
 

 

 

MASS CYTOMETRY ANALYSIS OF B CELL RECEPTOR 
SIGNALING IN NORMAL B AND CHRONIC LYMPHOCYTIC 

LEUKAEMIA CELLS IN PERIPHERAL BLOOD 

 

Thesis submitted in accordance with the requirements of the 
University of Liverpool for the degree of 

Doctor in Philosophy 

By 

Faten Yasin 

 

 

April,2021 

 

 

 

 

 



 

 

2 

 

Dedication 

 
To my Father, ‘Captain Mansoor Yasin’, who has always supported me throughout 
my life and pushed me to achieve my higher studies. 
 
To my Mother, ‘Eman Rashad’, has and will always be by my side supporting me to 
reach my goals. 
 
 
  



3 

 

Abstract  

Chronic Lymphocytic Leukaemia (CLL) is the most common form of adult leukaemia 

and is characterised by accumulation of CD5+ B cells in peripheral blood (PB) and 

lymphoid tissues. B cell receptor (BCR) engagement plays an important role in the 

progression of this disease by affecting both proliferation and survival of the malignant 

clone. Typically, studies of BCR signaling in CLL cells have only considered whole 

populations of cells, and whether, or how, individual clones react has been largely 

ignored because of technical constraints. Mass cytometry solves these constraints 

with its ability to simultaneously measure more than 40 different parameters, including 

both cell surface and internal antigens, thereby permitting single cell resolution. The 

aim of this study was to use this technique to study BCR signaling in CLL with the 

purpose of providing insight into the relationship between such signals and individual 

clones. A further aim was to investigate how BCR pathway inhibitors such as ibrutinib 

[an inhibitor of Bruton’s tyrosine kinase (BTK)] and idelalisib [an inhibitor of 

phosphatidylinositol 3 kinase  (PI3K)] affect BCR signaling at the single cell level. I 

optimised a panel of 13 surface antigens to differentiate B cells from other peripheral 

blood cells and examined these B cells for induced signaling using antibodies to 8 

internal phospho-protein antigens. I first characterised B cell populations in peripheral 

blood from healthy individuals and patients with CLL; finding in the first instance that I 

was able to observe the normal counterpart of malignant CLL cells, the CD5+ B cell, 

and in the second instance different subpopulations of CLL cells, including previously 

described older quiescent CXCR4+ /CD5- (OQ cells) and newly emerged CD5+/ 

CXCR4- (NE cells) phenotypes. I next investigated signaling in normal B and CLL cells, 

first by modelling my approach using Maver-1 cells, and then using primary cells. 

Analysis of BCR signaling in normal B cells showed that the way naïve and memory 
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B cells responded after anti-IgM stimulation were different, with the former having 

weaker responses compared to the latter.  As control, class switched B cells and T 

cells were included in the analysis, no strong signals were recorded in these cell types 

despite the presence of anti-IgM antibody used to stimulate cells. FlowSOM was used 

to understand the relationship between expression of surface IgM and signal induction 

at the single cell level. This analysis showed a strong correlation between surface IgM 

expression and induction of protein phosphorylation. Thus, those cells with high levels 

of expression of surface IgM, such as memory B cells, had intense signals, whereas 

cells with lower levels of surface IgM had weaker. Cells which did not express surface 

IgM, class switched memory B cells, did not signal at all. I next investigated BCR 

signaling in CLL cells and found a similar relationship between surface IgM and 

signaling intensity. Comparison of BCR signaling between newly emerged (NE) and 

older quiescent (OQ) cells based on expression of CD5 and CXCR4 subclones 

showed that surface IgM expression was highest on CLL cells strongly expressing 

CXCR4+/CD5+ and CD5+/ CXCR4- (NE cells). These were the same cells which 

responded to BCR engagement. In contrast, cells which were weak for CD5 (OQ cells) 

also had weak expression of surface IgM and did not readily respond to BCR 

stimulation. In my thesis I concentrated to study sIgM in both normal B and CLL B 

cells, first it is expressed in early formation of B cell differentiation in immature B cells 

after VDJ recombination and it is highly expressed in most CLL cases, UM-CLL 

compared to M-CLL. Studies have shown, surface IgM expression is more variable 

than IgD expression. This variance is correlated more with the clinical and biologic 

outcome response in CLL. sIgM promotes to increase survival and proliferation of 

mature B cells in the germinal centre and has found to be integrated with CXCR4 and 

IL-4, that results in BCR signaling to be the main driver to disease outcome. 
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Investigation of the effects of ibrutinib showed that selected nodes within subclones, 

CXCR4+/CD5+ and CD5+/ CXCR4- populations could be identified where BCR signals 

were not impaired by the presence of this inhibitor, pointing to the usefulness of mass 

cytometry as a tool to study clonal evolution and disease resistance to therapy in CLL. 

Taken together, these results demonstrate my ability to use mass cytometry to 

measure BCR signaling in individual B cells. My findings therefore provide a 

foundation with which to study this phenomenon as well as others (such as gene 

transcription) in normal and malignant haemic cells in health and disease.  
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Chapter 1: Main Introduction 
 

1.1 Overview 

In the process of tumorigenesis factors such as genetic mutation, epigenetic change 

and microenvironment combine to create heterogeneous populations of malignant 

cells where outgrowth of a dominant clone is governed by favourable conditions 

created by these factors [1, 2]. Such heterogeneity within tumours contributes to the 

resistance of cancers to therapy because as the conditions that favour the growth of 

one population of malignant cells changes, new conditions that are created may favour 

the outgrowth of another [3]. For example, mutations within TP53 can confer 

resistance to DNA damaging therapies, such as fludarabine and cyclophosphamide, 

or enhance metabolic switch to glycolysis on to CLL cell clones to give them growth 

advantage [4]. Outgrowth of dominant clones in CLL can have a different  phenotype 

that is based on particular genetic mutations that potentially could be detected using 

flow cytometry and other tools that include lineage tracing to understand the dynamics 

of this outgrowth. This is particularly applicable to the malignant cells of chronic 

lymphocytic leukaemia (CLL), a haemic cancer that has no conventional cure because 

of this adaptability. Understanding clonal heterogeneity in CLL requires ability to 

analyse the malignant cells of this disease at single cell resolution. Here I offer 

multidimensional (phenotype/signalling) characterisation with unprecedented 

parallelisation[5]. Conventional flow cytometry is one tool where light is used to 

discriminate single cells, which is by only forward  scatter (FSC) and side scatter (SSC) 

and  for the rest its fluorescently labelled antibodies and detect the presence of 

features such as cell size, surface antigen expression, markers of cell division, et 

cetera. The power of conventional flow cytometry is demonstrated by its use a “gold 
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standard” technique in the study of immune cells in health and disease[6]. However, 

conventional flow cytometry is burdened with limitations based on the fluorochromes 

that are used for detection reagents where physical properties, such as spectral 

overlap, result in the need to perform compensation algorithms that can lead to 

significant background noise and generate inaccurate results. This limitation becomes 

increasingly cumbersome when the dimensionality of a given experiment also 

increases. Thus, at the beginning of this thesis the most advanced conventional flow 

cytometer, the Becton Dickinson LSR-Fortessa™, was only able to measure 18 

parameters on a simultaneous basis. Mass cytometry, the basis of which will be 

discussed later in this Chapter, was developed to address this problem of limited 

dimensionality.  The use of heavy metal conjugated reagents allows this technique the 

ability to expand detection to over 40 biomarkers to allow more precise ability to 

examine single cell phenotype without the constraints of significant spectral overlap. 

This thesis applies mass cytometry to the study of normal and CLL B cell phenotypes 

to study clonal heterogeneity among single cells and build a basis for the 

understanding of evolution in cancer.   

1.2 B cell development 

1.2.1 B cell differentiation  

 

Our body has several defence mechanisms to defend us against foreign pathogens 

pathogens in the environment [7]. These defence mechanisms, our immunity, are 

either innate and respond immediately to foreign antigen, or are adaptive where initial 

semi-specific activation is followed by more exact targeting of the offending body so 

that it can be efficiently removed. Importantly, this adaptive immunity also records 

memory against any foreign antigen so that repeat infections can be minimised [8]. 

Making up our immunity is a complex of five different cell types which work together 
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to create a defence shield against any pathogen. Known as white blood cells, these 

five cell types are made up of neutrophils, monocytes, eosinophils, basophils, and 

lymphocytes (Figure 1.1). The former four cell types have an innate immunity function, 

whereas lymphocytes can also take on the adaptive immune function.  

Regardless of their differing function in the immune system, neutrophils, monocytes, 

megakaryocyte, eosinophils, basophils, and lymphocytes can be identified on the 

basis of surface antigen expression where antibodies can be used as reagents to 

accomplish this task. Nevertheless, these cells originate, indeed like all cells of the 

blood, from haematopoietic stem cells which are pluripotent (Figure 1.1). These cells 

reside in the bone marrow where they differentiate into common myeloid or lymphoid 

progenitor (respectively CMP and CLP) cells, and from this point on lose the ability to 

self-renew in terms of reconstituting the blood. In terms of myeloid lineage cells, 

differentiation to neutrophils, monocytes, eosinophils, basophils, red blood cells and 

platelets from CMP cells occurs along pathways that are described elsewhere [9] as 

this is not relevant to this thesis. Lymphoid cells, such as B, T and Natural Killer (NK) 

cells, derive from CLP cells (Figure 1.1) where expression of Ig genes coding for the 

B or gene coding for / or  chains of T cell receptors dictate differentiation of CLP 

to pro-B and pro-T cells, respectively [10]. This thesis is focussed on B cells, both 

normal and the malignant cells of CLL, and therefore differentiation of B cells will be 

more fully described. Differentiation of T and NK cells is not relevant to this thesis and 

is described elsewhere [11]. 
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Figure 1. 1 Stem cell differentiation diagram. The normal development of 
hematopoietic stem cell and differentiation in normal healthy individuals. This figure 
was created using Biorender.com. 

 

B cell differentiation begins with expression of the immunoglobulin (Ig) gene coding 

for the heavy chain of the B cell receptor within CLP cells [12]. These cells now 

become pro-B cells and concomitant expression of recombination-activation genes 

(RAG) stimulate recombination of the Ig gene such that the parts coding for the 

antigen-binding domain, the variable(V), Joining (J) and Diversity (D) genes, 

recombine to create an intact protein that is expressed as the pre-BCR that ultimately 

forms surface IgM[13, 14]. Once intact heavy chain Ig is expressed by pro-B cells, 

differentiation is then allowed to progress to pre-B cells [15-17]. Where Ig gene 

responsible for the light chain of the BCR are expressed and undergo the 

recombination as the heavy chain Ig [18]. The appearance of surface IgM, as the BCR, 
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on the surface of developing B cells in the bone marks them as immature B cells. Here 

BCR engages with the environment and where strong stimulation occurs, the B cells 

undergo apoptosis in order to remove self-reactive cells. This is known as the first 

immunological checkpoint. If BCR on immature B cells engages weakly with the 

environment, these cells become anergic and eventually die in the periphery. Finally, 

those cells which receive no signal from their BCR emerge from the bone marrow as 

naïve transitional B cells that go to the spleen and other secondary lymphoid organs 

where contact with foreign antigen stimulates further differentiation.  

Peripheral B cells “see” antigen in two contexts; the first being in peripheral circulation 

or tissues where cognate foreign antigen is recognised by their BCR, the second 

context is when B cells naturally transit the lymphoid organs and come into contact 

with antigen-presenting cells that they then recognise by their BCR. Regardless of this 

context, BCR with antigen is internalised by the B cell, and then antigen is re-

expressed as a peptide for display in conjunction with the MHC class II proteins. 

Activated B cells move to/remain in lymphoid organs where they come into contact 

with cognate CD4+ T cells which recognise the antigen-MHC class II configuration that 

is displayed by the B cell. These CD4+ T cells become themselves activated and are 

induced to express CD40 ligand (CD154) and interleukin 4 (IL4), which together act to 

stimulate the B cell to proliferate and further differentiate [19]. B cell interaction with 

CD154 and IL4 induces expression of activation-induced cytosine deaminase (AID) 

which then acts to mutate nucleotide residues coding for the antigen-binding domains 

of both heavy and light chain Ig genes in a process called somatic hypermutation. The 

ultimate goal of this process is to generate highly-specific antigen recognition (so-

called affinity maturation) by the BCR through selection of reactive clones and then 

AID causes class switch of the gene coding for heavy chain Ig so that the IgM/IgD 
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configuration present on follicular B cells changes to IgG, IgA or IgE to diversify 

immune response to pathogen. Once affinity maturation is complete, B cells can then 

further differentiate into memory cells, or to the soluble antibody-producing plasma 

cells.  

Each of these stages of B cell development through germinal centres is marked by 

change in expression of surface antigens on differentiating cells as is illustrated in 

Figure 1.2. Thus, transitional B cells enter germinal centres and differentiate to either 

follicular (FO) or marginal zone (MZ) B cells depending on the strength of BCR 

engagement they experience. MZ B cells ultimately differentiate to short-lived plasma 

cells for provide innate antibodies for immune defence, whereas FO B cells undergo 

affinity maturation as described above to generate memory B cells and long-lived 

plasma cells so that adaptive immune memory is maintained. Analysing this change 

in surface antigen expression requires ability to measure in multiple dimensions. For 

example, FO B cells have the phenotype IgMlow IgD+ CD21+ CD23+, MZ B cells are 

characterized with a phenotype of IgM+ IgDlow CD27+ CD21+ CD23-, and class-

switched memory B cells have a phenotype of IgG+/IgA+ CD27+ CD21+ CD23-. The 

type of measurement that is required is typically performed using flow cytometry, and 

this technique will be described later in this thesis. Nevertheless, simultaneous 

measurement of all B cell phenotypes is not generally done because of limitations of 

conventional equipment to perform this analysis.  
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Figure 1. 2 B cell differentiation and B cell subsets. B cell differentiation and B cell 
subsets. B cells develop in the bone marrow from haematopoietic stem cells (HSC). 
Rearrangement of variable, joining and diversity genes by recombination activated 
genes (RAG) starts at the pro-B cell stage. After RAG rearrangement is successfully 
done, this leads to the pre-B cell stage where intact IgM is formed and expressed on 
the surface of the developing B cell. This process repeats for the immunoglobulin light 
chain, completion of this process promotes differentiation to the immature B cell stage. 
Here B cells expressing auto-reactive BCR are removed or altered by the mechanisms 
of immunological tolerance. Finally, naïve, transitional, B cells emerge from the bone 
marrow and move to the secondary lymphoid organs (spleen and lymph nodes) in the 
periphery to find cognate antigen. Recognition of cognate antigen promotes activation 
and further differentiation into MZ B cells or FO B cells depending on the BCR signal 
and T cell help. MZ B cells can develop into short-lived plasma cells to secrete 
antibody, and FO B cells develop in the germinal center (GC) with the support of T 
helper cells, undergoing affinity maturation and immunoglobulin class switch, and 
eventually emerge as either memory B cells or long-lived plasma cells. This figure was 
created using Biorender.com and was inspired by Pieper et al [20]. 
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1.2.2 Origins of CD5+ B cells in mice and humans. 

 

In mice there are two distinct B cell subsets, B-1 and B-2 cells. Whereas B-2 cells are 

recognised for their role in adaptive immunity, the differentiation of which is described 

above, B-1 cells have a role in innate antibody response to pathogen. A further 

difference between B-1 and B-2 cells is the former reside mainly in pleural and 

peritoneal spaces where they provide their innate immune function. As such the origin 

of B-1 B cells is controversial; on one hand, this B cell type develops during 

embryogenesis when haematopoiesis takes place within the fetal liver so that it 

becomes the most prevalent B cell type at birth [21]. After birth, B-1 cell populations 

decrease as adaptive immunity and B-2 cell populations expand. On the other hand, 

B-1 B cell populations can be reconstituted from bone marrow transplant, suggesting 

that these cells can arise during normal haematopoiesis in adults. Figure 1.3 illustrates 

the development pathway of B-1 and B-2 B cells where the former arises during 

embryogenesis.  

 In literature mouse B-1 cells have two distinct phenotypes, B-1a and B-1b. The 

difference between them is the expression of the T cell marker CD5; this is expressed 

on B-1a but not on B-1b cells [22]. B-1 B cells are responsible for the production of 

polyreactive natural antibodies (Nabs) which play a major role in protection against 

specific pathogens such as commensal bacteria and provides systemic 

homeostasis[23]. As such, the antigen-binding region of BCR expressed on B-1 cells 

arises from distinctive “stereotypic” IGHV genes and particular D-J rearrangements to 

yield polyreactive specificity [21]. B-1 cells derived from the fetal liver are said to have 

self-renewing capability within the pleural and peritoneal cavities [24] where they 

account for 35-70% of total lymphocytes. In the blood B-1 cells make up 0.3-0.5% of 



27 

 

total lymphocytes [24] and of 0.2-1% of total lymphocytes in the spleen and other 

lymphoid organs[25].  

The B-1 cell phenotype has been identified: in mice this phenotype is marked by 

CD19hi CD23- CD43+ IgMhi IgDdim and CD5± [26], in humans the phenotype is similar 

being CD19+ CD20+ CD43+ IgMhi IgDdim  where CD5 positivity is necessary to clearly 

identify this B cell subpopulation in peripheral blood. Recently, a connection has been 

made between human CD5+ B cells and CLL, where the malignant cells of this disease 

show gene expression patterns that resemble the former [27]. This paper also 

identified a new CD5+ B cell subset, one that is also CD27+, suggesting that, in 

humans, these CD5+ B cells can also hold memory [28, 29].  

In human adults CD5+ B cells account for less than 1% of total B cells in peripheral 

blood [30]. However, this proportion changes with age and there is a propensity after 

the 5th decade of life for clonal expansion of CD5+ B cells, a condition known as 

monoclonal B lymphocytosis [31, 32]. Since CLL in humans and mice develops from 

an expansion of CD5+ B cells [33], understanding the function of CD5+ B cells may 

give insight into the origins of CLL cells. At the beginning of this thesis, were only a 

few studies which isolate CD5+ B cells for study, so our understanding of how these 

cells respond to BCR crosslinking is limited. Moreover, there are populations of 

circulating B cells that are responsible for some types of autoimmune disease [34]. 

These B cells emerge from bone marrow and are not responsive to BCR engagement 

because of anergy. Phenotypically these cells have been shown to down regulate 

sIgM and CD22. Functionally, these cells can be released from anergy by contact with 

BAFF and can contribute to the development of autoreactive naïve B cells in SLE [35]. 

Moreover, we also do not understand how these cells are affected by new treatments 

for malignant disease such as ibrutinib and idelalisib which I will discuss later in this 
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thesis when I describe the pathogenesis of CLL. A potential solution would be to use 

techniques for study which do not rely on purification of CD5+ B cells for study, such 

a technique could involve flow cytometry as I will discuss later.   

 

Figure 1. 3 B cell development demonstration differentiation in B-1 and B-2 
systems. The B-1 differentiation occurs in the fetal liver (FL) lineage pathway that 
starts from the FL hematopoietic stem cell (HSC) and continue to maturate to pro-B 
cell, pre-B cell and immature B cells where IgM is formed at that stage. B-1 B cells are 
developed after leaving the FL which have an activated surface IgM and CD5+ cells. 
B-2 cells are differentiated from the bone marrow (BM) and are further differentiate 
into the spleen to maturate into transitional B-2 B cells, into FO B cells and MZ B cells. 
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1.3 Chronic Lymphocytic Leukaemia (CLL) 

Chronic Lymphocytic Leukaemia (CLL) is the most common leukaemia in the western 

world. The disease affects elder individuals, diagnosis of this condition occurs mainly 

in individuals who are 70 years and above [36], and results from the detection of 

abnormal numbers of mature B lymphocytes in blood bearing a phenotype of CD19+, 

CD5+, CD23+, CD22-, CD79B-/+, surface immunoglobulin -/+ of IgM/IgD and FMC7-

/+[37].  

1.3.1 Pathogenesis of CLL 

 

CLL is a heterogeneous disorder where some patients have disease that remains 

stable for many years, so-called indolent disease, whereas others have disease which 

is progressive and succumb quickly to suppression of lymphoid and bone marrow 

function by the expanding malignant clone [38]. Based on the phenotypic diagnosis as 

per the international workshop on Chronic Lymphocytic Leukaemia (iwCLL) guidelines 

TP53 mutation, molecular cytogenetic and immunoglobulin variable heavy chain 

(IGHV) should always be part of the baseline evaluation in every CLL patient so that 

potential prognosis can be assessed [39]. Sequencing of the IGHV genes is an 

important feature in the determination of potential prognosis because cases which 

show less than 2% mutation from germline sequences have poorer prognosis (so-

called unmutated CLL, UM-CLL) whilst those that show greater than 2% mutation from 

germline sequences (so-called mutated CLL, M-CLL) have better prognosis [40, 41]. 

ZAP70 and CD38 are as well considered to be part of the diagnostic outcome 

prediction [42-46]. Despite evidence that these prognostic markers identify patients 

with progressive disease, initial diagnosis results in a “watch and wait” strategy where 

decision to treat is based on lymphocyte doubling time [47]. 
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The first evidence that distinguished between indolent and progressive disease was 

that mutation of the IGHV genes were linked to prognosis; M-CLL good prognosis 

(indolent disease), UM-CLL poor prognosis (progressive disease) [40, 41]. Further 

study revealed that unrelated CLL patients could share the stereotyped BCR structure 

in terms of IGHV genes in their respective affected cells [48], and the recognition that 

only certain IGHV genes were used, and that certain genes, such as IGHV3-21, were 

associated with particularly aggressive disease[49]. Finally, work from Nicholas 

Chiorazzi’s group showed that BCR expressed on UM-CLL cells was polyreactive to 

self-antigens whereas that on M-CLL cells was more specific [50]. Together, this work 

demonstrated a clear role for BCR in the pathogenesis of CLL, and that it plays a major 

role in driving progression of the disease. There are other contributing factors to the 

pathobiology of CLL, such as interaction with the tissue microenvironment to receive 

signals that help with survival and proliferation [36], chromosomal aberration which 

marks disease as being more resistant to chemotherapies [51], and certain gene 

mutations (NOTCH1, NFKBIE and SF3B1) which contribute to increased proliferation 

of the malignant clone [49]. However, among all these contributing factors, BCR is the 

most important and therapies targeting the signaling pathway emanating from this 

receptor are now being introduced into the clinic with relative success.  

1.3.2 B-Cell Receptor Signaling  

1.3.2.1 B Cell Receptor signaling (BCR) in normal B cells 

In CLL, BCR is one of the main contributors to disease progression. To understand 

how signals from this receptor contribute to disease progression, I will first review our 

current understanding of BCR signaling in normal B cells.  
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On normal B cells, surface immunoglobulin (Ig) can take the immunoglobulin class of 

either IgM, IgD, IgG, IgA, or IgE. In CLL, the malignant cells express mainly surface 

IgM and IgD, but some clones can express IgA and IgG. For the purposes of this 

section, I will only deal with what is known about surface IgM signaling.  

Figure 1.4 illustrates the proximal and distal elements of the BCR signaling pathway. 

Surface IgM that forms the antigen recognition part of the BCR is in association with 

the disulphide-linked heterodimer proteins Igα/Igβ (CD79A/ CD79B)[52]. These 

proteins are also transmembrane and contain immune-receptor tyrosine-based 

activation motifs (ITAMs) which is where the signaling starts. When BCR is engaged 

and cross-linked by antigen, the ITAMs in Igα/Igβ become phosphorylated by Lyn, a 

tyrosine kinase[53, 54]. This creates a binding site for SYK (spleen tyrosine kinase), 

which binds phosphorylated Igα/Igβ through its SH2 domains and then, in turn, 

becomes activated. Active SYK then phosphorylates the scaffold protein B cell-linker 

(BLNK), which then serves to recruit Bruton’s tyrosine kinase (BTK) and 

phospholipase C2 (PLC2) to the developing signalosome. Concomitantly, activated 

Lyn also phosphorylates CD19 to create binding sites for the p85 subunit of 

Phosphoinositide 3-kinase  (PI3K ) and the RhoGTPase VAV[55]. The binding of the 

p85 subunit to phospho-tyrosine residues activates the associated catalytic 

p110 subunit of PI3K to convert phosphatidylinositol 4,5 bisphosphate (PIP2) to 

phosphatidylinositol 3,4,5 trisphosphate (PIP3) in the membrane[56]. PIP3 acts to 

recruit other signaling proteins to the membrane through interaction with the pleckstrin 

homology (PH) domain within each one. These proteins include BTK, PLC2, VAV, 

PDK1 and AKT among others[57]. The close association of BTK and PLC2 through 

their interaction with BLNK and PIP3 activates BTK to phosphorylate PLC2 and 
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stimulate its enzymatic function to convert PIP2 to inositol trisphosphate (IP3) and 

diacylglycerol (DAG)[58]. These latter signaling molecules function to induce calcium 

release from intracellular stores and activation of protein kinase C, which is ultimately 

involved in activation of the NFkappaB, and JNK pathways through its ability to 

phosphorylate the CARD11/BCL10/MALT1 complex and stimulate the activity of TAK1 

[59]. The released DAG also interacts with a RasGTPase (RasGRP1) to generate 

GTP-loaded Ras, which then acts to activate the Raf-MEK-ERK (MAPK) pathway[60]. 

Recruitment of AKT and PDK1 to the membrane by PIP3 results in the activation of 

AKT which is responsible for mediating growth (through activation of mTOR), pro-

survival (through phosphorylation of GSK3beta) and anti-apoptotic through 

phosphorylation of BCL2 associated agonist of cell death (BAD) processes within cells 

[61]. 

