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Abstract 

Recent advances in affordable sensing technologies have enabled motion-based 

interaction (MbI) for head-mounted displays (HMDs). Unlike traditional input devices 

like the mouse and keyboard, which often offer comparatively limited interaction 

possibilities (e.g., single-touch interaction), MbI does not have these constraints and 

is more natural because they reflect more closely people do things in real life. 

However, several issues exist in MbI for HMDs due to the technical limitations of the 

sensing and tracking devices, higher degrees of freedom afforded to users, and limited 

research in the area due to the rapid advancement of HMDs and tracking technologies. 

 

This thesis first outlines four core challenges in the design space of MbI for HMDs: 

(1) boundary awareness for hand-based interaction, (2) efficient hands-free head-based 

interface for HMDs, (3) efficient and feasible full-body interaction for general tasks 

with HMDs, and (4) accessible full-body interaction for applications in HMDs. Then, 

this thesis presents an investigation into the contributions of these challenges in MbI 

for HMDs. The first challenge is addressed by providing visual feedback during 

interaction tailored for such technologies. The second challenge is addressed by using 

a circular layout with a go-and-hit selection style for head-based interaction using text 

entry as the scenario. In addition, this thesis explores additional interaction 

mechanisms that leverage the affordances of these techniques, and in doing so, we 

propose directional full-body motions as an interaction approach to perform general 

tasks with HDMs as an example to address the third challenge. The last challenge is 

addressed by (1) exploring the differences between performing full-body interaction 

for HMDs and common displays (i.e., TV) and (2) providing a set of design guidelines 

that are specific to current and future HMDs. 

 

The results of this thesis show that: (1) visual methods for boundary awareness can 

help with mid-air hand-based interaction in HMDs; (2) head-based interaction and 

interfaces that take advantages of MbI, such as a circular interface, can be very 

efficient and low error hands-free input method for HMDs; (3) directional full-body 

interaction can be a feasible and efficient interaction approach for general tasks 

involving HMDs; (4) full-body interaction for applications in HMDs should be 
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designed differently than for traditional displays. In addition to these results, this thesis 

provides a set of design recommendations and takeaway messages for MbI for HMDs. 
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Chapter 1 Introduction 

Since Oculus raised a $2.5 million campaign for its Rift head-mounted displays 

(HMDs) series, there has been increasing popularity in the use of such devices. 

According to a report published in early 2020, sales of virtual reality (VR) HMDs will 

reach around seven million units, while augmented reality (AR) HMDs will climb to 

about 600 thousand units [254]. Forecasts project massive growth in HMD sales in the 

coming years, with HMDs expected to sell over 30 million units per year by 2023 

[254]. As the popularity of HMDs rapidly increases, improving interaction 

performance and experience for HMDs is of great value.  

 

There are two types of methods used by commercial HMDs: physical input devices 

(e.g., handheld controllers by Oculus Quest, Magic Leap 1) or motion-based input 

(e.g., bare hand interaction by Meta 2, head-based interaction by HoloLens). Handheld 

controllers, also called 3D mice [32], could provide position, orientation, and motion 

data of the hand in 3D space with the ability to complete a variety of tasks. However, 

controller-based interaction can be troublesome in many situations and may not be 

suitable for many users. Their limitations include, but not limited to, (1) batteries 

issues—(i) running out of batteries during the interaction could cause errors and hence 

lead to poor interaction performance and experience; (ii) going out for battery supplies 

during times that are risky for users to go out like COVID-19 pandemic period; (2) not 

suitable for people with special needs, such as users with hand disability due to hand 

tremors, could not manipulate a controller at all or with the precision required for 

certain tasks (e.g., text entry); (3) not suitable when the hands are occupied with other 

activities (e.g., cooking) and the controllers are not around (e.g., outdoor).  

 

This thesis mainly focuses on motion-based input, not only because they could avoid 

the limitations of the controller-based interaction but also because they are natural, 

practical, and more suitable for HMDs [275]. The rest of the chapter introduces 

motion-based interaction (its definition, types, and what this thesis intended to 

investigate for these interactions), followed by research questions, thesis statement, 

contributions, and thesis organization. 
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Section 1.1 Motion-based Interaction 

Aligned with a larger trend in human-computer interaction (HCI) around embodied 

interactions [59], motion-based interaction puts the body in the center of the interactive 

experience. In this thesis, the term motion-based interaction is defined as “interaction 

that relies on the changes in acceleration, orientation, the velocity of the user’s body 

part(s), where there is no need for direct contact with a pre-defined button or interactive 

surface.” 

 

 

Figure 1-1. Commercially available motion-based interaction: Hand-based interaction (a) for selecting 

a nearby object, (b) for selecting a distant object. (c) Head-based (Head+Hand) interaction. Possible 

addition: (d) Full-body interaction. 

 

Section 1.1.1 Hand-based Interaction 

Hand-based interaction has gained rapid attention since projects like Videoplace [143] 

and the movie Minority Report. The proliferation of reasonably-priced motion-

tracking cameras and sensors has warranted the possibility of hand-based interaction 

in many systems. For instance, it has been used for controlling (1) arbitrary medical 

computerized systems [24], (2) robotic hands [214], (3) unmanned aerial vehicles 

[118]. This interaction allows users to control a system without holding a physical 

input device, avoiding the issues brought by handheld controllers.  

 

Several HMDs (e.g., Oculus Quest, HoloLens, Meta 2) have enabled hand-based 

interaction for interacting with 3D applications. There are two types of interaction 

depending on the location of the object: (1) for an object that is reachable by hand, 

users need to move their hand to the item that they want to select and perform a hand 

gesture (e.g., grab) to confirm the selection (see Figure 1-1a); (2) for a distant object, 

users use hand ray point to the object and perform finger gestures to confirm the 

selection (see Figure 1-1b).  
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Although hand-based interaction is often thought to allow natural user interfaces, 

designing a good hand interaction experience for HMDs is challenging. A typical 

reason is the lack of boundary information of the limited tracked area for the hand-

based interactions. Because of this, users may easily move their hand(s) outside the 

tracked area during the interaction, especially in dynamic tasks (e.g., when translating 

an object). Boundary awareness issues have been observed in early works with other 

displays [48,52,183] and are also an issue for HMDs due to technical limitations of the 

motion sensors. Therefore, the research presented in this thesis firstly aims to 

investigate how boundary awareness can be provided in HMDs during hand-based 

interaction. 

 

Section 1.1.2 Head-based Interaction 

Even though it is rarely studied in other displays, head-based pointing, controlled by 

head motions, has become one of the primary metaphors for acquiring targets in 

current HMDs [9]. A ray is cast from the virtual camera to the virtual environment to 

serve as a pointing mechanism, where the end of the ray is akin to a cursor. This head-

based pointing method is often used together with hand gestures, where users need to 

use their head to move the cursor to point to the target and perform hand gestures for 

confirming selection (see Figure 1-1c). This type of hybrid interaction suffers hand-

related issues since it involves using the hand for indicating the selection.  

 

Dwell technique has been used for head-based interaction to enable hands-free 

interaction [294]. Instead of using a hand gesture for indicating a selection, 

Head+Dwell selects the target by dwelling over it for a period of time. However, this 

technique also has limitations. For instance, a long dwell time could decrease the 

performance, while a short dwell time could cause errors [127]. In addition, the pre-

set dwell time always “pushed” users to make quick decisions, which could be stressful 

[142]. Thus, the research presented in this thesis secondly aims to explore how to 

design an efficient hands-free and dwell-free head-based interaction for HMDs. 

 

Section 1.1.3 Full-body Interaction 

Instead of just using the hand or head gestures (motions), full-body motion-based 

interaction uses the human body as a whole unit [20] (see Figure 1-1d). This type of 
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interaction has been initially widely studied in video games [85,176,196] and has been 

now used in a broader context such as museums [211], motor rehabilitation [233], 

learning environments [172]. Full-body interaction could avoid the pitfalls of hand-

based interaction (i.e., arm/hand fatigue). Besides, it encourages physical activity in 

offices and homes and, as such, can bring health benefits to users who are living a 

sedentary lifestyle—e.g., just ten minutes of physical activity can help users gain 

cognitive and physical benefits [137].  

 

Although full-body interaction could provide various benefits to the HMD users, the 

feasibility of this type of interaction for HMDs remains unknown (i.e., studies on full-

body motion-based interaction were with computer monitors or televisions, where 

motion sickness is not an issue). Thus, the research presented in this thesis thirdly aims 

to investigate the feasibility and efficiency of full-body interaction for general tasks 

with HMDs and finally aims to explore full-body interaction for applications in HMDs. 

 

Section 1.2 Research Questions 

This thesis aims to answer the following research questions (RQ): 

RQ1 – Chapter 5 How can visual boundary awareness techniques support mid-air 

hand-based interaction? 

