22) into (21), the particle weights are:

wk+1
i ∝

p
(
zk+1

∣∣∣Pk+1
i , z1:k

)
∏t

j=1 bj

(
pk+1
j,i

) (35)

In order to calculate (35), we need to obtain

p
(
zk+1

∣∣∣Pk+1
i , z1:k

)
=

ˆ
p
(
zk+1

∣∣∣Pk+1
i ,m

)
· p
(
m
∣∣∣Pk+1

i , z1:k
)

dm (36)

The pdf p
(
m
∣∣Pk+1, z1:k

)
is calculated in Appendix II:

p
(
m
∣∣∣Pk+1, z1:k

)
=

Npar∑
i=1

ρ2,i

(
Pk+1

) M∏
r=1

N
(
mr; m

k
r,i,Θ

k
r,i

)
(37)

where

ρ̃2,i

(
Pk+1

)
=

t∏
j=1

N
(
pk+1
j ; p

k+1|k
j,i ,Ξk+1

11,j,i

)
(38)

and ρ2,i
(
Pk+1

)
are the normalised ρ̃2,i

(
Pk+1

)
so that they sum to one. Then, (37) indicates that the

distribution of the map given the new positions of the targets at time k + 1 and without taking into

account the measurements at time k+ 1 is a mixture of independent Gaussian distributions that represent

the maps of the particles at time k. This mixture of maps has one positive effect and one drawback. The

positive effect is that it tends to reduce map degeneracy because the maps are shared among the particles

in the following way. The map for a certain position at time k+ 1 is a mixture of Gaussians determined

by the values of ρ2,i
(
Pk+1

)
. The value ρ2,i

(
Pk+1

)
indicates the probability that the position Pk+1 at

time k + 1 has been drawn from particle i at time k. This way if a particle at time k + 1 matches only

one particle at time k, it will inherit its map. On the contrary, if there are several particles at time k that

match the new particle, the new particle will inherit a map that is a combination of those previous maps.

The drawback is that the new map is not Gaussian distributed any more and that the sensors’ positions

become correlated. Therefore, in order to be able to estimate recursively the positions of the sensors

using (15), we approximate the probability in (37) by a set of independent Gaussian distributions whose



16

mean and covariance matrix are equal to the Gaussian mixture in (37). Using the mean and covariance

matrix of a mixture of Gaussians [13]:

p
(
m
∣∣∣Pk+1

i , z1:k
)
≈

M∏
r=1

N
(
mr; m

k+1|k
r,i , Θ

k+1|k
r,i

)
(39)

where

m
k+1|k
r,i =

Npar∑
p=1

ρ2,p

(
Pk+1

)
mk

r,p (40)

Θ
k+1|k
r,i =

Npar∑
p=1

ρ2,p

(
Pk+1

)
·
[
Θk

r,p +
(
mk

r,p −m
k+1|k
r,i

)(
mk

r,p −m
k+1|k
r,i

)T]
(41)

Finally, we substitute (39) into (36) and we approximate the integral in (36) by applying the unscented

transformation to each sensor position [42] to obtain an approximation to (35).

V. SENSORS’ POSITIONS UPDATE

So far we have explained how to sample the positions, update the velocities and calculate the weights

of the particles. In this section, we explain the last step to completely define the MSLAM recursion, i.e.,

how we use the sensors’ measurements to update the sensors’ positions. Applying the Bayes’ rule for

the map of particle i to (39) and (4):

p
(
m
∣∣∣Pk+1

i , z1:k+1
)
∝

M∏
r=1

p
(
zk+1
r

∣∣∣Pk+1
i , mr

)
p
(
mr

∣∣∣Pk+1
i , z1:k

)
(42)

In this section, we drop the indexes that indicate the particle and time for the sake of clarity but noting

that the Bayes’ rule for the sensors’ positions needs to be performed for each particle and sensor at each

time. Hence, the algorithm described in this section has to be carried out particle by particle and sensor

by sensor. Usually the Bayesian recursion for the map is approximated using the EKF or UKF [7], [9].

However, it is known that measurement nonlinearities become significant when the measurement noise

variance is small compared to the prior variance [30]. In this case, conventional KF-type algorithms,

such as the EKF or UKF, perform badly and the recently proposed Truncated Unscented Kalman Filter

(TUKF) was designed to overcome their deficiencies [31]. The TUKF is based on the idea that a more

accurate approximation of the first two moments of the posterior can be obtained by applying a KF to a

modified prior that is a mixture of the original prior plus a truncated version of it. The aim is to reduce

the prior variance so that nonlinearities become milder and the KF performs well.

The Single Point TUKF (SP-TUKF)1, which is the approximation of the TKF we employ in this

paper, uses the same set of sigma-points as the UKF plus one extra sigma point m̃r (z) that is chosen

1In this paper we refer to the SP-TUKF in [31] simply as TUKF as context permits.