Importantly, much of what we know about signaling in cells has been determined 

through the use of antibodies recognising phosphorylated motifs on proteins. Thus, 

antibodies recognising phospho-ERK and phospho-AKT are commonly used to 

determine activation of the MAPK and AKT pathways, respectively. Most of these 

phospho-specific antibodies have been used in Western blot applications, but there 

are some that can be used in flow cytometry. 
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Figure 1. 4 BCR signaling in CLL with downstream pathways. After antigen 
binding, BCR signaling pathway starts to activate a group of kinases and proteins at 

the sIg composed of SYK, LYN, BLNK, BTK and PLC2 and PI3K signaling pathways 
begins further phosphorylation. BCR signals further downstream components for 

further distal signaling to be activated. CD22, CD5, CD72 and FcRIIb are negative 
regulators that are responsible to manage the BCR signaling intensity after LYN 
phosphorylation that leads to recruitment of inhibitory phosphatases tyrosine 
phosphatase-1 (PTP-1), SH2 domain-containing phosphatidyl 5-phosphatase-1 and -
2 (SHP-1,2), and protein tyrosine phosphatase nonreceptor type 22 (PTPN22).This 
figure was created using Biorender.com and inspired from Wiestner et al [62] and 
G.Packham et al [58]. 
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1.3.2.2 CLL BCR signaling  

The model of BCR signaling described above is largely applicable CLL cells, however, 

the response of CLL cells to BCR engagement is heterogeneous in magnitude and 

sustainability. It is well known that the malignant cells from some patients respond very 

well to BCR engagement, whereas others do not respond at all. Whilst it is known that 

the strength of BCR-induced signaling correlates with surface expression of IgM, and 

this, in turn, is related to disease outcome, studies investigating BCR signaling in CLL 

cells have used techniques which derive information on entire populations of cells 

which are assumed to be homogeneous in terms of surface expression of IgM. This 

point is important because much of what we know about BCR signaling is derived from 

cell lines where surface expression of BCR is high and constant, so it is not clear how 

surface expression of BCR affects the different pathways described above. This point 

is also important to CLL because of the introduction of BCR pathway inhibitors 

targeting BTK and PI3K. These inhibitors have largely effective in the treatment of 

CLL, but development of disease resistance to these therapies is still a problem. One 

described mechanism of resistance to BTK inhibition is mutation of BTK (C418S) and 

of PLC2 (R665W, L845F and S707Y)[63], but resistance to ibrutinib can occur 

independently of these mutations. A potential hint of this independent mechanism is 

illustrated in the work of Hernandez et al. [64] where incubation of CLL cells with IL4 

stimulates expression of surface IgM and results in maintenance of BCR-induced 

calcium flux in the presence of ibrutinib or idelalisib. If CLL cell populations are 

phenotypically heterogeneous in patients (as indeed they are on a genetic basis), this 

work of Hernandez et al. [64] suggests that clones could be present within patient 

samples that are already resistant to ibrutinib prior to the beginning of therapy. 
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Identification of such clones would require methods that would identify individual single 

cells for study.   

1.3.2.3 CLL B cells life cycle  
 

CLL cells live in microenvironment that supports survival by mesenchymal stromal 

cells, monocyte-derived nurse-like facilitating pro-survival signal, proliferation and 

growth lymphoid organs and bone marrow [38, 65, 66]. In addition to the BCR signaling 

that occurs mainly within tissue sites (LN, BM). This can lead to an outgrowth of 

aggressive resistant subclones that can have different phenotype and characteristics 

with genomic abnormalities [67] and CLL intraclonal complexity that can be highlighted 

by the variable expression of CXCR4 and CD5 [68]. The CLL B cells can be divided 

into CXCR4bright and CD5dim older quiescent cells (OQ), which are located in the 

lymphoid organs. Newly emerged cells (NE) CXCR4dim and CD5bright found in the 

peripheral blood. The CLL lifecycle was investigated by Callisano et al, studied by 

separating the subclones using an isotope labelling approach [38]. This approach is a 

model to study CLL biology in cells in peripheral blood and lymphoid tissue. 

CXCR4bright CLL cells enter tissue sites where they receive proliferative stimulation 

from microenvironment. The activation downregulates the CXCR4 expression and 

upregulates the CD5 expression on the cells allowing egress from tissue site into 

peripheral blood. This process is associated with BCR signaling, toll-like receptor 

(TLR), cytokines and chemokines [69, 70]. The phenotype of cells leaving the 

mesenchymal stromal cells have changes into CXCR4dim and CD5bright. Once the cells 

are circulating in the peripheral blood, the phenotype change with time to prevent cells 

to undergo apoptosis and have continuous survival support, some cells return to 

express CXCR4bright and CD5dim allowing re-entering the lymphoid tissues. 
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1.4 High-Dimensional Single-Cell Flow and Mass Cytometry Data 

 

1.4.1 Flow cytometry 

 

Ability to study single cells within heterogeneous populations has brought great 

advantage to our understanding of immunology and cancer biology. Possibly the first 

method able to perform such analysis is flow cytometry where lasers, light scattering 

properties and fluorescence are used to define properties of individual cells within 

populations. Figure 1.5 shows a representation of how such “conventional” flow 

cytometry is configured within a typical instrument. Thus, cells are organised into a 

stream of single cells that are passed through laser light. The interruption of light as 

the cell passes through the laser beam is recorded by a photomultiplier detector, and 

the size of the cell is determined by the length of time this interruption takes place. 

This is so-called forward scatter in the language of flow cytometry. Light is also 

potentially scattered to the sides as the cell passes through the laser stream by 

intracellular granules and/or organelles to give information on the complexity of the 

cell. This is so-called side scatter. The power of just these parameters to distinguish 

different cell populations is demonstrated by an ability to discriminate between 

lymphocytes and monocytes within suspension of peripheral blood mononuclear cells 

(Figure 1.5). 
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Figure 1. 5 Schematic diagram of a flow cytometer. A.) Flow cytometry machine. 
B.) the sample cell suspension is introduced into the flow cytometer the laser beam is 
reflected on the forward scatter detector for cell size measurement and side scatter 
detector for integrity, size and density content characteristics. The fluorescence 
detectors are responsible to detect light signals that is emitted from each labelled 
antibody by specific fluorophore [71]. This Figure was created using Biorender.com. 

 
To exploit fluorescence properties, antibodies recognising surface and internal 

antigens on cells have been developed which are labelled with a fluorophore. When 

cells bearing such antibodies pass through the laser stream, fluorescence is activated 

and emits light of specific wavelength which is detected by photomultiplier detectors 

which see the fluorescent light through filters that only allow certain wavelengths of 

light to pass (Figure 1.6A). The first fluorophore used for this purpose was fluorescein 

isothiocyanate (FITC) which is stimulated to fluoresce using an argon laser with emits 

light at a wavelength of 488nm. Subsequent to this, other fluorophores have been 

developed which have different fluorescent properties to allow more dimensions to be 
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measured simultaneously. At the time when this thesis was conceived the most 

advanced flow cytometer was the BD LSR-Fortessa equipped with 5 lasers and 

ability to measure 18 different colours. Such multidimensional flow cytometry is now 

used to distinguish and describe various subsets of lymphocytes and monocytic cell 

types. This is a tool that not only serves basic research but is now commonly used 

also in pathology laboratories for the diagnosis of disease world-wide.  

However, the sensitivity of conventional flow cytometry is found to be limited. The 

fluorophores that are used can emit a broad spectrum of light that potentially spans 

two or more measurement wavelengths. This phenomenon is called emission spectral 

overlap, and compensation to reduce this overlap is required so that false positive 

expression is not interpreted. An example of such spectral overlap is demonstrated by 

the emission spectra of FITC where primary fluorescence measurement is performed 

at 530nm, but fluorescence associated with this fluorophore extends also into the 

range where the fluorescence of another fluorophore, phycoerythrin (PE), is also 

measured (585nm) (Figure 1.6B). Thus, when antibodies coupled to FITC or PE are 

used together, there is potential to interpret PE reactivity when there is none. Another 

problem is that not all fluorophores are alike in terms of brightness, FITC is much 

dimmer than PE with respect to the fluorescent light it generates when excited at 

488nm by the argon laser. In practical terms this means that consideration must be 

made with respect to antigen expression levels, it is better to investigate high-

expressed antigens with dimmer fluorophores and low-expressed antigens with bright 

fluorophores. Finally, there is also intrinsic fluorescence associated with cells, and this 

competition with fluorophores requires inclusion of labelled non-specific control 

antibodies to be able to subtract any detected auto-fluorescence from specific 

fluorescence.  
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Figure 1. 6 Demonstration of spectral overlap of fluorescence. A.) Emission 
spectra of FITC and of PE when each fluorophore is excited at 488nm. The respective 
reading windows are shown to illustrate spectral overlap of FITC fluorescence on to 
the PE channel B.) Shows the percentages of spill over from FITC on to PE where 15 
% of the perceived PE fluorescence is due to FITC fluorescence. The contribution of 
PE fluorescence on to FITC is much smaller (2%). Both require compensation for 
accurate measurement FITC and PE-associated fluorescence [72]. This Figure was 
created by Biorender.com. 

 
 
Taken together, the above limitations effectively allow studies of up to 13 different 

colour parameters associated with cells to be taken into consideration with the most 

advanced technology that was available at the time. Therefore, careful consideration 

would have to be made with respect to investigation of cell signaling within particular 

populations of cells; for instance, comparison between T and B cells might not be 

possible because of the necessity to define one or the other population before 

intracellular signaling parameters could be assessed. Alternatively, specific cell 

signaling pathways might be compared between different lymphocyte subtypes where 

the bulk of the antibodies used differentiate between these different subtypes. Such 
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multi-dimensional analysis could be achieved using multiple tubes where different 

panels of staining antibodies are used, but this could be limiting when the source 

material is also limited. Ideally, a tool that increases the dimensionality of analysis 

without the problems of conventional flow cytometry would be very useful for the study 

of signal transduction in heterogeneous populations of cells, such as CLL cell 

populations within patients.  

1.4.2 Mass cytometry: 

 

A tool that increases both resolution and parameterization is attractive for researchers 

because it would give greater resolution and clarity in multiplexed single-cell 

measurements [73]. One of these tools is mass cytometry which has been developed 

to offer opportunity of investigation using multi-dimensional immunophenotyping for 

the understanding of disease biology. Mass cytometry, known as Cytometry by Time 

Of Flight (CyTOF), couples flow cytometry with Time Of Flight (TOF) mass 

spectrometry to detect heavy metals that label reagents, such as antibodies, to 

determine phenotypic properties of cells. The heavy metals that are exploited for 

CyTOF are generally from the lanthanide series of elements within the periodic table, 

chosen because of their ease of detection by TOF mass spectrometry and because 

this series of elements have multiple stable isotopes which can be purified for labelling 

purposes. This purity then allows increased dimensionality because measurement on 

one channel is not likely to contribute to another. Thus, machines have been 

developed that are capable of measuring up to 135 different channels. In practice 

however, these machines can effectively measure between 40 and 50 different 

parameters because of limitations in the preparation of purified isotopes and of the 

chemistry involved in labelling the reagents for describing cell phenotype.  
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Surface / internal antigens, and, more recently, mRNA species, can be detected by 

CyTOF using labelled reagents. DVS Sciences, which developed the CyTOF 

technology, also developed the technology for heavy metal labelling. In principle this 

technology relies on reagents that are metal chelators that bind lanthanide metals with 

high affinity that can then be coupled to proteins, such as an antibody, via modification 

of an internal cysteine or lysine residue within the peptide chain [74]. This heavy metal 

labelling process is not unlike that which is involved in fluorophore labelling of 

antibodies.  

Figure 1.7 shows a schematic of a mass cytometer: suspended cells that have been 

labelled with heavy metal isotopes are passed through a nebuliser to create droplets 

containing a single cell, these droplets are then passed to an inductively coupled 

plasma (ICP) were the metal isotopes are ionized before passing through a 

quadrupole magnetic field that filters light from heavy ions before entry of the latter 

into the Time of Flight chamber (TOF). Detected metal ions then undergo 

quantification and are processed into an FCS file that is not unlike the FCS files 

generated for conventional flow cytometry. This FCS file can be uploaded to Cytobank, 

which is a cloud-based software platform, for further analysis and interpretation. 
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Figure 1. 7 Demonstration of single-cell suspension in a mass cytometer A.) 
Helios third generation of mass cytometer. B.) All cells are stained with antibodies that 
are labelled with heavy metals. C.) A nebulizer is used to create droplets, each 
containing a single cell. Single cells are ionised within an inductively coupled plasma 
(ICP). D.) The cell-associated ion cloud is passed through a quadrupole to remove 
light ions. The remaining heavy ions are subjected to time-of–flight (TOF) mass 
spectrometry. E.) Data is generated as an .FCS file ready for upload. F.) .FCS files 
are uploaded in Cytobank™ for analysis. Created with BioRender.com 

 

A major sacrifice with use of CyTOF is the loss of optical information (ie cell size (FSC) 

and complexity (SSC) to determine single cell events. CyTOF compensates for this by 

using a DNA intercalator that is labelled to iridium isotopes (191Ir and 193Ir) and 

detecting a set length as a “single cell event”. Other physical parameters can then be 

determined; live cells can be distinguished from dead cells using cisplatin where 

detection of the most common platinum isotope (195Pt) is a determinant of dead cells. 
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1.4.2.1 Antibody conjugation to metal containing polymer tags 
 

Mass cytometry has focused on using lanthanide (Ln) elemental mass tags (EMT). 

These elements are useful because many of them have multiple isotopes that are 

stable, and these elements have a similar chemistry that allows chelation using 

compounds that can be attached to IgG monoclonal antibodies and other reagents 

[75]. In addition to Ln elements other EMT have been introduced; 15 rare earth 

elements, 4 noble metals, 2 post-transition metals and 1 halogen. Thus, the diversity 

of EMT available for mass cytometry has expanded channel usage to 56, making this 

technique useful for measurement of multiple parameters including surface and 

internal antigen expression on cells using tagged antibodies, detection of DNA using 

tagged intercalating agents, determination of cell viability using cisplatin and barcoding 

with palladium isotopes so that multiple samples can be measured simultaneously  

[76]. Crosstalk between these channels is affected the purity of the isotopes, and by 

their state of oxidation which can affect how they are detected by the TOF mass 

spectrometer [75]. Figure 1.8 is an illustration of the types of crosstalk that can be 

expected. Known as spillover, the crosstalk from isotope impurity is demonstrated is 

best illustrated by the effect 152Sm feeding on to 154Sm and vice versa, and the effect 

element oxidation which makes one element appear similar to another is illustrated by 

170Er feeding on to 154Sm. Generally, however, the influence of such crosstalk is small 

and can be compensated for. Thus, EMT can replace fluorescent tags, having been 

found to show high sensitivity and better resolution.  
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Figure 1. 8 Illustration of spill over in Fluidigm™ panel designer wheel. The figure 
shows MaxPar® panel designer (www.dvssciences.com) to choose antibody 
conjugates compatible with my experiments. The figure shows two channels with the 
greatest overlap CD3 (170Er) on to CD45 (154Sm) and CD21 (152Sm) on to CD45. The 
degree of signal overlap is significant. However, CD45 is such a strongly expressed 
antigen, it is likely that the signal overlap imposed will not lead to artefact and require 
further titrating to get an optimal concentration for staining. 
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Fluidigm™ manufactures the metal chelating compounds that can be attached to IgG 

antibodies. The compounds are polyaminocarboxlyate polymers where attached 

1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DTPA) polymers function 

as a bi-functional chelating agent (BFCA) to trap Ln elements with high affinity (Figure 

1.9) [75, 77]  Named MaxPar® polymer X8, these compounds have the ability to trap 

up to 8 atoms of a given Ln element. The MaxPar® reagent uses 2 maleimide groups 

(Bismaleimides) as a linker to the Fc region of an IgG antibody, exploiting reduced 

thiol groups within the labelling procedure [78] . Figure 1.9 illustrates the antibody 

labelling procedure. Reduction of thiol groups in antibodies, or other proteins, is 

achieved using Tris-(2-carboxyethyl)phosphine hydrochloride (TCEP) which converts 

disulfide bonds of adjacent cystine groups into free thiols (now cysteine residues) to 

allow interaction with the maleimide groups of the MaxPar® polymer [77]. MaxPar® 

polymer is incubated with the Ln element of choice, and both reduced antibody and 

labelled polymer are purified by centrifugation dialysis using 50kDa and 3kDa filters, 

respectively. Once pure, both can be then mixed and then repurified once conjugation 

is complete. The labelled antibody is now ready for use. A detailed protocol used for 

this thesis conjugated SH2 domains with Ln-polymer labelling kit from Fluidigm™ is 

described in chapter 2, material and methods, section 2.2.7. 
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Figure 1. 9 Overview of MaxPar® Metal conjugation labelling diagram. A.) 
workflow of Lanthanide conjugated to the X8 polymer is by loading first the Lanthanide 
(Ln) into the 3kDa filter and B.) a preparation of the antibody is added into 50 kDa filter 
that undergoes loading, purification, retrieval of a  partially reduced used TCEP to 
serve a stronger binding after both concentrates are mixed together into 50 kDa filter 
to form C.) a stabilized lanthanide polymer. Created with BioRender.com 
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1.4.2.2 Palladium-based Mass Tag cell Barcoding 
  

Barcoding (BC) allows differentiation between either single or subpopulations of cells. 

In terms of flow cytometry [called fluorescent cell barcoding (FCB)], such barcoding 

uses different reactive fluorophores that can tag an antibody that reacts in a similar 

fashion with the different populations of cells of interest [79]. With haemic cells, such 

an antibody would target CD45 because of its high expression on most haemic cells. 

An alternative epitope is beta-2 microglobulin [80]. FCB is useful to pool samples 

together so that expression of particular epitopes can be directly compared between 

samples. An example of such a comparison would be measuring CD154 expression 

on resting and TCR-activated CD4+ cells where the latter express this epitope and the 

former do not. Thus, this methodology was developed for reduce artefacts in staining 

by reducing antibody concentration and improving measurement reproducibility 

between samples. The same can be done in mass cytometry where antibodies are 

labelled in heavy metals. FCB has improved efficiency of antibody staining and has 

led to a reduction in inter sample variability. 

With the advent of mass cytometry, a second method of barcoding is possible. Called 

mass tag cell barcoding (MCB), this method uses palladium (Pd) isotopes as tags to 

label each sample to provide unique barcodes that allow easier pooling of multiple 

samples in one tube. MCB exploits six different palladium isotopes (Pd) with masses 

of 102Pd, 103Pd, 104Pd, 105Pd, 106Pd, 108Pd, and 110Pd [75, 81]. This allows up to 20 

different barcodes through rearrangement of three Pd isotopes for each barcode that 

labels each sample (Figure 1.10). These Pd isotopes are considered to be low-

sensitivity isotopes because they are weakly detected by TOF mass spectrometry. Pd 

also has ligand properties that are more compatible to BFCAs such as 

ethylenediaminete-traacetic acid disodium salt dihydrate (EDTA) chelators and 
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dodecane tetraacetic acid (DOTA) than diethyl-enetriaminepentaacetic acid (DTPA) 

[76, 82]. These compounds have a weaker affinity for other lanthanides isotopes that 

are used to detect primary antibodies and so allows easy use without interference. For 

this thesis I have used MCB approach, the details of MCB protocol is written in details 

in chapter 2 material and methods section 2.2.4. 
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Figure 1. 10 Barcodes and how they are analysed A.) Schematic of palladium 
mass-tag arrangements according to the 20 barcodes included in the MaxPar® 
barcoding kit. B.) Illustrated algorithm of how the Debarcoder software (file version 
1.4.0.0, Fluidigm) works. i) Algorithm of how FCS files are filtered according to 
barcode. ii) Front page of where the operator is requested to input barcode key and 
FCS file information. C.) Histogram showing total event count of the combined 
samples prior to decoding. The red line indicates a filter for analysis of the data. Only 
those events to the right of the line are analysed because those represent the majority 
of the sample being measured. D.) This example contains four barcodes combined; 
the illustration shows how these barcodes are separated and the less than 0.2 are 
eliminated from the filter. The distribution of measured events (orange and blue) are 
well separated, indicating that the barcoding was successful, and the samples may be 
further analysed. E.) Graph showing four different samples that were separated after 
being filtered and each barcoded sample represents a sample, meaning that the 
barcoded samples are now separated into four different FCS files and are ready to be 
analysed by Cytobank software (file version 6.7, Fluidigm™) [81].   
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1.4.3 Computational methods used in mass cytometry data:  

 

The most advanced flow cytometers at that time could simultaneously measure a 

maximum of 20 parameters and analysis was restricted to manual gating in order to 

understand expression single antigens on cells. Such analysis had the distinct 

disadvantage of not being able to simultaneously appreciate how these 20 parameters 

applied to a single cell or population of cells. The number of parameters conventional 

flow cytometry can measure has since increased to 30 parameters [83], and a recent 

flow cytometer, called OMIP-069, was developed to achieve 40 colour parameters 

[84]. With this increase in dimensionality comes also the need to understand the 

relationship between each other with respect to single cells in order to bring insight 

into the biology of these cells. Such a need also applies to data generated using mass 

cytometry, and has resulted in the generation of analytical tools that reduce 

dimensionality and allow simultaneous appreciation of measured parameters to bring 

identification, characterisation and insight into unknown or unexpected cell 

populations and phenotypes where analysis is performed in an unsupervised manner 

[85]. 

Convention and mass flow cytometry data is encoded in .fcs files that can be analysed 

with a host of propriety and free software programs. Typical examples of such 

propriety programs include Flowjo™ and FACSDiva, and these programs are used for 

manual gating of cell populations. However, Cytobank software (www.cytobank.org) 

is an online web-based tool that also be used for manual gating of cell populations, 

but also comes equipped for analysis of larger datasets where the multidimensional 

properties of these datasets allow for a detailed phenotypic examination for each cell 

population [86]. This allows researchers to answer many questions by, for example, 

identification of rare cell populations and quantification of cell population diversity. 

http://www.cytobank.org/
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Cytobank allows such analysis through the use of two algorithms: dimensionality 

reduction and clustering.  

1.4.3.1 Dimensionality reduction algorithms: 
 

The two most common algorithms used in flow cytometry data analysis for 

dimensionality reduction are principle components analysis (PCA) and stochastic 

neighbor embedding (SNE). In simple terms, the difference between these two 

algorithms is that PCA maps data based on the variance of each point to each other, 

whereas SNE maps data based on the similarity of each point to another. In terms of 

visualization both PCA and SNE are presented as 2D plots where actual data proximity 

is recorded by the creation of a linear relationship that can be viewed as data points 

within vertical and perpendicular axes. This approach to dimensionality reduction is 

potentially limited by the masking of other dimensions that give important relational 

information, ultimately causing inaccurate interpretation of the data set [87]. To 

overcome these potential limitations of PCA and SNE, a modification of SNE was 

developed by Amir et al, known as t-distributed stochastic neighbor embedding (tSNE) 

which eliminates potential crowding of data points when only SNE is used. In 

Cytobank, tSNE is further modified to visualization stochastic neighbor embedding 

(viSNE) so that newly uncharacterized cell populations can be identified with greater 

ease by creating [88] a cloud structure in 2D that shows where rare or unique 

populations that can be allocated anatomically within the larger population of cells 

being analysed [89]. An additional advantage to using viSNE is that it gives 

quantitative proportional information (eg the percentage of a particular subpopulation 

of cells within the whole population) without losing single cell resolution. 
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Additional tools have also been developed for visualization of multidimensional data. 

[90, 91]. A similar to t-SNE is Automatic Classification of Cellular Expression by 

Nonlinear Stochastic Embedding (ACCENSE, developed and used by Python 

software), where the algorithm is designed to differentiate clusters of cells within the 

multidimensional data without any single cell resolution loss to present data similar to 

that in 2D viSNE plots. Shekhar et al, have applied this tool along with 35 different 

parameters using mass cytometry to explore CD8+ T cells derived from specific 

pathogen-free and germ-free mice and was able to distinguish subpopulations of naïve 

and memory T cells using this method of data analysis [92].  Another tool that is used 

to Analyse mass cytometry data is Wanderlust, a algorithm that uses both linear and 

non-linear processes such as k-nearest neighbor graphing (KNN) to view data. Bendall 

et al, have used the Wanderlust tool in combination with mass cytometry data to 

investigate human B cell development during lymphopoiesis [93]. Wanderlust is ideal 

for exploring differentiation of cells that are undergoing any continuous developmental 

process, presenting this information as trajectory graphs within a one dimensional 

linear process [87]. The ACCENSE and Wanderlust computational methods, and 

additionally PCA, can all be performed outside of the Cytobank platform. As part of my 

thesis, I used the different algorithmic methods that are part of the Cytobank software 

to do analysis on my data.  
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1.4.3.2 Clustering algorithms: 
 

The other algorithm of mass cytometry data analysis used in this thesis is the 

clustering algorithm SPADE (Spanning-tree Progression Analysis of Density-

normalised Events). This method of analysis uses down sampling of data as a 

mechanism to detect rare populations during dimensional reduction [94]. It works by 

hierarchical clustering all the relevant markers which are phenotypically similar on 

cells, converting them into nodes to form a tree presentation known as a SPADE tree. 

As an example, Bendall et al [95] applied SPADE to study the immune system, 

characterising both cellular phenotype and functional properties of cells responding to 

specific stimuli to demonstrate the utility of CyTOF [96]. Similar to SPADE is FlowSOM, 

that uses a new Self-Organizing Map (SOM) clustering algorithm to create an artificial 

neural network (ANN). This method of analysis has an advantage over SPADE 

because data is not down sampled, and information is not lost [97]. FlowSOM is 

demonstrated able to cluster unsupervised large datasets faster than SPADE, and 

present the data in the form of a minimal spanning tree (MST) where rare populations 

of cells are identified without the requirement of down sampling that can contribute 

their loss [90]. 

A clustering tool that similar to SPADE is called CITRUS, which consists of Cluster 

Identification, characterization, and regression [90]. This tool is designed for the 

analysis of groups of samples to understand how they compare, and is, for example, 

useful for clinical studies where the reasons for poor and good patient outcomes to a 

particular therapy can be Analysed. CITRUS allows study of the relationship between 

surface markers to identify cell populations and intracellular signaling within those 

populations in groups of up to 10 user-defined inputs by identifying the clusters that 

are similar cells in all samples in an unbiased approach. The cells are clustered 
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according to the parameters chosen by a minimum cluster size threshold (MCST) that 

is set by default to 5% for analysis [90]. This shows the cluster abundance within each 

group patients and presents them as scatter plots of expression levels of each 

parameter [98]. Gaudillière et al, have used Citrus to measure 32 patients that have 

undergone hip replacement surgery and have divided them into groups with different 

recovery responses and has found patients suffering from functional impairment and 

pain had a strong correlation in STAT3, CREB, NF-kB and CD14+ monocytes which 

were markers that have guided for post-surgical recovery [99]. 

