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Abstract 
 
 
Validating diagnostic markers that may predict the outcome of Ebola virus disease 

patients 
 

Jocelyn Ginette Pérez Lazo 
 
 
 
 
Ebola virus disease (EVD) is one of the deadliest viral infections in humans, with case 
fatality rates recorded between 50 to 70%. Despite the ongoing efforts to control 
disease transmission using a recently licensed vaccine, no licensed treatments and 
prognostic tests are available that could improve the outcome of acute EVD patients 
and survivors. In the search for prognostic tools, different markers have been 
proposed. However, to date Ebola virus (EBOV) viral load measured as Ct value is 
currently the most reliable predictor of the clinical outcome, particularly in the 
context of defining survivors (Ct > 22) or fatal cases (Ct < 20). However, the viral load 
cannot predict accurately the clinical outcome in patients with Ct values between this 
range since the outcome is approximately equal between survival and a fatal 
infection. In a previous study 10 genes were identified by machine-learning of 
transcriptome data from EBOV patients as being potential prognostic markers. This 
study investigates whether this set of host-based response markers can predict the 
outcome of infection at the acute phase specially in situations where viral load gives 
little predictive value.  Quantitative reverse transcription PCR (RT-qPCR) assays were 
developed for each gene transcripts and analysed in 39 clinical samples collected by 
the European Mobile Laboratory during the 2013-16 West Africa outbreak. A subset 
of the gene transcripts was used to generate machine learning models with or 
without EBOV Ct values to predict the outcome of a second group of 64 EVD patient 
samples using a blind-coded approach. The best discriminating model had a greater 
overall predictive accuracy (68.4%) compared to a model that only used EBOV Ct as 
a predictor variable (54.3%). These findings were ratified in a larger sample size, the 
prediction performance of the models was enhanced when a subset of the gene 
transcripts was combined with EBOV Ct (90-100%) than EBOV Ct alone (87%). 
Furthermore, a multiplex RT-qPCR assay for a subset of the gene transcripts was 
developed. This study proposes a novel approach that highly predicts the risk of Ebola 
virus disease mortality at the time of diagnosis, which could be used to speed up the 
triage and clinical management of patients in future outbreaks.  
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1.1 Filoviruses, an emerging and re-emerging viral threat 

 
Filoviruses represent an important family of viruses that cause sporadic outbreaks 

and disease in humans. The first filovirus identified was Marburg virus (MARV) in 

1967, which caused an outbreak in laboratory personnel in Marburg, Frankfurt and 

Belgrade as a result of handling blood, tissues and cell cultures from infected African 

green monkeys imported from Uganda (Siegert et al., 1967; Slenczka & Klenk, 2007). 

Infection resulted in a severe haemorrhagic fever with 7 deaths out of 32 cases 

(Slenczka & Klenk, 2007). Since then, more human pathogenic filoviruses have been 

discovered including Ebolaviruses such as Ebola virus (EBOV), Sudan virus (SUDV), Taï 

Forest virus (TAFV), and Bundibugyo virus (BDBV) (Deng et al., 1978; Le Guenno et 

al., 1995; Towner et al., 2008; World Health Organization, 1978). Other Ebolaviruses 

such as Reston virus (RESTV), Bombali virus (BOMV) and other Filoviruses such as 

Lloviu virus (LLOV), Měnglà virus (MLAV), Xīlǎng virus (XILV), and Huángjiāo virus 

(HUJV) were discovered in different animal hosts but their potential as a zoonotic 

threat needs to be investigated (Goldstein et al., 2018; Jahrling et al., 1990; Negredo 

et al., 2011; Shi et al., 2018; Yang et al., 2019). 

 

Among all filoviruses, EBOV, which causes Ebola virus disease (EVD) in humans, has 

been the cause of most of the filovirus disease outbreaks in recent years, including 

two of the largest filovirus disease outbreaks recorded so far, the 2013-2016 

outbreak in West Africa and the 2018-2020 outbreak in the Democratic Republic of 

the Congo (DRC). EVD has a high fatality rate, of around 50%, and while new 

vaccines/antivirals have been developed there has been significant drive to 

determine factors that influence and can be used to predict the clinical outcome of 

patients. To date these have not been well defined. EBOV viral load is used as a 

predictor of EVD outcome mainly at extremes of Ct values, where a low Ct is 

suggestive of fatal infection and a high Ct is suggestive of survival. Whereas, mid-

range Ct values are less accurate predicting the outcome of patients. Defining a 

reliable prognostic tool that could stratify the mortality risk in EVD patients may help 

health care workers in the management of patients during the outbreaks  (Hartley et 

al., 2017). Thus, the limited resources available could be directed to those in need of 
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intensive treatment. The analysis of host response genes differentially expressed 

during EBOV infection has identified candidate predictive markers of disease 

outcome (Liu et al., 2017). Future development of such markers as prognostic tools 

requires further analysis and validation. 

 
1.1.1 Taxonomy and classification 
 

1.1.1.1 Order Mononegavirales 
 

The genus Ebolavirus from the family Filoviridae belongs to the order 

Mononegavirales. The name of this order derives from the Greek adjective μóνος -

monos (alone or single) that refers to the single-stranded RNA genome, the Latin verb 

negare (to negate) referring to the negative polarity of the genome, and the suffix 

virales denoting a virus order (Kuhn et al., 2010). The order Mononegavirales was 

established in 1991 to accommodate related viruses with non-segmented, linear, 

single-stranded, negative-sense RNA genomes with the characteristic general gene 

order 3’- UTR - core proteins genes - envelope protein genes - polymerase gene -5’- 

UTR (Pringle et al., 1991).  

 

1.1.1.2  Family Filoviridae 
 
 
The name Filoviridae derives from the Latin noun filum (thread) that refers to the 

filamentous morphology of virions from this family, and the suffix viridae that 

denotes a virus family (Kuhn et al., 2010). Members of this family produce variously 

shaped, often filamentous, enveloped virions containing linear non-segmented, 

negative-sense RNA genomes of 15-19 kb. According to the latest report of the 

International Committee on Taxonomy of Viruses (ICTV) in 2020, the family 

Filoviridae comprise 6 genera including Cuevavirus, Dianlovirus, Ebolavirus, 

Marburgvirus, Striavirus, Thamnovirus, and 11 species (Kuhn et al., 2020) (Table 1.1). 

Research has mainly been focused in two viral species that are highly pathogenic for 

humans: EBOV, which is the most prominent specie of the genus Ebolavirus and 

MARV that belong to the genus Marburgvirus. In the latest ICTV report, one new 

genus and one new specie were included. The new genus Dianlovirus includes Měnglà 
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virus, which was discovered in Rousettus bats from China in 2019 and shares 32-54% 

nucleotide sequence identity with known filoviruses (Yang et al., 2019). A new specie 

of the genus Ebolavirus, Bombali virus was discovered in 2018 in free-tailed 

insectivorous bat species Mops condylurus and Chaerephon pumilus in Sierra Leone 

and Kenya (Forbes et al., 2019; Goldstein et al., 2018). The viral genomes of the five 

genera show similar architecture and are organized in the following general gene 

order 3ʹ-NP-VP35-VP40-(GP)-L-5ʹ, but some genera contain additional genes. 

 

The host range of filoviruses includes mammalian hosts for Cuevavirus, Ebolavirus 

and Marburgvirus, and piscine hosts for Striavirus and Thamnovirus (Table 1.2).  

 

 

Table 1.1 ICTV-accepted taxonomy of the family Filoviridae as of March 2020. 

Genus Species Virus name 

(Abbreviation)  

Cuevavirus Lloviu cuevavirus Lloviu virus (LLOV) 

Dianlovirus Měnglà dianlovirus Měnglà virus (MLAV) 

Ebolavirus 

Bundibugyo ebolavirus Bundibugyo virus (BDBV) 

Reston ebolavirus Reston virus (RESTV) 

Sudan ebolavirus Sudan virus (SUDV) 

Tai Forest ebolavirus Taï Forest virus (TAFV) 

Zaire ebolavirus Ebola virus (EBOV) 

 Bombali ebolavirus Bombali virus (BOMV) 

Marburgvirus  Marburg marburgvirus Marburg virus (MARV) 

 Ravn virus (RAVV) 

Striavirus Xilang striavirus Xīlǎng virus (XILV) 

Thamnovirus Huangjiao thamnovirus Huángjiāo virus (HUJV) 
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Table 1.2  Host range and geographic location of members of the family Filoviridae  

Genus Specie Host range Geographic location  Reference 

Cuevavirus LLOV 
Schreiber´s long-fingered bats (Miniopterus 
schreibersii) 

Spain,  Northeast 
Hungary 

(Kemenesi et al., 2018; Negredo et al., 
2011) 

Dianlovirus MLAV Rousettus bats China (Yang et al., 2019) 

Ebolavirus 

EBOV, 
SUDV, 
RESTV 

Frugivorous and insectivorous bats, humans. 

Central Africa, China, 
Philippines, 
Bangladesh, Singapore 
and India 

(De Nys et al., 2018; Dovih et al., 2019; 
Jayme et al., 2015; Laing et al., 2018; 
Leroy et al., 2005; Olival et al., 2013; 
Taniguchi et al., 2011; Yuan et al., 2012). 

RESTV Cynomolgus macaques, pigs, humans. Philippines, China 
(Barrette et al., 2009; Hayes et al., 1992; 
Jahrling et al., 1990; Marsh et al., 2011; 
Pan et al., 2014; Rollin et al., 1999) 

BOMV 
Free-tailed insectivorous bats (Mops 
condylurus, Chaerephon pumilus) 

Sierra Leone, Kenya 
(Forbes et al., 2019; Goldstein et al., 
2018) 

Marburgvirus 
MARV, 
RAVV 

Egyptian fruit bats (Rousettus aegyptiacus), 
humans. 

Uganda, Democratic 
Republic of Congo, 
Kenya, Zambia, 
Gabon, South Africa 
and Sierra Leone 

(Amman et al., 2020; Kajihara et al., 2019; 
Swanepoel et al., 2007; Towner et al., 
2009). 
 

Striavirus XILV Striated frogfish (Antennarius striatus) China (Shi et al., 2018) 

Thamnovirus HUJV 
Greenfin horse-faced filefish (Thamnaconus 
septentrionalis) 

China (Shi et al., 2018) 
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1.1.2 EBOV genome, virion and life cycle 

 
The negative sense ssRNA genome of EBOV is approximately 19kb in size and encodes 

seven structural proteins including the nucleoprotein NP, polymerase cofactor VP35, 

matrix protein VP40, glycoprotein GP, transcriptional activator VP30, nucleocapsid-

associated protein VP24 and the polymerase L. The GP gene also encodes two non-

structural proteins known as soluble GP (sGP) and small soluble GP (ssGP) (Hume & 

Mühlberger, 2019) (Figure 1.1 Part A). The viral genome is encapsidated by NP and 

associated with L, VP35 and VP30 to form the ribonucleoprotein (RNP) complex. VP40 

and VP24 surround the complex and are wrapped in a lipid envelope derived from 

the host cell during the virion egress. GP is inserted in the virion membrane and 

protrudes from the surface. GP consists of two subunits GP1 and GP2. (Hoenen et al., 

2011)(Figure 1.1 Part B). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.1 Schematic representation of the EBOV genome and particle. A) Schematic 
diagram of EBOV genome. The genes are shown as boxes, gene overlaps are marked 
by  black triangles, the bars represent the open-reading frames (ORFs) that encode 
each viral protein. B) Representation of the viral particle. The RNA genome is 
encapsidated by NP, VP35, VP30 and L. VP40 and VP24 are matrix proteins. GP trimers 
are studded in the viral membrane. 
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The life cycle of EBOV begins with the cell entry (Figure 1.2). The virion attaches to 

the host cell surface through interaction of the GP1 subunit with various host cell 

factors such as T cell immunoglobulin and mucin domain (TIM) proteins e.g. TIM1; 

TAM receptor tyrosine kinases (Ax1, Tyro3, Mer); C-type lectin receptors including 

dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-

SIGN) and its homolog L-SIGN, human mannose-binding lectin (MBL), and human 

macrophage galactose- and N-acetylgalactosamine-specific C-type lectin (hMGL) 

(Alvarez et al., 2002; Brudner et al., 2013; Kondratowicz et al., 2011; Takada et al., 

2004). Following attachment, the viral particle is taken up via macropinocytosis into 

endolysosomes (Aleksandrowicz et al., 2011; Saeed et al., 2010). In the late 

endosome, GP is cleaved by cathepsin B (CatB) and cathepsin L (CatL) (Chandran et 

al., 2005). The acidification of the endosome (low pH) induces the interaction of GP1 

with the host protein, cholesterol transporter Niemann-Pick C1 (NPC-1), which is 

necessary for the fusion of the viral envelope with the endosomal membrane 

(Carette et al., 2011). The fusion facilitates the release of the RNP  complex (mainly 

RNA + NP protein) into the cytoplasm where the transcription and replication of the 

negative sense ssRNA genome takes place (Muhlberger, 2007). The primary 

transcription utilises viral RNP complex proteins brought into the cell, and viral 

mRNAs are translated into proteins in the cytosol by host ribosomes. The newly 

synthesized viral proteins facilitate a secondary transcription and genome replication 

(Hoenen et al., 2019). For ebolaviruses, the proteins NP, VP35, VP30 and L are 

necessary for transcription (Mühlberger et al., 1999). The replication involves copying 

the viral genomic RNA (vRNA) into a full-length positive sense antigenome (cRNA) 

which then serves as a template for the synthesis of progeny negative sense genomes 

(Muhlberger, 2007). Mature RNP complexes condense into a packaging form and are 

transported to the plasma membrane, where budding of the viral particle is mediated 

by VP40 (Jasenosky et al., 2001). GP is transported to the cell surface via the secretory 

pathway, where it is post-translationally modified by the addition of O-linked and N-

linked glycans and furin-mediated cleavage into the mature GP1 and GP2 subunits; 

then is incorporated into the budding particles (Feldmann et al., 1994; Volchkov et 

al., 1998)  
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Figure 1.2 EBOV life cycle. Binding of the viral particle triggers the uptake by 
macropinocytosis, the fusion with the endosomal membrane results in the release of 
the RNP complex to the cytosol. The genome is replicated and transcribed into 
mRNAs, viral proteins are then translated and transported to the plasma membrane 
for budding of new viral particles. The secretory pathway is composed of the 
endoplasmic reticulum (ER), Golgi apparatus, lysosome and cell membrane. 
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1.2 Ebola Virus Disease (EVD) 
 
According to the latest WHO International Classification of Diseases Revision 11 (ICD-

11) of 2018, the term EVD is restricted to the disease only caused by EBOV (specie 

Zaire ebolavirus). For other members of the genus Ebolavirus that have caused more 

than one reported human infection, the diseases are named according the identified 

viral specie, e.g. Bundibugyo virus cause Bundibugyo virus disease (BVD) and Sudan 

virus cause Sudan virus disease (SVD). In the case of patients infected with 

ebolaviruses who show an unusual clinical presentation the term used is “Atypical 

Ebola disease”. For patients infected with ebolaviruses that are not covered by EVD, 

BVD or SVD the term used is “Other specified Ebola disease” e.g. the disease caused 

by TAFV. Finally, the term “Ebola disease, virus unspecified”  is used for patients who 

are suspected to be infected with ebolaviruses but the virus has not been identified 

(Kuhn et al., 2019).  

 

The use of “haemorrhagic fever” was also discouraged by the ICD-11 and should no 

longer be used for EVD or any disease associated to filoviruses since infected 

individuals do not always show haemorrhage (Kuhn et al., 2019).  

 
 
1.2.1 Epidemiology of EVD 
 
 
EBOV was first discovered in 1976 during an outbreak in the Équateur Province in 

DRC (formerly Zaire) in Yambuku village which is near the Ebola river (that gave the 

virus name) (World Health Organization, 1978)(Figure 1.3). A total of 318 cases (280 

deaths and 38 survivors) with a high case fatality rate (CFR) of 88% was recorded 

(Table 1.3). The index case was a man who showed malaria-like symptoms and 

received an injection of chloroquine at the Yambuku Mission Hospital. Subsequent 

cases either received contaminated injections at the same hospital or had contact 

with an infected individual (World Health Organization, 1978).  

 

Since the first EVD outbreak until 2009, sporadic outbreaks have been recorded in 

the DRC, Gabon and the Republic of the Congo. During this period, the largest 
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outbreaks recorded were in 1995 in Kikwit and surrounding areas (315 cases and 81% 

CFR), and the 2007 outbreak in Luebo and Mweke (264 cases, 71% CFR), both in the 

DRC (Khan et al., 1999; World Health Organization, 2007). Of note, in many of the 

outbreaks during this period, the index cases were in contact with dead monkeys, 

suggesting this as the source of the infection. For example, the EVD epidemic in 

Gabon in 1994-1995 (152 cases, 60% CFR) started in gold mining villages situated near 

a rainforest where deaths of monkeys were reported (Georges et al., 1999). Likewise, 

the 1996 outbreaks in Gabon started when people got ill after butchering or had 

contact with dead chimpanzees (Georges et al., 1999). The 2001-2002 outbreak that 

occurred in the border of Gabon and the Republic of the Congo recorded 124 cases 

with 78% CFR, and it was also associated to hunting or contact with dead monkeys 

(gorillas and chimpanzees) (World Health Organization, 2003).  

 

The most significant outbreak that has occurred to date is the 2013-2016 outbreak in 

the West Africa in countries such as Guinea, Liberia and Sierra Leone. This is currently 

the largest EVD outbreak so far recorded, with a total of 28,616 cases and 11,310 

deaths (World Health Organization, 2016b).  Additionally, 36 cases (with 15 deaths) 

were recorded in other countries (Mali, Senegal, USA, France, Germany, Netherlands, 

Nigeria, Norway, Spain, Italy, UK, Switzerland) as infected individuals travelled 

outside of main epicentre of the outbreak. The average CFR of this outbreak was 

39.5%, however there were high fatalities rates reported in Guinea (66.7%) and 

Liberia (45%) in comparison to Sierra Leone (28%). The index case was a 2 year-old 

boy who died in December 2013, in Guéckédou, Guinea (Baize et al., 2014). Deep 

sequencing and phylogenetic analysis of EBOV genomes from patient samples 

supported a single introduction of the virus into the human population, with 

subsequent spread of the infection via human-to-human contact (Carroll et al., 2015; 

Dudas et al., 2017; Tong et al., 2015). The spillover into humans is thought to have 

occurred as a zoonotic transmission from bats (Baize et al., 2014).  

 

While the outbreak in West Africa was happening, another small outbreak was seen 

in 2014 in the Équateur Province in western DRC (69 cases, 71% CFR). This outbreak 

was not genetically nor epidemiologically related to the one in West Africa.  Sequence 
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analysis indicated that the EBOV isolated from patients was related to the one that 

caused the 1995 outbreak in Kikwit, DRC (Maganga et al., 2014). 

 

More recently additional EVD outbreaks have occurred in the DRC. Two small 

outbreaks have been observed, first in 2017 in Likati, north DRC (8 cases, 50% CFR), 

and then in 2018 again in the Équateur Province in western DRC (54 cases, 61% CFR) 

(World Health Organization, 2018). However, also initiating in 2018 the second 

largest EVD outbreak so far recorded. This outbreak  was first reported in Kivu 

province in eastern DRC, then spread to Ituri province, and 4 cases were confirmed 

in Uganda (Ilunga Kalenga et al., 2019). The outbreak lasted for 2 years and was 

declared over by WHO on June 25, 2020 with a total of 3,470 cases and 66% CFR 

(World Health Organization, 2020b). For this outbreak, molecular epidemiological 

analysis also revealed a single spillover of EBOV to the human population and the 

subsequent human-to-human transmission. The index case reported was an  

individual from Masimbembe (Mangina health zone), but the source of the spillover 

is unknown (Mbala-Kingebeni et al., 2019).  

 

A new outbreak, and 11th in the DRC, was announced on 1 June, 2020 after the 

detection of cases in Mbandaka in Équateur Province of western DRC. As of 10 

October, 128 cases including 53 deaths (41.4% CFR) have been recorded (World 

Health Organization, 2020e). The genetic sequence analysis showed that this is a new 

spillover. The virus circulating in the Équateur Province in western DRC is different 

from the one that caused the 2018-2020 outbreak in eastern DRC and from the 

previous one that hit the same region in 2018. An investigation is ongoing to 

determine the source of the new outbreak (World Health Organization, 2020a). 

Details of all EVD outbreaks are shown in Table 1.3 
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Figure 1.3 Geographic locations and dates of EVD outbreaks up to 2020. The map 
shows the location and years of all the reported EVD (specie Zaire ebolavirus) 
outbreaks since the first outbreak in 1976 to the current outbreak in the Équateur 
Province of the DRC. Modified and updated from Jacob et al. (2020). 
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Table 1.3 Details of EVD outbreaks with number of cases and case fatality rate 

Country (year) 
Number of 

cases 

Case fatality 

rate (%) 

DRC* (1976) 318 88.1 

DRC (1977) 1 100.0 

Gabon (1994-1995) 52 61.5 

DRC (1995) 315 81.0 

Gabon (1996) 31 67.7 

Gabon (also exported to South Africa) (1996-1997) 62 74.2 

Gabon, Congo (2001-2002) 124 78.2 

Congo (2003, Jan-Apr) 143 90 

Congo (2003, Nov-Dec) 35 83 

Congo (2005) 12 83 

DRC (2007) 264 71 

DRC (2008-2009) 32 47 

Guinea, Sierra Leone and Liberia (also exported to 

Mali, Senegal, USA, France, Germany, Netherlands, 

Nigeria, Norway, Spain, Italy, UK, Switzerland) 

(2013-2016) 

28652 39.5 

DRC (2014) 69 71 

DRC (2017) 8 50 

DRC (2018) 54 61 

DRC (also exported to Uganda) (2018-2020) 3470 66 

DRC (2020, June-present) 128 41.4 

*DRC = Democratic Republic of the Congo 

Modified and updated from Jacob et al. (2020) 
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1.2.2 Transmission of EVD 
 
EVD is considered to be a zoonotic infection and outbreaks are initiated either by the 

spillover from an EBOV-infected natural reservoir to humans, or through an 

intermediate host such as non-human primates (NHP). Bats (mainly frugivorous 

species) are considered to be the natural reservoirs of EBOV since EBOV-antibodies 

and viral nucleotide sequences have been detected in different bat species; however 

the virus has not yet been isolated from bats in natural conditions (De Nys et al., 

2018; Leroy et al., 2005; Olival et al., 2013).  

 

An important evidence that bats are the natural reservoir of some filoviruses is the 

experimental infection of MARV in Egyptian rousette bats that demonstrated viral 

replication and horizontal transmission (Schuh et al., 2017). MARV shedding was 

detected in oral, rectal and urine samples from inoculated bats. In contact bats, 

MARV RNA was detected in oral and rectal swabs in the early study phase (0-56 days 

post infection), but viremia and seroconversion only in the late study phase (7-8 

months post infection) with a rapid decline of IgG levels (Schuh et al., 2017). Similar 

to other reported experimental viral infections in bats (i.e Nipah virus) no clinical 

signs of disease was observed (Halpin et al., 2011). This feature may be related to 

differences in viral tissue tropism and host immune response in bats that allows them 

to harbour many viruses. Bats have different interferon and antiviral ISG strategies 

which can also vary between species (Omatsu et al., 2008; Zhou et al., 2011). They 

also have mechanisms to control excessive inflammation e.g. suppression of TNF-α 

expression, a less effective stimulator of interferon genes and an antibody response 

that potentially promote incomplete viral clearance (Banerjee et al., 2017; Schuh et 

al., 2019; Turmelle et al., 2010; Xie et al., 2018)  

 

Lately, EBOV genetical material and EBOV-antibodies have been found in a Greater 

long-fingered bat (Miniopterus inflatus) in Liberia. This was the first identification of 

EBOV in a bat in West Africa, however, it has not yet been confirmed if the strain is 

the same as that which caused the West Africa outbreak. These results have yet to 

be published (Kupferschmidt, 2019).  
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Prior EBOV outbreaks in Central Africa have been associated with deforestation and 

bushmeat hunting, where human cases have been linked to contact with and 

consumption of EBOV-infected chimpanzees, gorillas and duikers that may have been 

directly infected by the natural reservoir (CDC, 2020; Giesecke, 2014; Rouquet et al., 

2005). 

 

After the spillover, the virus is transmitted between humans by direct contact or by 

contact with infected tissues, body fluids or contaminated fomites. Infectious EBOV 

has been isolated from blood, saliva, urine, semen, breast milk, aqueous humor 

(Bausch et al., 2007; Vetter et al., 2016). Molecular assays have also detected EBOV 

RNA in amniotic fluid, cerebrospinal fluid, conjunctiva/tears, skin swabs, vaginal fluid, 

sweat and stool (Bausch et al., 2007; Keita et al., 2019; Vetter et al., 2016). Sexual 

contact has been considered as the likely route of transmission in some EVD cases 

reported during the 2013-2016 West Africa outbreak (Den Boon et al., 2019).  

 

1.2.3 EVD case definition 
 

Currently there is no EVD case definition globally applied (Huizenga et al., 2019). 

Multiple case definitions were used during the West Africa outbreak, that were 

variations of the EVD case definition developed by WHO. Guinea followed the WHO 

suspected EVD case definition and similar versions with slight variations were used 

by Sierra Leone and Liberia (shown in detail in Table 1.4) (Huizenga et al., 2019; 

Reaves et al., 2014). However, these case definitions are not 100% sensitive 

(detecting true EBOV-positive individuals) or 100% specific (detecting true EBOV-

negative individuals). Thus, an analysis of the WHO case definition applied in Guinea 

showed a sensitivity of 68.9% and 49.6% specificity (Hsu et al., 2018).  

 

 

 



 16 

Table 1.4  Case definition for a suspected case during the 2013-2016 EVD outbreak 

WHO suspected EVD case 
definition* 

Sierra Leone national 
suspected case definition 

Liberia suspected case 
definition 

Any person, alive or dead, 
suffering or having suffered 
from a sudden onset of high 
fever and having contact with 
an individual with suspected, 
probable or confirmed EVD or a 
dead or sick animal; OR 

Temperature > 38.0 and 3 or 
more of the following 
symptoms: abdominal pain, 
diarrhea, difficulty breathing, 
difficult swallowing, fatigue, 
headache, hiccups, loss of 
appetite, muscle/joint pain, 
nausea/vomiting, unusual 
bleeding 

History of acute fever and 3 or 
more of the following 
symptoms: headache, nausea, 
vomiting, diarrhea, intense 
fatigue, abdominal pain, 
general muscular or joint pain, 
difficulty swallowing, difficulty 
breathing, or hiccups; OR 

Any person with sudden onset 
of high fever and at least three 
of the following symptoms: 
headache, lethargy, anorexia or 
loss of appetite, aching muscles 
or joints, stomach pain, 
difficulty swallowing vomiting, 
difficulty breathing, diarrhea, 
hiccups; OR 

 
Fever with acute clinical 
symptoms or signs of 
hemorrhage (epistaxis, 
conjunctival injection, petechia, 
hematemesis, hematochezia, 
melena); OR 

Any person with inexplicable 
bleeding; OR 

 
Death of a person with this 
history; OR 

Any sudden, inexplicable death 
 

Any unexplained death 

*Case definition for a suspected case during an EVD outbreak (to be used by mobile teams, 

health stations and health centres) 

 
 
 
1.2.4 Pathogenesis of EVD 
 
EBOV infections in humans are acquired by contact with infected body fluids, tissue 

or fomites likely through breaks in the skin or mucosal surface (Dowell et al., 1999). 

Although most human cells can be infected, the primary target cells are mononuclear 

phagocytes (Kupffer cells, macrophages, microglia) and dendritic cells (DCs) (Bray & 

Geisbert, 2005; Geisbert et al., 2003). EBOV GP interacts with macrophages and DCs 

through host factors such as DC-SIGN, Mer, integrin αV and NCP1 (Alvarez et al., 

2002; Dahlmann et al., 2015; Rogers et al., 2019). The infected primary target cells 

can migrate from the initial site of infection and also virus can disseminate to other 

sites such as regional lymph nodes, liver, spleen, adrenal glands via blood/lymphatics 

(Geisbert et al., 2003) (Figure 1.4). In-vivo studies in NHP showed the rapid spread of 
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infection to regional lymph nodes, liver, spleen, lung, bone marrow, where high viral 

titers were detected at only 2-3 days post infection (Geisbert et al., 2003).  

 

In-vivo EBOV infection in animal models and data from EVD in humans indicates a 

massive release of pro-inflammatory cytokines  and chemokines including IL-1β, IL-6, 

IL-8,  IL-10, MCP-1, MIP-1α, and TNF α (Caballero et al., 2016; Wauquier et al., 2010). 

It has also been shown that there is a strong upregulation of genes related to 

cytokine/chemokine signalling in response to EBOV infection of macrophages in-vitro 

(Wahl-Jensen et al., 2011). MCP-1, and MIP-1α can recruit more macrophages to the 

area of infection, allowing EBOV to infect more cells (Geisbert et al., 2003). IL-10 also 

seems to enhance the virus entry in human macrophages (Stantchev et al., 2019).  

 

EBOV infection induces an aberrant DCs maturation, which supress DCs functions 

required to induce an adaptive immune response i.e. antigen presentation to T 

lymphocytes and T- cell proliferation (Bosio et al., 2003). Infection also induces 

apoptosis of human CD4+ and CD8+ T cells which has been correlated to the clinical 

outcome of EVD patients. Lymphocyte populations are drastically lower in fatal cases 

compared to survivors (Wauquier et al., 2010). The apoptosis of T lymphocytes may 

be the result of an abortive infection in these cells. EBOV is capable of entering T 

lymphocytes and producing viral RNAs and proteins but is unable to release infectious 

virus due to the presence of an unknown cellular restriction factor that inhibits viral 

replication (Younan et al., 2019).  

 

The release of oxygen free radicals like nitric oxide by the infected macrophages 

trigger the apoptosis of NK cells, tissue damage and loss of vascular integrity 

(Geisbert et al., 2003). Release of TNFα from infected macrophages can also increase 

endothelial permeability (Hensley et al., 2002). The breakdown of endothelial 

barriers causes oedema and hypovolemic shock. Early transcriptional changes in the 

liver and adrenal gland indicate a downregulation of genes involved in metabolism, 

coagulation and blood pressure (Jankeel et al., 2020). This is associated with 

thrombocytopenia and increase plasma levels of liver enzymes.  
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Later stages of the infection indicate inflammation, cell death, upregulation of genes 

associated with cardiac injury and vasodilation. This leads to circulatory failure, 

hypotension, shock and multi-organ damage which is typical of EVD (Jankeel et al., 

2020) 

 

1.2.4.1 EBOV immune evasion 
 
 
EBOV inhibits the intrinsic and innate cell antiviral defence, allowing efficient virus 

replication in host cells (Jacob et al., 2020). GP1,2, antagonizes the antiviral function 

of the cellular response factor Tetherin (Kaletsky et al., 2009). The sGP seems to have 

an anti-inflammatory role reducing the production of pro-inflammatory cytokines by 

macrophages and protecting the integrity of the endothelium (Bradley et al., 2018; 

Wahl-Jensen et al., 2005). It also acts as a decoy antigen by binding the antibodies 

against GP1,2 , and diverting the humoral response towards sGP (Mohan et al., 2012). 

The EBOV VP35 protein blocks the induction of type I IFN by binding double-stranded 

RNA and interacting with cellular  proteins such as TANK-binding kinase 1 (TBK-1), IκB 

kinase epsilon (IKKε), and Protein kinase R activator (PACT) (Luthra et al., 2013; Prins 

et al., 2009). VP35 also supress microRNA-direct silencing in host cells, this alters the 

cellular environment and enhances EBOV replication (Zhu et al., 2012). VP24 inhibits 

IFN-α/β and IFN-γ signalling by impairing the nuclear accumulation of tyrosine-

phosphorylated STAT1 (PY-STAT1) (Reid et al., 2006). VP40 may have a role in viral 

persistence, by inducing apoptosis of host immune cells (Pleet et al., 2017) 
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Figure 1.4 Pathogenesis of the Ebola virus disease. EBOV particles enter the body through injuries or contact via mucosal 
membranes. The primary targets cells are macrophages and dendritic cells. Infected cells migrate to regional lymph nodes while 
new virions are produced. The immune system dysregulation leads to systemic infection. EVD typically starts as a non-specific viral 
syndrome, followed by gastrointestinal symptoms and some patients go into shock and systemic inflammatory response.
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1.3 Clinical manifestations, diagnosis of EVD, and molecular epidemiology during 

an ongoing outbreak 

 
1.3.1 Clinical manifestations of acute EVD 
 
The mean incubation period (time from infection to symptom onset) varies 

depending on the route of transmission. The mean incubation period reported 

following percutaneous transmission is 5.86 ± 1.42 days and following person-to-

person transmission or contact with infected animals is 7.34 ± 1.35 days. When all 

routes of transmission are taken into account the mean incubation period reported 

is 6.22 ± 1.57 days (Velasquez et al., 2015). Data from the 2013-2016 West Africa 

outbreak shows that early symptoms of EVD (0-3 days since symptom onset) includes 

fever (up to 40°C), malaise, fatigue and body aches. During the first seven days the 

disease progresses to severe gastrointestinal symptoms (nausea, vomiting, 

diarrhoea). This dehydration causes hypotension and vascular leakage. A fraction of 

patients show improvement by day 10 of illness. During the terminal phase (generally 

between 7-12 days) tissue hypoperfusion and vascular leakage lead to multiple organ 

dysfunction syndrome and shock. Some patients also develop neurologic symptoms 

(≥ 10 days). Most deaths occurred between 7-12 days of illness (Chertow et al., 2014). 

 

Asymptomatic infection has not been adequately studied, previous serological 

studies reported very different estimates of the proportion of asymptomatic 

infection among the contact persons between 3% and 46% (Bower & Glynn, 2017; 

Dean et al., 2016; Glynn et al., 2017; Leroy et al., 2000). This difference could be 

attributed to the use of different assays, cross-reactions with non-Ebola viruses, and 

the heterogeneity of the study populations. A recent retrospective study in a long 

study population from Guinea found 8.33% EBOV seropositives in 216 

paucisymptomatic contact persons and 3.32% seropositives in 1174 asymptomatic 

individuals (Diallo et al., 2019). The most common symptoms among 

paucisymptomatic contacts were headache, fatigue and fever (Diallo et al., 2019). 

Risk factors associated with seropositivity in asymptomatic persons were 
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participation in burial rituals, contact with blood or vomit of EVD individuals (Diallo 

et al., 2019). 

 

1.3.2 Diagnosis of acute EVD 
 
The gold standard method to confirm the presence of EBOV is viral isolation in cell 

culture (mainly Vero E6 African Green monkey kidney cells), but this technique 

requires biosafety level 4 (BSL-4) containment facilities, and is restricted to research 

and public health laboratories. Over time, different tests have been developed for 

the clinical diagnosis of EVD in humans during an outbreak e.g. serological tests that 

detect host antibodies against the virus, molecular tests that detect viral RNA 

sequence and rapid antigen detection tests. 

 

Serological tests such as indirect fluorescent antibody detection test (IFAT) and 

enzyme-linked immunosorbent assays (ELISA) have been used in investigations of 

past outbreaks to detect current or prior infection with EBOV. However, these tests 

showed a limited utility for the diagnosis of acute EVD due to the variable onset of 

the humoral response to EBOV. The IgM response is not evident before 16 days after 

symptom onset, and during the 2013-2016 West African outbreak IgM or IgG levels 

have been shown to be low or mostly absent in patients with fatal outcome (Colavita 

et al., 2019). This suggest that these tests are not adequate for the diagnosis of acute 

EVD but are a useful tool for seroprevalence studies at the population level (Macneil 

et al., 2011; Wauquier et al., 2009). 

 
Molecular tests have proved to have better utility in the diagnosis of acute EVD since 

the viral load rises during the first days of infection. Conventional reverse 

transcription PCR (RT-PCR) test for EVD, that comprises a PCR amplification of L, GP 

and NP genes, was the first molecular test developed and evaluated in clinical 

samples from the 1995, 1996 outbreaks and used for clinical diagnosis in the 2000 

SUDV outbreak in Uganda (Formenty et al., 2006; Sanchez et al., 1999; Towner et al., 

2004). Real-Time RT-PCR was then developed for EVD diagnosis. This showed greater 

specificity than conventional RT-PCR due to the use of sequence specific probes and 

generated faster results (Towner et al., 2004). The viral RNA copy number derived 
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from real-time RT-PCR was shown to correlate well with quantification of viral load 

by plaque assays (Towner et al., 2004). Furthermore, low Ct values indicating high 

viral load were associated with higher mortality (Hunt et al., 2015; Kerber et al., 2019; 

Towner et al., 2004).  

 

In early EVD outbreaks, the diagnostic testing has been carried out in international 

reference laboratories and WHO collaborating centres for the diagnosis of viral 

haemorrhagic fevers (Broadhurst et al., 2016). This caused a delay in getting the test 

results and the implementation of measures to control the outbreaks. To reduce the 

time of diagnosis, field molecular diagnostic laboratories started to be deployed in 

outbreak settings e.g. during the SUDV outbreak in 2000, and EVD outbreaks in 2003, 

2007 and 2012 (Grolla et al., 2012; Grolla et al., 2005; World Health Organization, 

2001).  

 

During the 2013-2016 West African outbreak nearly 40 field molecular diagnostic 

laboratories from different countries were deployed. Due to the unprecedented size 

and spread of the outbreak in West Africa there was an urgent need for development 

of appropriate diagnostics test that could be used in the outbreak setting. Thus, WHO 

and the Food and Drug Administration (FDA) evaluated to issue an Emergency Use 

Authorization (EUA) status to EVD diagnostic tests. The FDA issued EUA to 11 

diagnostic tests and WHO to 7 tests. Table 1.5 shows all the approved diagnostic tests 

for EVD outbreaks. The RealStar Filovirus Screen Real Time RT-PCR kit (Altona 

Diagnostics, Hamburg, Germany) was the first one that received the EUA 

authorization. This kit detects a broad range of filoviruses including EBOV, SUDV, 

TAFV, BDBV, RESTV, MARV, RAVV in plasma samples. The RealStar Ebolavirus kit 

based on the former kit and optimized for EBOV detection also received EUA (Cnops 

et al., 2019).  

 

All Ebola cases (probable and suspected) are referred to a designated Ebola 

Treatment Centre (ETC) or appropriate health care facility where health workers 

safely collect the appropriate samples. For the diagnosis of EVD in live patients, whole 

blood samples are collected in EDTA tubes. Oral swabs are collected from deceased 
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patients or in situations where blood collection is not possible (e.g. children). Swab 

samples from live patients is not recommended since has low sensitivity in the real 

time RT-PCR (World Health Organization, 2014, 2015a). The workflow of the field 

molecular diagnostic laboratories implemented in the ETCs during the West African 

outbreak included sample inactivation in a glove box, manual RNA extraction and 

performance of the real time RT-PCR assays (Rieger et al., 2016). Since these 

procedures could take hours, automated PCR platforms that integrates these steps 

have been developed to reduce the time to results. One example is the Gene Xpert 

Ebola assay (Cepheid) that was developed during the West African outbreak and 

obtained the EUA status from WHO and FDA. This platform detects EBOV NP and GP 

genes. The performance evaluation of this test in residual diagnostic samples from 

the 2013-2016 outbreak showed high sensitivity (100%) and specificity (99.5-100%) 

on whole blood and buccal swab samples, resulting in better performance than the 

real time RT-PCR used in field laboratories (82% sensitivity and 100% specificity for 

the RealStar Ebolavirus kit) (Rieger et al., 2016; Semper et al., 2016). This platform 

has started to be used during the 2018 outbreak in DRC. The implementation of this 

test in DRC was faster since the platform was already installed in multiple laboratories 

in the country for the diagnosis of Human Immunodeficiency Virus (HIV) and 

tuberculosis (Albert et al., 2016; Butler, 2018). 

