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Abstract

Computational cost often hinders the calibration of complex computer mod-
els. In this context, history matching is becoming a widespread calibration
strategy, with applications in many disciplines. History matching (HM) uses
a statistical approximation - also known as an emulator - to the model out-
put, in order to mitigate computational cost. The process starts with an
observation of a physical system. It then produces progressively more accu-
rate emulators to determine a non-implausible domain: a subset of the input
space that provides a good agreement between the model output and the
data, conditional on the model structure, the sources of uncertainty and an
implausibility measure. In HM, it is essential to generate samples from the
non-implausible domain, in order to run the model and train the emulator
until a stopping condition is met. However, this sampling can be very chal-
lenging, since the non-implausible domain can become orders of magnitude
smaller than the original input space very quickly. This paper proposes a
solution to this problem using subset simulation, a rare event sampling tech-
nique that works efficiently in high dimensions. The proposed approach is
demonstrated via calibration and robust design examples from the field of
aerospace engineering.
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1. Introduction

The use of computer models (also known as simulators) to study complex
systems and environments is indispensable in modern scientific research. The
reliability of these models depends critically on how well they are calibrated
to experimental data. Otherwise, model-based decisions run the risk of being
misguided or ill-informed. One of the challenges of model calibration is that
several sources of uncertainty must be taken into account. This uncertainty
originates (for instance) due to process idealisations, model assumptions and
computational cost. In order to provide evidence of predictive reliability, it
is essential that any model is calibrated taking into account these sources of
uncertainty.

Typically, high-fidelity computer models of complex phenomena are com-
putationally expensive. In the context of uncertainty quantification, this
characterisation usually describes models whose evaluation time prohibits
their repeated use in any form of sampling-based analysis. This feature
presents a challenge to classical calibration techniques, which require a con-
siderable number of simulator runs to identify an acceptable match between
model and data. Furthermore, the analyst might face an added challenge
if not only the model, but also the generation of experimental data, is ex-
pensive or unfeasible. Despite the importance and necessity of efficient cali-
bration methods for complex computer codes, their development has lagged
behind their application [1]. Instead, simple goodness-of-fit measures such
as distance-based methods and least squares (see e.g. [2]) or likelihood func-
tions (consult [3] and references therein) are applied. Neither of these may
be suitable when computational cost and high dimensional input are consid-
ered. This is due to the fact that goodness-of-fit measures typically require
large data sets to achieve a reliable quantification of the degree of agreement
between observations and simulator realizations. Likewise, the likelihood of
complex simulators is usually intractable and approximations may be re-
quired (see e.g. [4]).

History matching (HM) [5, 6] is a form of calibration for complex and com-
putationally expensive numerical models. It uses Bayesian emulation [7] to
tackle computational cost. Emulation means building a statistical approx-
imation to the original simulator, thus allowing affordable inference about
its output. History matching also defines an implausibility measure, which

2



is used to reduce the input space by finding an input subspace that pro-
vides a reasonable match between the model output and experimental data,
given the model structure and various sources of uncertainty. This input
space reduction is achieved by building progressively more accurate emula-
tors, which in practice results in HM becoming an iterative process. The
resulting input subspace is known in the literature as non-implausible do-
main, non-implausible set or Not-Ruled-Out-Yet (NROY) space [8]. History
matching has been successfully applied in epidemiology [1], galaxy formation
modeling [8], oil reservoir analysis [9] and large climate systems modelling
[10], amongst many other applications.

The sequential generation of samples from the non-implausible domain
at every HM iteration has remained an open and complex problem. This
mainly stems from the fact that the non-implausible domain can be orders
of magnitude smaller than the original input space [11]. A notable example
of a field of study in which a similar challenge is encountered is engineering
reliability analysis. The main aim of this type of reliability analysis is to
identify the conditions under which a physical system fails. In that context,
failure means that the demand has exceeded the capacity of the system, ac-
cording to a model of the system and a criterion guided by expert knowledge.
Reliability analysis aims at generating samples from the failure set, that is,
the set of model input configurations that lead to failure. This allows the
characterisation of different modes in which the system can fail and to esti-
mate the probability of failure. If an engineering system is well-designed and
the model is a good representation of the system, the volume of the failure
domain is expected to be orders of magnitude smaller compared to the input
space. Since this can also be the case for the non-implausible domain within
HM, this opens the prospect of treating it as if it were a failure set within
reliability analysis.

Subset simulation (SuS) [12] is a widely used technique in engineering re-
liability computations and rare event simulation. Unlike direct Monte Carlo,
SuS models a rare event, which has a small failure probability, as contained
in a nested sequence of less-rare events. Eventually, the probability of failure
can be computed as the product of larger conditional probabilities given the
occurrence of each preceding event. Markov chain Monte Carlo (MCMC)
is used to generate the conditional samples that belong to the intermediate
failure events. Based on this strategy, SuS generates samples selectively, to
efficiently populate the target failure set. Given the potential disparity in
the size of the original input space and the non-implausible domain (in the
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context of HM); and the potential disparity in the size of the original input
space and the failure domain (in the context of reliability analysis), this pa-
per proposes the use of SuS as an efficient sampler of the non-implausible
domain within each wave of HM.

The remainder of the paper is organized as follows. Section 2 presents an
overview of HM. Section 3 reviews the details of SuS. Section 4 presents the
proposed approach, in which SuS is used to sample from the non-implausible
domain in HM. The resulting procedure is demonstrated in a calibration
context in Section 5 and in an industrial context for robust aircraft design in
Section 6. Finally, section 7 provides some conclusions.

