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Abstract15

This contribution proposes an approach for the assessment of the failure probability associated16

with a particular class of series systems. The type of systems considered involves components17

whose response is linear with respect to a number of Gaussian random variables. Component18

failure occurs whenever this response exceeds prescribed deterministic thresholds. We propose19

multidomain Line Sampling as an extension of the classical Line Sampling to work with a large20

number of components at once. By taking advantage of the linearity of the performance functions21

involved, multidomain Line Sampling explores the interactions that occur between failure domains22

associated with individual components in order to produce an estimate of the failure probability.23

The performance and effectiveness of multidomain Line Sampling is illustrated by means of two24

test problems and an application example, indicating that this technique is amenable for treating25

problems comprising both a large number of random variables and a large number of components.26
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Highlights:29

• Failure probability of series system is calculated by multidomain Line Sampling.30

• Knowledge on individual component failure domains is exploited.31

• Several important directions are considered simultaneously.32

• Lines explore interaction between failure events associated with components.33

1. Introduction34

An engineering system can be seldom described precisely, as different sources of uncertainty35

may affect its performance. Whenever the nature of uncertainty is of the aleatory type, it is36

possible to resort to probability theory for analyzing such system [1]. In this way, some input37

parameters of the system are modeled as random variables (or random processes or random fields,38

in case time or spatial correlations are present). In turn, such description of the uncertain input39

parameters causes that the performance of the system becomes random as well. Due to design,40

operation or maintenance purposes, it is of interest assessing the level of safety associated with41

the performance of a system, for example, in terms of a failure probability, that measures the42

chances of an undesirable behavior. At this point, it should be noted that an engineering system43

usually comprises a number of components, each of which may possess a different failure proba-44

bility and whose performance may be correlated with that of other components. Depending on45

the configuration of those components within the system, it may be of interest calculating the46

failure probability associated with different types of system events: simultaneous failure of all47

components of the system (parallel event), failure of one or more components (series event), etc.48

Often, quantifying such failure probability is far from trivial and hence, a number of specialized49

approaches have been developed for calculating it, for example: bounds based on failure probabili-50

ties of individual components and interactions between two [2] or three components [3]; application51

of surrogate models [4, 5, 6, 7, 8]; linear programming [9, 10, 11] or binary programming [12] tech-52

niques; approximation concepts by compounding individual component failure events [13, 14, 15],53

sampling approaches [16, 17, 18, 19, 20], etc. Although the previous list of contributions is far54

from being extensive, it demonstrates that calculation of failure probabilities involving different55

system events is a field of active research.56

This contribution focuses on the calculation of the failure probability associated with a series event57

2



of a system. In other words, the objective is calculating the probability that the performance of58

one or more components of a system exceeds a prescribed threshold level. The class of problems59

considered herein pertain components whose response is characterized as a linear combination of60

Gaussian random variables. Failure of the component occurs whenever the response falls below61

a prescribed lower threshold or exceeds a prescribed upper threshold. This class of problems62

has attracted considerable attention in the literature due to its applications in, e.g. reliability63

of time-variant systems [21, 22, 23], stochastic linear dynamics [24, 25], seismic fragility analysis64

[10], geotechnical applications [26, 27], network analysis [28], etc. The focus is on problems that65

involve a large number of random variables and a large number of components, possibly in the66

order of thousands.67

It should be noted that the type of problems considered in this contribution possesses a distinctive68

geometry in the standard Gaussian space, where the boundary of the failure domain involves a69

number of hyperplanes [24]. Such distinctive geometry has allowed to design simulation schemes70

that allow calculating the sought failure probability with high accuracy and efficiency using either71

concepts of Importance Sampling [29], Domain Decomposition with averages [30] and Directional72

Importance Sampling [31, 32]. This work builds on that knowledge of the failure domain and73

proposes multidomain Line Sampling (mLS), which is a novel extension of Line Sampling [33, 34].74

The salient feature of mLS is that it is capable of dealing with failure domains associated with75

multiple components. This is achieved by introducing multiple search directions instead of a sin-76

gle search direction as usually considered in classical Line Sampling. In addition, lines simulated77

during the calculation of probability are conditioned to lie in the failure domain, which allows78

exploring the interaction between failure events associated with individual components along that79

line.80

The rest of this work is organized as follows. Section 2 formulates the failure probability problem81

associated with a series event of a system. Section 3 presents the description and formulation82

of multidomain Line Sampling. Section 4 illustrates the application of multidomain Line Sam-83

pling to two test problems and an application example, the latter involving a large number of84

random variables and components. The paper closes with a conclusions and outlook for future85

developments in Section 5.86

3



2. Formulation of the Problem87

2.1. General Aspects88

Consider a series system involving a total of nc components. The behavior of each of these89

components is described in terms of a response ri(x), i = 1, . . . , nc, that depends on a parameter90

vector x of dimension n. The component exhibits an acceptable behavior whenever its response91

lies within prescribed thresholds, that is bLi < ri(x) < bUi . In other words, failure of the compo-92

nent occurs whenever the response either falls below bLi or exceeds bUi . Note that no particular93

restrictions must be imposed regarding the thresholds other than bLi < bUi , i = 1, . . . , nc.94

It is assumed that the parameter vector x is uncertain and is characterized by means of a random95

variable vectorX that follows a Gaussian multivariate distribution with mean µ and (positive def-96

inite) covariance matrix C. The parameter vector x can be represented in the standard Gaussian97

space as:98

x = µ+Bz (1)

where z is a realization of Z, which follows an n-dimensional standard Gaussian distribution; and99

whereB is a matrix that can be calculated, for example, using Cholesky decomposition or spectral100

representation. In case the latter is applied, it is noted that B = ΦΛ1/2, where the columns of101

matrix Φ contain the eigenvectors of C while the diagonal of matrix Λ contains the corresponding102

eigenvalues of C. It is further assumed that the response associated with each component depends103

linearly on x, that is ri(x) = aTi x, where ai is an n-dimensional vector with real entries and (·)T104

denotes transpose.105

Taking into account the previous assumptions, it is possible to formulate two performance functions106

associated with the i-th component: one for monitoring whenever the response falls below the107

threshold bLi and the other one for monitoring whenever the response exceeds the threshold bUi .108

These functions are equal to:109

g2i−1(z) = βLi +αTi z, i = 1, . . . , nc (2)

g2i(z) = βUi −αTi z, i = 1, . . . , nc (3)

where βLi =
(
aTi µ− bLi

)
/||aTi B||, βUi =

(
bUi − aTi µ

)
/||aTi B||, αi = aTi B/||aTi B|| and || · ||110

denotes Euclidean norm. Note that the formulation of the performance function in eq. (2) is111
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actually equal to the subtraction between the response ri (which has been expressed in terms of112

vector z applying eq. (1)) and the threshold bLi , divided by the Euclidean norm of vector aTi B.113

This ensures that g2i−1(z) assumes a value equal or smaller than zero whenever the response equals114

or is below the threshold bLi . In a similar way, eq. (3) is constructed as the subtraction between115

the threshold level bUi and the response ri, divided by the Euclidean norm of vector aTi B. Thus,116

g2i(z) assumes a value equal or smaller than zero whenever the response equals or exceeds the117

threshold bUi . Note that in the previous definitions of the performance functions, normalization118

by the Euclidean norm of vector aTi B is enforced as this ensures that ||αi|| = 1, i = 1, . . . , nc.119