 

The PCR-based diagnosis requires that patients have to attend a health centre where 

blood samples can be taken and transported to laboratory. Thus, the average delay 

from symptom onset to diagnosis in the West African outbreak was about 5 days 

(WHO Ebola Response Team, 2014). As a transmission can occur during this time, to 

speed up the diagnosis, point of care rapid diagnostic tests (RDTs) have been 

developed.  

 

Among the developed RDTs, the OraQuick Ebola Rapid Antigen Test (OraSure 

Technologies, Pennsylvania, USA) is the only one that currently has both 

authorizations by WHO and FDA. On October 2019, the FDA granted marketing 

authorization. This test is an in-vitro diagnostic single-use immunoassay for the 

qualitative detection of antigens (VP40) within the Ebolavirus genus and does not 
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differentiate between viruses. This test is intended to be used in venipuncture or 

fingerstick whole blood from symptomatic patients consistent with EVD and oral 

fluids from recently deceased individuals suspected to have died of EVD (Butler, 

2018).   

 
1.3.3 Molecular epidemiology 
 
During an outbreak,  genome sequencing is important for characterizing the viral 

agent and determine the evolutionary rate. For the outbreak surveillance, a real-time 

sequencing approach that generate fast results can help to understand the 

transmission dynamics and  assist the epidemiological response (Carroll, 2019). Thus,  

a genome surveillance system using MinION (a portable genome sequencer) was 

designed and implemented in Guinea during the 2013-2016 West African outbreak 

(Quick et al., 2016). Using a combination of 11 amplicons > 97% of the EBOV genome 

was reliably amplified, and the bioinformatics approach was validated with clinical 

samples previously sequenced on Illumina by Carroll et al. (2015) (Table 1.5). 

Following this system, sequencing results could be obtained within a day and were 

useful for estimating the substitution rate and provide information about the 

circulating lineages (Quick et al., 2016).  

 

The real-time genomic surveillance can also support the investigation of transmission 

chains. Thus, it was very useful in the investigation of the resurgence of EVD in Guinea 

in February 2016 that started by the sexual transmission of the virus from an EVD 

survivor who showed EBOV in seminal fluid 531 days after onset of disease (Diallo et 

al., 2016). It was also valuable for detecting frequent transmissions across the 

Guinea-Sierra Leone border during the 2013-2016 West Africa outbreak (Quick et al., 

2016). Unfortunately, this approach has not been used during the recent outbreaks 

in the DRC. 
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    Table 1.5  EBOV diagnostic tests for EVD outbreaks 

Test (manufacturer)          Test type Target Samples Sensitivity Specificity Viruses detected 

Rapid viral antigen detection tests      

Dual Path Platform 
(DPP) Ebola antigen 
system (Chembio)a 

Immunochromatographic 
lateral flow assay 

VP40 Venous whole 
blood (EDTA), 
venous plasma 
(EDTA) and  
capillary 
fingerstick whole 
blood 

Qualitative; less sensitive 
than PCR; requires 
confirmatory testing 

From limited data, 
does not cross-
react with other 
ebolaviruses 

EBOV 

OraQuick Ebola 
rapid antigen test 
(OraSure  
Technologies)b,c 

Immunochromatographic 
lateral flow assay 

VP40 Oral fluid and 
whole blood 

97.1% (from oral fluid from 
deceased individuals); LLOD: 
53 ng per ml for whole 
blood samples and 106 ng 
per ml for  oral fluid 

98–100% from 
venous whole blood 
samples; 99.1–100% 
from oral fluid from 
deceased 
individuals 

BDBV, EBOV and 
SUDV; does not 
differentiate 
between 
ebolaviruses 

SD Q Line Ebola 
Zaire Ag test (SD 
Biosensor)b 

Immuno- 
precipitation lateral flow 
assay 

GP1,2, NP  and 
VP40 

Plasma, serum 
and whole blood 

84.9% for whole blood and 
plasma 

99.7% for whole 
blood and plasma 

EBOV 

PCR-based tests       

Ebola real-time  
RT-PCR kit (Liferiver 
Bio-tech)b 

Fluorescent real-time RT-PCR Nucleic acids 
from 
ebolaviruses 

Serum, body fluid 
and urine 

LLOD: 23.9 copies of viral 
genome per reaction 

Not available Ebolaviruses 

EZ1 test (DOD)a Real-time  
TaqMan RT-PCR with 
fluorescent reporter dye 
detected at each  
PCR cycle 

EBOV nucleic 
acids 

Whole blood and 
plasma 

Qualitative; LLOD: 100–
1,000 pfu per ml depending 
on live or inactivated EBOV 
isolate and cycler used 

100%; no  
cross-reactivity with 
other ebolaviruses 
or marburgviruses 

EBOV 
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FilmArray NGDS BT-
E (BioFire)a 

Fluorescent nested 
multiplex RT-PCR 

EBOV nucleic 
acids 

Whole blood, 
plasma and serum 

LLOD: 1,000 pfu per ml or 
4.36 × 103 genome 
equivalentsd per ml for live 
virus 

EBOV; no cross- 
reactivity with other 
ebolaviruses or 
marburgviruses 

EBOV 

FilmArray Biothreat-
E (BioFire)a 

Fluorescent nested 
multiplex  
RT-PCR 

EBOV nucleic 
acids 

Whole blood and 
urine 

95% detection rate confirms 
LOD; LOD:  
6 × 105 pfu per ml using γ-
irradiated EBOV 

89–100% using whole 
blood samples, 
depending on the 
study population 
(Sierra Leone  and UK) 

EBOV 

Idylla Ebola virus 
triage test 
(Biocartis)a 

Qualitative real-time RT-PCR 
with fluorescent reporter 
dyes generated upon  
amplification of  
cDNA 

EBOV and SUDV 
nucleic acids 

Whole blood and 
urine 

97% positive agreement 
compared with a non-
reference standard; LLOD: 
465 pfu per ml or   
178 copies per ml 

100% for EBOV EBOV and SUDV 

LightMix Ebola Zaire  
TIB MolBio with  
Lightcycler (Roche)a 

Qualitative real-time  RT-
PCR with fluorescent 
reporter dye detected at 
each  
PCR cycle 

EBOV nucleic 
acids 

Whole blood 95% positive agreement 
compared with a non-
reference standard; LLOD: 
4,781 pfu per ml 

100% for EBOV EBOV 

Ebola virus NP real-
time RT-PCR 
(ThermoFisher 
(CDC))a 

Qualitative real-time RT-PCR 
with fluorescent reporter 
dye detected at each  
PCR cycle 

EBOV NP RNA Whole blood, 
serum, plasma and 
urinee 

99.80%; LLOD:  
600–700 TCID50 copies per 
ml 

100% for EBOV EBOV 
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RealStar Ebolavirus  
RT-PCR kit (Altona  
Diagnostics)a,b 

Real-time RT-PCR with 
fluorescent dye-labelled 
probes to detect PCR 
amplicons 

Nucleic acids 
from 
ebolaviruses 

Plasma 82%; LLOD: 1 pfu  per ml 100% for EBOV Ebolaviruses 

EBOV VP40 real-time 
RT-PCR (CDC)a 

Real-time RT-PCR with 
fluorescent dye-labelled 
probes to detect PCR 
amplicons 

EBOV VP40 RNA Whole blood, 
serum, plasma and 
urinee 

LLOD: 400–600 TCID50 per 
ml from whole blood; 250–
600 TCID50 per ml, 
depending  on body fluid 
sample   
and extraction  method 
used 

100% for EBOV EBOV 

Gene Xpert Ebola 
(Cepheid)a,b 

Real-time RT-PCR with 
fluorescent signal from 
probes for  quality control 

EBOV NP and GP 
nucleic acids 

Whole blood and 
oral fluids 

100%; LLOD: 232.4 genomic 
copies per ml 

99.5% from whole  
blood; 100% from  
oral fluid 

EBOV 

Real-Time Sequencing       

MinION (Oxford 
Nanopore Technologies, 
UK)f 

Genome sequencing that 
employs a targeted RT-PCR 

EBOV genome  Whole blood, 
serum,  
resuspended swab, 
resuspended urine 

A combination of 11 
amplicons reliably amplified   
> 97% of the EBOV genome 

The validation process 
showed no false 
positive variant calls 

EBOV 

CDC = US Centers for Disease Control and Prevention, DOD = US Department of Defense,  EBOV = Ebola virus,  GP = glycoprotein, LLOD = lower limit of detection, LOD = 
limit of detection, NP =nucleoprotein, pfu =plaque-forming units, RT-PCR = PCR with reverse transcription, SUDV = Sudan virus,  TCID50 = 50% tissue culture infective dose 
(concentration at which 50% of cultured cells are infected with a diluted solution of viral fluid),  VP40 = viral protein 40. aEmergency use authorization approved by the US 
Food and Drug Administration (FDA). bEmergency use authorization approved by the WHO. cApproved by the FDA.; dGenome equivalents are calculated by converting the 
length of a genome in base pairs to micrograms of RNA. eShould not be the only specimen tested. fUsed for real-time genomic surveillance during the West Africa outbreak 
(Quick et al., 2016). Table adapted from Jacob et al. (2020). 
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1.4 Therapeutics for EVD 
 
1.4.1 Vaccines  
 
A wide range of potential EVD vaccines were in development during previous 

decades, however they have not been tested in human trials since few sporadic 

outbreaks occurred. It was only in response to the unprecedent 2013-2016 EVD 

epidemic in West Africa that the development and evaluation of these vaccines was 

urgently accelerated. The vaccines in advance development are listed in Table 1.6. As 

no vaccine was commercially licensed during the 2013-2016 EVD epidemic, three of 

these candidate vaccines were used on compassionate basis using a ring-vaccination 

strategy to attempt to control the outbreak. This involved the vaccination of contacts 

of infected individuals and contacts of those contacts. The candidate vaccines used 

all expressed the Zaire EBOV GP and were the recombinant vesicular stomatitis virus-

Zaire Ebola virus (rVSV-ZEVOV-GP), a replication-defective chimpanzee adenovirus 

serotype 3 vector vaccine (ChAd3-EBO-Z), and an adenovirus type 26-vectored 

vaccine (Ad26.ZEBOV).  

 

The rVSV-ZEVOV-GP is administered as a single dose and has demonstrated to be 

protective against lethal EBOV challenge in rodents and NHP (Marzi et al., 2015; 

Wong et al., 2014). It was found to be immunogenic for humans in phase 1 trials 

(Agnandji et al., 2016). It was also demonstrated to be highly effective in a phase 3 

trial during the outbreak in Guinea under the ring vaccination strategy (Henao-

Restrepo et al., 2017). This vaccine and ring vaccination strategy was also 

implemented to control the recent EVD outbreaks in DRC including the vaccination 

of front-line health care workers. The WHO preliminary analysis of the use of this 

during the 2018-2020 DRC outbreak estimated an efficacy of 97.5% (95% CI: 95.8-

98.5%)(World Health Organization, 2019b). A total of 303,905 people were 

vaccinated with rVSV-ZEVOV-GP during the 2018-2020 outbreak (World Health 

Organization, 2020c). In the ongoing outbreak in Équateur Province in DRC, a total of 

27,303 people have als been vaccinated with rVSV-ZEVOV-GP (World Health 

Organization, 2020d). 
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The vaccine ChAd3-EBO-Z has previously shown to protect NHP against a lethal 

challenge with EBOV (Stanley et al., 2014). It is administered as a single dose and was 

found safe and immunogenic for humans in phase 1 trials (Tapia et al., 2016). The 

results of phase 1 trials also showed that boosting with a modified vaccinia Ankara 

virus (MVA) expressing Zaire EBOV GP confers long-term protection, a regimen that 

could be useful in front-line workers who need extended protection (Tapia et al., 

2016). This candidate vaccine was evaluated in parallel with the rVSV-ZEVOV-GP 

during the 2013-2016 West African outbreak as part of the Partnership for Research 

on Ebola Vaccines I Liberia I (PREVAIL I) as part of a phase 2 clinical trial. Lower 

antibody response was observed in the recipients of ChAd3-EBO-Z versus rVSV-

ZEBOV-GP after 1 month (71% vs 84%) and 12 months of vaccination (64% vs 80%) 

(Kennedy et al., 2017). A phase 3 clinical trial with this vaccine was not conducted 

due to the declining cases in Liberia at the time.  

 

Another promising vaccine candidate is the adenovirus type 26-vectored vaccine 

encoding EBOV GP (Ad26.ZEBOV) boosted by a MVA-vectored vaccine encoding 

glycoproteins from EBOV, SUDV, MARV and TAFV nucleoprotein (MVA-BN-Filo). It 

was also found safe and immunogenic in phase 1 trials (Milligan et al., 2016). An 

immune response as early as 14 days was observed after the primary vaccination with 

Ad26.ZEBOV, and was elevated after boosting with MVA-BN-Filo (Milligan et al., 

2016). This combination confers a durable immunity for at least 360 days (Mutua et 

al., 2019). During the 2018-2020 DRC outbreak a total of 20,339 people received the 

primary vaccination and 9,560 of them received the booster (World Health 

Organization, 2020c).  

 

In November 2019, the European Medicines Agency (EMA) granted the market 

authorisation to the US pharmaceutical company Merck to produce the rVSV-ZEVOV-

GP vaccine, hence the product can be stockpiled and distributed widely. In December 

2019, the FDA also approved this vaccine for prevention of EVD. This vaccine also 

obtained a license in February 2020  for use in four African countries: DRC, Burundi, 

Ghana and Zambia. In May 2020, EMA also granted the market authorization to 

Johnson & Johnson company to produce Ad26.ZEBOV and MVA-BN-Filo. 
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Table 1.6 Overview of the EVD vaccines with advanced development   

Vaccine 
Leading company or 

institution and country of 
origin 

Vector Administration 
Ebola component 

and 
glycoprotein* 

Authorizations 

Recombinant VSV-

ZEBOV 
Merck (USA) VSV Single dose 

Ebola virus, Kikwit 

strain (1995) 

WHO prequalification, EMA marketing 

authorization, FDA approval. License 

in Democratic Republic of the Congo, 

Burundi, Ghana, Zambia 

ChAd3- EBO-Z-

with or without 

MVA-BN-Filo 

GlaxoSmithKline (UK) and, 

for MVA-BN-Filo, Bavarian 

Nordic (Denmark) 

Chimpanzee 

adenoviral 

serotype 3 or 

MVA 

Single dose or 

heterologous prime-

boost regimen 

Ebola virus, 

Mayinga strain 

(1976) 

 

Ad26.ZEBOV with 

MVA-BN-Filo 

Johnson & Johnson (USA), 

and MVA-BN-Filo from 

Bavarian Nordic (Denmark) 

Human 

adenoviral 

serotype 26 or 

MVA 

Heterologous prime-

boost regimen 

Ebola virus, 

Mayinga strain 

(1976) 

EMA marketing authorization 

Ad5-ZEBOV 

Academy of Military 

Medical Sciences and 

CanSino Biologics (China) 

Human 

adenoviral 

serotype 5 

Single dose or 

homologous prime-

boost regimen 

Ebola virus, 

Makona strain 

(2014) 

Licensed in China 

GamEvac-Combi 

Gamalei Scientific Research 

Institute of Epidemiology 

and Microbiology (Russia) 

VSV and Ad5-

vectored vaccine 

Heterologous prime-

boost regimen 

Ebola virus, 

Makona strain 

(2014) 

Licensed in Russia 

VSV = vesicular stomatitis Indiana virus; MVA = modified vaccinia Ankara virus; Ad5 = human adenoviral serotype 5. * The year the strain (from which the 

glycoprotein was derived) was isolated is given in brackets. Modified and updated from Malvy et al. (2019). 
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1.4.2 Treatment  
 
Without a specific treatment , management of EVD patients consist of the provision 

of supportive care that includes fluid and electrolyte replacement, and treatment for 

concurrent infections (e.g. antimalarials, antibiotics) (World Health Organization, 

2016a). There are no licensed treatments for EVD but some investigational 

therapeutic agents are administered through the EUA and under compassionate use 

protocols. These approaches can be classified into directed antiviral therapies or host 

directed therapies. The directed antiviral therapies include nucleoside and nucleotide 

analogues e.g. favipiravir and remdesivir (both RNA polymerase inhibitors) and 

nucleic acid-based drugs e.g. TKM-130803 (a small interfering RNA lipid nanoparticle 

directed against the gene products encoding the EBOV proteins L and VP35). Host 

directed therapies or immunotherapeutics are ZMapp (a mixture of three 

monoclonal antibodies that target the EBOV GP), MAb114 (a single human 

monoclonal antibody agent) and REGN-EB3 (a mixture of three human IgG1 

monoclonal antibodies). 

 

Some of these investigational treatments were tested during the West African EVD 

epidemic. Most studies during this outbreak were non-randomize trials that did not 

draw conclusions on the efficacy of these treatments, for instance experimental 

treatment with favipiravir and TKM-130803 (Dunning et al., 2016; Sissoko et al., 

2016). Similarly, the results of a randomized controlled trial evaluating the efficacy of 

ZMapp did not meet the pre-specified statistical threshold for efficacy (Prevail II 

Writing Group et al., 2016).  

 

During the 2018-2020 EVD outbreak in the DRC, most patients admitted to the ETUs 

received ZMapp, MAb114, remdesivir or REGN-EB3 under the Monitored Emergency 

Use of Unregistered and Investigational Interventions (MEURI) protocol or through 

the Pamoja Tulinde Maisha “Together Save Lives” (PALM) randomised controlled trial 

(Mulangu et al., 2019). The PALM study found that patients treated with a  

combination of standard care and either MAb114 or REGN-EB3 had higher probability 

of survival than those treated with ZMapp or remdesivir. Despite receiving either 
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MAb114 or REGN-EB3, 34% of all patients and 63% of patients that had high viral load 

died. Hence, there was not a successful conclusion of this trial (Mulangu et al., 2019). 

Other therapeutic interventions such as the transfusion of whole blood, plasma, 

serum from convalescent individuals have not demonstrated significant 

improvement in survival of treated patients (van Griensven et al., 2016). 

 

1.5 Predictive markers of EVD outcome 

 

It was during the 2013-2016 EVD pandemic in West Africa that EBOV research 

intensified. This outbreak led to the accelerated development of vaccines and 

therapeutics as described above, and the analysis of different cohort of patients from 

Guinea, Sierra Leone and Liberia gave insights into EVD progression and prognostic 

factors associated with fatality. Until the success of the vaccines was established, it 

was necessary to consider prognostic/predictive markers of the clinical outcome and 

these areas were investigated in parallel to the work on candidate vaccines and 

therapeutics. The 2013-2016 pandemic showed that prognostic markers are 

necessary for distinguishing high-risk patients to support the clinical decision of 

health workers especially in settings with limited resources (Crowe et al., 2016). This 

is also necessary for the evaluation of the efficacy of therapeutic strategies that 

address the amelioration of the systemic inflammatory response and organ failure 

and not just viral replication (Iversen et al., 2020). To date, the proposed 

prognostic/predictor markers of the EVD outcome are mainly viral load, place of 

residence, age, gender, clinical markers, laboratory markers and co-infection with 

malaria. 

 

1.5.1.1 Viral load 
 

High viral load is currently considered the strongest predictor of EVD fatality. It has 

been associated with a fatal outcome in previous outbreaks of SUDV (Sanchez et al., 

2004; Towner et al., 2004). Likewise, studies mainly from the 2013-2016 West African 

EVD outbreak indicate that patients with low EBOV Ct values (high viral loads) at the 

time of diagnosis are more likely to die (Hunt et al., 2015; Kerber et al., 2019). A study 
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of EVD-confirmed patients from Guinea reported that the probability of death 

increased depending on the level of viremia (viral load) during the first week after 

symptom onset, from 21% in patients with low viremia (< 104.4 copies/ml), to 53% in 

patients with intermediate viremia (between 104.4 and 105.2 copies/ml) and 81% in 

those with high viremia ( ≥ 105.2 copies/ml)(Faye et al., 2015). Viremia remains higher 

in fatal cases than survivors from day 2 to day 13 after the onset of symptoms. The 

peak of viremia for survivors is reached earlier than in fatal cases (day 5 versus day 

7) and then declines, whereas patients who died maintained a high viral load until 

death (Kerber et al., 2019; Lanini et al., 2015; McElroy et al., 2016).  

 

Currently, there is no standard Ct value to be used as a prognostic marker, since the 

Ct values obtained depends on the diagnostic assay used and differ between studies 

(Crowe et al., 2016). Thus, in different studies and locations the Ct values linked to 

fatal cases versus survivors was variable (Crowe et al., 2016; Fitzpatrick et al., 2015; 

Haaskjold et al., 2016). The Ct values can also vary depending on the type of sample 

used for diagnosis. For example, the median Ct values obtained from swabs samples 

of people that died in the community was 3.4 Ct units higher than the admission Ct 

values obtained from blood samples of fatal hospital cases (Kerber et al., 2016). Most 

studies during the 2013-2016 West Africa outbreak used a semi-quantitative RT-PCR 

that does not include a standard curve to determine the viral load. Hence, the 

measured Ct values might not be universally applicable and the viral load is only an 

approximation. Besides, the Ct values obtained in survivors and fatal cases can be 

within the same range (between 22 to 25) making difficult the correct classification 

of patients in each risk group (Crowe et al., 2016; Fitzpatrick et al., 2015; Haaskjold 

et al., 2016).  

 

1.5.1.2 Place of residence 

 
Another risk factor linked to a fatal outcome is the place of residence. Patients living 

in rural areas in Africa are more likely to die compared to individuals living in the 

capital area where there is more access to healthcare, more availability of medical 

supplies and healthcare personnel (Furuse et al., 2017). Patients that acquired EVD 
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during the West Africa outbreak and were repatriated to USA or Europe had also 

better access to medical care in their home countries (McElroy et al., 2016) 

 

1.5.1.3 Age 

 
During the West African outbreak, EVD cases have been reported in people aged less 

than 1 to more than 100 years, with the incidence of cases lower in children younger 

than 16 years compared to adults (WHO Ebola Response Team et al., 2015). However, 

most studies indicate that young children and elderly are the groups at higher risk of 

death due to EVD. In a large study of cases from Guinea, Liberia and Sierra Leone 

conducted by the WHO Ebola Response Team a higher CFR was reported in children 

4 years old or younger compared to children between 10 to 15 years of age (WHO 

Ebola Response Team et al., 2015). The high probability of death in children younger 

than 5 years of age was also found when different cohorts of patients from the same 

outbreak were analysed (Faye et al., 2015; Kerber et al., 2016; Kerber et al., 2019). 

Likewise, adults older than 45 years of age was also a high-risk group during the 2013-

2016 West Africa outbreak (Crowe et al., 2016; Faye et al., 2015; Fitzpatrick et al., 

2015; Kerber et al., 2016; Qin et al., 2015; Schieffelin et al., 2014; Tong et al., 2015; 

WHO Ebola Response Team et al., 2015). This finding was similar to previous data 

obtained in past EVD outbreaks, where high fatality rates in older adults was also 

reported (Sadek et al., 1999).  

 

Possible explanations for the high fatality rates observed in young children and older 

adults or the elderly may be an insufficient immune response, an immature immune 

system in children, comorbidities in elderly individuals, and both groups may be more 

vulnerable to severe dehydration. For these patients, an early diagnostic testing and 

appropriate treatment is necessary (Furuse et al., 2017). 
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1.5.1.4 Gender 

 

Studies in small cohorts of EVD patients from West Africa and one study from the 

1995 EVD outbreak in DRC did not find a significant difference in fatality rate between 

males and females (Crowe et al., 2016; Li et al., 2016; Qin et al., 2015; Sadek et al., 

1999). However, the WHO Ebola Response Team evaluated a larger sample size of 

probable and confirmed EVD cases from Guinea, Liberia and Sierra Leone during the 

West Africa outbreak and found that female patients were significantly less likely to 

die than male patients (63.0% versus 67.1%) (WHO Ebola Response Team, 2016). This 

difference was also observed when only confirmed EVD cases were evaluated. It was 

thought that there was not a significant difference in the number of exposures to a 

sick person between female or male (WHO Ebola Response Team, 2016). The reason 

for this difference is still unknown and needs to be studied, but a possible explanation 

would be the divergent effects of androgens and oestrogens in the immune system 

(Kovats, 2015; Trigunaite et al., 2015). In terms of risk of community infection, it was 

reported that male patients have spent longer time (~ 12 hours) in the community 

than females while they were symptomatic (WHO Ebola Response Team, 2016). This 

information may be important to consider during the application of outbreak control 

measures. 

 

1.5.1.5 Clinical markers 

 

During the West African outbreak, the symptoms more associated with fatality were 

diarrhoea, confusion, conjunctivitis, weakness, dizziness, fever, headache, extreme 

fatigue, difficulty swallowing, vomiting, mental symptoms, bleeding and loss appetite 

(Fitzpatrick et al., 2015; Li et al., 2016; Qin et al., 2015; Schieffelin et al., 2014; Tong 

et al., 2015). Diarrhoea was the most frequent symptom reported in fatal cases from 

all these studies, 90% of patients from a cohort in Sierra Leone who had diarrhoea 

died (Schieffelin et al., 2014). Large volumes of watery diarrhoea (5 or more 

litres/day) could persist up to 7 days (Chertow et al., 2014). Bleeding manifestations 

such as bleeding from mouth, puncture sites and bloody faeces are also reported in 

fatal cases although it is not frequent. Severe pain that require opiate treatment was 
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also seen in moribund patients (Haaskjold et al., 2016). A prompt support treatment 

may reduce the likelihood of death in patients with these symptoms. To reduce the 

massive gastrointestinal loss, a treatment with oral anti-emetics, anti-diarrheal 

therapy and rehydration with oral electrolyte solutions  seems beneficial in patients 

who are hypovolemic, not in shock and are able to self-care. For hypovolemic patients 

who are not in shock but are unable to self-care, intravenous fluid and electrolyte 

therapy is necessary (Chertow et al., 2014; Li et al., 2016) 

 

1.5.1.6 Laboratory markers 

 

High levels of creatinine, blood urea nitrogen (BUN), alanine aminotransferase (ALT), 

aspartate aminotransferase (AST), C-reactive protein (CRP), low calcium levels, 

hyperkalaemia, have been associated with fatal outcome (Hunt et al., 2015; Kerber 

et al., 2019; Schieffelin et al., 2014). Fatal cases also report higher haemoglobin 

concentration, haematocrit, median white cell count, lymphocyte count, granulocyte 

count and lower platelet count than survivors (Hunt et al., 2015). The increased 

elevation of BUN, creatinine and potassium values over time in patients who died 

indicates an aggravated renal function (Kerber et al., 2019; Schieffelin et al., 2014). 

Indeed, acute kidney injury was more common in fatal cases than survivors, and 

severe acute kidney injury is considered a strong risk factor for mortality but not only 

restricted to late disease stages since it was also seen in patients with a stage 1 

disease (Hunt et al., 2015). ALT and AST were 5 times the normal level in patients 

more likely to die. In EVD patients with severe hepatitis,  AST was raised up to > 15 

times the normal values (Hunt et al., 2015). Although it was noted that ALT, AST and 

creatine kinase (CK) tend to normalize before death (Kerber et al., 2019). The levels 

of these liver enzymes along with creatinine, carbon dioxide, BUN, became normal in 

patients who recovered from the disease (Schieffelin et al., 2014). Individuals that 

received favipiravir treatment and had a fatal outcome presented alterations in the 

glucose levels (hyperglycemia, hypoglycaemia), hyperkalemia, increase levels of 

creatinine, BUN, bilirubin, CRP, CK, lower levels of calcium and albumin, and increase 

ALT, AST values. These alterations were similar but less prominent in untreated EVD 

patients who survived (Kerber et al., 2019). 
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1.5.1.7 Co-infection with Malaria 

 

An increase in mortality has been observed in patients co-infected with Plasmodium 

falciparum, a parasitic protozoan that causes malaria in humans. A higher proportion 

of co-infection with this parasite was reported in children younger than 15 years of 

age in Guinea (Kerber et al., 2016; Kerber et al., 2019). This co-infection increased the 

CFR in young children (5-14 years old) by 20%, probably due to an insufficient 

immune response (Kerber et al., 2016). Similarly, another study reported that 

mortality was higher in patients co-infected with malaria than infected only with 

EBOV (Waxman et al., 2017). In contrast, other studies suggest that Plasmodium 

infection can confer protection to EBOV infection due to the induction of M1 

polarization of tissue macrophages through the production of IFNγ (Rogers et al., 

2020). 

 

1.5.1.8 Host genetics 
 
 
Individual people can differ in their susceptibilities to different viral infections since 

it is determined by host genes, the environment and their interactions. Genome-wide 

association studies (GWAS) link the genetic variation with viral infections. For 

instance, GWAS detected polymorphisms in humans that affect the phenotype upon 

infection with different viruses e.g. HIV-1, Hepatitis C, Dengue, Influenza A virus 

(Dang et al., 2014; van Manen et al., 2012; Zignego et al., 2014; Zuniga et al., 2012). 

In experimental EBOV studies, polymorphisms in the NPC1 receptor could reduce the 

affinity of EBOV-NPC1 interaction in some bat cell lines and recombinant inbred mice 

infected with mouse-adapted EBOV showed distinct disease phenotypes ranging 

from resistant to lethal disease likely due to distinct Tie2 polymorphisms (Ng et al., 

2015; Rasmussen et al., 2014). In EVD patients, a study investigated the relationship 

between killer cell immunoglobulin-like receptors (KIRs) - human leukocyte antigen 

(HLA) combinations and the clinical outcome (Wawina-Bokalanga et al., 2021). KIR 

AA haplotype was more frequent in fatal cases, while KIR BB haplotype in survivors.  

It was also found that KIR genes 2DL2, 2L5 and 2DS4-003 were associated with 

disease outcome. From them, KIR 2DS4-003 and 2DL5 genes were significantly more 
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common in fatal cases than survivors and 2DL2 was suggested to play a protective 

role in EVD (Wawina-Bokalanga et al., 2021). These genetic differences may be 

involved in the overwhelmed innate immune response observed in EVD; however, 

further GWAS in larger cohorts of patients are recommended. 

 

1.5.1.9 Host markers 

 
Different potential host markers that correlate with EVD severity have been 

identified by statistical or machine learning analysis of data obtained from testing 

clinical samples using luminex-based assays or RNA sequencing. Patients with severe 

EVD have increased levels of biomarkers linked to innate immune dysregulation with 

prolonged elevation of proinflammatory cytokines and chemokines. These included 

IL-6, IL-8, IL-10, interferon gamma-induced protein 10 (CXCL10/IP-10), macrophage 

colony-stimulating factor (M-CSF), monocyte chemoattractant protein (MCP)-1, 

MCP-2, interleukin-1 receptor antagonist (IL-1RA), macrophage inflammatory protein 

(MIP)-1β, MIP-1α, tumor necrosis factor receptor type I (TNFR-I) and TNFα (McElroy 

et al., 2016). The known roles of such proteins can be correlated to the  pathogenesis 

seen in patients. TNFα may be involved in the endothelial activation and as a 

consequence the activation of coagulation. Cytokines and chemokines are produced 

by monocytes or macrophages indicating that antigen-presenting cells are important 

during EVD. The rise of cytokines level is correlated with the days before death similar 

to septic shock syndrome (Reynard et al., 2019). The coagulation pathway imbalance 

is caused by the increase of D-dimer, von Willebrand factor (vWF), tissue factor (TF), 

thrombomodulin that are release from activated or damaged endothelial cells. High 

levels of TF indicates clinical co-agulopathy. Although other studies have not found it 

associated to fatal outcome (McElroy et al., 2014). The endothelial dysfunction is 

caused by high levels of platelet endothelial cell adhesion molecule (PECAM)-1, P-

selectin, soluble intracellular adhesion molecule (sICAM)-1, soluble vascular cell 

adhesion molecule (sVCAM)-1. High levels of granzyme B (GrzB), fractalkine/CX3CL1 

cause lymphocyte cytotoxicity and homing (Kerber et al., 2018; McElroy et al., 2016). 

High viremia can also stimulate more T-cell activity, and CD8 T cells can contribute to 

tissue damage (McElroy et al., 2015).  Soluble TNF receptor II (TNF-RII), soluble VEGF 



 39 

receptor 1 (sVEGFR1), tissue plasminogen activator (TPA) also increases in fatal cases, 

whereas epidermal growth factor (EGF) decreases (Kerber et al., 2018). The 

transcriptomic analysis of white blood cells in fatal cases also corroborates the 

upregulation of pathways involved in the innate immune response and apoptosis 

(Reynard et al., 2019). 

 

Patients with moderate EVD have increased levels of mediators related to immune 

activation and control such as apoptosis antigen-Fas (APO-Fas), IFN- β, IL-29, IL-5, 

sFas ligand (sFasL), and TNFR-II. The immune response is controlled by the antiviral 

interferons (IFN- β, IL-29 or IFN-λ). sFasL may activate apoptosis or inflammatory 

cells, and TNFRII control the IL-6 mediated inflammation (McElroy et al., 2016). EGF 

and normal T-cell expressed and secreted (RANTES) also increase in survivors and 

remain unchanged in fatal cases; the former is a protein involved in gastric 

protection, and the latter activates and recruits T cells to peripheral tissues (Kerber 

et al., 2018). In survivors, there is also a decline in the expression of D-dimers, TPA 

and thrombomodulin indicating control of endothelial integrity and coagulation 

(Kerber et al., 2018). The expression of GrzB, IL-10, IL-1RA, IL-6, IL-8, IP-10, M-CSF, 

MCP-1, PECAM-1, sICAM-1, sTNF-RII, sVEGFR1, TNFα also decreases (Kerber et al., 

2018). Although these mediators were reported differentially expressed between 

survivors and fatal cases, they did not show strong power for outcome prediction in 

the ROC analysis (Kerber et al., 2018).  

 

1.6 Machine learning models for predictive biomarkers of EVD outcome 

 
Artificial intelligence is a discipline within computer science that deals with the 

simulation of intelligent behaviour in computers and has been significantly improved 

over the last decades (Lo Piano, 2020). Machine learning is a branch of artificial 

intelligence that involves the development and application of computer algorithms 

that improve their own performance through experience (training) (Mitchell, 1997). 

The machine learning methods follows three stages: algorithm design, learning and 

testing. These algorithms are autonomous and self-sufficient when perform the 

learning function demonstrating the capacity to learn from data without the need to 
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be explicitly programmed (Lo Piano, 2020). It has been applied in different fields such 

as agriculture, education, finance, medicine and many others (Bahrammirzaee, 2010; 

Bauer et al., 2019; Beam & Kohane, 2018; Richens et al., 2020). Within the area of 

genomics machine learning algorithms have been recently applied to identify the 

most discriminative biomarkers of patient mortality in infectious diseases (Davi et al., 

2019; Hu et al., 2020; Jong et al., 2016; Liang et al., 2020; Yan et al., 2020).  

 

In EBOV, few studies have developed machine learning models that could predict the 

clinical outcome of patients. A combination of different variables such as viral load, 

age, time to presentation, clinical symptoms and body temperature from EVD 

patients were used by Colubri et al. (2019) to develop a machine learning model. This 

model showed 74% predictive accuracy when was externally validated against two 

independent datasets. Transcriptome data of peripheral blood taken from acute-EVD 

patients was used by Liu et al. (2017) to identify a set of genes that could discriminate 

between survivors and fatal cases using different machine learning algorithms. The 

best model showed 92% predictive accuracy and identified a panel of ten genes that 

may be potential predictive markers of EVD outcome. These genes were Vascular cell 

adhesion protein 1 (VCAM1), Homeodomain-only protein (HOPX), Tubulin gamma-1 

chain (TUBG1), Phospholipid phosphatase 3 (PLPP3), Membrane-spanning 4-domains 

subfamily A member 4A (MS4A4A), Transforming growth factor-beta-induced 

protein ig-h3 (TGFBI), Tetratricopeptide repeat protein 28 (TTC28), NIF3-like protein 

1 (NIF3L1), ADP/ATP translocase 2 (SLC25A5), and Cathepsin L1 (CTSL) (Liu et al., 

2017). The description of these genes is shown in Table 1.7. 
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Table 1.7 Details of the 10 genes selected as potential markers to predict the EVD 
outcome* 

* Information taken from UniPROT Consortium. 

 

Gene/Protein Function 

Vascular cell adhesion 
protein 1 (VCAM1) 

Important in cell-cell recognition. Appears to function in 
leukocyte endothelial cell adhesion and signal transduction. 

Homeodomain-only protein 
(HOPX) 

Atypical homeodomain protein which does not bind DNA and 
is required to modulate cardiac growth and development.  
May act as a tumor suppressor. 

Tubulin gamma-1 chain 
(TUBG1) 

Tubulin is the major constituent of microtubules. The gamma 
chain is found at microtubule organizing centers such as the 
spindle poles or the centrosome. This protein is required for 
microtubule formation and progression of the cell cycle. 

Phospholipid phosphatase 3 
(PLPP3) 

It is a membrane glycoprotein localized at the cell plasma 
membrane. Catalyzes the conversion of phosphatidic acid to 
diacylglycerol. Involved in integrin-mediated cell-cell adhesion 
in angiogenesis. 

Membrane-spanning 4-
domains subfamily A 
member 4A (MS4A4A) 

May be involved in signal transduction as a component of a 
multimeric receptor complex. 

Transforming growth factor-
beta-induced protein ig-h3 
(TGFBI) 

Plays a role in cell adhesion. May play a role in cell-collagen 
interactions.  
 

Tetratricopeptide repeat 
protein 28 (TTC28) 

During mitosis, may be involved in the condensation of spindle 
midzone microtubules, leading to the formation of midbody. 

NIF3-like protein 1 (NIF3L1) 
May function as a transcriptional corepressor through its 
interaction with COPS2, negatively regulating the expression 
of genes involved in neuronal differentiation. 

ADP/ATP translocase 2 
(SLC25A5) 

Catalyzes the exchange of cytoplasmic ADP with 
mitochondrial ATP across the mitochondrial inner membrane. 

Cathepsin L1 (CTSL) 

Important for the overall degradation of proteins in 
lysosomes. Plays a critical role in normal cellular functions 
such as protein turnover, antigen processing, bone 
remodeling. Important protein for cardiac morphology and 
function 
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1.7 Thesis aims  

 

In the last EVD outbreaks in DRC, the ring vaccination strategy using the recently 

licensed rVSV-ZEVOV-GP vaccine has shown to be effective for controlling disease 

transmission. However, there are still no licensed treatments for EVD and no 

prognostic markers that can support the clinical decision of health workers in the 

triage of patients e.g., for the evaluation of different treatment strategies. 

Furthermore, given the difficulties and unlikelihood of widespread EBOV vaccination, 

the continuing risk of emergence and re-emergence of EBOV in Africa or other 

filovirus diseases, and the high fatality rates of EVD reported in the recent outbreaks, 

highlight the importance of identifying biomarkers that could accurately predict the 

clinical outcome of EVD patients. Previously, potential biomarkers have been 

proposed as putative predictors of EVD outcome, but they have not been validated 

in clinical samples or are less accurate than viral load. The viral load, represented as 

a Ct value, is still the strongest predictor of the outcome particularly in the context 

of defining survivors (Ct > 22) or fatal cases (Ct < 20). However, the viral load cannot 

predict accurately the clinical outcome in patients with Ct values between this range 

since the outcome is approximately equal between survival and a fatal infection. 

