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Abstract—This paper proposes a computationally efficient non-
linear filter that approximates the posterior probability density
function (PDF) as a Gaussian mixture. The novelty of this filter
lies in the update step. If the likelihood has a bounded support
made up of different regions, we can use a modified prior
PDF, which is a mixture, that meets Bayes’ rule exactly. The
central idea of this paper is that a Kalman filter applied to
each component of the modified prior mixture can improve the
approximation to the posterior provided by the Kalman filter. In
practice, bounded support is not necessary.

Index Terms—Bayes’ rule, Kalman filter, nonlinear filtering

I. INTRODUCTION

Bayesian filtering aims to estimate the current state of a
process based on previous measurements up to the current
time. In this framework, all the information about the current
state is contained in the posterior probability density function
(PDF), i.e., the PDF of the current state given the current and
previous measurements. It is of great interest to approximate
the posterior as it enables us to apply widely used estimators
such as the minimum mean square error (MMSE) estimator
[1]. Theoretically, the posterior can be calculated recursively
every time step in two phases: prediction and update. The
prediction step provides an expression for the prior PDF,
which refers to the PDF of the current state given all previous
measurements, based on the posterior at the previous time
step. The update step establishes the relationship between the
posterior (at the current time step) and the prior, which is given
by Bayes’ rule.

The main difficulty in nonlinear/non-Gaussian systems is
that the posterior cannot be calculated analytically and must
be approximated. A common family of algorithms used to
approximate the posterior are particle filters (PFs) [2]. PFs
provide an accurate approximation to the posterior given a
sufficiently high number of particles but can perform poorly
otherwise. Another usual option is to use Kalman-filter-type
algorithms such as the extended Kalman filter (EKF) [1]
or unscented Kalman filter (UKF) [3]. KF-type algorithms
approximate the posterior as a Gaussian by approximating
the KF recursion. Their computational burden is very low
compared to PFs but the possibility of optimal inference
disappears although if the posterior is unimodal they can
provide an accurate enough approximation.

Gaussian mixture approximations to the posterior can also
be used. These are useful when the posterior is multimodal.
In [4], the prior at the initial time step is approximated as
a Gaussian mixture and an EKF is applied to each compon-
ent. However, the number of components is fixed with time

and after several time steps all the components can be the
same resulting in a Gaussian rather than a Gaussian mixture
approximation. This is not the case for the box Gaussian
mixture filter (BGMF) [5] as it adaptively selects the number
of components depending on the measurement nonlinearity.
Yet, its computational complexity scales exponentially with the
state dimension so it suffers from the curse of dimensionality.
This makes it unsuitable for moderately high-dimensional
problems.

This papers focuses on the update phase with nonlinear
measurements. In this case, KF approximations do not perform
well if the measurement is informative compared to the prior
[6]–[8]. In [6]–[8], the truncated Kalman filter (TKF) is
proposed to provide a more accurate Gaussian approximation
to the posterior when the measurement function is bijective
and the measurement noise PDF support is bounded. The idea
is to apply a KF to a truncated prior that meets Bayes’ rule
exactly rather than the original prior. In practice, most models
assume measurement noises with unbounded support. In such
cases, the measurement noise PDF can be approximated by
one with bounded support and the truncated unscented Kalman
filter (TUKF) can be applied.

This paper introduces the mixture TKF (MTKF). It is a
generalisation of the TKF when the likelihood support is
composed of several regions. As the likelihood is multimodal,
the prior and the posterior might be multimodal and, therefore,
the MTKF approximates them as Gaussian mixtures rather
than single Gaussians. As the MTKF is intractable in general,
we also introduce the mixture TUKF (MTUKF) as a practical
approximation to the MTKF. The MTUKF is a generalisation
of the TUKF for this kind of likelihood. Importantly, its
computational complexity is low and it does not suffer from
the curse of dimensionality as in the method of [5].

The rest of this paper is organised as follows. In Section
II, we review the update step of KF approximations with
multimodal priors. In Section III, we present the MTKF. In
Section IV, we develop the MTUKF. Numerical examples
are provided in Section V. Finally, conclusions are given in
Section VI.

II. KF UPDATE STEP WITH MULTIMODAL PRIOR

Regardless of the form of the prior, the KF update as
defined in [3] can always be applied. However, if the prior
is multimodal, the posterior might be multimodal but the KF
always provides a unimodal approximation. Therefore, this
strategy does not seem to be appropriate. Nevertheless, the



static multiple-model estimator filter (SMMEF) can be applied
using the KF update and preserving the multimodality of the
prior [2]. This algorithm is reviewed in this section.