RQ2 – Chapter 6 Can other types of non-standard interfaces, such a circular layout, 

achieve an efficient hands-free head-based interaction? 

RQ3 – Chapter 7 Are directional full-body interaction feasible and efficient for 

general tasks with HMDs? 

RQ4 – Chapter 8-9 Will HMDs affect users experiencing full-body interaction? 

RQ5 – Chapter 8-9 Will sickness mitigation factors in other contexts work for full-

body motion-based interaction? 

 

Section 1.3 Thesis Statement 

The goal of this dissertation is to design motion-based interaction techniques and 

interfaces for HMDs with consideration of user performance and user experience. In 

specifics, this research focuses on addressing the following Core Challenges (CC) in 

motion-based interaction for HMDs: (CC1) boundary awareness for hand-based 

interaction, (CC2) efficient hands-free head-based interface for HMDs, (CC3) efficient 
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and feasible full-body interaction for general tasks with HMDs, and (CC4) accessible 

full-body interaction for applications in HMDs.  

 

Section 1.4 Contributions 

This dissertation addresses the Core Challenges in motion-based interaction and 

interfaces for HMDs. In this context, it makes the following main contributions: 

• Visual methods for boundary awareness can help with hand-based interaction 

in HMDs, but their effectiveness and application are user-dependent (CC1). 

• Head-based interaction with other types of interfaces, such as a circular 

layout for a typical keyboard, can be valuable additions to dwell-, device-, 

and hands-free interaction for HMDs. It is an efficient and low error input 

technique for HMDs (CC2). 

• Directional motion-based interaction can be an efficient and feasible input 

technique for general tasks with HMDs. It could outperform (1) hand-based 

interaction regarding task performance and user experience and (2) hybrid-

based (head+hand) interaction in user experience (CC3). 

• Providing a list of full-body gestures and design guidelines for full-body 

exergame in HMDs (CC4).  

 

Section 1.5 Dissertation Organization 

As shown in Figure 1-2, in the following three chapters, we focus on identifying Core 

Challenges of motion-based Interaction for HMDs. Specifically, Chapter 2 and 

Chapter 3 identify challenges of motion-based Interaction for HMDs and Chapter 4 

summarizes four core challenges that we selected to address in this thesis. From 

Chapter 5 to 9, we focus on addressing these four Core Challenges. Finally, in Chapter 

10, we discuss the findings of this thesis, conclude the work and list future work of 

motion-based interaction for HMDs. Details of the dissertation organization shown 

below. 

 

Chapter 2: Literature Review – This chapter provides a detailed description of HMDs 

(i.e., history, types of HMDs in the consumer market, user experience-related issues 

with current HMDs), and summarizes current and potential motion-based interactions 

that can be used for HMDs. 
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Figure 1-2. Structure of the thesis. 

 

Chapter 3: Exploratory Study of Motion-based Interaction for HMDs – This part of 

the dissertation aims to confirm the validation of issues pointed by Chapter 2 (i.e., 

boundary awareness for hand-based interaction and efficiency issue of Head+Dwell 

technique). 

 

Chapter 4: Core Challenges and Research Questions in the Design Space of Motion-

based Interaction for HMDs – This chapter first lists four Core Challenges needed to 

be addressed in this thesis based on findings from the literature review (i.e., Chapter 

2) and exploratory study (i.e., Chapter 3). Then it explains why other challenges (e.g., 

sweating in HMDs, gesture vocabulary, the ideal gesture set) are not covered in this 

thesis. The four Core Challenges selected are: (i) boundary awareness for hand-based 

interaction, (ii) efficient hands-free head-based interaction for HMDs, (iii) efficient 

and feasible full-body interaction for general tasks with HMDs, and (iv) accessible 

full-body interaction for applications in HMDs.  
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Chapter 5: Visual Methods for Boundary Awareness for HMDs – In this chapter, we 

explore visual techniques for boundary awareness in HMDs, focusing on object 

translation tasks. Through a systematic formative study, we first identify the 

challenges that users might face when interacting with HMDs without any boundary 

awareness information (i.e., how current systems work). Based on the findings, we 

then propose four methods (i.e., static surfaces, dynamic surface(s), static coordinated 

lines, and dynamic coordinate line(s)) and evaluate them against the benchmark (i.e., 

baseline condition without boundary awareness) to make users aware of the tracked 

interaction area. Our results show that visual methods for boundary awareness can help 

with dynamic mid-air hand interactions in HMDs, but their effectiveness and 

application are user-dependent.  

 

Chapter 6: RingText: Dwell-free and Hands-free Interaction for HMDs Using Head 

Motions – In this chapter, we present a case for text entry using a circular keyboard 

layout for HMDs that is hands-free for letter selection. The design of RingText follows 

an iterative process, where we initially conduct one first study to optimize its design. 

Our second study compares the text entry performance of RingText with four other 

hands-free techniques and the results show that RingText outperforms them. Finally, 

we run a third study lasting four consecutive days with ten participants (five novice 

users and five expert users) doing two daily sessions and the results show that 

RingText is quite efficient and yields a low error rate. At the end of the eighth session, 

the novice users can achieve a text entry speed of 11.30 words per minute (WPM) after 

60 minutes of training while the expert (more experienced) users can reach an average 

text entry speed of 13.24 WPM after 90 minutes of training. 

 

Chapter 7: DMove: Directional Full-body Interaction for HMDs – This chapter 

presents DMove, directional full-body interaction for HMDs that is hands-free and 

device-free. It uses directional walking as a way to interact with virtual objects. To use 

DMove, a user needs to perform directional motions such as moving one foot forward 

or backward. We compare DMove with two approaches—hand-based interaction and 

hybrid-based (head+hand) interaction for menu selection tasks. Results show DMove 

causes fewer errors than hand-based interaction, leads to a lower overall workload than 

hand-based interaction, and brings a better user experience than hand-based interaction 

and hybrid-based interaction. 
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Chapter 8: Assessing the Effects of Tasking Mode in Full-body Motion-based 

Exergame – This chapter investigates the effect of the (1) task mode (single- and multi-

tasking) on exergame and (2) explore the differences of user performance and 

experience in between playing exergame between HMDs and a 50-inch 4K TV. 

Findings show that (1) participants have the same level of game experience and 

simulator sickness when playing the exergame in VR and Large Display; (2) VR has 

increased participants’ Theta wave; (3) participants believe multi-tasking is more 

challenging and show a higher level of simulator sickness than single-tasking; (4) 

participants have a worse game performance in multi-tasking than single-tasking. 

 

Chapter 9: Exploring the Effects of Viewing Perspective in Full-body Motion-based 

Exergame – This chapter investigates the effect of the (1) viewing perspective (first-

person and third-person perspective) on exergame and (2) explore the differences of 

user performance and experience in between playing exergame between HMDs and a 

50-inch 4K TV. This study demonstrates that youth who played gesture-based 

exergame in HMD had a higher level of exertion (%HRmax, calories consumption, 

and Borg RPE), although the number of performed gestures were not significantly 

different. They also felt that HMD was much more challenging, immersive (flow, 

sensory and imaginative immersion), and had a lower negative effect than the TV; 

however, HMD was more likely to make youth have higher cybersickness. 

 

Chapter 10: Discussion, Conclusion, and Future Work – This chapter first presents 

how we addressed the Core Challenges and Research Questions; meanwhile, it lists 

contributions that have been made for each Core Challenge. Then, this chapter 

proposes a set of design recommendations and takeaway messages of motion-based 

interactions for HMDs. Finally, it concludes the dissertation and provides future work 

on motion-based interaction for HMDs. 
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Chapter 2 Literature Review 

This chapter reviews the existing literature, that is essential to the investigations within 

this thesis, on head-mounted display (HMD) technologies and their limitations, as well 

as motion-based interactions for HMDs.  

 

Section 2.1 Head-mounted Displays 

In 1960, Morton Heilig invented the first HMD, Telesphere Mask, which can provide 

stereoscopic 3D and comprehensive vision with stereo sound and play non-interactive 

films. However, unlike modern HMDs, Telesphere Mask is not capable of motion 

tracking. The first motion tracking-enabled HMD—Headsight was created in 1961. It 

was developed for immersive remote viewing of dangerous situations by the military. 

The user's head movements would move a remote camera, allowing the user to look 

around the environment naturally, allowing the user to look around the environment 

naturally. Headsight lacked the integration of computer and image generation. 

 

The first computer-supported HMD was developed in 1968 by Sutherland [256]. 

However, due to its weight, it had to be suspended from the ceiling. The user also had 

to be strapped into the device. The graphics generated by the computer were wireframe 

rooms and objects. After that, HMDs had been used for many different applications 

and received significant research and development in the 1990s. However, the HMDs 

did not reach consumers. Possible reasons are poor technical quality (e.g., resolution, 

field-of-view, comfort), graphical quality, and prohibitive cost [121]. The precise 

dividing line between the commercial failures of consumer HMD in the past and the 

modern HMD revolution happened in 2012, where Oculus raised a $2.5 million 

campaign for its product Rift. With its two development kits released in 2013 and 

2014, Oculus released its first commercial version (CV)—Oculus CV 1 ($699) in 

2016. Since then, affordable HMDs such as HTC VIVE ($799), Microsoft HoloLens 

1 ($3000), Magic Leap 1 ($2300) have become more readily available to the public. 

