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Abstract. In this paper we study a classical Maxwell question
on the existence of self-stresses for frameworks, which are called
tensegrities. We give a complete answer on geometric conditions
of at most (d + 1)-valent tensegrities in d-dimensional space both
in terms of discrete multiplicative 1-forms and in terms of “join”
and “intersection” operations in projective geometry.

1. Introduction

In this paper we are dealing with a classical question on self-stresses
of frameworks in arbitrary dimensions (that were later referred as
tensegrities). Our main goal is to find geometric tensegrity existence
characterizations on all (generic) k-valent graphs in Rd (k ≤ d+1). We
do this in two different geometric settings. The first one is based on
discrete multiplicative 1-forms which belong to discrete differential ge-
ometry. For example, discrete multiplicative 1-forms have been used to
characterize discrete Koenigs nets [2]. The second one is via geometric
relations written in terms of join/intersection operations in projective
geometry.

Tensegrities (Definition 1) are frameworks in equilibrium consisting
of rods, cables, and struts linked to each other at vertices pi. Forces
in the framework (represented by vectors wi,j(pi − pj)) acting along
cables are pulling wi,j < 0 whereas forces acting along rods are pushing
wi,j > 0; for the struts both force action is possible. The equilibrium
condition means that all forces around each vertex sum up to zero:∑

{j|j 6=i}
wi,j(pi − pj) = 0, for all i.

Although the research on tensegrities was initiated already in 1864
by J.C. Maxwell [18], the term “tensegrity” itself appears much later.
Tensegrity is a concatenation of the words “tension” and “integrity”.
This term was proposed by R. Buckminster Fuller who was inspired
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by the elegance of self-stressed constructions. Tensegrities form an es-
sential part of modern architecture and in arts, they serve as a light
structural support (like in a recent sculpture TensegriTree in the Uni-
versity of Kent). Tensegrities are traditionally used in the study of
cells [10, 1], viruses [4, 22], deployable mechanisms [24], etc.

In the second half of the 20th century the subject of tensegrities be-
came popular in mathematics again: questions of rigidity and flexibility
of structures were studied amongst others by R. Connelly, B. Roth, and
W. Whiteley in [5, 6, 20, 31], etc. For a general modern overview of
the subject we refer to the book [23].

Tensegrities were generalized to spherical and projective geometries
(by F.V. Saliola and W. Whiteley [21]); to normed spaces (by D. Kit-
son and S.C. Power in [15] and by D. Kitson and B. Schulze in [16]);
and to surfaces in R3 (by B. Jackson and A. Nixon in [11]); etc.

Realizability of tensegrities. If the amount of edges is not large
enough, a generic realization of a graph in Rd will not have a non-zero
tensegrity. The non-zero tensegrities exist only for specific frameworks
(that are actually semi-algebraic sets in the configuration spaces of
tensegrities [8]). For instance, a framework for the K3,3 graph admits
a non-zero tensegrity if and only if all its six points are on a conic.

An algebraic description of realizability conditions for tensegrities
was proposed by N.L. White and W. Whiteley in [29, 30]. It was
given in terms of bracket rings for the determinants of extended rigidity
matrices (see also [27]). This original algebraic approach introduces
large polynomial conditions using all vertices of the whole graph (plus
several additional vertices taken arbitrarily, they are called tie-downs)
which can become rather complex and tricky to observe and to analyze.
Factorization of these polynomials is a hard problem that remains open
since the seminal papers of N.L. White and W. Whiteley [29, 30]. This
problem is of high importance in the area as the factors correspond
to self-stressed frameworks sharing certain geometric properties (like
certain vertices in a line or certain planes intersect, etc). The hope is
that the factorization of these polynomials can be deduced from their
rigidity nature (that was confirmed by several examples).

Our geometric approach is designed to complement this algebraic
approach. It is more localised, here we write single conditions for cycles
in the graph which delivers explicit conditions on the arrangements of
affine spaces associated to frameworks. Often the last provides factors
of the bracket expression. Here we would like to note that the amount of
“cycle” conditions to be considered simultaneously is suggested by the
combinatorial theory of tensegrities studied by R. Connelly, B. Roth,
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W. Whiteley etc. (e.g., for Laman graphs in the two-dimensional plane
all conditions should be one-dimensional). A good reference for the
combinatorial theory is the book [23].

In their work M. de Guzmán and D. Orden [7] made first steps in
the study of geometry of stresses by introducing atom decomposition
techniques. In all the studied examples (see, e.g., [8, 30]) there is
a simple geometric description for tensegrities in terms of the “meet-
join” operations of Cayley algebra. This suggests such a description for
all possible graphs. In this paper we develop techniques to write such
conditions for the case of k-valent graphs (k ≤ d + 1) in an arbitrary
dimension d.

A preliminary investigation of geometric conditions was made in [8]:
the authors had introduced two surgeries that result in classification of
all the geometric conditions for codimension one strata for graphs with
8 or less vertices. Topological properties of the configuration spaces of
all tensegrities for graphs with 4 and 5 vertices were studied in [14].
A complete description of geometric conditions in the two-dimensional
case was announced in [13]. Finally, a nice collection of problems on
geometry and topology of stratification of tensegrities can be found
in [12].

In the present paper we consider less than d+1 valent graphs in
Rd. We write geometric conditions both in terms of integrability of
multiplicative 1-forms (Theorem 11) and in terms of join/intersection
operations in projective geometry (Theorem 36).
Organization of the paper. We start in Section 2 with the definition
of tensegrities and notions that we use throughout the paper. In Sec-
tion 3 we discuss discrete multiplicative 1-forms and how exact 1-forms
characterize frameworks admitting non-zero self-stresses. In Section 4
we work within join/intersection operations in projective geometry to
provide a recursive geometric characterization of tensegrities. Section 5
is devoted to point out a relation between tensegrities and harmonic
maps. Finally in Section 6 we study examples of tensegrities in R3.

2. Notions and definitions

In this section we give the necessary definitions of the setting around
tensegrities. Additionally, we provide the notion of general position of
the framework so that we can formulate our geometric conditions on
frameworks admitting a tensegrity.

2.1. Definition of tensegrities. Let us first set the scene by recalling
some basic notions before we come to the general definition of tenseg-
rities.
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Definition 1. Let G be an arbitrary graph without loops and multiple
edges on n vertices.

— Let V (G) = {v1, . . . , vn} and E(G) denote the sets of vertices and
edges for G, respectively. Denote by (vi; vj) the edge joining vi and vj.

— Let B(G) be the subset of all 1-valent vertices in V (G), which we
refer to as the boundary of G.

— Let Z(G) be the subset of all vertices with valence greater than
1 in V (G).