 1.5 Use of mass cytometry in CLL cells. 

 

At the beginning of this thesis, there was no study of either CD5+ B cells or CLL cells 

using mass cytometry. There were many studies that had used conventional flow 

cytometry to immunophenotype these cells, but none that specifically addressed BCR 

signaling within identifiable subpopulations, particularly with respect to the effects of 

new therapies targeting BCR signaling and how they might target such signaling in 

CLL cell subpopulations and healthy B cells. 

During the course of my study there were 2 reports published where CLL cells were 

studied with mass cytometry [100, 101]; the former study investigated complications 

associated with idelalisib treatment of CLL patients, focussing on the effect of this 

inhibitor on T cells, and the latter study used mass cytometry to investigate phenotypes 

cells in splenic tissue from CLL patients. Neither of these studies investigated CLL or 

healthy B cell subpopulations, and how they respond to BCR crosslinking. Although 

one report used conventional flow cytometry to investigate and compare BCR 

signaling in indolent B cell lymphomas, including small cell lymphoma (SLL) and CLL, 

because this study could not combine phenotypic and phospho specific antibodies, 
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they could not address subpopulation response [102]. At this point it is important to 

note that CLL cells in tissues or in circulation have different phenotypes depending on 

the stimulation by BCR or Toll-like receptors (TLRs) [69, 70]. This allows CLL cells to 

migrate into the periphery to further activate and divide for clonal expansion in the 

germinal centre’s with CXCR4dim/CD5bright phenotype and when CLL cells expanded in 

the periphery, with time gradually cells start to express CXCR4bright and CD5dim cells 

and return into the tissues and lymphoid organs or undergo apoptosis. Calissano et 

al, described life cycle of CLL cells bearing newly emerged and older quiescent 

phenotypes based on differential expression of CXCR4 and CD5 [38, 103]. Until now, 

how CLL cells bearing these phenotypes respond to BCR crosslinking was unknown. 

Furthermore, Aguilar-Hernandez et al showed that IL4 can stimulate BCR expression 

on the surface of CLL cells, leading to restoration of signaling despite inhibition of 

PI3K and BTK with idelalisib and ibrutinib respectively [58, 64, 104]. This implies that 

CLL cells bearing different levels of surface immunoglobulin may respond differently 

to these BCR inhibitors, and that studying whether such cells exist within whole 

populations of CLL cells may give clues to mechanisms involved in the development 

of clonal resistance to these inhibitors. Mass cytometry provides a tool with which to 

identify and study individual clones of CLL cells and their response to BCR crosslinking 

when they are exposed to idelalisib and ibrutinib. To increase my ability to detect 

signaling in CLL cells, I also investigate the use of tools additional to phospho-specific 

antibodies, this involved using Src homology 2 (SH2) domains to detect signaling in 

cells [105, 106]. Thus, in this thesis, I use mass cytometry to investigate BCR signaling 

in CLL and healthy B cells presenting the high dimensionality data generated to 

understand CLL and potentially answer the therapeutic challenges associated with the 

treatment of this disease.  
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1.6 Hypothesis and Aims: 

 

Mass cytometry can be used as a novel approach to characterise different B cell 

subsets of normal B and CLL cells, to identify the CLL subclones that respond 

differently to BCR signaling and show heterogeneity in the responsiveness to the BCR 

inhibitors. Using a multidimensional algorithmic approach allows to identify resistant 

subclones addressing them phenotypically in a single-cell resolution. 

 
Aims: 

1) Identify normal B and CLL subsets using mass cytometry. 

2) Understand the reproducibility of mass cytometry in producing useable data. 

3) Measure B cell receptor signaling in normal B subsets and in CLL total clones 

using combinations of phosphoproteins and surface antigens. 

4) Measure the effects of idelalisib and ibrutinib on BCR signaling in CLL cell 

subclones. 
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Chapter 2: Materials and Methods  
 

2.1Tissue Culturing Techniques 

2.1.1 Isolation and storage of normal blood from buffy coats 

 

Buffy coats from healthy blood donors were purchased from the NHS Blood and 

Transplant Service (Liverpool, UK) and used with the approval of the Liverpool East 

Research Ethics Committee (16/NW/0810). All samples were processed according to 

a standard operating procedure provided by the Liverpool Leukaemia Biobank, 

University of Liverpool. Buffy coats were diluted 1:1 with RPMI-1640 media (Sigma 

Aldrich, Gillingham, UK), and 30 ml was carefully layered over 12.5 ml lymphoprep 

(Alis-Shield PoC AS, Oslo,Norway) in a 50 ml Falcon tube. Samples were then 

centrifuged at 800xg for 30 min at room temperature (RT), using 0 deceleration brake 

at termination. The peripheral blood mononuclear cells (PBMCs) were collected from 

the plasma/lymphoprep interface using a sterile plastic Pasteur pipette and placed into 

a new 50 ml Falcon tube. PBMCs were then washed once with RPMI-1640 media 

using the following centrifuge settings: 550xg for 10 mins, RT, and normal braking. To 

prepare the cells for cryogenic storage, the cell pellet was resuspended in 50 ml of 

cold 100% foetal calf serum (FCS), followed by the addition of an equal volume of 

cooled 80% FCS + 20% DMSO in a dropwise fashion while swirling over a period of 

approximately 25 min, keeping the entire suspension on ice. One millilitre of the final 

cell suspension was placed into cryovials (cell concentration approximately 2x10
7

/ml) 

and then placed in Styrofoam for controlled freezing in a -80oC freezer. Following the 

completion of this first freezing stage, the cryovials were then moved to -150oC 

freezers for long-term storage. 
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2.1.2 Thawing of cryopreserved cells 

 

Cryopreserved cell samples were removed from -150°C and placed in a 37°C water 

bath until all traces of ice crystals were gone. Thawed samples were placed on ice 

until further manipulation was required. When ready, thawed cell samples were 

transferred into a cooled sterile 20 ml universal centrifuge tube using a sterile plastic 

Pasteur pipette. Ice-cold full RPMI1640 media (Table 2.1) was added drop-by-drop 

while gently shaking the ice box containing the universal tube after each drop. A total 

volume of 10 ml of media was added before further manipulation was undertaken. This 

step typically takes approximately 30 min.  
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Table 2. 1 Media preparations used in this thesis for tissue culture. 

Media Contents Amount 

 

 

Full RPMI 1640 

media 

Media 500 ml 

10% HI FBS 50 ml 

100 U penicillin 5 ml 

0.1mg/ml 

streptomycin 

5 ml 

 

 

Full RPMI 1640 

media+2mM 

MgSO4 mix 

Media 500 ml 

10% HI FBS 50 ml 

100 U penicillin 5 ml 

0.1mg/ml 

streptomycin 

5 ml 

Magnesium 

sulphate 

95 mg in 500 ml 
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Once the thawing procedure was completed, the samples were centrifuged for 5 min 

at 550xg, maintaining a temperature of 4°C. The supernatant was removed using 

pipetting, and the cell pellet gently resuspended with 10 ml of fresh full RPMI1640 

media. For CLL, Maver1, and Jeko1 cells, a similar further centrifugation step was 

performed, leaving the cells ready for assessment of viability, counting, and further 

use. For PBMC samples, the cells were centrifuged for 10 min at 150xg, maintaining 

a temperature of 4°C. This step is performed to separate loose debris and platelets 

from heavier intact cells. The resulting cell pellet is flocculent, and removal of the 

supernatant had to be done carefully to avoid white cell loss. The cell pellet was then 

resuspended in 10 ml of fresh full RPMI1640 media, and a further centrifugation at 

550xg followed, maintaining a temperature of 4°C. The cell pellet was then 

resuspended with 3 ml of fresh full RPMI1640 media, which contains 2mM MgSO4 and 

benzonase endonuclease (5KU). The cells were then incubated at 37°C in an 

incubator (5% CO2) for 1 h, after which cell viability and numbers were determined. 

This step was followed by centrifugation at 550xg at RT. Thereafter, the cell pellet was 

resuspended in fresh full RPMI1640 media using a volume in which the end cell 

concentration was 1 x 107 cells/ml. 

2.1.3 Assessment of cell viability and count  

 

Cell concentrations were initially assessed using a Nexcelom cell counter machine. In 

principle, 20 l of cell suspension was mixed with 20 l of Trypan Blue solution and 

loaded on to the cell counter slide. The machine was set to automatically count the 

live and dead cells, based on brightness and size, and presents the results as a live 

cell concentration with a viability percentage. This method worked very well for cell 

lines where the size of the cells was uniform. However, for primary cell suspensions, 
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especially PBMCs from normal subjects, manual haemocytometer counts were 

performed because of non-uniform cell sizes that could not be distinguished by an 

automatic cell counter. The haemocytometer consisted of chambers that is equally 

covered with the cover glass.  The sample is aliquoted into the chamber of 20 l and 

covered with cover glass that helps to load the cells equally. The haemocytometer is 

placed under the microscope to count each cell within the all the four squares are 

divided by four. The total cell number is calculated after adding 20 l of trypan blue 

mixed with 20 l of cells and under the microscope where only the dead cells are 

stained by trypan blue and the live cells that are unstained. The total cell number is 

calculated: total cell/ml= (n0 of cells X dilution) X 10000 (104) / number of squares 

counted. 

2.1.4 in-vitro stimulation of CLL and normal B cells through the BCR  

 

BCR engagement was studied in this thesis using anti-IgM as a stimulus. B cells were 

stimulated with either unlabelled goat anti-IgM F(ab`)2 used at a concentration of 20 

g/ml, or with FITC-labelled goat anti-IgM F(ab`)2 (both from Cambridge Bioscience, 

UK), used at a concentration of 20 g/ml. F(ab')2 are fragment antibodies that are 

used in my experiments to prevent any non-specific binding antibodies that are located 

at the Fc portions of the antibodies I am using and the Fc receptors that are present 

on B cells. The labelled IgM-FITC was used after filtering the sodium azide, and was 

measure using a nanodrop to identify the concentration by measuring of the 

absorbance at 280 nM. Pipette 1l into the nanodrop pedestal to read the absorbance 

and calculate the concentration. This follows with adding the appropriate amount of 

sterile PBS and the proper concentration should be used to stimulate the cells. Prior 

to incubation with anti-IgM, cells were maintained at 37°C in a CO2 cell incubator. 
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Following stimulation, 1 ml of ice-cold PBS was added to the cell suspension to stop 

stimulation, and the cells were centrifuged at 600xg for 3 min, maintaining a 

temperature of 4oC. The cell pellet was resuspended in ice-cold PBS, ready for mass 

cytometry staining. 

 

2.1.5 Pervanadate treatment 

 

Maver-1 and Jeko-1cell lines were treated with Pervanadate solution prepared by 

adding 200 mM of H2O2 and 200 mM Orthovanadate, which provided a final 

concentration of 100 mM Pervanadate. Pervanadate is a form of a peroxidised 

vanadate, and it acts as an irreversible inhibitor that reverses the protein tyrosine 

phosphatases (PTPs). Pervanadate should be used at 100 µM 1:1,000 dilution with 

properly mixed cells. To treat, maintain for 30 min at 37oC in an incubator with 5% 

CO2. 

2.1.6 Inhibitor treatments of cells  

 

Ibrutinib (BTK inhibitor) and Idelalisib (PI3K inhibitor) were both purchased from 

Selleckchem (Absource Diagnostics GmbH, Munich, Germany). These compounds 

were dissolved in DMSO to stock concentrations of 10 mM, respectively. The optimal 

dose concentration was selected after western blot analysis to comprehend the effect 

of the up and down stream signaling in the BCR pathway in Maver-1 and CLL 

subclones. The optimisation of  the optimal dose concentrations consisted of 100 nM, 

200 nM, 500 nM, and 1 µM in both BCRI, that were added to cells, which were then 

kept for one hour in an incubator (5% CO2) at 37o C. 
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2.2 Mass Cytometry 

List of antibodies used: Table 2.2 lists all the antibodies used for mass cytometry within 

this thesis. Selection criteria are fully discussed in Chapter 3. 

2.2.1 Viability staining of cells for mass cytometry  

 

The viability of healthy PBMCs and CLL cells was determined by staining with Cell-ID 

Cisplatin reagent  of 5 μM final concentration (Fluidigm, UK). This reagent works by 

binding covalently to proteins where access is permitted. With viable cells, access of 

cisplatin is limited to proteins located on the surface of cells because of a natural 

barrier provided by the plasma membrane. With dead cells, cisplatin can also label 

internal proteins due to a lack of membrane integrity. Thus, in terms of results, dead 

cells stain more strongly with cisplatin than do live cells.  

With respect to this procedure, 1x107 cells were suspended in 300 l of PBS in a 1.5 

ml microcentrifuge tube. One microliter of Cell-IDTM Cisplatin reagent was added, and 

the cells were incubated for 5 min at RT. The cells were then centrifuged at 550xg for 

5 min and washed once with PBS. Important: This step requires the use of a centrifuge 

equipped with a swing-out rotor to allow all cells to pellet properly in the tip of the 

microcentrifuge tube without attaching to the sides of the tube. 

 

 

 

 

 

 



64 

 

 

 

2.2.2 Human B phenotyping antibody surface and intracellular list 

 
Table 2. 2 Fluidigm panel antibodies used for primary and CLL cells 

 

 

 

 

 

 

Fluidigm Intracellular panel antibodies Heavy Metal Clone

Anti-p38 [T180/Y182] 156Gd D3F9

Anti-pERK1/2 167Er D13.14.43

Anti-pTyrosine 144Nd p-Tyr100

Anti-Human Lck 153Eu LCK-01

Anti-pAkt 152Sm D9E

Anti-pPLCg2 162Dy [K89-689][PY759]

Anti-pZAP70 171Yb 17a

Anti-pS6 172Yb N7-548

Anti-NF-kB 166Er K10-895.12.50

Biolegend Intracellular Flouresecent Clone

 PE-Anti BTK phospho [TYR223/TYR180] PE A16128C

Fluidigm Surface Human B cell panel antibodies Heavy Metal Clone

Anti-Human CD45 154Sm H130

Anti-Human CD49d 141Pr 9F10

Anti-Human IgD 146Nd IA6-2

Anti-Human CD5 143Nd UCHT2

Anti-Human CD20 147Sm H1

Anti-Human CD19 142Nd H1B19

IgM UNLB goat anti-human 148Nd polyclonal

Anti-Human IgM 172Yb MHM-88

Anti-Human CD43 150Nd 84-3C1

Anti-Human CD21 152Sm B1B

Anti-Human CD27 155Gd L128

Anti-Human CD22 159Tb H1B22

Anti-Human CD3 170Er UCHT1

Anti-Human CD38 167Er H1T2

Anti-Human CD184 [CXCR4] 175Lu 12G5

Anti-Human IgG FC FITC FITC M1310G05

Anti-Human IgG kappa 160Gd MHK-49

Goat Anti-Human IgA 148Nd polyclonal

Fluidigm Secondaries

Anti-FITC 160Gd FIT-22

Anti-PE 165Ho PE001
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2.2.3 Maxpar panel design for surface and intracellular antibodies 

 

The antibodies used for mass cytometry in this thesis are listed in 

Table 2.2.  

The choice of antibody label (the metal tag) for each antibody was 

made with the use of webtool provided by DVS sciences added. 

(http://www.dvssciences.com/paneldesigner/experiment/8688). 

This tool was specifically designed to calculate and quantify signal overlap and 

channel spill-over for the metal isotopes used in this study. Where channel spill-over 

is apparent, it is important to choose antigens with expression levels that will not 

influence interpretation of the data. For example, an optimal configuration would be to 

choose a weakly expressed antigen (for example FoxP3) to be probed by a metal-

labelled antibody that had spill-over on to a channel used to detect a highly expressed 

antigen (for example CD45) so that the contribution due to spill-over to measurement 

of CD45 expression is negligible. Figure 3.2A demonstrates the algorithm of antibody 

selection using this tool, and Figure 3.2B shows an example of the result where the 

colour wheel indicates where spill-over is low (green shading) and where it is higher 

(orange). A red colour on the wheel indicates the same metal. Therefore, the panel 

shown in Table 2.2 lists the surface and intercellular antibodies and their heavy metal 

conjugates that were used in this thesis. This panel was selected for close examination 

of B cell subsets, for differentiation of B cells from T cells, and for examination of 

intracellular signaling in stimulated B cells. 

 

 

http://www.dvssciences.com/paneldesigner/experiment/8688
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2.2.4 Palladium Mass-Tag cell barcode multiplexing in primary cells 

 

Palladium Mass-Tag barcoding was used to pre-label cell populations within samples 

prior to antibody staining. This procedure uses the isotopes of Palladium (102Pd, 103Pd, 

104Pd, 105Pd, 106Pd, 108Pd, and 110Pd) organised in 20 different arrangements to act as 

barcode labels for cells (Figure 1.9). The addition of a barcode to cells provides an 

approach to avoid cross-channel contamination effects to interfere with isotopic 

impurities, leading to the reduction of antibody measurement parameters and 

standardised antibody staining between samples. Once samples have been analysed, 

the barcoding acts as a sample identifier for the decoding software downloaded from 

http://www.dvssciences.com that was supplied by Fluidigm™.  

The barcoding procedure used to label CLL cells and normal PBMCs is as described 

by the manufacturers of the kit used. Briefly, 1x107 cells stained for viability using Cell 

ID Cisplatin, as described above, were suspended in 300 l of Fix I Buffer or prepared 

fresh 1.6% PFA solution. The cells were incubated for 10 min at RT and then 

centrifuged at 800xg for 3 min. The supernatant from this step was discarded, and the 

cell pellet was washed twice with 1 ml of barcode perm buffer (prepared from 10X 

barcode buffer). The washed cell pellet was resuspended with either 200 l barcode 

perm buffer or 200 l RT PBS + 0.1% tween, to which 2 l of Palladium barcode was 

added. The cell suspension was incubated for 30 min at RT, and the now barcoded 

cells washed twice with 300 l of Maxpar Cell Staining Buffer. Samples, now 

individually barcoded, were then combined together for antibody staining. 

  

 

http://www.dvssciences.com/
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2.2.5 Cell surface staining in primary cells  

 

MaxPar® Cell Staining Buffer, 45 l, was used to resuspend 5x106 cells. Thereafter, 5 

µl of Human TruStain FcX™ (Fc Receptor Blocking Solution) (Biolegend, London) was 

added to the tube and allowed to for 10 min at room temperature. Surface antibody 

was then added without washing. Surface antibodies for staining are made up as a 

cocktail, adding 1l of each antibody/sample, so that the total volume added to stain 

cells is 50 l according to the fluidigm antibody cocktail preparation guide protocol. 

The tube containing the antibody/cell mixture was gently vortexed and then incubated 

for 30 min at room temperature. This was followed by washing twice with Maxpar Cell 

Staining Buffer. After the final wash, 1 ml of the cell intercalation solution containing 

MaxPar® Intercalator-Ir was added. At this point cells can be analysed following 1 h 

incubation at room temperature or stored overnight at 4°C. Prior to analysis, the cells 

were washed twice with MaxPar® Cell Staining Buffer and once with MaxPar® Water. 

Finally, the cells were resuspended to a concentration of 2.5–5.0 x105 cells/ml in 

MaxPar® Water containing to EQ™ Four Element Calibration Beads at the dilution 

recommended by the manufacturer. The cells were then ready for analysis by mass 

cytometry, performed by using a Fluidigm CyTOF-3 machine. In this study, 1–2 million 

events were normally acquired for subsequent analysis.  

2.2.6 Detection of intracellular signaling in K562 cell lines using SH2 domains  

 

Dasatinib treatment: 

Dasatinib was used in my experiments and it is used to treat CML to inhibit all tyrosine 

kinase pathway and mainly target BCR-ABL. 
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K562 cell lines were treated with Dasatinib at a concentration of 150 nM and incubated 

for 24 hours at 37ºC in a 24-well plate.  

K562 cell line permeabilise the cells for intracellular staining either with Methanol on 

ice or Triton x-100 0.1% at RT. 

After treating the cell line with Dasatinib, the cells were fixed with Maxpar® Fix I Buffer 

for 10 min at RT. In this study, two permeabilising reagents were used to ascertain 

which has superior permeabilising for SH2 signaling within K562 cells. Thereafter, the 

cells were centrifuged at 800xg for 5 min at RT once and 1 ml of ice-cold methanol 

was added for 10–15 min on ice. The methanol should initially be kept at -20 oC before 

mixing gently and incubated for 15 min on ice or kept at -80oC till the next day. The 

samples were washed twice with Maxpar® Cell Staining Buffer.  

Triton x-100 0.1% was used as a second permeabilising reagent, and 2 ml was added 

at RT for 10 min, followed by four washes with 1 ml Maxpar® Cell Staining Buffer cells. 

SH2 domains/Streptavidin different concentrations antibodies are mentioned in Table 

4.1 are added were incubated for 30 min at RT with a final volume of 100 μl. Lastly, 1 

ml of the Cell-ID™ Intercalator-Ir was added to each tube, which was then incubated 

for 1 h at room temperature or overnight at 4oC. Cells were then washed with Maxpar® 

Cell Staining Buffer twice and once with 1 ml of Maxpar® Water. The sample was 

adjusted to cell concentration to 2.5-5 x 10
5

/ml with Maxpar® Water mixed with EQ™ 

Four Element Calibration Beads and ready to run for CyTOF-3. 

2.2.7 Heavy metal conjugated to SH2 domains purified proteins. 

 

In determining whether the Maxpar® Antibody Labeling Kit can be used to tag the SH2 

domains with heavy metal isotopes, lanthanides, four SH2 domains were used to test 

for intracellular signaling in cell lines and each domain labelled for a specified metal 
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(Table 4.1). Each SH2 domain was provided by Professor Peter Nollau Laboratory and 

has different concentrations. 

Initially, the SH2 domain’s molecular weight is about 15–20 kDa in size, the filters 

required for use in the metal labelling protocol are 50 kDa and 3 kDa filters, and the 

time of the centrifugation is increased to 25 instead of 10 min each time. 

The first steps are to preload the polymer with the lanthanide for each SH2 domain by 

adding 95 µl of L-buffer (Maxpar Antibody Labeling Kit, Fluidigm) into the polymer 

provided by the kit. 

Mix both solutions adequately, then add 5 µl (2.5 mM) of the final concentration of the 

lanthanide metal solution to the Eppendorf 1.5 ml, mixing the solutions thoroughly and 

adequately. Then, each lanthanide mixture is placed into the heat block at 37oC to 

incubate for 35 min. 

During the incubation period, to prepare the buffers exchange and partially reduce the 

antibody, add 300 µl R-buffer to a 3 kDa filter and add the volume needed of each SH2 

domain that will be used for a correct final concentration of 100 µg, adding it to 200 µl 

of the R-Buffer in the 3 kDa filter for 12,000 x g, 25 min at RT. Then, the 0.5M Tris(2-

carboxyethyl)phosphine hydrochloride (TCEP) stock by diluting 8ul of 0.5M TCEP into 

992µl of R-Buffer to have TCEP-R buffer solution and aliquot 100 µl into each antibody 

and mix it adequately after centrifugation is finished and discarding the column. 

After the mixing, incubation is required at 370C for 30 min. The next step is to purify 

the lanthanide-loaded polymer after the preloading and incubation period are done by 

adding 200 µl of L-buffer to a 3kDa filter first and then adding the metal-loaded polymer 

mixture into the L-buffer followed by centrifugation at 12,000xg for 25 min at RT. After 

centrifugation, add 300 µl of C-buffer into the metal-loaded polymer and follow with 

the same centrifugation. The next step is to retrieve the purified, partially reduced, 
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antibody (SH2 Domain) after the incubation period and add the 300 µl of C-buffer into 

the filter containing SH2 domain and centrifuge. After centrifugation, discard the 

supernatant, add 400 µl of C-Buffer to the filter, and centrifuge again for 10 min at 

12,000xg at RT. 

At this stage, there should be two 3 kDa filters, one containing the lanthanide-loaded 

polymer and the SH2 domain partially reduced antibody. At this stage is when the 

conjugate the SH2 domain with the lanthanide loaded polymer. 

Using a pipette, resuspend the lanthanide-loaded polymer in 60 µl of C-buffer and 

transfer the resuspended content to the partially reduced antibody in a 3 kDa filter, mix 

the contents adequately by pipetting, and allow the mixture to incubate at 370C in the 

heat block for 60 min.  

After the 60 min incubation, add 300 µl of W-buffer to the conjugated antibody mixture. 

Centrifuge for 10 min and discard the supernatant. This step is followed by four 

washes. 

The final step is to recover the conjugated antibody by adding 50 µl W-buffer and 

pipette to mix and to rinse the wall of the filter twice to obtain all the antibodies. Then, 

the filter is inverted over a new collection tube, and the collection in the tube is 

centrifuged for 1,000xg for two min. A meniscus seen in the collection tube suggests 

that protein is present due to hydrostatic attraction with the plastic walls of the tube. 

Check that the amount of SH2 domain collected in each tube is 120 µl of conjugated 

SH2 domain and add 40 µl of 40% glycerol to the 120 µl of protein to a total volume of 

160 µl to have a final concentration of 10% glycerol. 

Test the conjugated SH2 domains using CyTOF-3 by taking 10 µl of SH2 domain-

heavy metal and diluting it to 400 ul with deionised water. Assuming 90% recovery of 
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SH2 domains (90% of 100 µg = 90 µg), the final volume is 160ul, 90 ug in 160 µl the 

final SH2 concentration. 

Results of the mass spectrograph show successful antibody labelling with SH2 

domains by indicating the black bar presence in the rain plot individually, as shown in 

Chapter Four, Figure 4.2. 