2. History matching

2.1. Procedure overview

A rigorous description of the relationship between a model and the un-
derlying physical process requires the identification and inclusion of different
sources of uncertainty. Let y denote the true value of the physical process. A
modeller analysing the process can only observe a noisy version of this value.
Let z = y + εme be this noisy observation, where εme is measurement error.
This type of error, also called observational uncertainty, can be thought of
as a random variable with zero mean and finite variance. The modeller then
represents the physical process through a numerical simulator, which defines
an input-output mapping η : Rd → R. Let η(x) denote the simulator output
as a function of some input vector x ∈ X ⊆ Rd. Even if all model parame-
ters were known exactly, the process y cannot be represented perfectly. This
is due to unavoidable modelling assumptions, simplifications, or incomplete
knowledge of the underlying physics. This disparity is known as model dis-
crepancy [13] and is denoted by εmd. The modelled physical process can
therefore be described by y = η(xc) + εmd, where xc is an input configura-
tion, such that η(xc) summarizes all of the information the simulator carries
about the system. Finally1, the value of η(x) is unknown until the model is
evaluated at the input combination x. When the model is computationally
expensive, the analyst will only be able to run the model in a limited number

1If the simulator is stochastic in nature, i.e. evaluating η at a fixed input combination
x returns a different output value, η(x) every time, another source of uncertainty called
ensemble variation can be added. See discussion in Section 2.3
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of input configurations, which induces another source of uncertainty, called
code uncertainty [14].

Given the sources of uncertainty introduced above, HM is designed to
explore the input space X and discard regions which are unlikely to produce
the measured system response. This is achieved through: (i) the use of an
implausibility measure, which quantifies the distance between the measure-
ment z and the output of the model η(x), normalized by the different sources
of uncertainty; and (ii) a Bayesian emulator to alleviate the cost of running
the complex model. The technical details behind Bayesian emulation are
given in Section 2.2. Due to the use of an emulator, HM becomes an itera-
tive procedure in practice. At each iteration, also called wave [8], HM builds
increasingly accurate emulators and the implausibility measure provides a
rule to discard the subsets of the input domain that are unlikely to pro-
duce an acceptable match between model output and observed data. Once
the non-implausible domain in the current wave is identified, HM selects a
handful of points at which to evaluate η(·). This data is then used to refine
the approximation provided by the emulator in the non-implausible domain.
The process continues until a predefined stopping condition is satisfied.

In contrast to conventional calibration methods, which seek a single point
xc, HM identifies a set of input combinations that are likely to produce
a match between model prediction and measured data, within some level of
uncertainty. Furthermore, whereas standard Bayesian calibration will always
find a posterior distribution for acceptable inputs, HM can discover that the
model is an inadequate representation of the physical process by returning
an empty non-implausible domain. Thus, some authors regard HM as a
pre-calibration strategy [8].

Generating an initial design to run the simulator is the first step for a
typical HM workflow. Initially, the whole input domain X is considered. To
explore the model output across the input domain with as few data points
as possible, a design with good space-filling qualities is generated. A Latin
hypercube sampling (LHS) plan [15] is often used. As suggested in [16], a
common choice is to have the number of sample points equal to n = 10d,
where d is the dimension of the input. In practice, the choice of n is often de-
termined by the computational budget. Once an LHS design is specified, the
simulator η(·) is evaluated at each input point xi, producing a corresponding
output η(xi) for i = 1 . . . n. The resulting input-output pairs constitute an
experimental design denoted by D = {xi, η(xi)}ni=1.

5



2.2. Emulation

An emulator is a statistical approximation to the output of an expensive
computer model. Gaussian process emulators [17] are widely used to infer
the output of expensive simulators based on a small number of training runs.
In this case, the experimental design D defined in the previous subsection
provides such runs. Emulators provide a full probabilistic characterisation
of the output at untried input configurations. Their widespread use is due
to the fact that they not only provide a fast surrogate to the output of
the simulator, but also produce an analytic expression for the uncertainty
arising due to the limited number of model evaluations (referred to in Section
2.1 as code uncertainty). The applications of Gaussian process emulators
span many fields of science and technology. Some recent examples include
modelling submarine sliding and tsunami formation, [18] and reducing the
cost of engineering reliability analysis [19].

It is important to note that the original HM approach presented in [20]
and [21] is based on the concepts of Bayes linear emulation [22], which uses
mathematical expectation, instead of probability, as a primitive. This further
aids the mitigation of computational cost. In this paper however, we assume
a Bayesian emulator is of the form:

η̂(x) = h(x)ᵀβ + Z(x) (1)

where h : Rd → Rq is a vector of known functions, β ∈ Rq is a vector
of coefficients and Z(x) is a zero mean Gaussian process with covariance
function σ2c(x,x′;ψ), also known as covariance kernel [23]. The regression
term h(x)ᵀβ models the global trend of the output, whilst the Gaussian
process models local variations. The covariance of the Gaussian process at
two distinct inputs, x and x′, is the product of a process variance parameter
σ2 and a positive semi-definite correlation function c(·, ·;ψ), parameterised
by ψ. In this work, the Matérn (5/2) correlation function [24] is employed.
This function was chosen because it is stationary and because it exhibits
a moderate degree of smoothness, which is suitable for many applications
[25]. The Matérn (5/2) correlation function has the following mathematical
expression:

c(x,x′;ψ) =

(
1 +

√
5δ(x,x′)

ψ
+

5δ2(x,x′)

3ψ2

)
exp

(
−
√

5δ(x,x′)

ψ

)
(2)
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where δ(x,x′) is the Euclidean distance between x and x′.
In order to estimate the values of each of the parameters β, σ2 and ψ,

prior probability distributions can be imposed, and their posterior distribu-
tions can be computed by conditioning on the training runs D. A weak prior
[26] can be used for β and σ2, namely

p(β, σ2) ∝ σ−2 (3)

Conditional on D, the two parameters are distributed according to a normal-
inverse-gamma distribution [27], with expected values given by

β̂ = (HᵀC−1H)−1HᵀC−1f (4)

σ̂2 =
fᵀ(C−1 −C−1H(HᵀC−1H−1)HᵀC−1)f

n− q − 2
(5)

where H = [h(x1), . . . , h(xn)]ᵀ, C ∈ Rn×n such that Cij = c(xi,xj;ψ), and
f = [η(x1), . . . , η(xn)]ᵀ. The posterior distribution of ψ can be computed
using a full Bayesian approach [28, 29]. Due to the potentially high computa-
tional cost of Bayesian computations, some authors instead prefer resorting
to maximum likelihood estimation [30].