The International Data Corporation report 1  indicates the worldwide shipments of 

HMDs are expected to reach 7.1 million units in 2020 to 76.7 million units in 2024. 

 

 
1https://www.idc.com/getdoc.jsp?containerId=prUS46143720   

https://www.idc.com/getdoc.jsp?containerId=prUS46143720
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Section 2.1.1 Tethered HMD 

Tethered HMDs are HMDs connected to powerful and expensive gaming desktops. A 

typical device of this type is Oculus Rift Virtual Reality (VR) HMD, Meta 2 

Augmented Reality (AR) HMD, and HP Windows Mixed Reality (MR) HMD, with 

others, like HTC VIVE, Valve Index, Lenovo Explorer. All tethered HMDs are 

capable of six degrees of freedom (DoF) tracking, which means that they could check 

the user's position and orientation. In addition, since a dedicated gaming desktop does 

the computing power, the tethered HMDs are generally capable of rendering vibrant 

graphical scenes at high frame rates and visual quality. However, this type of HMD 

has limited mobility and is high cost. 

 

Section 2.1.2 Standalone HMD 

Standalone HMDs are a more portable and accessible way to interact with the extended 

reality (AR/VR/XR) applications since these contents are installed and run on the 

device itself or the smartphone connected to the HMD. Standalone HMDs are widely 

available due to their low cost, simple setup process, light, and accessibility, but suffer 

from low graphical quality, poor battery life, and thermal radiation [27].   

 

Standalone HMDs can be classified depending on the source of computing power and 

their DoF tracking.  

1. Smartphone-empowered HMDs: this type of HMDs (e.g., Google Cardboard 

or Gear VR) requires an additional smartphone to be connected to the HMDs 

(typically via USB-C or micro-USB) and acts as the headset’s display, 

processor, and rotational tracker (i.e., smartphone’s built-in inertial 

measurement unit). Due to the absence of RGB and depth cameras, this type 

of HMDs can only provide 3-DoF tracking (i.e., rotational tracking), limiting 

its experience. 

2. All-in-one HMDs: This type of HMDs contains all necessary components 

such as processor, operating system (built-in Android or Windows system), 

the audio system to provide an extended reality experience. Depending on 

their DoF tracking capabilities, they can be further classified into all-in-one 

(i) 3-DoF HMDs and (ii) 6-DoF HMDs. All-in-one 3DoF HMDs (e.g., 

Oculus Go, Xiaomi Mi) rely on its built-in inertial measurement unit to 
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provide rotational tracking. On the other hand, all-in-one 6-DoF HMDs (e.g., 

Oculus Quest, Microsoft HoloLens, Magic Leap) provide both rotational and 

positional tracking by on-device RGB and depth cameras. This type of HMDs 

has gained rapid attention due to its low cost when compared with tethered 

HMDs.  

 

Section 2.1.3 User Experience-related Issues with Current HMDs 

One major drawback that frequently happened on HMDs, especially for VR HMDs, is 

sickness. It has been found that many people report experiencing simulator sickness 

symptoms (e.g., headaches, stomach awareness, nausea, disorientation [150]) from 

HMD use [64,84,102,218]. Here we classified these factors into hardware, human, and 

content. 

 

Hardware field-of-view (FoV) is one of the hardware-related features that could lead 

to VR sickness. Literature shows that reducing the hardware FoV could alleviate users’ 

discomfort. Several methods have been developed to reduce sickness: (1) changing the 

size of display or distance between the user and the screen [243], (2) using a dynamic 

FoV system based on the electrophysiological signals of the participant [135], (3) 

applying content-type based directional FoV restriction method [134]. Latency could 

also lead to sickness, especially when the latency is inconsistent during the experience 

[61]. In addition, DiZio and Lackner [57] suggest that the severity of sickness 

increased as the latency increased. However, this is not supported by [61]. Overall, to 

minimize sickness caused by latency, designers should minimize the latency and keep 

it consistent throughout the VR experience.  

 

Age, gender, motion sickness susceptibility are common human factors that are 

discussed in VR sickness. Regarding age, a recent meta-analysis by Saredakis et al. 

[231] suggests that younger adults (<35) often reported a higher simulator sickness 

compared with the older age group. The effect of gender on sickness also remains 

mixed, with a few studies suggesting females are more susceptible to VR sickness than 

males [103]. However, a meta-analysis by Saredakis et al. [231] did not find a 

significant correlation between gender and sickness. Motion sickness susceptibility 

could also act as an essential index for predicting the degree of VR sickness. Several 
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studies indicate that users vulnerable to motion sickness are likely to report higher VR 

discomfort [157,253].  

 

Content-related factors can be associated with VR sickness. A typical content-related 

factor is the reference frame. Studies suggest that VR sickness decreases when fixed 

visual stimuli are presented (e.g., a virtual nose [274]). Secondly, the duration of VR 

experience could also lead to sickness; literature suggests that users can experience 

sickness even for a short period (<10 min) of VR play [55]. Furthermore, body motion 

also plays a crucial role in inducing simulator sickness. Rotational movements could 

lead to more significant discomfort when compared to translational movements 

[26,132]. Furthermore, the discomfort could be worsened when the dual-axis are 

involved [132].  

 

Overall, this thesis has considered sickness an essential factor that has to be measured 

during HMD usage, especially interaction involving rapid head and full-body motions. 

This thesis also aims to address sickness by identifying possible factors that could lead 

to higher sickness levels (see Chapter 8 and Chapter 9). 

 

Section 2.2 Motion-based Interaction for HMDs 

As mentioned in the introduction, the term of motion-based interaction in this thesis is 

defined as “interaction that relies on the changes in acceleration, orientation, the 

velocity of the user’s body part(s), where there is no need for direct contact with a pre-

defined button or interactive surface.” Here, we summarize four methods that can be 

used for HMDs.  

 

Section 2.2.1 Hand-based Interaction 

Hand-based interaction is one of the most commonly used selection methods for 

HMDs [170] because it is assumed to be natural and practical. For selecting a near 

object [182], users first need to choose the target object by hovering the hand over it 

and then selecting it by performing a gesture—e.g., in Meta 2, users select the item by 

making a grab gesture. To select an item that is placed further away from the user, 

Mine [182] suggests that users can utilize their finger to point at the object, followed 

by a selection gesture. Studies have looked at finger-pointing [22,154], but these 
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techniques require an additional external sensor like Kinect placed at a distance to 

detect and classify the gestures. Recently, Oculus Quest and HoloLens 2 have 

proposed palm pointing, where a ray is extended from users’ palms towards the virtual 

objects; however, these interactions suffer from limitations such as sensitivity to 

lighting conditions and line-of-sight conditions of the motion camera. 

 

One limitation of mid-air hand interaction is boundary awareness (or lack of it), which 

is an issue that can occur in motion tracking applications that rely on any sensor. For 

instance, for mid-air interaction, in particular, the user’s hand can easily go out of or 

leave the tracking volume (or area) that the devices’ sensor(s) can capture, but the user 

may not have a conscious awareness that their hands are no longer tracked [183]. This 

has been observed in early works with motion tracking devices such as Leap Motion 

[52,183] and Kinect [48] that unavoidably had a restricted tracked area due to technical 

limitations.  

 

In HMDs, motion sensors are embedded in the front of the HMD. Hence, users are 

required to keep their hands to chest level, which is uncomfortable and can quickly 

lead to fatigue [114,251]. Because of the small tracked area by the motion sensors and 

the fatigue during the interaction, there are chances that users could move their hands 

off the motion camera’s tracked area (i.e., boundary awareness), which often leads to 

issues such as misrecognition of gestures, registration errors [144]. Therefore, there is 

a need first to confirm whether this is an issue for HMDs and address it if it is a 

validated issue. 

 

Section 2.2.2 Head-based Interaction 

Head-based interaction has been actively studied for HMDs [32,46,147]. Relying on 

the HMDs’ built-in IMU sensors, head-based pointing has been widely adopted as a 

standard way of interacting with virtual objects in HMDs [147]. However, head-based 

pointing alone can only identify the target object to be selected. It lacks an integrated 

method to indicate selections [182].  

 

Several methods have been proposed to fill this gap for head-only input. One possible 

solution is the crossing-based technique. It has been successfully used with many input 
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methods (e.g., gaze input [145], paper-based input [60], and direct touch input [160]) 

and applied on many display systems (e.g., desktop [8], touchscreen [160], remote 

screen [194]). Yan et al. [289] proposed HeadCross, which allows users to select an 

object by moving the pointer across the target boundary and then turn it back 

immediately. This goal crossing selection design is more expressive than the point and 

click interfaces [2,8,160] and allows users to issue several actions in one single stroke 

[8,56]. However, crossing requires users to make additional turning for selection 

quickly, which could increase the risk of simulator sickness [295]. 

