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Simple Summary: Tyrosine kinase inhibitor treatment has greatly improved the prognosis for many 

chronic myeloid leukaemia patients; however, disease progression is usually fatal for patients and 

remains a significant clinical challenge today. Using the U.K. SPIRIT 2 (STI571 Prospective 

International RandomIsed Trial 2) clinical trial, we have validated cancerous inhibitor of protein 

phosphatase 2A (PP2A) (CIP2A) as a diagnostic biomarker to identify patients at risk of disease 

progression and treatment failure. CIP2A is a simple diagnostic biomarker that may be a useful 

diagnostic tool in planning treatment strategies. 

Abstract: Background: It would be clinically useful to prospectively identify the risk of disease 

progression in chronic myeloid leukaemia (CML). Overexpression of cancerous inhibitor of protein 

phosphatase 2A (PP2A) (CIP2A) protein is an adverse prognostic indicator in many cancers. 

Methods: We examined CIP2A protein levels in diagnostic samples from the SPIRIT2 trial in 172 

unselected patients, of whom 90 received imatinib and 82 dasatinib as first-line treatment. Results: 

High CIP2A levels correlated with inferior progression-free survival (p = 0.04) and with worse 

freedom from progression (p = 0.03), and these effects were confined to dasatinib recipients. High 

CIP2A levels were associated with a six-fold higher five-year treatment failure rate than low CIP2A 

levels (41% vs. 7.5%; p = 0.0002), in both imatinib (45% vs. 11%; p = 0.02) and dasatinib recipients 

(36% vs. 4%; p = 0.007). Imatinib recipients with low CIP2A levels had a greater risk of treatment 

failure (p = 0.0008). CIP2A levels were independent of Sokal, Hasford, EUTOS (EUropean 

Treatment and Outcome Study), or EUTOS long-term survival scores (ELTS) or the presence 

of major route cytogenetic abnormalities. No association was seen between CIP2A levels and time 

to molecular response or the levels of the CIP2A-related proteins PP2A, SET, SET binding protein 1 

(SETBP1), or AKT. Conclusions: These data confirm that high diagnostic CIP2A levels correlate with 

subsequent disease progression and treatment failure. CIP2A is a simple diagnostic biomarker 

that may be useful in planning treatment strategies. 
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1. Introduction 

 



 

Tyrosine kinase inhibitors (TKIs) have transformed the clinical landscape for patients 

with chronic-phase chronic myeloid leukaemia (CML), with life expectancy essentially 

normal for about 90% of patients. However, TKIs do not offer a cure, as they do not 

eradicate leukaemic stem cells (LSC) [1-3]. Furthermore, a proportion of patients will 

progress to blast crisis, with a median survival of approximately 10 months 4. Disease 

progression to accelerated phase is defined by the European Leukemia Net (ELN) as a 

blast count >15% and blast crisis is >30% 5, 6. Various scoring systems have been developed 

to prospectively identify patients at high risk of transformation 7-9, but Italian data on the 

long-term outcome of imatinib treatment suggest that >70% of patients identified as high 

risk by Sokal or other scores may remain well at 7 years [10] precluding the use of these 

scoring systems to influence treatment decisions. More recently, the EUTOS long-term 

survival score (ELTS) has been developed to look at the risk of disease progression to the 

advanced phase, but again even patients in the high-risk ELTS group had an 8-year 

incidence of death from CML of only 11% 11. Similarly, the German/Swiss CML IV study 

has identified that certain additional chromosomal abnormalities (ACA) beyond a single 

Philadelphia (Ph) translocation may confer a six-fold increased risk of disease progression 
12, but ACA are only present in ~3% of patients, and also these findings have yet to be 

confirmed in other studies. There is, therefore, a need for a reliable prospective biomarker 

of disease progression to blast crisis. 