• A framework G(P ) is a map of the vertices v1, . . . , vn of G
onto a finite point configuration P = (p1, . . . , pn) in Rd, such
that G(P )(vi) = pi for i = 1, . . . , n. We say that there is an
edge between pi and pj if (vi; vj) is an edge of G and denote it
by (pi; pj). Note that the points p1, . . . , pn are not necessarily
distinct.
• A stress w on a framework is an assignment of real scalars
wi,j (called tensions) to its edges (vi; vj) with the property
wi,j = wj,i. We also set wi,j = 0 if there is no edge between
the corresponding vertices.
• A stress w is called a self-stress if the following equilibrium

condition is fulfilled at every vertex of valence greater than 1,
i.e., for all vi ∈ Z(G):∑

{j|j 6=i}

wi,j(pi − pj) = 0.

By pi − pj we denote the vector from the point pj to the point
pi. Note that we do not consider equilibrium for the bound-
ary points B(G). These are the points where the framework
is attached to the exterior construction. Therefore, the corre-
sponding forces are compensated by the forces of the exterior
construction.
• A pair (G(P ), w) is called a tensegrity if w is a self-stress for

the framework G(P ).
• A tensegrity (G(P ), w) (or stress w) is said to be non-zero if

there exists an edge (vi; vj) of the framework that has non-
vanishing tension wi,j 6= 0.
• A tensegrity (G(P ), w) (or stress w) is said to be everywhere

non-zero if each existing edge (vi; vj) of the framework has non-
vanishing tension wi,j 6= 0.

Remark 2. If the set of boundary points B(G) is empty, we have the
classical case of tensegrities without boundary.
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2.2. Frameworks in various general positions. To formulate our
geometric conditions on frameworks admitting a non-zero self-stress via
discrete multiplicative 1-forms, we need the vertices to lie in general
position (Sec. 3). A slightly stronger version of generality is needed to
formulate our conditions within the setting of join/intersection opera-
tions in projective geometry (Sec. 4).

As a general notion throughout the paper, by span(s1, . . . , sk) we
denote the affine or projective span of affine/projective spaces s1, . . . , sk
and not the linear span as a vector space. By 2-plane we denote a two-
dimensional affine/projective subspace and by k-plane a k-dimensional
affine/projective subspace.

Definition 3. A framework G(P ) is linearly generic if for every vertex
(whose degree or valence we denote by k) the following two conditions
hold:

• the k edges emanating from this vertex span a (k − 1)-plane;
• every subset of k − 1 edges emanating from this vertex spans

this (k − 1)-plane.

Remark 4. The valences of a linearly generic framework in Rd do not
exceed d+ 1.

For the geometric characterization of tensegrities in terms of discrete
multiplicative 1-forms (Section 3), the property on frameworks of being
linearly generic is all we need. As for our characterization as formulated
within join/intersection operations in projective geometry (Section 4),
we have to include one further notion of general position.

Definition 5. A framework G(P ) ⊂ Rd is in 3D-general position if
the following two conditions hold:

• G(P ) is linearly generic, and
• every 4-tuple of vertices in every cycle of G(P ) spans a 3-plane.

Note that the second condition in the previous definition does not
imply that the framework must lie in R3. Just every 4-tuple of vertices
in a cycle span a 3-plane.

3. Characterizing k-valent tensegrities in terms of ratios

In this section we give a geometric characterization for linearly generic
at most k-valent graphs in Rd (k ≤ d + 1) admitting a non-zero self-
stress. It turns out to be practical to first provide a characteriza-
tion for trivalent graphs before then generalizing it to k-valent graphs.
Throughout this section all graphs G are connected. Our goal is to
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pj

pi

pk

pl

qjki
e

Figure 1. Left : A graph G (black lines; white vertices) and its line graph L(G)
(red dashed edges; red vertices). Right : A flat vertex star pi, pj , pk, pl. The edge
e of the line graph L(G) corresponds to the angle (vj , vi, vk). The intersection

point qjki of the straight lines through pjpk and pipl determines the value of the

multiplicative 1-form q on that edge by q(vj , vi, vk) = (pj − qjki ) : (qjki − pk).

show that the product of certain ratios is 1 if and only if the frame-
work admits a non-zero tensegrity (Theorem 11).

3.1. Tensegrities over trivalent graphs. Our geometric character-
ization of a linearly generic framework to be a non-zero tensegrity is
defined on the cycles of the underlying graph. The important notion
here is the one of a discrete multiplicative 1-form which is well known
in discrete differential geometry. We follow the definition in [2].

Definition 6. A real valued function q : ~E(G) → R \ {0} ( ~E(G) de-
notes the set of oriented edges of the graph G) is called a multiplicative

1-form, if q(−e) = 1/q(e) for every e ∈ ~E(G). It is called exact if for
every cycle e1, . . . , ek of directed edges the values of the 1-form multiply
to 1, i.e.,

q(e1) · . . . · q(ek) = 1.

The following definition is about a particular subdivision of a graph.

Definition 7. The line graph L(G) of a general graph G has the fol-
lowing properties. Its vertices are in a one-to-one correspondence with
the edges of G. The edges of L(G) connect two vertices if and only if
the two respective edges of G are emanating from the same vertex. See
Fig. 1 (left) and Fig. 5 (left).
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We now aim at constructing a multiplicative 1-form on the oriented
edges of the line graph L(G) of a trivalent graph G corresponding to a
linearly generic framework G(P ).

Each edge e of L(G) connects the midpoints of edges of the form
(vj; vi) and (vi; vk), as illustrated in Figure 1 (right). We can therefore
denote the oriented edges of L(G) by triplets of the form e = (vj, vi, vk)
with the property that the negatively oriented edge is −e = (vk, vi, vj).

Let us denote the third edge emanating from vi by (vi; vl). The
framework being linearly generic implies that the corresponding ver-
tices pi, pj, pk, pl lie in a common 2-plane. Furthermore, the framework
being linearly generic implies that the straight line connecting pipl in-
tersects the line connecting pjpk in a point qjki . Consequently, this
point gives rise to an affine ratio of the form

(1) q(vj, vi, vk) :=
pj − qjki
qjki − pk

,

as ratio of parallel vectors. Clearly, q(vj, vi, vk) = 1/q(vk, vi, vj) which
implies that q is a multiplicative 1-form on the oriented edges of the
line graph L(G).

Theorem 8. Let G(P ) be a linearly generic trivalent framework. Then
there is a stress w on G(P ) such that the framework (G(P ), w) is a non-
zero tensegrity if and only if the 1-form q given by Equation (1) on the
line graph L(G) is exact.

Proof. Let us first assume that (G(P ), w) is a non-zero tensegrity. Since
at every inner vertex pi of a trivalent tensegrity the sum of forces adds
up to zero we obtain

(2) wi,j(pi − pj) + wi,k(pi − pk) + wi,l(pi − pl) = 0.

The point qjki lies on the straight line through pipl and can therefore
be written in the form

qjki = pi + λ(pi − pl)
for some λ ∈ R. Inserting Equation (2) yields

qjki = pi + λ
(wi,j

wi,l

(pj − pi) +
wi,k

wi,l

(pk − pi)
)

=
(

1− λwi,j

wi,l

− λwi,k

wi,l

)
pi + λ

wi,j

wi,l

pj + λ
wi,k

wi,l

pk.