These SH2 domains were kindly provided by Professor Peter Nollau 

(Forschungsinstitut Kinderkrebs-Zentrum, Hamburg, Germany). 

2.2.8 Combination of surface and intercellular signaling proteins in primary 

cells 

 

When the cells were thawed and prepared with stimulation or treatment was added 

following viability staining, as mentioned above, the cell count was adjusted to a cell 

concentration of 5 x 106 cells/ml. Centrifuge cells 300 µl ic-PBS, remove supernatant 

and resuspend in 300uL of ice cold 1.6% PFA OR 1X Fix I buffer (e.g. resuspend cells 

in 240uL ic-PBS and add 60 µl of either ice cold 8% PFA or ice cold 5X Fix I buffer). 

The solution should be mixed immediately and left on ice for 10 min; then, wash cells 

in 500 µl ic-CSB, removing as much supernatant as possible from the pellet. 

Resuspend the sample in 45 µl of ic-CSB, add 5 µl of Human TruStain FcX™ (Fc 

Receptor Blocking Solution) (Biolegend, London), and leave on ice for 10 min. It 

prevents non-specific staining on cells by blocking Fc receptors. Add 50 µl of a 2X 

antibody solution made in ic-CSB (antibodies concentration should be optimised) and 

leave on ice for 30 min. For example, add 1.1 µl of each 1 ug/µl antibody and make 

up to 55 µl with ic-CSB for a double antibody solution with 10% extra for pipetting 

errors, providing a final concentration of 1:100 (10 µg/ml); two samples require 2.2 µl 

of each antibody and then topped up to 110 µl with CSB, and so on. Leave the surface 

antibodies on ice for 30 min and then wash with Maxpar® Cell Staining Buffer twice 
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600 x 3 min at 4oC. Weigh out BS3(bis(sulfosuccinimidyl)suberate) powder, 

allowing time for BS3 to reach room temperature before weighing an appropriate 

amount in an Eppendorf (see below for the approximate quantity) and then centrifuge 

it to the bottom at 6,000rcf for 10 sec. Dissolve the BS3 powder in ic-PBS just prior to 

adding to the cells below; BS3 is required to be at 5 mM final. 

 

Calculation: 

Mass (g)/MW = Volume (l) x Concentration(M) 

Mass (g)/572.43 = Volume (l) x 0.005 

Volume (l) = (mass (g)/572.43)/0.005 

Example: 

Weigh out 0.00,456 g of BS3 powder 

Volume = (0.00,456 g/572.43)/0.005 

Volume = 0.00,159 L = dissolve BS3 in 1.59 ml of ic-PBS 

Once this has been done, centrifuge the solution to the bottom for 1 min. Dissolve the 

BS3 powder in ic-PBS just prior to adding to the cells the BS3 at 5mM final 

concentration. Centrifuge, remove the supernatant, break the pellets up by flicking the 

tube, and then resuspend the cells in 300 µl ice cold methanol. Leave cells on ice for 

10 min, or, alternatively, cells can be stored in methanol at -80°C for several weeks to 

months. Centrifuge cells, remove methanol, and wash cells in 500 µl ic-CSB.  

If it is required to add pallidium barcodes, centrifuge the cells, remove the methanol, 

and wash the cells with 200 µl cold PBS +0.1% tween for the first wash, and the second 

wash should be warm PBS +0.1% tween pellet. The first wash should be cold, and the 

second wash should be done with warm PBS. Prepare 10% tween-aliqout, 10 µl into 

1ml of PBS. Resuspend the pellet with room temperature PBS +0.1% tween, then add 
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2 µl of barcode pallidium isotopes and incubate for 10 min at RT. Centrifuge twice with 

CSB at RT and combine the samples. Resuspend the cells in 100 µl of room 

temperature internal antibody cocktail (antibody concentration needs to be optimised) 

and leave at room temperature for 30 mins. Thereafter, incubate the cells at 37°C in a 

heat block with a mild vortex for 30 min. Wash the cells twice in ic-CSB and resuspend 

the cells in 1.6% PFA in PBS (or 1X fix I buffer) with 500 uM intercalator-Ir at 

1:8,000.Cells can be stored for up to 2 weeks at 4oC and then prepared and run on 

CyTOF. Add the fix andperm bufferon the day of the run, add Ir 1 hour RT and prepare 

for CyTOF. 

2.3 Western Blotting  

2.3.1 Protein Extraction and Quantification 

 

The first process to prepare samples I used for western blot, to use clear lysis buffer 

that isolates all the proteins from other parts of cell by breaking the cell membranes. 

In addition to the sonication that is required as second step to completely reach full 

protein extraction and cell structure is denatured. Sonication was set for five cycles 

using a Biorupter Water Cooler. Quantification of proteins was prepared according to 

Bradford Protein Assay Bio-Rad on 96 well plate. The first two columns were for the 

standards and the next columns for the Maver-1 and Jeko-1cell lines, with different 

IgM time point stimulation and the same IgM 20 µg/ml concentration. The result was 

read using a spectrophotometer (Bio-Tek uQuant Universal Microplate 

Spectrophotometer) to measure the proteins absorbance of light at specific 

wavelength to measure sample protein concentration and graph analysis that followed 

the standard criteria. 
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2.3.2 Western Blot  

 

For this study, the aim is to confirm whether IgM stimulation on Maver-1 and Jeko-

1cell lines shows expression when probed with the primary phospho- protein 

antibodies worked in different time points, 0.5 and 15 min. Ten percent acrylamide gel 

for a Bio-Rad mini gel apparatus (Bio-Rad laboratories Ltd, UK) and 5 ml resolving gel 

buffer (Geneflow, UK) were mixed with 6.7 ml acrylamide solution (19:1 

Acrylamide/Bisacrylamide, Geneflow, UK) and 8.3 H2O. Polymerisation of the gel was 

initiated with the addition of 250 µl 10% Ammonium persulphate (APS) and 25 µl 

tetramethylethylenediamine (TEMED). The amount of resolving gel solution created is 

ideal for casting two 1.5 mm PAGE gels, which were left to polymerize at RT for 1 h. 

A 5% polyacrylamide stacking gel was prepared by mixing 1.25 ml stacking gel buffer 

(Geneflow, UK) with 0.85 ml acrylamide solution and 2.9 ml H2O and then adding 10% 

APS 25 µl and 5 µl TEMED. Insert the 10- or 15-well combs that were used to create 

sample chambers for cell lysates in the stacking gel. 

Western blotting technique was used to specify the molecular weight proteins and 

understand the level of expression of both total plcy2 and phosphorylated PLC2, ERK 

½, p-BTK, and p-AKT through sodium dodecyl sulphate polyacrylamide gel 

electrophoresis (SDS-PAGE). The kilodaltons targeted were 150, 60, 75, 44, 42 to 

understand and evaluate cell lines and expression in each intercellular antibody by 

first running the samples into 10% SDS-gel electrophoresis, using a 10–15 well comb 

that takes a maximum of 20–30 µl and transferred onto immobilon-P polyvinilidene 

difluoride membranes (Millipore Corporation; USA). The primary antibody used, 

phospho antibody, is rabbit polyclonal antibody in 5% BSA for total caspase-8 and in 
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5% BSA for treated cell lines by IgM (Fab)2 to confirm the expression between cell 

lines proteins and IgM expression. Incubation was overnight on a rocker in the cold 

room. Afterwards, it was incubated by a secondary antibody (goat anti-rabbit/mouse 

IgG-HRP conjugated) for 2 h at room temperature on a rocker and 200 µl of sodium 

azide. Following the incubation, ECL substrate was added to view the protein band by 

capturing through the chemiluminescent reaction using an image reader, LAS-1000 

(Fujifilm,Tokyo,Japan), which uses an enhanced chemiluminescence kit (GE 

Healthcare Life Sciences, Buckinghamshire, UK).There are a few shortcomings in the 

western blot techniques which have to be considered. First, classical western blots are 

non-quantitative, whereas they can determine whether a particular protein is present. 

They do not make it possible to quantify the amount of a protein present. Second, 

western blot can only be performed if the primary antibody against the protein of 

interest is available. These primary antibodies are expensive. Third, western blot is 

challenging to perform properly to obtain consistent excellent results. Fourth, 

sometimes antibodies exhibit off-target binding which can cause poorer result.
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2.4 Far western blotting using SH2 domains conjugated to heavy metals 

Far western blot is a method similar to the standard Western blot to characterize 

protein-to-protein interactions, which is a useful technique to detect labelled protein 

antibody on the membrane blot. In my thesis I used it to measure intracellular 

signaling, using glutathione-S- transferase purified Src-homology-2 SH2 domains, and 

were biotin-labelled probe and detected by streptavidin HRP (biotinylated). Src 

homology region 2 (SH2) domains have specifically bound to phosphorylated tyrosine 

proteins. In my experiments I used the calculation used to probe the unlabelled and 

labelled SH2 domains with heavy metals and Streptavidin biotinylated, according to 

(Table 4.1) with a final concentration of 50ng/ml in 10 ml total end volume for each 

SH2 domain to incubate them on the membrane blot for one hour RT after the lysates 

are separated by SDS-PAGE electrophoresis and transferred into the membrane. To 

prepare the complex formation in 10 ml, each SH2 domain concentration (Table 4.1) 

is aliquoted in 1.5 ml Eppendorf, and added 1% BSA/1xTBST solution was prepared, 

and added to the mixture to be diluted in a 10ml to incubate for 30–60 min.  

K562 cell lysates were treated with Dasatinib 150 nM for 24 hours and Mec-1 lysates 

treat with pervanadate 100 M 15 mins. Each lysate was quantified and ready to run 

for far western. Initially, the western blot was done and probed anti-phosphotyrosine 

antibody (PY20) as a confirmation that the cells were responsive for Dasatinib and 

pervanadate treatment (Figure 4.3). 
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2.5 Cytobank software Analysis  

All experiments conducted by CyTOF-3 are analysed by Cytobank software, which 

features a specific in-depth gating method and detailed phenotypic examination of 

each cell population and its subsets where data produced by several different 

parameters are analysed. This provides the answers to many questions by the 

identification of rare cell populations, quantifying a diversity of cell populations, and 

the focused phenotypic examination inside rare populations and cell expression. 

The Cytobank provides a view of the analysis in different algorithms and computerised 

skills. It allows to analyse data using unsupervised algorithm using dimensionality 

reduction algorithm (viSNE) and clustering algorithm (SPADE, FlowSOM), to view the  

important data information to understand cellular abundance, expression 

identification.  

2.5.1 Visualization stochastic neighbour embedding algorithm (viSNE): 

 

viSNE analysis is an unbiased gating of the cell population. The sample files for each 

population are selected from a pre-gated live cell singlet that is further subdivided into 

subsets as shown in (Figure 3.6A). The next step is to select all the different 

parameters required to visualize the phenotypic markers expression as shown in 

(Figure 3.6B) CyTOF allows for the addition of more than 30 different parameters to 

measure every single cell. Each population measures the event sampling proportional 

or equal to the desired total events versus events per population. This is a principal 

components analysis where each point is related to others within n dimensions that its 

end results a cloud formation structure of clusters with all the parameters and provides 

an in-depth visualization of phenotypic examination. This platform is a tool that uses 

the tSNE (t-distributed stochastic neighbour embedding algorithm) for interpretation.  
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2.5.2 Spanning-tree Progression Analysis of Density-normalised Events 

(SPADE) 

 

The SPADE hierarchical algorithm mechanism transforms the data by first down 

sampling the data to capture different cell populations, including rare subsets that 

clusters them phenotypically to similar cells into ‘nodes’, into a tree format, a SPADE 

tree. In order to generate the spanning tree, it is required to set the first number of 

nodes to allow to cluster to identify the population and to select the number according 

to less or more clusters to present in the tree as shown in (Figure 3.8A). To gate a rare 

population, the number of nodes should be reduced to remove unnecessary noise and 

provide a chance to find the rare population. A high number of nodes can also be used 

to detect large populations. The next step is down sampling which detects the density 

dataset according to number of total events per population, helps to filter out the event, 

and allows the presentation of only one of the desired clusters, especially in rare 

populations as shown in (Figure 3.8B). If the rare population has 500 events and down 

sampling is 10%, it will remove 450 events and keep only 50 of the total events after 

down sampling. Thereafter, the required and desired population is selected, with the 

phenotypic markers that are required for the clustering analyses that are included 

within the selected population as shown in (Figure 3.8C). 

 

2.5.3 Self-Organizing Map (FlowSOM) 

 

FlowSOM is a new visualization and SOM clustering algorithm that has recently been 

used to analyse flow and mass cytometry data. The algorithm is able to cluster on 

larger datasets with or without manual gating, which is a superior way to detect a rare 

population faster. It is similar to SPADE, but the clustering algorithm is different in that 

representation of the data figures by star charts and meta clustering of nodes that can 

be calculated in a new way, visualised in the grid. The principles to start the FlowSOM 
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algorithm by reading the data that starts to process several FCS files and allows 

comparisons between them. Thereafter it starts to build the self-organizing map As 

shown in (Figure 3.17A), according to the grid node, and connects each similar node 

and neighbouring other nodes as shown in (Figure 3.17B) so that results can be 

viewed as a minimal spanning tree (MST), and this results in computing a meta-

clustering which creates a background colour within the nodes. 
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Chapter 3: Characterising B cell subsets 
in samples of PBMCs derived from 
healthy individuals and patients with CLL 
with mass cytometry. 
 

3.1 Introduction: 

Phenotypic characterization of B cell subsets has typically been performed by 

fluorescence-based flow cytometry which is used to identify surface expression of 

proteins that indicate cell differentiation [6, 107]. In this respect antigens such as 

CD19, CD20 and CD27 are used to classify naïve and memory B cells from the total 

B cell population. However, there are challenges to this method because there is 

limitation in the number of markers that can be simultaneously assessed due to 

spectral overlap of the fluorophores that are used to tag antibodies. Such spectral 

overlap requires compensation as a required step for interpretation of the data. In 

addition, background fluorescence can also interfere with detection, and algorithms 

that correct for this background fluorescence need to be employed. Together, these 

elements restrict conventional flow cytometry to a limited number of parameters that 

can be measured simultaneously [108]. 

The ability to measure multiple surface antigens on B cells has distinct advantage in 

a clinical setting in terms of distinguishing disease from healthy phenotypes. Typically, 

the Liverpool Clinical Laboratories (NHS) use a panel of antibodies that recognise 16 

different antigens in 3 different measurements (tubes) to determine if malignant B cells 

are present in samples of whole blood. The process of B cell recognition by flow 

cytometry technologies could be made more efficient. A new generation technology, 

mass cytometry, is developed to remove the limitations of conventional flow cytometry 
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[109]. At the beginning of this thesis mass cytometry had not yet been extensively 

used to characterise normal and malignant B cells. The aim of this chapter is to 

investigate the use of a third generation of mass cytometer, Helios (CyTOF3) that is 

theoretically able to measure up to 135 different parameters associated with a single 

cell without any compensation [6, 110], in the analysis of B cells within PBMC 

preparations from healthy individuals and patients with CLL.  

3.2 Results 

3.2.1 Design of the antibody panel for use in mass cytometry. 

 

Table 2.2 lists all the antibodies used to analyse normal and malignant B cells in 

peripheral blood samples. In this section I list the surface markers used to study normal 

and CLL B cells (Table 3.1). 

Table 3. 1 Fluidigm surface human B cell panel antibodies 

 

 

The rationale for choosing the above 14 surface antibodies is to be able to identify 

different B cell subsets within populations of leukocytes and characterise them (Figure 

Surface Human B cell panel antibodies Heavy Metal Clone

Anti-Human CD45 154Sm H130

Anti-Human CD3 170Er UCHT1

Anti-Human CD5 143Nd UCHT2

Anti-Human CD43 150Nd 84-3C1

Anti-Human CD19 142Nd H1B19

Anti-Human CD20 147Sm H1

Anti-Human CD21 152Sm B1B

Anti-Human CD22 159Tb H1B22

Anti-Human CD27 155Gd L128

Anti-Human IgM 172Nd MHM-88

Anti-Human IgD 146Nd IA6-2

Anti-Human CD184 [CXCR4] 175Lu 12G5

Anti-Human CD38 167Er H1T2

Anti-Human CD49d 141Pr 9F10
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3.4). Starting with CD45, this is a glycoprotein marker that is known as the common 

leukocyte antigen (LCA) which is present on all haemic cells with the exception of 

mature erythrocytes[111]. This antigen was used to identify white blood cells within 

the samples I used, cells bearing this antigen are counted as the total leukocyte 

population. CD3 is the next important marker. Expressed mainly on T cell lymphocytes 

use of this marker allows exclusion of T from B cell populations. CD5 is a marker also 

present mainly on T cells, however, there is a rare population of B cells that express 

this antigen (so called CD5+ B cells that are equivalent to “B1a” cells in mice) from 

which CLL cells develop [112]. This particular population of CD5+ B cells also express 

CD43, differentiating these cells from other B cell populations which are low in 

expression of this antigen. T cells typically express high levels of CD43 [111]. CD19 is 

a marker of B cell lineage and is expressed on all B cells from early stages of 

haematopoiesis[113]. CD20 is similar to CD19 in expression, with the exception that 

it is not expressed on plasma cells. Both CD19 and CD20 can be used to identify the 

total B cell population. CD21 is a marker expressed on mature B cells where it 

functions to assist in antigen complex internalisation. CD22 is also a marker of mature 

B cells and is a lectin that recognises carbohydrate residues. Together, these 4 B cell 

antigens play important roles in B cell receptor signaling [114]. CD27 is a marker 

expressed on both B and T cell populations. On B cells expression of this antigen 

differentiates between memory CD27+ and naïve CD27- B cells. On T cells, this 

expression pattern is reversed and naïve CD27+ and memory CD27- subpopulations 

can be identified within total CD4+/CD8+ T cells [115, 116]. Immunoglobulin membrane 

proteins IgM and IgD form the B cell receptor and their expression can be used to 

distinguish naïve from memory B cells. IgM is highly expressed on memory B cells, 

whereas IgD low or absent. In contrast, on naïve B cells IgD surface expression is high 
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and IgM is somewhat lower than that observed on memory B cells. CD38 is an 

ectoenzyme marker only present on early and late developing B cell populations [117]. 

CD38 is also a marker for poor disease prognosis when expressed on the malignant 

cells of CLL [118]. CD38 is present on activated T cells and on myeloid cells [119]. A 

second prognostic indicator that is used in CLL and included in the panel is CD49d, or 

4 integrin. This integrin is normally expressed on B cells where is plays an important 

role in leukocyte trafficking and activation [120]. In CLL, expression of CD49d 

correlates with progressive disease, particularly when 30% of cells show positivity 

[121]. The final antigen within this panel is CXCR4, or CD184, which is a chemokine 

receptor for CXCL12 and is expressed by all B cell subsets [122]. When used in 

conjunction with CD5 expression on CLL cells, this marker gives information about 

newly emerged which is highly expressing CD5+ cells and CXCR4- cells and older 

quiescent cells expresses CD5- cells and high CXCR4+ within populations derived 

from PBMCs [38]. 
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Figure 3. 1 Differentiation of T and B cell subtypes by antigen expression. 
Diagram presentation of B and T cells antigen expression on membrane showing 
CD45 is present in both T and B cells and CD19/CD20 CD21/CD22 presents in B cells, 
CD27 naïve and memory B cells and T cells, with IgM/IgD expression present. 
CD38/CD49d prognostic predictor marker for CLL, CXCR4/CD5 divides the B cell CLL 
into two subsets newly emerged and older quiescent cells.CD3/CD5/CD43 expressed 
in T cells. CD5/CD43 are expressed in B cells in low levels. 

 

 

I next chose heavy metal tags for the antibodies in Table 3.1. Figure 3.2A shows a 

schematic of the algorithm I used. Antibody targets were entered into the MaxPar 

Panel Designer webtool (http://www.dvssciences.com/) that allows optimised 

selection of heavy metal conjugates. Here it is important to consider that signal and 

tolerance value play an important role in preventing spill over from one measurement 

channel on to another to potentially affect quantification of the analysis. Figure 3.2B 

shows how this web tool selects heavy metal conjugates to produce a table of how 

one isotope can spill into the measuring channel of another and is illustrated in a panel 

wheel (Figure 3.2Bii and iii). The panel wheel is divided into 3 sections describing the 

tolerance associated with each isotope [high (>40), medium and low (<4)], which is a 

number associated with the potential for spill over into another channel. The height of 

the fin indicates the sensitivity with which the mass cytometer detects a given isotope, 

the larger the fin the more sensitive the detection. Finally, colouring indicates high 

http://www.dvssciences.com/
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(orange), moderate (light green) and low (dark green) potential for spill over based on 

tolerance so that the user can insure that antibodies to antigens that are highly 

expressed do not contribute artefacts to channels associated with antibodies to low 

expressed antigens. 
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Figure 3. 2 MaxPar® panel designer webtool demonstration. A.) A simplified 
stepwise algorithm showing antibody selection using the MaxPar® panel designer 
tool. B.) i) Target and Metal Tag an illustrated example of how targets (antibody) and 
tags (metal-tag) are chosen in combination. ii) Signal and Tolerance sheet where each 
channel shows each channel spill over into and out which is then coloured by a panel 
wheel that indicates high, medium and low signals and tolerance iii) Panel wheel 
presentation of pS6 no spill over to any channel. A red colour on the wheel indicates 
the same metal.  
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3.2.2 Doublet discrimination by mass cytometry. 

 

Mass cytometry measures events (cells) by detecting intact nuclei within cells, 

whereas conventional flow cytometry measures events by detecting the optical 

parameters associated with cells. An important consideration when interpreting data 

generated by these techniques is the discrimination of events associated with single 

particles (cells) from those associated with two or more particles. Mass cytometry 

detects nuclei with a DNA intercalator, Cell-ID™ Intercalator-Ir, that has been coupled 

with natural abundance iridium where cells are stained and bind to the nucleic acid 

and is detected by the 191Ir and 193Ir isotopes in the nucleated cells that are present 

as they are in nature. Figure 3.3 shows the dot plots associated with cells where this 

compound has been used and iridium detected by mass cytometry. Figure 3.3A shows 

the relationship between 191Ir and time, Figure 3.3B shows the relationship between 

191Ir and 193Ir in the way they stain nuclei and other particles, and Figures 3.3C and D 

show the relationship between event length (the size of the ion cloud) and 191Ir and 

193Ir, respectively. In each section the events are coloured according to density where 

the red-orange-yellow colouring indicates the highest density. The narrow line (in 

Figure 3. 3A) and discreet dots (in Figures 3.3B-D) associated with the most intense 

signals indicate events associated with single cells. Figure 3.3A shows the consistency 

of this concentration of events over the entire course of experimental measurement 

and is a gauge of quality control. Figure 3.3B shows the linearity of the relationship 

between 191Ir- and 193Ir-intercalator incorporation in differently sized particles, 

corresponding to DNA content, where the majority of particles are of a single size. 

Similarly, Figures 3.3C and D shows the relationship between particle size and DNA 

staining. Drawing a gate around the areas of highest density events in each dot plot 

yields similar results (89.4%, 88.5%, 88.6% and 86.0%, respectively). This 
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consistency indicates that each method can be used to discriminate doublets, for the 

purpose of this thesis I used the relationship between 191Ir and time.  

 

Figure 3. 3 Gating templates for discrimination of doublet from singlet cell 
events. Different variations of doublet discrimination in mass cytometry generated 
data presented as event density bivariate (dot) plots. The gated singlets represent 
yellow red colour in each dot plot. A.) incorporation of  191Ir intercalator versus Time of 
experimental measurement (in minutes). B.) 191Ir versus193Ir. C.) Event length 
versus191Ir or D.) 193Ir.  

 

3.2.3 Identification of B and T cell subsets in PBMC preparations (manual 

gating).  

 

After determining that my cell population of interest were singlets, the next stage of 

my analysis was gating for different lymphocyte subsets. Figure 3.4 shows the process 

I took to perform this function.  

Discrimination of live from dead cells was performed using the Cell-ID Cisplatin 

reagent. Cisplatin, also called cis-diamminedichloroplatinum(II), is considered to be a 

cytostatic agent [123] and works by covalently binding to exposed sulfhydryl groups 

on proteins and nitrogen donor atoms on DNA, the latter interaction leading to damage 

of the DNA and concomitant blockade of replication [124]. With respect to the assay 

that distinguishes live from dead cells, it is the ability of cisplatin to label proteins that 

is important. The 5 min incubation of the assay allows interaction of cisplatin to 

available proteins which is limited on live cells because they require active transport 

to take this compound up. In contrast, the proteins of dead cells, because of the 
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permeable nature of their membranes, are easily labelled. Thus, live cells are detected 

as the population with low amounts of 195Pt over time, whereas dead cells will have 

considerably more. In Figure 3.4 the top right hand dot plot shows that a majority of 

events is associated with a low incorporation of 195Pt and were taken as the live cell 

population. The next gate involved selection of CD45+ cells (CD45 is highly expressed 

on all leukocytes), followed by selection of cells which were positive for CD19 (a 

specific B cell marker). I found that it was necessary to further gate the CD19+ for CD3 

because my doublet discrimination step in normal B cells as to further eliminate any 

doublets and aggregations that can commonly occur in frozen buffy within the 

populations. This step was very important because the population of CD5+ B cells I 

am interested in is rare and I did not want interference from contaminating T cells. 