 

The most used method is dwell, where users need to turn the head and move the cursor 

over the target object in a fixed time [126,202,245,263]. It has been used for menu 

selection and text entry [294]. Research [45] suggests that the dwell-based technique 

could lead to fewer errors and is perceived as more usable, more comfortable, and less 

fatiguing than the touchpad-based technique. However, the dwell technique is slower 

than the touchpad-based technique.  

 

Since head-only input lacks efficiency, head-based interaction has been coupled with 

other input modalities. One typical motion-based input that is often used with head-

based interaction is hand-based gestures. For instance, HoloLens require users to move 

the cursor to the target item and select it by finger “air tap” gesture. Although this 

hybrid (Head+Hand) interaction style might improve the efficiency and avoid extra 

sickness that causes by additional rapid head motions [295], it unavoidably suffers 

issues that are related to hand-based interaction (i.e., see Hand-based Interaction). 

 

Section 2.2.3 Foot-based Interaction 

Foot-based interaction techniques [265] have been widely explored for many scenarios 

(e.g., interactive animation system [292], 3D interaction tasks [249], and navigating 

spatial data [234]) in different using poses (e.g., seated [264], standing [232], and 

walking [288]). It can be grouped into two categories based on how foot actions are 

mapped to system commands [5]: (1) Discrete foot gestures are mapped to specific 

tasks. For instance, it has been widely researched for operating an in pocket mobile 

phone (e.g., locking and unlocking a mobile phone, making a phone call, performing 

foot-step to operate a menu selection system while jogging [49,237,288]); (2) 
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Continuous gestures are those that are mapped to tasks with a spatial component (e.g., 

moving the foot in one direction in space). It has been widely used in many areas, 

includes but not limited to target selection in a desktop computer [116], making a menu 

selection with mobile applications [219], navigating spatial data with a large display 

[234].  

 

Pure foot-based interactions have been proposed to increase the input space for desktop 

[248] and mobile [18,70]. It has also been used in conjunction with many other input 

methods. For instance, foot interaction has been used with (1) multi-touch hand 

gestures for navigating spatial data with a large display [234] and playing games on 

mobile phone [162], (2) mid-air hand gestures for interacting with a handheld device 

[161,163], (3) head motions to navigate for the game World of Warcraft [248], (4) 

gaze input for interacting with the desktop environment [89,216], and (5) mouse and 

keyboard for target selection [232].  

 

Since the emergence of HMDs (e.g., VR and AR) in 2012, the applicability of foot-

based interaction for HMDs has been studied. Early work by Matthies et al. [177] 

presented a proof of concept wearable foot interface prototype to provide hands-free 

interaction for virtual and real environments. Later, Fukahori et al. [76] used sock-

placed pressure sensors to detect the shifting of the user’s weight on their foot for 

subtle gestures to control HMDs interfaces. Recently, Muller et al. [192] proposed foot 

tap-based interaction for HMDs using an optical tracking system. Furthermore, foot-

based interactions have been used (1) as locomotion technique for HMDs [277], (2) 

for controlling an AR game [70], and (3) for exploring a VR representation of a planet 

[69].  

 

Section 2.2.4 Full-body Interaction 

Instead of just relying on the hand or head gestures (motions), full-body motion-based 

interaction uses the human body as a whole unit [20]. Full-body interaction has been 

widely used/studied in video games because (1) the consumer level motion-tracking 

devices (i.e., Kinect) were initially published with video game consoles, and (2) video 

game is a good platform for exploring gestures and testing gesture recognition 

performance [32]. Nowadays, full-body interaction has been now used in a broader 
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context such as museum [211], motor rehabilitation [233], learning environments 

[172].  

 

Full-body interaction could avoid the pitfalls of hand-based interaction (i.e., arm/hand 

fatigue—holding the hand in the mid-air for long periods). In addition, it can 

encourage physical activity in offices and homes and, as such, can bring health benefits 

to their users—e.g., just ten minutes of physical activity can help users gain cognitive 

and physical benefits [137].  

 

Despite the potentials and benefits of full-body interaction are promising, it only 

receives limited attention for HMDs. One reason is that the feasibility of this 

interaction for HMDs remains unknown because HMDs could bring motion sickness 

and related issues to users. Hence, designing feasible full-body interaction is a key 

research challenge. Addressing this research challenge and providing design 

guidelines for full-body interaction for HMDs could benefit many applications (e.g., 

exergame [85], rehabilitation [233], learning [172]). 

 

Section 2.3 Summary 

This chapter presents an overview of the field of motion-based interaction for HMDs. 

We provided a detailed description of HMDs regarding their history, type of HMDs 

available in the current consumer market, and user experience issues while using 

HMDs. Then, we define motion-based interaction used in this thesis and present four 

types of motion-based interaction that can be used for HMDs. 

 

The literature review shows that (1) there is a lack of comparison between motion-

based interaction and controller-based interaction, (2) boundary awareness issues 

might affect mid-air hand-based interaction in HMDs, (3) there might be a need to 

propose a hands-free efficient head-based input because Head+Dwell can be 

inefficient, (4) there is a need to design feasible full-body interactions for HMDs.  

 

The following chapter outlines an exploratory study to compare commercially used 

motion-based interaction with controller-based interaction. Most importantly, it is to 
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confirm whether (1) boundary awareness is an issue for hand-based interaction for 

HMDs and (2) current hands-free head-based interaction is inefficient.  

 

We selected text entry as the interaction task in the exploratory study (i.e., next 

chapter) because it is an essential activity in all interactive systems, including HMDs 

[32], and it is a relatively new research area with modern HMDs. In addition, it is also 

a major interface for many content production applications, including but not limited 

to document editing, programming, web browsing [98]. Further, text entry activities 

like instant messaging and email communication are common platforms for 

communicating with family, friends, and colleagues.  

 

In addition, text entry is chosen because it could expose issues that we explored from 

the literature review (see Table 2-1): 

1. Hand-based: to select the letter from the virtual keyboard, users have to hold 

and move their hand in the mid-air, which could cause arm and hand fatigue 

[114,251]. This tiredness would likely cause their hands to gradually move 

outside the interaction area (lack of boundary awareness [183]).  

2. Head+Hand: to indicate a selection, users are required to keep their hands to 

chest level, which is uncomfortable and can quickly lead to fatigue [114,251], 

leading to move their hands outside the interaction area (lack of boundary 

awareness [183]). 

3. Head+Dwell: to indicate a selection, users must keep the cursor staying on 

the target for a period of time. As mentioned in [127], a long dwell time could 

decrease the performance, while a short dwell time could cause errors. 

Besides, a pre-set dwell time always “pushed” users to make quick decisions, 

which could be stressful for users [142]. 

 

Table 2-1. Interaction techniques tested in the next chapter and the related issues that would occur 

based on the literature. 

Technique Issue 

Hand Arm and hand fatigue [114,251]; Boundary awareness [183] 

Head+Hand Arm and hand fatigue [114,251]; Boundary awareness [183] 

Head+Dwell Dwell-related performance issue [127]; Stress [142] 
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Chapter 3 Exploratory Study of Motion-based Interaction for 

HMDs 

Section 3.1 Introduction 

Text entry is an essential activity in all interactive systems, including virtual reality 

(VR) and augmented reality (AR) head-mounted displays (HMDs). There have been 

some advances in this area for VR [98,138,294,295], but it is still quite underexplored 

for AR. Unlike VR, AR users can see through the transparent HMD and it is possible 

to access a physical keyboard. For example, the HoloLens can connect to a wireless 

physical keyboard. However, traditional input devices such as mice and keyboards are 

not suitable for outdoor environments, as they require a type of flat surface to operate 

on [260]. Moreover, AR HMDs are meant to be mobile devices that enable users to 

move within both indoor and outdoor environments [66,156]. Therefore, using a 

physical keyboard can be useful for text entry in VR settings [98] as the VR HMDs 

are commonly used in indoor scenarios, but it is unlikely the most suitable way for AR 

HMDs. 

 

Text entry in AR differs from VR in many aspects. The hand representation can be 

hidden or virtually presented in VR [99] but not for AR HMDs. There are some known 

issues that only exist in AR, including layer interference, color blending problem, and 

layout foreground-background. These issues affect the text readability, visibility, 

depth ordering, object segmentation, and scene distortion [144] and make it difficult 

for users to acclimate to the content viewed through see-through displays [198]. Since 

the text and the virtual keyboard are typically viewed in a fixed location within an 

HMD screen, other people and objects in the background can become noise and hinder 

accomplishing various tasks, including entering text.  

