Computational and experimental analysis of a Glaucoma flat drainage device



Panduro, RMR, Monterrey, Christian, Mantari, JL, Canahuire, Ruth, Alvarez, Helard, Miranda, Mario and Elsheikh, Ahmed ORCID: 0000-0001-7456-1749
(2021) Computational and experimental analysis of a Glaucoma flat drainage device. Journal of Biomechanics, 118. 110234-.

[img] Text
Panduro - Analysis of glaucoma flat drainage device - author accepted version.pdf - Author Accepted Manuscript

Download (8MB) | Preview

Abstract

This paper presents a computational and experimental analysis of a glaucoma flat drainage device (FDD). The FDD consists of a metallic microplate placed into the eye sclerocorneal limbus, which creates a virtual path between the anterior chamber and its exterior, allowing the intraocular pressure (IOP) to be kept in a normal range. It also uses the surrounding tissue as a flow regulator in order to provide close values of IOP for a wide range of aqueous humor (AH) flow rates. The Neo Hookean hyperelastic model is used for the solid part, while the Reynolds thin film fluid model is used for the fluid part. On the other hand, a gravitational-driven flow test is implemented in order to validate the simulation process. An in vitro experiment evaluated the flow characteristics of the device implanted in fourteen extirpated pig eyes, giving as a result the best-fit for the Young modulus of the tissue surrounding the device. Finally, according to the resulting computational model, for a range of 1.4-3.1 μL/min, the device presents a pressure variation range of 6-7.5 mmHg.

Item Type: Article
Uncontrolled Keywords: Glaucoma, Fluid-structure interaction, Thin-film fluid, Glaucoma drainage device (GDD), Finite element method
Divisions: Faculty of Science and Engineering > School of Engineering
Depositing User: Symplectic Admin
Date Deposited: 30 Apr 2021 08:05
Last Modified: 18 Jan 2023 22:49
DOI: 10.1016/j.jbiomech.2021.110234
Related URLs:
URI: https://livrepository.liverpool.ac.uk/id/eprint/3121085