2.2. Failure Probability Associated with Individual Component120

Different realizations z of the random vector Z may cause failure of the i-th component. The121

set of all of these realizations is denoted as the failure domain Fi. In turn, this failure domain122

is the union of a negative (F−i ) and a positive failure domain (F+
i ), that is Fi = F−i ∪ F+

i . The123

negative failure domain F−i is a set that groups all realizations z such that the response of the124

i-th component is equal to or below the threshold bLi , that is F−i = {z ∈ Rn : g2i−1(z) ≤ 0} , i =125

1, . . . , nc. In a similar way, the positive elementary failure domain F+
i groups all realizations z126

such that the response of the i-th component is equal to or exceeds the threshold bUi , that is127

F+
i = {z ∈ Rn : g2i(z) ≤ 0} , i = 1, . . . , nc. In view of the linearity of each of the performance128

functions gi with respect to z as noted from eqs. (2) and (3), negative and positive failure domains129

are bounded by hyperplanes. Furthermore, the negative and positive failure domains are fully130

described by their corresponding design points. Recall that the design point z∗ is the realization of131

Z with smallest Euclidean norm with respect to the origin that causes failure. It is straightforward132

to demonstrate that the design points associated with each performance function are equal to133

z∗2i−1 = −βLi αi and z∗2i = βUi αi, i = 1, . . . , nc, respectively [24, 29]. Figure 1 provides a schematic134

representation of the negative and positive failure domains as well as their corresponding design135

points for the specific case where n = 2 and nc = 1.136

The probability of failure of the i-th component is denoted as pF,i and is defined as:137

pF,i =

∫
z∈Rn

IFi(z)fZ(z)dz (4)

where fZ(z) is the standard Gaussian probability density function in n dimensions; and where138

IFi(z) is the indicator function associated with the i-the failure event, which is equal to IFi(z) = 1139
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z1

z2

α1

g2(z) = 0

βU
1

F+
1

βL
1

F−
1

z∗2

z∗1

g1(z) = 0

Figure 1: Schematic representation of negative and positive failure domains (F−i and F+
i , respectively) and their

design points (n = 2, nc = 1).

in case z ∈ Fi and zero, otherwise. In view of the linearity of the performance functions g2i−1 and140

g2i with respect to z, the probability integral in eq. (4) possesses an analytic solution [2], which141

is equal to:142

pF,i = Φ
(
−βLi

)
+ Φ

(
−βUi

)
(5)

where Φ(·) is the standard Gaussian cumulative density function. Note that βLi and βUi are actually143

the reliability indexes associated with F−i and F+
i , respectively [2, 24]. In other words, they are144

the Euclidean norm of the corresponding design points, that is βLi = ||z∗2i−1|| and βUi = ||z∗2i||, i =145

1, . . . , nc [24].146

2.3. Failure Probability Associated with Series Event147

The failure event associated with a series system implies that one or more of its components148

fail. The failure domain F groups all realizations z of the random variable vector Z that cause149

the failure event, that is, F = F1 ∪ F2 ∪ . . . ∪ Fnc . The probability of failure associated with the150

systems event is denoted as pF and is defined as:151

pF =

∫
z∈Rn

IF (z)fZ(z)dz (6)

where IF (z) is the indicator function, which is equal to IF (z) = 1 in case z ∈ F and zero,152

otherwise. It is important to note that for most cases of practical interest, eq. (6) cannot be153

solved in closed form [13]. This is due to the fact that interactions between the failure domains154

associated with individual components cannot be analyzed analytically. In addition to the issue of155
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interactions, the number of random variables n and of performance functions nc associated with156

the probability integral may be considerable (in the order of hundreds or thousands). These two157

issues favor the application of simulation methods for calculating the failure probability [35].158

3. Multidomain Line Sampling159

3.1. Line Sampling160

Line Sampling is a simulation technique which was developed for calculating failure probabil-161

ities in problems involving a large number of random variables [33, 36]. It is closely related to162

another simulation technique known as Axis Orthogonal Sampling [37, 38]. Most of the appli-163

cations of Line Sampling which are available in the literature focus on the assessment of failure164

probabilities associated with weakly or moderately nonlinear performance functions of an individ-165

ual component, see e.g. [39].166

The practical implementation of Line Sampling requires that the reliability problem is formulated167

in the standard Gaussian space by means of a suitable projection [40]. After that, it is necessary168

to identify the so-called important direction γ, which is a vector of unit Euclidean norm located169

at the origin of the standard normal space that points towards the failure domain. Several criteria170

have been proposed for determining such direction [33, 41]. Then, taking advantage of the rota-171

tional invariance of the standard Gaussian distribution, a rotated coordinate system is introduced,172

such that:173

z = Rz⊥ + γz‖ (7)

where z⊥ is a vector of dimension (n − 1) that represents coordinates in the hyperplane orthog-174

onal to γ; z‖ is a scalar denoting the coordinate parallel to γ; and R is a matrix of dimension175

n× (n− 1). The square matrix [R,γ] forms an orthonormal basis and thus, it is straightforward176

to demonstrate that z‖ = γTz and z⊥ = RTz. Note that for practical implementation, there is no177

need to determine matrix R in explicit form. In addition, note that the probability distributions178

associated with z⊥ and z‖ are standard Gaussian distributions in (n − 1) dimensions and one179

dimension, respectively.180

Line Sampling takes advantage of the rotated coordinate system associated with eq. (7) by com-181

bining simulation with numerical integration. That is, random samples are generated in the hyper-182

plane orthogonal to the important direction γ. These samples are denoted as z⊥,(j), j = 1, . . . , N ,183
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where N denotes the number of samples. Then, one-dimensional numerical integration is per-184

formed along the line l(j), j = 1, . . . , N , that is parallel to the important direction and that185

contains the sample z⊥,(j). The aim of this one-dimensional integration is determining which por-186

tions of the line contribute to the failure probability integral. The whole procedure is depicted187

schematically in Figure 2, where the dimension of the problem is n = 2 and the number of lines188

is set equal to N = 2. Note that in this figure, the performance function is denoted as g(z).189

z1

z2

γ

z⊥,(1)

z⊥,(2)

z‖

safe domain
(g(z) < 0)

failure domain
(g(z) > 0)

l(1)

l(2)

z⊥

portion within
failure domain

g(z) = 0

Figure 2: Schematic representation of Line Sampling considering two lines (n = N = 2).

3.2. Formulation of multidomain Line Sampling190

Recall that the objective of this work is formulating a simulation scheme for calculating fail-191

ure probabilities of series systems involving a large number of components whose performance192

functions are linear with respect to a set of parameters following a Gaussian distribution. In193

order to develop such simulation scheme, note that the summation of the failure probabilities of194

individual components provides an upper bound for the failure probability of the series event,195

that is pF ≤ pF,1 + pF,2 + . . . + pF,nc [2, 29]. Such inequality can be understood with the help196

of the schematic representation in Figure 3, where it is assumed for simplicity that n = nc = 2.197

When examining this figure, it is noted that failure domains associated with components F1 and198

F2 exhibit overlap; in fact, this overlap occurs at each of the four corners of the figure, that is199

F+
1 ∩ F+

2 (upper-right corner), F+
1 ∩ F−2 (lower-right corner), F−1 ∩ F−2 (lower-left corner) and200

F−1 ∩F+
2 (upper-left corner). This implies that the quantity pF,1 + pF,2 must be necessarily larger201

than pF , as the probability content associated with those overlapping regions is being counted202

twice. In other words, direct summation of the probabilities of failure of individual components203
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does not take into account the possible interactions between the failure domains associated with204

each component, which in Figure 3 correspond to the realizations of z that belong to any of the205

sets F+
1 ∩ F+

2 , F+
1 ∩ F−2 , F−1 ∩ F−2 and F−1 ∩ F+

2 .206

z1

z2

α1

g2(z) = 0

α2

F+
1

F+
2

F−
2

F−
1

g3(z) = 0

g1(z) = 0

F+
1 ∩ F+

2

F−
1 ∩ F−

2

F+
1 ∩ F−

2

F−
1 ∩ F+

2

g4(z) = 0

Figure 3: Schematic representation of failure domains associated with components (n = nc = 2).