Since qjki must lie on the line through pjpk we obtain for λ =
wi,l

wi,j+wi,k

and therefore the affine combination

qjki =
wi,j

wi,j + wi,k

pj +
wi,k

wi,j + wi,k

pk.
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vn−1

vn
v1

v2

v3

en
e1

e2

w̃n,1

wn−1,n

wn,1

w1,2

w2,3

p2

p1

pn

Figure 2. Left : Notations of edges in a cycle in the line graph L(G). Right : A
cycle in a trivalent graph. After prescribing a tension w1,2 we can compute the
tension at edge (vn; v1) in two ways: First, by enforcing equilibrium at p1 (and
getting w̃n,1), and second by transporting the tension along the cycle (resulting in
wn,1).

Consequently, for our q in Equation (1) we obtain

(3) q(vj, vi, vk) =
wi,k

wi,j

.

To show the exactness of q we have to show that the product of
all values along any cycle multiply to 1. So let (e1, . . . , en) be a cycle
of the line graph L(G) where ei are oriented edges. There is a corre-
sponding cycle (v1, . . . , vn) in G such that ei corresponds to the angle
(vi−1, vi, vi+1), where we take the indices modulo n (see Figure 2 left).
We compute the product of corresponding values of q:

n∏
i=1

q(ei) =
n∏

i=1

q(vi−1, vi, vi+1) =
n∏

i=1

wi,i+1

wi,i−1
=

n∏
i=1

wi,i+1

wi−1,i

=
w1,2

wn,1

· w2,3

w1,2

· . . . · wn−1,n

wn−2,n−1
· wn,1

wn−1,n
= 1,

which shows the first direction of the statement.
As for the other direction, let us first note that prescribing one ten-

sion wi,j in a trivalent vertex of a linearly generic framework uniquely
determines the other two tensions as well since Equation (2) is then
a linear combination of two linearly independent vectors with coeffi-
cients wi,k and wi,l. Consequently, after choosing one tension wi,j we
can transport it to any other vertex along any connected path. This
way we could define a stress w on the graph G, if this construction
would be well-defined, i.e., if transporting the tension along different
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paths to the same edge would result in the same tensions. Or equiva-
lently, if we transport the tension around any cycle we would have to
get back to the same tension with which we started.

So let us take an arbitrary cycle (v1, . . . , vn). We choose a non-
zero tension w1,2 on the edge (v1; v2) which immediately determines
the tension w̃n,1 on the edge (vn; v1) due to the equilibrium condition
shown in Equation (2). See also Figure 2 (right). The value of the
multiplicative 1-form on the oriented edge (vn, v1, v2) of L(G) therefore
has the value

q(vn, v1, v2) = w1,2/w̃n,1.

On the other hand w1,2 determines the tension w2,3 as edge emanating
from v1. Repeating this propagation process we define all tensions in
the cycle including the last one wn,1. We have therefore defined the
tension at (vn; v1) twice: from the “left” and from the “right” as w̃n,1

and wn,1. Now the question is whether those tensions are the same.
Our assumption is that the multiplicative 1-form q is exact which

implies

1 =
n∏

i=1

q(vi−1, vi, vi+1) =
w1,2

w̃n,1

· w2,3

w1,2

· . . . · wn−1,n

wn−2,n−1
· wn,1

wn−1,n
=
wn,1

w̃n,1

,

and therefore wn,1 = w̃n,1. Consequently, we can consistently define
a stress w (uniquely up to scaling) on G(P ) such that the framework
(G(P ), w) is a non-zero tensegrity. �

The following corollary follows immediately from Theorem 8 and its
proof, in particular from Equation (3).

Corollary 9. Let G(P ) be a linearly generic trivalent framework and
let w be a non-zero stress on G(P ). Then the framework (G(P ), w) is
a non-zero tensegrity if and only if the 1-form

q̃(vj, vi, vk) :=
wi,k

wi,j

,

defined on the line graph L(G) is exact. �

3.2. Special cases of trivalent cycles. In this section we will con-
sider two special cases of cycles and briefly reflect on what Theorem 8
means in these cases.
n = 3: In that case the cycle is a triangle and the points qjki lie on

the edges of the triangle opposite to pi. Consequently, the exactness of
the 1-form on that cycle is precisely the setting of the classical Ceva’s
theorem (see e.g., [19]). Therefore, the three lines p1q

2,3
1 , p2q

3,1
2 , and

p3q
1,2
3 intersect in one point (cf. [13] and see Figure 3 left).
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p1

p2

p3

q2,31q3,12

q1,23 p1
p2

p3

p4

q1

q2
q3

q4

Figure 3. Left : The cycle is a triangle. The exactness of the 1-form on that
triangle is equivalent to the three “outward” pointing edges intersecting in one
point, i.e., Ceva’s configuration. Right : The cycle is a quadrilateral. Then the
three “outward” pointing edges intersect the respective diagonals in points qi. We
abbreviate q2,41 simply by q1 etc. The exactness of the 1-form is equivalent to
cr(q1, p4, q3, p2) = cr(q2, p3, q4, p1).

n = 4: In the case of a quadrilateral the points qjki lie on the diagonals
(see Figure 3 right). Exactness of the 1-form on that cycle is equivalent
to

1 = q(v4, v1, v2) · q(v1, v2, v3) · q(v2, v3, v4) · q(v3, v4, v1),
which is further equivalent to

q(v4, v1, v2) · q(v2, v3, v4) =
1

q(v1, v2, v3) · q(v3, v4, v1)
,

and further to

p4 − q4,21

q4,21 − p2
· p2 − q

2,4
3

q2,43 − p4
=
q1,32 − p3
p1 − q1,32

· q
3,1
4 − p1
p3 − q3,14

.

The last equation is an equation of cross-ratios, namely

(4) cr(q4,21 , p4, q
2,4
3 , p2) = cr(q1,32 , p3, q

3,1
4 , p1).

Example 10. It is well known (see e.g., [8]) that the complete graph
K3,3, which is trivalent, with vertices in R2 is a tensegrity if and only
if the vertices lie on a conic (see Figure 4). That property can also
be shown easily within our setting of exact multiplicative 1-forms as
follows. According to Steiner’s definition of conics, the property of six
points lying on a conic is equivalent to the four lines p5pi and p6pi for
i = 1, . . . , 4 being related by a projectivity (a projective map). Or
equivalently that means that the cross-ratios of these pair of four lines
are the same. Let us consider the cycle (v1, v2, v3, v4) with four vertices.