 

Early work has investigated using a glove for AR HMDs to interact with the system to 

support direct manipulation of virtual objects, interaction with symbolic data (e.g., text 

entry), and doing military logistics tasks in both indoor and outdoor settings [260]. 

However, current AR HMDs do not come with an expensive glove specially designed 

to support such interactions. On the other hand, pointing methods are not only low-

cost but can also be used in both indoor and outdoor scenarios. In addition to head-

based pointing, other methods rely on the user's hand or involve a handheld device for 
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cursor positioning. Pointing methods are widely used in both VR and AR HMDs and 

as such it is worth exploring their suitability and relative performance with virtual 

keyboards. In this research, our primary goal is to explore pointing methods in AR that 

can work with a virtual keyboard and does not rely on specialized peripheral devices 

(i.e., Chord [164]) that typically do not come with the AR HMDs. 

 

Our exploration considers three user case scenarios.  

1. When users have access to a ray-casting handheld device. The assumption is 

that the users have access to a controller that can interact with an AR HMDs 

using ray-casting, a technique commonly used in VR HMDs and is also 

available in AR HMDs [9]. For example, the Magic Leap 1 provides a 

handheld controller that uses this technique. 

2. Hand-based but device-free. There are two scenarios in this condition. (i) 

Hybrid interaction (head+hand), which relies on the use of the head to 

position the cursor pointer on the letters of the keyboard and the hand to 

trigger their selection. This approach has been used partially in some AR 

HMDs like HoloLens. (ii) Hand-based interaction, which only relies on mid-

air hand motions to move a pointer over the letters and a hand gesture to 

indicate their selection. This approach has been used partially in the Meta 2 

and it is thought to be one of the most natural selection methods used to 

interact with an AR environment [170].   

3. Both device-free and hands-free. This represents the cases where no device is 

available, and it is based on head motions only for positioning the cursor and 

making letter selections. It is suitable for cases where users cannot use their 

hand or lift it comfortably (e.g., a user using AR HMD seating on a chair 

inside a bus that has limited space or with their hands encumbered because 

they are holding other objects). This is suitable also for environments that are 

too noisy for hand tracking (e.g., a user using the AR HMD while walking 

within a shopping mall because there are likely other moving objects in the 

background).  

 

In short, we are comparing four standard, common HMDs Pointing Methods: Head, 

Hand, Hybrid (i.e., Head plus Hand like what HoloLens uses), and Controller. We 



Chapter 3 Exploratory Study of Motion-based Interaction for HMDs  

 

20 

 

also want to test two of the most common Input Mechanisms for making selections: 

Tap and Swype. Both Pointing Methods or Input Mechanisms have been partially 

studied for VR HMDs (e.g., [145,251,294]) but, to our knowledge, not for AR HMDs. 

Therefore, we want to compare eight text entry combinations of Pointing Methods and 

Input Mechanisms for text entry with respect to their performance, error rates, and user 

preferences. The results of our experiment with 24 participants (12 using Swype and 

12 Tap) show that text entry performance of the Controller is comparable to other 

studies in VR [251,294] and non-VR [88,175]. When compared with all the three 

device-free pointing techniques, the Controller approach outperforms them in text 

entry performance and leads to better overall user experience. Our results also show 

that Swype is as fast as Tap and could cause lower uncorrected errors even for users 

who are new to Swype. On the other hand, these two input mechanisms do not show 

any significant difference in terms of a user’s text entry experience, feeling of 

immersion, motion sickness, and most NASA TLX workload subscales. Finally, 

Swype is found to cause a heavier temporal workload and frustration than Tap. 

 

Table 3-1 reviews examples of text entry techniques from other domains and devices 

that could be tailored for AR HMDs. To our knowledge, there has been no study that 

has explored text entry performance and user experience for AR HMDs. Our study 

represents the first systematic study of the eight possible combinations of Pointing 

Methods and Input Mechanisms. As such, the main contributions of this work include: 

(1) a first evaluation of four Pointing Methods × two Input Mechanisms (that is, eight 

possible combinations) for text input in AR HMDs regarding performance and user 

preference; (2) a set of design recommendations that are derived from our experimental 

results and observations during the experiment. 

 

Section 3.2 Evaluated Text Entry Techniques 

In this section, we describe how each combination of four Pointing Methods 

(Controller, Head, Hand, and Hybrid) and two Input Mechanisms (Tap and Swype) 

are operationalized in our experiment. 
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Table 3-1. Overview of text entry methods that have already been evaluated in VR that can potentially 

be used in AR (adapted from [251]): (1) hands-only, (2) head-only, (3) hybrid, (4) controller. 

Pointing 

Method 

Input 

Method 

Qwerty Eyes-

free 

Hands Haptic 

feedback 

Potential 

device-free 

for current 

AR HMDs? 

WPM 

in VR 

WPM 

other 

(1) Soft 

button 

selection 

✓  1-2   4-7 

[95] 

33-36 

[11] 

(2)/(3)/(4) Mid-air 

pointing 

✓  1-2  (✓) 15.4 

[251] 

13-19 

[175,

244] 

(2)/(3) Head 

pointing 

✓  0-1  ✓ 10-15 

[294] 

4.5 

[88] 

(1) Gamepad  (✓) 2 (✓)  8-15 

[295] 

6-7 

[278] 

(1)/(3) Physical 

keyboard 

✓ (✓) 1-2 ✓  24-67 

[138,

155] 

45-67 

[138] 

(1) Finger 

gestures 

 ✓ 1-2  (✓) 6 [95] 22-29 

[252] 

(1) Chording  ✓ 1 ✓  3 [95] 47 

[164] 

(1) Multi-tap  ✓ 1 ✓  12 

[95] 

20 

[164] 

 

Section 3.2.1 Controller 

One of the most common ways of interacting with virtual environments and their 

objects is via a handheld controller [222]. The device uses a ray cast from it to the 

virtual environment to serve as a pointing mechanism. The end of the ray is akin to a 

cursor. To implement it, we have adapted the HTC VIVE controller (ray-casting 

enabled with at least one active button) and used the SteamVR Unity plugin to enable 

it to work with an AR HMD. The users would type on a virtual keyboard by merely 

moving the controller to point to the desired letters (see Figure 3-1a). Selection is done 

by either Tap or Swype. 
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Controller+Tap. To select a letter, the user needs to move the cursor to the letter on 

the virtual keyboard and press the trigger button for selection (see Figure 3-1a). A Tap 

action is also required to select a recommended word and special characters (e.g., 

space/backspace). 

 

Figure 3-1. This figure shows how to Tap a letter by using the four pointing methods for AR HMDs. 

(a) Controller—the user uses a controller to move the cursor on the letter ’H’, and then presses the 

trigger button to confirm the selection; (b) Head—the user positions the cursor on the letter ’Y’, waits 

for 500 ms for the popup button to appear, then (1) moves the cursor to the popup button, and (2) 

returns to the letter ’Y’ to select it; (c) Hand—the user moves the hand to the letter ’K’ and makes a 

close palm gesture to selects it; (d) Hybrid (Head+Hand)—the user uses the head to move the cursor 

to the letter ’Y’ and makes a close palm gesture to make the selection. 

 

Controller+Swype. To type a word, the user needs to move the cursor to the first letter 

of the intended word and then click the trigger button on the controller to start the 

Swype action. When the user finishes Swyping, clicking the trigger button again ends 

the typing process. For special characters, the user needs to move the cursor to the 

corresponding block and then clicks the trigger button for selection. Figure 3-2  shows 

an example of a Swype action. 

 

 

Figure 3-2. For (Controller/Hand/Head)+Swype, to type the word ’world’ a user needs to follow these 

three steps: (1) Moving the cursor to the first letter ’W’ and performing a selection action to indicate 

the start of the Swype process; (2) then Swyping the letters one by one; and (3) Performing another 

selection action on the last letter (in this case ’D’) to indicate the end. 
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Section 3.2.2 Head 

Head-based pointing (or simply Head) is analogous to the Controller, but instead of a 

handheld device, only the HMD is used. A ray is extended from the HMD position 

towards the viewing direction into the virtual environment. The ray intersects the 

keyboard at a point and a blue cursor is given as a prompt (see Figure 3-1b).  

 

Head+Tap. Figure 3-1b shows an example of how a user completes a Head+Tap 

action. To enter a word, the user needs to move the cursor using their head to the 

corresponding letter. A letter selection is made via an outside-inside fashion [145] like 

a nod action.  To begin the process, the user moves the cursor to the target letter; then 

a button representing an action appears above the letter after a wait time of 500 ms. 

The user now needs to move the cursor to the button and after moves it back to the 

target to perform the selection (see Figure 3-3a). The user needs to do the action for 

selecting each letter, suggested word, space, and backspace. 

 

Head+Swype. Selection is like Head+Tap. To type a word, the user needs to perform 

the selection action on the first letter, then moves the cursor over the component letters, 

and finally finishes typing by doing the second selection action on the last letter (see 

Figure 3-3b). 