Given that EVD is a disease of the host response, a previous study from our group on 

patient samples from the 2013-2016 West Africa outbreak suggested that the host 

response can help delineate the clinical outcome and a set of host markers were 

identified as potential predictors of the outcome (VCAM1, HOPX, TUBG1, PLPP3, 

MS4A4A, TGFBI, TTC28, NIF3L1, SLC25A5, and CTSL).  Thus, this thesis investigates 

whether this set of host-based response markers can predict the outcome of 

infection at the acute phase specially in situations where viral load gives little 

predictive value. To achieve this, the objectives of this thesis are: 

 

• Developing quantitative reverse transcription PCR (RT-qPCR) assays that can 

measure the transcript abundance of the 10 candidate predictive genes. 
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• Determine the transcript abundance of each gene by RT-qPCR analysis in 

blood samples from EVD patients collected by the European Mobile 

Laboratory (EMLab) in Guinea during the West Africa outbreak. 

 

• Developing machine learning classification models using the transcript 

abundance of the candidate genes as predictor variables and determine the 

predictive accuracy of these models. 
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Chapter 2  
 

 

 

Materials and Methods 
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2.1 Cell culture and Peripheral Blood Mononuclear cells (PBMCs) 

 

Human Embryonic Kidney 293T cells (HEK 293) and Human Lung Adenocarcinoma 

Epithelial Cell Line (A549) were obtained from the European Collection of 

Authenticated Cell Cultures (ECACC). Human Brain-derived Endothelial Cells (HBEC) 

and PBMCs were kindly provided by the Brain Infections Group, University of 

Liverpool. 

 

293T and A549 cell monolayers were grown under high humidity incubation (37°C, 

5% CO2) with DMEM (Sigma-Aldrich) supplemented with 10% (v/v) heat-inactivated 

FCS (Sigma-Aldrich), 100 units/ml penicillin (Sigma-Aldrich), 100 μg/ml streptomycin 

(Sigma-Aldrich) and 2 mM L-glutamine (Sigma-Aldrich). For maintenance, cells were 

routinely cultured in 10 cm tissue culture dishes and passaged when confluent by 

discarding the growth media, washing the cells with 6 ml of Dulbecco’s’ Phosphate 

Buffered Saline (DPBS) solution (Sigma-Aldrich). The wash solution was removed and 

2.5 ml of 1x Trypsin-EDTA solution (0.05% Trypsin, 0.02% EDTA) (Sigma-Aldrich) was 

added. Cells were then incubated at 37°C for 2-5 minutes to dislodge cells from the 

surface. Cells were then resuspended by adding 7.5 ml of growth medium to the dish.  

 

2.2  Human samples and Ethics Statement 

 

Five healthy lab donors (aged from 29 to 36 years old) with no previous history of 

travel to Africa were recruited from the on-going study “Immune responses to 

infection of white blood cells from healthy people”. The research protocol was 

approved by the Ethics Committee of the Institute of Infection and Global Health, 

University of Liverpool (RETH000685). Informed consent was obtained from each 

subject. Venous blood was collected aseptically from each individual in standard 

ethylenediaminetetraacetic acid (EDTA) tubes (4 ml) by a trained phlebotomist. 

 

Stored RNA samples extracted from whole blood collected from acute EVD patients 

were kindly provided by Stephan Günther’ group from Bernhard Nocht Institute for 

Tropical Medicine (Hamburg, Germany). These samples were collected by the EMLab 
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unit in Guinea during the outbreak of Ebola in 2014 and 2015 within the project 

“Ebola virus disease-correlates of protection, determinants of outcome and clinical 

management” (EVIDENT, Proposal #666100). The clinical samples were received and 

tested in three different groups: a) 15 samples used for a pilot study (representing 6 

fatal cases and 9 survivors), b) 39 samples with known clinical outcome (20 survivors 

and 19 fatal cases), c) 64 samples (34 fatal cases and 30 survivors) for which at the 

time of analysis in this study the clinical outcome was not provided so that the study 

could be carried out blind. 

 

2.3 RNA extraction 
 

2.3.1 RNA extraction from human cell lines and PBMCs 

 

Total RNA extraction including DNase treatment was carried out using RNeasy Plus 

Mini Kit (Qiagen). For the human cell lines, 600 μl of buffer RLT Plus (β-

Mercaptoethanol added) was used to disrupt the pellet cells (1 x 107 cells). The next 

steps followed the manufacturer’s protocol for human cell lines with the addition of 

80 μl DNase incubation mix (10 μl DNase I stock solution mixed with 70 μl Buffer RDD) 

(Qiagen) applied directly to the RNeasy Mini spin column and incubated at room 

temperature for 15 min before the washing steps.  

 

For the PBMCs pellet sample (2.2 x 107 cells), 600 μl of buffer RLT (supplemented with 

β-ME) was added to the cells, and further steps followed the protocol for isolation of 

PBMCs with RNeasy Mini kit (Qiagen). Likewise, 80 μl DNase incubation mix was also 

added before the washing steps. 

 

In both cases, RNA was eluted in 30 µl nuclease free water (Qiagen) and the 

concentration was measured using NanoDrop ND-1000 spectrophotometer (Thermo 

Fisher Scientific). The integrity of the RNA was verified by electrophoresis in a 1.5% 

agarose gel (Invitrogen), prepared with 0.5X TBE buffer (GeneFlow); run at 100V for 

20 min and visualized with GeneFlash UV transilluminator (Syngene, Cambridge, UK). 
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2.3.2 RNA extraction from control and clinical samples 

 

Blood samples from healthy donors were processed immediately after collection in a 

biological safety cabinet following the protocol of RNA extraction from human whole 

blood using the QIAamp RNA Blood Mini Kit (Qiagen).  

 

Clinical samples were handled at the European Mobile Laboratory (EMLab) unit 

deployed in Guinea. The EBOV in the blood samples was first inactivated by adding 

560 μl of Buffer AVL (Qiagen) and 560 μl of 100% Ethanol while still in a glove box. 

After inactivation, samples were handled on the bench following appropriate 

standard laboratory safety precautions (Kerber et al., 2016). Viral RNA was extracted 

from 50 μl of whole blood collected in EDTA tubes using the QIAamp Viral RNA Mini 

kit (Qiagen). 

 

The RNA from control and clinical samples was quantified using Qubit RNA HS Assay 

Kit (Thermo Fisher Scientific), and read by Qubit Fluorometer (Thermo Fisher 

Scientific), then diluted with RNA storage solution (Thermo Fisher Scientific) to 2 

ng/µl to be tested by RT-qPCR. 

 

2.4 Primer design 

 

Primers in this study were designed to target conserved regions of all available 

transcript sequences visualized from the transcriptome database AceView (mRNAs 

from GenBank or RefSeq, and single pass cDNA sequences from dbEST and Trace) of 

each gene of interest. The primers were designed using NCBI/Primer-BLAST and 

RealTimeDesign™ software (Biosearch Technologies, Novato, USA).  

 

Several default parameters were considered during the primers design (Table 2.1). 

The specificity of the primers was then checked by NCBI-Primer BLAST tool 

(http://wwwncbi.nlm.nih.gov/tools/primer-blast/). All primer sets were synthesized 

by Eurofin Genomics (Ebersberg, Germany). 
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Table 2.1 Default criteria for designing primers for RT-qPCR assays* 

*Table adapted from  Rodríguez et al. (2015) 

 

2.5 Probes design 
 
Probes were designed by RealTimeDesign™ (Biosearch Technologies, Novato, USA) 

according to the parameters indicated in Table 2.2 

 

Table 2.2 Default criteria for designing probes for RT-qPCR* 

*Table adapted from Rodríguez et al. (2015) 

 

The probes were dually labelled with fluorescent dye (HEX, TxRd, CY5 or FAM) on the 

5’ end and compatible black hole quencher (BHQ 1, BHQ 2 or BHQ 3) on the 3’ end. 

Locked nucleic acids (LNA) were included in some probe sequences. The probes were 

manufactured by Sigma-Aldrich (Dorset, UK) 

 

Requisites Primers 

GC content 30-80% (Gene expression: 50-60 %) 

Calculated primer Tm 55-60°C; Tm of primers should not differ > 2°C 

Runs of identical nucleotides Maximum 3 (No G bases) 

Primer length 15-30 bp 

PCR product length 50-150 bp 

Primer-dimers, hairpins Avoid 

3’ end rule Maximum two G or C in the last 5 bp 

Requisites Primers 

GC content 30-80% (Gene expression: 35-65%) 

Calculated probe Tm 68-70°C (8-10°C  above Tm of primers) 

Runs of identical nucleotides Maximum 3 (No G bases) 

Probe length 15-30 bp 

PCR product length 50-150 bp 

Primer-dimers , hairpins Avoid 

Autoquenching No G on the 5’ end 

GC ratio C > G 
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2.6 Construction of plasmids 

 

The plasmid constructs were designed and obtained by either inserting an amplified 

PCR product of the target sequence into vectors by TA cloning or by synthesis of 

recombinant plasmids by GeneArt Gene Synthesis service (Thermo Fisher Scientific). 

 

2.6.1 Reverse transcription 
 

RNA from human cell lines and PBMCs was converted into complementary DNA 

(cDNA) using RevertAid H Minus Reverse Transcriptase as follows: 1 µg of total RNA 

was mixed with 0.5 µg Oligo(dT)15 Primer (Promega) in a 0.5 ml PCR tube. The 

reaction volume was made up to 10 μl with nuclease-free water (Qiagen) and 

incubated at 70°C for 5 minutes for priming and chilled on ice. To each reaction mix, 

4 µl of 5X Reverse Transcription Buffer, 2 µl PCR nucleotide mix (Promega) (a 

premixed solution containing nucleotides dATP, dCTP, dGTP and dTTP at a 

concentration of 10 mM in water at pH 7.5), 0.5 µl RNasin Ribonuclease Inhibitor 

(Promega), and 1.5 µl nuclease free water were added and incubated at 37°C for 5 

minutes. The reaction was stopped and 1 μl RevertAid H Minus Reverse Transcriptase 

(Thermo Fisher Scientific) was added to the mixture, incubated at 42°C for 1 hour 

followed by 10 minutes at 70°C to stop the reaction.  

 

A minus Reverse Transcription control “-RT” (containing all the mixture components 

except the reverse transcriptase) was included to examine genomic DNA 

contamination. The cDNA was subsequently diluted with 80 μl nuclease-free water 

(Qiagen) to get a final volume of 100 μl and stored at −20°C until further use. 

 

2.6.2 End-point Polymerase Chain Reaction 
 

The PCR reactions were carried out on a PxE 0.5 thermal cycler (Thermo Fisher  

Scientific) using the following conditions: 2 μl cDNA dilution, 0.75 μM each primer, 

1X Reddy Mix PCR Master Mix (Thermo Fisher Scientific) in 20 μl final reaction 

volume. The following cycling conditions were used: initial denaturation step at 94°C 
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for 5 min, followed by 30 cycles of denaturation at 94°C for 30 sec, annealing at 55°C 

for 30 sec, elongation at 72°C for 30 sec and a final extension at 72°C for 10 min. PCR 

products were separated in a 2% agarose gel (Invitrogen) (prepared with 0.5X TAE 

buffer), run at 100V for 30 min and visualized by ethidium bromide (EtBr) staining 

(Sigma-Aldrich) with GeneFlash UV transilluminator (Syngene, Cambridge, UK). 

 

PCR products were purified from the agarose gel by excision of bands and using the 

QIAquick Gel Extraction Kit (Qiagen) according to the manufacturer’s instructions.  

 

2.6.3 Cloning and Sequencing 
 

Two different approaches were used for cloning the target sequences into vectors: 

 

§ Cloning into pGEM-T and pGEM-T Easy vectors:  Purified PCR products were 

cloned into pGEM-T and pGEM-T Easy vectors (Promega) which have 3´-T 

overhangs at the insertion site for the ligation of the PCR product, and T7 and 

SP6 RNA polymerase promoters for further in-vitro transcription Figure 2.1.  

 

Transformation was performed in competent Escherichia coli strain DH5α 

cells (Agilent Technologies), which were grown on LB agar plates 

supplemented with 100 µg/ml ampicillin. Colonies were screened by PCR 

using 10 μl of a single colony diluted in 50 μl nuclease-free water, 0.25 μM 

M13 Forward and M13 Reverse primers, 1X Reddy Mix PCR Master Mix 

(Thermo Fisher Scientific) in a final reaction volume of 20 μl. Cycling 

conditions were as follow: initial denaturation step at 95°C for 5 min, followed 

by 35 cycles of denaturation at 95°C for 30 sec, annealing at 55°C for 30 sec, 

extension at 72°C for 30 sec and final extension at 72°C for 10 min. PCR 

products were run on 1.5% agarose gel (Invitrogen) stained with EtBr at 100V 

for 30 min and visualized using GeneFlash UV transilluminator (Syngene, 

Cambridge, UK).  
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Only clones containing the expected insert size were selected for plasmid 

purification. Plasmids were isolated using Plasmid Maxi Kit (Qiagen), eluted in 

300 μl of nuclease free water (Qiagen) and sequenced at Source Bioscience 

(Nottingham, England). The sequences were then validated by BLAST analysis 

on NCBI. 

 

§ Cloning into pcDNA3.1(+): Plasmid constructs were designed using the freely 

accessible SnapGene Viewer program. The coding sequence for each gene 

transcript were inserted into pcDNA3.1(+) downstream the T7 polymerase 

promoter necessary for in-vitro transcription Figure 2.1. The purified plasmids 

containing the synthesized genes were ordered from GeneArt Gene Synthesis 

(Thermo Fisher Scientific). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Map of the vectors used for cloning the target gene sequences in this 
study. A) pGEM-T vector and B) pGEM-T easy vector contains a T7 and SP6 RNA 
polymerase promoters flanking the multiple cloning site (MCS). C) pcDNA 3.1(+) 
vector have the MCS in the forward orientation (+) and T7 promoter. 
 

B
) 

A
) 

C
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2.7 Synthesis of RNA transcripts 

 

2.7.1 Linearization of DNA plasmid 

 

Linearization of 5 µg DNA plasmid was performed using the digestion protocol by 

restriction enzyme SalI-HF, NcoI-HF or NotI-HF (New England Biolabs). The amount of 

restriction endonuclease was 1 unit/50 μl reaction. The 10X reaction buffer volume, 

time, and temperature of incubation and to stop the reaction for each enzyme was 

in accordance with the manufacturer’s instructions. The clean-up of linear DNA was 

performed using the Wizard DNA Clean-Up System (Promega). 

 

2.7.2 In-vitro transcription 

 
The transcription reaction of 1 µg linearized DNA was carried out following the 

standard protocols for in-vitro transcription using MEGAshortscript™ T7 Kit (Thermo 

Fisher Scientific) incubated at 37°C for 4 hours, MAXIscript™SP6 Transcription Kit 

(Thermo Fisher Scientific) incubated at 37°C for 1 hour or MEGAscript™ T7 

Transcription Kit (Thermo Fisher Scientific) incubated at 37°C for 4 hours. DNA 

template from the in-vitro transcribed RNA (cRNA) was removed by digestion with 1 

μl TURBO DNase I (Thermo Fisher Scientific) at 37°C for 15 minutes, and the 

purification of transcripts was carried-out using the MEGAclear™ Transcription Clean-

Up Kit (Thermo Fisher Scientific). Then, cRNA transcripts were eluted in 100 µl of RNA 

storage solution (containing 1 mM Sodium Citrate at pH 6.4) (Thermo Fisher 

Scientific). The quantity and quality of RNA were assessed using NanoDrop ND-1000 

spectrophotometer (Thermo Fisher Scientific).  

 

The length of the purified cRNA transcripts was confirmed by gel electrophoresis 

analysis. The in-vitro transcripts and RiboRuler Low Range RNA Ladder or RiboRuler 

High Range RNA Ladder (Thermo Fisher Scientific) were first denatured mixing equal 

volumes of the 2X RNA loading dye and RNA samples, heated at 70°C for 10 min, 

chilled on ice and then loaded in 2% native agarose gel (Invitrogen) stained with SYBR 
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safe DNA Gel stain (Thermo Fisher Scientific). Bands were separated at 100V for 45 

min and visualized with GeneFlash UV transilluminator (Syngene, Cambridge, UK). 

 

2.8 Primers optimization by Real-Time qPCR 

 

Primer’s concentration and optimal annealing temperature was evaluated by SYBR 

green based Real-Time qPCR. The cDNA (4 μl) obtained from converting RNA 

extracted from human PBMCs was added as a template to a reaction mixture of iTaq 

Universal SYBR Green Supermix (2X) (Bio-Rad) and 100 or 200 nM of each primer in 

a final reaction volume of 12 μl. The reaction was run on the Corbett Research RG-

6000 Real Time PCR. The following thermal cycling parameters were used: 1 cycle of 

polymerase activation, DNA denaturation at 94°C for 3 min, and 40 cycles of 

denaturation at 94°C 15 sec, and annealing extension at 60°C for 30 sec.  

 

The melt curve analysis was carried out at 65°C-95°C with an increment of 0.5°C at 5 

sec/step. The qPCR products were also visualised on a 2% agarose gel (Invitrogen), at 

100V for 45 min and visualized by EtBr staining (Sigma-Aldrich) with GeneFlash UV 

transilluminator (Syngene, Cambridge, UK). 

 

2.9 Generation of a standard curve for RT-qPCR assays 

 

The measurement of RNA copies of the in-vitro transcripts was determined using a 

previous formula developed by Fronhoffs et al. (2002). The formula gives the 

molecules per µl (N), if the concentration of the cRNA (C) is known in relation to the 

fragment size (K) multiplied by a factor derived from the molecular mass and the 

Avogadro constant:    

 

N (molecules per μl) =   C (cRNA µg/µl)      182.5 x 1013 

 K (fragment size/b) 
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Ten-fold serial dilutions of RNA transcripts were prepared using RNA storage solution 

(containing 1 mM sodium citrate, pH 6.5 +/- 0.1 buffer) (Thermo Fisher Scientific) to 

prevent RNA degradation. 

 

To construct the standard curve, dilutions of the in-vitro RNA standards spanning 1x 

108 to 1 x 104 copies/µl or 1x 107 to 1 x 103 copies/µl were tested in triplicate by the 

SYBR Green I- based one step RT-qPCR. For the multiplex RT-qPCR, dilutions spanning 

1x 106 to 1 x 102 copies/µl were used in triplicate. The standard curve was plotted as 

the mean Ct values against the log cRNA copy number. 

 

2.10 SYBR Green I-based RT-qPCR assays 

 

The optimized conditions for the one-step quantitative reverse transcription PCR (RT-

qPCR) assay for each gene were as follow: 5 μl of RNA added to a reaction mixture of 

1X iTaq™ Universal SYBR® Green reaction mix (Bio-Rad), 1X iScript Reverse 

transcriptase (Bio-Rad), 100 nM of primer forward, 100 nM of primer reverse in a 

final reaction volume of 20 μl. The assay was run on the CFX 96™ real time PCR 

machine (Bio-Rad). The following thermal cycling parameters were used: 1 cycle of 

RT for 10 min at 50°C followed by 1 cycle of polymerase activation and DNA 

denaturation at 94°C for 1 minute, and 40 cycles of denaturation at 94°C for 10 

minutes and annealing/extension at 60°C for 30 minutes. After amplification, a 

melting curve analysis program was used to verify the authenticity of the PCR 

products by their specific melting temperatures (Tm) according to the instrument 

documentation. 

 

2.11 Multiplex Probe-based RT-qPCR assay 

 

The optimized conditions for the one-step multiplex RT-qPCR were as follows: 5 μl of 

RNA added to a reaction mixture consist of: 1X Quantifast Multiplex RT-PCR Master 

mix (without ROX) (Qiagen), 400 nM of each primer forward and reverse, and 200 nM 

of each probe and 0.25 μl of QuantiFast RT mix (Qiagen) in a final reaction volume of 

25 μl. The reaction was run on the Rotor-Gene Q 5plex Platform (Qiagen) with the 



 55 

following cycling conditions: reverse transcription at 50°C for 20 minutes, PCR initial 

heat activation at 95°C for 5 minutes, 45 cycles of 2 step-cycling (denaturation at 95°C 

for 15 seconds and annealing/extension at 60°C for 30 seconds). The data acquisition 

was performed during the annealing step on 3 channels: yellow, orange, green.  

 

2.12 Performance evaluation of RT-qPCR assays 

 

2.12.1 Linearity of RT-qPCR 

 

The efficiency and dynamic range of the respective singleplex assays were 

established by amplifying five 10-fold dilutions of RNA transcripts of each gene. Each 

dilution was amplified in triplicate in three separate runs.  

 

2.12.2 Analytical sensitivity 

 
To determine the limit of detection (LOD) of the RT-qPCR assays; 10-fold dilutions of 

in-vitro transcripts containing 1 x 1011 down to 1 x 100 RNA copies/µl were tested in 

duplicate. 

 

2.12.3 Assay specificity 

 

To investigate the specificity of the SYBR Green I-based one step RT-qPCR assay, a 

melting curve analysis was performed followed by agarose gel analysis of the 

amplified products. Likewise, amplified products from the multiplex RT-qPCR assay 

were evaluated by agarose gel analysis. 

 

2.12.4 Assay repeatability 

 
The repeatability (intra- and inter-assay variance) of the SYBR Green I-based one step 

RT-qPCR assay and the multiplex RT-qPCR were assessed using the 10-fold dilutions 

of in-vitro RNA transcripts. The assays were performed in triplicate for the selected 

dilutions within a single run to evaluate the intra-assay variance, and in three 
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independent runs to evaluate the inter-assay variance. The standard deviation (SD), 

and coefficient of variation (CV) were separately calculated using the mean Ct values. 

 

2.13  Statistical analysis 

 

The transcript abundance of each gene measured by RT-qPCR was described with the 

mean and the standard error of the mean (SEM). Observations with missing values 

were excluded from the calculations. The nonparametric Mann-Whitney U test was 

used to determine the statistical difference in the transcript abundance of each gene 

between survivors and fatal cases using the GraphPad Prism version 8.3.0 (328). 

Kernel density estimation was used for visualising the distribution of the potential 

biomarkers using the ggplot2 package in R open source software version 3.6.0 (2019-

04-26)(R Core team, 2019; Wickham, 2016). 

 

2.14 Machine Learning Analysis  
 
 
All the following analyses were performed using R open source software version 3.6.0 

(R Core team, 2019). To measure the importance of each feature (age, EBOV Ct and 

gene transcripts) the Boruta algorithm was implemented using the boruta package 

(Kursa & Rudnicki, 2010). The caret package was used to spot check the performance 

of a diverse set of machine learning algorithms (linear, non-linear, trees and 

ensemble algorithms) in the dataset. In this analysis the repeated cross validation 

option was used to resample the data and k = 10 was tested. 

 

Prior to building the classification models such as Support Vector Machine and k- 

Nearest Neighbours, the subjects with missing values were removed from the 

analysis.  

 

Accuracy was the metric used to evaluate the classification models and is provided in 

the caret package (Kuhn, 2008). The overall approach for evaluating the accuracy of 

the predictive models was first splitting the sample dataset in two parts: the 70% 

training set which was used to build the model and the 30% set (unseen data) used 
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for evaluating the performance and predictive accuracy of the classifiers. The caret 

package and built-in functions were used to pre-process the training data (using scale 

and center transforms), train each model and generate 10-fold cross validation sets 

to tune model hyperparameters (Kuhn, 2008). The rose package was also included 

during the pre-process of training data to deal with imbalanced classes (unequal 

number of survivors and fatal cases) (Lunardon et al., 2014). Plots showing the 

confusion matrix between the EVD outcome predicted by the machine learning 

models and the actual outcome of the patients were created using the ggplot2 

package. 
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3.1 Introduction 

 

While potential benefits of interventions such as drugs and vaccines to reduce the 

burden of infectious diseases are commonly estimated, the life-saving impact of new 

diagnostic and prognostic technologies remains overlooked (Ghani et al., 2015). 

Notwithstanding, diagnostics have proved to be fundamental for containing 

infectious disease outbreaks. In the past, a poor diagnostic preparedness has 

contributed to significant delay in the identification of the causative agents of 

different infectious disease outbreaks such as EVD, Lassa fever, Zika, Yellow fever 

(Berkley, 2018; Hamblion et al., 2018; Lowe et al., 2018; Perkins et al., 2017). A poor 

diagnostic preparedness was also seen in the early period of the current COVID-19 

pandemic. PCR testing was not widely available and only limited to patients who were 

admitted to hospital with COVID-19 symptoms and only later extended to 

symptomatic health-care workers (Pallett et al., 2020). This delay in diagnosis led to 

the rapid spread of COVID-19 (Rong et al., 2020). In the case of EVD, during the 2013-

2016 West African outbreak, it took nearly 3 months for health officials and their 

international partners to identify EBOV as a causative agent (World Health 

Organization, 2015b). By that time, the outbreak spread rapidly within Guinea and 

was imported into Liberia and Sierra Leone. The improvement of diagnostics by an 

accelerated development of field-deployable molecular assays like RT-PCR showed 

to be vital not only for an earlier case detection but also for patient management and 

the eventual containment of the outbreak (Kelly-Cirino et al., 2019).  

 

While diagnostic tests of EVD have been improved over the years to the current use 

of automated PCR platforms and the development of rapid diagnostic tests, less 

attention has been paid to developing prognostic tests. These tests could be useful 

tools for patient management specially in outbreak settings with limited resources. 

For example, during the peak of the 2013-2016 West African outbreak, the healthcare 

facilities overpassed their capacity and clinicians had to make difficult decisions about 

how to triage patients and family expectation regarding the disease outcome (Crowe 

et al., 2016). Due to the absence of a prognostic test that determines the probable 

clinical outcome of EVD in the patient, clinicians made decisions considering the viral 
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load levels (determined by Ct values of RT-PCR assays) as a predictor of the clinical 

outcome. As was mentioned in Chapter 1, viral load is currently the most reliable and 

strongest predictor of the clinical outcome of acute EVD since viremia is correlated 

to the severity of the disease. Although the quantification of viral load is able to 

stratify patients into risk groups (survivors or fatal outcome), especially when Ct value 

is high or low (i.e. high viremia levels are found in EVD fatalities compared to 

survivors), it is hard to predict the outcome of patients with mid-range Ct values (i.e. 

values between Ct 20 and Ct 22). In these cases there is a 50/50 outcome 

(death/survival) and therefore the viral load Ct value could not be used as a predictor 

of outcome (Liu et al., 2017). Thus, development of prognostic tests that do not solely 

rely on the EBOV Ct values at the time of diagnostic testing would be valuable for 

improving the management of patients during an outbreak. 

 

In the search for other potential predictors of outcome, some studies have 

investigated the factors that may influence the disease outcome such as place of 

residence, age, gender, clinical markers (diarrhoea, fever, headache, bleeding 

manifestations among other symptoms), laboratory markers (high levels of BUN, ALT, 

AST, CRP, hypocalcemia, hyperkalaemia, among others) and co-infection with 

Plasmodium falciparum (described in detail in Chapter 1). Although these parameters 

or a combination of them have been recommended for predicting the clinical 

outcome, a threshold laboratory value in these approaches need to be set up (Reisler 

et al., 2017). Besides, these studies have been conducted retrospectively from small 

cohorts of EVD patients from the 2013-2016 West Africa outbreak and require further 

validation with independent clinical data from different EVD treatment sites 

(Schieffelin et al., 2014; Yan et al., 2015; Zhang et al., 2015). 

 

Up to now, little attention has been paid to the identification of host genes that could 

be useful for predicting the outcome in EVD outbreaks. As mentioned in Chapter 1, a 

previous study from our group using RNAseq analysis investigated the transcriptomic 

changes in peripheral blood samples from acute patients collected during the 2013-

2016 outbreak in Guinea. Ten genes, whose abundance was different between 

survivors and fatal cases were identified as potential predictors based on machine 
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learning approaches applied to whole transcriptomic datasets (Liu et al., 2017). These 

were: VCAM1, HOPX, TUBG1, PLPP3, MS4A4A, TGFBI, TTC28, NF3L1, SLC25A5, and 

CTSL (Liu et al., 2017). Such sequencing approaches are not field deployable and can 

have long turnaround times. Therefore, identifying a small subset of gene whose 

mRNAs can act as markers may allow a multiplex assay based on RT-qPCR. 

 

To investigate whether these candidate predictive genes are suitable for analysing 

EVD clinical outcome, it was first necessary to generate RT-qPCR assays for the 

individual gene transcripts. An additional gene, Interferon-stimulated gene 15 

(ISG15), was included later in this work, since it was found significantly upregulated 

during the acute phase of EVD (Caballero et al., 2016; Greenberg et al., 2020). Thus, 

the aim of this chapter was to develop and optimize RT-qPCR assays that could 

measure the transcript abundance of these genes in EVD clinical samples. 

 

3.2 Overview of the RT-qPCR assays development  
 
The generation of the RT-qPCR assays for each of the candidate predictive gene 

transcripts consisted of three steps. The flowchart shown in Figure 3.1 outlines these 

steps. In the first step, primers were designed to target the conserved regions of the 

transcript sequences for each gene. The RNA from human cell lines and PBMCs was 

converted into cDNA by reverse transcription to be used as a template for end-point 

PCR to test the designed primers. Successfully amplified PCR products were inserted 

into pGEM-T by TA cloning. A recombinant plasmid was isolated and sequenced to 

verify the inserted sequences. This plasmid was then linearized and used as a 

template for in-vitro transcription from either the SP6 or T7 promoter. The RNA copy 

number of the in-vitro transcripts were then measured by the formula developed by 

Fronhoffs et al. (2002). 

 

In the second step, RT-qPCR assays were optimized for each of the candidate 

predictive gene transcripts. This involved primer optimization and the 

standardization of the protocol to quantify the copy number or abundance of mRNA 

transcribed by each gene by the absolute standard curve method. This method used 
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of serial dilutions of the in-vitro transcripts to create a standard curve. The sensitivity 

and linearity were estimated from the standard curves. RT-qPCR assays with good 

efficiency were further used in the next step, and those with poor efficiency were re-

optimized. 

 

In the third step, to demonstrate the performance of the RT-qPCR assays, the assays 

were evaluated in control samples (5 healthy donors) and a small cohort of clinical 

samples (n = 15) collected during the 2013-2016 outbreak in Guinea by the EMLab 

that included acute EVD patients with survival (n= 9 ) or fatal outcome (n = 6). 

 
 
 

 
 

 
 
 

 
 
 

 
 
 
 
 

 
 
 

 
 
 
 
Figure 3.1 Flowchart of the generation of RT-qPCR assays for each candidate 
predictive gene transcripts. The flowchart shows three processing steps: 1) 
generation of RNA standards that involves different procedures (primer design, 
synthesis of cDNA, end-point PCR, cloning and sequencing, linearization of DNA 
plasmid, in-vitro transcription), 2) optimization of the RT-qPCR assays using the 
absolute standard curve method, and 3) performance evaluation of the RT-qPCR 
assays in samples from healthy donors (green), and samples from EVD survivors 
(blue) and fatal EVD patients (orange). 
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3.3 Design of primer sets 
 

Primers were designed for the set of ten candidate predictive genes. In order to avoid 

genomic DNA (gDNA) amplification and its detection by real-time PCR, forward and 

reverse primers were designed in different exons separated by a single intron. All 

primers were designed in-house, except primers for VCAM1 that were taken from 

Aquila et al. (2017). These VCAM1 primers targeted two continuous exons, with the 

reverse primer spanning an exon-exon junction since this enables the amplification 

and detection of RNA sequences only. For the design of primers, the target exons for 

each gene were selected based on the alignments of all available mRNA transcript 

sequences of each gene from the NCBI’s reference sequence database (RefSeq) 

(http://www.ncbi.nlm.nih.gov/RefSeq/). Primers were designed using the NCBI 

Primer-BLAST algorithms. The aim was to select primers which would amplify a 

product between 75-200 bp, with GC content between 50-60 % and Tm 50-65 °C. 

Figure 3.2 shows the known exon-intron structures for known transcripts of each 

gene, with location of the selected primers shown. Table 3.1 shows the sequence of 

the primer sets. 
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TGFBI 
 
 
 
 
 
 
 
 
 
 
 
TTC28 

 
Figure 3.2  Location of the designed primer sets. Graphic displaying the known RefSeq-annotated transcript and splice variants of the gene 
identified by accession number (text in blue). The boxes represent the exons, the lighter green regions are untranslated regions (UTRs), and dark 
green areas are the coding regions. The connecting lines are the introns. The light blue vertical lines show the target locations of the RT-qPCR 
primers. Primer 1 is the label for primer forward and Primer 2 the label for primer reverse. The figure was created using the tool Primer-check 
from SpliceCenter (Ryan et al., 2008).
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Table 3.1 Sequences of initial primers designed to test the ten candidate predictive 
genes transcripts* 

*All primers were designed in-house, except VCAM1 which was taken from Aquila et al. 
(2017) 
  

Gene 

NCBI 

Accession 

number 

Sequences 

5’- 3’ 

Amplicon 

length 

(bp) 

Nucleotide 

position 

VCAM1 NM_001199834.1 
For: GGTATCTGCATCGGGCCTC 

193 105- 297 
Rev: TAAAAGCTTGAGAAGCTGCAAACA 

HOPX NM_032495.5 
For: CAACAAGGTCGACAAGCACC 

151 652-802 
Rev: GACGGATCTGCACTCTGAGG 

TUBG1 NM_001070.4 
For: CCGCAAGGACGTCTTTTTCTAC 

160 536-695 
Rev: TCCTCCTCCATGTTCCGACA 

PLPP3 NM_003713.4 
For: AGGATTTGCTCAAGGAGCCC 

84 1342-1425 
Rev: AGGGAGAGCGTCGTCTTAGT 

MS4A4A NM_148975.2 
For: GTGCAGATTCTGACTGCCCT 

157 340-496 
Rev: CTGCAATTGACAAGGATCCTGAA 

TGFBI NM_000358.2 
For: GACTGACGGAGACCCTCAAC 

199 1738-1936 
Rev: AGAGACTTTAGCCGCACCAG 

TTC28 NM_001145418.1 
For: GACTTGGCATCAGCTCCCAT 

165 5765-5929 
Rev: GAAGTGCACAGTCCGTCGAT 

NF3L1 NM_001136039.2 
For: ACACCCAAGACCTGGACAAA 

145 615-759 
Rev: TCTACCACCTGCATCAAAGCC 

SLC25A5 NM_001152.4 
For: GCCGGGTTGACTTCCTATCC 

164 786-949 
Rev: ACATTGGACCATGCACCCTT 

CTSL1 NM_001257973.1 
For: CTGGTGGTTGGCTACGGATT 

122 610-731 
Rev: CTCCGGTCTTTGGCCATCTT 
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3.4 Construction of plasmids 
 

Before the construction of plasmids containing sequences of the gene transcripts for 

the generation of in-vitro RNA standards, it was first important to check the 

performance of the primer sets listed in Table 3.1. For this, the primers were first 

tested by end-point PCR using cDNA synthesized from RNA extracted from available 

human cell lines: 293T, and A549. The primers amplified the expected PCR products, 

depending on the specific gene expression in cell lines. Thus, TUBG1, TTC28, PLPP3, 

NF3L1, SLC25A5, CTSL amplified in 293T and A549 cell lines. HOPX amplified only in 

293T cells, and TGFBI only in A549 cells. VCAM1 and MS4A4A did not amplified in any 

of these cell lines, therefore these were tested in RNA extracted from HBEC cell line 

kindly provided by the Brain Infections Group of the University of Liverpool. Only 

VCAM1 amplified in HBEC. MS4A4A amplified in RNA extracted from human PBMCs 

that were also provided by the Brain Infections Group.  

 

For the construction of plasmids, first an end-point PCR was performed using the 

primer sets of each gene transcript and their specific cell line as a template. The PCR 

products were then inserted into plasmids vectors (pGEM-T and pGEM-T Easy vector) 

by TA cloning. To confirm the sequence and integrity of the PCR products all plasmids 

were sequenced. Results were compared with the nucleotide databases in the NCBI 

GenBank using the BLAST tool and confirmed 100% identity with the transcript 

reference sequences for each gene. The orientation of the inserted sequences was 

also checked using SnapGene Viewer software (Chicago, USA). 

 

3.5 Generation of in-vitro RNA standards 
 

To measure the transcript abundance of each gene, standard curves were created for 

the RT-qPCR assays. In-vitro RNA standards (cRNA) were used in the construction of 

the standard curves. For the cRNA synthesis, the purified plasmids were linearized by 

restriction enzyme digestion with either SalI or NcoI (pGEM-T and pGEM-T vector 

map is shown in Figure 2.1 in Chapter 2). NF3L1, VCAM1, HOPX, TUBG1, PLPP3, and 

CTSL plasmids were linearized with SalI while MS4A4A, TGFBI, TTC28, and SLC25A5 
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plasmids were linearized with NcoI.  The target sequences were then transcribed by 

in-vitro transcription using either a T7 promoter (for VCAM1, PLPP3, TUBG1, CTSL, 

NF3L1, HOPX) or a SP6 promoter (for MS4A4A, TGFBI, TTC28, SLC25A5). This was 

determined by the orientation of the PCR product to ensure sense strand transcripts 

were generated for constructing a standard curve for mRNA quantification. The 

transcribed RNA was treated with DNase to digest the plasmid, and no DNA bands 

were observed in all cRNA by agarose gel analysis. A 260/280 ratio of approximately 

2.0 was seen for all in-vitro transcripts indicating a good nucleic acid purity. The size 

of cRNA products were confirmed by gel electrophoresis analysis. To analyse cRNA in 

a native/non-denaturing agarose gel, the RNA ladder and cRNA sample were first 

denatured as described in Chapter 2. Figure 3.3 shows the cRNA products as single 

bands with no significant degradation. High intensity bands represent 500ng of RNA 

loaded into the gel, faint bands like HOPX are due to loading of less than 500ng 

because the RNA concentration obtained after the clean-up of transcripts was low 

(Table 3.2). The copy numbers of the cRNAs are listed in Table 3.2 and were calculated 

based on its concentration and molecular weight using a published formula 

developed by Fronhoffs et al. (2002) that was described in Chapter 2. 

 

 

 
Figure 3.3 Agarose gel electrophoresis of in-vitro transcripts. The RNA transcripts 
for the 10 genes and RNA ladder were first denatured and loaded in a 2% native 
agarose gel and visualized by staining with ethidium bromide. Numbers above the 
RNA bands are the expected sizes (bases).  
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       Table 3.2 Quantification of the in-vitro transcripts 

 
 
3.6 Primers testing and optimization in real time qPCR 
 

Although the primers sets used have been successful to amplify products by end-

point PCR (section 3.4), it was necessary to evaluate their performance in real time 

quantitative PCR (qPCR) that use SYBR green chemistry. The concentration and 

optimal annealing temperature for each primer set was optimized by SYBR green real 

time qPCR. This method does not include a reverse transcription step, thereby cDNA 

is used as a template. The primers sets were tested on cDNA synthesized from human 

PMBCs and run in triplicate. Different primers concentrations (100 and 200 nM) and 

annealing temperatures (55°C and 60°C) were initially evaluated. For each primer set, 

the optimal primer concentration and annealing temperature was 100nM and 60°C, 

respectively. The data shown in Figure 3.4 represents the amplification curves, melt 

curves and the qPCR product resolved on an agarose gel for each of the 10 primer 

sets. A single peak is shown in the melt curve analysis that correspond to the single 

band observed on the agarose gel. The melt curve analysis did not identify non-

specific products such as a primer dimers that could have co-amplified and show a 

different peak with different melting temperature. This was confirmed by the agarose 

gel analysis of qPCR products that did not show additional bands. 