Protein phosphatase 2A (PP2A) is a phosphatase that is important in opposing the 

overactive kinases that typify many malignancies; it is thus a tumour suppressor. PP2A 

inactivation is an essential requirement for transforming human cells 13. PP2A is regulated 

by numerous inhibitor proteins such as a Cancerous Inhibitor of PP2A (CIP2A) 14, SET 15, 

and SET binding protein 1 (SETBP1) 16, and expression of these inhibitor proteins can vary 

between malignancies and even within malignancy sub-types. For example, acute 

myeloid leukaemia (AML) patients with normal karyotype have their PP2A 

predominately inhibited by CIP2A, while patients with an adverse karyotype have their 

PP2A inhibited by SETBP1 17. Both SETBP1 and CIP2A inhibit PP2A, resulting in 

phosphorylation of the serine/threonine kinase AKT (also known as protein kinase B) at 

its S473 residue 17, and this leads to uncontrolled cell proliferation and resistance to 

apoptosis, both hallmarks of oncogenic transformation 18. 

We reported in 2011 that at initial diagnosis of chronic-phase CML, imatinib 

recipients with high levels of CIP2A protein had a high actuarial risk of progression to 

blast crisis, and this was not associated with BCR-ABL1 kinase domain mutations 19. Over 

150 clinical papers have subsequently confirmed that high CIP2A levels are associated 

with adverse histology and/or poor response to treatment in over 20 different cancer 

histologies 20-26, including AML 17. Our group subsequently showed that patients with high 

CIP2A levels who received front-line treatment with the second generation (2G) TKIs 

dasatinib or nilotinib did not have this high progression risk, suggesting that CIP2A might 

be a useful biomarker to identify a group of patients who might be better treated with a 

2G TKI 27. However, our studies were limited to 74 patients in whom disease progression 

was overrepresented but confined to imatinib recipients; indeed, no samples were 

available at our institution from front-line dasatinib or nilotinib recipients that underwent 

progression. It is therefore important to validate our findings in an independent and 

larger cohort more representative of everyday CML practice. Therefore, we investigated 

the prospective value of assessing CIP2A and related proteins at diagnosis in a subset of 

172 patients enrolled in the United Kingdom SPIRIT2 trial, a phase 3 study comparing 

imatinib and dasatinib for first-line treatment in newly diagnosed chronic-phase CML 

patients. The principal findings from SPIRIT2 have been presented 28. 

  



 

2. Materials and Methods 

2.1. Patients 

In the SPIRIT2 trial, 814 newly diagnosed chronic-phase patients were randomly 

allocated 1:1 to either imatinib 400 mg or dasatinib 100 mg each once daily. Follow-up was 

monthly for 3 months, 3-monthly until 12 months, then 6-monthly. Patients were followed 

until the sooner of 5 years or a change of therapy due to either intolerance or resistance 28. 

At each visit, a centralised molecular assessment of the BCR-ABL1/ABL1 ratio was carried 

out using International Standardisation (IS) at the Molecular Pathology Laboratory at the 

Imperial College Healthcare NHS Trust (ICHNT), London. Results with less than 10,000 

ABL1 control transcripts were rejected 29. 

The vast majority of SPIRIT2 entrants gave informed consent to donate samples to 

the SPIRIT2 biobank housed at ICHNT, in addition to the consent required to enter the 

trial. The present project was approved by the National Cancer Research Institute CML 

subgroup, who have ownership of this biobank, and ethical approval was given by the 

Liverpool East Committee of the U.K. National Research Ethics Committee. To maximise 

follow-up yet conserve resources, the study focused on the first available 200 (25%) 

diagnostic samples from the SPIRIT2 entrants plus all subsequent patients who 

progressed. This resulted in a total of 172 samples available/suitable for study, which 

included 18 of the 23 patients in the entire study who progressed to the advanced phase. 

2.2. Sample Collection and Preparation 

Peripheral blood mononuclear cells were separated from diagnostic samples by 

density-dependent centrifugation (Lymphoprep Axis-Shield, Cambridge, U.K.), washed 

in RPMI 1640 (BioSera, Nuaille, France), and resuspended in 10% dimethylsulfoxide 

(DMSO)/10% fetal calf serum (FCS) (BioSera)/RPMI at 4 °C. Cells were then 

cryopreserved. Samples were thawed in RPMI containing 10% FCS and 1% L-glutamine 

using the dropwise method. 