It can be shown [17] that, conditional on the parameter estimates in
Eq. (4) and Eq. (5), the posterior predictive distribution for the simulator
output is

η(x) ∼ m(x) + σc(x)tn−q (6)

where tn−q is the Student’s-t distribution with n− q degrees of freedom. The
emulator’s posterior mean m(x) and posterior variance σ2

c (x) are given by

m(x) = h(x)ᵀβ̂ + t(x)ᵀC−1(f −Hβ̂) (7)

σ2
c (x) = σ̂2

[
c(x,x)− t(x)ᵀC−1t(x)

+ (h(x)ᵀ − t(x)ᵀC−1H)(HᵀC−1H)−1

×(h(x)ᵀ − t(x)ᵀC−1H)ᵀ
]

(8)

where t(x) = [c(x,x1;ψ), . . . , c(x,xn;ψ)]ᵀ.
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2.3. Implausibility threshold

Let I : Rd → R be a function that measures the implausibility that an
input configuration x will produce a simulator output matching the experi-
mental observation z. When the simulator is expensive, this implausibility
can be defined as the distance between z and the emulator mean, m(x).
This distance can be normalised in order to express it in terms of the num-
ber of standard deviations of the overall uncertainty [1]. This results in the
following expression:

I(x) =
|z −m(x)|√

σ2
me + σ2

md + σ2
c (x)

(9)

where σ2
me and σ2

md are respectively the variances of the measurement error
term εme and the model discrepancy term εmd, as defined in Section 2.1.
The term σ2

c (x), corresponding to the (current level) emulator’s posterior
predictive variance in Eq. (8), quantifies the code uncertainty. In this work,
the simulator is assumed deterministic: for the same input configuration, the
output is fixed. It is possible to add a term in the denominator of equation
Eq. (9) to account for ensemble variability in case the simulator is stochastic
[1].

Suppose that the implausibility measure I(·) is evaluated at a particular
sample point x∗. For I(·) to be meaningful, it should be true that the smaller
the value of I(x∗), the more likely it is that x∗ yields an output that matches
the experimental data within the specified level of uncertainty. A criterion
for setting an implausibility threshold is provided by Pukelsheim’s rule [31],
which states that if a random variable X has a unimodal distribution with
mean µ and standard deviation σ, such as the Student’s-t in Eq. (6), then

P (|X − µ| > 3σ) ≤ 0.05 (10)

Hence, a natural criterion for accepting x∗ as a non-implausible input
combination is I(x∗) ≤ 3. Sample points that fail this criterion are con-
sidered implausible. The new wave of HM begins by sampling from the
non-implausible domain identified using this rule.

2.4. Sampling design for new waves

The initial design D to train the emulator can be generated through
LHS. After the first wave, sampling from the non-implausible domain can
become challenging very quickly. This can be due to, for example, rapid
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reduction in its size. An additional challenge is that the non-implausible
domain may become disconnected or exhibit a complex topology, which can
further complicate the sampling procedure.

The most intuitive strategy to deal with this problem is to generate an
LHS plan on the whole input space X , then discard all implausible points,
determined by I(x). This simple acceptance-rejection strategy can quickly
become inefficient if the non-implausible domain reduces to a small frac-
tion of X . Multiple solutions have been proposed in the literature. An
implausibility-driven evolutionary Monte Carlo algorithm (IDEMC) was pro-
posed in [32]. This generates uniform designs for the target space using an
implausibility ladder, which might be challenging to determine. Another ap-
proach, discussed in [1] is to generate normally distributed samples centered
on each point from the non-implausible domain of the current wave. The
covariance matrix of the non-implausible samples is scaled to give a rela-
tively flat distribution. The challenge in this approach is to determine an
optimal scaling factor, which determines the rate at which the input space
is explored. As an alternative to the above methods, this paper proposes
to sample the non-implausible domain using subset simulation, a rare-event
sampling method used in engineering reliability analysis.

3. Subset simulation

Subset simulation (SuS) is an advanced Monte Carlo method that ef-
ficiently estimates probabilities of failure of engineering systems [33]. Let
g : Rd → R be a performance function used to model a physical system.
That is, g(·) encodes all the available information about the system’s be-
haviour and attributes, such as its geometry, material properties and loads.
When the system is large and complex, specifying deterministic inputs of the
performance function can be unrealistic. Thus, the inputs x can be modelled
as distributed according to a joint probability density function (PDF) π(x)2.
The output of g(·) then becomes a random variable Y = g(x), and failure
is formulated as the exceedance of this random variable over a prescribed
threshold b ∈ R. The main interest of reliability analysis is to determine the
probability of failure P (Y > b), given by

2Even though precise characterisation for the inputs can be specified, one may want
to investigate different scenarios by varying those inputs according to some probability
distributions
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PF = P (Y > b) =

∫
π(x)1(x ∈ F) dx, (11)

where F denotes the failure event defined as

F = {Y > b} = {x ∈ F} = {x ∈ Rd : g(x) > b} (12)

and F ⊆ Rd is the failure region of the input space. The indicator function
1(·) is equal to 1 if x ∈ F and is zero otherwise.

The idea behind SuS is to model F as contained in a nested sequence
of events F = Fm ⊂ Fm−1 ⊂ · · · ⊂ F1 ⊂ F0 = {x ∈ X} such that the
probability of failure can be computed as

PF = P

(
m⋂
i=1

Fi

)
= P (F1)× P (F2|F1)× · · · × P (Fm|Fm−1) (13)

This means that sampling from F is done by sampling progressively from
more frequent conditional events. Every intermediate failure event corre-
sponds to an iteration level in the SuS algorithm, whereby level 0 corresponds
to initial Monte Carlo sampling of the whole input space X . There are two
important parameters in the algorithm: the level probability, denoted by p0
and defined as p0 ≡ P (Fi|Fi−1), and the number of samples in each level, N .
Both are determined by the modeller, such that p0N and 1/p0 are integers.
The level probability p0 directly influences the properties of the estimator
for PF . The recommended range to minimise its coefficient of variation is
p0 ∈ [0.1, 0.3] [34]. The number of samples at each level, N , can be set
to achieve a given coefficient of variation in the estimation of PF . In our
experience, however, its prescribed value is mainly driven by the available
computational budget. It is worth noting that, in industrial settings, the
performance function g(·) is rarely analytical or inexpensive to compute. In
practice, it usually consists of one or more expensive computer model. Differ-
ent authors (see [19] and references therein) have proposed different strategies
to tackle this cost, some of which include using the emulators discussed in
Section 2.2.