Gene 

Length 
of 

cRNA 
(bases) 

cRNA concentration 
ng/µL 

OD 
260/280 

OD 
260/230 

Quantification 
of cRNA 
standard 

N (molecules 
per µL) 

VCAM1 270 341.3 2.16 1.52 23 x 1011 N 
HOPX 243 22.5 2.28 1.00 2 x 1011 N 

TUBG1 252 262.1 2.07 1.99 19 x 1011 N 
PLPP3 176 177.6 2.09 1.08 19 x 1011 N 

MS4A4A 248 108.05 2.30 1.61 8 x 1011 N 
TGFBI 290 67.4 2.19 1.24 4 x 1011 N 
TTC28 256 48.2 2.12 1.18 3  x 1011 N 
NIF3L1 222 311.7 2.17 1.78 25 x 1011 N 

SLC25A5 256 57.0 2.14 1.08 4  x 1011 N 
CTSL 199 166.25 2.18 1.38 16 x 1011 N 
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Figure 3.4 Analysis of the primer sets by Real-Time qPCR. Left panel shows the amplification curve of cDNA tested in triplicate. Right panel 
shows the melting curve of the amplified products. Also shown is the gel analysis of the qPCR products of one of the triplicates; lane 1 shows a 
single band of the amplified product and lane 2 shows the negative control (no template added). Numbers above the DNA bands are the 
expected product sizes (bp). 
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3.7 Application of primer pairs in one-step RT-qPCR  
 

As the primer pairs were to be used to detect transcript levels direct in RNA from 

clinical samples rather than cDNA, a reverse transcription step would be required to 

be incorporated into the assay. Thus, the optimized conditions used in real time qPCR 

were further evaluated in a one-step quantitative reverse transcription PCR (RT-

qPCR) assay. For this, SYBR Green based one-step RT-qPCR assays were performed 

using 10-fold serial dilutions of the synthesized cRNA from each candidate gene 

transcript as a template to establish standard curves. Each standard curve was 

generated by plotting the Ct values versus serial dilutions of the cRNA templates 

tested in triplicate ranging from 103 to 107 copies/µl. The assays detected the target 

sequences of each gene transcript. Reproducible amplification curves were obtained 

from the dilution series and replicates of cRNA used to create standard curves (Figure 

3.5). 

 
3.8 Performance evaluation of the RT-qPCR assays 
 

To evaluate the performance of the primer pairs in the RT-qPCRs the following 

parameters were assessed: linearity, efficiency, analytical sensitivity (limit of 

detection) and precision (repeatability and reproducibility), as recommended in the 

minimum information for publication of quantitative real-time PCR experiments 

(MIQE) guidelines (Bustin et al., 2009). 

 

3.8.1 PCR efficiency and linearity  
 

The amplification efficiency was estimated from the slope of the standard curve with 

the mathematical formula E = 10−1/slope−1 (Bustin et al., 2009). Although the RT-qPCR 

assays for 8 of the gene transcripts, VCAM1, TUBG1, PLPP3, MS4A4A, TTC28, NF3L1, 

SLC25A5A  and CTSL1 showed a good correlation coefficient (r2 value) of 0.99, not all 

RT-qPCR assays showed a high PCR efficiency (Figure 3.5 and Table 3.3).  RT-qPCR 

assays for 3 genes: CTSL, SLC25A5 and NF3L1 obtained PCR efficiencies greater than 

90%, which were within the acceptable range of efficiency expected for RT-qPCR 

assays (E = 90% to 105% ; Slope = -3.2 to -3.5) (Johnson et al., 2013; Svec et al., 2015). 
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The efficiency of RT-qPCR assays for VCAM1, TUBG1, MS4A4A and TTC28 were lower 

than 90%. These results suggested that the assays for VCAM1, TUBG1, MS4A4A, and 

TTC28 had poor primer design or suboptimal reaction conditions. Therefore, the 

assays were modified by redesigning the primers for the gene transcripts that had a 

low PCR efficiency such as VCAM1, TUBG1, MS4A4A, TTC28. At this point of the study, 

the efficiency of RT-qPCR assays for HOPX and TGFBI primer sets was not determined 

since it was decided to include these genes in the group of genes for primer re-design. 

Likewise, SLC25A5A was also included in these groups of genes to find primer sets 

that have higher PCR efficiency. To re-design primer sets, it was necessary to 

construct new plasmids with longer gene sequence inserts so more alternative 

primer sets could be tested to check the PCR efficiency (see section 3.9) 

 

 

            Table 3.3 Performance evaluation of the RT-qPCR assays 

Gene 

qRT-PCR 

product size 

(bp) 

Slope r2 value 
PCR Efficiency 

(E) 

VCAM1 193 -3.876 0.999 81.14% 

HOPX 151 ND ND* ND 

TUBG1 160 -3.820 0.999 82.7% 

PLPP3 84 -4.221 0.998 72.54% 

MS4A4A 157 -3.725 0.999 85.54% 

TGFBI 199 ND ND ND 

TTC28 165 -3.623 0.999 88.81% 

NF3L1 145 -3.466 0.998 94.32% 

SLC25A5 164 -3.55 0.996 91.28% 

CTSL 122 -3.475 0.999 94% 

            *ND: not determined.  
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Figure 3.5 Linearity and PCR efficiency of the RT-qPCRs for 8 of the candidate predictive genes transcripts. Left panels show the amplification 
chart of the five cRNA standards for each gene, with dilutions ranging from 103 to 107 copies/µl and tested in triplicate. Right panels show the 
standard curves created with these dilutions. The mean Cq values are plotted against the log of concentration of the target gene copies/reaction. 
The PCR efficiency for each target was calculated using the slope of the calibration curve with the formula E = 10−1/slope−1.  E = PCR efficiency,  R2 
= correlation coefficient. HOPX and TGFBI were not evaluated.
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3.9 Re-designing primer sets  
 
The data shown in section 3.8 suggested poor primer performance for VCAM1, 

TUBG1, MS4A4A, and TTC28. Therefore, it was necessary to re-design primer sets for 

these gene transcripts. However, the short length of the synthesized in-vitro 

transcripts generated from the cloned PCR products for each of the 10 genes (each 

less than 300 bases) (Table 3.2) limited the ability to design alternative primer sets. 

One approach was tested, where primers sets were modified by additional of the 

relevant single nucleotide (data not shown). However, the PCR efficiency did not 

improve. Thus, it was decided to clone longer regions of the target gene transcripts 

into a relevant plasmid vector. This would allow generation of multiple primer pairs 

for testing to maximise the potential for identifying primers that comply with the 

requirements for RT-qPCR assays.  

 

At this point in the study, it was decided to include the gene ISG15 amongst the set 

of potential predictive gene transcripts. Transcriptome analysis of peripheral blood 

in human and EBOV-infected NHP have shown that interferon-stimulated genes 

(ISGs) are strongly upregulated in the early stage of infection (Caballero et al., 2016; 

Liu et al., 2017). From these genes, a high expression of ISG15 was observed in EBOV-

infected NHP and distinguished between survivors and anticoagulant-treated NHP 

that did not survive EBOV infection, with lower expression values in survivors 

(Caballero et al., 2016; Garamszegi et al., 2014). Likewise, a greater abundance of 

ISGs transcripts was observed in acute-fatal compared to acute-survivor patients 

from Guinea (Liu et al., 2017).  Thus, it was felt that this would be appropriate to test 

in our study. 

 

3.9.1 Construction of new plasmids 
 
 A sequence of approximately 1 kb was selected for the gene transcripts: VCAM1, 

TUBG1, MS4A4A, TTC28, HOPX, TGFBI, and SLC25A5 to be inserted into a plasmid 

vector. The new plasmid constructs were synthesised by GeneArt Gene Synthesis 

(https://www.thermofisher.com/order/geneartgenes/projectmgmt). From the 
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available vectors in GeneArt Gene Synthesis, the expression vector pcDNA3.1(+), 

which contains the T7 promoter, was selected (see Figure 2.1).  

 

3.9.2 Generation of new in-vitro RNA standards 
 

To be able to generate in-vitro RNA transcripts the new circular plasmids were 

linearized with NotI, which is downstream of the gene insert (Figure 3.6). Linear DNA 

was then transcribed with T7 RNA polymerase in the presence of rNTPs until the 

polymerase falls off at the end of the template. Long RNA transcripts were 

synthesized for the genes, more than 1Kb length for VCAM1, HOPX, TUBG1, PLPP3, 

MS4A4A, TGFBI, TTC28 and SLC25A and 727 bases for ISG15.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 Schematic representation of the generation of new in-vitro transcripts. 
The upper panel shows a circular plasmid with the insert of interest (VCAM1 
sequence) cloned between a T7 promoter and a unique restriction site. The plasmid is 
linearized with NotI and transcribed from the promoter to yield multiple RNA 
transcripts terminated by “running-off” the template. The T7 promoter covers a 
sequence that range from -17 to + 6 and +1 is the first nucleotide incorporated into 
the transcription product. Lower panel shows graphs representing the transcribed 
sequence of each gene. Figure adapted from Beckert and Masquida (2011).  
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The in-vitro transcripts were first treated with DNase to remove plasmid DNA. To 

analyse the size and integrity of the cRNA, samples were resolved in a native/non-

denaturing agarose gel, as described in Chapter 2. No DNA bands were observed in 

all cRNA standards, and only a single band was observed corresponding to the 

expected size of the transcript (Figure 3.7). The slight smeared appearance may be 

attributed to specific sized incomplete transcripts. The concentration of the cRNA 

standards and the copy number, calculated using the formula previously described, 

are shown in Table 3.4. 

 

 

 

 
 

 
 

 
Figure 3.7  Agarose gel analysis of in-vitro transcripts generated from pcDNA3.1(+) 
constructs containing the large gene fragments. The gel shows the new long RNA 
transcripts generated for ISG15, VCAM1, HOPX, TUBG1, PLPP3, MS4A4A, TGFBI, 
TTC28 and SLC25A. The RNA ladder and cRNA standards were denatured and loaded 
in a 1% native/non-denaturing agarose gel and visualized by staining with SYBR safe 
gel stain. Numbers above the RNA bands are the expected sizes (bases).  
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        Table 3.4 Quantification of the new in-vitro RNA standards 

Gene 

Length 
of 

cRNA 
(bases) 

cRNA concentration 
ng/µL 

OD 
260/280 

OD 
260/230 

Quantification 
of cRNA 
standard 

N (molecules 
per µL) 

ISG15 727 994.9 2.16 2.05 3 x 1012 N 
VCAM1 1049 1191.45 2.26 2.24 21 x 1011 N 
HOPX 1053 1248.4 2.31 2.37 21 x 1011 N 

TUBG1 1049 1150.15 2.12 2.01 21 x 1011 N 
PLPP3 1049 1347.95 2.23 2.28 23 x 1011 N 

MS4A4A 1090 1147.75 2.30 1.61 18 x 1011 N 
TGFBI 1049 1315.05 2.20 1.63 23 x 1011 N 
TTC28 1049 1197.1 2.18 2.15 21 x 1011 N 

SLC25A5 1084 1149.7 2.28 2.01 19 x 1011 N 
 
 
 
3.9.3 Re-design of primer sets for the RT-qPCR assays 
 
For the new in-vitro transcripts, new primer sets were designed using 

RealTimeDesign™ software (Biosearch Technologies, Novato, USA). The aim was that 

primers could detect alternative transcripts and splicing variants of the target genes 

to avoid missing any gene expression. At least 3 primer sets were designed for each 

candidate predictive gene transcripts. All primer sets were evaluated by RT-qPCR 

using the in-vitro RNA transcripts. The primer sets that had a PCR efficiency lower 

than 90% and a correlation coefficient that was not within the acceptable range 

between 0.99 and 0.999, were not considered for further procedures (Table 3.5). 

Only the primer sets that showed an optimal assay efficiency (> 90%) and correlation 

coefficient were chosen for further use. These selected primer sets are listed in Table 

3.6 and the target location of these primers is shown in Figure 3.8. The selected 

primers sets for VCAM1, HOPX, MS4A4A, SLC25A5 and ISG15 span within the same 

exon. Forward primers for TUBG1, TTC28 and TGFBI crosses an intron-exon 

boundary. Forward and reverse primers for PLPP3, CTSL and NF3L1 are located in 

different exons.  
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Table 3.5 New primer sets designed that had poor performance 

 

 

 

Gene Sequence 
5’- 3’ Slope r2 

value 

PCR 
Efficiency 

(E) 
Location 

VCAM1_a For: GCTCAGATTGGAGACTCAGTCA 
Rev: AGAGGGCTGTCTATCTGGGTTCTC -3.730 1.000 85.4% Within 

exon 5 

VCAM1_b For: TTTGACAGGCTGGAGATAGACT 
Rev: TCAATGTGTAATTTAGCTCGGCA -3.703 0.999 86.2% Within 

exon 3 

VCAM1_c For: CAGTAAGGCAGGCTGTAAAAGA 
Rev: TGGAGCTGGTAGACCCTCG -3.630 0.998 88.6% exon 3, 

exon 4 

VCAM1_d For: TGGGAAGCCGATCACAGTCAAG 
Rev: TCTATCTCCAGCCTGTCAAATGGG -3.578 1.000 90.3% Within 

exon 3 

VCAM1_g For: GGTGACTCCGTCTCATTGACT 
Rev: CAGAGGGCCACTCAAATGAATC -3.897 1000 80.6% Exon2,exon 

3 

HOPX_b For: GACAAGCACCCGGATTCCA 
Rev: GTCTGTGACGGATCTGCACTC -4.018 0.999 77.4% Exon 3, 

exon 4 

HOPX_c For: AGTGGCGGCGCTCAGAAG 
Rev: TGCCTGCCATCTCCTTAGTC -3.816 0.999 82.8% Within 

exon 4 

HOPX_e For: GGCAGGCATTGACAGCTTC 
Rev: AGCAGGACAGCTAGCAATGGAA -3.730 0.999 85.4% Within 

exon 4 

HOPX_i For: TCCCAGTAGCAATTTGCTTTCATA 
Rev: GTGTTCCCTTCTCCCTCATATTATC -3.794 0.999 83.5% Within 

exon 4 

TUBG1_a For: CCCAACCAGGACGAGATGA 
Rev: CTGCGTCAGCCTCTTGAGT -3.911 0.996 80.2% Within 

exon 6 

TUBG1_b For: AGCTGGTGTCTACCATCATGT 
Rev: CGTAGTGAGAGGGGTGTAGC -3.755 0.998 84.6% Exon7/8, 

exon 8 

MS4A4A_a For: TGTGGAAAGGATTGCAAGAGAAG 
Rev: TCCCATGCTAAGGCTCATCAG -3.739 0.999 85.1% Exon 2, 

exon 3 

MS4A4A_b For: ACCATGCAAGGAATGGAACAG 
Rev: TTCCCATGCTAAGGCTCATCA -4.007 1.000 77.7% Exon 2, 

exon 3 

MS4A4A_d For: TGCTCTGTTGTACCCCTGGT 
Rev: AAACCTCATTAAGTGGTGTGGG -3.657 0.998 87.7% Exon 6, 

exon 7 

MS4A4A_e For:GGTCCGAGGTAGTCTAGGAATGAAT 
Rev: CGCCAAGCTAAATGTGTTGATTAAG -3.708 1.000 86.1% Exon 4/5, 

exon 5 

MS4A4A_f For: CAGCATCTCCCACACCACTT 
Rev: TCTGGAGCATTTGTCTGTTGA -3.630 0.998 88.6% Within 

exon 7 

TGFBI_b For: GAAGGGAGACAATCGCTTTAGC 
Rev: TGTAGACTCCTTCCCGGTTGAG -3.700 0.998 86.3% Exon 12, 

exon 13 

TGFBI_c For: TGGGAGATGCCAAGGAACT 
Rev: GCCTCCGCTAACCAGGAT -3.644 0.999 88.1% Exon 13, 

exon14 

TGFBI_d For: GTCCATGTCATCACCAATG 
Rev: CTCCTGTAGTGCTTCAAG -4.026 0.999 77.2% Exon 15, 

exon 17 

SLC25A5_b For: AGTTTTGGCTCTACTTTGCAGG 
Rev: GGCCCTTAATCCCATCAGATTTG -3.840 0.998 82.1% Within 

exon 2 

SLC25A5_d For: GTGTCTGTGCAGGGTATTATCATC 
Rev: GGATCCGGAAGCATTCCCTTTG -3.658 0.999 87.7% Within 

exon 2 

ISG15_a For: GAGAGGCAGCGAACTCATC 
Rev: CAGGGACACCTGGAATTCGTT -3.690 0.998 86.6% Exon 1, 

exon 2 

ISG15_c For: GACGACCTGTTCTGGCTGAC 
Rev:  CGCAGGCGCAGATTCATG -3.659 0.999 87.6% Within 

exon 2 
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Figure 3.8 Location of the new primer sets. The figure shows the location of the new primer sets designed for different gene transcripts that 
demonstrated a good PCR efficiency. The known RefSeq-annotated transcript and splice variants of each gene are identified by accession number 
(text in blue). The green boxes represent the exons, the lighter green regions are UTRs, and dark green areas are the coding regions. The connecting 
lines are the introns. The light blue vertical lines show the target locations of the RT-qPCR primers. Primer 1 is the label for primer forward and 
Primer 2 the label for primer reverse. The figure was created using the tool Primer-check from SpliceCenter (Ryan et al., 2008). 
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Table 3.6 Final list of primer sets for the 11 candidate predictive gene transcripts 

*Primers sets designed for NF3L1 and CTSL remained from the previous list since they 
showed a high PCR efficiency.  

Gene 
NCBI 

Accession number 

Sequences 

5’- 3’ 

Amplicon 

length 

(bp) 

Nucleotide 

position 

VCAM1 NM_001199834.1 
For: CCCGGATTGCTGCTCAGAT 

61 997-1057 
Rev: TCACAGCCCATGACACTACA 

HOPX NM_032495.5 
For: CTCAGAGTGCAGATCCGTCA 

88 784-871 
Rev: GCGGAGGAGAGAAACAGAGA 

TUBG1 NM_001070.4 
For: GAACGGCTGAATGACAGGTATC 

87 861-947 
Rev: GACCACCACATCGCTCATCTC 

PLPP3 NM_003713.4 
For: GGCAGGATTTGCTCAAGGA 

86 1339-1424 
Rev: GGGAGAGCGTCGTCTTAGTCT 

MS4A4A NM_148975.2 
For: TGAGCCTTAGCATGGGAATAACA 

80 362-441 
Rev: CCCGATATACACGGAAATAGGGT 

TGFBI NM_000358.2 
For: ACGGAGCAGACTCTTGGGAGATG 

84 1823-1906 
Rev: CCTCCGCTAACCAGGATTTCATC 

TTC28 NM_001145418.1 
For: TCCTGGCAGCTCTAGGTTT 

90 5835-5924 
Rev: GCACAGTCCGTCGATTAGC 

NF3L1* NM_001136039.2 
For: ACACCCAAGACCTGGACAAA 

145 615-759 
Rev: TCTACCACCTGCATCAAAGCC 

SLC25A5 NM_001152.4 
For: TGATGGGATTAAGGGCCTGTA 

76 617-692 
Rev: GAAGTAGGCGGCTCGGTAG 

CTSL* NM_001257973.1 
For: CTGGTGGTTGGCTACGGATT 

122 610-731 
Rev: CTCCGGTCTTTGGCCATCTT 

ISG15 NM_005101.3 
For: GGCAACGAATTCCAGGTGTC 

80 141-220 
Rev: ACGCCGATCTTCTGGGTGATC 
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3.9.4 Performance evaluation of the new primer pairs in RT-qPCR assays 
 
3.9.4.1 PCR efficiency and linearity 
 
The linearity of the new assays, which is the dynamic range over which a reaction is 

linear, was established by amplifying three technical replicates and 5 logs of template 

concentration. To evaluate the linearity, the correlation coefficient (r2) value was 

evaluated. As shown in Table 3.7, the r2 was greater than 0.99 in the assays for all 

primer pairs, suggesting a good confidence correlating the Ct value and the logarithm 

of the standard RNA copy number. The PCR efficiencies were also calculated and are 

shown in Figure 3.9. The results show an overall high PCR efficiency for all genes (> 

90.0%) with the exception of HOPX. PCR efficiency for HOPX was 86.7%.  Again, with 

the exception of HOPX, the slope of the standard curves were in the acceptable 

range, between -3.3 to -3.6. The primers sets for HOPX were kept despite the low 

efficiency to proceed to the next steps that includes the evaluation of the optimized 

RT-qPCRs in human samples.  

 

Table 3.7 Performance evaluation of the new optimized RT-qPCR assays 

Gene 

Length of 

cRNA 

(b) 

qRT-PCR 

product size 

(bp) 

Slope r2 value 
PCR Efficiency 

(E) 

VCAM1 1049 61 -3.367 0.999 98.2% 

HOPX 1053 88 -3.689 0.999 86.7% 

TUBG1 1049 87 -3.421 0.999 96.0% 

PLPP3 1049 86 -3.387 1.00 97.3% 

MS4A4A 1090 80 -3.586 0.999 90.1% 

TGFBI 1049 84 -3.390 0.999 97.2% 

TTC28 1049 90 -3.366 0.999 98.2% 

SLC25A5 1084 76 -3.531 0.998 92.0% 

ISG15 727 80 -3.428 0.998 95.8% 

 
 
 



 92 

 
 

 
 
 
 
 
 
VCAM1 
 
 
 
 
 
 
 
 
 
 
HOPX 
 
 
 
 
 
 
 
 
 
 



 93 

 
 
 
 
 
 
TUBG1 
 
 
 
 
 
 
 
 
 
 
 
 
PLPP3 
 
 
 
 
 
 
 
 
 
 



 94 

 
 
 
 
 
MS4A4A  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
TGFBI 
 
 
 
 
 
 
 
 



 95 

 
 
 
 
 
 
TTC28  
 
 
 
 
 
 
 
 
 
 
 
 
 
SLC25A5 
 
 
 
 
 
 
 
 
 



 96 

 
 
 
 
 
 
 
ISG15  
 
 
 
 
 
 
 
 

Figure 3.9 Linearity and PCR efficiency of the new optimized assays. Left panels show the amplification chart of the five cRNA standards for each 
gene, with dilutions ranging from 103 to 107 or 104 to 108 copies/µl and tested in triplicate. Right panels show the standard curves created with 
these dilutions. The mean Cq values are plotted against the log of concentration of the target gene copies/reaction. The PCR efficiency for each 
target was calculated using the slope of the calibration curve with the formula E = 10−1/slope−1.  E = PCR efficiency, R2 = correlation coefficient. 
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3.10 Specificity of the optimized RT-qPCR assays for the 11 gene transcripts  
 
The specificity of the assays was evaluated by melt curve analysis, which can detect 

non-sequence specific products that may have co-amplified and produce melt curves 

with a different melting temperature. The melt curve analysis of the optimized RT-

qPCR assays for the 11 genes detected single peaks, and no non-specific products or 

primer dimers were observed (Figure 3.10). Thus, indicating the amplification of 

specific amplicons. 
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Figure 3.10 Melting curve analysis of all the optimized RT-qPCR assays. The figures 
show the melting peaks of the RT-qPCR products obtained from the cRNA dilutions 
used to construct the standard curve. A single peak is visible for all primer pairs and 
genes tested. 
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3.11 Analytical sensitivity (Limit of detection) of the optimized RT-qPCR assay  
 

The Limit of Detection (LOD) was only determined for the VCAM1 assay as a 

representation of the set of 11 genes that had the same RT-qPCR conditions. This was 

done by testing the diluted in-vitro transcripts from 108 to 100 in duplicate by RT-

qPCR. The minimum detection limit of the RT-qPCR assay was 10 RNA copies/µl, the 

100 dilution did not amplify, and no band was observed in the 100 dilution when the 

PCR products were analysed by agarose gel electrophoresis (Figure 3.11). 

 

A) 
 
 
 
 
 
 
 
 
 
 
 
B) 
 

 
 

Figure 3.11 Sensitivity of the SYBR Green RT-qPCR assay for VCAM1 transcript. A) 
Chart showing the serial dilutions of VCAM1 cRNA ranging from 108 to 100 copies/µl 
amplified by RT-qPCR. The lowest dilution that amplified was 10 copies. Negative 
control (no template added) is shown in light blue and did not amplified. B) Agarose 
gel analysis of the RT-qPCR products; the lowest dilution detected was 10 copies. 
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3.12 Precision of the optimized RT-qPCR assays for the 11 gene transcripts 
 
The precision parameter was evaluated in two ways: intra-assay variation and inter-

assay variation. The intra-assay variability was assessed by analysing the Ct values 

obtained from 3 replicates at each standard dilution run in the same plate. Good 

repeatability of the optimized assay was observed since low levels of coefficient of 

variation (CV) were obtained at every RNA concentration in the standard curves 

(highest CV was 4.03% and standard deviation was 0.44) (Table 3.8). Likewise, the 

inter-assay variability was evaluated from the Ct values obtained in three different 

runs, thereby in different plates. The highest CV obtained was 11.70% and standard 

deviation of 1.15 (Table 3.9).  

 

Table 3.8 Intra-assay variability of the optimized singleplex RT-qPCRs for the 11 
gene transcripts 

 

RT_qPCR 
assay 

 Copy number of cRNA standards 

 1.00E+08 1.00E+07 1.00E+06 1.00E+05 1.00E+04 1.00E+03 

VCAM1 
Ct values 
mean±SD 

ND† 16.17±0.25 19.38±0.08 23.04±0.01 26.36±0.11 29.52±0.02 

CV* ND 1.55% 0.40% 0.03% 0.41% 0.06% 

HOPX 
Ct values 
mean±SD 12.23±0.06 15.79±0.03 19.56±0.07 23.00±0.13 27.07±0.14 ND 

CV 0.46% 0.22% 0.35% 0.56% 0.52% ND 

TUBG1 
Ct values  
mean±SD 

ND 13.11±0.02 16.51±0.11 19.87±0.04 23.32±0.09 26.81±0.29 

CV ND 0.16% 0.68% 0.20% 0.37% 1.09% 

PLPP3 
Ct values 
mean±SD 

ND 11.4±0.04 14.97±0.08 18.3±0.02 21.58±0.04 25.03±0.06 

CV ND 0.35% 0.54% 0.08% 0.19% 0.22% 

MS4A4A 
Ct values 
mean±SD ND 11.28±0.08 14.93±0.17 18.37±0.05 22.11±0.08 25.62±0.17 

CV ND 0.71% 1.17% 0.27% 0.37% 0.65% 

TGFBI 
Ct values 
mean±SD 10.87±0.21 14.18±0.04 17.90±0.13 21.04±0.02 24.39±0.10 ND 

CV 1.93% 0.25% 0.72% 0.10% 0.42% ND 

TTC28 
Ct values 
mean±SD 10.14±0.09 13.26±0.05 16.68±0.09 20.11±0.01 23.55±0.11 ND 

CV 0.89% 0.35% 0.55% 0.09% 0.46% ND 

NF3L1 Ct values  
mean±SD 15.61±0.25 18.88±0.06 22.57±0.45 25.72±0.15 29.51±0.06 ND 
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CV 1.61% 0.34% 1.98% 0.59% 0.19% ND 

SLC25A5 
Ct values  
mean±SD ND 12.48±0.08 16.1±0.08 19.51±0.05 23.54±0.07 26.41±0.03 

CV ND 0.61% 0.47% 0.25% 0.31% 0.11% 

CTSL 
Ct values  
mean±SD 

ND 12.21±0.06 15.85±0.14 19.19±0.09 22.40±0.11 26.32±0.17 

CV ND 0.51% 0.86% 0.48% 0.47% 0.64% 

ISG15 
Ct values  
mean±SD 

10.82± 
0.44 

14.02±0.06 17.70±0.18 20.91±0.04 24.51±0.09 ND 

CV 4.03% 0.46% 1.03% 0.18% 0.36% ND 

*CV = Coefficient of variation, †ND = not detected 

 

Table 3.9 Inter-assay variability of the optimized singleplex RT-qPCRs for the 11 
gene transcripts 

  
RT_qPCR 

assay 

  Copy number of cRNA standards 

  1.00E+08 1.00E+07 1.00E+06 1.00E+05 1.00E+04 1.00E+03 

VCAM1 
  

Ct values  
mean±SD   ND† 16.14±0.37  19.29±0.19 22.81±0.23 26.30±0.05 29.59±0.34 

 
CV ND 2.30% 0.98% 1.00% 0.20% 1.15%  

HOPX 
  

Ct values  
mean±SD 

12.36±0.18 16.11±0.45 19.51±0.07 23.04±0.06 27.12±0.07 ND 
 

 
CV 1.43% 2.77% 0.36% 0.25% 0.26% ND  

TUBG1 
  

Ct values  
mean±SD ND 13.27±0.20 16.72±0.30 20.18±0.32 23.63±0.36 27.05±0.21 

 

 
CV ND 1.48% 1.81% 1.59% 1.54% 0.76%  

PLPP3 
  

Ct values  
mean±SD ND 11.62±0.70 14.98±0.70 18.43±0.70 21.78±0.62 25.49±0.82 

 

 
CV ND 6.04% 4.64% 3.80% 2.89% 3.22%  

MS4A4A 
  

Ct values  
mean±SD 

ND 12.00±0.01 15.93±0.26 19.70±0.12 23.29±0.10 26.97±0.28 
 

 
CV ND 0.10% 1.61% 0.58% 0.43% 1.05%  

TGFBI 
  

Ct values  
mean±SD 10.11±0.89 13.67±0.58 17.26±0.65 20.68±0.52 24.22±0.42 ND 

 

 
CV 8.75% 4.25% 3.77% 2.50% 1.71% ND  

TTC28 
  

Ct values  
mean±SD 9.79±1.15 13.34±0.51 16.81±0.50 20.41±0.44 23.76±0.52 ND 

 

 
CV 11.70% 3.82% 2.99% 2.18% 2.20% ND  

NF3L1 
  

Ct values  
mean±SD 

15.77±0.45 19.17±0.42 22.71±0.48 26.20±0.47 29.70±0.33 ND 
 

 
CV 2.87% 2.18% 2.11% 1.80% 1.13% ND  

SLC25A5 
  

Ct values  
mean±SD ND 11.74±0.65 15.35±0.72 18.71±0.69 22.54±0.88 25.65±0.67 

 

 
CV ND 5.55% 4.68% 3.69% 3.89% 2.63%  
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CTSL 
  

Ct values  
mean±SD 

ND 12.01±0.30 15.49±0.34 19.03±0.23 22.34±0.17 26.07±0.27 
 

 
CV ND 2.53% 2.20% 1.19% 0.77% 1.04%  

ISG15 
  

Ct values  
mean±SD 

10.64±0.16 14.00±0.16 17.59±0.20 20.98±0.25 24.54±0.19 ND 
 

 
CV 1.51% 1.11% 1.13% 1.20% 0.78% ND  

CV = Coefficient of variation, †ND = not detected 

 

3.13 Performance evaluation of all the optimized assays in control samples 
 
Blood samples from five healthy donors were obtained to evaluate the performance 

of the RT-qPCR assays using RNA derived from samples using a similar methodology 

as was used in the field to collect RNA from EVD patients. Thus, RNA was extracted 

directly from whole blood using a spin-column procedure and the transcript 

abundance of the 11 genes measured by RT-qPCR using the primer and conditions 

defined in section 2.10. The samples from each of the five donors was tested in 

triplicate and the RNA copy number for each gene was obtained from the 

extrapolation of the Ct into the standard curve (Figure 3.12). In all the assays, the 

amplification curves for the in-vitro transcript dilutions were tight, indicating a 

minimum sample to sample variation in all the assays. Likewise, the data obtained 

for each replicate of the control samples was consistent. The variation of the Ct 

values was less than 1 cycle in both in-vitro transcripts dilutions and control samples. 

The PCR efficiency was high (> 90%) in the RT-qPCR assays for VCAM1, TUBG1, PLPP3, 

TGFBI, TTC28, NF3L1, SLC25A5, CTSL and ISG15 with slopes within the acceptable 

range of -3.2 to -3.5. This is consistent with previous results shown in Table 3.7 and 

Table 3.3 for NF3L1 and CTSL. The PCR efficiency for HOPX was 89.5 % and for 

MS4A4A was 88.6% with slopes of -3.6. This PCR efficiency does not differ much from 

previous results where PCR efficiency for HOPX was 86.7% and for MS4A4A was 

90.1% (shown in Table 3.7). This difference can be attributed to the slight variation 

between Ct values in some in-vitro transcripts and control samples, however still less 

than 1 cycle. A good correlation coefficient (> 0.99) was obtained in the RT-qPCR 

assays for all the gene transcripts. 
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Figure 3.12 Determining the transcript abundance of the 11 genes in control samples by RT-qPCR. RNA extracted from whole blood of 5 healthy 
donors was used as a template in each PCR reaction. Left panel shows the amplification chart of the RT-qPCR assays, in each run the in-vitro 
standards were tested in triplicate (black curves), control samples (green curves) and negative controls (no template added) were tested in 
duplicate. The right panel shows the standard curve used to determine the transcript abundance of each gene in the control samples by the 
extrapolation of the Cq values. The circles represent in-vitro RNA standards, and X represent the control samples. E= PCR efficiency, R2 = correlation 
coefficient.  
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The mean copy number and Ct value from each gene transcript was obtained from 

calculating the mean of the five donors. The highest transcript abundance was found 

in HOPX (466291 copies/µl, Ct = 21.01) and the lowest transcript abundance was 

found in PLPP3 (329.7 copies/µl, Ct = 28.04). The mean copy number and Ct values 

for all the genes transcripts are shown in Table 3.10. The mean copy number for each 

gene transcript is also summarized in Figure 3.13. 

 
Table 3.10 Mean RNA copy number and Ct value of the predictive genes in control 
samples 

Gene Mean RNA copy number Mean Ct value 
VCAM1 234697 (95% CI: 110728 - 358666) 21.60 (95% CI: 20.76 - 22.44) 

HOPX 466291 (95% CI: 239224 - 693357) 21.01 (95% CI: 20.28 – 21-73) 

TUBG1 2773 (95% CI: 2075 - 3471) 26.52 (95% CI: 26.10 – 26.93) 

PLPP3 329.7 (95% CI: 181.6 – 477.8) 28.04 (95% CI: 27.13 – 28.95) 

MS4A4A 24236 (95% CI: 12139 – 36333) 21.93 (95% CI: 21.04 – 22.81) 

TGFBI 142969 (95% CI: 86216 – 199722) 20.44 (95% CI: 19.74 – 21.15) 

TTC28 601.1 (95% CI: 318.1 – 884.1) 28.59 (95% CI: 27.90 – 29.28) 

NF3L1 76297 (95% CI: 46530 – 106065) 22.99 (95% CI: 22.21 – 23.78) 

SLC25A5 151556 (95% CI: 103843 – 199269) 17.91 (95% CI: 17.41 – 18.40) 

CTSL 11012 (95% CI: 8250 – 13774) 22.45 ( 95% CI: 22.04 – 22.85) 

ISG15 75409 (95% CI: 49904 – 100914) 21.30 (95% CI: 20.80 – 21.80) 

 

 

Figure 3.13 Transcript abundance of the 11 candidate predictive genes in control 
samples. The figure shows the transcript abundance of each gene detected by RT-
qPCR in 5 healthy donors. A green dot represents an individual, and bars show the 
mean, and the 95% confidence interval. 
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3.14 Performance evaluation of the optimized assays in clinical samples (pilot 
study) 
 

The next step was to apply and test these primers sets using RNA derived from clinical 

samples from EVD patients. We used leftover samples collected by the EMLab 

deployed in Guinea that were currently available in the lab, therefore there was not 

enough RNA sample to analyse all genes. Only VCAM1 was analysed in these samples. 

A total of fifteen clinical samples (9 survivors, and 6 fatal cases) were tested in 

duplicate to evaluate the performance of the optimized VCAM1 RT-qPCR assay and 

are listed in Table 3.11. 

 

Table 3.11 Details of the clinical samples used for the pilot study 

 
Sample ID EBOV Ct value Outcome RNA concentration (ng/μl) 

EM_0596 13.71 fatal 30.4 

EM_080094 14.14 fatal 7.34 

EM_080103 14.22 fatal 4.40 

EM_075288 14.32 fatal 5.66 

EM_076636 14.42 fatal 18.7 

EM_080073 14.46 fatal 4.20 

EM_076821 23.96 survivor 19.00 

EM_076807 23.05 survivor 5.40 

EM_076778 24.89 survivor 7.60 

EM_076777 23.01 survivor 9.28 

EM_075882 23.84 survivor 11.40 

EM_075872 21.69 survivor 6.94 

EM_075909 20.72 survivor 4.32 

EM_075898 22.01 survivor 4.80 

EM_076603 24.64 survivor 10.5 
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Figure 3.14 shows the transcript abundance of VCAM1 obtained from testing the 

clinical samples by RT-qPCR and is compared to the RNA copy number obtained from 

control samples in the previous section. From this data, we can see that fatal cases 

have a tendency to have higher transcript abundance of VCAM1 compared to 

survivors and non-infected individuals. There was a significant difference in the 

VCAM1 transcript copy number between controls and fatal cases (p = 0.0173) but not 

between controls and survivors (p = 0.1898) nor survivors and fatal cases (p = 0.4559). 

The mean RNA copy number calculated from the five control samples was 234697 

(95% CI: 110728-358666) copies/µl and mean Ct value was 21.60. The mean RNA 

copy number calculated from all survivors was 408703 (95% CI: 259066-558339) 

copies/µl with a mean Ct value of 21.42 (95% CI: 20.73 – 22.10), and from all fatal 

cases the mean RNA copy number was 503675 (95% CI: 343586-663764) copies/µl 

with a mean Ct value of 20.95 (95% CI: 20.42- 21.48).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14 Evaluation of the optimized RT-qPCR assay for VCAM1 transcript in 
clinical samples. The transcript abundance of VCAM1 was measured by RT-qPCR and 
compared between three groups of subjects: controls (green dots, n = 5), EVD 
survivors (blue dots, n= 9) and EVD fatalities (orange dots, n = 6).  The bars show the 
mean Ct value and the 95% confidence interval. The differences in the transcript 
abundance between the groups were evaluated via the non-parametric Mann-
Whitney U test.
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3.15 Discussion 
 
This chapter has described the development and optimization of RT-qPCR assays for 

quantifying the transcript abundance of 11 potential EVD prognostic markers 

(VCAM1, HOPX, TUBG1, PLPP3, MS4A4A, TGFBI, TTC28, NF3L1, SLC25A5, CTSL and 

ISG15). The absolute quantification was the method used for determining the 

transcript abundance of each gene. For this, a standard curve was constructed with 

serially diluted in-vitro RNA standards of known concentration. Thus, the 

concentration of unknown samples (healthy donors or EVD acute patients) could be 

determined by the interpolation of its Cq into the standard curve.  

 

Although most of the first primers sets (except NF3L1 and CTSL) designed for the RT-

qPCR assays did not show a good PCR efficiency, the latter designed primer sets 

showed a better performance. Thus, all the optimized assays developed in this study 

showed to be a sensitive method since most assays had an efficiency near 100%. The 

high PCR efficiency of these assays suggest that the Cq values are representative of 

the target concentration. Likewise, the assays demonstrated to have a good 

repeatability, since most CV values were less than 10% which is the recommended 

value for RNA measurements (Kralik & Ricchi, 2017; Sanders et al., 2014). 