17

according to the likelihood [31], [32]. Then, what TUKF proposes is to use another distribution for the

prior p2 (mr), rather than the real prior p0 (mr), approximated by [32]:

p2 (mr) ≈ αspδ (mr − m̃r (z)) + (1− αsp) p̃0 (mr) (43)

where m̃r (z) is the extra sigma point that represents the truncated prior, αsp is the weight of the extra

sigma point m̃r (z) and, p̃0 (mr) is the unscented approximation of the prior p0 (mr) [42]. The unscented

approximation of p0 (mr) can be written as [43], [44]:

p0 (mr) ≈ p̃0 (mr) =

Ns∑
i=1

wi
sδ (mr −mr,i) (44)

where Ns is the number of sigma points, mr,i is the sigma point i for sensor r, and wi
s is the weight of

sigma point i. The number Ns of sigma points depends on the dimension of the state and the number of

moments of the distribution we want to approximate. The selection of the sigma points and the way to

perform a KF update stage using them are beyond the scope of this paper and can be found in [42]. There

are many possible choices of sigma points for representing p0 (mr). We use the unscented transformation

as described in Section IV of [42] in which the weight of the sigma point located on the mean is 1/3.

A. Selection of αsp

We use the value of αsp proposed in [31], [32]:

αsp = αmax
γtr (Pp,0)

γtr (Pp,0) + (1− γ) tr (Pp,1)
(45)

where Pp,0 is the covariance matrix of the prior for the particle we are considering, given by (41), Pp,1

is the covariance matrix of the approximated truncated prior, γ ∈ [0, 1] is a parameter that controls the

weights of the traces of the covariance matrices to select αsp, αmax < 1 is the maximum value αsp

can take, and tr (A) denotes the trace of matrix A. Following a similar procedure as in [31], when the

measurement vector dimension is different to the state vector dimension, Pp,1 can be approximated as

Pp,1 =
(
H̃T H̃

)−1
(46)

where we have assumed that the measurement noise covariance matrix is the identity matrix and

H̃ =
[
∇mr

hT (mr)
]T ∣∣∣

mr=m̃r(z)
(47)

is the Jacobian of h (mr) evaluated at m̃r (z), h (mr) is given by (6) particularised for the current

multitarget state and sensor.



18

The motivation of using (45) is the following. The approximation of the truncated prior by a single

sigma point improves when the trace of the covariance matrix of the approximated truncated prior

decreases. Additionally, KF applied to p0 (·) is expected to perform worse when the prior uncertainty is

large so the trace of the covariance matrix of p0 (·) is high. Then, αsp should increase when the trace

of the covariance matrix of the truncated prior decreases and when the trace of the covariance matrix of

p0 (·) increases.

Additionally, we set a threshold, ΓE . If the sum of the squared measurements in the antennas is under

this threshold, we set αsp = 0. There are two reasons for using this threshold. If the energy of the received

signal is not high enough, the value of αsp will be low, then, the TUKF tends to be the UKF. Therefore,

we can avoid calculating the extra sigma point and αsp and, then, reduce computational expense. Another

reason is that if the energy is not high enough, for example, the received signal is only noise, then, the

extra sigma point will be placed practically at random and, therefore, there is no point in using it.

B. Selection of the extra sigma point

The extra sigma point m̃r (z) for Gaussian noise should minimise (zr − h (mr))
T R−1 (zr − h (mr))

so that the likelihood attains its maximum [31] where R = INa
is the measurement noise covariance

matrix for sensor r and zr is the measurement of sensor r. Then, we could use Nonlinear Least Squares

to do so. However, as we also have some prior knowledge about the location of the sensor, equation (11),

we use a penalty function to increase the chance that the extra sigma point is in a region where the prior

is non-negligible and improve the convergence of the algorithm. We define:

L (mr) =
[
(zr − h (mr))

T , g (mr)
]T

(48)

where

g (mr) =

 0
(
mr −m0

r

)T (
Θ0

r

)−1 (
mr −m0

r

)
< Γp

cp

((
mr −m0

r

)T (
Θ0

r

)−1 (
mr −m0

r

)
− Γp

)
otherwise

(49)

and m0
r and Θ0

r are the initial mean and covariance matrix of the position of sensor r, cp > 0 is a

parameter of the penalty function and Γp sets the region where the penalty function applies. Then, we

aim to minimise the objective function:

J (mr) = LT (mr) L (mr) (50)

We also assume that Na > 2 (there are more than two antennas) so that the problem is overdetermined

and we use the Gauss-Newton method to solve it [45]. It should be noted that we need to minimise



19

Table II – Subroutine for updating the sensors’ positions

• For each sensor to update (based on Γsens)

– Sum the squared signal for all the antennas in that sensor Es =
∑Na

i=1 z
2
r,i where zr,i is the ith component of zr .

∗ IF Es > ΓE

· Calculate the extra sigma point and αsp for each particle according to Section V.

· Apply the TUKF for that sensor in each particle.

∗ ELSE

· Set αsp = 0, i.e., apply the UKF for that sensor in each particle.

∗ END

(50) for every particle which is very time-consuming. Then, what we propose is a two-phase procedure

in which we minimise (50) globally, i.e., for the mean positions of the targets and then, we refine the

estimate for each particle.

1) Global minimisation: In this step of the algorithm, we minimise the objective function, equation

(50), for the mean positions of the targets (considering all the particles), i.e., we use these positions to

calculate function h (·). Then, the Gauss-Newton method uses the following iteration to obtain the sensor

position mr that minimises the objective function, equation (50) [45]:

m̃r,k+1 = m̃r,k − γg
(
L′Tk L′k

)−1
L′Tk L (m̃r,k) (51)

where m̃r,k is the position of sensor r at iteration k, L′k is the Jacobian of L (mr) evaluated at m̃r,k

and γg is a parameter that controls the convergence rate. The starting point of the iteration is the mean

of the sensor at the current time step, equation (40).