The SuS algorithm proceeds as follows. At the unconditional level 0,
SuS starts by generating N independent samples x1, . . . ,xN ∼ π(x). The
performance function g(·) is evaluated and the corresponding output values

are sorted in descending order, resulting in the list {b(0)k : k = 1, . . . , N}. The
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value b
(0)
k gives the estimated output value corresponding to the exceedance

probability p
(0)
k = P (Y > b

(0)
k ) where

p
(0)
k =

k

N
, k = 1, . . . , N. (14)

The first intermediate failure level, b1 is defined as the midpoint between
b
(0)
p0N

and b
(0)
p0N+1. This way, the conditional failure relation

p0 = P (Y > b1) = P (F1|F0), (15)

is satisfied. Note that, by construction, the p0N top-ranked samples have
responses greater or equal to b1. Thus, they are guaranteed to belong to
the first intermediate failure level F1. The generation of new samples from
F1 is done by exploiting this property. The p0N top-ranked samples are
used as seeds to generate independent Markov chains from the target density
π(x|F1) ∝ π(x)1(x ∈ F1). This results in generating Nc = p0N Markov
chains, each with length

Ns =
N

Nc

=
1

p0
(16)

Since the seeds already belong to the intermediate failure domain F1, there is
no burn-in period, usually required in MCMC simulations to generate a single
Markov chain. The MCMC scheme employed in the original SuS algorithm
[12], was the modified Metropolis algorithm, which uses a component-wise
Metropolis-Hastings sampling to generate the Markov chains. Throughout
the years, different strategies have been proposed and developed. An account
of those strategies can be consulted in [35].

Subset simulation follows the same principle iteratively: the ith level (for
i ≥ 1) is defined as Fi = {Y > bi}, where bi is determined as the midpoint

between b
(i−1)
Nc

and b
(i−1)
Nc+1. Thus, at each intermediate failure level, the equa-

tion p0 = P (Fi|Fi−1) is satisfied. At level i, Nc independent Markov chains
are generated from the target density π(·|Fi), each with length Ns. The pro-
cess is repeated until the target threshold level b is reached. As before, let
m denote the final intermediate level. The threshold value satisfies bm ≥ b
and thus the number of conditional samples with responses greater than b,
exceeds Nc. The estimate of the failure probability is derived from Eq. (13),
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which can be written as

P̂F = pm−10

1

N

N∑
k=1

1(xk ∈ Fm), (17)

where 1
N

∑N
k=1 1(xk ∈ Fm) is the estimate of the conditional failure proba-

bility at level m.
Subset simulation is capable of efficiently sampling from disconnected

failure regions that are, potentially, orders of magnitude smaller than the
original input space. In order to illustrate this, consider the performance
function g : [0, 1]2 → R given by

g(x) =
9∑

i=1

wiφ(x|µi,Ci) (18)

where each wi ∈ (0, 1) is a weight, µi the mean and Ci the covariance ma-
trix of the ith Gaussian PDF, φ(x|µi,Ci). The numerical values of these
parameters are given in Table A.1 and the level contours of g(x) are shown
in Figure 1. Let the failure thershold be b = 2.75. The failure domain would
then be F = {x ∈ [0, 1]2 : g(x) > 2.75}, which results in the disjoint failure
set shown in Figure 1(c). The successive subplots in Figure 1 depict how SuS
steers the sampling towards F .

(a) Level 0 (b) Level 1 (c) Level 2

Figure 1: Sampling from a small probability event via subset simulation. (a) Samples
from the unconditional failure domain F0 (i.e. the entire input space); (b) samples in the
first intermediate failure domain F1 ⊆ F0; (c) samples in the failure domain F ⊆ F1 ⊆ F0

generated by MCMC.

The example above suggests that a natural analogy can be established
between the non-implausible domain introduced in Section 2 and a failure
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set. Firstly, both are defined by specifying a threshold (for non-implausibility
and for failure, respectively). Secondly, both may be significantly smaller
than the original input space. Thirdly, they may become disconnected. This
motivates treating the non-implausible domain within HM as if it were a
failure set. The corresponding sampling can therefore be done using SuS
within HM.

4. Proposed Approach

As discussed in the previous section, the main aim of SuS is to estimate
the probability of failure given by Eq. (11). In order to do so, the algorithm
produces samples within each intermediate failure domain and eventually
from the failure domain F . The proposed approach for HM takes advantage
of this property, since the prime objective is to eventually sample from the
non-implausible domain. It should be noted that SuS has previously been
used in the context of calibration, for the estimation of parameter posterior
distributions [36, 37]. However, as discussed in Section 2.1, whilst Bayesian
calibration always delivers a posterior distribution, HM might determine that
the non-implausible domain is empty.

In order to use SuS within HM, sampling is done by treating the non-
implausible domain as if it were the failure domain defined by

F = {x : I(x) < 3} (19)

where the implausibility measure I(x), defined in Eq. (9), takes the role of
the performance function.

The proposed approach begins with sampling the input domain of the
computer model and evaluating it to get an initial data set, D1. This data
set is split and then used to train and validate the initial GPE3 [27]. At
this point, the parameters of SuS are set as per Section 3. It is important
to note that the direction of the inequality in F = {x : I(x) < 3} is the
opposite to that of the inequality in the definition of the failure domain
given in Eq. (12). This feature is accounted for by sorting the negative of the
values of the implausibility function evaluated at the candidate samples. The
algorithm progresses by sequentially discarding regions of the input domain,

3If the code is very computationally expensive, the emulator can be validated using
cross-validation instead of a separate validation set (see Section 2.1 in [30]).
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according to their implausibility I(x), as explained in Section 2.3. When
SuS converges, it returns the set XSuS, which belongs to the non-implausible
domain. A subset of these samples, which maximises the predictive variance
of the GPE at the current level is selected and denoted as Xadd. Other
approaches to selecting Xadd exist, such as the maximin strategy outlined in
[1]. The GPE for the `th wave of HM is trained using an augmented data set,
D` = D`−1∪{Xadd, η(Xadd)}. It should be pointed out that, even if the model
itself is a highly non-linear function, it becomes smoother in the plausible
region as the latter shrinks after each level of HM, which in turn leads to an
increase in the accuracy of the emulator [1]. At the same time, the training
points become denser. The algorithm terminates once the code uncertainty,
quantified through the emulator variance, becomes smaller than the other
sources of error. The proposed approach is summarised in Algorithm 1.