 

 

Figure 3-3. An example of typing the letter ’w’ (a) and the word ’world’ (b) in the Head approach. 

 

Section 3.2.3 Hybrid 

Head-based Pointing + Hand gesture (or simply Hybrid) is a HoloLens-like text input 

approach. Both implementations of Hybrid+Tap and Hybrid+Swype are analogous to 

the Head+Tap and Head+Swype, respectively. The only difference is that Hybrid uses 

a hand gesture (like a palm closing) to indicate a selection. Palm closing gesture was 

chosen because it can be accurately recognized by Meta 2. 
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Section 3.2.4 Hand 

This approach enables users to interact with the virtual keyboard with their hands only. 

The positions of the palm and hand gestures (i.e., grabbing) are captured via the front 

camera of the HMD. That is, we use the palm mid-air position to indicate the cursor's 

position that acts as the hand-based 'pointing' (or simply Hand). Users move the cursor 

according to their hands around the virtual keyboard (see Figure 3-1c).  

 

Hand+Tap. Figure 3-1c shows how a user completes a Hand+Tap. Selection is 

indicated by a palm closing gesture. The user selects a letter by moving the cursor 

using their hand to the corresponding letter and then selects it by doing a palm closing 

action. The user should do this to select either a letter, suggested word, or 

space/backspace. Either left or right hand can be used in this method. 

 

Hand+Swype. Selection is analogous to Hand+Tap. To Swype a word, the user needs 

to do a first selection gesture on the initial letter of the word to indicate the start, then 

moves the cursor over the other letters, and finally needs to do the second selection 

gesture on the last letter to indicate the end of the Swype process. To select a word 

suggestion, delete a letter or add a space, the user needs to move the cursor to the 

corresponding area, and then do the selection gesture. 

 

Section 3.2.5 Commonalities and Differences Between Swype and Tap 

When entering text, it is common for the system to suggest some recommended words 

based on the typed letters. We have also included the use of these suggested words. 

Both Swype [92] and Tap (using Symspell [81]) used Damerau–Levenshtein distance 

algorithm and the same library [298]; as such, the word suggestion performance should 

not affect the text entry performance. 

 

For Tap, because we do not know whether the user has finished entering the word, we 

cannot automatically add the best suggestion word into the sentence. All word 

suggestions appear in the selection blocks (see Figure 3-4a, on top of the keys). They 

are updated every time the user makes a change (i.e., adding or deleting a letter). To 

select a suggested word, the user needs to choose it from the corresponding selection 
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block. Hitting the space key will append a space after the input. Backspace deletes the 

last input, which can be a complete word or a single letter. 

 

For Swype, since there is a second selection action to indicate the end of entering a 

word, the system automatically adds the best word suggestion into the text field with 

four other possible words in the selection blocks (see Figure 3-4b). If the best word 

suggestion is the intended word, the user can confirm it by Swyping on the next word. 

If the best suggestion is not the intended word, the user selects the desired word from 

the selection blocks. The system also automatically appends a space after a word has 

been input. A delete action deletes the whole word that is last entered. 

 

 

Figure 3-4. The blue areas show the word suggestions for Tap (a) and Swype (b). In addition, for 

Swype, the best matched word is automatically added into the input field (the red area). 

 

Section 3.3 Empirical Study 

We conducted an experiment at a university lab with the four Pointing Methods (Head, 

Hand, Hybrid, and Controller) and two Input Mechanisms (Swype and Tap) to assess 

their relative performance (speed and error rates) and user preference (workload, 

motion sickness, user experience, and immersion level). 

 

Section 3.3.1 Participants and Apparatus 

Twenty-four unpaid participants (eight males and four females in each of the two 

groups) between the ages of 18 to 28 (mean = 21) were recruited randomly from the 

local university campus through a database of participants. All participants were 

familiar with the English alphabet because the language of instruction at the university 

in English but there were not native alphabet users—English was not their first 

language. Nineteen participants had some limited experience with AR HMDs—they 

had either seen and/or interacted with them. They all had normal or corrected-to-

normal vision and did not have any difficulties moving their arms and heads. The 

experiment was conducted using a Meta 2 AR HMD connected to a Windows 10 
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machine running Unity3D. A standard desktop computer was used; it had an i7 CPU, 

16 GB RAM and a Nvidia GeForce GTX 1080Ti GPU. Figure 3-5 shows the 

experimental setup. 

 

 

Figure 3-5. This figure shows the experimental setup. The HTC Vive optical trackers were placed at 

1.5m high and had a tracking space with 3 × 3m2. The keyboard is roughly 0.5m away from the 

participant which is recommended by the developers of the Meta 2 [299]. 

 

Section 3.3.2 Design 

The experiment followed a mix design approach, with one between-subjects 

independent variable, Input Mechanisms (Swype and Tap), and one within-subjects 

independent variable, Pointing Methods (Head, Hand, Hybrid, and Controller). The 

dependent variables were performance (speed and accuracy) and users' subjective 

feedback (workload, motion sickness, user experience, immersion). Each Input 

Mechanism was tested on 12 participants (that is, 12 for Swype and 12 for Tap). For 

each Pointing Method, participants needed to complete eight phrases which were 

randomly sampled from the MacKenzie phrase set [167]. To avoid learning effects, 

we counterbalanced the Pointing Methods. Aside from training phrases, we collected 

768 trials (24 participants × 4 Pointing Methods × 8 phrases). 

 

Section 3.3.3 Procedure 

To ensure that both groups have equal text entry ability in the actual experiment stage, 

participants were separated into two groups (Swype and Tap) based on their 

performance on a standard desktop PC from a pre-test. Before the experiment, 
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participants were told the goal of the investigation and the conditions that were to be 

tested. The order of the conditions was balanced across participants. In all conditions, 

participants were instructed to enter the text phrases as quickly and as accurately as 

possible. Error correction was allowed by using the backspace key. Before each 

condition, the Pointing Method was explained to the participants and they practiced 

two warm-up phrases. After the warm-up phrases, participants needed to complete 

eight phrases for each condition. The conditions were separated by a 5-minute break 

during which participants filled out the NASA TLX questionnaire [107], Motion 

Sickness Assessment Questionnaire (MSAQ) [87], Slater-Usoh-Steed Questionnaire 

(SUS), and User Experience Questionnaire (UEQ) [149]. After the experiment, we 

interviewed participants and asked them to comment on the techniques. The whole 

experiment lasted approximately one hour for each participant. 

 

Section 3.3.4 Results 

We analyzed the data using a two-way mixed ANOVA with Pointing Methods 

(Controller, Head, Hand, and Hybrid) as the within-subjects variable and Input 

Mechanisms (Swype and Tap) as the between-subjects variable. Bonferroni correction 

was used for pairwise comparisons and Greenhouse-Geisser adjustment was used for 

degrees of freedom for violations of sphericity. Because of our sample size, the 

significance threshold was set at p < .01 in our analyses. 

 

Text entry rate was measured in Words Per Minute (WPM), with a word defined as 

five consecutive letters, including the space character. For Swype, we use the 

following formula 

 
Equation 3-1 Swype technique text entry speed 

𝑊𝑃𝑀 =  
|𝑇|

𝑆
× 60 ×

1

5
 

 

(1) 

 
 

Where S was the time (in seconds) from the time when the user triggered the first start 

action to the last action. |T| was the number of characters in the transcribed text. 
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For Tap, we use the following formula 

 

Equation 3-2 Tap technique text entry speed  

𝑊𝑃𝑀 =
|𝑇| − 1

𝑆
 × 60 ×

1

5
 

 

(2) 

 

Where S was the time (in seconds) from the time of the first to the last key entered, 

and |T| was the number of characters in the transcribed text. 

 

The error rate was calculated based on the standard typing metrics [250], where the 

total error rate (TER) = not corrected error rate (NCER) + corrected error rate (CER). 

 

Text Entry Performance 

Table 3-2 shows the results from the 2-way mixed ANOVA. Figure 3-6 shows the 

mean text entry speed among the eight techniques. In general, for Pointing Method, 

Controller achieved the best results for both Tap (M = 14.6, SD = 0.85) and Swype (M 

= 13.68, SD = 1.88) and Head had the worst performance in both Tap (M = 5.62, SD 

= 0.64) and Swype (M = 7.94, SD = 1.36). Figure 3-7 shows the details of the TER 

and NCER for all methods. Hand caused the highest error rates in TER for both Tap 

(M = 6.48%, SD = 1.80%) and Swype (M = 5.01%, SD = 4.70%) as well as NCER 

again for both Tap (M = 3.82%, SD = 2.04%) and Swype (M = 0.75%, SD = 0.92%). 