 

VCAM1, ISG15, MS4A4A, TGFBI, PLPP3, HOPX and CTSL have been proposed as a 

prognosis marker of different types of cancer (Chen et al., 2016; Huang et al., 2013; 

Lin et al., 2017; Pan et al., 2020; Ruan et al., 2014; Vishwakarma et al., 2017; Zhu et 

al., 2015). However, none of the 11 genes of this study has been reported before as 

a prognostic marker for EVD. Notwithstanding, some of these genes have been 

associated to severity of other human infectious diseases. For instance, increased 

levels of VCAM1 were found in SARS-CoV-2, HIV, and Hepatitis C viral infection but 

also associated with disease severity in SARS-CoV-2 infection (Kukla et al., 2009; 

Melendez et al., 2008; Tong et al., 2020). Soluble VCAM1 (sVCAM1) is also increased 

in Dengue virus infection (Koraka et al., 2004). A study of EVD patients from the West 

African outbreak found increased levels of sVCAM1 in fatal cases and/or decreased 

levels in survivors (Kerber et al., 2018). In contrast, other study only found increased 
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levels of sICAM but normal levels of sVCAM1 in a small cohort of EVD patients that 

were evacuated to the USA (McElroy et al., 2016).  

 

ISG15 has been suggested as a potential prognostic marker of Respiratory Syncytial 

viral infection since it was found upregulated in acutely ill patients and correlated 

with viral load (Do et al., 2017). In EBOV studies, ISG15 and other Interferon-

stimulated genes were strongly upregulated over the course of the disease in NHP 

infected with EBOV, Lassa, and Marburg virus (Caballero et al., 2016; Greenberg et 

al., 2020). In-vitro EBOV studies showed that ISG15 inhibits the viral replication by 

conjugation (ISGylation) of the viral proteins affecting the viral replication machinery 

and inhibiting the virus release (Durfee et al., 2010; Okumura et al., 2008). 

 

There is little or no published information about the expression of the other 

candidate predictive genes (MS4A4A, TUBG1, TGFBI, CTSL, PLPP3, TTC28, HOPX, 

NIF3L1, SLC25A5) during viral infections in humans. MS4A4A has been found 

upregulated in infants with acute Respiratory Syncytial viral infection (Fjaerli et al., 

2006). TGFBI was upregulated in NHP infected with Lassa virus  (Malhotra et al., 

2013). CTSL was found indispensable for the entry of EBOV and SARS-CoVs (Zhou et 

al., 2016). 

 

The next chapter examines the transcript abundance of the 11 gene transcripts in a 

larger group of samples from EVD acute patients (survivors and non-survivors) and 

assesses the predictive value of these genes as prognostic markers of the disease 

outcome. 
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Chapter 4  

 

 

 

Determining the predictive value 

of the candidate predictive gene 

transcripts in EVD patients  
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4.1 Introduction 

 
A fast and accurate clinical assessment of disease severity is vital during an outbreak. 

Since early intervention is associated with improved outcome, identifying patients 

that are at imminent risk of serious illness or death would ensure that these patients 

receive immediate medical attention (Liang et al., 2020). Prognostic biomarkers that 

can distinguish the likely clinical outcome of patients would be a useful tool to relieve 

the clinical burden, support clinical management, logistical planning, and potentially 

reduce the mortality rate, especially in resource-poor settings (Yan et al., 2020). Thus, 

for the identification of potential predictive markers of disease severity, machine 

learning approaches have been increasingly used in different viral diseases such as 

Dengue, Influenza, Respiratory syncytial virus infections and the ongoing COVID-19 

pandemic (Davi et al., 2019; Hu et al., 2020; Jong et al., 2016; Liang et al., 2020; Yan 

et al., 2020). 

 

In EBOV, studies have focused on investigating the risk factors associated with EVD 

mortality such as age, sex, clinical symptoms, viral load, and co-infections. These have 

used statistical models and the development of scoring systems (Schieffelin et al., 

2014; Yan et al., 2015; Zhang et al., 2015). Only a few recent studies have applied 

machine learning approaches to identify biomarkers that predict the outcome of EVD 

patients. A previous study from our group identified genes that correlated with 

outcome using classification models such as Support Vector Machine, Random Forest 

and Paired Gene profiling based on the transcriptome data of peripheral blood taken 

from acute-EVD patients (Liu et al., 2017). The predictive accuracies of these models 

were 85%, 89% and 92%, respectively (Liu et al., 2017). Other machine learning 

models combining variables such as viral load, age, body temperature, time to 

presentation, and clinical symptoms (bleeding, dyspnea, dysphagia, jaundice 

asthenia, weakness, and diarrhoea) had predictive accuracies around 74% when the 

models were externally validated against two independent datasets (Colubri et al., 

2019). Thus, there are currently no predictive models for EVD that could be used in 

the field to assist health care workers.  

 



 116 

The machine learning approach follows a design-learn-test process which is the way 

to test an algorithm that can successfully learn to discriminate the clinical outcome 

of the patients (Libbrecht & Noble, 2015). In this chapter, discriminative models were 

built since the study was focused on discriminating survivors and fatal cases using 

predictor variables, and not the interpretation of the relationship between these 

variables as occurs with regression models. This chapter aims to assess the predictive 

value for EVD outcome using the transcript abundance of the candidate predictive 

genes described in Chapter III. First, the transcript abundance of the candidate 

predictive genes, as quantified by singlepex SYBR Green-based RT-qPCRs was 

analysed to determine if there was a difference in abundance of these transcripts 

between survivors and fatal cases. After this, using the predictor variables EBOV Ct 

values and/or abundance of gene transcripts, supervised machine learning 

algorithms were used to train samples from acute EVD patients whose outcome was 

known. To evaluate the performance of the process, the trained models were used 

to predict the outcome of a blinded set of samples from acute EVD patients. 

 
4.2 Results 
 
 
4.2.1 Analysis of a cohort of EVD patients with known outcome 
 

Using 39 clinical samples with known disease outcome (20 survivors and 19 fatal 

cases), collected by the EMLab during the outbreak in Guinea, the transcript 

abundance of VCAM1, ISG15, HOPX, TUBG1, PLPP3, MS4A4A, TGFBI, TTC28, NF3L1, 

SLC25A5, and CTSL was determined using the singleplex RT-qPCRs described in 

Chapter III. Due to the low volume and concentration of some of the samples (shown 

in Appendix Table 1) it was not possible to analyse each transcript abundance for all 

samples. The first two gene transcripts that were tested were VCAM1 and ISG15. 

Priority was given to VCAM1, since the abundance of the VCAM1 transcript was found 

to be significantly different between survivors and fatal cases in a previous 

transcriptomic analysis of peripheral blood from acute EVD patients (Liu et al., 2017). 

Besides, a significant difference in the kinetic expression of soluble VCAM1 was also 

reported between survivors and fatal cases in a cohort of patients from the 2013-
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2016 outbreak in Guinea (Kerber et al., 2018). ISG15 was also given priority since 

showed an early and strong upregulation during the course of EVD (Caballero et al., 

2016; Greenberg et al., 2020).  

 

The clinical samples were tested in duplicate, and 10 ng was used per RT-qPCR. For 

VCAM1, a total of 39 samples (20 survivors and 19 fatal cases) were tested,  ISG15  

and CTSL were tested in 32 samples (15 survivors and 17 fatal cases), TUBG1 was 

tested in 31 samples (14 survivors and 17 fatal cases), MS4A4A was tested in 24 

samples (9 survivors and 15 fatal cases), TTC28 was tested in 16 samples (4 survivors 

and 12 fatal cases), TGFBI was tested in 12 samples (2 survivors and 10 fatal cases), 

PLPP3 was tested in 10 samples (1 survivors and 9 fatal cases), NF3L1 and SLC25A5A 

were tested in 7 samples (1 survivor and 6 fatal cases), and HOPX was tested only in 

4 fatal cases. Control samples (5 healthy donors) were also included in each PCR run 

and tested in duplicate. 

 

The transcript abundance of all genes quantified by RT-qPCRs in the 39 clinical 

samples and the 5 control samples are presented in Appendix Table 2. The 

distribution of the transcript abundance of each gene per individual is shown in 

Figure 4.1. From this data, we can see a similar distribution of each gene transcript 

between control samples. The transcript abundance of VCAM1, ISG15, CTSL, and 

MS4A4 looks higher in EVD patients compared to non-infected individuals. The 

transcript abundance of TGFBI looks lower in EVD survivors and fatal cases compared 

to control samples. To analyse the difference in the transcript abundance of each 

gene between survivors and fatal cases, each gene was evaluated separately. The 

mean transcript abundance of each gene in survivors and fatal cases was calculated 

and were as follow: VCAM1 (78649 vs 230357 RNA copies/µl), ISG15 (41338 vs 54719 

RNA copies/µl), CTSL (3069 vs 2946 RNA copies/µl), TUBG1 (562.2. vs 323.5 RNA 

copies/µl), MS4A4A (3560 vs 14841 RNA copies/µl), TTC28 (92.59 vs 53.85 RNA 

copies/µl), TGFBI (3755 vs 239.1 RNA copies/µl), PLPP3 (33.24 vs 121.5 RNA copies/ 

µl), NF3L1 (4479 vs 2829 RNA copies/µl), SLC25A5 (18252 vs 48713 RNA copies/µl), 

HOPX ( 57574 RNA copies/µl).  
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Figure 4.1 Distribution of the transcript abundance of all the candidate predictive genes in controls and clinical samples. The transcript 

abundance of each of the 11 genes were obtained by RT-qPCRs from 39 EVD patients (20 survivors and 19 fatal cases) and 5 healthy donors. Each 

symbol represents a specific gene transcript. The human samples are numbered. 
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The non-parametric Mann-Whitney U test was used to determine the statistical 

difference in the transcript abundance of each gene between survivor and fatal cases. 

As seen in Figure 4.2 there was a significant difference in the transcript abundance of 

VCAM1 (p < 0.0001), ISG15 (p = 0.0036), MS4A4A (p < 0.0001), TTC28 (p = 0.0077) 

and TGFBI (p = 0.0303) between survivor and fatal groups. The fatal cases had higher 

transcript levels of MS4A4A (4 times more), VCAM1 (3 times more) and ISG15 (2 

times more) compared to survivors. Whereas fatal cases had lower transcript levels 

of TTC28 (2 times less) and TGFBI (16 times less) than survivors. No significant 

differences were found for CTSL and TUBG1. Statistical analysis for PLPP3, NF3L1, 

SLC25A5 and HOPX was not possible since the data was only available from one 

survivor for each gene transcript (due to limiting RNA). These findings suggest that 

VCAM1, ISG15, MS4A4A, and possibly TTC28 and TGFBI (low number of samples 

analysed) may be good predictors of the clinical outcome. 
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Figure 4.2 Transcript abundance of the candidate predictive genes tested by RT-
qPCRs in EVD patients with known outcome. The RNA copy number of the candidate 
gene transcripts in the clinical samples were quantitated by RT-qPCRs using the 
standard curve method. The clinical samples were tested in duplicate and the mean 
RNA copy number per individual was obtained by plotting the mean Ct value obtained 
from both replicates against the standard curve created with in-vitro RNA dilutions of 
known concentration. Each dot represents an individual (blue for survivor, orange for 
fatal). The bars indicate the mean and the standard error of the mean (SEM). The 
differences in the transcript abundance between survivor and fatal cases were 
evaluated via the non-parametric Mann-Whitney U test. 
 
 

The EBOV Ct values and other relevant information about the 39 clinical samples 

were provided by the team in Germany (Bernhard Nocht Institute for Tropical 

Medicine) and is presented in Appendix Table 3. The distribution of the transcript 

abundance of each gene by EBOV Ct values shows a clear separation between 

survivors and fatal cases (Figure 4.3). This was confirmed by the statistical analysis 

that showed a significant difference between survivors and fatal cases (p < 0.0001). 

The mean Ct values in survivors was 28.53 (minimum = 25.18, maximum = 34.57), 

and for fatal cases was 17.43 (minimum = 15.12, maximum = 20.98). This suggested 

that EBOV Ct value was a strong predictor of the clinical outcome as has been 

proposed before (Kerber et al., 2016; Liu et al., 2017). 
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Figure 4.3 Transcript abundance of all the candidate predictive genes and EBOV Ct 
values recorded from 39 EVD patients. The upper panel shows the RNA copy number 
obtained by RT-qPCRs from each of the 11 gene transcripts distributed by EBOV Ct 
values recorded from the 39 EVD patients. Each symbol represents a specific gene 
transcript. The lower panel shows the distribution of the EBOV Ct value by clinical 
outcome. Each dot represents an individual (blue for survivor, orange for fatal). The 
bars indicate the mean and the standard error of the mean (SEM). The differences in 
the EBOV Ct values between survivors and fatal cases were evaluated via the non-
parametric Mann-Whitney U test. 
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4.2.2 Developing machine learning classification models  
 
The previous section showed a significant difference in the transcript abundance of 

VCAM1, ISG15, MS4A4A between survivors and fatal cases, therefore these gene 

transcripts were selected to try to develop a machine learning model. TTC28 and 

TGFBI were not included since these genes were tested in a low number of samples 

(16 and 12 samples, respectively). One gene more, TUBG1, was also included in the 

group of selected gene transcripts because there was more data available for this 

gene (31 samples) similar to VCAM1 (39 samples), ISG15 (32 samples) and MS4A4A 

(24 samples) which was necessary for developing machine learning models.  

 

To develop machine learning models that could classify clinical samples into survivors 

or fatal cases the workflow used is shown in Figure 4.4. This was a binary classification 

model since there were two classes of outcome: survivor and fatal. Models were 

developed in four steps. The first step was pre-processing of the raw data. This step 

involved the selection of meaningful features or attributes for building the model. 

Some machine algorithms also required that the selected attributes are on the same 

scale which was achieved by transformation or normalization of the data. To 

determine whether the machine learning model performs well on the training set but 

also performs well in new data, the entire dataset was split in two: training dataset 

(70%) and testing dataset (30%). The second step involved using the training dataset 

to train and optimize the machine learning model (including model selection, cross-

validation methods, performance metrics and hyperparameter optimization which is 

called “tuning”). The testing dataset was the “unseen data” which was hold until the 

end to evaluate the final model (third step). As a fourth step, the models could be 

used to predict the outcome of a new independent dataset. 
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Figure 4.4 Workflow for building and evaluating the classification models in this 
study. The workflow consisted of four steps: pre-processing of the raw data, learning 
or training of the machine learning algorithms, evaluation of the classification models 
and prediction of the outcome in a new independent dataset. Diagram modified and 
adapted from Raschka and Mirjalili (2017). 
 

4.2.2.1 Pre-processing of the data for building the classification models 
 

For building classification models, the raw data used was the transcript abundance 

of VCAM1, ISG15, MS4A4A and TUBG1 obtained by RT-qPCRs from the cohort of 39 

EVD patients with known outcome (section 4.2.1). After the removal of samples with 

missing values on any of the four gene transcripts, only the data from 24 patients (9 

survivors and 15 fatal cases) was used for building the classification models. 

 

To train the most accurate possible classifier only attributes that would contribute 

most to the accuracy of the model were selected.  Thus, the attributes VCAM1, ISG15, 

MS4A4A and TUBG1 were evaluated using the Boruta algorithm, which is a feature 

selection algorithm that works as a wrapper built around a random forest (Kursa & 

Rudnicki, 2010). This means that the attributes compete with a randomized version 
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of them or called “shadow attributes”. Then, the importance of each original 

attribute is extracted from the random forest model and only attributes that are 

above a given threshold of importance are kept. The measure of importance is known 

as the Z score and the threshold is defined as the highest attribute importance 

recorded among the shadow attributes. From Figure 4.5, the Boruta analysis 

identified VCAM1, ISG15, MS4A4A and TUBG1 as relevant variables for the 

classification of the clinical outcome. This is because the Z scores in these variables 

were higher than the scores obtained from the random variables the algorithm 

created (“shadows attributes” of all the attributes tested: VCAM1, ISG15, MS4A4A 

and TUBG1).  

 
Figure 4.5  Boruta result plot for the selected candidate predictive gene transcripts 
in 24 EVD patients with known outcome. The Boruta algorithm adds randomness to 
the data by creating shuffled copies (“shadows attributes”) of all the attributes 
(VCAM1, ISG15, MS4A4A and TUBG1), and runs a random forest classifier on the 
extended data to compute Z scores. It finds the maximum Z score among shadow 
attributes (MZSA) and assign a hit to every attribute that scored better than MZSA. 
At every iteration, checks whether an attribute has a higher Z score than the MZSA 
and consider them as “important” or as “unimportant” if the Z score is lower than 
MZSA, and removes them permanently. The algorithm stops after a limit of 500 
random forest runs. The y-axis shows importance in terms of Z-scores. Blue boxplots 
correspond to minimal, average and maximum Z score of a shadow attribute. Green 
boxplots represent Z scores of the confirmed important attributes. Box plot features 
are as follows: circles are outliers, dashed-lines “whiskers” are 1.5 times the 
interquartile range, rectangle is the first and third quartiles, and horizontal bar is the 
median. 
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To visualize the distribution of the data from the 24 patients with known outcome 

and detect the presence of outliers and the relationship between the attributes (gene 

transcripts) a scatterplot matrix was created (Figure 4.6). The histograms showed 

that ISG15 was normally distributed, TUBG1 had a positive skewed distribution and 

MS4A4A and VCAM1 were not normally distributed.  

 

Although the four candidate predictive gene transcripts were considered relevant 

attributes for classification of the outcome in the Boruta analysis, it did not rule out 

the possibility that some of them may be correlated  variables (Kursa & Rudnicki, 

2010). Because the presence of highly correlated variables (named as 

“multicollinearity”) may affect the interpretation of machine learning models, we 

wanted to examine whether these variables were highly correlated or not. To 

investigate this, a Pearson correlation analysis was performed. From Figure 4.6 we 

can see that VCAM1 and MS4A4A had a strong positive correlation (0.97), a linear 

relationship. There was also a moderate negative correlation between ISG15 and 

TUBG1 (-0.58) and no significant correlation was observed between the other pairs. 

Although, the strong relationship of VCAM1 and MS4A4A is not yet understood, it 

might suggest that are redundant variables.  

 

To eliminate or reduce multicollinearity two approaches were possible: removing one 

of the highly correlated variables from the model or use non - linear algorithms such 

as Support Vector Machine or Random Forest which are less sensitive to 

multicollinearity, and demonstrated a good predictive performance even when 

correlated variables were included (Farrell et al., 2019; Neter et al., 1996). Non-linear 

algorithms were chosen. 

 

Because this study aimed to predict the outcome of EVD patients rather than 

discriminating between EBOV infected and not infected individuals, the data 

obtained from testing the four candidate predictive gene transcripts in 5 control 

samples (healthy donors) were not included in the models. The distribution of the 

transcript abundance of VCAM1, ISG15, TUBG1 and MS4A4A when control samples 

were included did not show a clear separation between survivors and fatal cases 
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(Figure 4.6). This suggested that including control samples in the models may 

influence and bias the prediction.  

 

 

 A) 
 

 

 

 

 

 

 

 

 B) 
 
 
 
 
 
 
 
 
 

 
Figure 4.6 Scatterplot matrix of the selected candidate predictive gene transcripts 
for the EVD patients dataset with known outcome. For each of the numerical 
variables (transcript abundance of host biomarkers) a histogram is shown. Pairwise 
scatterplots (below the diagonal) show each combination of the host biomarkers. A) 
Data from 9 survivors (blue dots) and 15 fatal cases (orange dots) from the cohort of 
EVD patients with known outcome. Some variables help to classify better survivors 
and fatal cases but, in some combinations, there is still an overlap. B) A scatterplot 
matrix including the data of 5 healthy donors (green dots) does not show a clear 
separation between survivors and control samples. The upper panel above the 
diagonal shows pairwise Pearson’s correlation coefficients obtained from the 
combination of host biomarkers. 
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4.2.2.2  Training Support Vector Machine classification models 
 
The scatterplots in Figure 4.6 showed that the distribution of the transcript 

abundance of VCAM1, ISG15, TUBG1 and MS4A4A between survivors and fatal cases 

were not linearly separable so linear classifiers such as Logistic regression or Linear 

Discriminant analysis (LDA) were not suitable to use. This suggested that non- linear 

algorithms may perform better since are more flexible with the data and less prone 

to be affected by outliers (see Figure 4.7). For building the models, the radial SVM 

algorithm was selected since it can maximize the margin of separation between the 

survivors and fatal cases.  

 

 

 

 

 

 

 

 

 

Figure 4.7  Graphical representation of linear, non-linear separable problems and 
the SVM algorithm. The upper panel shows a representation of linear and non-linear 
separable problems. The first means that the dataset can be classified in two 
categories using a single line. On the contrary, the latter indicates that the dataset 
requires a non-linear line for separating them into their respective categories. The 
lower panel shows an illustration of the Support Vector Machine algorithm. The main 
objective of SVM is to maximize the margin, which is the distance between the 
separating hyperplane referred as a “decision boundary” and the training samples 
that are closest to this hyperplane called “support vectors”. Figures were taken from 
Raschka and Mirjalili (2017) 
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In the R software, the data from the 24 patients with known outcome was first 

randomly split into a training dataset 70% (18 observations consisting of 7 survivors 

and 11 fatal cases) and a testing set 30% (6 observations consisting of 2 survivors and 

4 fatal cases) following the first step of the workflow (Figure 4.4). 

 

To avoid bias in the prediction model due to an imbalance dataset (unequal number 

of survivors and fatal cases in the training dataset); the training dataset was 

rebalanced to have an equal number of fatal and survivor cases before training the 

model using the rose package in R software. This is a smoothed bootstrap-based 

technique which reduce the effects of an imbalanced distribution of classes by 

generating artificial balanced samples (Lunardon et al., 2014). 

 

SVM models were built with data from the training set with different combinations 

of the variables VCAM1, ISG15, MS4A4A and TUBG1. For each model, the resampling 

method used was the k-fold cross validation (indicated in the second step of the 

workflow in Figure 4.4). This is a function that can be used within the caret package 

in R software. This function split the training dataset into 10 subsets or folds (called 

k-subsets), so 1 subset was held-out while the model was trained on all other subsets, 

and the process repeated until the overall accuracy was determined in order to 

maximize the model performance (Figure 4.8). After this, the algorithm was tuned 

with the optimal hyperparameters to find the best model in each combination of 

variables. 
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Figure 4.8 K-fold cross validation method used for resampling the training dataset. 
The graph in the right illustrates the concept of holdout cross-validation. After 
splitting the entire dataset in training set 70% and testing set 30%, the training set 
was split in a validation set to repeatedly evaluate the performance of the model after 
training different parameter values. This was done through the k-fold cross validation 
function (left graph) which randomly split the training dataset into k folds without 
replacement, where k-1 folds are used for model training and one-fold is used for 
performance evaluation. This process repeated k = 10 times, so k models were 
obtained, and the average performance of these models was calculated. This method 
was used for model tuning since allows to find the optimal hyperparameter values for 
selecting the best model. Graphs modified and adapted from Raschka and Mirjalili 
(2017). 
 

4.2.2.3 Models evaluation in the testing dataset and prediction of the outcome of 

an independent “blinded” cohort of patients 

 
As indicated in the third and fourth step of the flowchart in Figure 4.4, the final 

models built in section 4.2.2.2 with data from the training set (18 observations 

consisting of 7 survivors and 11 fatal cases) were first evaluated to predict the 

outcome of patients from the testing set (6 observations consisting of 2 survivors and 

4 fatal cases) and then to predict the outcome of an independent cohort of samples.  

 

The independent cohort of samples belonged to 64 EVD patients collected by the 

EMLab deployed in Guinea. To evaluate the final models in this cohort of patients, a 

blind experiment was carried out. For this, all the relevant information from these 

samples was withheld by the team in Germany (Bernhard Nocht Institute for Tropical 
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Medicine), this included EBOV Ct, outcome, sex, age, treatment, and malaria co-

infection. The transcript abundance of VCAM1, ISG15, MS4A4A and TUBG1 from 

these samples was quantified using the optimized one-step RT-qPCRs. These assays 

are described in detail in section 2.10. Not all clinical samples were able to be tested 

for the 4 gene transcripts due to the low RNA concentration volume. Only sample 

RNA_16 did not amplify to any of the genes, suggesting that the RNA was degraded 

or very low. The RNA concentration of the 64 EVD patients is presented in Appendix 

Table 4 and the transcript abundance of each of the selected genes obtained by RT-

qPCRs is presented in Appendix Table 5. After the removal of samples with missing 

values, a total of 57 samples had complete data of the 4 gene transcripts and was 

used to predict the clinical outcome of these patients using the final models. 

 

The outcomes predicted by SVM models for the 57 patients of the blinded cohort 

were first reported to the team in Germany and they provided us the percentage 

accuracy of our models. Different models were tried consecutively to obtain the best 

percentage accuracy. To visualize the performance of each SVM model, the outcome 

of the patients was unblinded to graph confusion matrices (Figure 4.9). The SVM 

model built with 4 variables: VCAM1, ISG15, MS4A4A and TUBG1 was 100% accurate 

predicting the outcome of the patients from the testing set but had a lower prediction 

accuracy in the “blinded” cohort of samples, correctly classifying the outcome in only 

65% (95% CI, 0.5113 - 0.7709) of the patients. This model correctly classified most of 

the survivors 21/27 (77.8%) but was less accurate classifying the fatal cases 16/30 

(53.3%). To determine if reducing the number of variables improved the prediction 

percentage, the VCAM1 data was removed from the model since VCAM1 and 

MS4A4A are correlated variables and the inclusion of both might be affecting the 

model. The SVM model combining MS4A4A, ISG15 and TUBG1 had a higher accuracy 

67% (95% CI, 0.5294 - 0.786) compared to the model that also included VCAM1. This 

model could predict almost all survivors 25/27 (92.6%) but only half of fatal cases 

13/30 (43.3%).  
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Training models that target only one gene transcript did not improve the 

performance. Thus, models that included a single variable either VCAM1, ISG15 or 

MS4A4A were 100% accurate predicting the outcome of patients from the testing set 

but were less accurate predicting the outcome of the “blinded” cohort of patients. 

The model for TUBG1 was less accurate predicting the clinical outcome of patients 

from the testing set, it correctly classified 67% of the patients. From the four 

candidate predictive gene transcripts, MS4A4A and TUBG1 had the best performance 

when were evaluated alone in the “blinded” cohort of patients. The MS4A4A model 

was 61.4% (95% CI, 0.4757 - 0.74) accurate and correctly classified all survivors 27/27 

(100%) but most of the fatal cases were not correctly classified 8/30 (26.7%). The 

TUBG1 model had a similar overall accuracy of 61.4% (95% CI, 0.4757 - 0.74), and 

correctly classified most of the fatal cases 27/30 (90%) but most of the survivors were 

misclassified 8/27 (29.6%). Based on these results, MS4A4A seemed to be a good 

predictor of survival while TUBG1 a predictor of fatality. To determine whether 

MS4A4A and TUBG1 could perform better when they were used together, a model 

with both variables was trained. This model did not show a better accuracy 61.4% 

(95% CI, 0.4757 - 0.74) compared to the models built with each single variable. This 

model predicted almost all survivors 24/27 (88.8%) and 19/30 (36%) of fatal cases. 

Models with a single variable such as VCAM1 had a lower performance accuracy 49.1 

% (95% CI, 0.3563 - 0.6271) predicting half of the fatal cases 15/30 (50%) and half of 

the survivors 13/27 (48.1%). Likewise, ISG15 model had an accuracy of 44% (95% CI, 

0.3074 - 0.5764), and predicted 18/30 (60%) of fatal cases and 7/27 (25.9%) of 

survivors. Other models with different combinations of variables did not show a 

better performance when were tested in the “blinded” cohort of patients. 
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A) VCAM1 + ISG15 + MS4A4A + TUBG1 

 

 
 
 
B) MS4A4A + ISG15 + TUBG1 

 

 

 
C) MS4A4A                                                                   D) TUBG1 
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E) VCAM1                                                                     F) ISG15 

 

 
 

Figure 4.9 SVM models and confusion matrix showing models performance in 57 
samples from the “blinded” cohort of patients. For models with a combination of 2 
or more variables a classification plot was created to visualize the data of the trained 
model. The classification plots show only 2 dimensions. The decision boundaries are 
created for both outcomes and are coloured in orange (fatal) and light blue (survivor). 
The support vectors are represented by crosses and the data points are the circles (in 
both cases red is for survival outcome and black for fatal outcome). Confusion matrix 
plots are presented for better assessment and interpretation of the classifier 
performance. The confusion matrix reports the predicted and actual outcome. The 
intensity of the background colour is according to the frequency of patients. The 
accuracy metric it is defined as the fraction of patients that are correctly classified. 
 

In an attempt to improve the performance of the SVM models, the EBOV Ct values 

for the coded samples were unblinded and used as an additional predictor variable. 

The EBOV Ct values and other relevant information about these cohort of patients 

are presented in Appendix Table 6. EBOV Ct value was always gathered as part of the 

diagnostic assay by the European Mobile Laboratory in West Africa. 

 

New SVM models were built including the EBOV Ct values, for this the EBOV Ct values 

were first included in the training dataset. Section 4.2.1 has shown that EBOV Ct 

values may be a strong predictor of the outcome. To check the distribution of the 

data including the EBOV Ct values in the 24 patients with known outcome (dataset 

that was split in training and testing set), we created a scatterplot matrix (Figure 

4.10). The correlation between the variables; EBOV Ct values, VCAM1, ISG15, 

MS4A4A and TUBG1 was evaluated by Pearson correlation analysis. From the Figure 
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we can see that EBOV has a positive skewed distribution and have a strong negative 

correlation with VCAM1 (-0.85) and MS4A4A (-0.81), and a moderate negative 

correlation with ISG15 (-0.58) and positive correlation with TUBG1 (0.42). 

 

 

 

 

 

 

 

 

 

 

Figure 4.10 Scatterplot matrix of EBOV Ct and candidate predictive gene transcripts 
for the 24 EVD patients dataset with known outcome. The plot shows the data from 
9 survivors (blue dots) and 15 fatal cases (orange dots) from the cohort of EVD 
patients with known outcome. Histograms are shown for each predictor variable 
(EBOV Ct, VCAM1, ISG15, MS4A4A, TUBG1). Pairwise scatterplots (below the 
diagonal) show each combination of the host biomarkers and EBOV Ct. The upper 
panel above the diagonal shows pairwise Pearson’s correlation coefficients obtained 
from the combination of the predictor variables. 
 

Different SVM models were trained combining variables EBOV Ct, VCAM1, ISG15, 

MS4A4A, TUBG1 and are shown in Figure 4.11. The model that combined these five 

variables was 100% accurate for predicting the outcome of the testing set (6 

observations consisting of 2 survivors and 4 fatal cases), but 65% (95% CI, 0.5113-

0.7709) accurate predicting the outcome of the 57 patients from the “blinded” cohort 

of samples. This model classified correctly almost all fatal cases 28/30 (93.3%), but 

only 9/27 (33.3%) of survivors.  

 

The model that excluded only VCAM1 was more accurate 68.4% (95% CI: 0.5476 – 

0.8009) than the model that excluded MS4A4A 61.4% (95% CI,0.4757 - 0.74). Both 

models predicted the same proportion of fatal cases 28/30 (93.3%). The model that 

combined EBOV Ct, MS4A4A, ISG15 and TUBG1 was more accurate classifying the 
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survivors (11/27, 40.7%) than the model that combined EBOV Ct, VCAM1, ISG15 and 

TUBG1 (7/27, 25.9%). Models that combined EBOV Ct with a single candidate 

predictive gene transcript did not show a better performance (accuracies ranged 

from 53 to 56%). Interestingly, the model trained with only EBOV Ct values correctly 

predicted the outcome of only 54.3% (95% CI, 0.4066 - 0.6764) of the patients from 

the “blinded” cohort. EBOV Ct showed to be a good predictor of mortality, classifying 

correctly 28/30 (93.3%) of fatal cases but a poor predictor of survival, classifying 

correctly only 3/27 (11.1%) of survivors.  

 

Overall, these results indicate that the best models for predicting the outcome of the 

57 samples from the “blinded” cohort of patients were the one trained with variables 

EBOV Ct, ISG15, MS4A4A and TUBG1 (68.4% accuracy) and the model that combined 

MS4A4A, ISG15 and TUBG1 (67% accuracy). The clinical outcomes predicted with 

these models and the one that only used EBOV Ct values are presented in Table 4.1. 

The correct predictions of these models are highlighted in yellow. 

 

These results suggested that a combination of EBOV Ct, MS4A4A, ISG15 and TUBG1 

may be a suitable model for predicting mortality amongst EVD patients but also 

discriminating more survivors than a model with only EBOV Ct (54.3% accuracy). 

From Table 4.1 we can see that those patients whose EBOV Ct values ranged from 19 

to 21; the EBOV Ct model predicted a fatal outcome while the model that used EBOV 

Ct, MS4A4A, ISG15 and TUBG1 as predictor variables correctly classified them as 

survivors (RNA-01, RNA-06, RNA-10, RNA-13, RNA-25, and RNA-26). The only two 

fatal cases that were misclassified by the best model (EBOV Ct, MS4A4A, ISG15 and 

TUBG1) had higher Ct values (RNA-54: Ct 23; RNA-59: Ct 26.42) and were patients 

that received treatment with favipiravir and did not have malaria co-infection 

(Appendix Table 6). Unfortunately, there is no information about the supportive care 

that these cohort of patients received during the outbreak. 
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A) EBOV Ct + VCAM1 + ISG15 + MS4A4A + TUBG1 

 
 
B) EBOV Ct + ISG15 +MS4A4A + TUBG1 
 

 
 
 
 
C) EBOV Ct + VCAM1+ ISG15 + TUBG1 
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D) EBOV Ct 
 

 

 

 

 

 

 

 

 

Figure 4.11 SVM models including EBOV Ct and confusion matrix showing models 
performance in the 57 samples of the “blinded” cohort of patients. For models with 
a combination of more than two variables a classification plot was created to visualize 
the data of the trained model. The classification plots show only 2 dimensions. The 
decision boundaries are created for both outcomes and are coloured in orange (fatal) 
and light blue (survivor). The support vectors are represented by crosses and the data 
points are the circles (in both cases red is for survival outcome and black for fatal 
outcome). Confusion matrix plots are presented for better assessment and 
interpretation of the classifier performance. The confusion matrix reports the 
predicted and actual outcome. The intensity of the background colour is according to 
the frequency of patients. The accuracy metric it is defined as the fraction of patients 
that are correctly classified. 
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Table 4.1 Clinical outcomes predicted by SVM models for 57 samples from the “blinded” cohort of patients * 
 

Sample_ID EBOV Ct values Actual Outcome 

Predicted outcomes by SVM models** 

EBOV 

Ct 
MS4A4A +ISG15 +TUBG1 EBOV Ct + MS4A4A + ISG15 + TUBG1 

RNA-01 19.1 survivor fatal survivor survivor 
RNA-02 17.25 survivor fatal survivor fatal 
RNA-03 17.09 survivor fatal survivor fatal 
RNA-04 19.08 survivor fatal survivor fatal 
RNA-05 17.73 survivor fatal survivor fatal 
RNA-06 19.76 survivor fatal survivor survivor 
RNA-07 19.04 survivor fatal survivor fatal 
RNA-08 14.42 survivor fatal survivor fatal 
RNA-09 23.19 survivor survivor survivor survivor 
RNA-10 19.54 survivor fatal survivor survivor 
RNA-11 16.08 survivor fatal survivor fatal 
RNA-13 21.29 survivor fatal survivor survivor 
RNA-14 15.99 survivor fatal survivor fatal 
RNA-15 19.35 survivor fatal survivor fatal 
RNA-17 17.71 survivor fatal survivor fatal 
RNA-18 18.5 survivor fatal fatal fatal 
RNA-19 16.52 survivor fatal survivor fatal 
RNA-20 17.44 survivor fatal survivor fatal 
RNA-21 15.24 survivor fatal survivor fatal 



 140 

RNA-22 17.24 survivor fatal survivor survivor 
RNA-23 19.55 survivor fatal fatal fatal 
RNA-24 19.95 survivor fatal survivor fatal 
RNA-25 19.31 survivor fatal survivor survivor 
RNA-26 19.81 survivor fatal survivor survivor 
RNA-28 14.66 fatal fatal fatal fatal 
RNA-29 14.61 fatal fatal survivor fatal 
RNA-30 15.3 fatal fatal survivor fatal 
RNA-31 15.51 fatal fatal survivor fatal 
RNA-32 13.5 fatal fatal fatal fatal 
RNA-33 14.91 fatal fatal survivor fatal 
RNA-34 19.95 fatal fatal fatal fatal 
RNA-35 16.69 fatal fatal fatal fatal 
RNA-36 14.99 fatal fatal survivor fatal 
RNA-37 14.6 fatal fatal survivor fatal 
RNA-38 15.34 fatal fatal survivor fatal 
RNA-39 15.07 fatal fatal survivor fatal 
RNA-40 14.03 fatal fatal fatal fatal 
RNA-41 15.33 fatal fatal fatal fatal 
RNA-42 15.82 fatal fatal survivor fatal 
RNA-43 12.87 fatal fatal survivor fatal 
RNA-44 16.33 fatal fatal survivor fatal 
RNA-45 15.4 fatal fatal fatal fatal 
RNA-47 17.44 fatal fatal fatal fatal 
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RNA-48 19.91 fatal fatal survivor fatal 
RNA-50 16.26 fatal fatal fatal fatal 
RNA-51 15.2 fatal fatal survivor fatal 
RNA-52 16.22 fatal fatal fatal fatal 
RNA-53 19.1 fatal fatal fatal fatal 
RNA-54 23 fatal fatal survivor survivor 
RNA-55 23.64 fatal survivor fatal fatal 
RNA-56 17.41 fatal fatal survivor fatal 
RNA-57 17.53 fatal fatal survivor fatal 
RNA-59 26.42 fatal survivor survivor survivor 
RNA-60 20.42 fatal fatal fatal fatal 
RNA-61 22.17 survivor fatal survivor survivor 
RNA-62 27.15 survivor survivor survivor survivor 
RNA-64 29.15 survivor survivor survivor survivor 

*This table shows 57 of the 64 initial cohort of patients since they did not have missing values for any of the predictor variables. 
**Only the outcomes predicted with a model built with EBOV Ct and the models that had the best performance are shown. 
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4.2.3 Data analysis of the cohort of EVD patients with known outcome joined with 

the “blinded” cohort of patients. 

 

The previous section showed that the best SVM model including EBOV Ct values was 

highly predictive of EVD mortality. However, the overall accuracy of this model was 

68.4%. To examine the possibility of bias that influenced these results because of the 

small dataset size (training set of 18 subjects including 7 survivors and 11 fatal cases) 

used for building the models, it was important to compare both cohorts of patients 

(39 subjects from the cohort of patients with known outcome and 64 patients from 

the blinded cohort of samples).  

 

At this point of the study, the outcome of the blinded cohort of patients was 

unblinded, so it was possible to compare the transcript abundance of VCAM1, ISG15, 

MS4A4A and TUBG1 between survivors and fatal cases. For this analysis, the Mann-

Whitney U test was applied. As seen in Figure 4.12, there was a significant difference 

in the transcript abundance of MS4A4A (p = 0.0013) and TUBG1 (p = 0.0443) between 

survivors and fatal cases. No significant difference was found in the transcript 

abundance of VCAM1 (p = 0.4225) and ISG15 (p = 0.3009), which contradicts the 

previous results obtained for these genes when were tested in the cohort of patients 

with known outcome (p < 0.0001, p = 0.0036 respectively) shown previously in Figure 

4.2. 
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Figure 4.12 Transcript abundance of the four candidate predictive genes between 
survivors and non-survivors from the “blinded” cohort of patients. The RNA copy 
number of the gene transcripts in the clinical samples were quantitated by RT-qPCRs 
using the standard curve method. The clinical samples were tested in duplicate and 
the mean RNA copy number per individual was obtained by plotting the mean Ct value 
against the standard curve created with in-vitro RNA dilutions of known 
concentration. Each dot represents an individual (blue for survivor, orange for fatal). 
The bars indicate the mean and the standard error of the mean (SEM). The differences 
in the transcript abundance between survivors and fatal cases were evaluated via the 
non-parametric Mann-Whitney U test. 
 