The next two sections present applications of the proposed SuS-based
HM. In both examples, the modified Metropolis algorithm is used to sample
from the intermediate failure domains. This is not a constraint, since any
of the MCMC sampling schemes reviewed in [35] could in principle be used.
Previous work on the comparison of some of these schemes within SuS-based
HM can be found in [38].

5. Calibration: wing weight reduction

This section demonstrates the proposed approach by using HM to cal-
ibrate a model of the weight of a light aircraft wing. Weight is a critical
factor in aircraft design and ensuring the model at hand can reliably match
experimental weights is of vital importance.
The analytical model considered here is derived from historical data and is
given by

W = 0.036S0.758
w W 0.0035

fw

(
Aw

cos2 Λ

)0.6

q0.006λ0.04
(

100tc
cos Λ

)−0.3
(NzWdg)

0.49+SwWp

(20)
Eq. (20) was introduced in its original form in [39]. The last term on the

right hand side representing the weight of the paint on the wing was added
in [30]. A brief description of the inputs of the model, together with their
ranges is provided in Table 1.

A simulated observation for the wing weight was set at z = 130lb. A mea-
surement error of ±5lb was imposed, corresponding to a standard deviation
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Algorithm 1 History matching with subset simulation

1: Provide an experimental observation z and relevant standard deviations:
σme for observational uncertainty and σmd for model discrepancy.

2: Set parameter values for SuS: p0, N .
3: Define F = {x : I`(x) < 3} where I`(x) is the implausibility measure for

the emulator at `th wave of HM as defined in Eq. (9).
4: Generate a space-filling plan, X ∈ Rn×d and form D1 = {xi, η(xi)}ni=1

5: Train a GPE η̂1(x) ∼ m1(x) + σc1(x)tn−q on D1 and validate it.
6: `← 1.
7: while σme < σc` and σmd < σc` do
8: Sample from the non-implausible domain using SuS:
9: Subset simulation

10: Obtain an MC sample XSuS ∈ RN×d ∼ π(x).
11: NF ← 0.
12: j ← 0.
13: while NF < p0N do
14: j = j + 1.
15: Evaluate η̂`(XSuS).
16: Compute ISuS ≡ −I`(XSuS) and sort in descending order.
17: Renumber XSuS to match the order of ISuS.

18: Select
{
x
(i)
SuS

}p0N

i=1
as seeds for MCMC.

19: Compute intermediate threshold bj = 1
2

[
I
(p0N)
SuS + I

(p0N+1)
SuS

]
20: Define intermediate failure domain Fj = {ISuS > bj}
21: Obtain a sample, XSuS, from π(x|Fj) using an MCMC scheme.

22: NF =
∑N

i=1 1(ISuS > −3)
23: end while
24: ` = `+ 1
25: Let Xadd be a subset of points from XSuS.
26: Construct D` ← D`−1 ∪ {Xadd, η(Xadd)}
27: Train a GPE η̂`(x) ∼ m`(x) + σc`(x)tn−q on D`.
28: end while



Table 1: Inputs for the light aircraft wing weight model.

Notation Name Range Unit

Sw Wing area [150, 200] ft2

Wfw Weight of fuel in the wing [220, 300] lb
Aw Aspect ratio [6, 10] -
Λ Quarter-chord sweep [−10, 10] deg
q Dynamic pressure at cruise [16, 45] lb/ft2

λ Taper ratio [0.5, 1] -
tc Airfoil thickness to chord ratio [0.08, 0.18] -
Nz Ultimate load factor [2.5, 6] -
Wdg Design gross weight [1700, 2500] lb
Wp Paint weight per unit area [0.025, 0.08] lb/ft2

of σme = 1.7lb. Since, in this case, z is a synthetic surrogate for a physical
observation, there is no direct meaning to the term model discrepancy and
it is identically 0. Despite this, if the observation were coming from a real
physical measurement the discrepancy term would have had some nonzero
value. For this example, the model discrepancy was set to σmd = 1, a value
sufficient to make sure σmd is included in the procedure, yet small enough so
as to not overpower the uncertainty coming from the simulated measurement.
The treatment of model discrepancy is an important problem in uncertainty
quantification and an area of research in itself, see for example [13]. Finally,
the simulator described by Eq. (20) is deterministic and has no ensemble
error.

Following the ideas outlined in Section 2.2 a Gaussian process emulator
was trained with 100 points from an LHS design. The global trend term in
Eq. (1) was chosen as h(x) = 1 in this case, so that the Gaussian process
component of the emulator was responsible for taking into account any devia-
tions from the mean. This choice is subjective and was motivated by the lack
of knowledge of the general shape of the function. Specifying more complex
forms for h(x) is possible and can be informed by exploratory analysis. The
samples in the training set were normalized in [0, 1] due to the large variation
of the input scales. This preprocessing step facilitates the search for optimal
correlation lengths, ψ, and makes the results more easily interpretable. A
genetic algorithm was used to search the likelihood of the emulator for ψ,
while β and σ2 were computed from the expected values of their respective
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distributions, given in Eq. (4) and Eq. (5).
At each wave, SuS was used to sample the non-implausible domain with

6000 points per subset level, and each level was given a target probability,
p0 = 0.1. Out of the final sample, 10 points from the non-implausible domain
were added to the design at locations where the predictive variance from
the emulator, given by Eq. (8), was the largest. The number of samples is
such that there is at least one point representing each input. Additionally,
sites with maximum predictive variance were chosen to rapidly reduce the
uncertainty about the non-implausible domain. The GPE was retrained after
each wave.