The overlap between failure domains associated with individual components can be taken into207

account by explicitly modeling their interaction [29, 30]. For that purpose, let pi be equal to:208

pi =

∫
z∈Fi

1∑nc
k=1 IFk(z)

fZ(z)dz, i = 1, . . . , nc (8)

Note that pi is the integral over the set Fi of the standard Gaussian probability density function209

divided by the sum of individual failure events that are associated with a particular realization z.210

Clearly, pi as defined in eq. (8) is different from the probability of failure of the i-th component211

pF,i (see eq. (4)). In fact, the quantity pi can be loosely interpreted as the effective contribution of212

the i-th component to the failure probability associated with the series event, where interaction213

with other components is discounted by means of the factor 1/
∑nc

k=1 IFk(z). It is readily seen214

that:215

nc∑
i=1

pi =
nc∑
i=1

(∫
z∈Fi

1∑nc
k=1 IFk(z)

fZ(z)dz

)
=

nc∑
i=1

(∫
z∈F

IFi(z)∑nc
k=1 IFk(z)

fZ(z)dz

)
=

∫
z∈F

∑nc
i=1 IFi(z)∑nc
k=1 IFk(z)

fZ(z)dz

=

∫
z∈F

fZ(z)dz =

∫
z∈Rn

IF (z)fZ(z)dz = pF (9)
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which implies that the summation of all pi, i = 1, . . . , nc is equal to the failure probability216

pF . For a better understanding of the above equation, consider again Figure 3. The quantity p1217

would be equal to the integral of the standard Gaussian probability density function over the set218

F1 \F2 (where (·) \ (·) denotes set subtraction) plus one half of the standard Gaussian probability219

distribution over set F1 ∩ F2. In a similar way, p2 would be equal to the integral of the standard220

Gaussian probability density function over the set F2 \ F1 plus one half of the standard Gaussian221

probability distribution over set F1 ∩ F2. Clearly, the summation of p1 and p2 would be equal to222

pF , as in this case, the interaction between components has been accounted for by means of the223

factor 1/
∑nc

k=1 IFk(z).224

The calculation of the probability of failure of a series event as proposed in eq. (9) demands225

calculating the quantities pi, i = 1, . . . , nc. These quantities can be evaluated by means of Line226

Sampling. For that purpose, consider the failure domain associated with the i-th component: an227

obvious choice for the important direction would be γ = αi. Then, a rotated coordinate system228

is introduced such that:229

z = Riz
⊥
i +αiz

‖
i (10)

where z⊥i and z
‖
i denote the set of coordinates which are orthogonal and parallel to αi, respectively;230

and where Ri denotes the corresponding matrix for coordinate rotation. Figure 4 provides a231

schematic illustration of the different rotated coordinate systems for a case where n = nc = 2.232

z⊥1

z⊥2

z
‖
1

z
‖
2

z1

z2

α1

F+
1

F+
2

F−2

F−1

α2

Figure 4: Schematic representation of multidomain Line Sampling considering two rotated coordinate systems
(n = nc = 2).

Assuming that the square matrix [Ri,αi] forms an orthonormal basis, the probability distribu-233

tions associated with z⊥i and z
‖
i are standard Gaussian in (n− 1) dimensions and one dimension,234

respectively. Thus, taking into account eqs. (8) and (10), the integral associated with the quantity235
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pi is recast as:236

pi =

∫
z⊥i ∈Rn−1

∫
(
z
‖
i ,z
⊥
i

)
∈Fi

1∑nc
k=1 IFk

(
Riz⊥i +αiz

‖
i

)f
Z
‖
i

(
z
‖
i

)
fZ⊥i

(
z⊥i
)
dz
‖
i dz

⊥
i , i = 1, . . . , nc (11)

The last equation can be further simplified by taking into account that the performance functions237

associated with the i-th failure domain in the rotated coordinates are equal to g2i−1

(
z
‖
i , z

⊥
i

)
=238

βLi + z
‖
i and g2i

(
z
‖
i , z

⊥
i

)
= βUi − z

‖
i , yielding:239

pi =

∫
z⊥i ∈Rn−1

∫ −βLi
−∞

1∑nc
k=1 IFk

(
Riz⊥i +αiz

‖
i

)f
Z
‖
i

(
z
‖
i

)
fZ⊥i

(
z⊥i
)
dz
‖
i dz

⊥
i +

∫
z⊥i ∈Rn−1

∫ ∞
βUi

1∑nc
k=1 IFk

(
Riz⊥i +αiz

‖
i

)f
Z
‖
i

(
z
‖
i

)
fZ⊥i

(
z⊥i
)
dz
‖
i dz

⊥
i , i = 1, . . . , nc (12)

The above equation provides an expression for calculating pi within the framework of Line Sam-240

pling. As integration along the parallel direction is carried out taking into account interactions of241

the failure events associated with the different components, eq. (12) is denoted as a multidomain242

Line Sampling (mLS) expression for calculating pi.243

Direct calculation of the expression for the failure probability as proposed in eq. (9) demands244

calculating each individual quantity pi, i = 1, . . . , nc by means of mLS. As it is expected that245

nc can be in the order of hundreds or even thousands, calculating each term in the summation246

can become extremely demanding. As an alternative, this summation can be estimated by means247

of simulation, following the approach proposed in [30]. For that purpose, consider the following248

variant of eq. (9):249

pF =
nc∑
i=1

(
1

ωi
pi

)
ωi (13)

where ωi, i = 1, . . . , nc is a weight factor such that ωi > 0 and
∑nc

i=1 ωi = 1. This set of weights250

can be interpreted as the probability mass function of a discrete random variable. A possible251

criterion for selecting the i-th weight is to set it proportional to the failure probability associated252

with the i-th component, as considered in Importance Sampling using design points [42]. This253
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leads to the following expression for calculating the weights.254

ωi =
pF,i∑nc
k=1 pF,k

, i = 1, . . . , nc (14)

Thus, eq. (13) becomes an expression that involves summation over a discrete random variable255

as well as integration over a number of continuous random variables. Within the context of256

simulation, pF is estimated by generating samples of the discrete and continuous random variables,257

that is:258

pF ≈ p̃F =
1

N

N∑
j=1

(
1

ωi(j)
pi(j)

(
z
⊥,(j)
i(j)

))
(15)

where p̃F is an estimate of pF ; N denotes the total number of samples; i(j), j = 1, . . . , N are inde-259

pendent and identically distributed samples drawn with replacement from the set I = {1, 2, . . . , nc}260

with probability mass function ωi, i = 1, . . . , nc; z
⊥,(j)
i(j)

, j = 1, . . . , N are independent and identi-261

cally distributed samples that follow fZ⊥
i(j)

(
z⊥
i(j)

)
; and where pi(j)

(
z
⊥,(j)
i(j)

)
, j = 1, . . . , N represents262

an estimate of quantity pi(j) evaluated at the sample z
⊥,(j)
i(j)

, that is:263

pi(j)
(
z
⊥,(j)
i(j)

)
=

∫ −βL
i(j)

−∞

1∑nc
k=1 IFk

(
Ri(j)z

⊥,(j)
i(j)

+αi(j)z
‖
i(j)