2.3. Measurement of CIP2A and Associated Proteins 

The flow cytometry methodology has been previously described [17,19,27] and was 

used for the detection of CIP2A, SET, SETBP1, AKT, and AKTS473. The following antibodies 

were used: CIP2A, SET, SETBP1, AKT, and AKTS473 (all from Santa Cruz Biotechnology, 

California, USA), anti-mouse and anti-rabbit Alex Fluor 488 (Invitrogen, Paisley, U.K.), 

and CD45perCP (BD Bioscience, Oxford, U.K.). Samples were analysed by flow cytometry 

using a FACSCanto II machine (BD Bioscience, Oxford, U.K.), and the resultant data were 

analysed by FACS Diva software, version 8.0.1. 

2.4. Definitions of Outcome Endpoints 

Overall survival (OS) was defined as the time from trial entry to death from any 

cause. Progression-free survival (PFS) was defined as the time from trial entry to disease 

progression to advanced phase or death from any cause, whichever were the earlier. 

Freedom from progression (FFP) was defined as the time from trial entry to progression 

alone. Time to treatment failure was defined as the time from trial entry to a change in the 

allocated therapy because of resistance. 

2.5. Statistical Analysis 

The level of CIP2A was assigned as either high or low according to the maximally 

selected rank statistic, which is an outcome-oriented method providing a value of a cut 

point that corresponds to the most significant relationship with the outcome. In Kaplan–

Meier plots, p-values were determined using the log-rank (Mantel–Cox) test; where 

significant p-values are shown. All analyses were undertaken in R 3.5.0 and GraphPad 

prism v8.1. 

3. Results 



 

Patient characteristics for all 172 patients studied are shown in Table 1. Briefly, 90 

patients received imatinib, while 82 received dasatinib. Eighteen patients progressed to 

blast crisis (9 imatinib- and 9 dasatinib-treated patients). Overall, the median age was 52 

years, similar in each treatment arm, though 115 (66.9%) of the 172 patients were male, 

with 61.1% and 73.3% in the imatinib and dasatinib arms, respectively. 

Table 1. Patient characteristics table. 

Catergory Imatinib (90) Dasatinib (82) Total 

Median age (range) 52 (20–87) 55 (18–81) 52 (18–87) 

Sex - - - 

Male 55 60 115 

Female  35 22 57 

Sokal Score - - - 

Low 20 14 34 

Intermediate 16 22 38 

High 18 14 32 

N/A 36 32 68 

Hasford Score - - - 

Low 23 18 41 

Intermediate 15 18 33 

High 12 7 19 

N/A 40 39 79 

EUTOS - - - 

Low 73 58 131 

High 11 12 23 

N/A 6 12 18 

ELTS - - - 

Low 28 26 54 

Intermediate 14 14 28 

High 12 10 22 

N/A 36 32 68 

N/A = not available; other abbreviations as defined in the text. 

3.1. CIP2A and Established Scoring Sytems 

We first examined how the established scoring systems correlated to progression and 

to levels of CIP2A and its related proteins. Recording the components of the various 

scoring systems was not mandatory at trial entry; as a result, 39% (Sokal), 45% (Hasford), 

10% (EUTOS), and 39% (ELTS) of the present 172 patients could not be allocated a score. 

There was a non-significant trend for worse progression-free survival in patients with a 

high Sokal score (Figure 1a) and a similar trend for patients with high Sokal scores to have 

higher CIP2A protein levels (Figure 1b). The Hasford and EUTOS scores did not predict 

progression-free survival (consistent with the findings of both the Italian and German 

studies) [8,10] or correlate with CIP2A levels (Figures 1c–f). However, the ELTS score 

correlated with progression-free survival (Figure 1g; p = 0.01), consistent with a recent 

report [30], though no correlation was seen between it and CIP2A levels (Figure 1h). No 

association was found between diagnostic CIP2A levels and the presence of trisomy 8 or 

19, a second Ph translocation, or isochromosome 17 (Figure 1i). CIP2A protein levels are 

therefore independent of the scoring systems and abnormal cytogenetics. 