To visualize and compare the data between the cohort of patients with known 

outcome and the “blinded” cohort of patients, density plots were created to 

understand the distribution of each variable broken down by survivors and fatal 

cases. Figure 4.13 compares the density plots between both cohorts. The most 

interesting aspect of this graph was the perfect separation of survivors and fatal cases 

for the independent variable EBOV Ct in the cohort of patients with known outcome. 

Individuals with EBOV Ct values lower than 20 definitely belonged to fatal group, and 

higher Ct values were indicative of survival. This distribution was different from the 

one observed in the “blinded” cohort of patients, where the Ct values for survivors 

and fatal cases overlapped. Indeed, individuals that had Ct values lower than 20 

survived.  

 

The distributions for VCAM1 and ISG15 were also different between both cohorts of 

patients showing overlapping of survivors and fatal cases in the “blinded” cohort of 
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patients. This corroborated the non-significant difference between survivors and 

fatal cases presented in Figure 4.12. TUBG1 showed a similar distribution in both 

cohorts but not a clear separation between survivors and fatal cases. MSA4A4 was 

the only gene transcript whose distribution was consistent in both cohort of patients 

showing a better separation between fatal cases and survivors, and the statistical 

results corroborated this difference. In addition, there were no observed differences 

in survivors and fatal cases according to age. 

 

 
Cohort with known outcome                             “blinded” cohort 
 

 
 
Cohort with known outcome                             “blinded” cohort 
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Cohort with known outcome                             “blinded” cohort 
 

 

 
Cohort with known outcome                             “blinded” cohort 
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Cohort with known outcome                             “blinded” cohort 
 

 
Figure 4.13 Density plots comparing the distribution of the four candidate predictive 
gene transcripts, EBOV Ct and age by outcome from both cohorts of EVD patients. 
Kernel density estimation was used to visualize the distribution shape of the numeric 
variables (VCAM1, ISG15, MS4A4A TUBG1, EBOV Ct and age). The peaks of the density 
plot identify where values are concentrated over the interval of the continuous 
variable. 
 

The distributions of the predictor variables suggested that the small data size used 

for building the model may not represent the population. Therefore, to increase the 

reliability of measures, the samples that had complete values for all the predictor 

variables from both cohorts of patients (24 individuals from the cohort with known 

outcome and 57 individuals from the “Blinded” cohort) were joined in a single dataset 

for statistical analysis. It was assumed that both cohorts of patients came from the 

same population since all samples were collected during the EBOV outbreak in 

Guinea in 2014-2015 and followed the same collection methods and same RNA 

extraction. Thus, the whole dataset summed up to 81 subjects for analysis. 

 

Figure 4.14 shows the transcript abundance of each predictor variable from the 

whole dataset (81 patients consisting of 36 survivors and 45 fatal cases) and the 

distribution of the values as density plots. Looking at Figure 4.14, we can see that 

there was a clear difference (p < 0.0001) in the EBOV Ct values reported from EVD 

survivors and fatal cases. Fatal cases had an average Ct value of 17 (median 16, range 

13- 26) compared to Ct 22 (median 20, range 14-35) from survivors. This figure also 

shows the trend regarding the transcript abundance of the selected candidate 
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predictive genes. Interestingly, fatal cases had two times more MS4A4A and VCAM1 

transcript copies compared to survivors (p < 0.0001). In contrast, the transcript 

abundance of TUBG1 was two times higher in survivors compared to fatal cases (p = 

0.0181). Finally, there was no significant difference in the transcript abundance of 

ISG15 between survivors and fatal cases (p = 0.2824).  
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Figure 4.14 Distribution of the transcript abundance of the four candidate predictive 
genes and EBOV Ct values in the whole dataset of patients. The graphs show the 
RNA copy number of VCAM1, ISG15, MS4A4A and TUBG1 in the clinical samples that 
were quantitated by RT-qPCRs using the standard curve method and the EBOV Ct 
values recorded from the same patients. Each dot represents an individual (blue for 
survivor, orange for fatal). The bars indicate the mean and the standard error of the 
mean (SEM). The differences between survivors and fatal cases were evaluated via 
the non-parametric Mann-Whitney U test. 
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4.2.4 Machine learning modelling for the whole dataset of patients 
 
4.2.4.1 Pre-processing of the whole dataset 
 
To improve the accuracy of predictive models only the important variables for 

building the models were selected using the Boruta algorithm described before. The 

results obtained from this analysis are presented in Figure 4.15. The attributes that 

were relevant for the prediction of the outcome were MS4A4A, EBOV Ct, VCAM1, 

TUBG1 and ISG15. Surprisingly, the MS4A4A transcript had higher Z score values than 

EBOV Ct values, suggesting that may have better performance as a predictor variable 

than EBOV Ct. Age was a non-relevant attribute, thereby it was not considered for 

model building. 

Figure 4.15 Boruta result plot for the predictor variables from the whole dataset. 
The Boruta algorithm adds randomness to the data by creating shuffled copies 
(“shadows attributes”) of all the attribute and runs a random forest classifier on 
the extended data to compute Z scores. It finds the maximum Z score among 
shadow attributes (MZSA) and assign a hit to every attribute that scored better 
than MZSA. At every iteration, checks whether an attribute has a higher Z score 
than the MZSA and consider them as “important” or as “unimportant” if the Z score 
is lower than MZSA, and removes them permanently. The algorithm stops after a 
limit of 500 random forest runs. The y-axis shows importance in terms of Z-scores. 
Blue boxplots correspond to minimal, average, and maximum Z score of a shadow 
attribute. Green boxplots represent Z scores of the confirmed important attributes. 
Red boxplot represented a rejected attribute. Box plot features are as follows: 
circles are outliers, dashed lines “whiskers” are 1.5 times the interquartile range, 
rectangle is the first and third quartiles, and horizontal bar is the median. 
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The relationship between the attributes in the dataset was evaluated by Pearson 

correlation analysis. From Figure 4.16 we can see that EBOV Ct and VCAM1/MS4A4A 

had a moderate negative correlation (- 0.58 and - 0.45 respectively). VCAM1 and 

MS4A4A had a strong positive correlation (0.92) as seen before in section 4.2.2.1. A 

better separation between survivors and fatal cases was observed when EBOV Ct 

values were combined with VCAM1 and MS4A4A. To evaluate if the combination of 

these variables has a good prediction performance, new machine learning models 

were built. 

 

 

 

 

 

 

 

 

 

 

Figure 4.16 Scatterplot matrix of predictor variables for the whole dataset of EVD 
patients. The plot shows the data from 81 patients (36 survivors represented as blue 
dots and 45 fatal cases represented as orange dots) from the whole dataset of EVD 
patients. Histograms are shown for each predictor variable. Below the diagonal, 
pairwise scatterplots show each combination of the host biomarkers, EBOV Ct and 
age. The upper panel above the diagonal shows pairwise Pearson’s correlation 
coefficients obtained from the combination of the predictor variables. 
 
 
4.2.4.2  Evaluating different machine learning algorithms in the whole dataset 
 
In order to choose the best machine learning algorithms to use for building models 

in the whole dataset, the strategy was to spot-check different algorithms as a starting 

point. The selection of models for spot-check was based on diversifying the choice of 

model complexity such as linear algorithms (Linear discriminant analysis, Logistic 

Regression), non-linear algorithms (Naive Bayes, k- Nearest Neighbours, Support 
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Vector Machine), trees (CART) and ensemble algorithms (Bagged CART, Random 

Forest, C5.0, Generalized Boosted Modelling). 

 

Prior to model evaluation, the whole dataset was pre-processed as before following 

the flowchart presented in Figure 4.4. The whole dataset (81 patients) was split into 

70% for training set (58 individuals consisting of 26 survivors and 32 fatal cases) and 

30% for testing set (23 individuals consisting of 10 survivors and 13 fatal cases) that 

is hold back to use it during the model evaluation. Figure 4.17 provides the results 

obtained from the spot-check evaluation. From this graph we can see that three 

models were the most accurate classifiers: Support Vector Machine (86% accuracy, 

kappa = 0.71), k- Nearest Neighbors (85% accuracy, kappa = 0.71) and Random Forest 

(84% accuracy, kappa = 0.66). Only the two first algorithms were selected for further 

model tuning.  

 

 

 

 

 

 

 
 
 
 
Figure 4.17 Evaluation of different machine learning algorithms in the whole 
dataset of patients. The metrics used to evaluate all the machine learning 
algorithm were Accuracy and Kappa. Accuracy is the percentage of correctly 
classified patients out of the whole dataset. Kappa is based on the accuracy but 
corrected for a chance agreement. Kappa values of cero or less indicates a bad 
performance of the classifier and values near to 1 indicates a good classifier. SVM 
= Support Vector Machine, KNN = k- Nearest Neighbor model, RF = Random Forest, 
BagC = Bagged CART, LRM = Logistic Regression Model, NB = Naive Bayes, C50 = 
C5.0, LDA = Linear Discriminant Analysis, GBM = Generalized Boosted Modeling, 
CART 
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4.2.4.3 Model parameter tuning and performance in the validation dataset 
 

Each model was tuned according to each algorithm parameters. To evaluate the final 

model performance, the prediction was performed on the testing set (23 individuals 

consisting of 10 survivors and 13 fatal cases) which were the patients that were hold-

out and not used to train the model. The performance of each model is presented as 

follow: 

 

§ Support Vector Machine models 

 

A SVM model that only used EBOV Ct values as the predictor variable correctly 

classified 87% (95% CI, 0.6641 - 0.9722) of patients from the testing set (Figure 

4.18). Only one fatal case was misclassified with this model, 12/13 (92.3%) fatal 

cases and 8/10 (80%) survivors were correctly classified. Among all the models 

built with a single gene transcript, the MS4A4A model had the best performance 

and correctly classified 82.6% (95% CI,0.6122 - 0.9505) of patients from the 

testing set. This model correctly classified 12/13 (92.3%) fatal cases, and 7/10 

(70%) survivors. VCAM1, ISG15 and TUBG1 models had lower predictive accuracy 

compared to EBOV or MS4A4A (70%, 65.2%, 74% respectively).  

 

The combination of EBOV Ct and MS4A4A in a model improved the performance 

to 91.3% of accuracy (95% CI, 0.7196 - 0.9893) and correctly classified all the fatal 

cases and 8/10 (80%) survivors. Another model that had a high predictive 

accuracy 91.3% (95% CI, 0.7196 -0.9893) was the one that combined VCAM1, 

MS4A4A and ISG15. This model misclassified only one fatal case and one survivor 

indicating a 92.3% sensitivity and 90% specificity. 

 

Between all the possible combinations of predictor variables, the model 

combining EBOV, ISG15 and MS4A4A variables had the best performance and was 

100% (95% CI, 0.8518- 1) accurate classifying all the survivors and fatal cases from 

the testing set. Replacing MS4A4A for VCAM1 in the model also showed a good 

performance 96% (95% CI, 0.7805-0.9989). This model classified all fatal cases but 
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only one survivor was misclassified in 9/10 (90%) cases. The same high accuracy 

96% (95% CI,0.7805-0.9989) was obtained in a model that used all the predictor 

variables (EBOV Ct, VCAM1, ISG15, MS4A4A and TUBG1) classifying all survivors 

but only one fatal case was misclassified in 12/13 (92.3%) cases. 

 

A) EBOV Ct                                                              B) MS4A4A 

 

 

 

 

 

 

 

 

C) VCAM1                                                                D) ISG15 
 
 
 
 
 
 
 
 

 
E) TUBG1                                                            F) EBOV Ct + MSA4A4A 
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G)  VCAM1+ MS4A4A + ISG15                           
 
 

                                                          
 
 
 
 
 
 

 
 
H) EBOV Ct + ISG15+ MS4A4A 
 

 
 
I) EBOV Ct + ISG15 +VCAM1               
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J) EBOV Ct + VCAM + MS4A4A + ISG15 + TUBG1 
 

 

Figure 4.18  SVM models with confusion matrix showing models performance in the 
testing set. For models with a combination of more than two variables a classification 
plot was created to visualize the data of the trained model. The classification plots 
show only 2 dimensions. The decision boundaries are created for both outcomes and 
are coloured in orange (fatal) and light blue (survivor). The support vectors are 
represented by crosses and the data points are the circles (in both cases red is for 
survival outcome and black for fatal outcome). The confusion matrix reports the 
predicted and actual outcome of the testing set (23 patients). The intensity of the 
background colour is according to the frequency of patients. The accuracy metric it is 
defined as the fraction of patients that are correctly classified. 
 

 

§ k- Nearest Neighbour models 

 

As seen in section 4.2.4.2, the K-nearest neighbour algorithm also showed a high 

accuracy when different algorithms were evaluated in the whole dataset of 

patients. This algorithm is described as instance-based learning, which does not 

learn a discriminative function from the training set, but memorize it instead 

(Figure 4.19) (Raschka & Mirjalili, 2017). 
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Figure 4.19 Representation of the KNN algorithm function. After choosing the 
number of K and a distance metric, this algorithm finds the K nearest or similar 
samples in the training set to the sample we want to classify and assign the label 
by majority vote. For example, a new sample (?) is assigned the triangle label since 
it is the most voted (3) among its five nearest neighbours. Graph taken from 
Raschka and Mirjalili (2017). 

 

After tuning the models using K = 20 nearest neighbours, the model trained with 

EBOV Ct values and MS4A4A showed the highest accuracy 87% (95% CI, 0.6641 - 

0.9722) in predicting the outcome of patients from the testing set (23 individuals 

consisting of 10 survivors and 13 fatal cases) (Figure 4.20). This model correctly 

classified almost all the fatal cases 11/13 (84.6%) and misclassified only one 

survivor 9/10 (90%). 

 

The model built with only EBOV Ct values correctly predicted the outcome of 

73.9% (95% CI, 0.5159-0.8977) patients from the testing set. This model correctly 

classified 9/13 (69.2%) fatal cases and 8/10 (80%) survivors. The use of all 

predictor variables together did not improve the prediction performance, and the 

accuracy decreased to 78.3% (95% CI, 0.563- 0.9254).  In this model 10/13 (76.9%) 

fatal cases and 8/10 (80%) survivors were correctly classified. 

 

          



 157 

A) EBOV Ct + MS4A4A                                               B) EBOV Ct 

 

 

C) EBOV Ct + VCAM1 + ISG15 + MS4A4A + TUBG1 

 

 

 

 

 

 

 

Figure 4.20 Confusion matrix showing the KNN models performance. The confusion 
matrix reports the predicted and actual outcome of the testing set (23 patients). The 
intensity of the background colour is according to the frequency of patients. The 
accuracy metric it is defined as the fraction of patients that are correctly classified. 
 
 
4.2.5 Machine learning modelling for the DNase-treated samples  
 
Due to the possibility that our results may have been influenced by the co-

amplification with remaining genomic DNA, leftover samples were re-tested. Forty-

eight leftover samples (23 survivors and 25 fatal cases) were first treated with DNase 

for a complete removal of genomic DNA. Since our previous results showed that 

MS4A4A is strong marker of EVD mortality, to confirm these findings the 48 samples 

were re-tested by SYBR green-based RT-qPCR (Appendix Table 7). The density 

analysis of the 48 samples shows the distribution of the EBOV Ct values and MS4A4A 

transcript abundance between survivors and fatal cases (Figure 4.21). No clear 

separation is observed between both groups. 
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Figure 4.21 Density plots comparing the distribution of EBOV Ct values and MS4A4A 
transcript by outcome in the 48 DNase-treated clinical samples. Kernel density 
estimation was used to visualize the distribution shape of the numeric variables (EBOV 
Ct values and MS4A4A). The peaks of the density plot identify where values are 
concentrated over the interval of the continuous variable. 

 
The Mann–Whitney U test analysis showed a significant difference (p = 0.0403) in the 

transcript abundance of MS4A4A between survivors and fatal cases (Figure 4.22). 

 

 

 

 

 

 

 

 

 

 

Figure 4.22 Transcript abundance of MS4A4A between survivors and fatal cases. 
The RNA copy number of MS4A4A from 48 DNase-treated clinical samples were 
quantitated by RT-qPCR using the standard curve method. The clinical samples were 
tested in duplicate and the mean RNA copy number per individual was obtained by 
plotting the mean Ct value against the standard curve created with in-vitro RNA 
dilutions of known concentration. Each dot represents an individual (blue for survivor, 
orange for fatal). The bars indicate the mean and the standard error of the mean 
(SEM). The differences in the transcript abundance between survivors and fatal cases 
were evaluated via the non-parametric Mann-Whitney U test. 

Survivor Fatal
1

10

100

1000

R
N

A 
co

pi
es

/μ
l

p = 0.0403

MS4A4A

n = 23 n = 25



 159 

Different SVM models were developed using EBOV Ct values and MS4A4A transcript 

as predictor variables. The data was randomly split in 70% (35 individuals) for the 

training set, and 30% (13 individuals) for the testing set. The models were built with 

the training set and the model performance was evaluated in the testing set. The 

model built with MS4A4A transcript correctly predicted the outcome of 77% (95% CI, 

0.4619 - 0.9496) patients from the testing set (Figure 4.23). This model correctly 

classified all fatal cases (100%) and 3/6 (50%) survivors. The model built with EBOV 

Ct values correctly classified the outcome of 70% (95% CI, 0.3857 - 0.9091) patients 

including 5/7 (71.4%) fatal cases and 4/6 (67%) survivors. Combining both variables 

did not improve the prediction performance, and the accuracy decreased to 61.5% 

(95% CI, 0.3158 -0.8614). 

 

A) MS4A4A                                                           B) EBOV Ct 
 
 
 
 
 
 
 
 
 

C) EBOV Ct + MS4A4A                                                            
 

 

 

 

 

 

 

 

Figure 4.23 Confusion matrix showing the SVM models performance. The confusion 
matrix reports the predicted and actual outcome of the testing set (13 patients). The 
intensity of the background colour is according to the frequency of patients. The 
accuracy metric it is defined as the fraction of patients that are correctly classified. 
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Table 4.2 shows the predicted outcomes for the testing set using the EBOV Ct model 

and MS4A4A transcript model. The predictions from the model that combines both 

variables are not included because it had lower prediction accuracy than testing 

EBOV and MS4A4A alone. Correct predictions are highlighted in yellow. 

 
Table 4.2 Predicted outcomes for the testing set 

 

Actual 
outcome 

 
Days since 
symptom 

onset 

EBOV Ct 
value 

MS4A4A 
copy 

number 

Predicted outcome 

MS4A4A 
model 

EBOV Ct 
model 

RNA-04 survivor 0 19.08 167.0776 fatal survivor 
RNA-06 survivor 10 19.76 803.0531 survivor survivor 
RNA-08 survivor 8 14.42 18.84758 survivor fatal 
RNA-21 survivor 4 15.24 392.6698 fatal fatal 
RNA-23 survivor 3 19.55 44.85136 survivor survivor 
RNA-28 fatal NA* 14.66 248.3702 fatal fatal 
RNA-36 fatal 7 14.99 69.08459 fatal fatal 
RNA-41 fatal 5 15.33 127.2507 fatal fatal 
RNA-50 fatal 10 16.26 100.0631 fatal fatal 
RNA-52 fatal 2 16.22 315.3989 fatal fatal 
RNA-54 fatal 2 23 221.0892 fatal survivor 
RNA-59 fatal 1 26.42 116.4044 fatal survivor 

* Data not available 
 
To ensure that these results can replicate we randomly split the whole dataset more 

times into different training and testing sets. The results were similar, the model 

trained with only MS4A4A transcript as a predictor variable showed higher overall 

accuracy 69.2% (95% CI, 0.3857 - 0.9091) than the model that used EBOV Ct values 

54% (95% CI, 0.2513 - 0.8078) (Figure 4.24). MS4A4A transcript showed to be a strong 

predictor of fatality since it correctly classified more fatal cases than EBOV Ct variable 

(85.7% versus 42.9%). Similar to previous results, combining both variables did not 

improve the prediction performance, and the accuracy dampened to 46.2% (95% CI, 

0.1922 - 0.7487). Table 4.3 shows the predicted outcomes for this new random 

testing set by the EBOV Ct model and MS4A4A transcript model. Correct predictions 

are highlighted in yellow. 
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A) MS4A4A                                                           B) EBOV Ct 

 

 

 

 

 

 

 

 

 
C) EBOV Ct + MS4A4A                                                            

 

 

 

 

 

 

 

 

 

Figure 4.24 Confusion matrix showing the SVM models performance in a new 
random testing set. The confusion matrix reports the predicted and actual outcome 
of the new testing set (13 patients). The intensity of the background colour is 
according to the frequency of patients. The accuracy metric it is defined as the fraction 
of patients that are correctly classified. 
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Table 4.3 Predicted outcomes for the new random testing set 

  
Actual 

outcome 

 
Days since 
symptom 

onset 

EBOV Ct 
value 

MS4A4A 
copy 

number 

Predicted outcome 

MS4A4A 
model 

EBOV Ct 
model 

RNA-02 survivor 11 17.25 200.395815 fatal survivor 
RNA-05 survivor 4 17.73 7.783173 survivor survivor 
RNA-07 survivor 7 19.04 84.784204 fatal survivor 
RNA-11 survivor 3 16.08 99.895662 fatal fatal 
RNA-14 survivor 6 15.99 41.39615 survivor fatal 
RNA-22 survivor 3 17.24 14.332849 survivor survivor 
RNA-34 fatal 10 19.95 81.761475 fatal survivor 
RNA-37 fatal 5 14.6 94.660444 fatal fatal 
RNA-40 fatal 5 14.03 13.291016 survivor fatal 
RNA-45 fatal 3 15.4 171.843689 fatal fatal 
RNA-56 fatal 3 17.41 88.432773 fatal survivor 
RNA-57 fatal 5 17.53 71.757409 fatal survivor 
RNA-59 fatal 1 26.42 116.40438 fatal survivor 

 
 

To analyse the potential effect of the time between symptom onset and sample 

collection/diagnosis on our models, we first analysed the distribution of this variable. 

Only one sample (RNA-28) was excluded from the analysis since data was not 

available. The density analysis of the variable “Days since symptom onset” did not 

show a clear association with the clinical outcome and its inclusion in a prediction 

model with EBOV Ct and MS4A4A transcripts did not improve the model 

performance, showing only 62% accuracy (95% CI, 0.3158- 0.8614) (Figure 4.25). 

MS4A4A transcript and EBOV Ct models had better performance when were used 

alone with 77% accuracy (95% CI, 0.4619 - 0.9496) compared to 69.2% accuracy (95% 

CI, 0.3857- 0.9091) of variable “Days since symptom onset”. These results suggest 

that both MS4A4A transcripts and EBOV Ct are strong predictors of EVD mortality 

and can be used independently. 
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A) Days since symptom onset                      B) Days since symptom onset 
      + EBOV Ct + MS4A4A 

 
 
C) EBOV Ct                                                     D) MS4A4A 

 

 

 

 

 

 

 

 

 

Figure 4.25 Density plot of the variable “Days since symptom onset” and confusion 
matrix showing the SVM models performance. Kernel density estimation was used 
to visualize the distribution shape of the numeric variable “Days since symptom 
onset”. The peaks of the density plot identify where values are concentrated over the 
interval of the continuous variable. The confusion matrix reports the predicted and 
actual outcome of the testing set (13 patients).  
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4.3 Discussion 
 
 
The first section of this chapter describes work that determined and analysed the 

transcript abundance of 11 potential candidate predictive genes (VCAM1, ISG15, 

CTSL, TUBG1, MS4A4A, TTC28, TGFBI, PLPP3, NF3L1, SLC25A5 and HOPX) by SYBR 

Green-based RT-qPCRs in 39 acute EVD patients with known outcome collected from 

the outbreak in Guinea in 2014-2015. From all the candidate predictive genes, the 

transcript abundance of VCAM1 (p < 0.0001), ISG15 (p = 0.0036), MS4A4A (p < 

0.0001), TTC28 (p = 0.0077) and TGFBI (p = 0.0303) was significantly different 

between survivors and fatal cases. The fatal cases had higher transcript levels of 

MS4A4A (4 times more) and VCAM1 (3 times more) compared to survivors. These 

results are consistent with the transcriptomic data obtained by testing blood from a 

cohort of acutely infected patients in a previous study by our group (Liu et al., 2017). 

The transcriptomic data showed a higher VCAM1 (FDR = 7.25E-13) and MS4A4A (FDR 

= 6.19E-05) expression in the acute-fatal compared to the acute-survivor group (Liu 

et al., 2017). Our RT-qPCRs results showed a higher ISG15 transcript abundance (1 

time more) in fatal cases compared to survivors. This result differed from the 

transcriptomic data obtained by Liu et al. (2017), where no significant difference (FDR 

= 0.02) was found in the ISG15 expression between survivors and fatal cases. Our 

analysis also showed that the transcript abundance of TUBG1 was not significantly 

different between survivors and fatal cases (p = 0.1610), corroborating the 

transcriptomic data (FDR = 0.56). The transcript abundance of CTSL1 in this cohort of 

samples was not different between survivors and fatal cases (p = 0.5019), in contrast 

to the transcriptomic data analysis (4.05E-09) by Liu et al. (2017).  

 

Although the RT-qPCRs results showed that fatal cases had lower transcript levels of 

TTC28 (2 times less) and TGFBI (16 times less) than survivors in the cohort of samples 

with known outcome, the statistical results for these gene transcripts should be 

interpreted with caution because very few survivors were analysed. Likewise, the 

statistical analysis for PLPP3, NF3L1, SLC25A5 and HOPX was not possible due to the 

limited number of analysed samples. 
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The second section of this chapter was focused on building Support Vector Machine 

models using the data from the patients with known outcome to predict the clinical 

outcome of an independent set of samples consisting of 64 EVD patients (blinded 

samples). Although our attempt to correctly predict the outcome of the blinded 

cohort of samples was not completely successful, these results showed that the best 

models for predicting the disease outcome were models trained with EBOV Ct, ISG15, 

MS4A4A and TUBG1 (68.4% accuracy) and the model that combined MS4A4A, ISG15 

and TUBG1 (67% accuracy). The former was very accurate predicting fatal cases and 

the latter survivors. Despite the low accuracy obtained from these models, the most 

interesting finding was that they had better performance than the model that only 

included EBOV Ct values (54.3%) as a predictor variable. These results suggested that 

EBOV Ct value is a strong predictor of EVD mortality; however, the overall prediction 

improves when other gene transcripts such as MS4A4A, VCAM1, ISG15 or TUBG1 are 

included in the prediction model. 

 

The low accuracy (< 70%) obtained in the SVM models may have been influenced by 

two factors that induce to bias: 1) the extreme Ct values from the dataset as 

described in section 4.2.1 (survivors Ct values ranged from 25.18 to 34.5, and for fatal 

cases Ct values from 15.12 to 20.98), and 2) the small sample size. It is known that a 

small sample size could lead to low accuracy and an increase in the classification 

error. Therefore, using a higher sample size could enhance the prediction 

performance of machine learning models (Raudys & Jain, 1991). Hence, it was 

necessary to build more reliable models in a higher sample size with a wider range of 

Ct values joining the cohort of patients with known outcome and the “blinded” 

cohort of patients. This also helped to have a dataset that could represent better the 

population. 

 

It is certain that prediction models could lead to overly optimistic results due to the 

possibility of bias during the model building. However, the results obtained using 

different machine learning algorithms such as SVM and KNN for predicting the 

outcome of patients from the testing set (unseen data taken from the whole dataset) 

were quite similar and the accuracy of the best models was greater than 90%.  
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Since our results were based on clinical samples that were not DNase treated to avoid 

loss of RNA due to an extra purification, we could not rule out the possibility of co-

amplification of genomic DNA in some RT-qPCRs for primer pairs which were located 

within a single exon (VCAM1, HOPX, SLC25A5, MS4A4A and ISG15). Although is not 

clear whether genomic DNA contamination could have biased our results, we decided 

to re-test leftover samples after DNase treatment to validate our findings for the 

MS4A4A transcript. The results of 48 DNase-treated clinical samples corroborated 

our previous findings that showed a significant difference in the MS4A4A transcript 

abundance between survivors and fatal cases (p = 0.0403). MS4A4A transcript and 

EBOV Ct values demonstrated to be good predictors of EVD mortality; however, 

MS4A4A transcript outperformed EBOV Ct model (77% versus 69.2% accuracy).  

 

Since the Ct values vary during the course of infection, it was important to understand 

the potential effect of the time between symptom onset and the sample 

collection/EBOV diagnosis in our predictive models. For this, we developed SVM 

models that included this variable. Our findings showed that MS4A4A transcript and 

EBOV Ct value greatly outperformed this variable in predicting mortality. Besides, 

MS4A4A transcript and EBOV Ct have the ability to predict the outcome in an 

independent manner. This is important since the time data on symptom onset is not 

very reliable because depends on the patient's state of health (whether is responsive 

and with a clear mind or not). 

 

The analysis of the 48 DNase treated samples also showed that MS4A4A transcript is 

a marker that predict the outcome independent of Ct value. This dataset had a wider 

range of Ct values; Ct values ranged from 13.5 to 26.42 in fatal cases, and from 14.42 

to 29.15 in survivors. Since Ct values vary during the course of the disease, an 

independent marker like MS4A4A transcript may be useful for predicting the 

outcome of patients where the Ct values at the time of diagnosis/hospital admission 

is uninformative (Ct values 19-22). Further investigations should examine a larger 

cohort of patients to validate our findings. 
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5.1 Introduction 

 

The development of a multiplex RT-qPCR assay has been conducting in parallel with 

the SYBR green-based RT-qPCR analysis of clinical samples shown in Chapter 4. Thus, 

the selected gene transcripts: VCAM1, ISG15, MS4A4A and TUBG1, were the targets 

used for the development of a multiplex RT-qPCR. This chapter sought to develop a 

multiplex RT-qPCR assay because compared to other PCR-based techniques it gives a 

faster detection since it can amplify multiple targets at the same time in a single 

reaction. This was very important in our study since we had several gene transcripts 

to test and the multiplex RT-qPCR can be used in situations when the sample input is 

limited, as occurred with the leftover clinical samples we received from the team in 

Germany. This technique also reduces the use and cost of reagents.  

 

So far, multiplex RT-qPCR has been mainly used in the diagnosis of pathogens e.g. for 

the early diagnosis of highly pathogenic emerging viruses such as Influenza viruses 

(Cui et al., 2016; Ma et al., 2015), haemorrhagic fever viruses (Pang et al., 2014),  Zika 

and Chikungunya (Broeders et al., 2020). Only few studies have used this technique 

for testing prognostic markers of a disease. Most of these studies were related to 

cancer research and have tested prognostic markers by multiplex RT-qPCR to predict 

the clinical outcome of patients receiving different treatments like immunotherapy 

(Gupta et al., 2019). In Ebola studies, PCR-based tests have been mainly used for the 

detection of the virus in clinical samples but not for testing host genes as prognostic 

markers. In this context it is necessary the development of field-deployable 

prognostic tools for the management of patients that could eventually improve the 

overall control of the epidemic. 

 

The multiplex RT-qPCR developed in this chapter used a probe-based chemistry. This 

involved the design of specific primers and probes for each of the four gene 

transcripts (VCAM1, ISG15, MS4A4A and TUBG1) which are combined in a single 

reaction vessel. Currently, the multiplex RT-qPCR technique is able to detect four to 

six nucleic acid targets in a single sample (Law et al., 2015).  
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The aim of this chapter was to develop a multiplex RT-qPCR for the four gene 

transcripts: VCAM1, ISG15, MS4A4A and TUBG1 that could be used to predict the 

clinical outcome of EVD patients. The performance of the optimized assay was then 

evaluated in samples from the “blinded” cohort of EVD patients previously used in 

Chapter 4. 

 
5.2 Results 
 
5.2.1 Optimization of singleplex (individual) assays before multiplexing 
 
While chapter 3 showed the development of one-step RT-qPCRs for each gene 

transcript based on SYBR-green chemistry, this chapter developed a multiplex RT-

qPCR assay based on probe chemistry. To develop a multiplex RT-qPCR assay that 

could measure the transcript abundance of the four selected genes transcripts 

(VCAM1, ISG15, MS4A4A and TUBG1) in a single reaction tube, it was first necessary 

to optimize a singleplex RT-qPCR assay for each gene. For this, we used the same 

primers sets designed for the one-step SYBR green-based RT-qPCRs described in 

Chapter 3 and only probes were designed. Figure 5.1 shows the alignments of the 

transcript sequences from VCAM1, ISG15, MS4A4A and TUBG1 and highlights the 

location of the designed probes. The specificity of the probes was verified through 

BLAST search in GenBank (https://blast.ncbi.nlm.nih.gov/Blast.cgi). The probes were 

labelled to distinguish each PCR amplicon: the fluorescent reporters on the 5’ ends 

and the compatible quenchers on the 3’ ends. A modification of VCAM1 and MS4A4A 

probes was done by adding Locked Nucleic Acids (LNA) which are nucleic acid 

analogues. The introduction of LNAs increases the thermal stability of the probe, 

which is important for making a strong bond with the complementary sequence. It 

also increases the annealing temperature which was necessary for a short length 

probe like VCAM1 (15 bases). Thus, all probes had a higher annealing temperature 

than the primers between 63.1° to 71.1°C. The sequences of the primers and probes 

used in this chapter are listed in Table 5.1 
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Figure 5.1 Location of the probes designed for the four selected gene transcripts. The RefSeq-annotated transcript of each gene are identified 
by the accession number in the left side. The sequences were aligned using MAFFT multiple alignment program and visualized using Jalview 
(www.jalview.org).The green shadow shows the position of the primer forward, the purple shadow shows the position of the probes and the blue 
shadow shows the position of the primer reverse. 
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        Table 5.1 Sequences of primer and probe sets designed for the development of a multiplex RT-qPCR assay 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

“+” indicates the LNA modification of the following base 

 

 

 

Gene 
NCBI 

Accession number 

Sequences 

5’- 3’ 
Amplicon length (bp) 

Nucleotide position 

of the amplicon 

VCAM1 NM_001199834.1 For: CCCGGATTGCTGCTCAGAT 61 997-1057 

  Rev: TCACAGCCCATGACACTACA   

  Probe: HEX-A+CT+CA+GT+CAT+GTT+GA-BHQ1   

ISG15 NM_005101.3 For: GGCAACGAATTCCAGGTGTC 80 141-220 

  Rev: ACGCCGATCTTCTGGGTGATC   

  Probe: TxRd-CCTGAGCAGCTCCATGTCGGT-BHQ2   

MS4A4A NM_148975.2 For: TGAGCCTTAGCATGGGAATAACA 80 362-441 

  Rev: CCCGATATACACGGAAATAGGGT   

  Probe: FAM-+ATGTGTATGGCATCTAATACTTATGGAA-BHQ1   

TUBG1 NM_001070.4 For: GAACGGCTGAATGACAGGTATC 87 861-947 

  Rev: GACCACCACATCGCTCATCTC   

  Probe: CY5-CATACTCAGTGTTTCCCAACCAGGAC-BHQ3   



 172 

5.2.1.1 PCR efficiency and linearity of the singleplex RT-qPCR assays 
 

The linearity and PCR efficiency of the individual assays was determined using the in-

vitro transcript dilutions (3 replicates per dilution) ranging from 102 to 106 RNA 

copies/µl containing the target sequences for VCAM1, ISG15, MS4A4A and TUBG1 

gene transcripts (Figure 5.2). The PCR efficiency under singleplex conditions for the 

four gene transcripts VCAM1, ISG15, MS4A4A and TUBG1 was greater than 90%. The 

slopes were also within the acceptable range of -3.2 to -3.5. All singleplex assays 

showed a good correlation coefficient (R2 > 0.990). These results indicate a good 

confidence correlating the Ct value and the logarithm of the standard RNA copy 

number.  

 

The amplification charts of each gene transcript are also shown in Figure 5.2. Tight 

replicate curves are observed for each of the five dilutions that creates the standard 

curve in the RT-qPCRs. The negative controls (no RNA template added) for VCAM1, 

ISG15, and MS4A4A did not amplify except TUBG1. In the TUBG1 assay, the negative 

control amplified above the threshold. Although, the assay was re-tested three times, 

and new reagents were prepared, the amplification in the negative control was still 

observed, suggesting the formation of primer or probe dimers that was not observed 

before in the SYBR green assay using the same primers. Despite TUBG1 assay had 

high PCR efficiency and good correlation coefficient, there was a probability that 

dimers may give an overestimation of the target. Thus, TUBG1 was not included in 

the group of gene transcripts for multiplexing. 

 

 

 

 

 

 

 

 



 173 

VCAM1 

 

 
ISG15 

 
 

 

 

 

 

 
 
 

Cycle
5 10 15 20 25 30 35 40 45

N
o
rm

. 
F
lu

o
ro

. 0.8

0.6

0.4

0.2

0.0 Threshold



 174 

 
MS4A4A 
 

 
 

 
 
 
 
 
 
 

Cycle
5 10 15 20 25 30 35 40 45

N
o
rm

. 
F
lu

o
ro

.

1.2

1.0

0.8

0.6

0.4

0.2

0.0 Threshold

Cycle5 10 15 20 25 30 35 40 45

N
o
rm

. 
F
lu

o
ro

.

0.25

0.20

0.15

0.10

0.05

0.00 Threshold



 175 

TUBG1 

 

 

 

Figure 5.2 Linearity and PCR efficiency of the singleplex assays for each of the four 
selected gene transcripts. The upper panels show the standard curves obtained 
created with the in-vitro RNA dilutions ranging from 102 to 106 RNA copies/µl 
containing the target sequences for VCAM1, ISG15, MS4A4A, and TUBG1 transcripts. 
The mean Ct value of the triplicates is plotted against the log of concentration of the 
target gene copies/reaction. The PCR efficiency for each target was calculated using 
the slope of the calibration curve with the formula E = 10−1/slope−1.  E = PCR efficiency,  
R2 = correlation coefficient. Red dots in the TUBG1 standard curve are the detected 
negative controls. The lower panels show the amplification curves of the in-vitro RNA 
dilutions (black) tested in triplicate. The light blue lines represent the negative control 
(no template added) tested in duplicate.  
 

5.2.2 Multiplexing  
 

Once the singleplex assays were optimized and showed a high efficiency, the primers, 

and probes for VCAM1, ISG15 and MS4A4A were combined in a multiplex assay. The 

primer and probe concentrations for each gene transcript used in the singleplex 

assays were the same used in the multiplex assay and there was no need to change 

other reaction components.  

Cycle
5 10 15 20 25 30 35 40 45

N
o
rm

. 
F
lu

o
ro

. 0.8

0.6

0.4

0.2

0.0 Threshold



 176 

 
5.2.2.1 PCR efficiency and linearity of the optimized multiplex RT-qPCR assay 

 

To evaluate the performance of the optimized multiplex RT-qPCR assay, the PCR 

efficiency and linearity was first checked.  The PCR efficiency was estimated from the 

slope of the standard curve of each gene transcript in the multiplex assay and was 

within the acceptable values (90%-110%) for the three gene transcripts (103% for 

VCAM1, 106% for MS4A4A and 107% for ISG15) (Figure 5.3). The standard curves of 

each gene transcript also showed a good correlation coefficient greater than 0.99 

indicating a good linearity. The R2 for VCAM1 was 0.998, for MS4A4A was 0.997, and 

for ISG15 was 0.997. These results suggests that the multiplex RT-qPCR is a robust 

test that precisely correlate the Ct value and the logarithm of the standard RNA copy 

number.  