Head+Tap achieved the lowest TER (M = 1.06%, SD = 1.23%) and NCER (M = 

0.48%, SD = 0.82%) while Controller+Swype achieved the lowest TER (M = 1.24%, 

SD = 1.44%) and NCER (M = 0.00%, SD = 0.00%).  

 

To see if there was significant effect of Pointing Methods for either Tap or Swype, we 

employed a one-way repeated ANOVA. For Tap, the test yielded a significant effect 

of Pointing Methods (F2.137,23.503 = 39.971, p < .001). Pairwise comparison revealed 

significant differences between Controller - Head, Controller - Hybrid, Controller - 

Hand (all p < .001). For Swype, the test yielded a significant effect of Pointing 

Methods (F1.974,21.719 = 89.375, p < .001). Post-hoc pairwise comparison revealed 

significant differences between Controller - Head (p < .001), Controller - Hybrid (p < 

.001), Controller - Hand (p < .001), and Head - Hybrid (p < .01).  
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Table 3-2. Two-way mixed ANOVA test results for text entry performance. Significant results where 

p < .01 are shown in green and p < .001 in dark green. 

 WPM TER NCER 

Pointing 

Methods 

F2.247,49.428 = 125.890, p < .001 F3,66 = 15.798, p < .001 F3,66 = 11.760, p < 

.001 

Pointing 

Methods × 

Input 

Mechanisms 

F2.247,49.428 = 7.225, p < .01 F3,66 = 2.468, p = .083 F3,66 = 9.174, p < 

.001 

Input 

Mechanisms 

F1,22 = 5.227, p = .032 F1,22 = .055, p = .817 F1,22 = 18.623, p < 

.001 

Post-hoc 

Pointing 

Methods 

Controller - Head (p < .001), 

Controller - Hybrid (p < .001), 

Controller - Hand (p < .001), 

Head - Hybrid (p < .001) 

Controller - Head (p < .01), 

Head - Hybrid (p < .01), 

Head - Hand (p < .01) 

N/A 

 

 

Figure 3-6. Mean WPM for each Pointing Method grouped by Swype and Tap. Error bars indicate ±2 

standard errors.  

 

 

Figure 3-7. Mean TER (a; left) and NCER (b; right) in % among all methods. Error bars indicate ±2 

standard errors. 
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User Preference 

SUS. The SUS counts for Hand+Swype (M = 1.08, SD = 1.62) were the highest but 

the lowest for Controller+Tap (M = 0.17, SD = 0.39). Figure 3-8a shows that the mean 

immersion score from SUS questionnaire for Hand+Swype (M = 4.11, SD = 0.80) was 

the highest and Head+Tap (M = 3.25, SD = 1.14) the lowest. There was no significant 

difference for immersion between the Pointing Methods (F3,66 = 3.199, p = .029), 

Pointing Methods × Input Mechanisms (F3,66 = .308, p = .820), and Input Mechanisms 

(F1,22 = .419, p = .524). 

 

 

Figure 3-8. Mean immersion score from SUS questionnaire (a; left). Mean user experience score from 

UEQ (b; right). Error bars indicate ±2 standard errors. 

 

UEQ. The scales for UEQ were adjusted between -3 (very bad) to 3 (excellent). For 

the average score, ANOVA tests showed a significant effect of Pointing Methods (F3,66 

= 9.295, p < .001), but insignificant for Pointing Methods × Input Mechanisms (F3,66 

= 1.183, p = .322). There was no significant effect of Input Mechanisms (F1,22 = 3.306, 

p = .083) where the average experience score for Tap was 0.965 (SD = 1.01) and for 

Swype 0.275 (SD = 1.27). Post-hoc pairwise comparisons revealed significant 

differences between Head - Controller (p < .001) and Hybrid - Controller (p < .01). 

Figure 3-8b shows the details of the mean UEQ for all methods. 

 

Regarding each UEQ subscale (see Figure 3-9), ANOVA tests yielded a significant 

effect of Pointing Method, Input Mechanisms, or Pointing Methods × Input 

Mechanisms on attractiveness, perspicuity, efficiency, and dependability. However, 

no significant effect was found for novelty and stimulation. Table 3-3 shows detailed 

results of the ANOVA tests. As can be seen from the Figure 3-10, the controller was 

rated above average to excellent when compared to the benchmark scores while the 

other three Pointing Methods were rated between bad and above average. 
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Figure 3-9. Mean UEQ subscales for each Pointing Method for Swype (a; left) and in Tap (b; right). 

Error bars indicate ±2 standard errors. 

 
Table 3-3. ANOVA test results for UEQ subscales. Significant results where p < .01 are shown in 

green and p < .001 in dark green. Novelty, Stimulation, Input Mechanisms, Pointing Methods × Input 

Mechanisms have no significant result and therefore not shown for better clarity. 

 

 

Figure 3-10. UEQ ratings of our tested Pointing Methods (Head, Hand, Hybrid, and Controller) with 

respect to comparison benchmarks. 

Motion sickness. Regarding overall motion sickness, Controller+Tap was rated the 

best (M = 14.53%, SD = 4.92%) and Hybird+Swype (M = 30.09%, SD = 18.54%) the 

worst. ANOVA tests yielded significant differences between Pointing Methods 

 Efficiency Perspicuity Dependability Attractiveness 

Pointing 

Methods 

F2.244,49.357 = 10.141, 

p < .001 

F3,66 = 16.170, p < .001 F3,66 = 5.054, p < 

.01 

F3,66 = 10.701, p < 

.001 

Post-hoc 

Pointing 

Methods 

Head - Controller (p 

< .001), 

Hand - Controller (p 

< .01), 

Hybrid - Controller 

(p < .01) 

Head - Controller (p < 

.001), 

Hand - Controller (p < 

.001), 

Hybrid - Controller (p < 

.001) 

Hybrid - 

Controller (p < 

.01) 

Hand - Controller 

(p < .001), 

Hybrid - 

Controller (p < 

.01) 
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(F2.694,59.262 = 5.662, p < .01); however, no significant effect was found for Pointing 

Methods × Input Mechanisms (F2.694,59.262 = 1.942, p = .138) and Input Mechanisms 

(F1,22 = 4.435, p = .047). Pairwise comparisons did not reveal any significant 

differences. 

 

Regarding the MSAQ subscales (gastrointestinal, central, peripheral, and sopite-

related), there was a significant effect of Pointing Methods (F3,66 = 4.979, p < .01) on 

central. However, post-hoc pairwise comparison yielded no significant difference. In 

terms of sopite-related motion sickness, the ANOVA test yielded significant 

differences between Pointing Methods (F3,66 = 8.406, p < .001), but not between 

Pointing Methods × Input Mechanisms (F3,66 = .808, p = .067). Post-hoc pairwise 

comparison showed a significant difference between Head - Controller and Hybrid - 

Controller (all p < .01). No other significant effects were found. Figure 3-11 shows 

MSAQ subscales scores. 

 

 

Figure 3-11. MSAQ subscales for each Pointing Method in Swype (a; left) and in Tap (b; right). 

Peripheral is not shown as no significant difference was found. Error bars indicate ±2 standard errors. 

 

NASA-TLX Workload. For overall task workload, Controller+Tap was rated the best 

(M = 33.92, SD = 19.44) and Hybrid+Swype (M = 75.19, SD = 12.84) the worst. An 

ANOVA test showed significant differences for Pointing Methods (F3,66 = 26.063, p < 

.001) on overall workload, but not for Pointing Methods × Input Mechanisms (F3,66 = 

3.990, p = .011) and Input Mechanisms (F1,22 = 5.724, p = .026). Post-hoc pairwise 

comparisons revealed significant differences between Head - Controller, Hand - 

Controller, Hybrid - Controller (all p < .01). Regarding each workload subscale, 

ANOVA tests yielded at least one significant effect for Pointing Methods on all 
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workload subscales except for performance. Details of results of the ANOVA tests can 

be seen in Table 3-4 and of the workload subscales in Figure 3-12. 

 

Table 3-4. ANOVA test results for NASA-TLX workload subscales. Significant results where p < .01 

are shown in green and p < .001 in dark green. Non-significant results are omitted for clarity. 

 Pointing Methods Input Mechanisms Post-hoc Pointing Methods 

Mental F3,66 = 4.813, p < .01 F1,22 = 3.571, p = 

.072 

N/A 

Physical F3,66 = 22.021, p < 

.001 

F1,22 = 5.081, p = 

.034 

Head - Controller, Hand - Controller, 

Hybrid - Controller (all p < .001) 

Temporal F3,66 = 6.975, p < .01 F1,22 = 8.175, p < .01 Hand-Controller (p < .01) 

Effort F3,66 = 13.045, p < 

.001 

F1,22 = 4.867, p < 

.038 

Head - Controller, Hybrid - Controller 

(both p < .01), Hand - Controller (p < 

.001) 

Frustration F3,66 = 6.004, p < .01 F1,22 = 8.537, p < .01 Hand - Controller (p < .01) 

 

 

Figure 3-12. Workload subscales for each Pointing Method using Swype (a; left) and Tap (b; right). 