The state is represented by x ∈ Rnx . For ease of explan-
ation, we do not include the time index and the conditioning
on past measurements. Therefore, the prior PDF is denoted by
p0 (·) and is assumed to be a mixture

p0 (x) =

n∑
j=1

wjp0,j (x) (1)

where n is the number of components, p0,j (·) is the jth
component and wj is its weight.

We assume the following measurement equation:

z = h (x) + η (2)

where x ∈ Rnx is the state, z ∈ Rnz is the measurement, h (·)
is a nonlinear function and η is the zero mean measurement
noise with any PDF and covariance matrix R.

The aim is to calculate a Gaussian mixture approximation
to the posterior q (·), which is given by Bayes’ rule

q (x) ∝ ` (x; z) p0 (x) (3)

where ` (x; z) is the likelihood of x after observing z. It should
be noted that ` (x; z) is characterised by (2).

Substituting (1) into (3), the posterior can be written as

q (x) ∝
n∑
j=1

wj` (x; z) p0,j (x) (4)

=

n∑
j=1

wjρ0,jq0,j (x) (5)

where

q0,j (x) =
` (x; z) p0,j (x)

ρ0,j
(6)

ρ0,j =

ˆ
` (x; z) p0,j (x) dx (7)

where q0,j (·) denotes the posterior for the jth prior com-
ponent. A typical implementation of the SMMEF consists
of approximating (6) and (7) using the KF update, see [2,
Sec. 2.3.1]. This is optimal in the linear/Gaussian case. In the
nonlinear case, KF-type algorithms such as the EKF [4] or
the UKF can be used instead. However, this approach has the
following drawbacks:

• D1: If the likelihood is multimodal, q0,j (·) is in general
multimodal. However, KF-type approximations always
provide a unimodal approximation.

• D2: If the likelihood is unimodal but the measurement is
very informative compared to the prior, KF-type approx-
imations do not work properly [6].

Both drawbacks can result in an important loss in performance.
TKF approaches were proposed in [6]–[8] as an alternative to
conventional KF-type approximations for bijective measure-
ments functions. TKF approaches are able to deal properly
with informative measurements (Drawback D2). However, the
TKF as presented in [6]–[8] can only be applied to unimodal
likelihoods. In the next section, the TKF is generalised so that
it is able to overcome Drawbacks D1 and D2.

III. MIXTURE TRUNCATED KALMAN FILTER

The MTKF assumes that the state vector can be written as
x =

[
aT , bT

]T
, where T denotes transpose, a ∈ Rna , b ∈

Rnb and nx = na + nb, such that the measurement equation,
see (2), becomes

z = h (a) + η (8)

The MTKF is derived under the following assumptions:
• A1: The measurement function is such that the equation

z = h (a) (9)

admits m real solutions ãi (z) ∈ R i = 1, ...,m where
the number of solutions might change depending on z.

• A2: The PDF of the measurement noise has a bounded,
connected support Iη .

Assumptions A1 and A2 imply that the support of the likeli-
hood I = {a : z − h (a) ∈ Iη} can be split into m disjoint
regions {I1, ..., Im : Ii ∩ Ij = � if i 6= j}, where Ii contains
ãi (z), if the size |Iη| of Iη is sufficiently small. These regions
depend on z but explicit dependence has been removed for the
sake of clarity. Then, the likelihood can be written as

` (x; z) = ` (x; z)

m∑
i=1

χi (x) (10)

where χi (x) = 1 if x ∈ Ii × Rnb and zero otherwise.
Substituting (10) into (4), Bayes’ rule becomes

q (x) ∝ ` (x; z)
m∑
i=1

χi (x)

n∑
j=1

wjp0,j (x) (11)

As with the TKF [6]–[8], Bayes’ rule is also met by the
truncated prior

pT (x) ∝
m∑
i=1

χi (x)

n∑
j=1

wjp0,j (x) (12)

and we can write the posterior as

q (x) ∝ ` (x; z) pT (x) (13)

The truncated prior can be written as

pT (x) =

∑n
j=1 wjp0,j (x)

∑m
i=1 χi (x)∑n

j=1 wj
∑m
i=1

´
Ii
p0,j (ξ) dξ

=

∑n
j=1 wj

∑m
i=1 εi,jpi,j (x)∑n

j=1 wj
∑m
i=1 εi,j

(14)

where
pi,j (x) =

p0,j (x)χi (x)

εi,j
(15)

is the truncated PDF of the jth component of the prior p0,j (·)
in region Ii and

εi,j =

ˆ
p0,j (x)χi (x) dx (16)