 



 

 



 

 

Figure 1. CIP2A protein level is independent of scoring systems and abnormal cytogenetics. Progression-free survival 

(PFS) and diagnostic CIP2A MNC protein levels stratified by Sokal score (a–b), Hasford score (c–d), EUTOS score (e–f), 

ELTS (g–h), and abnormal cytogenetics (i). 

3.2. High CIP2A Is Associated with an Inferior Progression-Free Survival 

The overall survival for these 172 patients is given in Figure S1, according to the 

patient’s CIP2A status and stratified by TKI received. No correlation is seen between the 

CIP2A level and overall survival. 

Figure 2a shows that a high CIP2A level is associated with inferior progression-free 

survival (p = 0.04). Figure 2b,c shows the progression-free survival for the imatinib and 

dasatinib recipients, respectively, and suggests that the trend toward inferior progression-

free survival with high CIP2A mostly derives from the dasatinib recipients, though 

numbers become too small to achieve statistical significance. However, the contribution 

of progression to progression-free survival is dominated by patients who died from 

causes unrelated to CML. In the present 172 patients, 27 deaths were observed, of which 

only 14 (51%) were CML-related. Therefore, in assessing the effect of CIP2A on 

progression, freedom from progression (FFP) may be more informative. This is shown in 

Figure 3, set out in the same way as Figure 2. As for progression-free survival, high CIP2A 

levels are associated with inferior freedom from progression (Figure 3a; p = 0.03, Fisher's 

exact test), and again this is mostly due to the dasatinib recipients (Figure 3c; p = 0.003, 

Fisher's exact test); no difference in freedom from progression according to CIP2A status 

is seen in the imatinib recipients (Figure 3b). 

 

 

 

Figure 2. Progression-free survival (PFS). Kaplan–Meier curves for progression-free survival, stratified by diagnostic 

CIP2A level for (a) all 172 patients, (b) imatinib recipients, and (c) dasatinib recipients. p-values were determined using 

the log-rank (Mantel–Cox) test; p-values are shown where significant. 

Overall, the risk of disease progression for patients with low and high CIP2A levels 

was 5% and 15%, respectively (Figure 3a), but this difference was particularly marked for 

dasatinib recipients (Figure 3c; 2% and 23%, respectively; p = 0.004), while not differing 

for imatinib recipients (Figure 3b; 9.5% and 10%, respectively). One dasatinib-treated 

patient with low CIP2A progressed; this patient had a high Sokal score and an 

intermediate ELTS score and frequent treatment interruptions due to recurrent pleural 

effusions. Four out of 42 imatinib recipients with low CIP2A progressed, and all four 

presented with intermediate (2 patients) or high (2 patients) Sokal and ELTS scores, and 3 

of the 4 had ACA at diagnosis (either trisomy 8, a second Ph, or isochromosome 17). The 

adverse cytogenetics and treatment interruption may have contributed to progression in 

these patients despite their low diagnostic CIP2A level. 



 

 

 

Figure 3. Freedom from progression (FFP). Kaplan–Meier curves for freedom from progression, stratified by diagnostic 

CIP2A level for (a) all 172 patients, (b) imatinib recipients, and (c) dasatinib recipients. p-values were determined using 

the log-rank (Mantel–Cox) test; p-values are shown where significant. 