REALIZABILITY OF TENSEGRITIES IN HIGHER DIMENSIONS 11

Then Equation (4) holds for this cycle which we will use in the following
computation. Further, we have

cr(p5p2, p5p3, p5p4, p5p1) = cr(q2, p3, q4, p1)
(4)
= cr(q1, p4, q3, p2)

=cr(p6p1, p6p4, p6p3, p6p2) = cr(p6p2, p6p3, p6p4, p6p1),

where the last equality holds because cr(a, b, c, d) = cr(d, c, b, a).

p1

p2

p3

p4

p5

p6

q1

q2

q3

q4

Figure 4. Six points p1, . . . , p6 in the 2-plane R2 form a tensegrity if and only if
the six points lie on a conic.

pj

pi

pl

pn pm

qjli
e

Figure 5. Left : The line graph L(G) of a general graph G. The new edges (red
dashed) connect midpoints of old adjacent edges. A vertex star of valence three
generates three new edges, a vertex star of valence four generates six new edges.
Right : We construct the discrete multiplicative 1-form on edges of the line graph
by intersecting the line pjpl with the affine subspace span(

⋃
m 6=j,l pm).

3.3. Tensegrities over k-valent graphs. We will now generalize the
geometric characterization of trivalent tensegrities (of Section 3.1) to
linearly generic k-valent tensegrities in Rd with k ≤ d+ 1.

Let us consider a k-valent vertex star with inner vertex vi and adja-
cent vertices v1, . . . , vk. Again we can denote an oriented edge of the
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line graph L(G) by (vj, vi, vl) (with 1 ≤ j 6= l ≤ n). See also Figure 5
(right). Since G is linearly generic, the subspaces span(pi, pj, pl) and
span(

⋃
m 6=j,l
vm∼vi

pm) intersect in a line L, where vm ∼ vi means vm is adja-

cent to vi. Consequently, this line L intersects the line pjpl in a point

qjli . In the trivalent case, L is simply the line pipl. Analogously to the
trivalent case we define the discrete multiplicative 1-form as

(5) q(vj, vi, vl) :=
pj − qjli
qjli − pl

.

Now the proof of Theorem 8 can be repeated basically word by word
which implies the following theorem.

Theorem 11. Let G(P ) be a linearly generic framework in Rd with
vertices of valence at most d+1. Then there is a stress w on G(P ) such
that the framework (G(P ), w) is a non-zero tensegrity if and only if the
1-form q given by Equation (5) on the line graph L(G) is exact. �

Note that if a cycle can be decomposed by two other
cycles with common edges, the product of the multi-
plicative 1-form values of the first cycle equals the prod-
uct of the decomposing cycles. The values of common
edges that appear in the decomposing cycles in reversed
orientations are reciprocal to each other and simply can-
cel out in the product. That leads us to the following
remark.

Remark 12. In the previous theorem and in Theorem 8 it is sufficient
to check the criterion only for generator loops of the first homology
group H1(G) of the graph (if we consider the graph as topological
space), because all other loops can be decomposed by those. These
conditions for different generators of H1(G) may still coincide, as the
realisability codimension in the space of all (including zero-force load)
tensegrities is defined by the combinatorics of the graphs (e.g., it is one
condition for Laman graphs in the plane). Some of the conditions will
correspond to different strata.

4. Join/intersection conditions for frameworks in
3D-general position

In this section we construct join/intersection conditions for frame-
works whose all 4-tuples of vertices in any cycle span a 3-plane. We
start in Section 4.1 with the case of frameworks for so-called framed
cycles. We introduce WU-surgeries on framed cycles that preserve the
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property to admit a non-zero tensegrity and that reduce the amount of
vertices of framed cycles. These properties will lead to explicit expres-
sions in terms of join/intersection operations in projective geometry.
Further, in Section 4.2 we prove that a sufficiently generic framework
admits a non-zero tensegrity if and only if all its associated framed cy-
cle frameworks admit non-zero tensegrities (Theorem 26). Finally, in
Section 4.3 we briefly recall the basic notions join/intersection in pro-
jective geometry and construct conditions within that framework for
the existence of tensegrities for given graphs that are not generically
flexible (Theorem 36). All frameworks in this section are in Rd with
d ≥ 3.

4.1. Framed cycles and their frameworks. We start this section
with basic definitions, some properties of framed cycles and their generic
frameworks. Further, we introduce WU-surgeries that take frameworks
in 3D-general position to generic frameworks of framed cycles. We show
also that WU-surgeries preserve the property of admitting a non-zero
tensegrity.

4.1.1. General definitions. We say that a graph is a cycle if it is home-
omorphic to a circle.

Definition 13. Let C = (c1, . . . , cn) and B = (b1, . . . , bn) be two n-
tuples of points. A framed cycle CB = (C,B) is the cycle c1, . . . , cn
with attached edges bici for i = 1, . . . , n.

Definition 14. We say that a framework CB(P ) of a framed cycle CB

is in 3D-general flat position if

• CB(P ) is linearly generic (see Definition 3);
• there are no four points of C(P ) contained in a 2-plane (only

for the cycle C).

Remark 15. Notice that linear genericity in particular implies that all
edges emanating from the same vertex of a framed cycle are contained
in a 2-plane; and that G(P )(bi) 6= G(P )(ci) for all admissible i.

4.1.2. A preliminary observation. Let us formulate a preliminary state-
ment for the definition of WU-surgeries.

Recall that a cycle CB(P ) is in 3D-general flat position if it is linearly
generic (every three edges emanating from the same vertex span a 2-
plane) and if there are no four points of CB(P ) contained in a 2-plane
(see Definition 14).
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Proposition 16. Let a framed cycle framework CB(P ) be in 3D-
general flat position. Let also

G(P )(bi) = ei, G(P )(ci) = ri, i = 1, . . . , n.

Then we have the following two statements:

• The line ei−1ei is not contained in the 2-plane ri−2ri−1ri+1;

Denote by êi−1 the (projective) intersection point of the line ei−1ei and
the 2-plane ri−2ri−1ri+1 (see Figure 6). Then additionally we have:

• êi−1 /∈ ri−2ri−1;
• êi−1 /∈ ri−1ri+1.

ei−2

ei−1

ei

ei+1

ei+2

ri−2

ri−1

ri

ri+1

ri+2

êi−1

Figure 6. Definition of êi−1.

Remark 17. The theory of tensegrities (or equivalently the theory
of infinitesimal rigidity) is projectively invariant. So we do not con-
sider special cases of parallel objects. They are not parallel after an
appropriate choice of an affine chart.

Proof of Proposition 16. First of all, the point ei−1 is not in the 2-plane

ri−2ri−1ri+1

(cf. Figure 6), as otherwise

span(ri−2, ri−1, ri) = span(ri−2, ri−1, ei−1) = span(ri−2, ri−1, ri+1)

(here the first equality holds as vectors ri−2ei−1, ri−1ei−1 and riei−1 are
adjacent to the same edge and, therefore, linear genericity of CB(P )
implies that they are contained in a 2-plane; the second equality holds
by the assumption ei−1 ∈ ri−2ri−1ri+1) which would imply that the
points ri−2, ri−1, ri, ri+1 are contained in a 2-plane, and therefore C(P )
is not in a 3D-general flat position. Therefore, the line ei−1ei is not in
the 2-plane ri−2ri−1ri+1.
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Secondly, if êi−1 ∈ ri−2ri−1, then the points ei, ei−1, ri−2, ri−1 are in
a 2-plane. Now the point ri is in this 2-plane as it is in the span
of ei−1, ri−1, ri−2; and additionally ri+1 is in this 2-plane as it is in
the span of ei, ri−1, ri. Therefore, ri−2, ri−1, ri, ri+1 are in this 2-plane,
which contradicts to flat 3D-genericity of the cycle.