For j = 1, ..., n, i = 1, ...,m, let

qi,j (x) =
` (x; z) pi,j (x)

ρi,j
(17)
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Figure 1: Graphical representation of the “priors” p0,1 (x),
pT (x) and the likelihood ` (x; z) in one dimension. When
the likelihood has a bounded support, Bayes’ rule is met by
the “prior” PDFs p0,1 (x) and pT (x).

where
ρi,j =

ˆ
` (x; z) pi,j (x) dx (18)

Substituting (14) into (13)

q (x) ∝
n∑
j=1

wj

m∑
i=1

εi,j` (x; z) pi,j (x) (19)

Using (17) and (18) into (19), we get

q (x) ∝
n∑
j=1

m∑
i=1

wjεi,jρi,jqi,j (x) (20)

As indicated in Section II, the usual approach to approx-
imate the posterior as a Gaussian mixture is to apply a KF
to each p0,j (·) to approximate (6) and (7). However, equation
(20) suggests an alternative approach. A KF can be applied to
each pi,j (·) to approximate (17) and (18). This way we can
handle multimodal likelihoods (Drawback D1) and informative
measurements (Drawback D2) as it uses the same idea as the
TKF and the TKF works well for informative measurements.

An exemplar situation with n = 1 and m = 2 is illus-
trated in Figure 1. The SMMEF approximates the posterior
applying a KF to the prior p0,1 (·) and the posterior would
be represented as a single Gaussian. As the posterior is
multimodal, this approximation is rather poor. On the contrary,
the MTKF applies a KF to the truncated priors p1,1 (·) and
p2,1 (·) in regions I1 and I2 and represents the posterior as a
Gaussian mixture providing a more accurate approximation to
the posterior.

IV. MIXTURE TRUNCATED UNSCENTED KALMAN FILTER

If the measurement noise support is not bounded, we can
still apply the MTKF by approximating the noise PDF as
one with bounded support. The reasons why this is useful
are thoroughly explained in [8].

We assume the components of the prior mixture are Gaus-
sian

p0,j (x) = N (x; x̂p,0,j ,Pp,0,j) (21)

where

x̂p,0,j =

[
µa,0,j
µb,0,j

]
(22)

Pp,0,j =

[
Σa,0,j Σab,0,j

ΣT
ab,0,j Σb,0,j

]
(23)

A closed form solution of the MTKF is rarely tractable
because of the calculation of the regions I1, ..., Im and the
KF moments for pi,j (·). As in the TUKF [6], we will use the
unscented transformation [3] to approximate the KF moments
for pi,j (·). Then we show how the UKF can be used to
approximate the densities qi,j(·) and the weights εi,j . The
assumptions used in the approximation of the priors, posteriors
and weights mean the MTUKF should only be applied in
certain situations. We therefore develop a rule for adaptively
switching between the MTUKF and the SMMEF with UKFs.

A. Approximation of the first two moments of pi,j (·)
The same approximations as in the TUKF are used [6]
• AP1: The measurement function h (·) is locally linear.
• AP2: The marginal prior of a of the jth component,
pa0,j (·), is constant over the region Ii.

• AP3: The measurement noise satisfies η ∼ UIη where
Iη is such that the truncated noise has the same first two
moments as the real noise E [η] = 0 and cov [η] = R.

Using AP1, the measurement function in region Ii can be
approximated as

h (a) ≈ h (ãi (z)) + H̃i (a− ãi (z)) (24)

where
H̃i =

[
∇ahT (a)

]T ∣∣∣
a=ãi(z)

(25)

is the Jacobian of h (·) evaluated at ãi (z) (recall that ãi (z)
is the solution to (9) in region Ii).

Following the same procedure as in the TUKF (see [6, Sec.
3.4.3]), it can be shown that the mean x̂p,i,j and covariance
matrix Pp,i,j of pi,j (·) under Approximations AP1, AP2 and
AP3 are

x̂p,i,j =

[
µa,i
µb,i,j

]
(26)

Pp,i,j =

[
Σa,i Σab,i,j

ΣT
ab,i,j Σb,i,j

]
(27)

where
µa,i = ãi (z) (28)

Σa,i = H̃−1
i R

(
H̃−1
i

)T
(29)

µb,i,j = µb,0,j + ΣT
ab,0,jΣ

−1
a,0,j

(
µa,i − µa,0,j

)
(30)

Σab,i,j = Σa,i

(
Σ−1
a,0,j

)T
Σab,0,j (31)