Finally, the convergence criterion of the recursion (51) is

∣∣∣∣J (m̃r,k+1)− J (m̃r,k)

J (m̃r,k)

∣∣∣∣ < 10−5 (52)

or if the number of steps of the recursion reaches Nrg.

2) Local minimisation: The output of the global minimisation is used as the input of the local

minimisation. In this step, we calculate a refinement of the position of the sensor for each particle.

Thus, for each particle we perform again iteration (51) bearing in mind that function h (·) is different for

each particle as it depends on the targets’ positions, which are different for each particle. The convergence

criterion of the recursion is again (52) or if the number of steps is equal to Nrl.

Additionally, in the implementation of the algorithm, we do not update all the sensors’ positions and

we do not consider all the sensors to propagate the particles at every time step because it is very time-



20

Table III – Proposed algorithm for Multitarget SLAM

• Calculate the sensors to update, using Γsens.

• For each target, sample its position using PP subroutine, see Table I.

• Map and velocity mixing step: mix the maps of the sensors via (39) and the velocities via (32).

• Update the weights of each particle using (35).

• Update the positions of the sensors using (42) following the steps given in Table II and Section V.

• Perform resampling to obtain an evenly weighted particle set.

consuming. We calculate the set of sensors that is used to do all the calculations based on a threshold

Γsens. If the distance from any target to a sensor is less than Γsens then the sensor is considered in the

current step of the algorithm. To sum up, the steps of the subroutine for updating the sensors’ position

using the TUKF and the steps of the complete algorithm for multitarget SLAM are shown in Tables II

and III, respectively.

In addition, if the surveillance area were large enough we could consider applying target clustering as

in [26]–[28]. We have not introduced it here for the clarity of presentation and because in the scenario

analysed in the following section, the targets are close to each other and the likelihood does not factorise

over the clusters as in [27].

VI. SIMULATION RESULTS

In this section, we compare MSLAM with FSLAM and with a filter that uses the PP method for

tracking but without updating the sensors’ positions. The last method is a suboptimal approach that takes

into account the initial uncertainty in the positions of the sensors but does not update them. This method

is analysed to show the improvement that can be made by estimating simultaneously the positions of

the targets and the sensors. The Bayes’ rule for updating the conditional posterior pdf of the sensors’

positions for both SLAM methods is performed using the UKF and the TUKF.

The FSLAM algorithm for multitarget SLAM cannot perform subparticle crossover as we stated

previously, so we use an auxiliary particle filter [41] to propose the new particles jointly for all the

targets. In our implementation of the auxiliary particle filter, the predicted mean of the multitarget state

is used to compute the first-stage weights.

We use three targets to evaluate the performances of the algorithms with the trajectories shown in Fig.

4. The sampling period of the trajectories is τ = 0.5 s and there are l = 99 time steps in the simulation.

The surveillance area is a square whose side is 150 m. We will study the algorithms varying the initial

uncertainty of the sensors’ positions for a multiple target and a single target set-up. The initial mean



21

0 50 100 150
0

50

100

150

x position (m)

y 
po

si
tio

n 
(m

)

1

2

3

Figure 4 – Scenario of the simulations: Each target is identified at the beginning of its trajectory by a number.

The trajectories have an asterisk to indicate the target position every ten time steps.

Table IV – Model parameters

Parameter σu SNR0 d0 β Na σ0

Value 1.8 m/s3/2 32 dB 1 m 1 4 0.1 m

positions of the sensors form a grid whose side is 10 m. The initial covariance matrix of each sensor

position is

Θ0
j = σ2sI2 (53)

The prior pdf for the target’s position is:

p0
i v N

(
p0
i ; p0

i , σ
2
0I2
)

(54)

for i ∈ {1, ..., t} where p0
i is the expected position of target i at time 0 and σ20I2 is the covariance

matrix of the initial position at time 0 which is assumed to be the same for all the targets for simplicity.

In each Monte Carlo run, p0
i is drawn from a Gaussian distribution whose mean is the real position of

target i at time 0 and whose covariance matrix is σ20I2. In addition, the initial target velocity is taken

as in [27]. For each target in each particle, we draw two integers η1, η2 such that P (ηi = j) = 1/2 for

j ∈ {−1, 1} i ∈ {1, 2} and then select the initial distribution of the target velocity to be Gaussian with

mean [η1, η2]
T and covariance matrix I2. The parameters of the model used in the simulations are those

shown in Table IV. The sensor’s antennas are aiming at directions (0o, 90o, 180o, 270o). The parameters

of the algorithms used in the simulations are those shown in Table V.



22

Table V – Algorithm parameters

Parameter Γsens ΓE Γp cp Nrg Nrl γg αmax γ Npar

Value 25 m 40 9 100 100 100 0.1 0.8 0.1 300

We evaluate the tracking performance calculating the root mean square (RMS) of the position error for

the targets and the sensors by a Monte Carlo simulation of m = 50 realisations. To assess the tracking

performance, we make a Track-to-truth Assignment Table [46] in which each track is associated with one

target or with none at each time step depending on the distance from the track to the real position of the

target and a threshold that is taken to be Λ = 10 m. If the distance from a track to a target exceeds that

threshold, the track cannot be associated with that target.