)f
Z
‖
i(j)

(
z
‖
i(j)

)
dz
‖
i(j)

+

∫ ∞
βU
i(j)

1∑nc
k=1 IFk

(
Ri(j)z

⊥,(j)
i(j)

+αi(j)z
‖
i(j)

)f
Z
‖
i(j)

(
z
‖
i(j)

)
dz
‖
i(j)
, j = 1, . . . , N (16)

It is seen that the last equation corresponds to an estimate of the quantity pi calculated by means264

of mLS. It represents the integral over the line that passes through the sample z
⊥,(j)
i(j)

and which is265

parallel to αi(j) and whose argument is the standard Gaussian univariate probability distribution266

divided over the number of components that fail at a given point of that line. Thus, eq. (16) can be267

interpreted as a means of exploring the interactions that occur between the behavior of different268

components along the line. Details about the numerical evaluation of eq. (16) are discussed in269

Section 3.3.2.270

It is straightforward to demonstrate that the coefficient of variation of the probability estimate of271
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eq. (15) (which is denoted as δpF ) is equal to:272

δpF =
1

p̃F

√√√√ 1

N(N − 1)

N∑
j=1

((
1

ωi(j)
pi(j)

(
z
⊥,(j)
i(j)

))
− p̃F

)2

(17)

3.3. Practical Implementation273

Practical implementation of eq. (16) demands solving two issues: the generation of samples274

z
⊥,(j)
i(j)

, j = 1, . . . , N and the calculation of the line integral associated with mLS. These two issues275

are discussed in the following.276

3.3.1. Generation of samples z
⊥,(j)
i(j)

277

Regarding the first implementation issue, recall that z
⊥,(j)
i(j)

, j = 1, . . . , N are independent278

and identically distributed samples that follow fZ⊥
i(j)

(
z⊥
i(j)

)
. These samples can be conveniently279

generated by means of the following algorithm.280

1. Set j = 1.281

2. Draw an element from the set I = {1, 2, . . . , nc} with probability ωi, i = 1, . . . , nc. The282

drawn element is denoted as i(j).283

3. Generate a random sample z(j) following a n-dimensional standard Gaussian distribution.284

4. Calculate [33, 34]:285

Ri(j)z
⊥,(j)
i(j)

= z(j) −
(
αTi(j)z

(j)
)
αi(j) (18)

5. In case j = N , stop the algorithm. Otherwise, return to step 2 with j = j + 1.286

The core of the algorithm described above lies in step 4, which is represented schematically in287

Figure 5, where it has been assumed for simplicity that n = nc = 2 and that i(j) = 1. As noted288

from Figure 5, eq. (18) consists of subtracting the projection of the random sample z(j) over the289

important direction αi(j) (that is,
(
αT
i(j)
z(j)
)
αi(j)) from the random sample z(j) itself [33, 34]. It290

should be noted that such step does not produce z
⊥,(j)
i(j)

but instead, it leads to Ri(j)z
⊥,(j)
i(j)

. This291

is quite convenient from a numerical viewpoint, as all calculations associated with mLS demand292

knowledge of Ri(j)z
⊥,(j)
i(j)

(and not of zi⊥,(j)). Hence, explicit calculation of the rotation matrices293

Ri, i = 1, . . . , nc is avoided.294

3.3.2. Evaluation of integral along line295

Eq. (16) corresponds to a one-dimensional integral along the line l(j) that passes through296
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z⊥1

z
‖
1

z1

z2

α1

F+
1

F+
2

F−2

F−1

α2

z(j)

αi(j)z
(j)

Ri(j)z
⊥,(j)
i(j)

Figure 5: Schematic representation of generation of samples for multidomain Line Sampling (n = nc = 2, i(j) = 1).

the sample z
⊥,(j)
i(j)

and which is parallel to αi(j) . The argument of this integral is the standard297

Gaussian probability density function as a function of the coordinate z
‖
i(j)

divided by the number of298

components that fail at realization Ri(j)z
⊥,(j)
i(j)

+αi(j)z
‖
i(j)

; the latter number is given by the formula299 ∑nc
k=1 IFk

(
Ri(j)z

⊥,(j)
i(j)

+αi(j)z
‖
i(j)

)
. As Ri(j)z

⊥,(j)
i(j)

is a fixed vector for a given line (see eq. (18)), the300

challenge for calculating the line integral in eq. (16) lies precisely in calculating the number of failed301

components as a function of z
‖
i(j)

. For a better understanding of this issue, consider the schematic302

representation in Figure 6, that depicts a particular case where n = nc = 2, N = 1 and i(1) = 2. In303

particular, Figure 6(a) illustrates the problem in the space of standard Gaussian random variables,304

where l(1) denotes the line that passes through the sample z
⊥,(1)
2 and which is parallel to α2.305

It is seen that line l(1) intersects the different failure domains associated with each of the two306

components considered. Such issue must be considered when solving the integral associated with307

that line, as this affects the indicator functions of each component IFk

(
R2z

⊥,(1)
2 +α2z

‖
2

)
, k = 1, 2,308

as depicted schematically in Figures 6(b) and 6(c), respectively, as well as the compound indicator309

function
∑2

k=1 IFk

(
R2z

⊥,(1)
2 +α2z

‖
2

)
, as seen in Figure 6(d). A close examination of the indicator310

functions associated with the components as shown in Figures 6(b) and 6(c) reveals that they can311

be represented as the summation of two unit step functions. In a general case, the indicator312

function associated with component k is cast as:313

IFk

(
Ri(j)z

⊥,(j)
i(j)

+αi(j)z
‖
i(j)

)
= u

(
−g2k−1

(
Ri(j)z

⊥,(j)
i(j)

+αi(j)z
‖
i(j)

))
+

u
(
−g2k

(
Ri(j)z

⊥,(j)
i(j)

+αi(j)z
‖
i(j)

))
, k = 1, . . . , nc, j = 1, . . . , N (19)

where u(·) denotes the unit step function. Replacing the expressions for the performance functions314
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g2k−1(z) and g2k(z) (see eqs. (2) and (3), respectively) into the above equation leads to the315

following expression.316

IFk

(
Ri(j)z

⊥,(j)
i(j)

+αi(j)z
‖
i(j)

)
= u

(
−βLk −αTkRi(j)z

⊥,(j)
i(j)
−αTkαi(j)z

‖
i(j)

)
+

u
(
−βUk +αTkRi(j)z

⊥,(j)
i(j)

+αTkαi(j)z
‖
i(j)

)
, k = 1, . . . , nc, j = 1, . . . , N

(20)

Under the assumption that αTkαi(j) 6= 0, it is possible to express the last equation in a more317

compact format, that is:318

IFk

(
Ri(j)z

⊥,(j)
i(j)

+αi(j)z
‖
i(j)

)
= u

(
ξ
(j)
2k−1

(
z
‖
i(j)
− c(j)2k−1

))
+ u

(
ξ
(j)
2k

(
z
‖
i(j)
− c(j)2k

))
,

k = 1, . . . , nc, j = 1, . . . , N (21)

where:319

c
(j)
2k−1 = −

βLk +αTkRi(j)z
⊥,(j)
i(j)

αTkαi(j)
(22)

c
(j)
2k =

βUk −αTkRi(j)z
⊥,(j)
i(j)

αTkαi(j)
(23)

ξ
(j)
2k−1 = −sgn

(
αTkαi(j)

)
(24)

ξ
(j)
2k = sgn

(
αTkαi(j)

)
(25)

and where sgn(·) represents the sign function. As noted from eq. (21), c
(j)
2k−1 and c