Finally, if êi−1 ∈ ri−1ri+1, then the points ei, ei−1, ri−1, ri+1 are in
a 2-plane. Now the point ri is in this 2-plane as it is in the span of
ei, ri−1, ri+1; and additionally ri−2 is in this 2-plane as it is in the span
of ei−1, ri−1, ri. Therefore, ri−2, ri−1, ri, ri+1 are in this 2-plane, which
contradicts to flat 3D-genericity of the cycle.

This concludes the proof of all statements of the proposition. �

For the definition of WU-surgeries we need an index-symmetric state-
ment. The following corollary is just the index-symmetric version of
Proposition 16.

Corollary 18. Let a framed cycle framework CB(P ) = (C(P ), B(P ))
be in a 3D-general flat position. Let also

G(P )(bi) = ei, G(P )(ci) = ri, i = 1, . . . , n.

Then we have the following two statements:

• The line eiei+1 is not in the 2-plane ri−1ri+1ri+2; Denote by
êi+1 the (projective) intersection point of the line eiei+1 and
the 2-plane ri−1ri+1ri+2. Then additionally we have:
• êi+1 /∈ ri+1ri+2;
• êi+1 /∈ ri−1ri+1.

Proof. After swapping the indexes i → n − i for all i in CB we arrive
at the statement of Proposition 16 for n− i. �

4.1.3. WU-surgeries. Let us continue with the definition of WU-surg-
eries.

Definition 19. Consider a framed cycle

CB =
(
(c1, . . . , cn), (b1, . . . , bn)

)
,

and its framework

CB(P ) =
(
(r1, . . . , rn), (e1, . . . , en)

)
in 3D-general flat position. Let i ∈ 1, . . . , n. The WU-surgery of the
cycle C at node i is the cycle

WUi(CB(P )) =
(
(r1, . . . , ri−2, ri−1, ri+1, ri+2, . . . , rn),

(e1, . . . , ei−2, êi−1, êi+1, ei+2, . . . , en)
)
,
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where

êi−1 = eiei−1 ∩ ri+1ri−1ri−2;
êi+1 = eiei+1 ∩ ri−1ri+1ri+2,

(see Figure 7).

Remark 20. Due to Proposition 16 and Corollary 18, the points êi−1
and êi+1 are uniquely defined.

ei−2

ei−1

ei

ei+1

ei+2

ri−2

ri−1

ri
ri+1

ri+2

êi−1

êi+1

Figure 7. The construction of WUi-surgery. Here we exclude the vertices ei and
ri and replace ei−1 and ei+1 respectively by êi−1 and êi+1.

Corollary 21. A WU-surgery takes a framework of a framed cycle in
3D-general flat position to a framework of a framed cycle in 3D-general
flat position.

Proof. The set of C(P ′)-vertices after the surgery is a subset of C(P )
therefore, there are no four points of C(P ′) in a 2-plane.

By construction we have

êi−1 ∈ span(ri−2, ri−1, ri+1) and êi+1 ∈ span(ri−1, ri+1, ri+2).

Further, by Proposition 16 every two vectors from

{ri−1 − êi−1, ri−1 − ri−2, ri−1 − ri+1}

are not collinear.
Finally, by Corollary 18 every two vectors of

{ri+1 − êi+1, ri+1 − ri+2, ri+1 − ri−1}

are not collinear. Therefore, WUi(CB(P )) is in 3D-general flat position.
�
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4.1.4. Static properties of WU-surgeries. We continue with the follow-
ing important property of WU-surgeries.

Proposition 22. Let CB be a framed cycle of length m and i ∈
{1, . . . ,m}. A framework CB(P ) in 3D-general flat position admits
a non-zero tensegrity if and only if WUi(CB(P )) admits a non-zero
tensegrity for every admissible i.

Proof. Let CB(P ) admit a tensegrity G(CB(P ), w). First, we construct
a framed cycle tensegrity (C3

B,i(P ), ŵ). Let

C3
B,i(P ) =

(
(ri−1, ri, ri+1), (ei, ei, ei)

)
(see Figure 8).

ri−2

ri−1

ri

ri+1

ri+2

ei−2

ei−1

ei

ei+1

ei+2

Figure 8. The framed cycle C3
B,i(P ) is illustrated by the shaded area. Notice

that the boundary points for this cycle all coincide with ei.

The stress ŵ is defined from the following condition: at all edges
adjacent to ri the stress ŵ coincides with the stress w for (CB(P ), w).
It is clear that the tensions ŵ on the remaining edges of C3

B,i(P ) are
defined in the unique way.

Let us now subtract (C3
B,i(P ), ŵ) from (CB(P ), w). We have:

• zero stresses at all vertices adjacent to ri.
• the sum of vectors of forces λri−1ei−1 and µri−1ei (for some non-

zero λ and µ) should be in the 2-plane spanned by ri−2, ri−1, ri+1

and therefore it is in the line ri−1êi−1.
• the sum of vectors of forces λri+1ei+1 and µri+1ei (for some non-

zero λ and µ) should be in the 2-plane spanned by ri−1, ri+1, ri+2

and therefore it is in the line ri+1êi+1.

Since the points ri−2, ri−1, ri, ri+1 span a 3-plane, the 2-planes ri−1ei−1ei
and ri−2ri−1ri+1 intersect by a line.

Symmetrically, the 2-planes ri+1ei+1ei and ri−1ri+1ri+2 intersect by
a line.

Therefore, the resulting tensegrity is a non-zero tensegrity on the
framework WUi(CB(P )).



18 OLEG KARPENKOV AND CHRISTIAN MÜLLER

Now let us assume that there is a non-zero tensegrity on WUi(CB(P )).
Then we consider a tensegrity (C3

B,i(P ), w̃), where C3
B,i(P ) is the framed

3-cycle framework as above; the self-stress w̃ is defined by linearity
starting from the fact that at edge ri−1ri+1 it coincides with the self-
stress at ri−1ri+1 for WUi(CB(P )).

Similarly, by subtracting (C3
B,i(P ), w̃) from (WUi(CB(P )), w) and

summing the boundary force vectors at ri−1 and ri+1 we get a non-zero
tensegrity for CB(P ). �

4.2. On existence and uniqueness of tensegrities for frame-
works in 3D-general position. Recall that in this paper we work
only with connected graphs. The uniqueness of tensegrities (up to a
scalar) can be formulated as follows.