 
5.2.2.2 Precision evaluation of the optimized multiplex RT-qPCR assay 
 
To evaluate the precision of the multiplex RT-qPCR, the intra and inter-assay 

variability was determined. For this, the multiplex RT-qPCR assay was run three times 

in order to measure the coefficient of variation (CV) within a single run and between 

the three runs. For the three gene transcripts, the CV of the intra- and inter-assays 

was less than 2%. The intra-assay CV for the standard dilutions were between 0.18 to 

0.34% for VCAM1, 0.26 to 1.53% for MS4A4A, and 0.26 to 0.67% for ISG15 (Table 5.2). 

The inter-assay CV for the standard dilutions were 0.12 to 1.14% for VCAM1, 0.21 to 

1.11% for MS4A4A, and 0.27 to 1.07% for ISG15 (Table 5.3). These results indicates 

that the multiplex assay has a high repeatability within a run and between runs. 
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ISG15 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Linearity and PCR efficiency of the multiplex RT-qPCR assay for the 
detection of VCAM1, MS4A4A and ISG15 transcripts. The upper panels show the 
standard curves obtained in the multiplex assay. The standard curves were created 
using in-vitro RNA dilutions ranging from 102 to 106 RNA copies/µl containing the 
target sequences for VCAM1, MS4A4A, and ISG15 transcripts and were included in 
every run. The mean Ct values are plotted against the log of concentration of the 
target gene copies/reaction. The PCR efficiency for each target was calculated using 
the slope of the calibration curve with the formula E = 10−1/slope−1.  E = PCR efficiency,  
R2 = correlation coefficient. The lower panels show the amplification curves of the in-
vitro RNA dilutions (black) tested in triplicate.  
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Table 5.2 Intra-assay variability of the multiplex RT-qPCR assay 
 

Multiplex assay  Copy number of cRNA standards 
1.00E+06 1.00E+05 1.00E+04 1.00E+03 1.00E+02 

VCAM1 CT values (mean ± SD) 
 

16.65 ± 0.05 
 

 
19.88 ± 0.04 

 

 
23.41 ± 0.07 

 

 
26.42 ± 0.09 

 

 
29.78 ± 0.10 

 
 CV 0.30% 0.18% 0.310% 0.34% 0.32% 

MS4A4A CT values  (mean ± SD) 
 

16.95 ± 0.10 
 

 
20.06 ± 0.31 

 

 
24.04 ± 0.21 

 

 
26.70 ± 0.18 

 

 
29.72 ± 0.08 

 
 CV 0.61% 1.53% 0.87% 0.69% 0.26% 

ISG15 CT values  (mean ± SD) 
 

17.68 ± 0.12 
 

 
21.17 ± 0.06 

 

 
24.28 ± 0.08 

 

 
27.15 ± 0.12 

 

 
30.21 ± 0.08 

 
 CV 0.67% 0.29% 0.33% 0.43% 0.26% 

SD = Standard deviation; CV = Coefficient of variation 
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        Table 5.3 Inter-assay variability of the multiplex RT-qPCR assay 
 

Multiplex assay  Copy number of cRNA standards 
1.00E+06 1.00E+05 1.00E+04 1.00E+03 1.00E+02 

VCAM1 CT values (mean ± SD) 
 

16.67 ± 0.02 
 

 
20.13 ± 0.23 

 

 
23.57 ± 0.15 

 

 
26.52 ± 0.11 

 

 
29.89 ± 0.17 

 
 CV 0.12% 1.14% 0.63% 0.42% 0.56% 

MS4A4A CT values  (mean ± SD) 
 

17.09 ± 0.13 
 

 
20.30 ± 0.23 

 

 
24.07 ± 0.09 

 

 
26.76 ± 0.06 

 

 
29.81 ± 0.08 

 
 CV 0.73% 1.11% 0.38% 0.21% 0.26% 

ISG15 CT values  (mean ± SD) 
 

17.68 ± 0.10 
 

 
21.37 ± 0.23 

 

 
24.36 ± 0.15 

 

 
27.19 ± 0.07 

 

 
30.44 ± 0.22 

 
 CV 0.54% 1.07% 0.63% 0.27% 0.71% 

        SD = Standard deviation; CV = Coefficient of variation 
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5.2.2.3 Comparison of the singleplex and multiplex assay for each gene transcript 

 
The Ct values obtained in the standard curves for each gene in the singleplex and 

multiplex assay were compared (Figure 5.4). There was a slight or no variation 

between the Ct values obtained for each gene when tested in a singleplex assay and 

when tested in the multiplex assay. The standard curves in VCAM1 and MS4A4A 

completely overlap, while the standard curve in ISG15 slightly varies in the dilutions 

that have high copy number (104 to 106) by less than or 1 cycle which was still 

acceptable. The PCR efficiency was higher in the multiplex assay compared to the 

singleplex but within the acceptable range from 90% to 110%. Likewise, the 

correlation coefficient was high for both assays (R2 > 0.99). These results indicate 

consistency of the data between the singleplex and multiplex assays. 
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Figure 5.4 Comparison of the singleplex and multiplex RT-qPCR assay for the 
detection of VCAM1, MS4A4A and ISG15 transcripts. The plots show the standard 

curves obtained from the singleplex (light red) and multiplex assays (light blue) for 

each gene transcript. The standard curves represent five dilutions of the in-vitro RNA 

standards (102 to 106 RNA copies/µl) containing the target sequence of VCAM1, 

MS4A4A and ISG15 transcripts. The plots only show the mean Ct value obtained from 

three replicates of each dilution, which is also listed in the table below. 
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5.2.2.4 Application of the multiplex RT-qPCR assay in control samples 
 
Control samples (corresponding to 5 healthy donors) were used to evaluate the 

performance of the multiplex RT-qPCR assay. The samples were tested in duplicate 

and the RNA copy number for each gene was obtained from the extrapolation of the 

Ct into the standard curve. For all the genes, the standard curves had PCR efficiencies 

within the acceptable range (90%-110%) (Figure 5.5). For VCAM1 was 102%, for 

MS4A4A was 104% and for ISG15 was 110%. The standard curves of the three gene 

transcripts also showed a good correlation coefficient (R2 > 0.99) indicating a good 

linearity. The amplification curves of the replicates of the in-vitro transcript dilutions 

and control samples were tight, indicating a minimum variation in the Ct values. For 

VCAM1, the Ct values for the donors ranged from 24.6 to 26.29 and the transcript 

copy number ranged from 1179 to 3812 copies/µl. For MS4A4A, the Ct values ranged 

from 25.77 to 27.27 and the transcript copy number from 670 to 1955 copies/µl. For 

ISG15, the Ct values ranged from 23.66 to 25.21 and the transcript copy number from 

4375 to 13883 copies/µl.  
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Figure 5.5 Application of the multiplex RT-qPCR for the simultaneous detection of 
VCAM1, MS4A4A and ISG15 transcripts in five control samples. The upper panels 

show the standard curves that were created using in-vitro RNA dilutions ranging from 

102 to 106 RNA copies/µl containing the target sequences for VCAM1, MS4A4A, and 

ISG15 transcripts and were included in every run. The green dots represent the control 

samples. The PCR efficiency for each target was calculated using the slope of the 

calibration curve with the formula E = 10−1/slope−1.  E = PCR efficiency,  R2 = correlation 

coefficient. The lower panels show the amplification curves representing the 5 serial 

dilutions (in-vitro RNA standards) tested in triplicate. green amplification curves 

represent the control samples tested in duplicate. The light blue lines represent the 

negative control (no template added) tested in duplicate.  
 
5.2.3 Application of the multiplex RT-qPCR in EVD samples 
 
The multiplex RT-qPCR was then applied in the leftover of clinical samples from the 

“blinded” cohort of patients used in the analysis of Chapter IV. Forty-seven samples 

from the 64 clinical samples of the “blinded” cohort of patients had RNA leftover and 

were used for this analysis. These samples corresponded to 21 survivors and 26 fatal 

cases. The transcript abundance of VCAM1, MS4A4A and ISG15 measured by 

multiplex RT-qPCR in these samples is shown in Appendix Table 8. The difference 

between survivors and fatal cases was analysed by Mann-Whitney U. No significant 

difference in the transcript abundance of VCAM1 (p = 0.2460), MS4A4A (p = 0.4904) 

and ISG15 (p = 0.5597) was found between the survivors and fatal cases. Figure 5.6 

compares the transcript abundance obtained from the multiplex and the SYBR green 

assays in the same group of 47 patients. Although the distribution of the transcript 

abundance of each gene looks similar between the multiplex and the SYBR green 

assay, the absolute RNA copy number differ between both assays.  
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For VCAM1, the statistical analysis shows a no significant difference between 

survivors and fatal cases detected by multiplex assay (p = 0.2460) and SYBR green 

assay (p = 0.3443). The transcript copy number for VCAM1 detected by the multiplex 

assay was higher in survivors (22539 RNA copies/µl) than fatal cases (19541 RNA 

copies/µl), while by SYBR green assay was the opposite, the fatal cases have higher 

transcript copy number (139961 RNA copies/µl) than survivors (126043 RNA 

copies/µl). For ISG15, a non-significant difference was found between survivors and 

fatal cases in both, by multiplex (p =0.5597) and SYBR green assay (p =0.3230). Both 

assays showed a higher transcript copy number in fatal cases compared to survivors, 

93233 RNA copies/µl in fatal cases and 56577 RNA copies/µl in survivors by the 

multiplex assay, while the SYBR green assay detected 51872 RNA copies/µl in fatal 

cases and 45054 RNA copies/µl in survivors. For MS4A4A, the statistical analysis of 

the transcript abundance in these samples differ between the tests. The analysis for 

the multiplex assay found no difference between survivors and fatal cases (p =0.4904) 

while for SYBR green assay there was a significant difference (p = 0.0017). The mean 

transcript copy number obtained by the multiplex assay seems similar between 

survivors (9034 RNA copies/µl) and fatal cases (8263 RNA copies/µl). In contrast, the 

mean transcript copy number obtained by SYBR green RT-qPCR was higher in fatal 

cases (7222 RNA copies/µl) than survivors (5551 RNA copies/µl). Although a 

comparison between both assays may not be adequate since each assay has a 

different chemistry system and were run in different qPCR machines, a similar 

transcript copy number in the same individuals was expected since 10ng of RNA from 

each individual was the input sample in both assays. A possible explanation for this 

might be that remaining genomic DNA is present in the samples and are being co-

amplified with the cDNA. Despite this possibility machine learning models were built 

for assessing the prediction performance of VCAM1, ISG15 and MS4A4A transcripts 

using the multiplex RT-qPCR data. 
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Figure 5.6 Comparison of the singleplex SYBR green-based RT-qPCR and the 
multiplex probe-based RT-qPCR assay. The plots show the RNA copy number of 

VCAM1, ISG15 and MS4A4A measured by SYBR green RT-qPCR and multiplex RT-qPCR 

from 47 clinical samples (21 survivors and 26 fatal cases). The clinical samples were 

tested in duplicate in both assays and the mean RNA copy number per individual was 

obtained by plotting the mean Ct value against the standard curve created with in-

vitro RNA dilutions of known concentration. Each dot represents an individual (blue 

for survivor, orange for fatal). The bars indicate the mean and the standard error of 

the mean (SEM). The differences in the transcript abundance between survivors and 

fatal cases were evaluated via the non-parametric Mann-Whitney U test. 
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5.2.4 Classification models for the multiplex RT-qPCR data 
 

Support vector machine models were trained to evaluate the prediction performance 

of VCAM1, ISG15 and MS4A4A transcripts using the multiplex results from the 47 EVD 

patients (21 survivors and 26 fatal cases). The same workflow followed in Chapter IV 

for training models was used in this chapter. The dataset was split in 70% for training 

set (34 individuals corresponding to 15 survivors and 19 fatal cases) and 30% for 

testing set (13 individuals corresponding to 6 survivors and 7 fatal cases). Different 

SVM models were trained and tuned in the training dataset and then used to evaluate 

its performance in the testing set. These models consisted in different combinations 

of the genes as predictors of the clinical outcome.  

 

First, a model for each predictor variable was built in order to determine its individual 

performance. The SVM model that included only EBOV Ct as predictor was 76.9% 

accurate (95% CI, 0.4619 - 0.9496) classifying the EVD patients from the testing set 

(13 individuals) (Figure 5.7). This model correctly classified 85.7% (6/7) of fatal cases 

and 66.7% (4/6) of survivors. From the three selected gene transcripts, the SVM 

model for VCAM1 had the lowest accuracy performance 53.8% (95% CI, 0.2513 - 

0.8078). The model correctly classified 85.7% (6/7) of fatal cases but only 16.7% (1/6) 

of survivors. The overall accuracy of the SVM model for either MS4A4A or ISG15 was 

61.5% (95% CI, 0.3158 - 0.8614); however, the two models differed in the 

classification of fatal cases and survivors. The model that used MS4A4A as a single 

variable was the best predicting fatality compared to the other genes and EBOV Ct 

since correctly classified all fatal cases 100% (7/7), although only 16.7% (1/6) of 

survivors were correctly classified. In contrast, the SVM model for ISG15 was the best 

predicting survival 100% (6/6) but had a poor performance classifying fatal cases 

28.6% (2/7). 

 

To evaluate whether the prediction accuracy improves with the combination of 

different variables or not, several SVM models were trained. The model combining 

the three genes (VCAM1, ISG15 and MS4A4A) correctly classified 61.5% (95% CI, 
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0.3158 - 0.8614) of patients from the testing set. This model accurately predicted all 

fatal cases 100% (7/7), but only 16.7% (1/6) of survivors. Then, different models 

combining EBOV Ct with each gene were built. The model combining EBOV Ct values 

and MS4A4A correctly classified 69.2% (95% CI, 0.3857 - 0.9091) of patients from the 

testing set. This model correctly classified almost all fatal cases 85.7% (6/7), and half 

of the survivors 50% (3/6). The models combining EBOV Ct and ISG15 had a higher 

overall accuracy 76.9% (95% CI, 0.4619 -0.9496) and correctly classified 85.7% (6/7) 

of fatal cases and 66.7% (4/6) of survivors. The model combining EBOV Ct and VCAM1 

model had an accuracy of 84.6% (95% CI, 0.5455 - 0.9808) and was able to predict all 

the fatal cases 100% (7/7) and 66.7% (4/6) of survivors. 

 

From all the possible combinations, a model combining EBOV Ct values and the three 

gene transcripts, or a model combining EBOV Ct values and only VCAM1 and MS4A4A 

showed a high accuracy 84.6% (95% CI, 0.5455 - 0.9808). These two models only 

misclassified one fatal case indicating 85.7% of sensitivity (6/7) and one survivor 

indicating 83.3% (5/6) of specificity. These findings indicates that the prediction 

accuracy of the clinical outcome increases when a model includes our candidate 

predictive gene transcripts rather than using only EBOV Ct values as a predictor 

variable. 

 
 
 
A) EBOV Ct                                                       B) VCAM1 
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C) MS4A4A                                                      D) ISG15     

 
 
E) VCAM1 + MS4A4A + ISG15                     F) EBOV Ct + MS4A4A 
 
 

 
 
 
G) EBOV Ct + ISG15                                     H) EBOV Ct + VCAM1 
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I) EBOV Ct + VCAM1 + MS4A4A + ISG15 
 

 
 
 
 
 
 
 
 
 
 

 
 
J) EBOV Ct + VCAM1 + MS4A4A 
 

 
 

Figure 5.7  Confusion matrix showing SVM models performance in the testing set. 
The confusion matrix reports the predicted and actual outcome of the testing set (13 

individuals consisting of 6 survivors and 7 fatal cases). The intensity of the background 

colour is according to the frequency of patients. The accuracy metric it is defined as 

the fraction of patients that are correctly classified. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 192 

5.3 Discussion 
 
 
The purpose of this chapter was to develop a multiplex RT-qPCR that could detect 

and quantify simultaneously the transcript abundance of the selected gene 

transcripts that were found in Chapter IV with high prognostic value. 

 

The optimized test performed efficiently without any cross-amplification. The 

multiplex RT-qPCR efficiency was 103% for VCAM1, 106% for MS4A4A and 107% for 

ISG15 whereas the singleplex efficiency was 97% for VCAM1, 97% for MS4A4A and 

98% for ISG15. The correlation coefficient was greater than 0.99 for all the gene 

transcripts in the singleplex and multiplex assay. 

 

The absolute transcript copy number obtained from the 47 clinical patients by 

multiplex RT-qPCR are inconsistent with the transcript abundance measured by the 

SYBR green assay. This discrepancy suggest that these results may not represent the 

exact absolute transcript copy number of VCAM1, MS4A4A and ISG15 since the 

primers for these genes are located within the same exon and if the clinical samples 

were not completely free of genomic DNA this could have served as a template and 

resulted in a co-amplification with the cDNA in both: SYBR green and multiplex assay. 

Unfortunately, DNase treatment is not included in the RNA extraction protocol 

followed by the EMlab using the QIAamp Viral RNA Mini Kit (Qiagen) and the RNA 

was not DNase treated after extraction to avoid losing RNA with an extra purification.  

 

Despite this possibility, the SVM models trained with the multiplex RT-qPCR data 

support our hypothesis that the prognostic value improves when EBOV Ct is used 

along with our gene transcripts such as VCAM1, MS4A4A and ISG15. The SVM models 

showed that EBOV Ct alone is a strong predictor of fatality, but it does not correctly 

discriminate all survivors. VCAM1 and MS4A4A transcripts are also strong predictors 

of fatality when are used independently but did not correctly classify all survivors. 

Between the three gene transcripts, ISG15 is the strongest predictor of survival but a 

poor predictor of fatality.  
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The best classification model in this chapter was the combination of EBOV Ct and 

VCAM1, MS4A4A and ISG15 transcripts, which accurately classified 84.6% of the 

testing set. This model only misclassified one survivor and one fatal case. This is an 

encouraging result that may lead to an external validation on a larger cohort of 

clinical samples. 

 

A multiplex RT-qPCR that includes both our candidate predictive gene transcripts and 

EBOV detection would be ideal. However, it was impossible to include the primers 

and probes of the two commercial kits (the RealStar Filovirus Screen and Zaire 

Ebolavirus RT-PCR kits) used for the diagnosis of EBOV during the West African EVD 

outbreak by the EMLab since the assay composition of these kits is confidential 

intellectual property of Altona Diagnostics (Hamburg, Germany). In further research, 

the generation of in-vitro transcripts of the target sequences of EBOV may be 

considered to have standards to include in the multiplex RT-qPCR assay for the 

simultaneous quantification of EBOV and these gene transcripts following the 

absolute quantification method applied in this test. 
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Chapter 6  
 

 

General discussion 
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6.1 Use of predictive markers that determine the clinical outcome 

 

EVD is one of the deadliest viral infections of humans, with case fatality rates 

recorded between 50 to 70%. Despite the ongoing efforts to control disease 

transmission using the recently licensed rVSV-ZEVOV-GP vaccine, a substantial gap 

remains in improving the outcome of acute EVD patients and survivors. There are still 

no licensed treatments and no prognostic tests for EVD. A prognostic test that 

predicts EVD severity could guide the clinical triage of patients and contribute to the 

improvement of a targeted therapy and the clinical outcome. During a pandemic, 

prognostic markers could relieve the clinical burden, support the decision making, 

logistical planning, and potentially reduce the mortality rate in limited-resource 

settings (Yan et al., 2020). In the absence of a prognostic test for EVD, the present 

study aimed to evaluate and validate host markers that were suggested as potential 

predictors of EVD outcome in a previous study from our group (Liu et al., 2017). The 

transcript abundance of a set of 11 genes (VCAM1, HOPX, TUBG1, PLPP3, MS4A4A, 

TGFBI, TTC28, NIF3L1, SLC25A5, CTSL and ISG15) was measured by RT-qPCR assays in 

cohorts of EVD patient samples from the West Africa outbreak in 2013-2016 and 

machine learning methods were used to build predictive models that could classify 

patients by their clinical outcome.  

 

6.2 Prediction accuracy of the candidate predictive genes versus EBOV Ct value 

 

RT-qPCR assays using SYBR green chemistry were first developed and optimized for 

quantifying the transcript abundance of the set of 11 candidate predictive genes. 

These RT-qPCRs were then used to measure the transcript abundance of the 11 genes 

in a cohort of 39 acute EVD patients (20 survivors and 19 fatal cases) with known 

outcome collected from the outbreak in Guinea in 2014-2015. Since it was not 

possible to measure all gene transcripts from the 39 individuals, only the data from 

four gene transcripts (VCAM1, ISG15, MS4A4A and TUBG1) was used to build SVM 

models to predict the clinical outcome of an independent set of samples consisting 

of 64 EVD patients (blinded samples). Although our attempt to predict correctly the 

outcome using a small cohort of blinded samples was not completely successful, our 
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results showed that models that included the predictive gene transcripts such as 

ISG15, MS4A4A and TUBG1 with or without EBOV Ct values (68.4% and 67%) were 

more accurate than a model that only used EBOV Ct values as a predictor variable 

(54.3%). These findings suggest a better prediction accuracy when models are built 

with a combination of our predictive markers and EBOV Ct values. 

 

The low accuracy of these SVM models could be explained by the use of a small 

sample size to train the models (18 patients consisting of 7 survivors and 11 fatal 

cases) that resulted from the removal of missing values of the initial cohort of 39 

patients and partitioning of the dataset in training and testing set. Therefore, to 

enhance the prediction performance of the machine learning models, a larger sample 

size was evaluated (a whole dataset of 81 EVD patients consisting of 36 survivors and 

45 fatal cases). The analysis of this data showed that the transcript abundance of 

VCAM1 and MS4A4A was significantly higher in fatal cases than survivors and the 

transcript abundance of TUBG1 was significantly higher in survivors than fatal cases.  

There was no significant difference in the transcript abundance of ISG15 between 

survivors and fatal cases. SVM models were built with data from 58 individuals from 

this analysis (consisting of 26 survivors and 32 fatal cases) and the model’s 

performance was evaluated by predicting the clinical outcome of 23 individuals 

(consisting of 10 survivors and 13 fatal cases). The performance evaluation of the 

SVM models built with a single variable showed that the EBOV Ct model had the 

highest accuracy (87%) followed by MS4A4A (82.6%), VCAM1 (70%), TUBG1 (74%) 

and ISG15 model (65.2%). EBOV Ct, MS4A4A, ISG15 and TUBG1 transcripts were 

strong predictors of mortality and correctly classified all fatal cases or misclassified 

only one fatal case. However, ISG15 and TUBG1 transcripts misclassified most 

survivors. From all the predictor variables evaluated independently, the EBOV Ct 

values and MS4A4A transcript were the most accurate predicting both fatal cases and 

survivors.  

 

To enhance the prediction performance, SVM models were built with different 

combinations of predictor variables. Thus, the combinations of EBOV Ct values and 

MS4A4A or adding more gene transcripts such as VCAM1, ISG15 or TUBG1 increased 
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the prediction accuracy to more than 90% or even 100%. However, in the field it 

would be easier to analyse just one predictor in addition to the viral load.  

 

Our results in the 48 DNase-treated samples corroborated the high capability of EBOV 

Ct values and MS4A4A to predict the risk of EVD mortality. It supports the idea that 

MS4A4A is a marker independent of EBOV Ct values, therefore useful for the 

prediction of the clinical outcome of EVD patients in situations where viral load alone 

is a poor predictor of the outcome. 

 

6.3 MS4AA4 is a strong predictor of EVD fatality 

 

MS4A4A (tetraspan molecule membrane spanning four domains A4A) belongs to the 

MS4A gene family that encodes multi-spanning membrane proteins, and its function 

is not yet fully understood. Recent studies have proposed that MS4A4A is a key 

modulator of the soluble triggering receptor expressed on myeloid cells 2 (sTREM2), 

can enhance the dectin-1 dependent activation of NK cell-mediated resistance to 

metastasis and could contribute to the development and pathophysiology of allergy 

since it is involved in the IgE-mediated mast cell activation (Arthur et al., 2020; 

Deming et al., 2019; Mattiola et al., 2019). It has been found expressed in peripheral 

blood monocytes and plasma cells but not lymphocyte B, T, NK cells and granulocytes 

from healthy human individuals (Sanyal et al., 2017). It is also seen transiently 

expressed in immature dendritic cells during in-vitro differentiation from monocytes 

and lost in mature dendritic cells (Sanyal et al., 2017). Its expression in human 

macrophages has also been corroborated by transcriptomic and proteomic data 

(Mattiola et al., 2019). 

 

This study and previous transcriptomic data obtained in our group shows that 

MS4A4A is upregulated in EVD patients compared to healthy individuals (Liu et al., 

2017). Our findings showed a higher MS4A4A transcript abundance in fatal cases 

compared to survivors and a high accuracy power for classifying fatal cases alone or 

in combination with EBOV Ct values. These results suggest that MS4A4A is a strong 

predictor of EVD fatality.  
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Several factors could explain this finding. Firstly, MS4A4A is expressed in 

macrophages which are primary target cells for EBOV infection (Sanyal et al., 2017; 

Wahl-Jensen et al., 2011). Secondly, MS4A4A is selectively expressed in M2 but not 

M1 macrophages (Sanyal et al., 2017). Macrophages have a functional plasticity that 

allows them to differentiate into distinct phenotypes in response to different stimuli 

(Mantovani et al., 2004). This ability is referred as “macrophage polarization” and can 

be mimicked in-vitro by treating macrophages with cytokines or other stimuli. M1 or 

“classically activated” macrophages are generated in the presence of IFNγ and by the 

exposure to lipopolysaccharide (LPS) or other microbial products while exposure to 

IL-4 and IL-13 induce a differentiation into M2 or “alternatively activated 

macrophages” (Mantovani et al., 2004; Mattiola et al., 2019). Both phenotypes have 

different functions, M1 are inflammatory and highly phagocytic macrophages, 

whereas M2 have been related to wound healing, repair, tumor progression, and 

downregulation of inflammatory responses (Sanyal et al., 2017). In-vitro monocytic 

differentiation experiments show that MS4A4A is maintained or is upregulated in M2 

but not M1 macrophages inferring that MS4A4A can be used as a surface marker for 

alternative activated macrophages (Czimmerer et al., 2012; Sanyal et al., 2017).  

 

Thirdly, M2 polarization is associated with an increased EBOV infection and fatality 

(Rogers et al., 2019). An in-vitro study of murine and human macrophages infected 

with a recombinant EBOV model (a vesicular stomatitis virus encoding EBOV GP) 

found that M2 macrophages induced by IL-4 and IL-13 were more susceptible to 

infection, indicating that M2 polarization of macrophages enhances EBOV infection. 

In-vivo and ex-vivo M2 polarization in mice has also been demonstrated to enhance 

EBOV infection and mortality (Rogers et al., 2019). The association between M2 

polarization and severity or mortality in EVD was also suggested by McElroy et al. 

(2019) who found higher levels of the soluble macrophage activation marker sCD163 

in fatal cases compared to survivors, and increased CD163-immunostained 

macrophages colocalizing with EBOV antigen in tissues of fatal cases (McElroy et al., 

2019). However, unlike MS4A4A, CD163 is not a definitive marker of M2 
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macrophages since inflammatory macrophages can also express CD163 (Barros et al., 

2013).  

 

The increase in infection suggests that M2 polarized macrophages are more 

susceptible to EBOV entry possibly by increasing the expression of cell surface 

receptors necessary for EBOV. Rogers et al. (2019) found that the expression of 

mannose binding receptors such as DC-SIGN and the murine ortholog SIGNR3, which 

can act as receptors for EBOV, was enhanced in IL-4/IL-13 induced macrophages. It is 

unknown whether MS4A4A interacts with DC-SIGN to increase viral infection or not, 

but there is evidence of interaction with Dectin-1, which is also a C-type lectin 

receptor (a β-glucan receptor on macrophages) (Mattiola et al., 2019). Further 

studies are required to understand the interaction of MS4A4A, and cell surface 

receptors involved in EBOV infection. 

 

6.4 Proposed tests to be used in the field for the quantification of the candidate 

predictive genes 

 

One of the limitations of the RT-qPCR for the absolute quantification of nucleic acids 

is the use of external standards in each run and variations in PCR efficiency. To avoid 

this, it would be ideal to implement digital PCR technology for measuring the 

transcript abundance of the proposed prognostic markers. In contrast to RT-qPCR, 

digital PCR is capable to obtain absolute quantification without the need for running 

standard curves and has more robustness to variation in PCR efficiency (Hindson et 

al., 2013). A new method like the nanoliter-size droplet technology paired with digital 

PCR (ddPCR) also showed a precise absolute nucleic acid quantification, greater 

precision and reproducibility over real time PCR even in low abundant targets (Taylor 

et al., 2017). However, the implementation of digital PCR would not be feasible to 

use in the field since it has a higher cost compared to RT-qPCR since requires a droplet 

generator, droplet reader, a compatible thermal cycler, software, consumables, and 

appropriate expertise. As RT-qPCR platforms are widely distributed in the outbreak 

settings and were used for the diagnosis of EVD, we would suggest the 

implementation of the optimized SYBR green-based RT-qPCR assay developed in this 
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study for measuring the transcript abundance of MS4A4A as an additional laboratory 

test. The simultaneous quantification of EBOV and MS4A4A in a multiplex RT-qPCR 

would be ideal. However, we could not include the EBOV primers and probes from 

the RealStar Filovirus Screen and Zaire Ebolavirus RT-PCR kits in our multiplex RT-

qPCR since is confidential intellectual property from Altona diagnostics. In the future, 

a point-of-care test that could predict EVD outcome would be ideal for remote 

locations without the need of diagnostic facilities.  

 

6.5 Usefulness of MS4A4A as a prognostic marker in the current EVD situation 

 

To date, the ongoing outbreak in Équateur Province in DRC shows signs of slowing 

with a few days with no new confirmed cases or deaths which is relatively 

encouraging. However, this EVD outbreak continues to be a serious concern and the 

case fatality rate as of 10 October 2020 continues to be around 40.3% (53/128) 

(World Health Organization, 2020e). Even with a successful vaccine and the 

implementation of a vaccination strategy, EVD in Africa is not completely defeated. 

Some of the remaining challenges include community resistance to response 

activities, the risk of safe and dignified burials, contacts lost to follow up, confirmed 

cases in the community, and lack of funding. Thus, EVD remains a public threat and 

for any new outbreaks it is crucial to contain epidemic spread and decrease mortality. 

One aspect of this is the need to improve the clinical outcome of EVD patients. Our 

study identified MS4A4A as a potential prognosis marker that could be used in the 

field to predict the clinical outcome of EVD patients. The potential usefulness of this 

host marker are detail as follows: 

 

6.5.1 Usefulness of MS4A4A in the clinical decision 

 

Data of EVD patients from the Ebola treatment centres in Africa, and from those 

evacuated to Europe or the USA, showed that approximately 50% of patients in either 

setting were critically ill or required advanced supportive care interventions (Kiiza et 

al., 2020; Uyeki et al., 2016). This highlights the need for early classification of 

patients who may develop severe illness, since supportive care interventions should 
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be tailored to patient-specific critical care.  It is known that an appropriate supportive 

care intervention contribute to the improvement of the clinical outcome and lower 

the case fatality rate (18.5%) (Uyeki et al., 2016). However, it is still a challenge for 

resource-limited settings like Africa. Even though the case fatality rate dropped from 

70% before 2014 to 39.5% during the West Africa outbreak, in more recent EVD 

outbreaks in DRC the mortality remains around 50% (50% in 2017, 61% in 2018, 66% 

in 2018-2020 outbreak and 40.3% in the ongoing outbreak). In an attempt to reduce 

mortality after admission to the Ebola treatment centres, the host marker MS4A4A 

may be included in the mortality prediction score for EVD to guide clinicians in the 

triage of patients. Thus, clinicians could direct the scarce resources towards those 

predicted as “fatal”. As the model could help in the identification of severely ill 

patients, these patients may urgently receive mechanical ventilation, renal 

replacement therapy, antibiotics, and administration of investigational therapies for 

recovery (Uyeki et al., 2016).  

 

Recently, WHO prepared a guidance for the supportive management of EVD patients 

in Ebola treatment centres. This guidance recommends a systematic clinical 

assessment on admission followed by regular re-assessments of vital signs, physical 

examination, fluid status, and laboratory monitoring (World Health Organization, 

2019a). To support the evaluation of the clinical condition of the patient, the host 

marker MS4A4A could be included in laboratory monitoring that consists of serum 

biochemistry and haematology analysis of Na, K, HCO3, BUN, creatinine, AST, ALT, 

Mg, glucose, Hg, PT/INR, creatine kinase, CL-, Ca2+, albumin and lactate. Indeed, most 

of these laboratory markers have been associated with fatal outcome as described in 

Chapter 1. Although our study showed that MS4A4A alone is a strong predictor of 

mortality, a further study should analyse the predictive power of prognostic models 

combining laboratory markers and MS4A4A as predictor variables. Unfortunately, we 

could not develop these models since we did not have this information from the 

cohorts of patients we studied. 

 

One approach that could be accessible to clinicians in outbreak settings and to speed 

up the triage of patients would be the use of mobile apps based on prognostic models 
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as proposed by Colubri et al. (2019). Although Colubri et al. (2019) developed a model 

with a combination of viral load, age, time to presentation, clinical symptoms, and 

body temperature from EVD patients, it would be relevant to develop and validate a 

prognostic model that includes MS4A4A, EBOV Ct values and other laboratory 

markers to be deployed as mobile apps. 

 

6.5.2 Usefulness of MS4A4A for the evaluation of therapeutics agents 

 

The PALM trial conducted during the 2018-2020 outbreak in DRC identified a 

statistically significant survival benefit in patients treated with a combination of the 

standard care plus either mAb114 (a single human monoclonal antibody agent) or 

REGN-EB3 (a mixture of three human IgG1 monoclonal antibodies). However, the 

case fatality rate was still high in patients with high viral load at the time of admission 

(Ct values ≤ 22) despite the use of mAb114 (CFR = 70%) or REGN-EB3 (CFR = 

64%)(Mulangu et al., 2019). This relative lack of efficacy in severe disease patients is 

not surprising since the efficacy of the four experimental therapeutics evaluated in 

the PALM trial (mAb114, REGN-EB3, remdesivir and ZMapp) was not assessed before 

in severe EVD during the preclinical evaluation in NHP models. Since NHPs 

recapitulate EVD at accelerated pace, therapeutic interventions were initiated at the 

time of virus exposure or shortly after disease signs were observed, but not at later 

time points like in patients in the outbreak setting (Iversen et al., 2020; Warren et al., 

2020). The clinical interventions in patients were at around 11-12 days after viral 

exposure, since people often seek medical help around 5.5 days after the onset of 

symptoms when some patients may already have multi-organ dysfunction (Iversen 

et al., 2020; Mulangu et al., 2019). Since many patients with a severe disease arrive 

to the Ebola treatment centres during an outbreak it is necessary to develop effective 

therapeutic strategies that could improve the outcome of these patients. In line with 

this, we propose to study the increase of MS4A4A transcripts levels during the course 

of EBOV infection. This may be useful for assessing the efficacy of the experimental 

therapeutics since it could serve as a monitor of the improvement of the systemic 

inflammatory response after treatment interventions in either EVD patients or NHP 

models. This is relevant since the efficacy of experimental therapeutics currently 
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relies on assessing the viral replication but not the host response. Since our findings 

showed that the transcript abundance of MS4A4A is higher in fatal cases than 

survivors, we hypothesize that the improvement of the outcome after treatment 

interventions would mean a decrease in the transcript abundance of MSA4A4. Thus, 

it may be possible that MS4A4A could be used during the evaluation of a combined 

approach of therapeutics with an optimized supportive care because both cannot be 

uncoupled in the field. Supportive care remains the cornerstone of patient’s 

treatment since it is often seen EVD patients with multiple organ dysfunction at the 

time of admission (Iversen et al., 2020; Mulangu et al., 2019).  

 

6.5.3 Usefulness of MS4A4A for host-directed therapy 

 

Host-directed therapies are any product that can modulate the host response in a 

beneficial way to counteract the viral infection by strengthening the host defence 

mechanism (e.g immune stimulation), by ameliorating the disease (e.g., modulating 

excessive inflammation) or both (Zumla et al., 2016). Some investigational host-

directed therapies for EVD are repurposed drugs (Irbesartan, Atorvastatin), cytokine 

therapy (Pegylated interferon α and β), monoclonal antibody (ZMAb), and 

recombinant protein (rNAPc2)(Zumla et al., 2016). The potential of MS4A4A as an 

immunotherapeutic target has been suggested in cancer studies (Mattiola et al., 

2019; Sanyal et al., 2017). Similar to recent findings in EBOV studies that indicates an 

association of M2 macrophage polarization with mortality, in cancer studies M2 

tumour-enhancing macrophages have been associated with poor prognosis (Rogers 

et al., 2019; Sanyal et al., 2017; Zhang et al., 2011). Since MS4A4A expression was 

found restricted to M2 but not M1 macrophages, this suggested a way to target 

MS4A4A with monoclonal antibodies to deplete M2 macrophages without affecting 

the M1 pro-inflammatory macrophages (Mattiola et al., 2019; Sanyal et al., 2017). 

Indeed, targeting CD20 (known as MS4A1, and same protein family of MS4A4A) has 

shown to be effective in the treatment of autoimmune disorders (Franks et al., 2016). 

Thus, the potential use of MS4A4 as an immunotherapeutic target in EVD would be 

interesting to be investigated in future studies. This is encouraged by the results of 

other strategies that attempted to modulate the host response, mainly macrophages, 
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during EBOV infection. For example, treatment with Eritoran, a TLR-4 antagonist 

increased the survival of EBOV and SUDV infected mice (Younan et al., 2017). 

Likewise, the treatment of murine macrophages with IFNγ conferred resistance to 

EBOV infection, and the transfer of M1 macrophages to mice protected them against 

a lethal dose of recombinant EBOV model (Rhein et al., 2015; Rogers et al., 2020).  

 

6.6 Potential utility of MS4A4A in other filovirus infections and other high 

consequence infectious diseases 

 

Situations like the 2013-2016 EVD pandemic and the current COVID-19 pandemic and 

highlight the high pressure on healthcare facilities due to the high number of severely 

ill cases, and the need of a prognostic marker that distinguish those patients in need 

of urgent medical attention. It is also important to note that despite the advanced 

investigation of therapeutics for EVD, less attention has been paid to the 

investigation of other filovirus diseases such as Sudan virus disease (SVD), 

Bundibugyo virus disease (BVD), and Marburg virus disease (MVD). Indeed, some of 

the current therapeutics used in EVD may be ineffective in other filovirus diseases, 

e.g. the mAb treatments tested in the PALM trial (mAb114, REGN-EB3, and ZMapp) 

are specific to EBOV, therefore are ineffective against other ebolaviruses or 

marburgviruses (Iversen et al., 2020). One exception is remdesivir that showed an in-

vitro activity against SUDV and MARV (Lo et al., 2017). Thus, to be prepared for future 

filovirus outbreaks, it would be relevant to investigate the expression levels of 

MS4A4A in-vitro or in animal models infected with these viruses. It is likely that 

MS4A4A is also associated with severity in other filovirus diseases since these viruses 

share a similar mechanism of entry. Besides, a previous study of SVD patients showed 

that a high level of the macrophage activation marker sCD163 was associated with 

fatal outcome, so it is very likely that MS4A4A would also be an important marker of 

fatality in SVD (McElroy et al., 2019). Likewise, the RT-qPCR assay developed in this 

thesis may be useful for the quantification of MS4A4A transcripts to compare 

survivors and fatal cases from other infectious diseases that elicit an M2 polarization 

like EVD. For the current pandemic, it would be important to investigate MS4A4A 

since severe lung disease has been associated to the increased induction of M2 
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macrophages in the infection caused by SARS-CoV and SARS-CoV-2 (Liu et al., 2020; 

Page et al., 2012).  