  



 

3.3. High CIP2A Is Associated with Treatment Failure 

We next investigated if the diagnostic CIP2A level was associated with treatment 

failure. Figure 4a shows that patients with high CIP2A levels were more likely to fail 

treatment (p = 0.001). When patients were stratified by TKI treatment, there was a trend 

for imatinib-treated patients with high CIP2A levels to have a higher failure rate than 

those with low levels. For dasatinib-treated patients, high CIP2A levels conferred a 

significantly higher risk of treatment failure (Figure 4c; p = 0.003). Patients with low CIP2A 

levels and treated with imatinib had an inferior treatment failure rate than dasatinib-

treated patients (Figure 4d; p = 0.0008). Patients with high CIP2A levels had a significant 

risk of failing treatment (p = 0.001); when we compared imatinib and dasatinib treatment 

for patients with high CIP2A levels, imatinib-treated patients had a trend for higher risk 

of treatment failure (Figure 4e). 

 

 

Figure 4. Time to treatment failure. Kaplan–Meier curves for time to treatment failure, stratified by diagnostic CIP2A level 

for (a) all 172 patients, (b) imatinib recipients, and (c) dasatinib recipients, (d) according to treatment received for patients 

with low CIP2A levels only, and (e) according to treatment received for patients with low CIP2A levels only. p-values 

were determined using log-rank (Mantel–Cox) test; p-values are shown where significant. 

Patients with a high CIP2A level at diagnosis had a 41% chance of treatment failure 

by 5 years, compared to 7.5% for patients with low CIP2A levels (p = 0.002, Fisher’s exact 

test). For imatinib-treated patients, the risk of treatment failure was 45% and 11% for the 

high and low CIP2A groups, respectively. (p = 0.02, Fisher’s exact test). For dasatinib-

treated patients, patients with high CIP2A levels had a 36% chance of treatment failure 

compared to 4% for those with low CIP2A levels (p = 0.007, Fisher’s exact test). High 

CIP2A levels at diagnosis thus predict a significant risk of treatment failure irrespective 

of TKI treatment. 

3.4. Time to Molecular Response 

Imatinib recipients with a high CIP2A level had a significantly worse early molecular 

response rate (defined as a BCR-ABL1/ABL1IS ratio of ≤ 10% at 3 months) (p = 0.04; data 

not shown). The time to molecular response 3 (MR3) (BCR-ABL1/ABL1IS ratio of ≤0.1%) 

and time to molecular response 4.5 (MR4.5) (BCR-ABL1/ABL1IS ratio of ≤0.0032%, in the 



 

presence of at least 31,623 control ABL1 transcripts) are shown in Figure 5. The diagnostic 

CIP2A level, therefore, did not correlate with time to molecular response, either overall or 

for imatinib or dasatinib recipients alone. 

 

Figure 5. Time to molecular response— molecular response 3 (MR3) and molecular response 4.5 (MR4.5). Panels (a–c): 

Kaplan–Meier curves for time to MR3, stratified by diagnostic CIP2A level for (a) all 172 patients, (b) imatinib recipients, 

and (c) dasatinib recipients. Panels (d–f): Time to MR4.5 stratified by diagnostic CIP2A level for (d) all 172 patients, (e) 

imatinib recipients only, and (f) dasatinib recipients only. p-values were determined using the log-rank (Mantel–Cox) test; 

p-values are shown where significant. 

3.5. Prognostic Value of CIP2A/PP2A Related Proteins at Diagnosis 

CIP2A exerts its effects through association with a number of network-related 

proteins 31-33. These include PP2A itself 14, SET 34, SETBP1 16, 17, and S473 phosphorylation 

of AKT 17. We investigated the prognostic value of these CIP2A/PP2A-related proteins at 

diagnosis. Patients with a high SET protein level had inferior freedom from progression 

(p = 0.01, data not shown) and a trend towards inferior progression-free survival, 

compared to patients with low diagnostic SET levels. In AML, high expression of SETBP1 

at diagnosis is a marker of poor survival [14], and we have recently shown that high 

diagnostic levels of AKTS473 at diagnosis are also associated with poor outcome 17. Here 

the diagnostic level of SETBP1 did not offer any prognostic value, and although high 

levels of total AKT protein were associated with an inferior time to molecular response 2 

(MR2) for dasatinib-treated patients (p = 0.05), no prognostic significance for AKTS473 was 

found. We therefore conclude that the levels of these CIP2A-related proteins offer no 

advantages over CIP2A itself in predicting outcome in CML. 