Proposition 23. All tensegrities on a linearly generic framework are
proportional. In addition every non-zero tensegrity is everywhere non-
zero.

Proof. The proof is straightforward as tensions at every vertex of a
linearly generic framework are defined in the unique way up to a scalar.
All stresses at this vertex are either all zero or all non-zero. �

Before to formulate a criterion of existence of a tensegrity we give
the following definition.

Definition 24. Consider a linearly generic framework G(P ) and a cy-
cle C in G (without self-intersections). Furthermore, consider a framed
cycle CB = (C,B). We say that a framed cycle framework

CB(P̃ ) =
(
(r1, . . . , rn), (e1, . . . , en)

)
is associated to G(P ) if

• ri = pi at all corresponding points of C and G;
• for the boundary points we have:

ei ∈ span(pi, pi−1, pi+1) ∩ span(pi, pi,1, . . . , pi,k),

where vivi,j correspond to all edges adjacent to vi except for the
two edges vivi−1 and vivi+1, and pipi,j are their realizations in
G(P ).
• In addition we require that ei 6= ri for i = 1, . . . , n.

Remark 25. Let us note that associated framed cycles are very spe-
cific tie-downs introduced in [29] by N.L. White and W. Whiteley. In
the original construction of N.L. White and W. Whiteley there is no
fixed rule to pick the directions of tie-downs (i.e., framings), whereas
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in our construction the directions of framings are determined by the
framework.

Indeed, consider a linearly generic framework G(P ) and a cycle C
in G. Note that the vertices of an associated framed cycle CB are the
vertices of G. Now the directions of edges eiri are uniquely determined
by the framework. The only freedom ei can still have is as follows: it
can slide along the line

span(pi, pi−1, pi+1) ∩ span(pi, pi,1, . . . , pi,k).

Here the position of ei on that line is not important as it does not
change the force-loads on the cycle itself.

The criterion of existence of a tensegrity can be formulated in the
following way.

Theorem 26. A linearly generic connected framework admits a non-
zero tensegrity if and only if all its associated framed cycle frameworks
admit a non-zero tensegrity.

Proof. Assume that a framework admits a non-zero tensegrity. Then
the associated framed cycle frameworks admit a non-zero tensegrity
directly by Proposition 23.

Let now all associated framed cycle frameworks of G(P ) admit a
non-zero tensegrity. Let us iteratively construct a non-zero tensegrity
for G(P ).

We start with any vertex of degree greater than 1 and set the stress
on one of its edges to 1. Therefore, the stresses for the other edges are
defined in the unique way.

Assume now that we have constructed the stresses for the edges
adjacent to all vertices of V ′ ⊂ V . In addition we assume that every
pair of vertices in V ′ is connected by a path in G within V ′.

Let us now consider some edge v′v such that v′ ∈ V ′ and v ∈ V \V ′.
If v ∈ B then there is no equilibrium condition on stresses, we just
add v to V ′. Let now v′ be k-valent (k > 1) with edges vv1, . . . , vvk
adjacent to v. Consider the following two cases for these edges.
Case 1: vi /∈ V ′. Then the stress at vvi is not yet defined. Hence we
define it from the equilibrium condition for v.
Case 2: vi ∈ V ′. Then there exists an associated framed cycle frame-
work CB(P̃ ) whose non-boundary vertices all correspond to vertices in
V ′ ∪ {v} and that passes through v and vi via edge vvi. First of all,
it has a non-zero self-stress by the theorem assumption. Secondly, this
self-stress is proportional to the stresses defined on the edges adjacent
to V ′ (since all the vertices but one are in V ′, and the equilibrium
conditions in V ′ are fulfilled simultaneously for the self-stress on the
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cycle CB(P̃ ) and the partially constructed stress). So the stress at vvi
defined from vi before coincides with the stress at vvi defined by the
equilibrium in v.

Now we add v to V ′ and continue to the next vertex of V \V ′. Note
that after adding v to V ′ all the vertices of the new V ′ are connected
by edge paths of G via vertices of V ′.

At each step of iteration we add a new vertex and define the stresses
on the edges adjacent to it (if they were not defined before) such that
the equilibrium condition is fulfilled.

Since G is connected, the process terminates and we have a tensegrity
on G(P ) at the end of the process. �

4.3. Join/intersection condition for the existence of tensegri-
ties. Finally, we have all tools to formulate geometric conditions for
the existence of non-zero tensegrities for frameworks in 3D-general po-
sition in terms of join/intersection operations and conditions within
projective geometry. Let us first briefly recall the notions of join and
intersection.

4.3.1. Join/intersection operations and relations. Let us briefly recall
the notions of join and intersection within projective geometry. First
of all the elements of projective geometry on RP d are all the k-planes
of all possible dimensions k ≤ d.

There are two operations in projective geometry that are called join
and intersection operations and denoted by ∨ and ∧, respectively.

We will use the “dimension-operator” dim with respect to projective
dimension of projective subspaces and refer to the dimension of linear
subspaces by diml. Projective subspaces π ⊂ RP d of dimension k are
represented by (k + 1)-dimensional subspaces U ∈ Rd+1, consequently,
dim(π) = diml(U)− 1.

Definition 27. Given projective subspaces π1, . . . , πn ⊂ RP d of ar-
bitrary dimensions. The join and intersection operations for these
subspaces are respectively as follows:

π1 ∨ . . . ∨ πn := span(U1 ∪ . . . ∪ Un);

π1 ∧ . . . ∧ πn :=
n⋂

i=1

πi.

Remark 28. Note that there is another approach to our problem using
bracket algebra and Grassmann-Cayley algebra. It is developed, e.g.,
in [9, 17, 25, 28, 29]. The expressions in bracket algebra are written as
polynomials of brackets (i.e., minors of a matrix) while the translation
of our approach to the bracket ring would result in systems of simple



REALIZABILITY OF TENSEGRITIES IN HIGHER DIMENSIONS 21

brackets equal to zero. We refer an interested reader to the above
mentioned papers.

Finally, let us formulate relations on the subspaces of projective ge-
ometry.

Definition 29. Given projective subspaces π1, . . . , πn. We say that

π1 ∧ . . . ∧ πn = true,

if there exist projective subspaces π′i with dimπ′i = dimπi for i =
1, . . . , n such that

dim(π1 ∧ . . . ∧ πn) > dim(π′1 ∧ . . . ∧ π′n).

Otherwise we say that

π1 ∧ . . . ∧ πn = false.

Here we consider the dimension of an empty set to be −1.

Example 30. Consider three projective lines `1, `2, `3 in a two-dimensional
projective space. Then

`1 ∧ `2 ∧ `3 = true,

if and only if these three lines have projectively at least one point in
common.

4.3.2. Join/intersection conditions for framed cycles. Let us first start
with a join/intersection condition for a framed cycle on three vertices.

Definition 31. Let CB(P ) be a framework of a framed cycle in 3D-
general position (

(r1, r2, r3), (e1, e2, e3)
)
.