Let p̂k
i (j) , i = 1, . . . , t, k = 1, . . . , l, j = 1, . . . , m denote the position estimate of the ith target on

the jth Monte Carlo realisation at time k, eki (j) =
∥∥pk

i − p̂k
i (j)

∥∥
2

denote the position error for the ith

target on the jth Monte Carlo realisation at time k and χi, j, k = 1 if eki (j) < Λ and zero otherwise. The

variable χi, j, k indicates if the ith target is in track at time k on the jth Monte Carlo realisation. The

RMS position error E for the targets is then calculated by

E =

√√√√∑m
j=1

∑l
k=1

∑t
i=1

(
eki (j)

)2 · χi, j, k∑m
j=1

∑l
k=1

∑t
i=1 χi, j, k

(55)

The RMS position error for the targets and sensors are shown in Fig. 5. To be fair with the comparisons,

we also include the results for FSLAM with 600 particles as it has roughly the same computational burden

in our implementation as MSLAM with 300 particles. The RMS position error for the sensors for the PP

method corresponds to the average initial error as the sensors’ positions are not updated, see Fig. 5b. It

has been obtained by simulation although we know its theoretical value is
√

2σs. Therefore, the distance

of this line to the line of another algorithm indicates the improvement or deterioration of the knowledge

of the sensors’ positions given by the algorithm. One should note that it may seem that the localisation

of the sensors for these algorithms is poor by looking at Fig. 5 but this error is averaged over all the

sensors and not all the sensors are updated because the targets do not approach them.

There are three characteristics of the results in Fig. 5 that are of interest: MSLAM versus FSLAM,

the UKF versus the TUKF and, SLAM versus PP method with only tracking. Firstly, it can be seen

that FSLAM performance is rather poor compared to MSLAM. This is due to the advantage of using

subparticle crossover and a lower map degeneracy of MSLAM. Even if we double the number of

particles of FSLAM, it is still far from the performance of MSLAM. Secondly, the improvement of



23

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

σ
s
 (m)

rm
s 

(m
)

 

 
MSLAM−UKF(300)
MSLAM−TUKF(300)
FSLAM−UKF(300)
FSLAM−TUKF(300)
FSLAM−UKF(600)
FSLAM−TUKF(600)
PP(300)

(a)

0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

σ
s
 (m)

rm
s 

(m
)

 

 
MSLAM−UKF(300)
MSLAM−TUKF(300)
FSLAM−UKF(300)
FSLAM−TUKF(300)
FSLAM−UKF(600)
FSLAM−TUKF(600)
PP(300)

(b)

Figure 5 – Performance of the algorithms for three targets: (a) RMS position error for the targets, (b) RMS

position error for the sensors. In both cases, MSLAM-TUKF outperforms the rest of the algorithms.

the estimate given by the TUKF over the UKF is more significant as σs increases. This happens

because, as σs increases, the prior knowledge about the sensors’ positions is increasingly vague and,

then, the measurement carries more information compared to the prior. In this case, the TUKF clearly

outperforms the UKF [31]. When the prior knowledge is very accurate compared with the information of

the measurement, αsp tends to zero, equation (45), and the TUKF comes down to the UKF. Therefore,

for low σs, both methods have the same performance. Thirdly, if SLAM is not carried out properly,

i.e., FSLAM is used in a multiple target set-up, it is better to use the PP method without updating the

sensors’ positions for σs ≤ 2 m. In this case for FSLAM, simultaneously estimating the map and the

targets’ positions is worse than just doing tracking. For MSLAM, simultaneously estimating the map

and the targets’ positions is never worse than just doing tracking as expected. As σs grows, both SLAM

methods provide an advantage over only tracking. However, when the uncertainty in the sensors’ positions

is very low, σs = 0.1 m, MSLAM and PP performances are approximately the same. In that case, it might

not be worth updating the sensors’ positions as the improvement is negligible.

We now analyse more deeply the estimate of the map for σs = 4 m. In Fig. 6, we show the final

RMS position error map for the sensors for the algorithms. Every pixel of the figure represents the RMS

for the sensor whose prior expected position at time 0 is located in that part of the surveillance area.

The axes are labelled according to the initial mean positions of the sensors. We suggest having a look

at the trajectories of the targets in Fig. 4 to understand Fig. 6 better. It is clear that the estimates of

the positions of the sensors that are located far from the trajectories of the targets are not improved



24

as they acquire no useful information regarding their positions. The main difference between using the

UKF and the TUKF lies in the estimate of the sensors’ positions near the initial positions of the targets.

The UKF fails to provide a good estimate of the positions of such sensors. This affects the tracking and

localisation at future times. This occurs because, initially, the information given by the measurements

could be much higher than the information of the prior and, therefore, the UKF does not work properly

[31]. The main difference between FSLAM-TUKF and MSLAM-TUKF are the estimates of the sensors’

positions that are updated after a certain time has passed. This is because FSLAM does not work well

in a multiple target set-up and cannot track the targets properly. As tracking performance is poor, map

estimation in FSLAM-TUKF is poor too. Then, it is clear the algorithm that was previously available

in the literature, FSLAM-UKF, is vastly outperformed by the algorithm we propose, MSLAM-TUKF

because of two reasons: the use of an efficient particle filter for multitarget tracking and a more accurate

approximation of the posterior of the map given by the TUKF.

The RMS position error for the targets when only target number two is present in the scenario of Fig.