Σb,i,j =Γj −
(
µb,i,j − µb,0,j

) (
µb,i,j − µb,0,j

)T
+ ΣT

ab,0,jΣ
−1
a,0,j

[
Σa,i,j +

(
µa,i,j − µa,0,j

)(
µa,i,j − µa,0,j

)T ] (
Σ−1
a,0,j

)T
Σab,0,j (32)

and
Γj = Σb,0,j −ΣT

ab,0,jΣ
−1
a,0,jΣab,0,j (33)

B. UKF approximations to qi,j (·) and ρi,j
The KF approximations to qi,j (·) and ρi,j are

qi,j (x) ≈ N (x; x̂u,i,j ,Pu,i,j) (34)

ρi,j ≈ N (z; ẑi,j ,Si,j) (35)

where

x̂u,i,j =x̂p,i,j + Ψi,jS
−1
i,j (z− ẑi,j) (36)

Pu,i,j =Pp,i,j −Ψi,jS
−1
i,j ΨT

i,j (37)

and

ẑi,j =

ˆ
E [z |x ] pi,j (x) dx (38)

Si,j =

ˆ
E
[
(z− ẑi,j) (z− ẑi,j)

T |x
]
pi,j (x) dx (39)

Ψi,j =

ˆ
E
[
(x− x̂p,i,j) (z− ẑi,j)

T |x
]
pi,j (x) dx (40)

Therefore, the KF approximation to qi,j (·) amounts to cal-
culating the moments (38)-(40). As these cannot be calculated
analytically in general, we resort to the unscented transform-
ation (UT) [9], or more precisely, the UT for conditionally
linear models [10].

The UKF approximation proceeds by selecting Ns sigma
points A1

i,j , ...,A
Ns
i,j along with weights w1, ..., wNs . These

sigma points and weights match the first two moments of
pi,j (a) and can be found using any of the methods discussed
in [3]. The transformed sigma-points are calculated as

Z li,j = h
(
Ali,j

)
, l = 1, ..., Ns (41)

Then, the UT approximation to (38) is

ẑi,j =

Ns∑
l=1

wlZ li,j (42)

The second integral to approximate is (39)

Si,j = R +

Ns∑
l=1

wl
(
Z li,j − ẑi,j

) (
Z li,j − ẑi,j

)T
(43)

Let X li,j =
[(
Ali,j

)T
,
(
υj
(
Ali,j

))T ]T
for l = 1, ..., Ns

where

υj (a) = µb,0,j + ΣT
ab,0,jΣ

−1
a,0,j

(
a− µa,0,j

)
(44)

Then, (40) can be approximated as [10]

Ψi,j =

Ns∑
l=1

wl
(
X li,j − x̂p,i,j

) (
Z lj − ẑi,j

)T
(45)

It should be noted that the approximated first two moments
of pi,j (a), µa,i and Σa,i, which are given by (28) and (29),
do not depend on j because of AP2. Thus, ẑi,j and Si,j do
not depend on j either although Ψi,j does depend on j.

C. Approximation of εi,j
Using Approximation AP2, εi,j becomes

εi,j =

ˆ
p0,j (x)χi (x) dx

≈pa0,j (ãi (z))
ˆ
χi (x) dx (46)

where ãi (z) is the point that maximises the likelihood in
region Ii. This approximation is accurate if Ii is small enough,
i.e., the measurement is sufficiently informative.

Using Approximation AP1 and (24), (46) can be approxim-
ated as

εi,j ≈ pa0,j (ãi (z))
∣∣∣det(H̃−1

i

)∣∣∣ |Iη| (47)

where |Iη| is the size of the support of the measurement (see
[6, Appendix A.5] for a detailed analogue calculation). Note
that because of the normalisation of the final weights of the
mixture, see (20), the result is independent of |Iη| so it does
not have to be approximated.

D. Adaptive selection

As discussed in [6], [8], Approximations AP1 and AP2 are
accurate if the measurement is informative compared to the
prior but they are not otherwise. Therefore, the procedure
explained so far would have a good performance if the
measurement is informative but bad otherwise. In [6]–[8], we
proposed an adaptive way so that the UKF approximation is
favoured when the measurement is not informative and the
TUKF approximation is favoured when the measurement is
informative. In the same way, here, we can favour the SMMEF
for non-informative measurements or the MTUKF for inform-
ative measurements. This adaptive scheme approximates the
posterior as

q (x) =α

∑n
j=1

∑m
i=1 wjεi,jρi,jqi,j (x)∑n

j=1

∑m
i=1 wjεi,jρi,j

+ (1− α)
∑n
j=1 wjρ0,jq0,j (x)∑n

j=1 wjρ0,j
(48)

where the mixture that accompanies α is the output of the
UKFs applied to the mixture of truncated priors and the mix-
ture that accompanies 1−α is the output of the SMMEF that
uses UKF approximations to q0,j (·). The parameter α ∈ [0, 1]
and should tend to 1 for informative measurements such that
we favour the truncated prior and should tend to 0 for non-
informative measurements such that the true prior is favoured.
The following rule that meets these requirements is proposed:

α =
γ
∑n
j=1 wjtr (Σa,0,j)

γ
∑n
j=1 wjtr (Σa,0,j) +

(1−γ)
m

∑m
i=1 tr (Σa,i)

(49)

where γ ∈ [0, 1] is a parameter that controls the weights of the
traces of the covariance matrices to select α and tr (A) denotes
the trace of matrix A. Note that the number of components
in the posterior mixture is higher than in the prior mixture.
This leads to an ever increasing number of components in
successive iterations of the filter. Therefore, in practice, the
number of components must be controlled by merging the



Table I: Steps of the update phase of the MTUKF

• For i = 1, ...,m

– Calculate µa,i and Σa,i using (28) and (29).
– Calculate the sigma points A′1i , ...,A′

Ns
i matching the moments

µa,i and Σa,i given by (28) and (29).
• For j = 1, ..., n

– Calculate the sigma pointsA1
0,j , ...,A

Ns
0,j of pa0,j (·), which match

the moments µa,0,j and Σa,0,j given by (22) and (23) [10].
– Compute the transformed sigma points Z1

0,j , ...,Z
Ns
0,j using (41).

– Approximate ẑ0,j ,S0,j and Ψ0,j using (42), (43) and (45).
– Approximate q0,j (·) by its first two moments x̂u,0,1 and Pu,0,1

using (36) and (37).
– Approximate ρ0,j using (35).
– For i = 1, ...,m

∗ Assign the sigma points
(
A1

i,j , ...,A
Ns
i,j

)
=(

A′1i , ...,A′
Ns
i

)
of pi,j (·).

∗ Compute the transformed sigma points Z1
i,j , ...,Z

Ns
i,j using

(41).
∗ Approximate ẑi,j ,Si,j and Ψi,j using (42), (43) and (45).
∗ Approximate qi,j (·) by its first two moments x̂u,i,j and

Pu,i,j using (36) and (37).
∗ Approximate ρi,j using (35).
∗ Approximate εi,j using (47).

• Calculate α using (49).
• Calculate the final weights of the mixture of the posterior given by (48).
• Reduce the number of components of the posterior [11].

components that are sufficiently alike and setting an upper
limit on the number of components. In the implementations,
we use the joining algorithm in [11]. Finally, the steps of the
algorithm are shown in Table I.

V. NUMERICAL EXAMPLES

In this section, the performances of several algorithms are
analysed in two examples. The parameter γ of the MTUKF,
which is needed to calculate (49), is set to 0.1 as in other
TUKF approaches [6]–[8] and the maximum number of
components of the posterior mixture is 10. The following
algorithms are analysed: UKF, cubature KF (CKF) [12], Monte
Carlo KF (MCKF) [6], [8], EKF, BGMF [5], SMMEF and a
particle filter (PF) based on sampling importance resampling
[13], in which the importance density is the prior. The UKF
uses Ns = 2na + 1 sigma points and the weight of the sigma
point located on the mean is 1/3. The MCKF uses 20000
samples from the prior and the PF uses 10000 particles. The
BGMF has been implemented with parameters N = 1 and
cΣ = 1, see [5]. The SMMEF has been implemented using a
bank of EKFs [4] in which the prior at the initial time step is
approximated using the box Gaussian mixture approximation
with parameters N = 1 and cΣ = 1, see [5]. The performances
of the algorithms are analysed using a Monte Carlo simulation
with 200 runs.

A. Univariate nonstationary growth model

1) Model description: The univariate nonstationary growth
model (UNGM) is characterised by:

p
(
xk
∣∣xk−1

)
= N

(
xk; fk

(
xk−1

)
, Q
)

(50)

fk
(
xk−1

)
=
xk−1

2
+

25xk−1

1 + (xk−1)
2 + 8 cos (1.2k) (51)
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Figure 2: RMS error plotted in log scale against time for the
first 20 time steps

p
(
zk
∣∣xk ) = N (zk; (xk)2

20
, R

)
(52)

where N (x; x, Q) is the Gaussian PDF evaluated at x with
mean x and variance Q. The same parameters as in [6] are
used: Q = 1, R = 1, data was generated using x0 = 0.1,
the prior PDF at time step 0 is x0 v N

(
x0; 0, 1

)
and the

simulation has 100 time steps. The MTUKF prediction step
uses a UKF prediction step for each component of the mixture.