Thus, in the end I was left with pure CD19+/CD20+ populations of cells for further 

gating.  Naïve and memory B cell subsets were identified on the basis of CD27 

expression, the former being negative whilst the latter being positive. CD5+ B cells 

were identified from the whole population of B cells based on CD5 and CD43 

expression. At each stage the proportion of total, naïve, memory and CD5+ B cells 

with respect to total leukocytes and was consistent with normal values [125].  
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Figure 3. 4 Manual gating strategy to identify B cell subsets in normal PBMCs 
by mass cytometry. Each dot plot connected by arrows represents consecutive gates 
to identify B cell subsets within populations of PBMCs. Singlet discrimination is 
performed by plotting 191Ir/Time. The main population of cells represented by the 
yellow red line (indicating density) are taken (drawn box) and reanalysed for viability 
by plotting cisplatin 195Pt vs time. Those cells with low levels of 195Pt are taken for 
identification of total leukocytes by CD45 expression. B cells are then identified by 
CD19 expression, and then within this population contaminating T cells are removed 
by CD3 expression. This leaves total B cells as demonstrated by CD20/CD19 
positivity. Memory and naïve B cells are identified by CD27 expression, and CD5+ B 
cells are identified by CD5 and CD43 as is described [24]. Drawn gates represent the 
proportion of identified cells in the total leukocyte population. 

 

Singlets Live cells

Total Leukocytes B cells

Total B cells

Memory B cells Naïve B cells CD5+ 

cells

CD19+ B 

cells
CD3+ T 

cells

76.21%

58.66%

97.75%

9.56%

0.16%
9.36%

8.64%

3.32%

4.79%
0.01%



83 

 

In a similar way to B cells, I next gated for T cell populations as shown in Figure 3.5. 

Here I start with CD45 expression and then show how serial gating results in 

identification of some T cell features. For example, CD3 and CD5 are used as 

identifiers of T cells, CD19 is used to remove B cell contamination, and finally CD27 is 

used to discriminate naïve (CD27+) and memory (CD27-) T cell populations.   

Together, the manual gating strategies I employed show that mass cytometry data can 

be used to identify B and T cell subsets. 

 

 

Figure 3. 5 Manual gating strategy to identify T cell subsets in normal PBMCs by 
mass cytometry. Each dot plot connected by arrows represents consecutive gates to 
identify T cell subsets within populations of PBMCs. Doublet discrimination and cell 
viability are as described in Figure 3.4. Identification of total leukocytes is made by 
CD45 expression (top left panel). T cells are then identified by CD45/CD3 expression, 
and then within this population contaminating B cells are removed by CD19 
expression. This leaves total T cells as demonstrated by CD5/CD3 positivity. Memory 
and naïve T cells are identified by CD27 expression. CD43 on T cells is shown in the 
bottom right panel. Drawn gates represent the proportion of identified cells in the total 
leukocyte population. 

 

Total Leukocytes

CD3+ T / CD19+ B  cells

97.75%

Total T cells

Memory T cells Naïve Tcells CD5+/CD43+ cells

52.74%

0.94%

48.33%

3.89% 16.68%

CD3+ T cells
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3.2.4 Discrimination of cell phenotypes using reduction algorithms for high-

dimensional mass cytometry data 

3.2.4.1 viSNE 
 

Gold standard analysis of flow cytometry data is achieved through traditional manual 

gating as I have already demonstrated. A limitation of this approach is the bias towards 

the cell population of interest (i.e. B cell vs T cell populations) that is taken by manual 

gating where it becomes increasingly difficult to appreciate expression of a single 

antigen on all cell types within the whole population of leukocytes. This is particularly 

important for the high dimensional data that mass cytometry can generate. To resolve 

this limitation dimensionality reduction algorithms have been developed [88] that allow 

for simultaneous analysis of antigen expression on all cells. One method is termed 

“viSNE” and projects mass cytometry data on to a 2-dimensional plot using t-

distributed stochastic neighbor embedding algorithms (tSNE). This method reduces 

dimensionality by positioning data associated with a single cell in relation to its closest 

neighbor.  Such analysis allows the entire population of cells (leukocytes for the 

purpose of this thesis) to be visualised on the basis of phenotype and give insight into 

where antigens are expressed and located anatomically within.  

Figure 3.6 shows the analysis viSNE will generate from the data produced in a typical 

experiment. The data used was the same as was used for manual gating in Figures 

3.4 and 3.5. Because small populations of CD3/CD19+ doublets were present, it was 

decided to gate these doublets out so that they would not contribute to the final viSNE 

analysis. Figure 3.6A shows a dot plot representation and example of the gate used 

to select data for further analysis.  

With the appropriate data selected, a viSNE plot could now be realized (Figure 3.6B). 

Each of the 14 panels shows reactivity of a single antibody across the entire population 
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of Analysed live leukocytes. Events corresponding to single cells are arranged in 

islands of similarity, and these islands can be associated with particular cell types 

based on presence of a defining antigen. For example, there is a large island of cells 

that react strongly with the CD3 antibody signifying that these cells are T cells. 

Immediately to the left of the T cells are 2 islands of CD19+ cells, cells which are B 

cells. North of the T cell island is an island likely to represent myeloid cells because 

they are neither CD3 nor CD19 positive, nor do they express other antigens within the 

panel that are expressed by lymphocytic cells (eg CD20, CD5 and CD22).  

With the viSNE projections it is now possible to simultaneously observe variance in 

expression of different antigens across all cell populations. For example, CD27 

expression can be observed in the upper left island of B cells, in the small region of 

the putative myeloid island likely corresponding to natural killer cells, and across a 

large swath of the T cell island. In a similar way expression of other antigens can be 

observed; CXCR4 is largely present on B and T cells, CD38 expression is restricted 

to subpopulations of B, T and myeloid cells, et cetera.   

viSNE analysis also reveals cell numbers. The size of each island is representative of 

the proportion of events that are similar; as expected T cells are the dominant island 

whereas the islands representing B cells are somewhat smaller. In this way, 

quantitative data of a similar nature to what can be obtained using manual gating can 

also be obtained through this automated algorithm. 
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Figure 3. 6 viSNE analysis of mass cytometry data generated from normal 
PBMCs stained with surface markers. A.) Dot plot representation and gate applied 
to select data for viSNE analysis. B.) viSNE plots of mass cytometry data generated 
by surface staining of PBMC samples from healthy adults using the antibody panel 
listed in Table 3.1. The rainbow intensity is a measure of indicated antibody reactivity 
with each island of similar events. 

 

Following analysis of the total leukocyte population, I then focused on the B cell island. 

Figure 3.7 shows a close phenotypic visualization of this population of cells giving 

insight into the geography and range of reactivity for each antibody in the panel I used 

Table 3.1 The total B cell population is uniformly strongly positive for both CD19 and 

CD20 (99.7%). Such reactivity is shared by CD21 and CD22, but the latter shows 

variable reactivity with CD27+ memory B cells. Similar variable reactivity with different 

B cell subsets was also observed with CXCR4 and CD49d. Naïve and memory B cells 

CD19+/CD3+

Contaminated doublets 

A)

CD19 CD20

CD21 CD22CD38

CD27

IgM

IgD

CD5CD3 CD49dCXCR4

CD43

CD45
B)
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can be identified by CD27 expression where the south island of cells are largely 

negative (comprising 6.40% to total leukocytes) and the north island and a northern 

segment of the south island show a range of reactivity with CD27 (comprising 3.31% 

to total leukocytes), respectively. Memory B cells within the north island are negative 

for both IgD and IgM signifying that they likely to have undergone class switch to either 

IgG, IgA or IgE positive cells. Memory B cells grouped in the northern part of the 

southern island, in keeping with the literature [126] are strongly positive for IgM and 

show a range of reactivity with IgD. Naïve B cells within the southern island are 

uniformly strongly positive for IgD expression but show a vast range of positivity for 

surface IgM. CD38 expression also shows wide variation in expression on the north 

and south B cell islands. On the north island strong CD38 expression likely 

corresponds to plasmablast cells where sIg and CD27 expression is low [127]. On the 

south island, strong CD38 expression likely corresponds to B cells that have been 

activated or are CD5+ [128]. Correspondingly, in my experiments, it is this same 

CD38+ region of the south B cell island that is weakly positive for CD5. These same 

cells do not show expression of CD3 and are therefore likely to be a true population of 

CD5+ cells as is described by[129, 130]. These CD5+ B cells comprise 0.06% of the 

total leukocyte population, their rarity is consistent with established studies.  

Taken together, these data show that B cell subsets can be discriminated and 

quantitatively assessed using viSNE as an approach to the analysis of mass cytometry 

data.   
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Figure 3. 7 phenotypic examinations within each subset. In-depth phenotypic 
examination of the total B cells CD19+ population from the Total Leukocytes. See 
CD27+ memory B cells CD27- naïve B cells expression within the B cell. IgM and IgD 
are expressed in the lower part of B cells. CD5 /CD43 cells are dim within the B cell 
population. CD43 & CD5 cells more over expressed widely in the T cell compartment.  

 

3.2.4.2 SPADE 
 

A second method I used for analysis of high dimensional data is Spanning-tree 

Progression Analysis of Density-normalised Events (SPADE). This is a computerized 

gating approach that works by assigning hierarchical clusters to groups of cells based 

upon their abundance as defined by similarity of each marker expression within the 

population as a whole [131]. The resultant SPADE tree is a reduction of dimension 

where each cluster is connected to another by a minimum spanning tree (MST) which 

is constructed through density down sampling the data so that rare populations of cells 

are not lost from the total population. Defining the number of nodes is important in the 

construction of a meaningful SPADE tree and takes into consideration the selection of 

markers that will be used and the desired cell population (Figure 3.8A). Too many 

nodes, such as the 200 used to generate the SPADE tree illustrated in Figure 3.8B 

(left panel) creates nodes without any meaningful data that leads to disintegration of 

results. For example, in order to accommodate the 200 nodes the algorithm down 
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samples a restricted number of events (in this case 3,797 cells) in order to preserve 

the overall analysis structure. In contrast, the use of 45 nodes leads to the down 

sampling and analysis of a data set which is 4X larger (14,726 cells), thereby using 

the generated data more efficiently without affecting or losing a rare population that 

could be shadowed or hidden within a large cluster if too few nodes were chosen 

[Figure 3.8B (upper right panel)]. This optimised representation shows B, T and 

Myeloid cells as a sequence of connected nodes where different sizes and colour 

indicate cell numbers within each. This gives quantitative data regarding proportion of 

cells within each defined population and can now be better represent as a series of 

equally sized nodes so that colour information can be better viewed [Figure 3.8B 

(lower right panel)]. 

Figure 3.8C shows SPADE trees now organised into myeloid, and T and B cells where 

the colouring within each of the 45 nodes represents the medians associated with 

antigen expression. The colour scale ranges from blue (negative) to red (strongly 

positive), clearly showing that the B subsets are discriminated from T cells and myeloid 

cells by strong co-expression of CD19, CD20, CD21 and CD22. Similar to viSNE, 

simultaneous expression of the antigens used in my panel can be observed on 

myeloid, T and B cells giving appreciation of comparative antigen expression on these 

haemic cell subtypes where potential new and interesting features can be found. For 

example, IgD positive nodes are identified within the T and myeloid cell bubbles, [132, 

133] nodes that do not show any other B cell marker. These cells are also identified 

within the viSNE plots (Figure 3.6B) and are rare within the entire population of 

leukocytes. Finally, the rare population of CD5+ B cells are indicated and comprise 

0.15% of total leukocytes.  
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Taken together, these data show that peripheral blood cell subsets can be 

discriminated and quantitatively assessed using SPADE as an approach to the 

analysis of mass cytometry data. 
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Figure 3. 8 SPADE analysis of mass cytometry data generated from PBMCs. 
Normal PBMCs were stained with the antibody panel listed in Table 3.1. A.) Input 
settings to create a SPADE tree. B.) Comparison of SPADE trees generated using the 
default setting of 200 nodes (left hand tree) and optimised setting of 45 nodes (right 
hand tree). Automated downsampling within each setting analysed 3,797 cells in the 
former setting and 14,726 cells in the latter. C.) Bubble cluster representation of 
myeloid, T and B cell-associated nodes for comparison of expression for each listed 
antigen. The nodes in this part were made equal size to enhance appreciation of colour 
within each. The colour scale indicates negative (blue) to strongly positive (red) 
expression. The blue, pink and yellow boxes are to show the B cells subsets and 
SPADE percentage. 

 

3.2.5 Comparing reproducibility of high dimensional dataset analysis.  

 
It is clear from my use of manual gating, or of unsupervised approaches, to the 

analysis of mass cytometry data that information regarding cell numbers within 

common and rare/new cell populations and antigen expression of those cells can be 

gained. An important aspect to consider now is the quality of the data that is generated 

where variations can be introduced by how the user is preparing the experiments. 

Such preparation needs a demonstration of reproducibility which then supports any 

generated conclusions. Furthermore, validity of the unsupervised approaches to data 

analysis should be consistent with results generated using conventional manual 

gating, this then allows in-depth and clearer visualisation of the data where large 

numbers of parameters are investigated per cell to enhance the value of any 

conclusions made. This section will demonstrate reproducibility of mass cytometry 

analysis, and show consistency between analytical methods of data analysis to 

determine if any significant differences in identifying B cell subsets are apparent. 

3.2.5.1 Reproducibility of antigen staining. 
 

To make sure that sample handling was consistent for staining preparation I measured 

antigen expression on a single sample multiple time. Figure 3.9 shows the results of 

this experiment where a normal PBMC sample was surface stained separately on 
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three different days and run on three different days. The antigens displayed in the 

figure are representative of all the antigens measured within the panel of antibodies I 

used, demonstrating a high precision with respect to marker intensity and expression 

within Total, Memory and Naïve B cell subsets. This data indicates that the procedure 

I used for surface staining generates reproducible results and gives confidence for the 

application of unsupervised algorithms. 

3.2.5.2 Comparison of viSNE and SPADE in detecting B cell subsets and CD5+ 
B cells. 
 

I next compared viSNE and SPADE to the conventional manual gating of one normal 

PBMC case with the purpose of determining whether each approach generated a 

similar result. Figure 3.10A-C shows this comparison and demonstrates that each 

approach reproducibly generates similar results, accurately identifying the proportion 

of each B cell subset present in the total leukocyte population, including the rare 

population of CD5+ B cells. With respect to the SPADE analysis, there was a small 

difference in the recorded percentages, but the values generated are within the normal 

ranges of B cell population percentages [125]. This variation could be the result of how 

the SPADE analysis works, viSNE and manual gating observe the whole data while 

SPADE down samples a part of the dataset and such partial observation may lead to 

differences in accuracy. Precision measurement of B cell subset proportions extended 

to 8 further PBMC samples analysed where viSNE, SPADE and conventional manual 

gating all yielded similar results (Figure 3.11A-C). Each sample showed a different 

percentage of the B cell subsets, but these percentages remained within the normal 

reference percentage and so were unremarkable.  
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Figure 3. 9 Standardization and quality control of surface staining from healthy 
donors. Histogram demonstration of the indicated antigen expression on B cells from 
a single healthy donor measured on different occasions (Day 1, 2, 3). Antigen 
expression on different B cell subsets is indicated.  This is a representative example 
of the 8 patient samples measured in this Chapter. 
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Figure 3. 10 Comparison of automated algorithms versus manual gating for 
identification of B cell subsets. PBMCs from a single patient sample were stained 
and analysed 3 independent times using A.) Manual gating B.) viSNE and C.) SPADE 
analysis. The bar graphs represent mean ± SEM and numbers above indicate the 
percentage of the indicated B cell subset within the total leukocyte population.  
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Figure 3. 11 Assessment of manual and unsupervised gating using normal 
PBMCs to identify B cell subsets. A.) shows the manual gating of different healthy 
individuals (n=8) and how each individual shows variations of Total B subsets, Memory 
and Naïve B cells. B.) illustrating the same cases and are gating by viSNE gating to 
identify B cell subsets. C.) SPADE analysis was performed on the same normal 
individuals show reproducible in large B cell population than CD5+ rare population. 
Each staining and gating were performed in three repeats (n=3). 
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Figure 3.12 demonstrates further investigation on the comparability of manual gating, 

viSNE and SPADE in determining B cell subset percentages. Percentages of Total B 

cells, Memory B cells, Naïve B cells and CD5+B cells were subjected to one-way 

Anova confirming there is no significant difference in the way that each method 

measures these subsets. These observations are further validated in Figure 3.13 

which shows a correlation analysis between manual gating, viSNE and SPADE where 

each individual case is represented. Thus, manual gating highly correlated with viSNE 

and SPADE, and viSNE showed high correlation with SPADE, in determining 

percentages of the total, naïve and memory B cell subsets. However, this relationship 

did not hold true for CD5+ cells, particularly with respect to the correlation of SPADE 

with either manual gating or with viSNE. This could be due to the limited data that 

SPADE analyses, through down sampling, in comparison to manual gating and viSNE. 

Nevertheless, the data presented in this section show that mass cytometry is highly 

reproducible with respect to surface antigen expression and determination of B cell 

subset percentages.  

 



98 

 

 
Figure 3. 12 B cell subsets assessment in manual and automated gating in 
normal PBMCs in different normal PBMCs (n=8) and comparing each B subsets to 
one another and see the difference of average in three gating settings, manual gating, 
and visualisation clustering algorithms viSNE and SPADE (n=3). One-way Anova 
statistical analysis was done by GraphPrism™. Each Population compared to different 
gating algorithms states no significance. 
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Figure 3. 13 Correlation analysis of B cell subsets in normal PBMCs between 
different gating settings. The table exemplifies different gating settings in correlation 
with all B cell subsets. The variables are the manual, viSNE and SPADE gating within 
the identification of the following Total B, Memory B, Naïve and CD5+ B cells. The B 
cell subsets are strongly correlated than CD5+ B cell subset when correlated to SPADE 
gating. The normal individuals (n=8) are surface stained and replicated three times 
(n=3). Linear regression analysis was done for this statistical analysis by 
Graphprism™. 
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3.2.6 Intra-clonal variability of surface antigen expression in CLL cells. 

 

CLL is a clonal expansion of CD5+ malignant B cells that accumulate in peripheral 

blood and lymph nodes. Despite this monoclonal nature, CLL is also considered a 

heterogeneous disease due to different genetic features that then determine 

progressive or indolent behaviour. Another source of intra-clonal heterogeneity of CLL 

cells, particularly those in peripheral blood, is defined by phenotype where those cells 

emerging from proliferation centres have been characterised as CXCR4dim/CD5bright, 

and those cells which have been longer in circulation and are senescent being 

CXCR4bright/CD5dim [38]. Respectively, these cells have been referred to as newly 

emerged (NE) and older quiescent (OQ) CLL cells.    

In this section I apply mass cytometry to CLL with the purpose of characterising 

intraclonal heterogeneity. I used cells from 12 patients, and study 2 patients at 2 time 

points in their disease, these cases and clinical history are listed in Table 3.2.  Figure 

3.14 shows the gating strategy I used to identify CLL cells within these samples. The 

percentage of B cells within each sample was calculated in relation to total leukocytes, 

and corresponded with data collected from each sample about the malignant cell count 

and patient history from the clinic (Table 3.3). This data set associated with CLL cells 

was then taken for further analysis.  

 

 

 

 

 



101 

 

Table 3. 2 CLL clinical history 

No. Date of 

sample 

Sample WBC, 

Lymph 

Age  Sex Stage IGHV 

status 

Karyotype P53 

mutation 

Therapy 

1 29/06/2017 3566  -  66y M C M 13q-(biallelic) no  untreated 

2 30/06/2017 3568 86.0, 76.3  76y M A UM Normal(2014) no  untreated 

3 28/07/2017 3577 85.7, 75.8 50y M A - 17p-(2017)  -  4xFCR 

2013;Ofat+Chl 

2013/14;Ibru 

April 2017 

4 16/08/2017 3585 136.8, 128.1 68y M A UM 11q-, 13q- no  untreated 

5 16/08/2017 3589 107.6, 104.9 76y F C M normal  no  untreated 

6 04/05/2016 3527 98.0, 95.0  75y F C M normal  no  untreated 

7 20/09/2017 3601 87.2, 85.6 57y M B - normal  - 4XFCR 2016 

8 13/07/2016 3530  -  56y M B - normal  - 4XFCR 2017 

9 21/09/2017 3602 50.8, 49.9  61y M C UM 11q- no  Ibrut+veneto 

started at 

2017 

10 11/02/2015 3450 85.6, 80.8 71y M  -  - 13q- no  In 

progression, 

R-

lenalidamide 

started 2/2015 

11 18/06/2015 3472 104.6, 96.1 77y F B  -  13q-  -  In 

progression, 

Enrolled to 

RIALTO trial 

06/2015 

12 23/09/2013 3367 444, 439.6 76y M  -    -  17p-  -  Probably in 

progression, 

enrolled into 

CLL210  

13 01/02/2016 3511 226, 221.9 80y M C  - 13q-, trisomy 

12 

 - untreated 

14 09/06/2014 3413 124.2, 118.4 86y F A  -  13q-  -  Previous 

chlorambucil, 

started 

ibrutinib 

6/2014 

15 16/01/2018 3634 23.8, 11.3 83y M  -  M 17p-, 13q- yes Previous 

Rituximab + 

pred 

16 26/11/2018 3711 173.3, 161.5 64y M  -  M normal no  untreated, 

started FCR 

11/2018 

17 06/12/2018 3712 79.7, 75.8 62y M B M  -  no  untreated, in 

progression, 

start ibrutinib, 
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venetoclax 

1/2019 

18 16/08/2017 3587 257, 216.1 55y M  -  M 13q- no  Untreated, in 

progression, 

started Ibrut+ 

rituzimab on 

flair trial 

10/2017 

19 07/01/2014 3380 88.2, 83.7 75y M  -   -  17p-, 13q-  -   

20 25/07/2018 3691 213.3, 196.7 69y F  -  M 13q-, trisomy 

12 

no  Untreated, in 

progression ,s 

tarted R-

ibrutinib 

8/2018 

21 24/01/2018 3637 144.6, 134.9 69y M A UM 11q-, 13q- no  Untreated 

22 15/03/2018 3647 145.9, 138.2 67y F  -  M normal no  Untreated, in 

progression, 

started FCR 

03/2018 

23 31/01/2018 3640 177.5, 163.4 82y  M A UM 13q- no  Untreated 

 

Table 3. 3 Total B percentages from total leukocytes 
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Figure 3. 14 Identification of Chronic Lymphocytic Leukaemia B cell subsets. 
The gating strategy of CLL CD19 positive cells and CD5 positive cells. Looking within 
the active population of CLL B cells they are further divided into CLL B cell subsets by 
CXCR4/CD5 markers. The older quiescent (OQ) and newly emerged cells (NE). 
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3.2.7 Characterisation of intraclonal heterogeneity within samples of CLL cells. 

 

After identifying CLL B cells within patient samples it was next necessary to 

understand any differences between individual cases. To do this I organised heat 

maps of antigen expression associated with each of the seven CLL cases I analysed 

using raw mean surface expression (Figure 3.15A). CLL cells from each case showed 

slight differences between each other, possibly indicating specific disease 

characteristics. The CLL samples I analysed included repeat analysis from the same 

patient at two different time points (Figures 3.15B and C). Samples 3530 and 3601 

were drawn nearly 1 year apart and show slight differences in surface antigen 

expression. These differences could be associated with emergence of a distinctive 

clone at the second time point because case 3530 was 4- and case 3601 transformed 

into integrin 4+ case (data not shown). Cases these cells 3589 and 3527 were also 

drawn one year apart but showed less drift of surface antigen expression (Figure 

3.15C). Nevertheless, this repeat does show that my staining technique remained 

consistent as reflected by the heatmap Figure 3.15B and C and surface antigen 

expression markers showing same expression and no difference in staining or sample 

preparation. I then generated a heat map for raw mean surface antigen expression of 

the events I analysed (Figure 3.15D). Unsupervised clustering of these results showed 

that CLL cases #3577 and 3602 were the most similar in surface marker expression, 

and #3568 the least similar from the cases I analysed. This explains that variations in 

surface marker expression are common when compared to other cases. Thus, the 

analysis so far failed to yield evidence of any functional   significance associated with 

the samples analysed. I next used viSNE and FlowSOM to cluster different sub-

populations of CLL cells from a single patient sample based on surface antigen 

expression.  FlowSOM is similar to SPADE analysis in its reliance on stochastic 
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minimum spanning trees (MST), but it self-organises data into defined 2D maps, 

and/or grids, and eliminates the need to down sample data. Figure 3.16A shows the 

viSNE projection of the total B cell population and illustrates the diversity of surface 

antigen expression across this population. A striking feature of this projection is that 

although CLL cells are clonal, there are still clusters of cells that define intra-clonal 

subpopulations that FlowSOM then visualises by layering metaclusters on to the 

viSNE plot (Figure 3.16B). The default setting of FlowSOM is 10 metaclusters, and 9 

of these 10 can be clearly identified with the missing cluster not having enough events 

to be observed within the projection. Nevertheless, some populations are distinctive, 

such as the subpopulation of cells expressing relatively high levels of CD38.  

An interesting feature of the projection was the appearance of 2 distinct islands, one 

of which was much smaller than the other (Figure 3.16). This smaller island had distinct 

high levels of IgD expression that FlowSOM then further subdivided into the 3 

metaclusters that are recognisable within this island.  

I then applied viSNE and FlowSOM to all 7 CLL cases to investigate any relationship 

between the samples (Figure 3.17). The viSNE projection again resulted in 2 islands, 

the smaller of which seeming to have similar properties to the island recognised in 

Figure 3.16). 10 metaclusters were identified, but the division between the 

metaclusters seemed associated with individual cases and so I used FlowSOM to 

project each case with a tree to show how each related to the other. Figure 3.17B 

shows the results of this analysis. Remarkably, each CLL case analysed seemed to 

be unique with respect to expression of the surface antigens in my panel. The 7 CLL 

cases shown each FlowSOM tree generated shows each case is heterogenous and 

each tree is showing high intensity of CD19 expression located in different branches 
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of the FlowSOM tree. This distinctiveness associated with each individual case is not 

likely associated with variation in staining because a similar experiment carried in this 

lab with barcoded CLL cells from different patient samples showed similar results (data 

not shown)1. 