Then the join/intersection condition for C is

r1e1 ∧ r2e2 ∧ r3e3 = true.

Let us now expand the notion of join/intersection condition to framed
cycle frameworks of arbitrary length.

Definition 32. Let CB be a framed cycle of length n ≥ 3, and let
CB(P ) be its framework in 3D-general position. Then the join/intersection
condition for CB(P ) is as follows

r1e
(n−3)
1 ∧ r2e2 ∧ r3e(n−3)3 = true,

where e
(n−3)
1 is defined recursively by

e
(0)
1 = e1;

e
(k)
1 = en−k+1e

(k−1)
1 ∧

(
rn−k ∨ r1 ∨ r2

)
,
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r1
r2

r3

e1
e2

e3

Figure 9. A framed cycle consisting of a triangle r1, r2, r3 with external forces
wi(ei − ri) is a tensegrity if and only if the three lines riei meet in a point.

and e
(n−3)
3 is defined recursively by

e
(0)
3 = en;

e
(k)
3 = en−ke

(k−1)
3 ∧

(
rn−k−1 ∨ rn−k ∨ r1

)
.

Remark 33. For simplicity here and below we write uw instead of
u ∨ v.

Proposition 34. A framed cycle framework CB(P ) in 3D-general flat
position has a non-zero tensegrity if and only if CB(P ) fulfills the
join/intersection condition.

Proof. The condition is written by iteratively application of WU-surg-
eries to the last vertex of C, reducing CB to a triangular framed cycle
in general flat position. Namely the resulting flat cycle is

WU4(. . .WUn(CB(P )) . . .).

The existence of a non-zero tensegrity is equivalent to the existence
of a non-zero tensegrity after WU-surgeries by Proposition 22.

So the statement of proposition is reduced to triangular cycles. The
statement for a triangular cycle (which has to be planar) is classical
(see e.g., [13]). �

Let us write explicitly the join/intersection conditions for cycles on 3
and 4 vertices.

Example 35. If n = 3, then we have

r1e1 ∧ r2e2 ∧ r3e3 = true.

If n = 4, then we have (see Figure 10)[
r1 ∨

(
e4e1 ∧ (r3 ∨ r1 ∨ r2)

)]
∧ r2e2 ∧

[
r3 ∨

(
e3e4 ∧ (r2 ∨ r3 ∨ r1)

)]
= true.
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r1

r2

r3

r4

e1

e2

e3

e4

ê1 ê3

Figure 10. Illustration of Example 35 for n = 4.

4.3.3. Join/intersection criteria for tensegrities in 3D-general position.
The following theorem and its proof is the recipe to write the join/intersection
criteria for tensegrities in 3D-general position.

Theorem 36. The framework G(P ) in 3D-general position admits a
non-trivial tensegrity, if and only if all the join/intersection conditions
for all its associated framed cycle frameworks are fulfilled.

Proof. The join/intersection conditions for G(P ) are written according
to Definition 32. Due to Theorem 26 and Proposition 34 they are
equivalent to the existence of a non-zero tensegrity on G(P ).

It remains to add the following detail to the above construction.
In order to generate the boundary ẽi of an associated framed cycle
framework CB(P̃ ), one should take the intersection of the span of two
edges in the cycle passing through r̃i = ri (namely ri−1ri and riri+1)
and the span of all other edges adjacent to ri, say riri,1, . . . , riri,k. Let
us denote the resulting line by `. In terms of join/intersection operators
` is written as

` =
(
ri ∨ ri,1 ∨ . . . ∨ ri,k

)
∧
(
ri−1 ∨ ri ∨ ri+1

)
.

Finally, we pick up a point G(P )(bi) on ` distinct to ri. For instance,
set

ẽi = ` ∧
(
ri,1 ∨ . . . ∨ ri,k

)
. �

Remark 37. In analogy to Remark 12 it is sufficient to check the
criterion only for generator loops of the first homology group H1(G) of
the graph (if we consider the graph as topological space), because all
other loops can be decomposed by those. These conditions for different
generators of H1(G) may still coincide. Some of the conditions will
correspond to different strata.
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5. Tensegrities and discrete harmonic maps

In this section we relate tensegrities to the notion of discrete har-
monic functions and demonstrate an alternative way to obtain tenseg-
rities with just positive tensions.

The discrete Laplace operator (the graph Laplacian) acts on maps
f : G→ Rd defined on arbitrary graphs G by with real valued weights
wi,j ∈ R

(∆f)(vi) :=
∑
vj∼vi

wi,j(f(vi)− f(vj)),

where we sum over neighboring vertices vj of vi. This discrete Laplace
operator has been used in several applications of geometry processing
as well as in discrete complex analysis and discrete minimal surface
theory (see e.g., [2, 3]). The weights wi,j ∈ R are chosen depending on
the application. Prominent examples are the cotangent-weights or the
area of Voronoi cells around the vertex vi. Furthermore, the choice of
the weights implies which properties of the discrete Laplace operator
“inherits” from its smooth counterpart [26].

Definition 38. A function f : G→ Rd is called discrete harmonic if

(∆f)(vi) = 0

for all vertices vi ∈ Z(G).

A real valued discrete harmonic function over some rectangular sub-
grid of the Z2 lattice is illustrated by Figure 11.

In the setting of tensegrities the function f describes the coordinates
of the position of the vertices in space and the weight assignment wi,j

represents the stress at each edge (vi; vj). Consequently, we will al-
low positive and negative weights for tensile and compression forces.
Therefore, it follows from the definition of tensegrities (Definition 1)
that they can be seen as zeroes of the discrete Laplace operator for
maps defined on the vertices of a graph. In this sense tensegrities are
harmonic maps with respect to the discrete Laplace operator.

Proposition 39. Tensegrities with arbitrary combinatorics and with
only positive tensions wi,j > 0 can be obtained as the minimum of the
discrete Dirichlet energy

(6)
∑
vi∈G

∑
vj∼vi

wi,j‖pi − pj‖2,

viewing the coordinates of the vertices pi as variables.
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Figure 11. Illustration of a discrete harmonic real valued function as solution of a
Dirichlet boundary value problem. The discrete harmonic function f is defined over
a rectangular patch U of the Z2 lattice f : Z2 ⊃ U → R with weights w = 1 at each
edge. The values of f can be computed by minimizing an energy (cf. Prop. 39).

This proposition holds since the energy is bounded below and critical
points are solutions of the linear system

(7)
∑
vj∼vi

wi,j(pi − pj) = 0,

for all i. So if the number of vertices is big enough and the boundary
vertices are fixed, the minimum is unique. Therefore, a tensegrity with
just positive tensions can be interpreted as critical point of an energy.