4. Discussion 

Here we examine diagnostic CIP2A levels in a large clinical trial and demonstrate 

that high CIP2A levels are associated with a significantly higher probability of disease 

progression. However, in contrast to our previous studies (where we were unable to 

comment on dasatinib recipients as none progressed), this relationship between CIP2A on 

progression was not seen in imatinib recipients. This may be because a higher proportion 

of the present imatinib recipients switched treatment because of resistance than dasatinib 

recipients, and the rate of stem cell transplantation was five-fold higher for imatinib 



 

recipients than dasatinib recipients in the trial overall 28, and these treatment alterations 

may have prevented disease progression. This requires further study. 

The present data also indicate that high CIP2A is associated with a higher chance of 

treatment failure for both imatinib and dasatinib recipients. Higher levels of CIP2A are 

associated with a higher degree of PP2A inhibition and are known to confer treatment 

resistance in a wide range of other tumours (reviewed in 35). Little is known about CIP2A’s 

mechanism of action. A direct interaction for CIP2A and PP2A has been described, 

showing CIP2A binds at least two PP2A regulatory subunits, β56γ and β56α 36. The 

structure of the N-terminal region (residues 1–560) of CIP2A has been determined. This 

region is important in facilitating PP2A binding, as it contains the homodimer contacts 

spanning residues 507–559 that enhance CIP2A’s binding to PP2A subunits. The 

minimum region required for CIP2A binding to β56α and β56γ has been identified as 

residues 159–245 36; however, a structure containing both CIP2A and PP2A components 

has yet to be identified. Whether these interactions fulfil all CIP2A binding is unknown 

as, despite efforts by us and others, the full-length protein is unstable and has not yielded 

any crystals for X-ray crystallographic structural study. 

A plausible explanation for the adverse effects of CIP2A on treatment outcome may 

be that patients whose disease is set to have a particularly high level of PP2A inhibition 

are already destined to respond less well to treatment and are at greater risk of the 

additional genetic events required for disease progression. Junttila et al. 37 first described 

that CIP2A associates with and stabilises MYC in Hela cells, increasing MYC’s half-life 

and its activation (indicated by phosphorylation on serine 62) as well as promoting MYC 

localisation to nuclear lamins in cancer cell lines 37-40. Furthermore, in the CML cell line 

K562 19, 41 and primary CML patient cells 27, 42, we have confirmed this association. High 

levels of MYC are known to promote genetic instability and aneuploidy and thus may 

contribute to disease progression. We have previously shown that MYC inhibition can 

inhibit CIP2A via a positive feedback loop 27, 42. This interaction is direct and involves the 

N-terminal residues 1–262 of MYC. The mechanism for CIP2A’s regulation on MYC is 

likely through its inhibitory effect on PP2A-mediated MYC dephosphorylation (which 

inactivates MYC and decreases its stability). However, CIP2A may also have additional 

actions. In separate work, we have recent evidence that one mechanism of CIP2A action 

is to alter the balance of pro- and anti-apoptotic proteins in favour of creating an anti-

apoptotic phenotype 43. Furthermore, CIP2A augments oxidative phosphorylation and 

decreases reliance on glycolysis, directly interacting with a number of energy metabolism 

proteins in a manner suggesting that these metabolic effects may be mediated through 5’ 

adenosine monophosphate-activated protein kinase (AMPK), since modifying AMPK 

activity mimics the effects of CIP2A on energy metabolism 41. These metabolic effects 

appear to be a novel action of CIP2A in malignancy. 

5. Conclusions 

In summary, this study on a large, unselected trial cohort is in line with our earlier 

observations on selected local patients 19, 27 and suggests that diagnostic CIP2A protein 

levels could be used at diagnosis as a potential biomarker for predicting progression and 

treatment failure. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: 

Overall survival. 
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