So far, the techniques I used did not allow characterisation of particular clones 

common to all CLL cells from all patients. It was therefore decided to reframe my 

analysis into an existing paradigm of CLL where newly emerged (NE) and older 

quiescent (OQ) CLL cells can be distinguished from each other on the basis of CXCR4 

and CD5 expression[134]. In this experiment, all CLL cell samples were recovered for 

1 hour incubation with full media at 37oC in the incubator. Potentially, the introductory 

of the recovery period could have changed the expression level as its described by 

Coelho et al, however, since all CLL cell sample were subjected to the same procedure 

any change that occurred would be common to all cases and justify the creation 

bivariate dot plots. I therefore created bivariate dot plots of CXCR4 and CD5 

expression on CLL cells from different CLL patients (Figure 3.18). In total I could now 

analyse the cells from 14 different cases, where the topography of cells expressing 

differing levels of CXCR4 and CD5 could be displayed. As in [38], this topography was 

slightly different for each case of CLL, but overall there was a gross similarity 

regardless of CD49d expression. 

 

 
1 Information provided with the permission of Mohammed Jawad and Andrew Duckworth (supplemental material). 
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Figure 3. 15 Analysis of antigen expression on CLL cells from different patients. 
A.) Heat map mean expression generated showing raw surface antigen expression in 
total B cells across 7 CLL cases. B-C.) Two cases of rebleeds from same patients 
comparing surface antigen expression between them. D.) Heat map of total B cell 
population mean expression creating a hierarchy clustering paradigm Pearson 
correlation relative to surface antigen expression in each parameter. This was 
generated by GENE-E 3.0.215 software. 

 

 

 

 

 

 

 
 
 



108 

 

 

 
Figure 3. 16 Differentiation of surface antigen expression in CLL total B cells of 
surface using unsupervised algorithms. A.) The 2D viSNE plots show CLL surface 
antigen expression located within the total B cells and is located is every segment of 
the B Island. B.) FlowSOM on t-SNE data, showing identical viSNE cloud population 
in metaclusters were generated displaying majority of clusters within the B cell 
population to look for individual CLL clones. 
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Figure 3. 17 Differentiation of surface antigen distribution in different CLL 
patients in total B cells. A.) shows Combined CLL total B cells in FlowSOM 
illustration. B.) FlowSOM tree showing single cell clustering of surface antigen CD19 
distribution in each patient.  
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Figure 3. 18 CLL subsets of different patients. Colour density bivariate plots of 
different CLL (n=14) each showing different appearances of CXCR4/CD5 expression 
within individual CLL clone between older quiescent (OQ) and newly emerged cells 

(NE). CLL cases are separated in two groups by 4+/-  integrin antigen expression. 

 
I next analysed individual expression of the other antigens included in my panel on 

OQ and NE CLL cells. Figure 3.19 shows CXCR4/CD5 bivariate plots of CLL cells 

from a single case where the indicated colour shows expression of the different 

surface antigens. A striking feature is the diversity of staining for certain antigens 

suggesting intraclonal variability. To study this phenomenon across all the CLL cases 

I analysed, I created 9 tailored gates where each sample 5% of the total population 

and are arranged at the receding (CD5 dim, gates 1 – 4) and leading (CD5 bright, 

gates 5 – 8) edges. The 9th gate samples the CLL cell population with the mean values 

of CXCR4 and CD5 expression and is taken as the bulk control (Figure 3.19A). To 

measure variance of antigen expression, the mean surface expression for each gate 

for a given antigen was calculated and then plotted as fold difference relative the bulk 

control (gate 9). Figure 3.19C shows the results of this analysis and is presented 

according to CD5 and CXCR4 expression. Some antigens, such as CD19, CD21, IgM, 
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and IgD, showed significantly higher expression on CD5 cells. Other antigens, such 

as CD27, showed high expression on CXCR4 bright cells that then decreases on cells 

as CXCR4 expression decreases. CD38 showed gates 1 and 2 are low and equal to 

gates 7 and 8 but some CLL cases show higher in gates 5 and 6. The consistency of 

the results generated in this analysis lie in contrast to the variability with respect to the 

FlowSOM analysis. Figure 3.19 shows interpatient similarity of CLL cells where Figure 

3.17B suggests interpatient distinctiveness.  

This means that CLL cells when investigated the total clone of CD19+ CD5+ cells do 

show distinct variations in each case. However, when investigated into the subclones 

of CXCR4 and CD5 they share consistent pattern in all surface antigen expression 

that suggest that each subclonal gates creates a more understanding of the intraclonal 

variability in CLL subclones to guide the behaviour of aggressive subclones than 

others that give a definitive guide to target these subclones at a single cell resolution 

than total clones. 
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Figure 3. 19 Fold difference of surface antigen expression within CLL subsets
A.) Gating of Total B cells each gate 1-8 was dividing the following within CXCR4/CD5 
population. In the contour dot plot gates ~5% each gate 1-4 represents the cells from 
lymph node OQ cells (Dim) and showing all surface markers are lower and gates from 
5-8 represents cells from peripheral blood NE cells are higher (bright). B.) All surface 
markers from gate 1-8 showing in dot colour plot of each surface marker expression 
within the 8 gates in 14 CLL cases. C.) Fold difference of each surface antigen 
expression within the 8 gates that are relative to gate 9 (bulk) of the total B cell 
population. Case 3589 and case 3527 rebleeds of same patient (one year apart), case 
3530 and case 3601 are rebleeds of the same patient (one year apart). IgD have 10 
cases only the rest are 14 cases, as 4 cases had no surface antigen stained. Paired 
t-test was done for statistical analysis in Graphprism™ shows significant difference 
when compared each gate to gate 9. 
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3.3 Discussion     

The main aim of this chapter is to apply mass cytometry as a multiparametric approach 

to identify B cell subsets in PBMC preparations from healthy donors and CLL patients. 

The optimised panel was created and designed to show more and overcome the 

limitation of conventional flow cytometry with respect to the selection of antigens that 

are common B cell markers, and can be used to distinguish CLL cell clones [135].  

The antibody panel was designed to distinguish B from T cells, and further distinguish 

naïve, memory and CD5+ B cells. Thus, as reported [127, 136], CD19, CD27, IgM, 

IgD, and CD5 have been used to differentiate between these B cell subsets using 

conventional flow cytometry. The work of this chapter shows that this differentiation 

can also be achieved by mass cytometry where additional markers, such as CD38 and 

CD24, could also be included without the need for compensation. Moreover, I was 

able to distinguish the proportional representation of naïve, memory and CD5+ B cells 

using supervised (manual gating) and unsupervised (viSNE and SPADE) approaches. 

Importantly, I can show that these three methods have high precision in determining 

these subsets, and the results I achieved are consistent with values reported in the 

literature [137].  

In terms of surface antigen staining, the method I used was reproducible. To 

demonstrate this, I stained a single patient sample multiple times and observed that 

each histogram associated with a given antigen was consistent within each replicate 

(Figure 3.9). I developed an SOP for my staining procedure where total cell numbers 

within any given experiment were similar, allowing for saturation staining with a given 

antibody. I used the recommended dilution of antibody (1:100), revealing a potential 

limitation within my experiments where antibody titration would have potentially 

generated more efficient use of the antibody. To ensure that my antibody cocktail was 
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specific, I included a Fc-blocking solution where the effectiveness is demonstrated in 

the dot plots of CD3 vs CD19 expression on B and T cells. With the exception of a 

small population of cell doublets, the respective populations of CD19+ and CD3+ cells 

were negative for CD3 and CD19. This adherence to an SOP, and this demonstration 

of reproducible staining was important for later experiments using CLL cells which 

were only analysed once.  

 

One of the aims of this chapter was the identification CD5+ B cells, the normal 

counterpart of CLL cells [138], in buffy coats from healthy individuals that have been 

processed and cryopreserved. I could identify these cells, in the proper proportion 

(less than 1% from total B cell population[24]) using mass cytometry and both 

supervised and unsupervised data analysis. The rarity of CD5+ B cells puts a limitation 

on this thesis. I used barcoding as a method of understanding differences in antigen 

staining between patients, and to make my experiments more efficient. Because I used 

whole PBMC populations this made observation of rare cell subsets difficult, and I was 

not able to fully characterise surface antigen expression on the CD5+ B cells I 

identified. Therefore, no strong conclusion can be made regarding the similarity of 

CD5+ B cells to CLL cells from the data presented in this thesis. This limitation could 

have been remedied by B cell purification from PBMC preparations, and by limiting the 

number of barcodes I used. A further limitation is the preparation for and 

cryopreservation of PBMC samples, this is reported to affect ability to detect CD5+ B 

cells [139]. Nevertheless, my experiments show detection of CD5+ B cells within the 

accepted proportion, indicating that this limitation is likely not important to this thesis.  

The accuracy and precision of my measurements with respect to healthy normal B 

cells gave me confidence to measure CLL cell phenotypes only once. This is important 
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because of the precious nature of patient-derived samples, particularly if those 

samples come from clinical studies although this aspect is not relevant to this thesis.  

 

My characterisation of CLL cell phenotype followed two different courses. In the first 

instance I investigated overall similarity of phenotype between patients. Unsupervised 

hierarchical clustering did not reveal groupings of patient cells with similar phenotypes 

shown in Figure 3.15D. In fact, subsequent FlowSOM analysis demonstrated that CLL 

patient cells appeared to have a unique phenotype, where generated metacluster 

trees were different for each patient sample as shown in Figure 3.17B. This is a novel 

finding; other studies have used large panels of antibodies to detect antigen determine 

phenotype of on CLL cells the purpose of reliable disease diagnosis where the whole 

population of cells is taken into account. In this context, variable antigen expression 

on CLL cells is used for the purpose of finding biomarking for potential disease 

outcome (eg the relationship of CD38 expression with disease prognosis in CLL [140]. 

Because barcoding allows staining of multiple samples in the same tube, my studies 

of CLL cells are the first to directly compare surface antigen expression between 

different patient samples. When coupled with my use of analysis algorithms, I was able 

to identify potential sub-clones of CLL cells defined by cells having similar 

characteristics of antigen expression. Whether this represents true sub-clonality 

remains to be determined, but could correlate with known genetic heterogeneity in CLL 

[141, 142].  

The second course of characterisation involved investigating the elements of similarity 

between patient CLL cells. A recent paradigm in the biological understanding of CLL 

is the phenotype of cells as they recycle between the blood and tissues. This 

phenotype is defined by expression of CXCR4 and CD5, where OQ cells are 
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CXCR4Bright/CD5Dim and NE cells are CXCR4Dim/CD5Bright. Greater phenotypic 

characterisation of NE and OQ cells has not been easily possible until now, a previous 

abstract reports an attempt at characterising antigenic differences using conventional 

flow cytometry is known to be uniquely distinct and recent studies have shown 

variability within the clonal subpopulations in CXCR4/CD5, OQ and NE cells[38]. My 

work provides greater characterisation of division of the total population of 

CXCR4/CD5-stained CLL cells into by dividing this population into 8 equal-sized 

“gates” that then allowed for the comparison of how individual antigens varied in 

expression within this total population across all patient samples as shown in Figure 

3.19. For example, I found that CD22 stained more strongly within the 

CXCR4Bright/CD5Bright gate, a finding that concurs with those reported in the abstract 

[143]. Moreover, in my findings gate 1, CD27 shows to increase in gate 1 and decrease 

gradually to gate 4. The rest of my surface antigens are lower compared to gates 5,6,7 

and 8. In conclusion, I have identified subclone fractions within the total clone of 

CXCR4/CD5. I show a consistent pattern in different CLL patients, my analysis 

demonstrates patterns of subclone antigen expression within the OQ subclones from 

the NE subclones. This builds a foundation for further studies of CLL cell give a clear 

differential diagnosis of disease criteria to look at targeted subclones within the 

CXCR4/CD5 population of cells for functional and clinical outcome studies. 

This aspect is further investigated with respect to B cell receptor signaling in chapter 

four where I stimulate CLL cells and B cells within samples of PBMCs with IgM 

crosslinking antibody. The reason as in literature, CLL main driver to disease 

progression and heterogeneity in disease prognosis is caused by BCR signaling and 

the expression of sIgM that drives to contribute to disease pathobiology behaviour. In 

my next chapter I study the different B cell subsets in normal and CLL subclones to 
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study BCR signaling response within these cells after anti-IgM and introduction to BCR 

inhibitors, Ibrutinib and Idelalisib. 
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Chapter 4: Investigating BCR signaling in 
B cell subsets of normal PBMC & 
Chronic Lymphocytic Leukaemia cells 
 

 

4.1 Introduction 

The malignant cells of CLL are driven to survive and proliferate by BCR 

engagement [37, 51, 53, 144, 145] . Our understanding of the signaling pathway 

initiated by BCR engagement on these cells has been derived from 

studies of the entire clone where a limited number of parameters have been 

investigated. Thus, as is demonstrated in Figure 1.4, BCR crosslinking results in 

activation of several pathways culminating in the increase in intracellular Ca2+ and 

induction of MAPK and IKK signaling[48]. Importantly, the strength of BCR signaling 

in CLL cells is related to surface expression of this receptor, and these factors 

ultimately relate to disease outcome [58]. However, in the previous chapter my data 

show variable expression of surface IgM on CLL cell clones within patient samples, 

suggesting that induced signaling will also vary. Previous studies of CLL cell signaling 

have so far not addressed single cell signaling in CLL with respect to BCR engagement 

in a multidimensional approach. The aim of this chapter was to investigate this using 

a highly multidimensional tool called mass cytometry. As a multi-dimensional 

measurement technique, flow cytometry is optimally suited to the measurement of 

signal transduction in single cells. Indeed, this method has been used by other groups 

to investigate this phenomenon in lymphoid cancer cell lines, demonstrating that up to 

13 different signaling proteins can be measured at any given time [146]. The limitation 

here is spectral overlap of the fluorophores available for antibody labelling where there 

is a trade-off between investigation of signaling versus cell phenotype when 
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examination of particular subclones within a cell population is 

necessary. Mass cytometry solves this through its ability to, conventionally, measure 

more that 40 different parameters and is therefore likely to be an ideal technique to 

measure BCR signaling in different normal and CLL B cell subpopulations.   

In terms of multi-parametric measurement of signaling using flow cytometry, the 

technique generally employs the use of phospho-specific antibodies. The majority 

of these antibodies work in Western blot techniques, and this is a way in which the 

specificity of these antibodies is validated. However, recognition of phosphorylated 

proteins can be achieved by other means as was demonstrated in a publication 

by Dierck et al [106]. Here SH2 domains recognising phospho-tyrosine motifs within 

proteins are assembled into an array to detect signaling in cells. Because these SH2 

domains are also useful in Far-Western blots for the detection of phospho-tyrosine 

motifs within proteins, it is a distinct possibility that these domains may be useful within 

mass cytometry applications. Therefore, the first part of this results chapter focusses 

on developing SH2 profiling, using cell lines to test and validate this approach. The 

second half of this chapter then uses phospho-specific antibodies together with 

antibodies recognising surface phenotypes to investigate normal and CLL B cell 

response to BCR engagement.  

4.2 Results 

 
At the beginning of this thesis a major tool to investigate intracellular signaling using 

flow cytometry was the use of phospho-specific antibodies. While informative, a paper 

by Nollau et al [106] suggested that the use of peptides containing phospho-tyrosine 

SH2 domains to recognise phospho-tyrosine residues could also be used to determine 

signaling in cells. In this paper the authors used these peptides to recognise tyrosine-
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phosphorylated proteins where specificity and sensitivity were determined by 

oligonucleotide tags. On this basis I determined to use such peptides in initial 

experiments with mass cytometry as a way of enhancing our understanding of global 

signaling within CLL and normal B cells.   

Table 4. 1 SH2 domain profiling assay for far-western 

 

 

Table 4. 2 SH2 domain concentration conjugated to heavy metal 

 

 

 

 

 

 

Far-western SH2/Streptavidin concentration in 10ml

Labelled SH2 
Domain

Concentration SH2 domain
(50ng/ml)

Concentration of Streptavidin
(50ng/ml)

GRB2 1.6μl 3.6μl

NCK2 1.3μl 3.6μl

PI3KR1 1.2μl 5.4μl

SRC 1.1μl 3.6μl

SH2 DOMAIN CONCENTRATION 

µg/ml

100µg ISOTOPIC 

MASSES

SRC 890µg/ml 112.36µl 163Dy

NCK2 800µg/ml 125µl 176Yb

PI3KR1 1250µg/ml 80µl 169Tm

GRB2 630µg/ml 159µl 153Eu
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4.2.1 Optimization of SH2 profiling in cell lines. 

 

I began this work by obtaining peptides corresponding to the SH2 binding domains 

within SRC, NCK2, the p85α subunit of PI3K (PI3KR1) and GRB2 (kindly supplied by 

Peter Nollau. (Department of Clinical Chemistry, Center of Clinical Pathology, 

University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, 

Germany). These SH2 domains typically recognise specific phosphotyrosine binding 

motifs sites within proteins and are defined as shown [147]. 

Table 4. 3 SH2 domains phospho-tyrosine binding motifs for SH2 peptides 

Letters indicate corresponding amino acids with the exception of X which indicates 
any amino acid. 
 

 

 

 

 

 

 

SH2 domains Binding Motifs

Grb2 [pY] [Q/Y/V] [N] [Y/Q/F]

[V] [pY] [Q] [N] [W/F]

[pY] [I/V] [N] [I/L/V]

[V/P] [X] [pY] [V/I/M] [N] [M/V] [pY] [V/E] [N] 

PIK3R1 [pY] [M/I/V/E] [X] [M]

[X] [H/N/M] [pY] [V/E/I/T] [N/M/E] [M/E] 

[pY] [V/D] [X] [I/M/V] 

Nck2 [P/D/E/T] [V/I/E] [pY] [E/D/S] [N/E/M/T] [V/P/ A/T] [D] 

Src [pY] [E/D/T] [E/N/Y] [I/M/L]  [P/H] [I/P] 

[pY] [E/D/V/I] [L/I/E] [I/L/V] [D] 

[D/E] [X] [X] [pY] [D] [D/E/φ] [P/I] 
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I then tested these peptides in Far-Western blots of whole cell lysates (Figure 4.1). 

This was an important experiment for validation that the heavy metal labelling 

procedure to prepare the peptides for mass cytometry did not change their binding 

characteristics. The cell lines I used in this experiment were K562 and Mec-1; the 

former cell line is a CML cell line where neoplastic growth is driven by BCR-ABL [148], 

whilst the latter were derived from a CLL patient undergoing prolymphocytic 

transformation[149] where the oncogenic driver is less defined. Figure 4.1 shows a 

schematic of the Far Western experiment where the SH2 domains (in contrast to an 

antibody) are used to detect phospho-tyrosine motifs within proteins that have been 

separated by SDS-PAGE (Figure 4.1A). The SH2 domains are biotinylated and can 

be detected by HRP-conjugated streptavidin (Figure 4B). The SH2 domains can also 

be tagged by heavy metals. , Streptavidin is used  to capture the SH2 domains into a 

quaternary structure for efficient detection of phospho-tyrosine binding motifs when 

used in mass cytometry or Western blot  in accordance to the procedure described by 

Nollau et al [106]. 
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Figure 4. 1 Concept of SH2 profiling assay in Far-Western and mass cytometry. 
SH2 domains are labelled by heavy metals 163Dy,176Yb,169Tm and 153Eu that can be 
detected using approach by probing with HRP-streptavidin by molar ratio of 2:1 with 
final concentration 50ng/ml each domain 1-hour room temperature. A.) Far western 
and B.) diagram presentation of coupling HRP streptavidin tetramer with biotinylated 
SH2 domains on suspension fixed K562 cell lines for mass cytometry detection. 
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Cell lysates from K562 and Mec-1 cell lines were prepared as described in Materials 

and Methods section 2.1.15. K562 cell lines were treated with dasatinib (150nM, 24 h) 

in order to inhibit BCR-ABL activity and reduce tyrosine phosphorylation as much as 

possible in this cell line. In contrast, Mec-1 were treated with pervanadate 

(100mM,15mins) to inhibit protein phosphatases and increase tyrosine 

phosphorylation in these cells. To ensure that these respective treatments and cell 

lines responded in the way that should, I performed a Western blot where I probed the 

membranes with the anti-phosphotyrosine antibody (PY20). Figure 4.2 shows that 

dasatinib treatment of K562 cells resulted in decreased levels of PY20 reactivity 

compared to untreated cells, and pervanadate treatment of Mec1 cells showed an 

increase in PY20 reactivity. I could now probe the membranes with the SH2 domains.  

Figure 4.3 shows the reactivity of the 4 SH2 domains A) GRB2, B) NCK2, C) PI3KR1, 

and D) SRC I used in this thesis. 

Although pervanadate treatment of Mec-1 cells showed an increase in phospho-

tyrosine reactivity, there was no apparent change in the reactivity of the SH2 domains 

on the Far-Western blots (Figure 4.3). Moreover, where there were reactive bands, 

there seemed no difference between the blots in terms of the apparent size of the 

bands. For example, there was a band at 75kDa that was consistently present on all 

the blots regardless of the SH2 binding motif used. In contrast, with K562 cells there 

were distinctive differences, not only between treated and untreated cells, but also 

with the difference SH2 domains.  Figure 4.3A shows the Far Western blot for the 

GRB2 SH2 domains where there appears to be specific reactivity with   bands of ~49 

kDa, ~37 kDa  and 3 bands between 15  and 20 kDa. The reactivity of the SH2 domain 

was reduced in dasatinib treated cells. Figure 4.3B shows that NCK2 SH2 domains 
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identified bands at   ~75, ~45 kDa and between ~25- 20 kDa.   Figure 4.3C shows that 

PI3KR1 SH2 specifically and strongly recognised a band at ~150 kDa. Other lower 

molecular weight bands were also recognised, but the reactivity was not as strong.   

Figure 4.3D shows the reactivity of the SRC SH2 domain, where recognition of weak 

bands of ~70, and ~49 kDa was observed, and stronger reactivity observed with 

respect to a triplet of bands between ~25-~20 kDa. Together, these results show that 

the SH2 domains I used in this thesis had some of specificity in recognising 

phosphorylated proteins in cells.  

  

Next I performed the same experiment but used heavy metal modified SH2 domains 

within the Far Western blots to see whether such modification changed their reactivity. 

Figure 4.4 shows the results for 3 of the SH2 domains, NCK, PI3KR1 and SRC, these 

results were largely similar to what was observed using the unlabelled SH2 domains,  

Because the membrane blots show no significant changes between labelled and 

unlabelled SH2 domain reactivity, it can be concluded that there is no interference of 

the heavy metals or the labelling procedure with the reactivity of the SH2 domains. 

The limitation of this experiment in both  Western and far-Western blot did not have a 

loading controls total protein for each SH2 domain. Moreover, the model system 

employing K562 cells, where different epitopes are recognised by the SH2 domains, 

justified further experimentation and testing of the SH2 domains within a mass 

cytometry setting.  

 

 

 

 



127 

 

 

Figure 4. 2 Western blot of phosphotyrosine following treatment of K562 and 
Mec-1 cell lines with dasatinib and pervanadate, respectively. (4 x 106) K562 and 
(4 x 106) Mec-1 cells were treated, respectively, ± 150nM dasatinib for 24 hours, ± 
1mM (100µM) pervanadate for 15min. Cells were harvested and lysed with SDS-
PAGE buffer. 10µg of total protein from each cell line and condition were separated 
by SDS-PAGE using a 10% polyacrylamide gel and transferred to PVDF membranes. 
The membrane was probed with anti-phosphotyrosine antibody (PY20). The image 
was captured by using enhanced chemiluminescence (ECL) following treatment of the 
membrane with HRP-conjugated anti-mouse IgG. 
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Figure 4. 3 Far-western blot of unlabelled SH2 profiling of phosphotyrosine 
following treatment of K562 and Mec-1 cell lines with dasatinib and pervanadate, 
respectively. (4 x 106) K562 and (4 x 106) Mec-1 cells were treated, respectively, ± 
150nM dasatinib for 24 hours, ± 1mM (100µM) pervanadate for 15min. Cells were 
harvested and lysed with SDS-PAGE buffer. The membrane was probed with 
streptavidin-HRP antibody with unlabelled biotinylated SH2 domain at a final 
concentration of 50 ng/ml of each domain A.) GRB2, B.) NCK2, C.) PI3KR1 and D.) 
SRC. The image was captured by using enhanced chemiluminescence (ECL) for 
detection and binding reactions by streptavidin-HRP antibody with unlabelled SH2 
domains. 
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Figure 4. 4 Far-Western blot of labelled SH2 profiling of phosphotyrosine 
following treatment of K562 and Mec-1 cell lines with dasatinib and pervanadate. 
The membrane was probed with streptavidin-HRP antibody with labelled biotinylated 
SH2 domain at a final concentration of 50 ng/ml of each domain A.) NCK2 176Yb, B.) 
PI3KR1 169Tm and C.) SRC 163Dy. The image was captured by using enhanced 
chemiluminescence (ECL) for detection and binding reactions by streptavidin-HRP 
antibody with labelled SH2 domains. 
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Next, I tested whether my labelling of the SH2 domains resulted in efficient coupling 

of the chosen heavy metals to their respective SH2 domain (Table 4.2). Figure 4.5 

shows the results of this test where the strong black bar on the rain plot from the mass 

spectrograph indicates the presence of the respective heavy metal lanthanide 

conjugated to its target SH2 domain. The GRB2 SH2 domain was conjugated 

separately and tested on a different day (data not shown).  

 The rain plot showing detection of the heavy metals I used. Successfully four tagged 

SH2 domains with their corresponding heavy metal lanthanides, was confirmed by 

mass cytometer. Figure 4.5 illustrates since my initial work using Far-Western blotting 

indicated that K562 cell were a good model, I used them to further investigate signaling 

using SH2 domains with mass cytometry.  Figure 4.6 shows my attempts to optimize 

the cell permeabilization in order SH2 domain reactivity within the cells. Samples were 

permeabilised either with 0.1% triton X-100 at RT where a SH2 domain/Streptavidin 

concentration of 800ng/ml and incubation at room temperature were used (Figure 

4.6A), or methanol at 4°C where, after washing, the cells were incubated with a SH2 

domain/Streptavidin concentration of 2000ng/ml at RT (Figure 4.6B). Both methods of 

permeabilization allowed clear binding of GRB2- and PI3KR1-SH2 domains to cells. 