4, is shown in Figure 7. In this case, the best algorithm is FSLAM-TUKF. MSLAM that was designed

to deal with a multitarget set-up is worse than FSLAM for one target. The reason for this is that we

cannot take advantage of subparticle crossover as there is only one target and, therefore, it cannot be

performed. We recall that the good properties of our method that are subparticle crossover and a map

mixing step occur at the expense of approximating Gaussian mixtures by independent Gaussian, equation

(39). However, for a one-target scenario it is better to estimate the whole target trajectory and potentially

incur map degeneracy than to estimate the current state of the target without map degeneracy and make

the approximations in Section III.

It is interesting to compare the results of Fig. 7 for one target with the results of Fig. 5 for three targets.

This provides an insight into how the PP method and MSLAM deal with the problem of dimensionality.

While FSLAM severely suffers the curse of dimensionality, when there are three targets the performance

slumps, PP and MSLAM have roughly the same performance regardless of the number of targets because

of subparticle crossover. Moreover, when σs ≥ 4, the performance of MSLAM for three targets is

better than for one target. This is because MSLAM is able to localise more sensors improving tracking

performance. Then, this suggests that MSLAM-TUKF is an appropriate way to address Multitarget SLAM.

Finally, the execution times for the algorithms implemented in Matlab with C-MEX subroutines on a

Pentium IV with a 2.4-GHz processor for this scenario using 300 particles are shown in Table VI.



25

x position (m)

y 
po

si
tio

n 
(m

)

 

 

0 50 100 150
0

50

100

150

0

2

4

6

8

10

12

14

(a) MSLAM-TUKF (300 particles)

x position (m)

y 
po

si
tio

n 
(m

)

 

 

 

0 50 100 150
0

50

100

150

0

2

4

6

8

10

12

14

(b) MSLAM-UKF (300 particles)

x position (m)

y 
po

si
tio

n 
(m

)

 

 

0 50 100 150
0

50

100

150

0

2

4

6

8

10

12

14

(c) FSLAM-TUKF (600 particles)

x position (m)

y 
po

si
tio

n 
(m

)

 

 

 

0 50 100 150
0

50

100

150

0

2

4

6

8

10

12

14

(d) FSLAM-UKF (600 particles)

Figure 6 – Final RMS position error map for the sensors for σs = 4 m. MSLAM combined with the TUKF

provides the best estimate of the map.

Table VI – Execution times in seconds for σs = 4 m.

Algorithm (Npar) One target Three targets

MSLAM-UKF (300) 38 153

MSLAM-TUKF (300) 39 184

FSLAM-UKF (600) 43 160

FSLAM-TUKF (600) 44 213

FSLAM-UKF (300) 21 79

FSLAM-TUKF (300) 22 106

PP (300) 14 99



26

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

σ
s
 (m)

rm
s 

(m
)

 

 
MSLAM−UKF(300)
MSLAM−TUKF(300)
FSLAM−UKF(300)
FSLAM−TUKF(300)
FSLAM−UKF(600)
FSLAM−TUKF(600)
PP(300)

Figure 7 – RMS position error for the targets with one target (target two in Fig. 4). FSLAM-TUKF provides

a slightly better estimate than MSLAM-TUKF.

VII. CONCLUSIONS

We have developed a new algorithm for Multitarget Simultaneous Localisation and Mapping of a sensor

network that vastly outperforms the well-known FSLAM in multitarget scenarios. The are two reasons

for this improvement. Firstly, we use an efficient particle filter for multiple target tracking that allows

subparticle crossover. Secondly, the TUKF provides a more accurate approximation of the posterior of

the map than the UKF.

It is shown that a big improvement in the tracking of multiple targets can be achieved by simultaneously

estimating the multitarget state and the sensors’ positions compared to only estimating the multitarget

state. This was expected as we use the measurements to update the pdf of all the variables of the model

rather than just the multitarget state.

The lines of future research are manifold. Firstly, calculating the posterior Cramér-Rao lower bound

would be interesting to see how far this algorithm is from this bound. Secondly, although superior results

were obtained for a multitarget situation, our algorithm was slightly outperformed by FSLAM in a single

target scenario. Presumably this is because posterior correlations in the sensors’ positions are removed to

save computational expense. This suggests that accounting for sensors’ positions correlations will create

a better estimate of the map. However, how to do it in a computationally efficient manner for MSLAM-

TUKF is well-worth exploring. We have assumed that we know the aiming directions of the antennas

included in the sensors. In a more realistic scenario, these would be unknown so a generalisation of the

algorithm for this case is also a topic of interest. In addition, we have assumed that the number of targets

is known. Provided the measurements permit identifiability of all the unknown parameters, including the



27

number of targets, a modification of the algorithm in [28] could be applied.

VIII. ACKNOWLEDGEMENTS

Ángel F. García-Fernández is supported by an FPU Fellowship from Spanish MEC. This work was

supported in part by the Spanish National Research and Development Program under Projects TEC2008-

02148 and Comonsens (Consolider-Ingenio 2010, CSD2008-00010). Part of this work was done when

Ángel F. García-Fernández was a visiting researcher at The University of Melbourne in 2009.