(j)
2k denote the320

coordinate z
‖
i(j)

for which the corresponding unit step function changes its value. Such concept is321

represented schematically in Figures 6(b) and 6(c). In fact, c
(j)
2k−1 and c

(j)
2k denote the Euclidean322

distances from the sample z
⊥,(j)
i(j)

to the limit state functions g2k−1(z) = 0 and g2k(z) = 0, respec-323

tively, measured along the line l(j). Additionally, ξ
(j)
2k−1 and ξ

(j)
2k are variables whose value is either324

−1 or 1 depending on the sign of the dot product αTkαi(j) . It should be recalled that eqs. (22)325

to (25) were deduced under the assumption that αTkαi(j) 6= 0. However, these expressions can be326

generalized for the case where αTkαi(j) = 0, as shown in detail in Appendix A.327

The characterization of the indicator function associated with the k-th component as shown328

in eq. (21) allows a straightforward estimation of the sought line integral. For that purpose,329

let
{
q
(j)
1 , q

(j)
2 , . . . , q

(j)
2nc

}
denote the sequence of integers such that c

(j)

q
(j)
1

≤ c
(j)

q
(j)
2

≤ . . . ≤ c
(j)

q
(j)
2nc

; in330
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z⊥2

z
‖
2

z1

z2

α1 F+
1

F+
2

F−2

F−1

α2

l(1)

z
⊥,(1)
2

(a) (b)

c
(1)
2

c
(1)
3

c
(1)
4 c

(1)
1

c
(1)
1 c

(1)
2

IF1

(
R2z

⊥,(1)
2 +α2z

‖
2

)

z
‖
2

1

0

0

(c)

c
(1)
3 c

(1)
4

IF2

(
R2z

⊥,(1)
2 +α2z

‖
2

)

z
‖
2

1

0

0 c
(1)
1 c

(1)
2

z
‖
2

1

0

0c
(1)
3 c

(1)
4

2

2∑
k=1

IFk

(
R2z

⊥,(1)
2 +α2z

‖
2

)(d)

Figure 6: Schematic representation of line associated with the application of multidomain Line Sampling (n = nc =
2). (a) Representation in standard Gaussian space. (b) Behavior of indicator function associated with the first

component IF1
(·) with respect to z

‖
2 along line l(1). (c) Behavior of indicator function associated with the second

component IF2
(·) with respect to z

‖
2 along line l(1).(d) Behavior of the compound indicator function with respect

to z
‖
2 along line l(1).

addition, let c
(j)

q
(j)
0

→ −∞ and c
(j)

q
(j)
2nc+1

→∞. Furthermore, let m
(j)
s be a natural number (including331

0), which is defined as:332

m(j)
s = m

(j)
0 +

s∑
l=1

ξ
(j)

q
(j)
s

, s = 0, . . . , 2nc, j = 1, . . . , N (26)

where m
(j)
0 counts the number of times that ξ

(j)
q = −1, q = 1, . . . , 2nc. The role of m

(j)
s , s =333

0, . . . , 2nc is expressing the number of components that fail at a point that belongs to the line334

l(j) and whose coordinate z
‖
i(j)

lies within the interval

(
c
(j)

q
(j)
s

, c
(j)

q
(j)
s+1

)
. In other words, m

(j)
s , s =335

0, . . . , 2nc contains all the values that the function
∑nc

k=1 IFk

(
Ri(j)z

⊥,(j)
i(j)

+αi(j)z
‖
i(j)

)
assumes along336

the line l(j). For a better understanding of this point, consider Figure 6(d) that illustrates the337

function
∑nc

k=1 IFk

(
Ri(j)z

⊥,(j)
i(j)

+αi(j)z
‖
i(j)

)
associated with line l(1) of Figure 6(a). It is seen that338

this function presents a staircase pattern, as depending on the value of z
‖
2 , the number of failed339

components varies between 0, 1 and 2. This staircase pattern is reproduced by the quantity m
(j)
s in340

eq. (26), as shown in Table 1. Note that for preparing this Table and according to the qualitative341
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information in Figures 6(b) and 6(c), it is considered that c
(1)
3 < c

(1)
1 < c

(1)
4 < c

(1)
2 , ξ

(1)
1 = ξ

(1)
3 = −1342

and ξ
(1)
2 = ξ

(1)
4 = 1.343

s q
(1)
s ξ

(1)

q
(1)
s

(
c
(1)

q
(1)
s

, c
(1)

q
(1)
s+1

)
m

(1)
s

0 - -
(
−∞, c(1)3

)
-2

1 3 -1
(
c
(1)
3 , c

(1)
1

)
-1

2 1 -1
(
c
(1)
1 , c

(1)
4

)
0

3 4 1
(
c
(1)
4 , c

(1)
2

)
1

4 2 1
(
c
(1)
2 ,∞

)
2

Table 1: Values that variable m
(1)
s assumes along line l(1) associated with the schematic illustration in Figure 6.

Taking into account the above definitions, eq. (16) is calculated in closed form as shown below:344

pi(j)
(
z
⊥,(j)
i(j)

)
=

sL−1∑
s=0

Φ

(
c
(j)

q
(j)
s+1

)
− Φ

(
c
(j)

q
(j)
s

)
m

(j)
s

+
2nc∑
s=sU

Φ

(
c
(j)

q
(j)
s+1

)
− Φ

(
c
(j)

q
(j)
s

)
m

(j)
s

(27)

where sL is an integer such that c
(j)

q
(j)

sL

= −βL
i(j)

and sU is another integer such that c
(j)

q
(j)

sU

= βU
i(j)

.345

It is noted that from a numerical viewpoint, the computation of eq. (27) demands evaluating the346

response of each of the components twice, as it is necessary to solve two dot products involving the347

unit vector αl (see eqs. (22) to (25)). Therefore, assessing the estimator p̃F in eq. (15) demands348

2N evaluations of each component response.349

3.4. Summary350

The application of multidomain Line Sampling for calculating the failure probability of a series351

system as considered in this contribution involves the following steps.352

1. Define the basic information of the problem. This implies setting up the probabilistic char-353

acterization of the parameter vector x (of dimension n) in terms of its mean µ and (positive354

definite) covariance matrix C. Additionally, define vector ai, i = 1, . . . , nc that character-355

izes the response of the i-th component as well as the allowable lower and upper bounds for356

the response (bLi and bUi , respectively).357

2. Set up the performance functions in standard normal space by applying eqs. (1), (2) and358

(3). Calculate the reliability indexes βLi and βUi , i = 1, . . . , nc as well as the unit vectors359

αi, i = 1, . . . , nc.360
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3. Calculate the weights ωi, i = 1, . . . , nc by means of eq. (14).361

4. Sample (with replacement) a total of N integers i(j), j = 1, . . . , N from the set I =362

{1, 2, . . . , nc} with probability ωi, i = 1, . . . , nc. Generate samples z
⊥,(j)
i(j)

, j = 1, . . . , N363

applying the procedure described in Section 3.3.1 (see eq. (18)).364

5. Estimate pi(j)
(
z
⊥,(j)
i(j)

)
, j = 1, . . . , N by means of eq. (27).365

6. Calculate the estimator of the failure probability as well as its coefficient of variation applying366

eqs. (15) and (17).367

4. Examples368

4.1. Test Example 1369

This first test example is borrowed from [15, 43]. It comprises the calculation of the failure370

probability of a series system, where the response of its i-th component is defined as:371

ri(x) = xi, i = 1, . . . , nc (28)

where xi is a realization of a Gaussian random variable with zero mean, unit standard deviation372

and pairwise correlation coefficient 0.5 with all random variables (other than itself). That is, the373

correlation matrix R of dimension nc × nc is defined as:374

R =


1 0.5 . . . 0.5

0.5 1 . . . 0.5
...