After 9 HM waves and 80 additional evaluations of the model in Eq. (20),
the standard deviation of the code uncertainty, σc had decreased below that
of the measurement error, σme and the analysis was terminated. Each wave
required between 5 and 6 SuS levels, implying that the probability of the
non-implausible domain is on the order of 10−6 to 10−5. Figure 2 depicts the
optical depth projections of the input space, introduced by [8]. These projec-
tions show the logarithm, base 10, of the empirical probability of finding a
non-implausible sample in a given region of the input space, when projected
onto a two-dimensional subspace. In this manner, optical depth projections
provide a way to visualize the non-implasuible domain conditioned on the
pair of inputs in each subfigure. To generate these plots, the input subspace
of each pair of inputs was discretised in a 20× 20 grid of point values. The
remaining 8 dimensions, which vary between subfigures, were represented
by a 50, 000 point LHS sample. In this manner, to produce a single opti-
cal depth plot, the emulator for the appropriate wave of HM was evaluated
20× 20× 50, 000 = 20, 000, 000 times.

The panels in the lower and upper triangles of Figure 2 show the projec-
tion plots from the first and last wave of HM, respectively. Several obser-
vations can be made from these plots. Firstly, many of the two-dimensional
projections of the input space exhibit subtle, but quantifiable reduction in
area from the first to the last wave of the analysis. This behaviour can be
attributed to the function being relatively smooth and the fact that the GPE
mean was capable of representing it with reasonable accuracy early on in the
procedure. This is to say that even though the mean of the emulator was
able to match the non-implausible domain reasonably well, its distance from
the training sample caused the predictive variance of the GPE to be larger
than the other sources of uncertainty, preventing the analysis from terminat-
ing. For some projections, such as Λ − q and λ − q the whole space seems
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to have been discarded as implausible. This outcome is due to the sample-
based nature of the optical depth plots and the difficulty of producing data in
the non-implausible domain, by uniformly sampling the hidden dimensions.
Secondly, the scale of the log-probabilities is indicative of the overall size
of the non-implausible domain, with between 1 and 230 samples per 50, 000
producing acceptable matches. Simple-looking problems such as these, show
the inadequacy of rejection-based uniform sampling and emphasise the im-
portance of effective methods to identify the non-implausible domain in each
wave of HM. Finally, the plots reveal how active certain inputs are, which
could lead to better understanding of the underlying model. For example,
the quarter-chord sweep angle Λ is not identified as important for satisfying
the measurement z, as seen from the fact that non-implausible samples are
uniformly distributed in its range. Similar conclusions can be made for Wfw,
q and Wp. On the other hand, the wing area, Sw, the aspect ratio, Aw and
the load factor, Nz in particular are all influential in producing an accept-
able match to a relatively light wing, confirming the engineering intuition
that smaller, less-loaded wings can be made lighter.

The effect of HM on the output of the model is shown in Figure 3. The
samples identified to belong to the final non-implausible domain results in
the output values shown in Figure 3(a). In this figure, there is a tendency
for the outputs to cluster to the upper boundary of the prescribed region.
This behaviour serves as an evidence to the restrictive target weight used
in the analysis. For comparison, one of the most recognizable general avi-
ation aircraft, Cessna 172, has a wing weight of approximately 236 lb [40].
Figure 3(b) depicts a kernel estimation of the final distribution of the wing
weights, which is considerably narrower than the one used to train the initial
GPE.

The correlation between samples from SuS can be calculated using the
procedure outlined in Section 6 of [12] to determine the quality of the in-
formation they provide. In the above example, the coefficient of variation,
accounting for sample correlation varies in δ = [0.039, 0.068].

To illustrate how SuS is capable of sampling more efficiently from the
non-implausible domain, HM for the wing weight model was repeated using
MC sampling instead of SuS. All other aspects of the analysis were kept the
same, except for the number of MC samples. Since MC extracts all of its
information in one step, as opposed to SuS, which uses levels, the number
of samples required by MC to explore X is much larger. At each wave,
nMC = 324, 000 samples were generated in X , out of which m = 10 samples
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Figure 2: Pairwise optical depth plots for the first (lower triangle) and final (upper triangle)
waves of history matching for wing weight. The plots show the evolution of the size of the
non-implausible domain and reflect the decreasing log-probability of finding acceptable
input combinations (color bar) in different regions of the input space. (color online).
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Figure 3: Wing weight realizations from the final wave of history matching; (a) emulator
predictions (blue dots) compared to the specified target range; (b) kernel density estima-
tion of the initial code output distribution (orange fill) and that from samples in the final
non-implausible domain (purple fill). Dashed lines in both figures show the target range
(color online).

were to be added to the training set for the next wave emulator. In this
comparison, nMC is calculated as the total number of samples used in HM
with SuS (9 waves, with 6 SuS levels each and 6000 samples per level). Due to
the small volume of the non-implausible domain at each wave, MC was unable
to populate it densly enough and as a result m < 10 samples were added in
each wave. This outcome reveals one of the important advantages of using
SuS for sampling the non-implausible domain: unless the set of acceptable
matches is empty, SuS is able to populate it according to requirement. The
MC-based HM terminated after ` = 4 waves, due to the inability of MC to
find samples in the non-implausible domain. A total of 9 samples were added
across the 4 waves, which gives a GPE equivalent to the one in Wave 2 in
SuS-based HM. It must be pointed out that the efficiency of SuS compared
to MC comes at the cost of producing samples that cannot be guaranteed
to be uniformly distributed over the non-implausible domain. However, the
coefficient of variation accounting for sample correlation δ can be computed,
as it was done above. This allows the analyst to monitor efficiency. An
interesting question arises when this coefficient of variation is unacceptably
large, due to high sample correlation. A potential solution could involve
designing a thinning strategy for the modified Metropolis algorithm, but this
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is the subject of future work.
Figure 4 shows the minimum implausibility plots for three pairs of inputs

from MC-based HM in the top row, compared to the ones from SuS-based
HM in the bottom row. These plots depict the minimum implausibility
in the high-dimensional domain, if a given pair of inputs were fixed to a
particular value [8]. These plots reveal several things. Firstly, for all pairs
of inputs, the non-implausible domain differs in topology. A particularly
noticeable difference exists in the space spanned by thickness-to-chord ratio
tc and wing fuel weight Wfw. History matching with MC sampling identifies
the non-implausible domain to be much more diffuse than the one in the
SuS-based analysis. That is, it is larger and at the same time has higher
implausibility overall. Secondly, the GPE trained on data with a dense set
of non-implausible samples from SuS achieves better accuracy compared to
the true function. In the case of the wing weight simulator, the code can be
run affordably without the need of an emulator, to explore the implausibility
landscape without code uncertainty. The implausibility threshold, I(x) = 3,
is shown on each of the contour plots as a black dashed line. In all three
cases, the agreement is better for the lower line of plots. Finally, it must
be noted that the efficiency of the HM process increases when using SuS
as a sampler, since the quality of the GPE in the non-implausible domain
increases more rapidly when using informative samples. This decreases both
the number of potentially costly code evaluations and the number of waves,
and thereby emulators, to be generated.