2) MTUKF update: In this case, (9) admits m = 2 solutions
if zk > 0

ã1

(
zk
)
=
√
20zk (53)

ã2

(
zk
)
=−

√
20zk (54)

or m = 0 if zk < 0 (if zk = 0, (9) admits one solution but
as it has probability zero, it is not considered). Therefore, if
zk < 0 the MTUKF cannot be applied and the SMMEF with
UKFs is used instead (note that this would be equivalent to
setting α = 0 in the usual MTUKF update, see Table I).

3) Algorithms’ performances: The RMS error plotted in
log scale against time for the algorithms is shown in Figure
2. Only the first twenty time steps have been represented
for clarity of representation. The PF reaches the lowest error
among the algorithms followed by the MTUKF. Conventional
KF-type algorithms are far from the performance of the PF
and MTUKF because of Drawbacks D1 and D2 explained in
Section II. After around 7 time steps, the SMMEF and the
EKF have the same error as the SMMEF usually tends to
converge to the EKF as time goes on. Therefore, even though
the SMMEF approximates the posterior as a Gaussian mixture,
in practice, it performs as the EKF in the long run.

Table II shows the averaged RMS error over time against
the measurement noise variance. In brackets, the maximum
number of components of the MTUKF is shown. PF is the
best algorithm for the analysed noise variances followed by
the MTUKF. The BGMF also has a very good performance
although it does not perform very well for R ∈ {0.1, 1, 10}.
Increasing the parameter N of this filter improves performance
but also increases computational burden. KF-type algorithms
perform much worse than the MTUKF and the PF because



the posterior is multimodal at some time steps especially for
low R. KF-type algorithms’ performances get worse than PF
and MTUKF’s as the measurement gets more informative. In
addition, the error of the MTUKF is not affected much by
the maximum number of components as, in this example, the
posterior can be properly represented by two components at
all time steps. The relatively good performance of the MCKF
is due to the fact that it uses an MC approximation in the
prediction step, which is very nonlinear, see (50).

B. Tracking with two sensors

1) Model description: The state vector of the target at time
k is xk =

[
ak,bk

]T
where ak =

[
akx, a

k
y

]T
is the position

vector and bk is the velocity vector of the target. The dynamic
model of the target is the nearly-constant velocity model [1]:

p
(
xk+1

∣∣xk ) = N (xk+1; Fxk, Q
)

(55)

F =

(
1 τ
0 1

)
⊗ I2 (56)

Q = σ2
u

(
τ3/3 τ2/2
τ2/2 τ

)
⊗ I2 (57)

where ⊗ is the Kronecker product, τ is the sampling period
and σ2

u is the continuous-time process noise intensity [1].
The prior PDF of the target’s state is:

x0 v N
(
x0; x0,Q

)
(58)

where we have used the prior covariance matrix equal to
the process noise covariance. There are two sensors loc-
ated at [m1,x,m1,y]

T
= [0, 0]

T and [m2,x,m2,y]
T

=

[m2,x, 0]
T . These sensors measure the target’s range at

times mod (k,Nb) 6= 0 and the target’s bearing at times
mod (k,Nb) = 0 where Nb is a parameter of the sensors such
that

zk =


[
hr
(
akx, a

k
y ,m1,x,m1,y

)
, hr

(
akx, a

k
y ,m2,x,m2,y

)]T
+ [ηr,1, ηr,2]

T
if mod (k,Nb) 6= 0[

hθ
(
akx, a

k
y ,m1,x,m1,y

)
, hθ

(
akx, a

k
y ,m2,x,m2,y

)]T
+ [ηθ,1, ηθ,2]

T
if mod (k,Nb) = 0

(59)

hr
(
akx, a

k
y ,m1,x,m1,y

)
=

√
(akx −m1,x)

2
+
(
aky −m1,y

)2
(60)

hθ
(
akx, a

k
y ,m1,x,m1,y

)
= atan2

(
aky −m1,y, a

k
x −m1,x

)
(61)

where atan2 (·, ·) is the four-quadrant inverse tangent, zk =[
zk1 , z

k
2

]T
is the measurement vector, ηr,i is the range noise for

the ith sensor and ηθ,i is the bearing noise for the ith sensor.
All the measurement noises are independent. The range noises
have mean zero and covariance matrix Rr. The bearing noises
have mean zero and covariance matrix Rθ. Note that if the
sensors always measure only range, after the target crosses the
axis y = 0 several times (this axis is where the sensors lie) the
posterior becomes bimodal with one node situated at a position
(ax, ay) and another (ax,−ay) with even weights. In this case,
the MMSE estimator will lie in the axis y = 0 and therefore
it is not useful for tracking purposes. To avoid this, bearing
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Figure 3: Scenario for the tracking example: The initial target
position is represented by a blue circle. The target position and
direction of movement every 10 time steps are represented
by arrows. The two sensor locations are represented by red
crosses m2,x = 300m.

measurements are used every Nb steps. These measurements
make the posterior unimodal and, then, the MMSE estimator
becomes useful.