...
. . .

...

0.5 0.5 . . . 1

 (29)

Note that there are n = nc random variables. The threshold levels associated with the performance375

of each component are set such that bLi → −∞, i = 1, . . . , nc and bUi = β, i = 1, . . . , nc (where376

β is a real number), respectively. The failure probability associated with this series system can377

be expressed in terms of the following one-dimensional integral [15, 43], which can be accurately378

calculated by means of an appropriate quadrature.379

pF =

∫ ∞
−∞

(
1−

(
1− Φ

(
−β −

√
0.5z√

1− 0.5

))nc)
fZ(z)dz (30)

18



From the above equation, recall that fZ(·) and Φ(·) represent the probability density function and380

cumulative density function of a standard Gaussian random variable, respectively.381

The problem described above is solved by means of both the above integral and multidomain Line382

Sampling. Different combinations of the number of components nc (101, 102, 103, 104) and of383

the threshold β (3, 4, 5) are investigated. For all these combinations, multidomain Line Sampling384

is implemented considering N = 200 lines (hence, 2× 200 = 400 system analyses are performed).385

The results obtained for the failure probability estimates as well as their coefficient of variation386

are shown in Figures 7 and 8, respectively.387

Figure 7: Example 1 - failure probability with respect to the number of components nc and threshold level β. Solid
line: estimates with multidomain Line Sampling. Circle: reference result.

Figure 7 illustrates the estimates of the failure probability generated with multidomain Line388

Sampling with solid line. In addition, the reference results provided by solving numerically the389

integral in eq. (30) are shown with circles. It is seen that there is an excellent agreement between390

the results, irrespective of the number of components and the threshold level. This is quite391

remarkable, as the failure probabilities involved in the figure span about six orders of magnitude.392

Figure 8 shows the coefficient of variation associated with the estimates of the failure proba-393

bility associated with multidomain Line Sampling. It is observed that all coefficients of variation394

are relatively low, which is quite desirable from a practical viewpoint. Furthermore, it is observed395

that the coefficients of variation are quite small for small values of failure probabilities. Such396
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Figure 8: Example 1 - coefficient of variation of the failure probability with respect to the number of components
nc and threshold level β.

behavior is similar to the one observed in [29] and is explained by the fact that for small failure397

probabilities, interactions between components in the failure region become less relevant.398

As a summary of this test example, it is observed that multidomain Line Sampling allows coping399

with a large number of random variables and components for estimating small failure probabilities400

with high precision and a reduced number of samples.401

4.2. Test Example 2: Truss Structure402

This test example involves a statically determined truss structure subject to three point loads403

Pk, k = 1, . . . , 3, as depicted in Figure 9. These three point loads are modeled as Gaussian random404

variables with expected value 10 [kN], standard deviation 1 [kN] and constant correlation between405

them equal to 0.5. The maximum axial load that can be supported by the bars of the truss is406

as follows: bars 1, 4, 5, 6, 7, 8, 9 support a maximum load of 19 [kN]; bars 2 and 3 support a407

maximum load of 25 [kN]; bars 10 and 13 support a maximum load of 27 [kN]; and bars 11 and408

12 support a maximum load of 10 [kN]. For simplicity, it is assumed that the bars are capable to409

support this maximum load either in tension or in compression.410

The objective is determining the probability that the maximum allowable axial load due to the411

external loading is exceeded in one or more bars of the truss. As the truss possesses 13 bars and412

failure of any of these bars leads to failure of the system, this can be interpreted a series system413

with nc = 13 components. The response of each component is its axial load and the allowable414

threshold is given by the maximum load supported by each bar.415

The probability of failure associated with the series event is estimated by means of multidomain416

Line Sampling (mLS), considering a total of N = 5 × 105 samples. As each sample comprises417
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2 3 4

13

65

Figure 9: Example 2 - truss structure.

a total of two evaluations of the response of the components, a total of 106 system analyses are418

carried out. Note that this large number of samples for mLS is considered in order to carry419

out comparisons with Monte Carlo simulation, which provides reference results. In this case,420

Monte Carlo simulation is applied considering a total of 106 samples. The results obtained for the421

estimates of the failure probability and its coefficient of variation are shown in figures 10 and 11,422

respectively.423

Figure 10: Example 2 - evolution of estimate of failure probability with respect to the number of system analyses
(MCS: Monte Carlo simulation, mLS: multidomain Line Sampling).

An examination of Figure 10 indicates that both multidomain Line Sampling and Monte Carlo424

simulation provide similar estimates of the failure probability for a large number of system analy-425

ses. However, the estimator produced with multidomain Line Sampling stabilizes extremely fast:426

in fact, with about only 100 system analyses, it provides an excellent estimator of the failure427

probability. This is quite remarkable, considering that the failure probability is relatively small,428

that is, about pF ≈ 7× 10−4.429

The evolution of the coefficient of variation as shown in Figure 11 reinforces the conclusions430
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Figure 11: Example 2 - evolution of estimate of the coefficient of variation of the failure probability with respect
to the number of system analyses (MCS: Monte Carlo simulation, mLS: multidomain Line Sampling).

drawn from Figure 10. It is seen that the coefficient of variation of the probability estimate431

produced with mLS is about 10% with only 100 system analyses. In order to produce an estimate432

with comparable coefficient of variation, Monte Carlo simulation demands 105 system analyses.433

Such result highlights the benefits of mLS for estimating failure probabilities associated with a434

series event.435

4.3. Application Example 3: Six-Story Building Subject to Stochastic Gaussian Ground Accelera-436

tion437

This application example involves a six-story reinforced concrete building subject to a stochas-438

tic Gaussian ground acceleration, as illustrated in Figure 12. The objective is estimating the first439

excursion probability that the interstory drifts of the building exceed a prescribed threshold within440

the duration of the acceleration. It is assumed that the building experiences small vibrations and441

hence, its behavior can be modeled as linear elastic. In fact, as discussed in the sequence, this442

problem can be modeled as a series system with a large number of components arising due to the443

discretization of time.444

The assumption of linear elastic behavior of the building is appropriate for analyzing serviceability445

conditions, see e.g. [44, 45, 46], and allows conducting a reliability analysis by means of multido-446

main Line Sampling. For those cases where the assumption of a linear elastic behavior does not447

hold (e.g. progressive collapse or collapse), other more general methods should be applied, see448

e.g. [47, 48, 49, 50, 51].449

Each floor of the building is composed of a square slab of side 32 [m] and thickness 0.2 [m], and is450

supported by 16 columns of square cross section of 0.4 [cm] and a shear wall of 0.2 [m] thickness.451
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The building is modeled as linear elastic and classically damped, with Young’s modulus is equal452

to 2.3× 1010 [Pa]. It is assumed that the building experiences small displacements and hence, its453

elements remain within the linear elastic range. The finite element model, which is taken from454

[52], involves about 9500 shell and beam elements and more than 50 × 103 degrees-of-freedom.455

Classical damping of 5% is considered for all modes retained in the analysis.456

x

y

z nodes of interest

ground level

Figure 12: Example 3 - building model.