Note that, even if the model in this case study is not computationally
expensive, it demonstrates the challenges in calibrating models with even
moderately-sized input domains.

6. Robust design: aircraft wing-engine matching

The second application of SuS within HM presented here is robust de-
sign. In engineering, the term robust design refers to the process of seeking
not only an optimal mean value of a system performance metric, but also
to ensure that this optimum is insensitive to variations which could lead to
undesired system behaviour [41, 42]. The essence of the robust design prob-
lem is prescribing a target value for quantities of interest that determine the
performance of a system. The designer’s task is to then find one or more
design input configurations that deliver this target within certain tolerance.
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Figure 4: Minimum implausibility plots for three pairs of inputs to the wing weight model.
Top row: wave 4 HM results with Monte Carlo sampling. Bottom row: wave 2 HM results
with SuS sampling. Dotted line: decision boundary of the non-implausible domain without
code uncertainty (color online).



Suppose that a target value for a quantity of interest is treated as if it
were an experimental measurement. Also, suppose that the corresponding
tolerance can be treated as the underlying uncertainties. This treatment
provides an analogy between matching a model output with experimental
data (given the sources of uncertainty) and matching a design target within
a prescribed tolerance. Therefore, the proposed SuS sampling for HM can
also be used to solve the robust design problem by identifying the set of
input values that yield an output consistent with a design target within
certain tolerance. This results in a reduced input space that can be further
explored by an analyst in the search for an optimal design. Since HM can
deliver an empty non-implausible domain, the designer might conclude that
there is no input configuration that complies with the system requirements,
given the current model. This information can be very valuable in terms of
improving the model or rethinking the feasibility of the design targets.

This section develops the idea with an application to aircraft design.
Subset simulation has previously been used in different optimisation-related
problems [43, 44]. However, to the authors’ knowledge, it has not been used
in robust design. The application proposed in this section demonstrates how
SuS-based HM can be used in contexts beyond model calibration.

6.1. Problem description

Modern aircraft are expected to operate within very stringent perfor-
mance and regulatory limits to reduce their environmental impact, whilst
keeping their profitability as a mode of transportation. Increasingly demand-
ing regulations are coming into effect worldwide, which impose bounds on the
amount of nitrous oxide (NOX), among other greenhouse gases produced by
aircraft [45]. Such requirements necessitate a highly structured approach to
early stage aircraft design, acknowledging the complex nature of interactions
and dependencies between different systems. For the purposes of this study,
and following the work in [46], the conceptual aircraft is defined as a com-
bination of different wings and engines, in an approach known as set-based
design. Each wing and engine are in turn defined by the parameters given in
Table 2.

Whilst the modelling process is multi-disciplinary and multi-organisational,
here it is presented in an abstract form as a chain of coupled analyses im-
plemented in a tool called AirCADia [47]. AirCADia is a framework for
interactive composition and exploration of conceptual aircraft design config-
urations. In this case study, six parameters were varied within AirCADia
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to achieve the target emissions value. In order to collect all required data,
the model was run on a Lenovo ThinkCentre M900 Tower, with an Intel®

CoreTM i7-6700, 3.4 GHz CPU. On this machine, each evaluation took 0.5
seconds.

Table 2: Inputs and output for the climb-cruise case study, with respective parent system
and target ranges.

Notation Name System Range Unit

SW Wing area Airframe [1300, 1400] ft2

AW Aspect ratio Airframe [9, 11] -
SLST Static thrust Engine [26, 32] lbf ×103

FPR Fan pressure ratio Engine [1.5, 1.8] -
OPR Overall pressure ratio Engine [30, 40] -
BPR Bypass ratio Engine [6, 8] -

NOX Nitrous oxide emissions Output 240±10 lb

6.2. History matching NOX

The level of NOX emissions was selected as the target output variable
that would drive the design. Initially, a GPE was trained on n = 60 Latin
hypercube points, using a global trend term, h(x) = [1, x]ᵀ. The emula-
tor was validated with another m = 40 LHS samples to verify its accuracy
in representing AirCADia’s output. The plot of simulator outputs against
GPE predictions is displayed in Figure 5(a). It shows the degree to which
predictions from the emulator correspond with simulator observations. If the
GPE were a perfect predictor, the scatter would have lain along the 45 de-
gree dashed line. The error bars indicate the 95% credible interval associated
with each point. Most of the predicted points contain the 45 degree line in
their credible intervals. As seen in Eq. (6), each prediction from the emulator
follows a Student’s-t distribution. Therefore, the residuals between simulator
output and prediction should occupy the interval [−2, 2] with around 95%
probability. These normalised residuals, often termed individual prediction
errors [27], are plotted against predictions in Figure 5(b). The residuals are
uniformly spread around 0 with no discernible patterns, or significant num-
ber of outliers. Jointly, these visual diagnostics suggest that the emulator is
a reasonably accurate representation of the simulator. After validation, the
test points were added to the design of experiments and the trend coefficients
in Eq. (4), and process variance in Eq. (5) were re-estimated.
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Figure 5: Predictive diagnostics for the NOX GPE. (a) correlation between prediction and
observations with 95% credible intervals depicted as error bars; (b) individual prediction
errors for the validation set.