The scenario of the simulation is shown in Figure 3. The
sampling period of the trajectory is τ = 1 s, σu = 10m/s3/2

and there are 149 time steps. This trajectory corresponds to
one realisation of the dynamic system described by (55). In
each Monte Carlo run, the filter prior mean x0 is drawn from
a Gaussian distribution whose mean is the real state of the
target at time 0 and whose covariance matrix is Q.

The variances of the range and bearing noises are Rr =
1m2 and Rθ = (π/180)

2
rad2, respectively. Bearing meas-

urements are taken every Nb = 40 steps.
2) MTUKF update: Let us assume we use range measure-

ments at time k and let

p =
(
zk1
)2 − 1

4 (m2,x)
2

[((
zk1
)2 − (zk2)2)2

+ (m2,x)
4

+2
((
zk1
)2 − (zk2)2) (m2,x)

2
]

(62)

It can be shown that (9) has m = 2 solutions if p > 0

ã1,x

(
zk
)
=

((
zk1
)2 − (zk2)2)+ (m2,x)

2

2m2,x
(63)

ã1,y

(
zk
)
=
√
p (64)

ã2,x

(
zk
)
=ã1,x

(
zk
)

(65)

ã2,y

(
zk
)
=−√p (66)

where ãi (z) =
[
ãi,x

(
zk
)
, ãi,y

(
zk
)]T

and we have assumed
that [m1,x,m1,y]

T
= [0, 0]

T and [m2,x,m2,y]
T
= [m2,x, 0]

T .
If p < 0, there is no real solution to (9), then, the MTUKF
cannot be applied and the SMMEF is used instead (α = 0).

Let us assume we use bearing measurements at time k and
let

px =
m2,x tan

(
zk2
)

tan
(
zk2
)
− tan

(
zk1
) (67)

py =tan
(
zk1
)
px (68)



Table II: Averaged RMS error over time for different measurement noise parameters for the UNGM

R MTUKF (10) MTUKF (3) MTUKF (2) UKF CKF MCKF EKF BGMF SMMEF PF
0.001 3.61 3.61 3.58 9.09 30.53 4.53 26.66 3.34 25.32 3.17
0.01 3.96 3.96 3.94 6.16 14.74 4.99 20.27 3.71 19.98 3.29
0.1 4.10 4.10 4.12 4.86 9.71 4.78 11.51 7.75 11.20 3.54
1 4.45 4.49 4.59 5.04 7.37 4.86 11.34 7.09 11.33 3.99

10 4.90 4.96 5.12 5.70 6.27 5.42 9.52 6.60 9.46 4.74
100 7.34 7.51 7.62 8.04 7.90 7.64 10.93 7.36 10.18 6.31

If [px, py]
T belongs to the same quadrant as the one

indicated by the measurement vector zk, i.e.,

zk =

[
atan2 (py, px)

atan2 (py, px −m2,x)

]
(69)

then, (9) has m = 1 solution ã1 (z) = [px, py]
T . Otherwise,

m = 0, the MTUKF cannot be applied and the SMMEF is
used instead (α = 0).

3) Algorithms’ performances: In this example, the number
of components in the update phase for the BGMF is very high
because the state is 4-dimensional. Therefore, for each highly
nonlinear component [5],

(
2N2 + 1

)nx
= 81 new components

are generated (recall that N = 1). It should be noted that Rao-
Blackwellisation [10] can be applied such that the number
of new components is

(
2N2 + 1

)na rather than
(
2N2 + 1

)nx

but this approach is not the one proposed in [5]. Besides, the
computational complexity of the merging algorithm [11] is
O(N3

c ) where Nc is the number of components. Therefore,
to make the simulations faster in this example for the BGMF,
before running the merging algorithm, we use pruning such
that the components whose weight are 100 times lower than
the maximum weight are removed. After [11], a maximum
number of three components is considered for the BGMF.
Even with this simplification, the running time of the BGMF is
around 100 times the MTUKF (with 10 mixture components)
and this gets worse as the state dimension increases.