The building is excited by a stochastic Gaussian ground acceleration along the y direction (see457

Figure 12), which is modeled by means of the Clough-Penzien power spectrum (see, e.g. [53, 54,458

55]), and which is in turn modulated by the Shinozuka-Sato envelope function [56]. The stochastic459

ground acceleration possesses a duration of 20 [s], with discrete representation considering a time460

step of 0.01 [s]. The associated discrete white noise process possesses spectral intensity of 3 ×461

10−4 [m2/s3] and the properties of the primary and secondary Clough-Penzien filters are circular462

frequency ω1 = 4π [rad/s] and ω2 = 0.4π [rad/s] and damping ratios ζ1 = ζ2 = 0.7, respectively.463

The parameters for the Shinozuka-Sato envelope are selected as c1 = 0.14 and c2 = 0.16. The464

stochastic ground acceleration is represented with the help of the Karhunen-Loève expansion465

considering 1466 terms (see, e.g. [57]). For additional details on the representation of the stochastic466

ground acceleration model, it is referred to [53, 54, 55, 56].467

For design purposes, the interstory drifts along the y direction should not exceed a threshold level468

of 2 × 10−3 times the story height within the duration of the stochastic loading. This condition469
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is verified considering the six nodes indicated in Figure 12, which implies that a total of five470

interstory drifts must be controlled. Appendix B provides a brief description on the procedure471

for calculating these interstory drifts. The chances that any of these interstory drifts exceed its472

prescribed threshold within the duration of the stochastic ground acceleration can be interpreted473

as the probability of failure of a series event, see e.g. [29]. In this case, the components are each474

of the interstory drifts responses at each time instant. As there is a total of five interstory drifts475

and 2001 discrete time instants, the total number of components is nc = 10005. On the other476

hand, the total number of random variables involved in the problem is n = 1466, which is equal to477

the number of terms associated with the Karhunen-Loève expansion. Hence, the problem under478

consideration corresponds to a case with a large number of random variables (over 103 of them)479

and a large number of components (over 104 components).480

The probability of failure associated with the system event is calculated by means of multidomain481

Line Sampling, considering a total of N = 5×103 samples. This implies that the system’s response482

is calculated a total of 104 times. That is, 104 dynamic analyses are carried out. In addition and in483

order to provide a basis for comparison, the failure probability is also assessed by means of Efficient484

Importance Sampling [29] and Directional Importance Sampling [31, 32], which are simulation485

techniques specially developed for calculating failure probabilities of linear structural systems486

subject to Gaussian excitation. These two simulation techniques are implemented considering487

a total of 104 samples (which imply performing a total of 104 dynamic analyses). The results488

obtained are shown in Figures 13 and 14 as well as in Table 2.489

Figure 13: Example 3 - evolution of estimate of failure probability with respect to the number of system analyses
(EIS: Efficient Importance Sampling, DIS: Directional importance Sampling, mLS: multidomain Line Sampling).

As noted from Figure 13, the three simulation techniques under consideration can produce good490
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estimates of the failure probability with a reduced number of samples. However, it is seen that491

the estimator associated with multidomain Line Sampling stabilizes quicker than the estimators492

associated with the other two simulation techniques. In fact, with about N = 50 samples (that is,493

100 system analyses), multidomain Line Sampling already provides an excellent estimate of the494

failure probability. This is confirmed by examining the results in table 2, where it is seen that the495

associated coefficient of variation is already below 10%.496

Figure 14: Example 3 - evolution of estimate of the coefficient of variation of the failure probability with respect to
the number of system analyses (EIS: Efficient Importance Sampling, DIS: Directional importance Sampling, mLS:
multidomain Line Sampling).

The results presented in Figure 14 support the observations already drawn from Figure 13.497

That is, the coefficient of variation associated with the probability estimates of all simulation498

techniques decreases quickly with the number of system analysis. Furthermore, the estimate asso-499

ciated with multidomain Line Sampling is the one presenting the smallest coefficient of variation500

(excluding the region of about 10 system analyses).501

No. system analyses p̃EISF δpEIS
F

[%] p̃DIS
F δpDIS

F
[%] p̃mLS

F δpmLS
F

[%]

102 2.2× 10−3 14.2% 2.2× 10−3 11.1% 1.8× 10−3 7.9%
103 1.9× 10−3 4.6% 1.9× 10−3 3.6% 1.8× 10−3 2.6%
104 1.7× 10−3 1.5% 1.7× 10−3 1.1% 1.7× 10−3 0.9%

Table 2: Example 3 - Estimates of the failure probability p̃F and its coefficient of variation δpF
(EIS: Efficient

Importance Sampling, DIS: Directional importance Sampling, mLS: multidomain Line Sampling).

Table 2 reports the probability estimates and their coefficient of variation for the three simu-502

lation techniques under consideration for different number of system analyses. It is seen that all503

three techniques are quite successful in estimating the failure probability, as there is good agree-504

ment between the different estimates, with relatively low coefficient of variation. However, for505
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all cases reported in the table, multidomain Line Sampling provides probability estimates which506

are closer to the reference solution (with 104 system analyses) and with the smallest coefficient of507

variation.508

The (small) differences in performance between the three simulation techniques analyzed in this509

example as presented in Table 2 can be understood as follows. Efficient Importance Sampling510

(EIS) is a specially-designed variant of Importance Sampling that estimates the failure proba-511

bility by generating samples (realizations of Z) exclusively in the failure domain. Directional512

Importance Sampling (DIS) operates in a similar way as Efficient Importance Sampling, but it513

explores directions instead of samples; in other words, it explores an infinite number of samples514

along a given ray starting at the origin of the standard normal space. Multidomain Line Sampling515

(mLS) shares some common aspects with Directional Importance Sampling in the sense that an516

infinite number of samples is explored. However, these samples fall in a line whose orientation is517

different from the aforementioned ray.518

As a further comparison between the performance of the three simulation techniques discussed519

above, Table 3 presents both the number of system analyses and the relative execution time for520

attaining an estimate of the failure probability with coefficient of variation δpF = 10%. It is ob-521

served that the smallest number of system analyses and relative execution time are associated with522

mLS. The other two simulation approaches, that is EIS and DIS, demand more samples to attain523

the prescribed coefficient of variation and more relative execution time than those associated with524

mLS. An an additional observation from Table 3, it should be noted that the relation between525

number of system analyses and relative execution time for the different simulation techniques is526

not proportional, as the specific implementation steps of EIS [29], DIS [31, 32] and mLS differ527

between them.528

Simulation
technique

No. system
analyses

Relative
Execution time

EIS 171 249%
DIS 130 234%
mLS 62 100%

Table 3: Example 3 - Number of system analyses and relative execution time for achieving probability estimate
with coefficient of variation of 10% (EIS: Efficient Importance Sampling, DIS: Directional importance Sampling,
mLS: multidomain Line Sampling).
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5. Conclusions and Outlook529

This contribution has presented an approach for estimating the probability of occurrence of530

a series system event by means of multidomain Line Sampling. In particular, multidomain Line531

Sampling is applied in order to determine the effective contribution of a single component to the532

overall failure probability. In this context, effective means that proper consideration is given to533

the failure event associated with a particular component and its interaction with other compo-534

nents. The overall failure probability is then determined by randomly sampling among different535

components. The examples presented in this contribution suggest that multidomain Line Sam-536

pling is applicable to problems involving both a small and a large number of random variables537

and components, respectively.538

Much of the success of the multidomain Line Sampling strategy as reported herein can be at-539

tributed to the way each failure domain associated with an individual component is examined. By540

exploring lines, one can analyze an infinite number of realizations instead of a single one. In this541

way, each line provides a considerable amount of information. Moreover, in view of the linearity of542

the response with respect to the unknown random parameters, it is possible to solve the integral543

associated with that line by means of a closed-form, analytic formula.544

While the results presented are encouraging, several issues deserve further research. One line of545

possible development involves extending the capabilities of multidomain Line Sampling in order546

to account for problems that involve either non Gaussian random variables or responses which547

are non linear with respect to the unknown random parameters. Preliminary research efforts548

conducted by the authors suggest that such an extension is feasible applying a so-called smooth549

indicator function, as suggested in [58, 59, 60]. Another path for development considers the ex-550

tension of multidomain Line Sampling for the analysis of problems involving parallel systems or551

more general configurations. In particular, for the case of parallel systems, the results reported in552