After consultation with the developers of AirCADia, at the Centre for
Aeronautics at Cranfield University, the target range for NOX was chosen
as 240± 10 lb over a 3000 nautical mile trip, including landing and take-off
[47]. The reader is reminded that the end goal of the robust design task
is to attain a pre-specified level, with tolerance, of a quantity of interest.
This is in contrast to the aim of optimisation, where, typically, the analyst
seeks to attain an optimum level of the quantity of interest, possibly subject
to constraints. The experts’ reasoning behind choosing the specific NOX

target is not provided herein, since it is not in line with the main aim of
the paper. As outlined before, in the robust design setting the target range
can be treated as measurement plus corresponding uncertainties. Therefore,
all uncertainties for HM are accumulated into the measurement error term.
In order to ensure that the target range is respected, HM was carried out
with an error term which ensures that 95% of the responses will lie in the
correct region. Thus, the final values for the analysis were set as z = 240
and σme = 3.33.

In each wave of HM, SuS was run with N = 6, 000 samples per level
and level probability, p0 = 0.1. In the first wave, two levels of SuS were
required to populate the non-implausible domain, implying that its proba-
bility is on the order of 10−2. The two levels sampled the emulator a total
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of 12, 000 times, obtaining over 3, 500 samples in the non-implausible do-
main. For comparison, a direct Monte Carlo simulation would have required
approximately 350, 000 samples on average to achieve a similar result. The
code uncertainty associated with some of the samples from SuS exceeded
the measurement error and therefore it was necessary to continue with the
analysis.

The analysis was terminated after three waves, when the emulator vari-
ance σ2

c (x) was reduced sufficiently in comparison with the imposed uncer-
tainty4. From the denominator in Eq. (9), it can be seen that in this example,
σ2
c (x) is the only source of uncertainty that is free to change. Once it be-

comes small in comparison with the other components, the implausibility
measure does not change significantly. Further substantial reduction in the
non-implausible domain becomes unlikely.

Figure 6 shows diagnostics from the final wave of HM. The sub-figures
in the upper triangle contain the optical depth plots and those in the lower
triangle show the minimum implausibility plots. Together, these two repre-
sentations visualize the extent of the non-implausible domain. In Figure 6,
it can be seen that the inputs relating to engine pressure (OPR, FPR) have
significant contribution to the value of NOX, since their domain was signif-
icantly reduced to achieve the specified target range. In particular, it was
not likely to find matching outputs for high values of OPR and low values
of FPR, regardless of the values of the other inputs. An interesting interac-
tion is the one between sea-level static thrust (SLST) and wing aspect ratio
(AW ), which indicates that low powered engines must be matched to efficient,
slender wings to attain the required NOX level.

The values of NOX corresponding to the non-implausible samples are
shown in Figure 7. Note that the values of the emissions in Figure 7(a)
exceed the specified range. This is due to the code uncertainty introduced
using the emulator instead of the original code. This uncertainty can be
reduced further, but an increase in the computational cost of the analysis
will be incurred, owing to the additional code evaluations needed to refine
the surrogate model. Figure 7(b), provides a visual comparison between the
pre- and post-history matching distributions of the output.

4Despite the seemingly quick running times of the simulator, the analyses would have
taken approximately 5 hours for SuS and just over 2.5 days for DMC, if the simulator was
sampled directly.
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Figure 6: Pairwise minimum implausibility (lower triangle, left color bar) and optical depth
(upper triangle, right color bar) plots from the last wave of NOX history matching. The
color bar on the right depicts the empirical log-probability of finding a non-implausible
sample in a given region of the input domain, whereas the one on the left indicates the
expected implausibility value of that sample. Inputs belonging to the “Engine” subsystem
are clearly affected more than those belonging to the “Airframe” subsystem in Table 2
(color online).
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Figure 7: History matching identifies input configurations, which result in output values
lying in the specified target range (dashed lines); (a) emulator predictions (blue dots) and
the observation error distribution; (b) kernel density estimation of code outputs before
(orange fill) and after (purple fill) history matching (color online).

7. Conclusions

A solution to an important problem in model calibration with history
matching was proposed. The solution involves the use of subset simulation
to generate samples from the non-implausible domain of an expensive com-
puter model. It was shown that, within history matching, the volume of
the non-implausible domain may shrink by several orders of magnitude as
compared to the original input space. Thus, the non-implausible domain was
treated as a failure set, analogous to that in engineering reliability analysis.
This allowed the use of subset simulation as an efficient sampler, which pro-
vided good coverage of the non-implausible domain with a moderate number
of samples. The method selected highly informative input configurations,
which were used to train a Bayesian emulator. This led to a reduction in
computational time and fast convergence of the analysis.

The advantages of the proposed approach were demonstrated in two ex-
amples. The first one dealt with the calibration of an analytical wing model
to match a restrictively low target weight. The second example showed how
the proposed approach can be used as a pre-processor for robust design in
an industrial context. Future research based on this work includes exploring
the link between history matching and robust design with several, possibly
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conflicting, design objectives. Another problem that requires attention is
that of local variations in the behaviour of the simulator. This might require
fitting different emulators if the non-implausible domain is disconnected.
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Appendix A. SuS illustration function

The function in Eq. (18), whose contour levels are shown in Figure 1 is a
mixture of nine bivariate Gaussian random variables with mean, covariance
and weight given in Table A.1.
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Table A.1: Parameter values for g(x) in Eq. (18).

i wi µᵀ
i Ci

1 0.327
[
0.04 0.04

] [
0.030 0.020
0.020 0.025

]
2 0.096

[
0.98 0.70

] [
0.020 0
0 0.003

]
3 0.143

[
0.75 0.85

] [
0.010 −0.015
−0.015 0.030

]
4 0.038

[
0.71 0.32

] [
0.002 0
0 0.002

]
5 0.161

[
0.33 0.83

] [
0.020 −0.010
−0.010 0.010

]
6 0.023

[
0.43 0.73

] [
0.005 0
0 0.005

]
7 0.026

[
0.23 0.93

] [
0.005 0
0 0.005

]
8 0.104

[
1.00 0.00

] [
0.008 0
0 0.008

]
9 0.081

[
0.12 0.57

] [
0.005 0
0 0.005

]
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