There was no binding of NCK-SH2 domains, and methanol permeabilization seemed 

to slightly increase SRC-SH2 domain binding. In Dasatinib treated samples, as was 

shown in Far Western blots, there was a complete reduction of SH2 domain reactivity, 

where the only difference between the two permeabilization methods is that residual 

binding of the GRB2 SH2 domain was observed in methanol permeabilised cells. In 

terms of reactivity the PI3KR1 SH2 domain was strongest followed by GRB2, SRC 

and then NCK2 which showed no reactivity. Taken together, these results show the 

usefulness of SH2 domains for the detection of intracellular signaling. I can conclude 
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that GRB2 and PI3KR1 SH2 domains can easily detect specific signals in K562 cells, 

whereas SRC and NCK 2 are less efficient. Whether this latter observation is due to 

lack of available motifs within K562 cells or to general non-reactivity of these domains 

remains to be determined.  I next used phospho-specific antibodies to measure 

signaling in cells, testing how BCR signaling affected the reactivity of these antibodies 

with normal B and CLL cells. 

 

 

Figure 4. 5 Mass spectrograph of 153Eu, 163Dy, 169Tm and 176Yb following 
Maxpar® labelling procedure of SH2 domain. 100mg SRC, NCK2 and PI3KR1 SH2 
domain was labelled with 163Dy, 169Tm, 176Yb following the Maxpar® labelling 
procedure. 10ml labelled SRC, NCK2 and PI3KR1 SH2 domain was then diluted in 
400ml Maxpar®  W-buffer and the presence of SRC 163Dy, PI3KR1 169Tm, NCK2 176Yb 
following the Maxpar® was detected using a Helios™ mass cytometer.  
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Figure 4. 6 Labelled SH2 domains stained on K562 cell line by mass cytometry. 
A.) shows a concentration of 800 ng of / Streptavidin all mixed together showing better 
permeabilising of the cells and there was better intracellular binding by using triton x-
100 at 0.1%. B.) Samples were permeabilised with methanol at 4 °C at concentration 
2000 ng of SH2/Streptavidin.  
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4.2.2 Measurement of BCR signaling using Western blot in model cell lines. 

 
To begin exploring BCR signaling in CLL cells using mass cytometry and phospho-

specific antibodies it was first necessary to establish optimal conditions using a model 

cell line. This is because CLL cells from different patients often respond to BCR 

stimulation in a heterogeneous way. In this first phase of method development, 

consistency of measurement was an important consideration. Maver-1 and Jeko-1 

cells were used as model cell lines. These cell lines were derived from patients with 

Mantle Cell Lymphoma (MCL) and were suitable to these studies because these cells 

maintain a low baseline of signaling in their resting state, that then strongly changes 

when these cells are stimulated with BCR crosslinking   

Table 4.4 shows the panel of phospho-specific antibodies chosen for mass cytometry, 

together with surface markers to identify cell phenotypes. To start choosing which 

phospho antibodies that I will need to include in my panel along with the surface 

antigens that I have designed according to its importance to CLL BCR signaling. At 

the beginning of this thesis the availability of phospho-specific antibodies targeting the 

BCR signaling pathway was restricted to: The panel antibodies I have chosen are 

listed in (table 4.4) are Phospho-p-38, which is a mitogen stress-activated protein 

kinase (MSAPK), that signals to induced differentiation or, apoptosis in cells [150]. The 

mitogen-activated protein kinase/extra cellular regulated kinase (MAPK/ERK) is 

known to have an important role in BCR signaling pathway in blood diseases and 

malignancies. This pathway plays a key role in cell survival, proliferation and gene 

expression [151]. In this chapter I chose p38, stress-activated protein kinase and 

studies have shown the main association of p38 is with an increase in proliferation and 

survival that can be due to induction of apoptosis mainly by stress cellular release in 

CLL [152, 153]. Moreover, Phospho-ERK1/2 (MAPK)  regulates anti-apoptotic function 
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and cell cycle in cells in vivo, when phosphorylated constitutively activated is important 

in normal cell to facilitate cell entry in G1 to S phase progression [154]. In CLL cells p-

ERK activation shown to be associated with anergic cells with increased expression 

of high basal levels of iCa2+ and p-ERK [155]. Inhibitors Ibrutinib and Idelalisib have 

shown to inhibit the MAPK/ERK kinase pathway signaling by blocking the surface 

levels of CXCR4 chemokine to prevent CLL cell cycle into circulation [156]. pERK in 

comes from one of group of kinases from eIF2a and with increased phosphorylation 

in cells can lead to disease progression in CLL and other cancer malignancies and 

can aid for drug resistance [157]. The next phosphoproteins I added, PI3K/AKT 

pathway, a protein kinase B, p-AKT is an oncogene that is responsible for sustaining 

cell survival, apoptosis and proliferation. Abnormality function to the PI3K/AKT 

pathway can lead to various of diseases including diabetes and cancer [158, 159].In 

CLL cells, p-AKT is often that has a strong connection with PI3K pathway highly 

activated due to its key role, AKT inhibitors are given to control haematological 

malignancies. Within the same line of pathway [160]. pS6 is site-specific ribosomal 

protein, a protein involved in RNA translation that can be phosphorylated by either 

AKT or ERK and is reported essential in CLL therapeutic responses [161]. The next 

phosphoantibodies I chose are pPLC2 (is a phospholipase C-2) is an essential 

component of BCR signaling pathway of BTK and is induced by epidermal growth 

factor (EGF) has an important role in BCR signaling activation and is a downstream of 

Bruton’s tyrosine[162]. pZap-70/Syk phosphoprotein is from a tyrosine kinase family 

within the T cell and B cell receptor signaling pathways, respectively. It has an 

essential expression in CLL cells and is a diagnostic indicator of poor patient prognosis 

in this disease [42, 163]. 
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Table 4. 4 Mass cytometry surface and intracellular panel antibodies 

 

 

First I wanted to establish the optimal time point in stimulated cells and so used lysates 

of BCR-stimulated Maver-1 and Jeko-1cells to generate Western blots that measured 

induction of signaling using the phospho-specific antibodies within my panel. Figure 

4.7 shows the results of this experiment where Maver-1 and Jeko-1 cells were 

unstimulated or stimulated with BCR crosslinking antibody for 5 and 15 min. There 

was clear induction of p-PLC2, pBTK, pAKT & pERK1/2 in both Maver-1 and Jeko-

1cells responding to BCR crosslinking (Figure 4.7A). Whereas significant induction of 

phosphorylation of some these proteins was observed at 5 min, it was only at 15min 

where statistical significance of induction was achieved for all (Figure 4.7B).   

 

 Surface Human B cell panel antibodies Heavy Metal Clone

Anti-Human CD45 154Sm H130

Anti-Human CD49d 141Pr 9F10

Anti-Human IgD 146Nd IA6-2

Anti-Human CD5 143Nd UCHT2

Anti-Human CD20 147Sm H1

Anti-Human CD19 142Nd H1B19

Anti-Human IgM 172Nd MHM-88

IgM UNLB goat anti-human 148Nd polyclonal

Anti-Human CD43 150Nd 84-3C1

Anti-Human CD21 152Sm B1B

Anti-Human CD27 155Gd L128

Anti-Human CD22 159Tb H1B22

Anti-Human CD3 170Er UCHT1

Anti-Human CD184 [CXCR4] 175Lu 12G5

Anti-FITC-160Gd 160Gd FIT-22

 Intracellular panel antibodies Heavy Metal Clone

Anti-p38 [T180/Y182] 156Gd D3F9

Anti-pERK1/2 167Er D13.14.43

Anti-pTyrosine 144Nd p-Tyr100

Anti-pAkt 152Sm D9E

Anti-pPLCg2 162Dy [K89-689][PY759]

Anti-pZAP70 171Yb 17a

Anti-pS6 172Yb N7-548
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Figure 4. 7 Induction of phospho antibodies in Maver-1 and Jeko-1cells by anti-
IgM. A.) Cells were stimulated with F(ab’)₂ IgM antibody at a concentration of 20ug/mL 
with cell concentration 2x10⁶ cells for 15 minutes 37⁰C, run by 10% SDS-PAGE gel 
and probed by phospho-specific proteins 1:2000 dilution with 5 % BSA overnight at 
4⁰C. Total phospho were probed for 2 hour 1:3000 dilution with 5 % BSA at room 
temperature for loading control. B.) Densitometry analysis for Maver-1 and Jeko-1 
n=3, One-way Anova was done for statistical analysis using GraphPad Prism™. 
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4.2.3 Measurement of induced signaling in BCR stimulated Maver-1 cells using 

mass cytometry. 

 

Western blot analysis showed that Maver-1 and Jeko-1 cells responded in a similar 

way to BCR crosslinking. For this reason, I next chose to continue with Maver-1 cells 

for mass cytometry optimisation. Figure 4.8 shows the results of this optimisation, 

comparing unstimulated cells to those incubated with anti-IgM for 5, 10, 15, and 30 

min. Figure 4.8A illustrates the reactivity of the phospho-specific antibodies I used at 

different time-points following stimulation with anti-IgM. Although induction was 

observed at 5 min for many of the phosphoproteins, the strongest change was 

observed in cells stimulated for 15min, which is then represented by the histogram 

plots in Figure 4.8B.   Figure 4.8C shows the statistical analysis of four biological 

repeats comparting resting cells with those stimulated for 15min, significant induction 

of protein phosphorylation was observed for ERK, AKT, PLC2, and ZAP70/SYK and 

this seemed to correlate with an also significant appearance of pY epitopes in the 

stimulated cells. There was strong trend with regard to the induction p38 

phosphorylation, but there seemed no significant difference with respect to 

phosphorylation of S6 kinase. This lack of significant difference with respect to S6K 

could be due to high basal levels of pS6 present in resting cells (Figure 4.8B). Taken 

together, these results show that BCR signaling can be measured using mass 

cytometry and phospho-specific antibodies. 
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Figure 4. 8 Induction of signaling in Maver-1 cells was achieved by crosslinking 
BCR with 20mg/mL F(ab’)₂ anti-IgM antibody. A.) Heat map generated by mass 
cytometry showing phospho-antibody binding to resting and BCR-stimulated cells, B.) 
Histogram representation of the data presented in part A. C.) Graphical representation 
of phospho-antibody binding to resting and BCR-stimulated cells after 15 mins. These 
graphs show the data generated for n=4 experiments. Statistical analysis was 
performed using a paired T-Test (GraphPad Prism™). 
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4.2.4 Mass cytometry allows observation of BCR signaling in normal B cells 

 

I next applied the optimised panel of 13 surface antigen directed antibodies and 7 

phospho-specific (internal antigen) antibodies to the study of normal PBMCs to identify 

the B cell subsets according to Figure 4.9A within the total B cell population. B cell 

subsets were gated according to CD27 and IgD to differentiate between Class switch 

memory, Memory IgM and Naïve IgM. Figure 4.9B a comparison of phospho-protein 

antibody reactivity in unstimulated and BCR-stimulated B cells from each of the 

identified subsets, and in the total T cell population. This latter population of cells 

showed no induction of protein phosphorylation which is not surprising because T cells 

do not express BCR and therefore cannot be stimulated by BCR crosslinking with anti-

sIgM antibodies. Each B cell subset seemed to respond differently to BCR 

crosslinking; IgM memory cells responded more strongly than did naïve IgM+ B cells, 

and there was only a very weak response noted for the class switch B cells. This varied 

response is likely due to differences in sIgM expression on these different 

subpopulations of cells, and this is demonstrated by the significant positive relationship 

between this parameter and the intensity of phospho-PLC2 and S6 induction in 

analysis of 100 clusters of total B cells by FlowSOM (Figure 4.9C). Analysis of each B 

cell subset by SPADE shows that appearance of p-PLC2 is strongest in the memory 

B cell subset where sIgM is also strongest (Figure 4.9D). These data show clear 

evidence of differential B cell response to BCR engagement according to B cell subset.   
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Figure 4. 9 Induction of protein phosphorylation in B cell subtypes following 
BCR engagement. A.) B cell populations were identified within PBMC suspensions 
by gating on CD19+/CD20+ cells. Memory, Naïve and class-switched B cells were 
further identified by CD27 and IgD expression. B.) B cells were stimulated with anti-
IgM antibody (20µg/ml) for 15 min and then fixed with PFA. Cells were then prepared 
for mass cytometry where surface antigens were stained first, followed BS3 
crosslinking and cell permeabilization and internal antigen staining. Mass cytometry 
analysis allowed generation of heat maps for each of the indicated cell subsets. C.) 

FlowSOM was used for further analysis of the total B cell population. Induced p-PLC2 
and p-S6 was related to surface IgM expression on 100 clusters of individual cells. D.) 
SPADE tree analysis was generated to demonstrate signaling in B cell subsets. Linear 
regression and statistical analysis were performed using GraphPad Prism™. (n=1). 
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4.2.5 Mass cytometry allows observation of BCR signaling in different 

subpopulations of CLL cells. 

 

This section introduces the measurement of BCR signaling in CLL cells.  The results I 

presented in Chapter 3 show both interpatient and intraclonal heterogeneity of the 

malignant cell phenotypes in samples from CLL patients. While it can be expected that 

interpatient variability in phenotypes leads to differences in response to BCR 

engagement[38, 58, 164, 165], at the beginning of this thesis understanding of 

intraclonal differences in response to BCR engagement was poor. I began by relating 

sIgM expression with induction of protein phosphorylation using a similar approach to 

my analysis of this relationship in normal B cells (Figure 4.9C). In Figure 4.10 I show 

the results of this analysis; induction of pS6 showed the strongest correlation with sIgM 

and was followed by pPLC2, pTyrosine, pERK, and, finally, pAKT which showed the 

weakest relationship. These data largely agree with that reported by Coelho et al 

relating sIgM expression to induction of pPLC2 and pERK [164], my data extend this 

with the inclusion of the other phosphoprotein epitopes I include. Thus, my data 

supports suggest that the relationship between sIgM and induced signal intensity and 

demonstrates that this can also as be applied intraclonally in among CLL cells.  

I next analysed this intraclonal variability of CLL cells using SPADE where designation 

between recognised subpopulations was achieved using CXCR4 and CD5 expression 

to classify resting phase “OQ” CLL cells and proliferative phase “NE” CLL cells[38] 

(Figure 4.11A). As is shown using normal PBMC in Figure 4.9D, SPADE analysis can 

be used to illustrate how different subpopulations of B cells respond to BCR 

crosslinking. I used the same approach to analyse the response of CLL cells to sIgM 

engagement, dividing these populations into the following categories: CXCR4-/CD5-, 

CXCR4+ /CD5- (OQ cells), CXCR4+/CD5+ and CD5+/ CXCR4- (NE cells). Figure 4.11B 
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shows the results of this analysis for each phospho-antibody used.  I found that pAKT 

levels were consistent across the different subpopulations of CLL cells regardless of 

stimulation, suggesting that AKT is constitutively active in CLL and cannot be 

stimulated further. This finding agrees with established literature reporting constitutive 

activation of AKT [166], and explains why the correlation between pAKT and sIgM is 

so weak. . The other antibodies showed differences in reactivity not only between 

stimulated and resting cells, but also between different subpopulations. For example, 

the most dramatic change in phospho-protein induction between resting and 

stimulated cells was observed in CXCR4+/CD5+ and CD5+/ CXCR4- (NE cells) 

populations. Interestingly, these populations also had higher baseline levels of 

phospho-antibody reactivity than did CXCR4+/CD5- (OQ cells) and CXCR4-/CD5- CLL 

cell populations. For this particular case of CLL sIgM expression varied slightly 

between the different cell populations, that is a known pan-CLL phenomenon (Figure 

4.11C). CXCR4+/CD5+ and CD5+/ CXCR4- (NE cells) populations had slightly higher 

expression of sIgM than did the CXCR4-/CD5- population, suggesting the higher 

response of these cells to BCR engagement is due to higher levels of sIgM. 

Application of statistical analysis across 5 CLL cases to compare the level of phospho-

proteins as determined by SPADE between resting and stimulated CLL cells within 

each of the populations was then performed.  My analysis is shown in Figure 4.12, 

significantly higher phosphorylation was observed in CLL cells within the 

CXCR4+/CD5+ and CD5+/ CXCR4- (NE cells) populations. In general, BCR stimulation 

of CLL cells resulted in an overall increase in detected levels of phosphorylation, with 

cells in the CXCR4+/CD5+ and CD5+/ CXCR4- (NE cells) populations seeming to 

respond more strongly than in the other two populations. Levels of pAKT are a notable 

exception, similar to the other phospho-antibodies where were significantly higher 



144 

 

levels of pAKT in CXCR4+/CD5+ and CD5+/ CXCR4- (NE cells) populations, however, 

there was no effect of BCR crosslinking these levels, a result that is consistent with 

the notion that Akt is constitutively active in CLL cells [166]. Since CXCR4+/CD5+ and 

CD5+/ CXCR4- (NE cells) populations have higher relative sIgM expression than do 

CXCR4-/CD5-, and CXCR4+ /CD5- (OQ cells) populations (Figure 3.19C), the data 

suggest that the relationship between sIgM expression and CLL cell response to BCR 

crosslinking can be extended to individual clones. Taken together, these data show 

that individual CLL cell response to BCR engagement can be measured to give 

information about intraclonal variability to this type of stimulation.   
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Figure 4. 10 FlowSOM analysis for BCR signaling measurement in CLL 
population. FlowSOM was used for analysis of the total CLL cell population. Induced 

phosphoproteins p-S6, p-PLC2, pTyrosine, pERK and, pAKT was related to surface 
IgM expression on 100 clusters of individual cells. Linear regression was performed 
using GraphPad Prism™. 
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Figure 4. 11 Expression of phosphoproteins in intraclonal CLL cells using 
SPADE. A.) CLL cell gating strategy of “newly emerged cells” (NE CD5+, CXCR4-) and 
“older quiescent cells” (OQ, CXCR4-.CD5+). B.) SPADE tree analysis for comparison 
of phospho-proteins in basal and anti-IgM-stimulated CLL cells in CXCR4-/CD5-, 
CXCR4+ /CD5- (OQ cells), CXCR4+/CD5+ and CD5+/ CXCR4- (NE cells). C.) level of 
sIgM expression in the basal condition in all 4 CLL cells. 
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Figure 4. 12 Graphical representation of the SPADE data for identified cell types. 
Average nodal expression for each phospho-protein basal and after stimulation with 
anti-IgM is taken for CXCR4-/CD5-, CXCR4+ /CD5-, CXCR4+/CD5+ and CD5+/ CXCR4- 
CLL cell subtypes where each dot represents a single CLL case. The graphs represent 
n=5 experiments using CLL cells from different patient samples. p values were 
calculated using a one-way Anova, and where statistical significance was found 
followed up with multiple comparison analysis. Columns with * or ** record significance 
below a p value of 0.05 or 0.01 respectively. 
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4.2.6 Effect of ibrutinib and idelalisib on BCR induced signaling in primary CLL 

at single cell resolution. 

 

Ibrutinib [an inhibitor of Bruton’s tyrosine kinase (BTK)] and idelalisib [an inhibitor of 

phosphatidylinositol 3 kinase  (PI3K)] are compounds that are used to treat CLL 

based on their ability to affect BCR signaling [167]. It is approved for clinical use, but 

not shown, that all CLL cells are affected by these compounds. However, this 

assumption might be unfounded considering that the inhibitory effects of these on 

induced signaling can be overcome by pre-treatment of CLL cells with IL4 to raise 

surface expression levels of IgM [64]. Considering the intraclonal relationship between 

sIgM expression and BCR signaling that can be studied using mass cytometry, it next 

seemed appropriate to use this technology to investigate how these inhibitors affect 

the BCR response of the different CLL subsets.      

4.2.6.1 Determination of optimal concentrations of ibrutinib and idelalisib to 
inhibit BCR signaling using a model cell line (Maver-1). 

 
In this section optimisation was conducted using different dose concentrations of 

ibrutinib and idelalisib to determine their effect on BCR signaling. Figures 4.13A and 

B show the results associated with ibrutinib.  Maver-1 cells were treated with 

increasing dose concentrations of ibrutinib, 100nM, 200nM, 500nM and 1000nM, for 

1h, and then followed by BCR stimulation with anti-IgM for 5 minutes. Western blot 

was then performed on cell lysates, analysing for the presence of pSyk, pERK, p38, 

pAKT, pBKT and pPLC2. Figure 4.13A and B illustrate that ibrutinib treatment 

inhibited pBTK at a concentration of 100nM, and complete inhibition was observed at 

200nM. Ideally, I should have observed inhibition of pPLC2 as well, and in the 
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Western blot illustrated in Figure 4.13A there is a distinct reduction of this band in 

MAVER-1 cells treated with 200nM ibrutinib, but we were unable to consistently repeat 

this experiment with the same result (Figure 4.13B). As expected pSYK was 

unaffected by ibrutinib treatment because SYK is upstream of BTK in the BCR 

signaling pathway (Figure 1.4). BCR induction of pERK and pp38 were also unaffected 

by ibrutinib treatment of Maver-1 cells. The Y223 site in BTK is a target for 

autophosphorylation, and reduction of the reactive band in a Western blot using the 

pBTK antibody in our experiments indicates that kinase activity is inhibited. This 

therefore suggests that a concentration of 200nM can be used for ibrutinib to achieve 

complete kinase inhibition despite not observing consistent reduction in 

phosphorylation of the downstream target of BTK, namely PLC2. 

 

Figures 4.13 C and D show the results for our optimization experiments using 

Idelalisib. The same approach was used for idelalisib as was used for ibrutinib; Maver-

1 cells were incubated with 100nM, 200nM, 500nM and 1000nM idelalisib for 1h, and 

then stimulated with anti-IgM for 5 mins. We found that BCR induction of pAKT was 

consistently inhibited by treating Maver-1 cells with 100nM idelalisib (Figure 4.13A and 

B). The other phospho-epitopes, pSYK, pERK were unaffected by idelalisib, even 

when concentrations as high as 1M were used. The 100nM concentration for 

idelalisib needed for inhibition of PI3K that I observed was inconsistent with values 

reported in the literature where concentrations of 1M have been used [168]. For my 

thesis I selected the optimal dose concentration for idelalisib is 1M for use in mass 

cytometry experiments.  

After choosing the optimal drug concentration for each B cell receptor inhibitor (BCRI), 

the next step was to see the effect of these inhibitors within mass cytometry 
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experiments. In these experiments I use only one concentration each of Ibrutinib 

(200nM) and Idelalisib (1M) to investigate their effect on BCR-stimulated Maver-1 

cells with the panel of phospho-specific antibodies available. Idelalisib treatment of 

Maver-1 cells reduced BCR induction of pAKT to near unstimulated levels indicating 

the effectiveness of this BCRI in inhibiting PI3K (Figure 4.14). As expected because 

of its place within the PI3K signaling pathway (Figure 1.4), there was a partial reduction 

of BCR-induced pS6 levels (Figure 4.14). Inhibition of PI3K also resulted in partial 

reduction of BCR-induced pERK and pp38, but had little, if any, effect on pSYK and 

overall pTyrosine levels. The effects of ibrutinib treatment on BCR-inducing were 

largely similar to those observed for idelalisib, with the exception of pAKT and pS6 

which were unaffected by this drug (Figure 4.14). The measurement of pPLC2 levels 

in these experiments was problematic from the point of view that they showed a large 

variability between repeat measurements. Clear induction was observed in Maver-1 

cells responding to BCR crosslinking, however, a clear effect of either idelalisib or 

ibrutinib could be discerned [169]. Nevertheless, taken together these results show 

that mass cytometry can potentially be used to measure the effects of BCRI on 

signaling in cells. 
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Figure 4. 13 Dose concentration optimization of MAVER-1 cells with BCRI. 
Western blot of phosphoproteins investigated following stimulation of Maver-1 cell line 
with F(ab’) ₂ IgM antibody at a concentration of 20ug/mL for 5 minutes A.) Ibrutinib at 
different drug concentrations for one hour 37°C. B.) densitometry analysis of Ibrutinib 
for each phosphoprotein. C.) Idelalisib treatment at different drug concentration one 
hour 37°C. D.) densitometry analysis of effect of Idelalisib on each phosphoprotein. 
Cells were harvested and lysed with SDS-PAGE buffer, respectively (5 x 106) in 
Maver-1 cells. 10µg of cellular lysate from each condition were separated by SDS-
PAGE using a 10% polyacrylamide gel and transferred to PVDF membranes. The 
membrane was probed with different phosphoprotein with 1:2000 dilution with 5 % 
BSA overnight at 4⁰C.Total phospho were probed for 2 hour 1:3000 dilution with 5 % 
BSA at room temperature for loading control. The image was captured by using 
enhanced chemiluminescence (ECL). One-way Anova was done for statistical 
analysis using GraphPad Prism™. 
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Figure 4. 14 Single-Cell analysis of BCR inhibitors on signaling effect on Maver-
1 cells. Cells were stimulated with anti-IgM followed with Ibrutinib (200nM) and 

Idelalisib (1M) treatment for one hour at 37°C, cells were fixed and permeabilised 
with methanol -80°C overnight followed with phosphoprotein staining 1:100 dilution for 
30 minutes at 37°C on heat block with gentle vortex. The phosphoprotein analysed 

pS6, pAKT, pERK, p38, p-PLC2 and pZAP70 were investigated. These graphs show 
the data generated for n=2 experiments. One-way Anova was performed and 
statistical analysis by GraphPad Prism™. 
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4.2.6.2 Measurement of ibrutinib and idelalisib inhibition of BCR signaling in 
primary CLL cells. 