APPENDIX I

In this appendix, we provide an important result used to calculate p
(
Vk+1

∣∣Pk+1, z1:k
)

based on

p
(
Vk
∣∣Pk, z1:k

)
:

p
(
Vk+1

∣∣∣Pk+1, z1:k
)

=

ˆ
p
(
Vk+1, Xk

∣∣∣Pk+1, z1:k
)

dXk

=

ˆ
p
(
Vk+1

∣∣∣Pk+1, Xk
)
p
(
Xk
∣∣∣Pk+1, z1:k

)
dXk

=

ˆ t∏
j=1

p
(
vk+1
j

∣∣∣pk+1
j , xk

j

) p (Pk+1
∣∣Xk

)
p (Pk+1 |z1:k )

p
(
Xk
∣∣∣z1:k) dXk (56)

Substituting (16) into (56):

p
(
Vk+1

∣∣∣Pk+1, z1:k
)
∝

ˆ t∏
j=1

p
(
vk+1
j

∣∣∣pk+1
j , xk

j

) t∏
j=1

p
(
pk+1
j

∣∣∣xk
j

)
·

t∏
j=1

Npar∑
i=1

δ
(
pk
j − pk

j,i

)
p
(
vk
j

∣∣∣pk
j,i, z1:k

)
dXk (57)

=

t∏
j=1

Npar∑
i=1

ˆ
p
(
vk+1
j

∣∣∣pk+1
j , pk

j,i, vk
j

)
· p
(
pk+1
j

∣∣∣pk
j,i, vk

j

)
p
(
vk
j

∣∣∣pk
j,i, z1:k

)
dvk

j (58)

=

t∏
j=1

Npar∑
i=1

ˆ
p
(
pk+1
j , vk+1

j

∣∣∣pk
j,i, vk

j

)
· p
(
vk
j

∣∣∣pk
j,i, z1:k

)
dvk

j (59)

=

t∏
j=1

Npar∑
i=1

N
(
uk+1
j ; uk+1

j,i ,Ξk+1
j,i

)
(60)

where uk+1
j =

[
pk+1
j ,vk+1

j

]T
and uk+1

j,i and Ξk+1
j,i are given by (26) and (27), respectively, and we have

used (1) and (17). It should be noted that uk+1
j is the vector xk+1

j but swapping its components so that

it is easier to express the result of integral (59), which corresponds with a prediction step.



28

APPENDIX II

In this appendix, we provide a recursive way to calculate p
(
m
∣∣Pk+1, z1:k

)
based on p

(
m
∣∣Pk, z1:k

)
:

p
(
m
∣∣∣Pk+1, z1:k

)
=

ˆ
p
(
m, Xk

∣∣∣Pk+1, z1:k
)

dXk

=

ˆ
p
(
Pk+1

∣∣m, Xk, z1:k
)

p (Pk+1 |z1:k )
p
(
m, Xk

∣∣∣z1:k) dXk

∝
ˆ
p
(
Pk+1

∣∣∣Xk
)
p
(
m, Xk

∣∣∣z1:k) dXk (61)

Substituting (14) and (15) into (61):

p
(
m
∣∣∣Pk+1, z1:k

)
∝
ˆ
p
(
Pk+1

∣∣∣Xk
)Npar∑

i=1

δ
(
Pk −Pk

i

)
·

·
t∏

j=1

N
(
vk
j ; vk

j,i,Σ
k
j,i

) M∏
r=1

N
(
mr; m

k
r,i,Θ

k
r,i

)
dPkdVk

=

ˆ Npar∑
i=1

p
(
Pk+1

∣∣∣Pk
i , Vk

) t∏
j=1

N
(
vk
j ; vk

j,i,Σ
k
j,i

)
·

M∏
r=1

N
(
mr; m

k
r,i,Θ

k
r,i

)
dVk (62)

Using the fact that the dynamics of the targets are independent, equation (1):

p
(
m
∣∣∣Pk+1, z1:k

)
∝

Npar∑
i=1

t∏
j=1

ˆ
p
(
pk+1
j

∣∣∣pk
j,i, vk

j

)
N
(
vk
j ; vk

j,i,Σ
k
j,i

)
dvk

j

M∏
r=1

N
(
mr; m

k
r,i,Θ

k
r,i

)
(63)

Substituting (19) into (63) gives

p
(
m
∣∣∣Pk+1, z1:k

)
∝

Npar∑
i=1

t∏
j=1

N
(
pk+1
j ; p

k+1|k
j,i ,Ξk+1

11,j,i

)
·

M∏
r=1

N
(
mr; m

k
r,i,Θ

k
r,i

)

=

Npar∑
i=1

ρ̃2,i

(
Pk+1

) M∏
r=1

N
(
mr; m

k
r,i,Θ

k
r,i

)
(64)

where ρ̃2,i
(
Pk+1

)
is given by (38). Then, we can write (64) as:

p
(
m
∣∣∣Pk+1, z1:k

)
=

Npar∑
i=1

ρ2,i

(
Pk+1

) M∏
r=1

N
(
mr; m

k
r,i,Θ

k
r,i

)
(65)

where ρ2,i
(
Pk+1

)
are the normalised ρ̃2,i

(
Pk+1

)
so that they sum to one.



29

REFERENCES

[1] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey,” Computer Networks, vol. 52, pp. 2292–2330,

Aug. 2008.

[2] R. Niu and P. K. Varshney, “Performance analysis of distributed detection in a random sensor field,” IEEE Transactions

on Signal Processing, vol. 56, pp. 339–349, Jan. 2008.