[19] could serve as a basis.553
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Appendix A. Calculation of c
(j)
2k−1, c

(j)
2k , ξ

(j)
2k−1 and ξ

(j)
2k562

The scheme for evaluating the line integral associated with the implementation of multidomain563

Line Sampling as presented in Section 3.3.2 requires few modifications for its implementation in564

case αTkαi(j) = 0. To motivate the discussion, consider the schematic representation in Figure565

A.15, that depicts a particular case where n = nc = 2, N = 3 and i(1) = i(2) = i(3) = 2.566

z⊥2

z
‖
2

z1

z2

α1

F+
1

F+
2

F−2

F−1 α2

l(1)

z
⊥,(1)
2 z

⊥,(2)
2 z

⊥,(3)
2

l(2) l(3)

Figure A.15: Schematic representation of line associated with the application of multidomain Line Sampling in
case αT

kαi(j) = 0 (n = nc = 2).

As noted from Figure A.15, it is seen that component 1 fails for all points that belong to lines567

l(1) and l(3); on the contrary, it is seen that line l(2) never intersects the failure domain associated568

with component 1. Taking into account these observations and recalling the structure of eq. (21),569

it is concluded that for the case where αTkαi(j) = 0, the unit step functions do not depend on570

z
‖
i(j)

and that the Euclidean distances ci
(j)

2k−1 and ci
(j)

2k−1 must tend to either minus infinity or plus571

infinity in order to reflect that failure occurs or not with respect to the k-th component along line572

l(j). It is straightforward to demonstrate that the definitions for the distances ci
(j)

2k−1 and ci
(j)

2k−1 as573

presented in eqs. (22) and (23) must be extended as shown below in order to accommodate the574
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case where αTkαi(j) = 0.575

c
(j)
2k−1 =


−∞ if αTkαi(j) = 0 ∧ βLk +αTkRi(j)z

⊥,(j)
i(j)
≤ 0

−
βLk +α

T
kRi(j)z

⊥,(j)
i(j)

αTkαi(j)
if αTkαi(j) 6= 0

∞ if αTkαi(j) = 0 ∧ βLk +αTkRi(j)z
⊥,(j)
i(j)

> 0

, k = 1, . . . , nc, j = 1, . . . , N

(A.1)

c
(j)
2k =


−∞ if αTkαi(j) = 0 ∧ βUk −αTkRi(j)z

⊥,(j)
i(j)
≤ 0

βUk −α
T
l Ri(j)z

⊥,(j)
i(j)

αTkαi(j)
if αTkαi(j) 6= 0

∞ if αTkαi(j) = 0 ∧ βUk −αTkRi(j)z
⊥,(j)
i(j)

> 0

, k = 1, . . . , nc, j = 1, . . . , N

(A.2)

The definition of the variables ξ
(j)
2k−1 and ξ

(j)
2k as presented in eqs. (24) and (25) must be modified576

as well in order to accommodate the case where αTkαi(j) = 0. It can be demonstrated that such577

modification leads to:578

ξ
(j)
2k−1 =

 1 if αTkαi(j) ≤ 0

−1 otherwise
, k = 1, . . . , nc, j = 1, . . . , N (A.3)

ξ
(j)
2k =

 1 if αTkαi(j) ≥ 0

−1 otherwise
, k = 1, . . . , nc, j = 1, . . . , N (A.4)

Equations (A.1) to (A.4) as presented above allow calculating the line integral associated with579

multidomain Line Sampling following the steps described in Section 3.3.2. In this sense, it is noted580

that no modifications are required for eqs. (26) and (27) for the case where αTkαi(j) = 0.581

Appendix B. Calculation of Interstory Drifts582

The interstory drifts are calculated by means of the convolution integral, taking advantage of583

the linearity of the response with respect to the ground acceleration.584

ηi (t, z) =

∫ t

0

hi (t− τ) p (τ, z) dτ , i = 1, . . . , nη (B.1)

In the above equation, ηi represents the i-th interstory drift, hi is the corresponding unit impulse585

response function and p represents the ground acceleration, which depends both on time t and a586
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realization z of the standard Gaussian distribution. For the case considered in this contribution,587

the unit impulse response function is:588

hi(t) =

nφ∑
v=1

κTvφvφ
T
v ρ

φTvMφv

1

ωd,v
e−ζvωn,vt sin(ωd,vt), i = 1, . . . , nη (B.2)

where κv, i = 1, . . . , nη is a vector that couples the degrees-of-freedom of the model for calculating589

the intestory drifts; ρ is a vector that couples the ground acceleration with the degrees-of-freedom590

of the model; φv, v = 1, . . . , nD are the eigenvectors associated with the eigenproblem of the591

undamped equation of motion involving the mass M and stiffness K matrices of the model;592

ωn,v, v = 1, . . . , nD are the natural frequencies of the system; ζv, v = 1, . . . , nD are the corre-593

sponding damping ratios; ωd,v = ωn,v
√

(1− ζ2v ), v = 1, . . . , nD are the damped frequencies; and594

nφ is the number of modes retained for modal analysis [61].595

As the stochastic ground acceleration is represented by means of the Karhunen-Loève expansion,596

the interstory drift evaluated at discrete time instant tk is approximated as:597

ηi(tk, z) =
k∑
l=1

∆tεlhi(tk − tl)Bl:z, i = 1, . . . , nη, k = 1, . . . , nT (B.3)

where ∆t is the time discretization; nT is the total number of discrete time instants; Bl: denotes the598

l-th row of matrix B (see eq. (1)), and εl is a coefficient depending on the numerical integration599

scheme used in the evaluation of the convolution integral. In this particular case, εl is chosen600

according to the trapezoidal integration rule [62], yielding εl = 1/2 if l = 1 or l = k; otherwise,601

εl = 1. From eq. (B.3), it is straightforward to see that the i-th interstory drift at the k-th602

time instant can be represented in the form ηi(tk, z) = aTi,kz, where ai,k is a vector of constant603

coefficients. Such representation matches with the type of problems considered in this contribution,604

where the response of interest is a linear combination of a number of parameters following a605

Gaussian distribution (see Section 2.1).606
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[33] P. Koutsourelakis, H. Pradlwarter, G. Schuëller, Reliability of structures in high dimensions,682

part I: Algorithms and applications, Probabilistic Engineering Mechanics 19 (4) (2004) 409–683

417.684

[34] E. Zio, The Monte Carlo Simulation Method for System Reliability and Risk Analysis,685

Springer London, 2013.686
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[59] P. Beaurepaire, H. Jensen, G. Schuëller, M. Valdebenito, Reliability-based optimization using745

bridge importance sampling, Probabilistic Engineering Mechanics 34 (2013) 48–57.746

[60] I. Papaioannou, K. Breitung, D. Straub, Reliability sensitivity estimation with sequential747

importance sampling, Structural Safety 75 (2018) 24 – 34.748

[61] A. Chopra, Dynamics of structures: theory and applications to earthquake engineering, Pren-749

tice Hall, 1995.750

[62] W. Gautschi, Numerical Analysis, 2nd Edition, Birkhäuser Boston, 2012.751
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