 

6.7 Limitations of the study 

 

The main limitation in our study was the RNA yield of the clinical samples that was 

insufficient for testing appropriately the 11 candidate predictive gene transcripts. 

Since these samples were not DNase treated to avoid loss of RNA due to an extra 

purification, we could not rule out the possibility of co-amplification of genomic DNA 

in some RT-qPCRs for primer pairs which were located within a single exon (VCAM1, 

HOPX, SLC25A5, MS4A4A and ISG15). However, 48 leftover clinical samples were 

DNase treated and re-tested by RT-qPCR for MS4A4A to validate our findings. 

 

Other limitation in our study was the low sample size used to train the machine 

learning models (less than 100 individuals). However, to avoid an optimistically 

biased performance we separated the training and testing data as recommended by 

Vabalas et al. (2019) for validating machine learning algorithms in limited sample size 

and used a minimal number of predictive variables to avoid overfitting. This study has 

room for further improvement. In future work, training a predictive model using 

MS4A4A with or without EBOV Ct values in a larger cohort of patients from different 

Ebola treatment centres would be more accurate.   

  

It is known that an advanced supportive care may improve the clinical outcome, as 

was observed in EVD patients that were evacuated to the USA or Europe during the 

2013-2016 West African outbreak (McElroy et al., 2016). Whether a supportive care 

intervention in our cohorts of patients affected the measured transcript levels of our 

candidate predictive genes is unknown. We do not have information about the 

supportive care that these patients received.  

 

Other factor that may have influenced the clinical outcome of these patients is the 

co-infection with parasitic diseases. Some studies have suggested that infection with 

Plasmodium falciparum protects from a fatal EBOV infection. Although this is 
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contradicting by other reports (Rosenke et al., 2016; Waxman et al., 2017). 

Interestingly, this protection has been suggested to be due to the induction of M1 

polarization of tissue macrophages through the production of IFNγ (Rogers et al., 

2020). In our study only one sample that had co-infection with Plasmodium 

falciparum was analysed, so it was not possible to evaluate differences in the 

MS4A4A transcript abundance between patients diagnosed with EVD alone and 

those diagnosed with both EVD and malaria. In addition, helminth infections may also 

impact the clinical outcome by inducing M2 polarization (Rolot & Dewals, 2018). 

Intestinal helminth infections are very prevalent in the West African countries and 

considered as a neglected tropical disease in this region (Hotez, 2015). Although we 

did not have information about co-infection with helminths in our cohorts of 

patients, we cannot rule out the possibility that a co-infection may have influenced 

the clinical outcome of these individuals. Further studies would be necessary to 

understand the impact of helminth infections in the EVD outcome and whether the 

transcript abundance of MS4A4A is altered or not.  

 
6.8  Several other gene transcripts may also be important predictors of the clinical 

outcome 

 

Several gene transcripts from the original set were not included in the machine 

learning approaches, as there was insufficient RNA to perform analysis on all patient 

samples. Nevertheless, some of them showed a significant difference in the transcript 

abundance between survivors and fatal cases e.g., TTC28 (p = 0.0077) and TGFBI (p = 

0.0303). Although only 16 samples (4 survivors and 12 fatal cases) were analysed for 

TTC28, and 12 samples (2 survivors and 10 fatal cases) for TGFBI, transcript levels 

were quite different for TTC28 (2 times less) and TGFBI (16 times less) in fatal 

compared to survivors. It would have been more appropriate to select these genes 

as well for further investigation. However, as we initially aimed to predict the 

outcome of the “blinded” cohort of patients, priority was given to the genes that we 

had more data for building a SVM model such as VCAM1 (39 samples), ISG15 (32 

samples), TUBG1 (31 samples) and MS4A4A (24 samples). 
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Based on our findings we recommend further analysis focused on three genes: 

VCAM1, ISG15 and TGFBI. This study showed that the transcript abundance of 

VCAM1 and ISG15 was significantly higher in fatal cases compared to survivors. In 

contrast, the transcript abundance of TGFBI was significantly lower in fatal cases than 

survivors.  

 

VCAM1 is a glycoprotein predominantly expressed in the surface of endothelial cells 

and is upregulated during EBOV infection like other cell adhesion molecules (CAMs)  

such as ICAM-1 and shed soluble forms into plasma (Wahl-Jensen et al., 2005). Our 

study is consistent with that of Kerber et al. (2018) who found a significant difference 

in the kinetics expression of soluble VCAM1 (sVCAM1) between survivors and fatal 

cases from the 2013-2016 outbreak in Guinea, with increased levels of sVCAM1 in 

fatal cases and/or decreased levels in survivors. Our results showed an increased 

transcript copy number in both but higher levels in fatal cases. In contrast, other 

study only found increased levels of sICAM but normal levels of sVCAM1 in a small 

cohort of USA patients with EVD (McElroy et al., 2016). Finally, these results 

corroborate the importance of VCAM1 as a predictor of the EVD outcome which was 

consistently selected by three different machine learning classifiers in a previous 

work by our group (Liu et al., 2017). 

 

ISG15 is a member of the ubiquitin family and it is strongly induced by type I 

interferons and pathogenic stimuli. It has also been proposed to have a function as a 

cytokine regulating the immune response and an antiviral role in diverse viral 

infections (Perng & Lenschow, 2018). ISG15 inhibits the viral replication by 

conjugation (ISGylation) of the viral proteins affecting the viral replication machinery, 

and by inhibiting the virus release as seen in EBOV infection (Durfee et al., 2010; 

Okumura et al., 2008). The increased transcript abundance of ISG15 in EVD patients 

in this study corroborates earlier findings that found an early and strong upregulation 

of ISG15 and other ISGs over the course of the disease in NHP models infected with 

EBOV (Caballero et al., 2016; Greenberg et al., 2020). Likewise, corroborates the 

higher ISG15 expression observed in non-survivors versus survivors in EBOV-infected 

NHP (Garamszegi et al., 2014).    
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TGFBI is an extracellular matrix protein. Although few samples were analysed for 

TGFBI, this study showed a lower transcript abundance in fatal cases compared to 

survivors which corroborates previous transcriptomic analysis of EVD patients (Liu et 

al., 2017). These results suggest a potential association between TGFBI 

downregulation and fatality in EVD. This may be somewhat associated to the role that 

TGFB has in promoting M2 polarization which has been related to EVD fatality (Gong 

et al., 2012). Contrary to this result, TGFBI is upregulated in Lassa virus infection 

(Malhotra et al., 2013). Similar to VCAM1, TGFBI was also consistently selected by 

three different machine learning models as a predictive marker to differentiate EVD 

survivors and fatal cases (Liu et al., 2017).  

 

Further research is recommended to confirm the ability of VCAM1, ISG15 and TGFBI 

as potential markers of EVD outcome in a larger cohort. 

 

6.9 Prognostic tests currently used in other infectious diseases 

 

Although there are no commercially available prognostic tests for infectious diseases, 

there are several studies that have proposed severity prediction models to be used 

by clinicians to improve the triage and management of patients with Dengue virus, 

Influenza virus, SARS-CoV2 and Respiratory syncytial virus infection (Chen et al., 

2020; Nguyen et al., 2017; Vos et al., 2019; Yan et al., 2020). These models are based 

on laboratory markers, clinical signs, viremia, or other risk factors of mortality. None 

of these models have included the gene transcripts evaluated in this thesis as 

prognostic markers. Further work is required to validate these severity prediction 

models and to assess their influence in the clinical treatment decision. 

 

6.10 Conclusions 

 

Taken together, this study has demonstrated that the transcript abundance of 

VCAM1, ISG15, TUBG1 but mainly MS4A4A may be useful as prognostic markers of 

EVD. Our findings suggest that MS4A4A is a strong predictor of EVD fatality and the 
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best predictor of EVD outcome within the genes set. One explanation for this finding 

is the expression of MS4A4A in M2 polarized macrophages which have been related 

to a severe form of EVD and fatality. In machine learning models, MS4A4A has shown 

a good performance as a predictor of the outcome similar and independent of EBOV 

Ct value. In future investigations, a larger sample size and the prediction of an 

independent dataset would be relevant to confirm these findings. 
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Appendix 
 
Appendix Table 1. RNA concentration of the cohort of 39 EVD patients with known 
outcome  
 

Sample_ID RNA concentration 
ng/ µl 

EM_013676 5.4 
EM_013796 Low out of range 
EM_076846 6.96 
EM_075933 5.56 
EM_076035 12.9 
EM_008015 7.04 
EM_075155 5.86 
EM_022044 4.8 
EM_013261 8.28 
EM_076814 Low out of range 

EM_0895 5.98 
EM_0367 4.6 

EM_023321 Low out of range 
EM_013283 6.02 
EM_077285 7.64 
EM_015781 5.34 

EM_0017 6.34 
EM_004032 Low out of range 
EM_076295 Low out of range 
EM_013860 8.12 
EM_075355 7.84 
EM_075935 Low out of range 
EM_016460 10.1 
EM_075314 7.64 
EM_008007 12.6 

EM_0727 10.5 
EM_0061 6.56 
EM_0763 14.7 

EM_080293 Low out of range 
EM_075159 7.22 

EM_0894 9.12 
EM_080093 5 
EM_077046 7.6 
EM_076569 15 
EM_076866 17.4 

EM_0783 12.8 
EM_076545 10.3 
EM_076882 13.3 
EM_080108 5.5 
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Appendix Table 2. Transcript abundance of the 11 candidate predictive genes quantified by RT-qPCR from testing 5 control samples and 39 
EVD patients with known outcome 
 

Sample_ID VCAM1 ISG15 CTSL TUBG1 MS4A4A TTC28 TGFBI PLPP3 NF3L1 SLC25A5 HOPX 

Donor 1 11686.13858 5242.27765 441.47646 135.47640 1039.36406 68.97138 6278.20041 167.44563 4982.02687 7595.17642 6224.37507 

Donor 2 20074.81423 6883.60588 377.28792 88.37637 1506.46239 79.17396 4829.43874 12.99610 3863.83449 6506.04545 5503.04715 

Donor 3 17535.92266 3904.66924 180.54552 173.58964 971.67212 91.25269 7884.95952 16.45213 3816.70421 8456.61642 7160.58279 

Donor 4 30651.92075 5329.85262 226.98251 78.20144 1993.99197 70.49724 4262.24242 17.06604 4129.12163 9325.77264 10183.67044 

Donor 5 24793.28728 4080.52575 258.54555 92.09127 1672.38429 86.28244 4552.97802 9.80021 3535.47046 8987.29253 10462.26782 

EM_013676 33651.07565 17305.63671 1983.03272 934.20737 ND* ND ND ND ND ND ND 

EM_013796 157072.97066 ND ND ND ND ND ND ND ND ND ND 

EM_076846 46524.96830 27904.47722 9622.92316 820.55884 4758.07089 ND ND ND ND ND ND 

EM_075933 30328.74277 220892.73376 3415.90509 164.01675 ND ND ND ND ND ND ND 

EM_076035 38093.39343 9784.35974 1120.62426 672.49861 2965.74361 94.42692 3568.25351 33.23519 4479.12441 18251.62518 ND 

EM_008015 12950.96956 51193.23401 3001.02720 724.72959 2929.96690 ND ND ND ND ND ND 

EM_075155 17934.26722 11898.95074 2595.27814 477.53258 ND ND ND ND ND ND ND 

EM_022044 135295.03942 14882.44944 371.63095 179.22659 ND ND ND ND ND ND ND 

EM_013261 11168.81382 29790.47308 2940.63651 1443.86534 1587.45818 109.85650 3942.46390 ND ND ND ND 

EM_076814 65569.17978 ND ND ND ND ND ND ND ND ND ND 

EM_0895 21922.35830 86219.84835 1167.08298 99.76071 1897.00691 ND ND ND ND ND ND 

EM_0367 57896.98703 18762.18891 2912.72963 ND ND ND ND ND ND ND ND 

EM_023321 321675.79783 ND ND ND ND ND ND ND ND ND ND 
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EM_013283 9743.03827 20878.86713 1966.03832 492.13530 1342.56261 ND ND ND ND ND ND 

EM_077285 34600.36384 14171.66985 5702.84096 1176.09098 6193.18619 98.07155 ND ND ND ND ND 

EM_015781 168266.73552 44221.64881 1789.82002 134.19983 ND ND ND ND ND ND ND 

EM_0017 115184.18060 23352.68245 2690.35591 420.61513 7419.78863 ND ND ND ND ND ND 

EM_004032 86716.89648 ND ND ND ND ND ND ND ND ND ND 

EM_076295 178407.44678 ND ND ND ND ND ND ND ND ND ND 

EM_013860 29973.98800 28807.98375 4762.56166 131.42202 2948.78459 68.00195 ND ND ND ND ND 

EM_075355 344407.93077 61971.73925 2681.17556 235.94922 19752.84787 ND ND ND ND ND ND 

EM_075935 146039.54370 ND ND ND ND ND ND ND ND ND ND 

EM_016460 237755.56857 59933.37476 682.80590 483.92448 16914.43442 29.16604 99.79415 44.27615 ND ND ND 

EM_075314 355361.29674 49453.24447 9227.77356 402.68567 20409.16495 ND ND ND ND ND ND 

EM_008007 254607.90920 67465.42867 992.84758 483.02655 14609.20408 44.24546 223.14419 107.11175 2991.03532 50231.80894 ND 

EM_0727 356053.62865 67193.53008 2816.72904 479.99178 23281.73892 30.46923 240.73290 149.17687 ND ND ND 

EM_0061 17145.71404 101920.52341 1740.63431 64.81578 2491.72388 ND ND ND ND ND ND 

EM_0763 260395.24077 55827.71615 1247.92940 221.66486 17929.66423 19.15526 119.21772 97.86812 751.39969 58539.05294 70991.04443 

EM_080293 143981.92155 ND ND ND ND ND ND ND ND ND ND 

EM_075159 214498.22060 66078.74121 2095.65547 362.43341 10943.34389 80.50910 ND ND ND ND ND 

EM_0894 236264.12165 58918.06637 1901.78874 207.10724 16310.79821 43.12587 176.05320 ND ND ND ND 

EM_080093 181885.12651 34951.20373 1670.58390 110.48702 ND ND ND ND ND ND ND 

EM_077046 203901.39120 53027.73441 2480.03037 253.19339 11606.18183 53.28530 ND ND ND ND ND 

EM_076569 221858.66276 49233.76862 3069.07116 623.63133 11649.51735 63.47506 458.15880 79.25875 4123.28391 45428.35664 53796.97259 
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EM_076866 255992.02461 41762.89035 7384.01589 623.18320 16563.03512 92.57343 593.26189 188.37908 3671.42580 45667.01961 50802.59509 

EM_0783 309091.94034 42245.03357 7239.75854 335.56032 15839.15371 70.83181 185.67578 211.62932 1950.35170 49253.68827 ND 

EM_076545 221225.77026 51330.26437 1360.79225 238.70682 11669.60265 51.40996 110.66112 97.23544 ND ND ND 

EM_076882 276796.70836 55320.95897 2976.70119 352.03694 12640.54114 67.94587 184.23730 118.51083 3485.00267 43156.69717 54703.67801 

EM_080108 139519.58797 13596.30214 520.24635 21.68663 ND ND ND ND ND ND ND 

*ND = not determined due to insufficient RNA sample 
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Appendix Table 3. Characteristics of the cohort of 39 EVD patients with known outcome 
 

Sample_ID EBOV Ct value Age Sex* EMLab site Year of 
sampling Profession Comorbidity Treatment Outcome 

EM_013676 26.33 8 F Coyah 2015 other no malaria No survivor 
EM_013796 27.08 18 F Coyah 2015 housewife no malaria No survivor 
EM_076846 28.45 25 F Guéckédou 2014 NA** no malaria No survivor 
EM_075933 27.09 30 F Guéckédou 2014 NA no malaria No survivor 
EM_076035 29.58 35 F Guéckédou 2014 NA no malaria No survivor 
EM_008015 31.64 40 F Coyah 2015 housewife no malaria No survivor 
EM_075155 28.83 45 F Guéckédou 2014 housewife no malaria No survivor 
EM_022044 29.24 50 F Coyah 2015 housewife no malaria No survivor 
EM_013261 27.37 54 F Coyah 2015 housewife no malaria No survivor 
EM_076814 28.97 65 F Guéckédou 2014 NA no malaria No survivor 

EM_0895 25.18 15 M Guéckédou 2014 NA no malaria No survivor 
EM_0367 27.35 25 M Guéckédou 2014 hunter, student no malaria No survivor 

EM_023321 27.08 30 M Coyah 2015 housewife no malaria No survivor 
EM_013283 34.57 35 M Coyah 2015 farmer no malaria No survivor 
EM_077285 28.1 40 M Guéckédou 2014 NA no malaria No survivor 
EM_015781 32.18 45 M Coyah 2015 other no malaria Favipiravir survivor 

EM_0017 27.65 51 M Guéckédou 2014 farmer no malaria No survivor 
EM_004032 27.4 60 M Guéckédou 2014 other no malaria Favipiravir survivor 
EM_076295 28.58 71 M Guéckédou 2014 other no malaria No survivor 
EM_013860 27.95 5 F Coyah 2015 other no malaria No survivor 
EM_075355 16.12 10 F Guéckédou 2014 NA no malaria No fatal 
EM_075935 20.45 20 F Guéckédou 2014 NA no malaria No fatal 
EM_016460 17.07 25 F Coyah 2015 NA no malaria No fatal 
EM_075314 18.25 30 F Guéckédou 2014 housewife no malaria No fatal 
EM_008007 17.08 40 F Coyah 2015 housewife no malaria No fatal 
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EM_0727 16.34 50 F Guéckédou 2014 NA no malaria No fatal 
EM_0061 20.98 55 F Guéckédou 2014 housewife no malaria No fatal 
EM_0763 16.59 65 F Guéckédou 2014 NA no malaria No fatal 

EM_080293 19.3 70 F Guéckédou 2014 housewife no malaria No fatal 
EM_075159 15.59 9 M Guéckédou 2014 NA no malaria No fatal 

EM_0894 17.91 20 M Guéckédou 2014 NA no malaria No fatal 
EM_080093 17.33 25 M Guéckédou 2014 farmer no malaria No fatal 
EM_077046 15.12 30 M Guéckédou 2014 other no malaria No fatal 
EM_076569 16.72 40 M Guéckédou 2014 farmer no malaria No fatal 
EM_076866 16.22 50 M Guéckédou 2014 NA no malaria No fatal 

EM_0783 18.99 55 M Guéckédou 2014 NA no malaria No fatal 
EM_076545 15.99 65 M Guéckédou 2014 NA no malaria No fatal 
EM_076882 17.16 70 M Guéckédou 2014 NA no malaria No fatal 
EM_080108 18.01 80 M Guéckédou 2014 NA no malaria No fatal 

*F = female; M = male; **NA = data not available 
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Appendix Table 4. RNA concentration of the 64 EVD patients from the “blinded” 
cohort of samples 
 

Sample_ID RNA concentration 
ng/ µl 

 

RNA-01 5.34  

RNA-02 15.6  

RNA-03 15.7  

RNA-04 16.5  

RNA-05 6.84  

RNA-06 19  

RNA-07 12.3  

RNA-08 13.1  

RNA-09 5.86  

RNA-10 18.1  

RNA-11 17.6  

RNA-12 Low out of range  

RNA-13 8.12  

RNA-14 12.8  

RNA-15 6.14  

RNA-16 Low out of range  

RNA-17 21.2  

RNA-18 17.1  

RNA-19 7.26  

RNA-20 7.2  

RNA-21 16.8  

RNA-22 6.28  

RNA-23 9.02  

RNA-24 14.8  

RNA-25 6.08  

RNA-26 8.08  

RNA-27 Low out of range  

RNA-28 10.4  

RNA-29 9.36  

RNA-30 13.2  

RNA-31 7.24  

RNA-32 25.4  
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RNA-33 20.8  

RNA-34 11.4  

RNA-35 30.2  

RNA-36 8.82  

RNA-37 17.8  

RNA-38 12.3  

RNA-39 7.94  

RNA-40 7.84  

RNA-41 18.3  

RNA-42 14.5  

RNA-43 22.6  

RNA-44 8.84  

RNA-45 12.1  

RNA-46 4  

RNA-47 16.3  

RNA-48 4.2  

RNA-49 Low out of range  

RNA-50 9.16  

RNA-51 8.32  

RNA-52 10.2  

RNA-53 12.9  

RNA-54 7.28  

RNA-55 4.6  

RNA-56 10.7  

RNA-57 11.9  

RNA-58 Low out of range  

RNA-59 7.6  

RNA-60 5.42  

RNA-61 10.6  

RNA-62 7.76  

RNA-63 4.2  

RNA-64 6.38  
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Appendix Table 5. Transcript abundance of the 4 candidate predictive genes quantified by RT-qPCR from testing 5 control samples and 64 EVD 
patients from the “blinded” cohort of samples 
 

Sample_ID VCAM1             ISG15              MS4A4A  TUBG1         

Donor 1 8727.42752 7647.40248 552.44773 148.26357 

Donor 2 10171.63980 6979.39775 519.78395 76.63345 

Donor 3 7985.83130 5166.11509 433.83158 161.12324 

Donor 4 18119.19344 4583.78006 1009.72090 78.82248 

Donor 5 14519.12060 3580.18236 930.29021 122.21942 

RNA-01 191505.82976 31995.48060 5422.97335 14.37721 

RNA-02 141523.40691 36012.58353 6043.55946 596.68779 

RNA-03 142194.47161 41119.15293 5972.98089 182.20802 

RNA-04 148528.34159 49763.01116 6260.36657 301.53413 

RNA-05 83536.80180 80488.10555 4217.05054 206.34228 

RNA-06 112876.75554 49103.06291 5236.35980 1027.02770 

RNA-07 135617.65320 48329.88493 6143.10226 400.77303 

RNA-08 159708.10817 54694.06341 6696.27085 202.18910 

RNA-09 38651.38504 51087.71150 2363.78144 369.63809 

RNA-10 181922.05216 40559.48239 6982.01957 778.84435 

RNA-11 138647.00602 53496.80872 5781.86631 507.36030 

RNA-12 57166.74090 ND* ND ND 
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RNA-13 57927.73540 33835.11718 3047.07598 984.99033 

RNA-14 159723.31369 44741.09007 6436.72749 564.14681 

RNA-15 40270.06140 83782.80418 2146.72670 278.80286 

RNA-16 No amplification No amplification No amplification No amplification 

RNA-17 109514.64318 40530.81294 4656.30179 531.30612 

RNA-18 185028.50246 50948.25120 7415.50741 330.19750 

RNA-19 84307.07673 72954.41781 4109.99266 301.97073 

RNA-20 109400.69426 63308.59169 5110.38362 260.63828 

RNA-21 140288.36653 56010.21721 5869.70586 847.61888 

RNA-22 113097.65187 260186.35146 5576.08405 142.93491 

RNA-23 168801.62137 50988.52607 7965.36387 394.42508 

RNA-24 164964.98138 44487.62455 7185.38030 566.33556 

RNA-25 74498.30018 42375.19295 3972.84285 243.28418 

RNA-26 100880.00170 42564.89568 4423.05421 327.19850 

RNA-27 91981.11845 ND ND ND 

RNA-28 197630.77588 57921.53986 8417.04157 387.17359 

RNA-29 178514.59699 49710.67081 6391.73778 231.17918 

RNA-30 201621.22005 43958.05562 7045.60441 231.86884 

RNA-31 113233.94634 44500.09451 5135.43058 182.87150 

RNA-32 163541.04848 63327.19968 7001.91104 367.79269 

RNA-33 148227.54484 30946.98641 7791.17255 381.88785 
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RNA-34 194252.97821 42631.86562 10602.38312 138.22268 

RNA-35 201864.02412 35256.93137 10617.42410 474.47922 

RNA-36 120719.74055 30530.68669 6432.52493 260.25497 

RNA-37 159239.42998 38324.70333 7763.13517 305.34760 

RNA-38 95491.56975 22446.28982 4741.92252 211.52420 

RNA-39 85767.60423 29307.55569 5656.40443 262.22113 

RNA-40 112521.62892 118322.56817 6791.60136 96.97805 

RNA-41 166672.41302 54848.84994 8091.59067 387.80988 

RNA-42 136107.75041 30189.48956 7788.99375 959.61714 

RNA-43 126855.05391 30446.36602 10706.59167 878.55790 

RNA-44 99406.64730 26282.68474 5659.12417 297.58613 

RNA-45 148893.18087 42154.29448 7857.72888 314.60170 

RNA-46 11408.55441 76098.31902 2802.11322 ND 

RNA-47 164024.64200 36909.92393 9008.61427 441.64695 

RNA-48 121137.00319 29886.52512 7223.76408 118.29060 

RNA-49 1855.54461 ND ND ND 

RNA-50 161449.63004 39924.38916 8294.15576 333.72382 

RNA-51 125333.14966 43743.43750 7279.17457 159.76693 

RNA-52 201798.26263 40020.98006 9321.72258 185.51054 

RNA-53 189912.28293 34670.08797 8978.17070 189.10925 

RNA-54 15614.31154 205547.94032 2314.59587 154.92555 
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RNA-55 10034.07940 111601.46716 2202.88289 174.95566 

RNA-56 112759.06300 47759.74868 6628.27250 569.26410 

RNA-57 126330.50826 30079.54571 6922.29436 250.58458 

RNA-58 128996.38712 ND ND ND 

RNA-59 80895.27259 15178.91557 4703.89702 371.07360 

RNA-60 9298.36357 137532.61728 607.84116 162.85828 

RNA-61 178573.29717 30084.19548 7789.31235 132.83524 

RNA-62 34890.25513 13797.35440 2777.64092 1006.85627 

RNA-63 7415.23029 1394.60925 517.43595 ND 

RNA-64 17457.89919 11630.51198 1569.12823 1163.45488 
*ND = not determined due to insufficient RNA sample 
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Appendix Table 6. Characteristics of the 64 EVD patients from the “blinded” cohort of samples 
 

Sample_D EBOV_Ct Age Sex EMLab site Year of sampling Comorbidity Treatment Outcome 

RNA-01 19.1 58 F Guèckèdou 2014 no malaria No survivor 

RNA-02 17.25 55 M Guèckèdou 2014 no malaria No survivor 

RNA-03 17.09 40 F Guèckèdou 2014 no malaria No survivor 

RNA-04 19.08 18 M Guèckèdou 2014 no malaria No survivor 

RNA-05 17.73 24 M Guèckèdou 2014 no malaria No survivor 

RNA-06 19.76 70 F Guèckèdou 2014 no malaria No survivor 

RNA-07 19.04 21 M Guèckèdou 2014 no malaria No survivor 

RNA-08 14.42 12 M Guèckèdou 2014 no malaria No survivor 

RNA-09 23.19 70 M Guèckèdou 2014 no malaria No survivor 

RNA-10 19.54 5 F Guèckèdou 2014 no malaria No survivor 

RNA-11 16.08 25 F Guèckèdou 2014 no malaria No survivor 

RNA-12 22.05 50 M Guèckèdou 2014 no malaria No survivor 

RNA-13 21.29 60 M Guèckèdou 2014 no malaria No survivor 

RNA-14 15.99 11 F Guèckèdou 2014 no malaria No survivor 

RNA-15 19.35 30 F Guèckèdou 2014 no malaria No survivor 

RNA-16 15.77 38 F Guèckèdou 2014 no malaria No survivor 

RNA-17 17.71 10 M Guèckèdou 2014 no malaria No survivor 

RNA-18 18.5 30 M Guèckèdou 2014 no malaria No survivor 
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RNA-19 16.52 3 F Guèckèdou 2014 no malaria No survivor 

RNA-20 17.44 19 F Guèckèdou 2014 no malaria No survivor 

RNA-21 15.24 60 F Guèckèdou 2014 no malaria No survivor 

RNA-22 17.24 6 M Coyah 2015 no malaria No survivor 

RNA-23 19.55 16 F Guèckèdou 2014 no malaria No survivor 

RNA-24 19.95 45 F Guèckèdou 2014 no malaria No survivor 

RNA-25 19.31 3 M Guèckèdou 2014 no malaria No survivor 

RNA-26 19.81 45 M Guèckèdou 2014 no malaria No survivor 

RNA-27 17.9 55 F Guèckèdou 2014 no malaria No fatal 

RNA-28 14.66 75 F Guèckèdou 2014 no malaria No fatal 

RNA-29 14.61 45 F Guèckèdou 2014 no malaria No fatal 

RNA-30 15.3 48 M Guèckèdou 2014 no malaria No fatal 

RNA-31 15.51 18 M Guèckèdou 2014 no malaria No fatal 

RNA-32 13.5 14 F Guèckèdou 2014 malaria No fatal 

RNA-33 14.91 38 F Guèckèdou 2014 no malaria No fatal 

RNA-34 19.95 30 F Guèckèdou 2014 no malaria No fatal 

RNA-35 16.69 0.6 M Guèckèdou 2014 no malaria No fatal 

RNA-36 14.99 6 F Guèckèdou 2014 no malaria No fatal 

RNA-37 14.6 24 M Guèckèdou 2014 no malaria No fatal 

RNA-38 15.34 30 M Guèckèdou 2014 no malaria No fatal 

RNA-39 15.07 50 F Guèckèdou 2014 no malaria No fatal 
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RNA-40 14.03 15 M Guèckèdou 2014 no malaria No fatal 

RNA-41 15.33 6 M Guèckèdou 2014 no malaria No fatal 

RNA-42 15.82 38 M Guèckèdou 2014 no malaria No fatal 

RNA-43 12.87 53 M Guèckèdou 2014 no malaria No fatal 

RNA-44 16.33 60 F Guèckèdou 2014 no malaria No fatal 

RNA-45 15.4 45 M Guèckèdou 2014 no malaria No fatal 

RNA-46 22.1 0.5 F Guèckèdou 2014 no malaria No fatal 

RNA-47 17.44 20 F Guèckèdou 2014 no malaria No fatal 

RNA-48 19.91 80 F Coyah 2015 no malaria No fatal 

RNA-49 20.27 73 M Coyah 2015 no malaria No fatal 

RNA-50 16.26 59 M Coyah 2015 no malaria No fatal 

RNA-51 15.2 25 F Guèckèdou 2014 no malaria No fatal 

RNA-52 16.22 60 M Coyah 2015 no malaria No fatal 

RNA-53 19.1 24 F Guèckèdou 2014 no malaria Favipiravir fatal 

RNA-54 23 40 F Guèckèdou 2014 no malaria Favipiravir fatal 

RNA-55 23.64 60 F Guèckèdou 2014 no malaria Favipiravir fatal 

RNA-56 17.41 29 M Guèckèdou 2014 no malaria Favipiravir fatal 

RNA-57 17.53 38 M Guèckèdou 2014 no malaria Favipiravir fatal 

RNA-58 18.9 50 M Coyah 2015 no malaria Favipiravir fatal 

RNA-59 26.42 14 F Guèckèdou 2014 no malaria Favipiravir fatal 

RNA-60 20.42 18 F Guèckèdou 2014 no malaria Favipiravir fatal 
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RNA-61 22.17 50 F Guèckèdou 2014 no malaria Favipiravir survivor 

RNA-62 27.15 18 M Guèckèdou 2014 no malaria Favipiravir survivor 

RNA-63 20.06 19 M Coyah 2015 no malaria Favipiravir survivor 

RNA-64 29.15 62 M Guèckèdou 2014 no malaria Favipiravir survivor 
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Appendix Table 7. Characteristics of the 48 DNase-treated samples and MS4A4A transcript abundance quantified by RT-qPCR 
 

Sample_ID Outcome 

Days 
since 

symptom 
onset 

Age Sex EMLab site Year Comorbidity Treatment EBOV Ct value 
MS4A4A copy 

number 

RNA-02 survivor 11 55 M Guèckèdou 2014 no malaria No 17.25 200.39582 

RNA-03 survivor 7 40 F Guèckèdou 2014 no malaria No 17.09 68.81439 

RNA-04 survivor 0 18 M Guèckèdou 2014 no malaria No 19.08 167.07763 

RNA-05 survivor 4 24 M Guèckèdou 2014 no malaria No 17.73 7.78317 

RNA-06 survivor 10 70 F Guèckèdou 2014 no malaria No 19.76 803.05306 

RNA-07 survivor 7 21 M Guèckèdou 2014 no malaria No 19.04 84.78420 
RNA-08 survivor 8 12 M Guèckèdou 2014 no malaria No 14.42 18.84758 

RNA-10 survivor 8 5 F Guèckèdou 2014 no malaria No 19.54 548.45975 

RNA-11 survivor 3 25 F Guèckèdou 2014 no malaria No 16.08 99.89566 

RNA-13 survivor 9 60 M Guèckèdou 2014 no malaria No 21.29 9.82720 

RNA-14 survivor 6 11 F Guèckèdou 2014 no malaria No 15.99 41.39615 

RNA-17 survivor 8 10 M Guèckèdou 2014 no malaria No 17.71 63.33648 

RNA-18 survivor 8 30 M Guèckèdou 2014 no malaria No 18.5 428.45637 

RNA-19 survivor 2 3 F Guèckèdou 2014 no malaria No 16.52 25.02896 

RNA-20 survivor 3 19 F Guèckèdou 2014 no malaria No 17.44 26.27417 

RNA-21 survivor 4 60 F Guèckèdou 2014 no malaria No 15.24 392.66976 

RNA-22 survivor 3 6 M Coyah 2015 no malaria No 17.24 14.33285 

RNA-23 survivor 3 16 F Guèckèdou 2014 no malaria No 19.55 44.85136 
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RNA-24 survivor 8 45 F Guèckèdou 2014 no malaria No 19.95 81.07485 

RNA-26 survivor 9 45 M Guèckèdou 2014 no malaria No 19.81 18.33814 

RNA-28 fatal NA* 75 F Guèckèdou 2014 no malaria No 14.66 248.37024 

RNA-29 fatal 8 45 F Guèckèdou 2014 no malaria No 14.61 165.94605 

RNA-30 fatal 2 48 M Guèckèdou 2014 no malaria No 15.3 27.67241 

RNA-31 fatal 3 18 M Guèckèdou 2014 no malaria No 15.51 39.05938 
RNA-32 fatal 4 14 F Guèckèdou 2014 malaria No 13.5 943.57356 

RNA-33 fatal 5 38 F Guèckèdou 2014 no malaria No 14.91 377.96708 

RNA-34 fatal 10 30 F Guèckèdou 2014 no malaria No 19.95 81.76147 

RNA-36 fatal 7 6 F Guèckèdou 2014 no malaria No 14.99 69.08459 

RNA-37 fatal 5 24 M Guèckèdou 2014 no malaria No 14.6 94.66044 

RNA-38 fatal 6 30 M Guèckèdou 2014 no malaria No 15.34 116.05709 

RNA-39 fatal 2 50 F Guèckèdou 2014 no malaria No 15.07 80.86238 

RNA-40 fatal 5 15 M Guèckèdou 2014 no malaria No 14.03 13.29102 

RNA-41 fatal 5 6 M Guèckèdou 2014 no malaria No 15.33 127.25070 

RNA-42 fatal 1 38 M Guèckèdou 2014 no malaria No 15.82 171.92892 

RNA-44 fatal 7 60 F Guèckèdou 2014 no malaria No 16.33 40.86581 

RNA-45 fatal 3 45 M Guèckèdou 2014 no malaria No 15.4 171.84369 
RNA-47 fatal 8 20 F Guèckèdou 2014 no malaria No 17.44 440.83137 

RNA-50 fatal 10 59 M Coyah 2015 no malaria No 16.26 100.06306 

RNA-51 fatal 3 25 F Guèckèdou 2014 no malaria No 15.2 70.04940 

RNA-52 fatal 2 60 M Coyah 2015 no malaria No 16.22 315.39890 

RNA-53 fatal 3 24 F Guèckèdou 2014 no malaria Favipiravir 19.1 81.70676 
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RNA-54 fatal 2 40 F Guèckèdou 2014 no malaria Favipiravir 23 221.08921 

RNA-56 fatal 3 29 M Guèckèdou 2014 no malaria Favipiravir 17.41 88.43277 

RNA-57 fatal 5 38 M Guèckèdou 2014 no malaria Favipiravir 17.53 71.75741 

RNA-59 fatal 1 14 F Guèckèdou 2014 no malaria Favipiravir 26.42 116.40438 

RNA-61 survivor 4 50 F Guèckèdou 2014 no malaria Favipiravir 22.17 22.83285 

RNA-62 survivor 6 18 M Guèckèdou 2014 no malaria Favipiravir 27.15 70.65749 
RNA-64 survivor 0 62 M Guèckèdou 2014 no malaria Favipiravir 29.15 12.14904 

*Data not available  
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Appendix Table 8. Transcript abundance of VCAM1, MS4A4A and ISG15 obtained by multiplex RT-qPCR from testing 47 clinical samples from 
the “blinded” cohort of patients. 
 
 

Sample_ID VCAM1 MS4A4A ISG15 
RNA-02 31,866 11,972 42,626 
RNA-03 34,991 13,102 53,476 
RNA-04 33,913 12,537 64,295 
RNA-05 17,086 6,455 60,413 
RNA-06 23,277 10,179 70,236 
RNA-07 28,236 10,347 69,070 
RNA-08 34,226 13,064 67,472 
RNA-10 39,061 17,081 51,146 
RNA-11 28,549 11,282 75,545 
RNA-13 11,592 3,959 43,807 
RNA-14 28,701 11,739 48,129 
RNA-17 21,757 7,986 49,809 
RNA-18 26,390 10,502 56,446 
RNA-19 9,712 4,798 101,877 
RNA-21 17,623 7,465 70,147 
RNA-23 21,338 8,588 75,999 
RNA-24 24,355 9,872 53,531 
RNA-26 11,290 5,220 46,066 
RNA-28 30,528 11,473 97,782 
RNA-29 24,688 9,722 64,362 
RNA-30 26,582 10,484 44,988 
RNA-32 24,970 10,913 65,214 
RNA-33 21,553 8,119 56,782 
RNA-34 29,278 10,565 75,607 
RNA-35 30,957 12,676 61,660 
RNA-36 18,148 8,587 49,619 
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RNA-37 25,060 10,005 29,192 
RNA-38 10,731 3,571 19,248 
RNA-40 15,103 6,098 258,775 
RNA-41 26,060 11,419 128,715 
RNA-42 16,296 8,365 35,777 
RNA-43 17,344 11,988 45,639 
RNA-44 10,818 4,834 31,353 
RNA-45 19,132 8,034 60,780 
RNA-47 22,718 12,830 51,252 
RNA-50 25,142 8,719 72,981 
RNA-51 16,961 6,729 57,019 
RNA-52 29,386 11,902 71,417 
RNA-53 25,043 9,566 54,496 
RNA-54 2,206 3,468 579,028 
RNA-56 15,198 5,113 73,216 
RNA-57 15,462 5,523 34,352 
RNA-59 7,694 3,426 21,727 
RNA-60 999 716 283,074 
RNA-61 23,654 9,969 44,515 
RNA-62 3,658 2,270 23,043 
RNA-64 2,035 1,332 20,475 

 
 
 
 
 
 