Example 40. Let us consider a rectangular patch U and let us further
fix the values on the boundary of U . We are looking for a harmonic
function f : U ⊂ Z2 → R with respect to the discrete Laplacian with
constant positive weights that solves this Dirichlet problem. According
to Proposition 39 we find the solution by minimizing∑

vi∈U

∑
vj∼vi

wi,j‖fi − fj‖2,

where fi are considered as variables of this energy function. The values
fi which belong to the minimum are the values of the harmonic function
f at vi. We illustrate the graph (vi, fi) ∈ R2×R of a harmonic function
f in Figure 11.

Example 41. For the combinatorics of any cell decomposition of a
disc we obtain a tensegrity with everywhere unit tensions by fixing
the positions of the boundary vertices and minimizing the quadratic
energy in Equation (6). The tensegrity is the solution to the linear
system (7). An illustration of such a cell decomposition can be found
in Figure 12 (left). To check whether this framework is a tensegrity
with the machinery provided by Section 3 or Section 4 requires to check
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the “ratio” condition or the “join/intersection” condition for a set of
cycles that generates the first homology group H1(G).

Example 42. Figure 12 (right) illustrates a twisted strip represented
by a net with regular quadrilateral combinatorics which is attached to
two interlinked circles. The topology or the combinatorics of the graph
does not play any role in the analysis of a framework whether it is
a tensegrity. Neither, the “global” topology nor combinatorics of the
framework is of importance in the Equations (6) and (7), just the local
combinatorics of the vertex stars.

Figure 12. Left : A tensegrity with the combinatorics of an arbitrary cell de-
composition of a disc (cf. Example 41). Right : Two circles are the boundaries of a
tensegrity with regular quadrilateral combinatorics (cf. Example 42).

6. Examples

ab

c
a′

b′

c′

a

b

c

a′

b′

c′

Figure 13. Left : The combinatorics of an octahedron. Right : An octahedron in
R3. Its edges form a tensegrity if and only if any four alternate face planes, i.e.,
four 2-planes of the configurational type abc, ab′c′, a′bc′, a′b′c, are concurrent in a
point. The intersection lines of the first 2-plane with the three latter 2-planes are
illustrated by the green lines. See also Proposition 43.

We conclude the paper with a brief description of two non-trivial
three-dimensional examples. In fact however, our methods can be ap-
plied to all linearly generic graphs (Def. 3), or in 3D-general position
(Def. 5), respectively. For graphs where the first homology groupH1(G)
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a b
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a′

b′

c′

d′

a
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c

d

a′ b′
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d′

Figure 14. Left : The combinatorics of a four-sided antiprism. Right : A tensegrity
in R3 with the combinatorics of a four-sided antiprism. The rods (= edges with
positive weights) are red, the cables (= edges with negative weights) are blue. For
the framework to be a tensegrity we have to check cycles with three and four vertices
(see Example 45). For example the condition on the cycle cc′b′ is that the 2-planes
cc′b′, bcd, a′bb′, c′dd′, must be concurrent. The intersection lines of the first 2-plane
with the three latter 2-planes are illustrated by the green lines.

can be generated from cycles of length three or four, the conditions to
check are written out in Example 35 explicitly.

Proposition 43. An octahedral framework (a, b, c, a′, b′, c′) in R3 is a
tensegrity if and only if four alternate, i.e., face planes in a combina-
torial configuration like abc, ab′c′, a′bc′, a′b′c, are concurrent in a point
(see Figure 13 and cf. [30]).

Let us give two new proofs of this classical statement in terms of
multiplicative 1-forms and in terms of join/intersection operations.

Proof 1 (via multiplicative 1-forms). Let us consider the cycle with three
vertices (a, b, c). The necessary condition for that cycle to be part of a
tensegrity is that the product of the three values of the 1-form multiply
to 1 which is equivalent to Ceva’s theorem (see Section 3.2 for n = 3).
Consequently, the three lines

span(a, b′, c′) ∩ span(a, b, c),

span(a′, b, c′) ∩ span(a, b, c),

span(a′, b′, c) ∩ span(a, b, c),

must intersect in one point and therefore all four 2-planes intersect in
one point. �

Proof 2 (within join/intersection relations). Let

`1 = ab′c′ ∧ abc;
`2 = a′bc′ ∧ abc;
`3 = a′b′c ∧ abc.
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Our condition for a triangle abc is (cf. 35 for n = 3)

`1 ∧ `2 ∧ `3 = true.

This is to say that b′c′a, c′a′b, a′b′c, and abc indeed meet in a point. �

Remark 44. As one can notice, one can apply proofs 1 and 2 of Propo-
sition 43 to any other triangle in the octahedron. In fact all these
conditions would be equivalent.

Example 45. Let us consider a graph with the combinatorics of a four-
sided antiprism (Figure 14 left). To determine whether a framework
with such combinatorics is a tensegrity involves checking cycles with
three and four vertices. Cycles with three vertices have been considered
also in the previous example (Proposition 43). The configuration for
the cycles with four vertices is written down explicitly in Example 35.
An illustration of a tensegrity with the combinatorics of a four-sided
antiprism is depicted in Figure 14 (right). The rods (= edges with
positive weights) are depicted in red, the cables (= edges with negative
weights) are depicted in blue.

Example 46. Let us decompose a two-dimensional domain D homeo-
morphic to a disk into k cells that are either triangles or quadrilateral.
Let G be the graph corresponding to the 1-skeleton of this decomposi-
tion. Then

H1(G) = Zk.

Finally we consider frameworks in R3 representing G (in 3D-general
flat position). One can pick all triangular and quadrilateral cycles of G
corresponding to all triangles and quadrilaterals in the decomposition
of D. All the conditions for these cycles will be of two types described
in Example 35. (Here one should substitute suitable vertices of the
cycles to the corresponding expressions for ri and ei. Recall that the
vertices ri are the corresponding vertices of the graph, and the vertices
ei are defined from Definition 24.)

Example 47. Let us consider the example of the quadrilateral graph
G(m,n) on the torus with sides m and n (cf. Figure 15). We have:

H1(G(m,n)) = Zmn+1.

One can pick mn− 1 quadrilateral cycles, one longitude cycle, and one
latitude cycle. All conditions of the quadrilateral cycles will be of the
second type described in Example 35. The conditions for longitude and
latitude cycles will be similar to the ones described in Example 35 but
longer (they are constructed by the iterations of Definition 32).
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Figure 15. Illustration of a torus. Left : A torus is homeomorphic to a rectangle
with opposite sides identified as illustrated. We are considering a framework with
the combinatorics of the vertices of a rectangular sub-patch of the Z2 lattice, with
edges connecting neighbouring vertices, and with opposite vertices of the rectangle
glued together like a torus. Second to third : Illustrations of the three different types
of cycles on that torus.

Remark 48. In the examples of Figure 12: for the left one it is enough
to write triangular, quadrilateral, pentagonal, and hexagonal condi-
tions; the right picture is very similar to the torus. Here one can pick
mostly quadrilateral cycles, one longitude cycle and one latitude cycle.
More generally, this technique is applicable for all graphs with linearly
generic frameworks discussed in this paper (see Definition 3).
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