[3] A. F. García-Fernández and J. Grajal, “Asynchronous particle filter for tracking using non-synchronous sensor networks,”

Signal Processing, vol. 91, pp. 2304–2313, October 2011.

[4] N. Kantas, S. S. Singh, and A. Doucet, “Distributed online self-localization and tracking in sensor networks,” in 5th

International Symposium on Image and Signal Processing and Analysis ISPA, pp. 498–503, Sept. 2007.

[5] C. Taylor, A. Rahimi, J. Bachrach, H. Shrobe, and A. Grue, “Simultaneous localization, calibration, and tracking in an

ad hoc sensor network,” in The Fifth International Conference on Information Processing in Sensor Networks, IPSN.,

pp. 27–33, 2006.

[6] M. W. M. G. Dissanayake, P. Newman, S. Clark, H. F. Durrant-Whyte, and M. Csorba, “A solution to the simultaneous

localization and map building (SLAM) problem,” IEEE Transactions on Robotics and Automation, vol. 17, pp. 229 –241,

Jun. 2001.

[7] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping: part I,” IEEE Robotics Automation Magazine,

vol. 13, pp. 99–110, June 2006.

[8] T. Bailey and H. Durrant-Whyte, “Simultaneous localization and mapping (SLAM): part II,” IEEE Robotics Automation

Magazine, vol. 13, pp. 108–117, Sept. 2006.

[9] C. Kim, R. Sakthivel, and W. K. Chung, “Unscented FastSLAM: A robust and efficient solution to the SLAM problem,”

IEEE Transactions on Robotics, vol. 24, pp. 808–820, Aug. 2008.

[10] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM: A factored solution to the simultaneous localization

and mapping problem,” in Proceedings of the AAAI National Conference on Artificial Intelligence, pp. 593–598, 2002.

[11] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM 2.0: An improved particle filtering algorithm for

simultaneous localization and mapping that provably converges,” in Proceedings of the International Conference on Artificial

Intelligence (IJCAI), pp. 1151–1156, 2003.

[12] J. A. Castellanos, J. D. Tardos, and G. Schmidt, “Building a global map of the environment of a mobile robot: the importance

of correlations,” in Proceedings IEEE International Conference on Robotics and Automation, vol. 2, pp. 1053–1059, Apr.

1997.

[13] B. Ristic, S. Arulampalam, and N. Gordon, Beyond the Kalman Filter: Particle Filters for Tracking Applications. Artech

House, 2004.

[14] C. Andrieu and A. Doucet, “Particle filtering for partially observed Gaussian state space models,” Journal of the Royal

Statistical Society: Series B, vol. 64, pp. 827–836, 2002.

[15] F. Dellaert and M. Kaess, “Square root SAM: Simultaneous localization and mapping via square root information

smoothing,” The International Journal of Robotics Research, vol. 25, pp. 1181–1203, December 2006.

[16] J. Mullane, B.-N. Vo, M. D. Adams, and B.-T. Vo, “A random-finite-set approach to Bayesian SLAM,” IEEE Transactions

on Robotics, vol. 27, pp. 268–282, April 2011.

[17] J. Mullane, B.-N. Vo, M. Adams, and W. Wijesoma, “A random set formulation for Bayesian SLAM,” in IEEE/RSJ

International Conference on Intelligent Robots and Systems, pp. 1043–1049, Sept. 2008.



30

[18] J. Mullane, B.-N. Vo, and M. Adams, “Rao-Blackwellised PHD SLAM,” in IEEE International Conference on Robotics

and Automation (ICRA), pp. 5410–5416, May 2010.

[19] B.-N. Vo and W.-K. Ma, “The Gaussian mixture probability hypothesis density filter,” IEEE Transactions on Signal

Processing, vol. 54, pp. 4091–4104, Nov. 2006.

[20] C. Lundquist, L. Hammarstrand, and F. Gustafsson, “Road intensity based mapping using radar measurements with a

probability hypothesis density filter,” IEEE Transactions on Signal Processing, vol. 59, pp. 1397–1408, April 2011.

[21] A. Doucet, N. de Freitas, and N. Gordon, Sequential Monte Carlo Methods in Practice. Springer, 2001.

[22] F. Daum and J. Huang, “Curse of dimensionality and particle filters,” in Proceedings IEEE Aerospace Conference, vol. 4,

pp. 1979–1993, 8-15 2003.

[23] D. Fox, J. Ko, K. Konolige, B. Limketkai, D. Schulz, and B. Stewart, “Distributed multirobot exploration and mapping,”

Proceedings of the IEEE, vol. 94, pp. 1325–1339, July 2006.

[24] T. Bailey, J. Nieto, and E. Nebot, “Consistency of the FastSLAM algorithm,” in Proceedings 2006 IEEE International

Conference on Robotics and Automation, ICRA, pp. 424 –429, May 2006.

[25] M. Orton and W. Fitzgerald, “A Bayesian approach to tracking multiple targets using sensor arrays and particle filters,”

IEEE Transactions on Signal Processing, vol. 50, pp. 216–223, Feb. 2002.

[26] C. Kreucher, K. Kastella, and A. O. Hero III, “Multitarget tracking using the joint multitarget probability density,” IEEE

Transactions on Aerospace and Electronic Systems, vol. 41, pp. 1396–1414, Oct. 2005.