 

My experiments using Maver-1 cells showed the potential of doing the same in primary 

CLL cells. Therefore, I next applied this approach to test the BCRI on primary CLL 

cases by western blot analysis of whole populations of cells, and by mass cytometry 

analysis of single cells. The main aim is to see the intraclonal variability of response 

to BCRI in terms of phosphoprotein expression within CLL cell subpopulations. In 

Figure 4.15 we probed 6 CLL cell lysates with p-SYK, pBTK, p-PLC2, pAKT , pERK 

and LCK antibodies by Western blot, screening for the effect of anti-IgM in the 

presence or absence of 200nM Ibrutinib. Each CLL case investigated responded 

differently to anti-IgM crosslinking of surface BCR. For example, case 3711 did not 

respond to anti-IgM and BCRI treatment (Figure 4.15). This inability to respond was 

similar to case 3712 where no response was due to surface expression of IgG instead 

of IgM but could not be attributed to the same reason because case 3711 is IgM 

positive and the reason for this case it is an indolent case mutated CLL. In contrast, 

case 3380 showed a strong response to surface IgM crosslinking where induction of 

pERK, pSyk, pBTK, p-PLC2 and pAKT could be clearly observed. We found that 

these CLL cells were similar to Maver-1 in that ibrutinib treatment resulted in profound 

reduction of pBTK, partial reduction of p-PLC2, but had no effect on pERK, pAKT, 

and pSyk.  

I next analysed these cells by mass cytometry to investigate whether any intraclonal 

variation could be observed.  This analysis was performed only for CLL case 3380 and 

are shown in 5 SPADE tree illustrations, one for each phospho-antibody, where the 

total population of cells is segregated into similar sub-groups of cells as was previously 

done (Figures 4.16 - 4.20).  Each figure illustrates antibody reactivity in CXCR4-/CD5-
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, CXCR4+ /CD5-, CXCR4+/CD5+ and CD5+/ CXCR4- populations of unstimulated and 

BCR stimulated CLL cells that were either left untreated or were treated with Ibrutinib 

and Idelalisib.  

With respect to pS6 (Figure 4.16), antibody reactivity with unstimulated cells was low 

across all subpopulations regardless of treatment. BCR crosslinking resulted in 

increased pS6 antibody reactivity across all populations, but CXCR4+/CD5+ and CD5+/ 

CXCR4- cells seemed to show a greater increase than was observed in CXCR4-/CD5- 

and CXCR4+ /CD5- populations. CLL treatment with Ibrutinib resulted in a reduction in 

BCR-induced pS6 reactivity across all populations, a reduction that was more 

profound if CLL cells had been treated with Idelalisib. These results are in keeping 

with the ability of idelalisib to inhibit the PI3K pathway. Interestingly, select nodes 

within the CXCR4+/CD5+ and CD5+/ CXCR4- populations showed an ability to respond 

to BCR crosslinking despite the presence of idelalisib, an observation that was as 

clearly visible in CXCR4-/CD5- and CXCR4+ /CD5- populations. This suggests the 

presence of particular subclones of CLL cells that are at least partially resistant to the 

idelalisib. 

In a similar way pPLC2 levels also increased in BCR-stimulated CLL cells, where it 

seemed that CXCR4+/CD5+ and CD5+/ CXCR4- populations show a greater increase 

than that in CXCR4-/CD5- and CXCR4+ /CD5- populations (Figure 4.17). However, in 

contrast to pS6, pPLC2 reactivity was more distinctly affected by ibrutinib treatment. 

pPLC2 reactivity was also affected by idelalisib treatment, but the level of inhibition 

was not as great as what was observed with ibrutinib. It is important to note here that 

select nodes within  the CXCR4+/CD5+ and CD5+/ CXCR4- populations showed an 

ability to respond to BCR crosslinking despite the presence of ibrutinib, again 
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suggesting the presence of subclones of CLL cells able to resist the effects of this 

kinase inhibitor.  

Although pTyrosine antibody reactivity was induced by BCR stimulation (Figure 4.18), 

neither idelalisib nor ibrutinib treatment seemed to affect this induction.  No increase 

was observed for pERK (Figure 4.19) and pATK (Figure 4.20) reactivity in BCR 

stimulated CLL cells. In my experiments it is likely that the pERK and pATK antibodies 

did not work as they had in previous experiments. 

Taken together, these results support the main aim of this thesis that mass cytometry 

can be used to identify and observe different CLL cell subclones and their response 

to stimulation and different kinase inhibitors. 

 

 

 

Figure 4. 15 Comparative of phosphoproteins in different CLL patients by 
western blot analysis. Cells were treated with F(ab’)₂ IgM antibody at a concentration 
of 20ug/mL for 5 minutes with cell concentration and ibrutinib 200nM for one hour at 
37°C .10µg of cellular lysate from each condition were separated by SDS-PAGE using 
a 10% polyacrylamide gel and transferred to PVDF membranes. The membrane was 
probed with different phosphoprotein with 1:2000 dilution with 5 % BSA overnight at 
4⁰C.Total phospho were probed for 2 hour 1:3000 dilution with 5 % BSA at room 
temperature for loading control. The image was captured by using enhanced 
chemiluminescence (ECL). 
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Figure 4. 16 Unsupervised clustering of pS6 phosphoprotein expression in CLL 
subpopulations using SPADE tool in different conditions. pS6 phosphoprotein 
expression in 4 CLL subpopulation. The CLL subpopulation are divided into 

unstimulated, stimulated with anti-IgM (15 mins), ibrutinib (200nM) and Idelalisib (1M) 
with and without anti-IgM stimulation. 

 

 

Figure 4. 17 Unsupervised clustering of pPLC2 phosphoprotein expression in 

CLL subpopulations using SPADE tool in different conditions. pPLC2 
phosphoprotein expression in 4 CLL subpopulation. The CLL subpopulation are 
divided into unstimulated, stimulated with anti-IgM (15 mins), ibrutinib (200nM) and 

Idelalisib (1M) with and without anti-IgM stimulation. 
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Figure 4. 18 Unsupervised clustering of pTyrosine phosphoprotein expression 
in CLL subpopulations using SPADE tool in different conditions. pTyrosine 
phosphoprotein expression in 4 CLL subpopulation. The CLL subpopulation are 
divided into unstimulated, stimulated with anti-IgM (15 mins), ibrutinib (200nM) and 

Idelalisib (1M) with and without anti-IgM stimulation. 

 
 

 

Figure 4. 19 Unsupervised clustering of pERK phosphoprotein expression in 
CLL subpopulations using SPADE tool in different conditions. pERK 
phosphoprotein expression in 4 CLL subpopulation. The CLL subpopulation are 
divided into unstimulated, stimulated with anti-IgM (15 mins), ibrutinib (200nM) and 

Idelalisib (1M) with and without anti-IgM stimulation. 
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Figure 4. 20 Unsupervised clustering of pAKT phosphoprotein expression in 
CLL subpopulations using SPADE tool in different conditions. pAKT 
phosphoprotein expression in 4 CLL subpopulation. The CLL subpopulation are 
divided into unstimulated, stimulated with anti-IgM (15 mins), ibrutinib (200nM) and 

Idelalisib (1M) with and without anti-IgM stimulation. 
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4.3 Discussion  

Novel techniques have applied a clear knowledge to CLL pathobiology to understand 

the heterogeneity of this disease. CLL biology depends on its microenvironment where 

it promotes continuous survival and proliferation [121]. This is due to continuous BCR 

signaling and chemokine receptors, CXCR4-CXCL12 that facilitate cells migration 

from the periphery into lymphoid organs to create a favourable survival 

microenvironment [65]. 

The aim of this chapter was to investigate the measurement of B cell receptor signaling 

in CLL and normal PBMC cells using mass cytometry. I use two methods to interrogate 

signaling; SH2 profiling and antibodies to detect phospho-proteins. I found that SH2 

profiling can be used but was unsatisfactory within the confines of this thesis because 

of sensitivity. Use of phospho-specific antibodies yielded better results, and when 

combined with antibodies recognising antigen-defined phenotype, yielded information 

on signaling within different subpopulations of normal B cells and CLL cells.  

I began this chapter with development of the SH2 profiling assay. This involved using 

purified SH2 domains of PI3KR1, GRB2, SRC and NCK2, coupling to heavy metals 

and using streptavidin to create quaternary structures that enhance the binding of 

these domains to their phospho-tyrosine targets within proteins. In a cell line model, 

my results show that the PI3KR1 SH2 domain seems to be useful to detect signaling. 

Far-Western blot analysis detected a band of approximately 150kDa that was not there 

when cells were treated with dasatinib. K562 cells are derived from a patient suffering 

from chronic myeloid leukaemia and are positive for the reciprocal translocation 

t(9;22)(q34;q11) yielding expression of the BCR-ABL oncogene[170]. Class Ia PI3K 

isoforms bind to phosphotyrosine motifs within activated receptor tyrosine kinases and 

other proteins via tandem a SH2 domains within their p85 subunit [171]. PI3K is 
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constitutively activated by BCR-ABL+ cells such as K562 [172, 173] possibly mediated 

by direct interaction with BCR-ABL or other intermediary proteins such as Gab2, it is 

likely that this is what the PI3KR1 SH2 domain recognises in the Far-Western 

blots[174]. The PI3KR1 SH2 domain also showed specific reactivity in assays using 

mass cytometry, suggesting that this could be used to assess signaling in cells as is 

proposed by Peter Nollau who has described application of  oligonucleotide-tagged 

SH2 profiling (using PI3K and other SH2 domains) to the analysis of signaling in cells 

[106]. In contrast to the PI3KR1 SH2 domain, the other reagents, SH2 domains of 

GRB2, SRC and NCK2 were not as sensitive or specific in the mass cytometry assay 

as shown in Figure 4.6, suggesting a severe limitation to this approach and supporting 

the decision to not follow this line of research further.  

The second approach for signal pathway interrogation in this thesis was the use of 

phospho-specific antibodies. This approach has been widely used to measure BCR 

signaling in many cell types, including primary CLL cells, and is considered a hallmark 

to understand the complexity of CLL biology and behaviour. Phospho-specific 

antibodies are useful in flow cytometry and western blot applications, and I use these 

applications in this thesis for cross validation of these techniques. These applications 

produced largely similar results, and are in agreement with studies performed by 

Krutzik et al [6] where comparison between flow cytometry with traditional Western 

blotting showed that both were comparable, but that flow cytometry was better 

because of the increased number of parameters that could be investigated on a 

simultaneous basis.  

However, I found there were differences. The antibodies I used in Western blot were 

not always effective in mass cytometry. One example in Figure 4.7, is pS473-AKT, this 

antibody works extremely well in Western blot where it easily detects activated AKT in 
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both Maver-1 and primary CLL cells. However, this antibody weakly detected activated 

AKT by mass cytometry, and reliably only in Maver-1 cells, because idelalisib 

treatment of CLL cells failed to affect baseline and BCR-stimulated pS473-AKT levels 

detected by mass cytometry despite inhibiting induction of this epitope as measured 

by Western blot. This observation is similar to that made by Blix et al [102] who used 

pS473-AKT antibodies to measure active AKT in CLL cells and found only very weak 

reactivity. The difference between CLL and Maver-1 cells in terms of this reliability 

could be dependent on cell size, Maver-1 cells are larger than CLL cells. Added to this 

is copy number of AKT itself within cells, it has been estimated that the cytoplasmic 

concentration of this kinase is a third of the concentration of ERK and a tenth the 

concentration of S6 [175]. Nevertheless, mass cytometry can be used to measure 

signaling in cells.   

The real power of mass cytometry is the ability to measure signaling in single cells, or 

in cell subpopulations, without first purifying the cells. Thus, I was able to combine a 

panel of 13 surface markers together with 7 intracellular markers for a total of 20 

parameters of measurement. This is a distinct advantage over the conventional flow 

cytometry technologies I had available (Becton Dickinson LSR Fortessa) where 

maximal number of parameters available is limited to 18. Conventional flow cytometry 

is also complicated by the need to perform compensation for each fluorochrome 

because of spectral overlap. With mass cytometry this problem is largely overcome by 

using highly purified isotopes so that spillover on to other measurement channels is 

minimized. I used my panel of antibodies to measure BCR signaling in subpopulations 

of healthy B cells and in CLL cells. I found that a common feature of the response of 

these cells to BCR engagement is the relationship between signaling intensity and 

surface expression of BCR. This finding agrees with those of others, and, in particular, 
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studies of CLL where surface IgM expression is linked to induction of Ca2+ flux and 

disease prognosis[164]. The advantage of my study is the ability to investigate this 

relationship in different subpopulations of cells from a single patient. I found that 

signaling seemed more intense in memory B than in naïve B cells where pS6, pPLC2 

and pTyrosine all seemed to be more strongly induced according to higher levels of 

surface IgM expression. My results in Figure 4.9 show that this induction was specific 

for surface IgM-expressing cells, because memory B cells negative for this epitope 

and T cells showed no change in the levels of these markers.   

In a similar way, I could also investigate the response of different subpopulations of 

CLL cells to BCR engagement. The subpopulations I investigated were defined by 

expression of CXCR4 and CD5, which describes CLL cells that are either newly 

emerged or older quiescent according to the paradigm set by Calissano et al [38] . I 

found within these subpopulations that higher basal levels of pS6, PLC2, pTyrosine, 

pERK and pAKT were observed in the CXCR4+/CD5+ and CXCR4-/CD5+ (NE) cells. 

This observation is in agreement with those reported by  Blix et al. where p-SFKs, p-

PLC2, p-ERK, p-p38, p-p65 (NF-κB), p-STAT5 and p-STAT6 levels were investigated 

within  whole populations of CLL and SLL cells  [102]. However, in my study I am able 

to bring in extra dimension to this understanding, by being able to differentiate between 

subclones of CLL cells, findings that are largely in agreement with those reported in 

an abstract published by Damle et al, showing similar high levels of pAkt, pErk, 

p38MAPK and pSyk in the same subclone[143].  The results I reported in Chapter 3 

show that CXCR4+/CD5+ and CXCR4-/CD5+ (NE) CLL cells express higher levels of 

surface IgM than do CXCR4-/CD5- and CXCR4+/CD5- (OQ) cells, and it can be 

expected that the former subpopulations of CLL cells respond better to BCR 

crosslinking. Unfortunately, direct measurement of surface IgM in BCR-stimulated CLL 
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cells was not easy to perform within the experiments listed in this thesis. I used 2 

different approaches to attempt this; one using a FITC-conjugated anti-IgM antibody 

where a second layer heavy metal-conjugated anti-FITC antibody was used to detect 

the first, and a second approach where I directly conjugated heavy metals to the anti-

IgM antibody. While both approaches yielded results, further optimisation is required 

before a full interpretation can be attempted.   

My ability to measure BCR signaling in different subclones of CLL cells allowed 

investigation of the effect different BCR pathway inhibitors have on these subclones. I 

treated the cells from a single CLL case with ibrutinib and idelalisib, respectively 

inhibitors of BTK and PI3K, and looked see whether all cells were affected equally, 

or there was subclonal variation. I know that these inhibitors were effective in my 

experiments from the Western blot analysis I performed, and to a certain extent within 

the mass cytometry experiments. In particular I could only observe effects of these 

inhibitors on induced pS6 levels (idelalisib) and pPLC2 levels (ibrutinib) in Figure 4.16 

and Figure 4.17.  pERK and pAKT were not working as expected and I could not see 

change in the levels of these epitopes between BCR-stimulated and/or inhibitor treated 

cells. Nevertheless, mass cytometry appeared to identify subclones of CLL cells that 

did respond to BCR crosslinking despite the presence of ibrutinib and idelalisib, 

indicating a potential to detect inhibitor-resistant clones. With further optimisation, such 

a goal might be achievable.    

In conclusion, Mass cytometry allows in-depth characterisation of normal and CLL B 

cells, allowing simultaneous investigation of phenotype and signaling within these 

cells. The limitations are availability of antibodies to detect intracellular signaling, 

future studies focussing on this aspect could possibly employ a range of reagents that 

include SH2 domain detection of phosphorylated tyrosine motifs and phospho-specific 
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antibodies. The power of these studies is in the resolution that is achievable. I 

employed a panel of 20 antibodies to perform these studies. This panel can easily be 

expanded and include additional technologies such as proximity ligation assay for 

RNA (PLAYR) to detect signal-induced gene transcription [176]. My results from this 

chapter show that different normal and CLL B cell populations respond to BCR 

engagement in a way that is dependent upon individual cell expression of surface 

immunoglobulin (in this case sIgM). This potentially has ramifications in the way KI 

inhibitors, such as ibrutinib, affect BCR signaling in CLL cells because I was able to 

detect small populations of cells which appeared resistant to the effects of this drug. 

In total, mass cytometry will be a useful tool to understand clonal evolution in CLL. 
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Chapter 5: Main Discussion  
 

In this thesis the main aim was to use mass cytometry to study the role of B cell 

receptor signaling in subsets of normal B cells and CLL cells. Up until now there are 

no studies that directly compare BCR signaling between naïve and memory B cells, 

and only a few which investigate intraclonal response of CLL cells to BCR engagement 

[38, 164]. My thesis sets a foundation upon which further studies can be based. This 

will be important for understanding known clonal heterogeneity of the malignant cells 

of CLL, and potentially give insight into clonal evolution during disease resistance to 

therapy, a phenomenon that has only been studied at the genetic level [177]. Thus, on 

a broad basis, the work of my thesis is applicable to the study of clonal evolution in 

CLL and other cancers as it applies to the phenotype of the malignant cells. 

CLL is an incurable disease that when treated goes through cycles of remission and 

relapse. At the beginning of this thesis typical frontline therapy relied on 

chemoimmunotherapy, and new second line therapies that target the BCR signaling 

pathway, ibrutinib and idelalisib. However, disease resistance to these new therapies 

was observed, and it was noted that patients who developed resistance did so through 

clonal evolution of cells bearing mutation within the target kinases of these inhibitors 

(particularly ibrutinib)[178]. It seemed logical that ibrutinib-resistant clones would 

maintain BCR signaling and that these clones should be visible within whole 

populations of CLL cells.  

To understand CLL subclone characterisation and the reason of selective resistant 

CLL subclones that can result from an outgrowth of more aggressive genetic 

characterisation by understanding first the CLL life cycle that occurs in the peripheral 

blood and lymphoid organs. CLL cells are characterised by expression of multiple 
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chemokine receptors that include CXCR4 and CXCR5 [179]. In CLL, CXCR4 binds to 

CXCL12 that is essential and is produced in mesenchymal stromal cells and bone 

marrow [180, 181]. The combination of CXCR4/CXCL12 chemokine interaction allows 

cells to migrate from the peripheral blood into the lymphoid organs to maintain survival 

and sustaining viability within the lymph node or less viable cells undergo apoptosis. 

This showed changes of surface phenotype of CXCR4/CD5 within the total clone of B 

cells that were further divided into older quiescent cells (OQ) CXCR4bright/CD5dim or 

newly emerged cells (NE), CXCR4dim/CD5bright [38]. Each fraction of CLL subclone 

have been investigated to understand the immunophenotype expression and internal 

BCR pathway expression to analyse intraclonal heterogeneity in CLL biology. 

To build the tools to investigate this I designed an antibody panel that could 

discriminate CLL B cell subsets based on the expression of CXCR4 and CD5. Here I 

could distinguish 4 different subpopulations; CXCR4-/CD5-, CXCR4+ /CD5- (OQ cells 

as characterised by [38]), CXCR4+/CD5+ and CD5+/ CXCR4- (NE cells). I found that 

the CLL B cell subpopulations that were CXCR4+/CD5+ and CD5+/ CXCR4- (NE cells) 

seemed to express higher levels of other surface markers compared to the whole 

population. This led to the results I report in Chapter 4 where BCR signaling in these 

CLL B subpopulations is investigated. I used phospho-specific antibodies to measure 

BCR signaling and found that the CXCR4+/CD5+ and CD5+/ CXCR4- (NE cells) CLL 

subclones show higher induction of pERK, pPLC2, pS6, and pTyrosine after surface 

IgM crosslinking. This result agrees with existing studies [143] and confirms that mass 

cytometry can be used as a tool to investigate intraclonal heterogeneity of BCR-

mediated signal transduction in populations of CLL cells. Further investigation of the 

effects of ibrutinib on BCR signaling in CLL cells showed most clones are affected by 

this inhibitor, but a small of proportion of cells appear to suppress the ability to induce 
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pS6 and pPLC2 in response to BCR crosslinking. This experiment suggests that 

mass cytometry can be used to identify ibrutinib-resistant clones of CLL, however, 

because not all the antibodies worked reproducibly this will require further work and 

optimisation for a firmer conclusion to be made. 

In my thesis, the analysis on OQ/NE CLL cells, I have done on frozen samples I 

identified a range of novel features where each CLL case has shown heterogeneity in 

some cases that have indolent course of disease and shows insensitive to IgM BCR 

stimulation. This clonal anergy can as well be the main contributor to not respond to 

full inhibition to ibrutinib and idelalisib as shown in Figure 4.16-20, where some CLL 

subclones have not achieved total treatment of CLL subclones that are resistant and 

shows that BCR signalling inhibitors can control the disease and not fully affect all CLL 

cells that can lead to relapse of patients. This explains clonal outgrowth in developed 

mutations in PLC2 and BTK after treatment of Ibrutinib and emerged into clonal 

evolution. However, CLL patient’s stratification is based on clinical characterisation to 

identify genetic abnormalities, IGHV mutational status and karyotypic abnormalities 

leading to clinical trials in the near future for therapeutic targeting of CLL clones to 

prevent subclone development. 

I also investigated BCR signaling in populations of normal B cells. Mass cytometry is 

clearly an excellent tool to characterise B cell populations, and I was able to distinguish 

between naïve and memory B cells. One goal of the thesis was to identify normal 

CD5+ B cells, however, this was not satisfactorily achieved because the numbers of 

these cells in peripheral blood is less than 1%, which the results I generated agree 

with. For further study of this population, particularly with respect to signaling 

properties, I would have needed to purify B cells from peripheral blood in order to 

enhance my ability to analyse them. Nevertheless, I did investigate response of naïve 
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and memory B cells to BCR engagement. I found that IgM+ memory B cells induce 

greater levels of pS6, pPLC2 and pTyrosine than do naïve B cells, indicating that 

mass cytometry can be used to investigate this phenomenon in B cell populations, 

however, I was not able to study the effects of ibrutinib on these subsets owing to time 

and reagent constraints. Taken together with the results I generated using primary 

CLL cells, these results confirm that mass cytometry is a useful tool for interrogating 

populations of malignant and normal B cells.  

For the purpose of this thesis, I used phospho-specific antibodies to detect signal 

transduction in CLL cells. The results I generated were not optimal, potentially 

because of the detection limit associated with these reagents. Moreover, full 

appreciation of intracellular signaling was not achieved because of the limiting number 

of phospho-specific antibodies that are available. I attempted to create new tools for 

the study of signal transduction and employed the approach described by Dierck et al, 

where they used purified SH2 domains to measure cellular signaling. I conjugated SH2 

domains from PI3KR1, GRB2, NCK and SRC to lanthanide mass tags. I found that 

although the conjugation method did not affect the binding of these reagents to 

phospho-tyrosine containing proteins by Western blot analysis, only 2 of the 4 SH2 

domains seemed to work by mass cytometry, PI3KR1 and GRB2. However, the signal 

was weak, and I felt that better results would be generated using phospho-specific 

antibodies. Further work will need to be performed with this technique in order to 

optimise it for application in mass cytometry.  

My work using mass cytometry to study CLL and normal B cells provides a pathway 

with which to understand the physiology of disease. Further development of this 

technology, such as application of lanthanide labelled SH2 domains to study signal 

transduction, could lead to increased understanding of signaling in CLL subclones 
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yielding insight to their heterogeneity and expansion during therapy. Additional tools, 

such as detection of mRNA species can also be achieved, and although not a part of 

this thesis, I was involved in the development of  an adaptation of an in-situ 

hybridization (ISH) approach that uses transcript-specific oligonucleotide sequences 

within a rolling circle amplification, called Proximal Ligation Assay for RNA (PLAYR), 

to detect specific mRNA transcripts [176]. In particular, PLAYR was optimised for use 

in combination with antibodies for surface phenotype determination, allowing for single 

cell analysis of gene expression within whole populations of cells. The PLAYR protocol 

developed uses detector oligonucleotides that are conjugated with heavy metal mass 

tags, and we were able to detect 27 different mRNA species in primary CLL cells and 

a mantle cell lymphoma cell line. Figure 5.1 shows how the PLAYR assay works within 

a single cell. This developed tool, together with surface Ag analysis, allows to 

investigation of BCR-induced expression of prognostic genes within CLL subclones. 

This technology can now be applied to the analysis of other cell types in other 

physiological and pathological situations to provide insight into disease.   

In conclusion, I have demonstrated in this thesis that mass cytometry (CyTOF-3) can 

be used to characterise B cell subpopulations in peripheral blood from normal 

individuals and patients with CLL. I show that this technique can be used to measure 

BCR expression and relate this to signaling intensity in single cells, and demonstrate 

that normal B cells, (IgM memory, IgM naïve, class switch IgM) differentially respond 

to BCR engagement and that different CLL subclones do the same. Finally, my results 

suggest that mass cytometry can be used to understand how CLL cell subclones 

respond to therapies such as ibrutinib, potentially providing understanding of clonal 

evolution as a mechanism of disease resistance. My work therefore shows that mass 
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cytometry will be a particularly useful tool for future studies, such as looking at blood 

cells in CLL. 

 

 

Figure 5. 1 PLAYR assay steps representation diagram. A.) At the beginning of the 
PLAYR assay, several steps should follow as an initial stages prior the assay. Staining 
cells with surface antibodies followed with BS3 cross-linker a chemical agent that 
crosslinks cells by covalently binding to cells that helps them to attach into the surface 
antibodies.This is then followed up by cell fixation with paraformaldehyde and cells are 
ready to be permeabilized with methanol and can be stored in -80ºC. This step does 
not affect the RNA integrity and surface antibodies. B.) PLAYR probe pairs are 
enhanced for proximal hybridization to cognate transcripts. C.) Backbone and insert 
region contains oligonucleotides that form a circle for hybridization to form single 
stranded DNA to bind to the transcripts. D.) Backbone and insert region containing 
oligonucleotides are ligated with lipase. E.) Polymerization starts by rolling circle 
amplification of the DNA circle. F.) PLAYR detection of the labelled oligonucleotides 
intracellular staining that were bonded to the insert regions. This figure was created 
by Biorender.com [176]. 
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