The RMS position error plotted against time for the al-
gorithms is shown in Figure 4. SMMEF error is not shown as
it is roughly the same as the EKF. The MTUKF, BGMF and
PF outperform the rest although MTUKF requires a fraction
of the computational time of the PF and BGMF. It should
be noted that the RMS position error increases from time
60 to 80 for all the algorithms. At time 80, it drops for
the MTUKF, BGMF and the PF. The reason why the RMS
position error increases during this time interval is that the
posterior is bimodal (with approximately equal weights) and
the MMSE lies in a region where there is no target. The
posterior is bimodal because at around time 60, the target
is close to the axis y = 0 and range measurements cannot
determine if a target is located in y > 0 or y < 0. In Figure
5, we plot the MTUKF approximations to the posterior PDFs
at time steps 79 and 80 for an exemplar run. At time step 79,
the posterior is bimodal and the MMSE estimator lies around
[−40, 0] while the target is around [−40, 286] and therefore,
the position error is around 286 m. At time step 80, the sensors
take a bearing measurement, the mode located in y < 0
disappears and the error slumps. The same happens for the PF.
On the contrary, as conventional KF-type algorithms cannot
approximate a multimodal posterior properly, this situation
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Figure 4: RMS position error plotted against time for the
tracking scenario. MTUKF, BGMF and PF outperform the rest.

does not happen and, when the bearing measurements are
taken, the error does not decrease so much.

The averaged RMS position error over time for different
measurement noise parameters are shown in Table III. Be-
cause conventional KF-type algorithms cannot approximate
multimodal PDFs, their performance is very low compared to
the MTUKF. Also, note that PF has a lower performance than
the MTUKF when the measurement noise is low enough. The
main reason is that PFs that sample from the prior do not work
well for informative measurements [14]. This implies that a
PF with measurement-directed sampling may be necessary in
these cases. Nevertheless, since they usually use the EKF or
UKF [2], they will not do well if the process noise variance
is large, as it is in this scenario. Therefore, we can always
find a low enough Rr such that the performance of PF is
low compared to the MTUKF as the MTUKF can handle
informative measurements properly. In addition, it should be
taken into account that PF cannot keep multimodality for long
times [15] and, therefore, we can always increase Nb such
that any “conventional” PF with a given number of particles
(even PFs based on the so-called optimal importance density
[16]) will have a low performance compared to the MTUKF,
which is able to keep multimodality forever. Only PFs that
incorporate “mirror” particles adapted to the problem could
be used to keep multimodality forever [15]. PF performance
is low for Rr = 0.1 m2. If we increase the number of
particles to 105, the RMS error (52.91 m) is roughly equivalent
to MTUKF’s. However, for Rr = 0.01 m2, even with 105

particles, PF’s RMS error (295.85 m) is much higher than
MTUKF’s. BGMF performs well for most values of Rr but
not so well for Rr = 0.1 m2. It should be recalled that its
computational burden is much higher than the MTUKF.



Table III: Averaged RMS position error (m) over time for different measurement noise parameters

Rr
(
m2

)
MTUKF (10) MTUKF (3) MTUKF (2) UKF CKF MCKF EKF BGMF SMMEF PF

0.001 16.79 10.76 22.43 1.44 · 104 2.96 · 103 1.38 · 103 2.25 · 104 14.79 1.78 · 104 498.11
0.01 25.14 25.73 33.40 3.67 · 103 1.48 · 103 665.94 5.72 · 103 23.20 4.74 · 103 426.76
0.1 47.52 49.12 53.39 684.10 334.29 374.90 700.61 62.61 845.17 445.43
1 50.72 50.98 53.35 137.48 165.00 317.96 117.83 52.59 151.32 57.02

10 52.68 55.02 60.62 220.93 132.30 340.04 82.49 52.03 86.16 51.50
100 58.63 63.45 65.78 495.13 346.95 324.87 94.80 56.47 111.06 55.80
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Figure 5: Contour plots of the posterior PDF approximation
using the MTUKF: (a) Time step k = 79 (b) Time step k = 80.
The black circle represents the true target position at time k. In
(a), the posterior is bimodal. At time 80, the sensors measure
the target’s bearing and the posterior becomes does not have
a mode in region y < 0.

VI. CONCLUSIONS

We have proposed the MTUKF as a generalisation of the
TUKF when the likelihood has a support made up of several
regions. This algorithm has a much higher performance than
conventional KF-type algorithms for two reasons. It can handle
multimodal PDFs and approximates the posterior properly
when the measurement is informative. In addition, it can
keep multimodality forever so it can beat PFs in problems
where multimodal posteriors stand for long periods of time.
Importantly, all these improvements have been achieved with
low computational burden.
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