[27] M. R. Morelande, C. M. Kreucher, and K. Kastella, “A Bayesian approach to multiple target detection and tracking,” IEEE

Transactions on Signal Processing, vol. 55, pp. 1589–1604, May. 2007.

[28] A. F. García-Fernández, J. Grajal, and M. R. Morelande, “Two-layer particle filter for multiple target detection and tracking,”

submitted to IEEE Transactions on Aerospace and Electronic Systems, 2011.

[29] A. F. García-Fernández and J. Grajal, “Multitarget tracking using the joint multitrack probability density,” in 12th

International Conference on Information Fusion, pp. 595–602, July 2009.

[30] A. H. Jazwinski, Stochastic Processes and Filtering Theory. Academic Press, 1970.

[31] A. F. García-Fernández, M. R. Morelande, and J. Grajal, “Truncated unscented Kalman filtering,” submitted to IEEE

Transactions on Signal Processing, 2010.

[32] A. F. García-Fernández, M. R. Morelande, and J. Grajal, “Nonlinear filtering update phase via the single point truncated

unscented Kalman filter,” in 14th International Conference on Information Fusion, 2011.

[33] Y. Bar-Shalom, T. Kirubarajan, and X. R. Li, Estimation with Applications to Tracking and Navigation. John Wiley &

Sons, Inc., 2002.

[34] C.-L. Yang, S. Bagchi, and W. Chappell, “Topology insensitive location determination using independent estimates through

semi-directional antennas,” IEEE Transactions on Antennas and Propagation, vol. 54, pp. 3458–3472, Nov. 2006.

[35] N. Nikolaidis and I. Pitas, “Nonlinear processing and analysis of angular signals,” IEEE Transactions on Signal Processing,

vol. 46, pp. 3181–3194, Dec. 1998.

[36] M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on particle filters for online nonlinear/non-Gaussian

Bayesian tracking,” IEEE Transactions on Signal Processing, vol. 50, pp. 174–188, Feb. 2002.

[37] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for grid mapping with Rao-Blackwellized particle filters,”

IEEE Transactions on Robotics, vol. 23, pp. 34–46, Feb. 2007.

[38] N. Kwak, G.-W. Kim, and B.-H. Lee, “A new compensation technique based on analysis of resampling process in FastSlam,”

Robotica, vol. 26, pp. 205–217, March 2008.



31

[39] R. Martinez-Cantin, N. de Freitas, and J. A. Castellanos, “Analysis of particle methods for simultaneous robot localization

and mapping and a new algorithm: Marginal-SLAM,” in IEEE International Conference on Robotics and Automation,

pp. 2415–2420, April 2007.

[40] T. Fortmann, Y. Bar-Shalom, and M. Scheffe, “Sonar tracking of multiple targets using joint probabilistic data association,”

IEEE Journal of Oceanic Engineering, vol. 8, pp. 173 –184, Jul. 1983.

[41] M. K. Pitt and N. Shephard, “Filtering via simulation: Auxiliary particle filters,” Journal of the American Statistical

Association, vol. 94, pp. 590–599, Jun. 1999.

[42] S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear estimation,” Proceedings of the IEEE, vol. 92, pp. 401–

422, Mar. 2004.

[43] M. Briers, Improved Monte Carlo Methods for State-Space Models. PhD thesis, University of Cambridge, 2007.

[44] I. Arasaratnam, S. Haykin, and T. Hurd, “Cubature Kalman filtering for continuous-discrete systems: Theory and

simulations,” IEEE Transactions on Signal Processing, vol. 58, pp. 4977–4993, Oct. 2010.

[45] R. Kelley, Iterative Methods for Optimization. SIAM, 1999.

[46] S. Blackman and R. Popoli, Design and Analysis of Modern Tracking Systems. Artech House, 1999.

Ángel F. García-Fernández received his degree in Telecommunication Engineering (with honours) from

Universidad Politécnica de Madrid, Spain, in 2007. Since 2007 he has been working towards the Ph.D.

degree at the Department of Signals, Systems and Radiocommunications of the same university. His

research activities and interests are in the area of target tracking, wireless sensor networks, and radar

signal processing.

Mark Morelande received the B.Eng. degree in aerospace avionics from Queensland University of

Technology, Brisbane, Australia in 1997 and the Ph.D. in electrical engineering from Curtin University of

Technology, Perth, Australia in 2001. In 2001 he was a Postdoctoral Fellow at the Centre for Eye Research,

Queensland University of Technology. From 2002-2005 he was a Research Fellow at the Cooperative

Research Centre for Sensor, Signal and Information Processing, University of Melbourne. He is now a

Senior Research Fellow in the Melbourne Systems Laboratory, also at The University of Melbourne. His

research interests include non-stationary signal analysis and target tracking with particular emphasis on multiple target tracking

and sequential Monte Carlo methods.



32

Jesús Grajal was born in Toral de los Guzmanes (León), Spain, in 1967. He received the Ingeniero

de Telecomunicación and the Ph.D. degrees from the Technical University of Madrid, Madrid, Spain in

1992 and 1998, respectively. Since 2001 he has been an Associate Professor at the Signals, Systems,

and Radiocommunications Department of the Technical School of Telecommunication Engineering of the

same University. His research activities are in the area of hardware-design for radar systems, radar signal

processing and broadband digital receivers for radar and spectrum surveillance applications.