Performance is non-significant and not shown for better clarity. Error bars indicate ±2 standard errors. 

 

Section 3.4 Discussion 

In this section, we first discuss task performance of the combination of each Pointing 

Method (Head, Hand, Hybrid, and Controller) and Input Mechanism (Swype and Tap), 

and then user subjective feedback for each combination. 

 

Section 3.4.1 Task Performance 

Controller+Tap achieved an average of 14.6 WPM which is comparable to results in 

other pointing method + tap approaches from research in VR and non-VR domains 

[175,244,251]. Controller+Swype achieved an average of 13.68 WPM which is also 

comparable to some results in VR (e.g., in [294], their participants were able to achieve 

15.75 WPM). Our results also indicate that Controller outperformed all the other 
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device-free methods. However, when compared to a physical keyboard, which has 

been shown to be able to support fast text entry of around 45 to 67 WPM [138], 

Controller-based input seems still not fast enough for heavy text entry activities. It may 

not be necessarily an issue with any pointing method in particular but that AR in 

general may not support long periods of intensive text entry. For short text entry tasks 

like sending short messages via social media chat applications, a technique based on 

Controller+Swype could work well.  

 

Head+Tap has led to an average of 5.62 WPM using the outside-inside approach but 

this is only the half of input speed of Head Pointing using a button to make selections 

(about 10 WPM) [251,294] and is also slower than the dwell-based Head Pointing 

technique (around 8 WPM) [294]. Unlike Hand and Hybrid, both of which can use 

hand gestures for letter/word selection, there are currently no optimal methods, except 

dwell, for purely Head Pointing-based approaches for text entry with a QWERTY 

keyboard layout. If users have to use Head Pointing-based approaches, an alternative 

approach that exists in the literature is to use a circular layout like a technique called 

RingText [287] which has been shown to be faster than dwell QWERTY. 

 

We have observed that text entry performance (both speed and accuracy) for Head and 

Hybrid are affected by the hardware (e.g., tracking cameras and feasible tracked area), 

software (e.g., gesture detection algorithms), and users' physical capabilities and 

predispositions (e.g., how long and how stable they can keep their hand in mid-air). In 

the context of AR, the area that is tracked by the cameras tend to be limited and because 

of this the users must lift their hands in the mid-air, which may further cause hand 

tremor and arm fatigue quickly, making it challenging for many users. The detection 

algorithm provided by the Meta SDK seems to have issues. We have discovered that, 

when the users move their hand out of the tracking area accidentally or intentionally, 

the algorithm sometimes thinks that their hands are performing a palm closing 

gesture—i.e., a false positive recognition, and assumes a selection is made while in 

fact, the users are not doing anything. Because of this, during the experiment, we had 

to remind users to keep their hand within the tracking area. 

 

As for Input Mechanisms, the experimental results suggest that for users who are new 

to Swype and Tap, the Swype technique have the same text entry speed as Tap and 
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cause lower NCER than Tap. If users prefer lower errors in the transcribed text, they 

should use Swype instead of Tap. 

 

Section 3.4.2 User Preference 

In the following discussion, we discuss each Pointing Method and Input Mechanism 

based on the subjective feedback and our observations from the experiment. 

 

Workload 

Controller outperformed all the other methods for Physical and Effort workload and 

exceeded Hand for Temporal and Frustration. As such, a Controller-type of input 

seems to be a good first option if a lower workload is important for users. Our 

observations also show that our participants complained that Hand and Hybrid were 

too tiring because of the need to keep their hands in mid-air in a consistent and stable 

basis. Due to the limitations of the Meta 2 headset's tracking area, the users cannot 

place their hands in a more relaxing pose. It is worth pointing that this issue is not just 

confined to the Meta 2 but it is a widely report issues for AR devices. Although Head 

did not have this problem, participants complained about minor neck pain and fatigue. 

One solution could be to use a device with an eye-tracking device installed (i.e., gaze 

input [191]), if the cost is not an issue and the eye tracker can provide accurate and 

stable performance. Thus, when a controller is not around, users could consider a Head 

approach when hand fatigue is a big concern. They should consider a Hand approach 

when arm fatigue is less of an issue. 

 

Swype techniques resulted in a significantly higher temporal and frustration workload 

than Tap. Surprisingly, Swype and Tap have the same level of mental workload even 

though Swype requires users to remember and type all letters in one continuous Swype 

action to complete the words. It is worth noting that although our participants were not 

native alphabet users, they were still able to mentally keep track of the words that they 

needed to type using Swype with relative proficiency, but this had come with higher 

frustration and temporal workload, which may not be the case with English native 

speakers. In general, if the workload is a critical factor of the text entry technique, a 

Swype-style text approach should not be considered due to its high workload demand 

in both temporal and frustration workload. 
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Motion Sickness 

Results indicated no differences for the overall sickness among the tested techniques. 

For each subscale from motion sickness assessment questionnaire [87], the Controller 

approach was found to be less annoying, drowsing and tiring than Head and Hybrid 

techniques because it did not need our participants to use head rotations. This means 

that a ray-casting enabled controller should be preferred if available. Additionally, 

users should consider a Hand approach when the controller is not around.  

 

For Input Mechanisms, our results indicate that Tap causes the same level of motion 

sickness as Swype. The selection of which Input Mechanism to apply should consider 

other aspects (e.g., workload) as they both have no effect on motion sickness. 

 

Immersion 

There were no significant differences between the difference combinations of Pointing 

Methods and Input Mechanisms for immersion, which indicates that text entry in AR 

has no significant impact on immersion. Overall, users should consider other factors 

(e.g., workload) to decide which technique to use. 

 

User Experience 

For the user experience subscales, Controller provided a significantly better user 

experience in efficiency and perspicuity than the other methods. It also gave better 

dependability than Hybrid and received higher ratings in attractiveness than Hybrid 

and Hand. When we compare these pointing approaches with the benchmark scores 

[235], only Controller is found to have received an above average to excellent rating 

while Head, Hand, and Hybrid are rated bad to below average. For the Input 

Mechanisms, we found that Tap and Swype have no significant difference on user 

experience.  

 

In summary, the Controller offers the best user experience and as such, if a ray-casting 

enabled controller is available, it should be used as a first choice. Otherwise, users 

should consider other user experience measurements such as workload to decide which 

alternative Pointing Methods to use.  
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Section 3.4.3 Recommendations for Text Entry in AR HMDs 

The recommendations derived from our experiment can be divided into two groups 

based on their goals: 

 

Performance. Based on the results, we suggest that users should use a ray-casting 

enabled handheld device since it can lead to a good text entry performance and it is 

capable of other tasks, like manipulating virtual object [294,295]. Device-free methods 

should be considered in addition to speech recognition, if available, when device-free 

is the only option. On the other hand, if the environment is noisy and users are in a 

public space, which can potentially bring privacy concerns [280], we suggest using 

one of the device-free approaches based on user experience. Of the two Input 

Mechanisms, Swype should be considered first since it has a higher text entry rate and 

a lower not corrected error rate than Tap. 

 

Experience. We suggest that a handheld device should be the preferred option because 

it has low workload and motion sickness but provides a better user experience. 

However, if no such devices are around, the following can be considered. If users have 

difficulty holding their hands constantly and consistently in mid-air, Head-based 

pointing can be considered as an alternative. Hybrid can be used if arm and neck 

fatigue is not a concern and there is enough space for users to lift and hold the arms 

mid-air. If users' neck fatigue is a concern and users have ample space for hand 

interaction, the Hand approach could be chosen instead. This is also because a natural 

hand interaction allows users to perform tasks in both the real and virtual environment 

at the same time [12]. Of the two Input Mechanisms, Tap should be chosen since it 

generates lower workload (for both temporal and frustration). 

 

Section 3.4.4 Limitations and Future Work 

This research has some limitations. The experiment was tested with a Meta 2 AR 

HMD. We chose it because it had one of widest field-of-view and, like other AR 

devices, it has some issues in tracking hand motions and gestures. We used three 

countermeasures to minimize issues that this could have caused: (1) We chose one of 

the simplest gestures (closing palm) which the Meta 2 provided and of which it had a 

reliable tracking performance; (2) To avoid potential environmental noise factors that 
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may affect tracking performance, we did tests to ensure the environment would not 

cause any tracking issues; and (3) We allowed users to familiarize themselves with the 

device and techniques via warm-up practices. Given this, the AR device chosen in our 

study is still suitable for our purposes and the results we obtained are still quite relevant 

to AR systems. In the future, when AR devices have improved tracking performance, 

it will be useful to explore other combinations of pointing and selection methods for 

entering the text that is accurate and fast.  

 

We observed that with the number of phrases that our participants had to type, some 

of them felt that their hand and arm got tired, especially for the Hand and Hybrid 

approaches. Future research can explore possible ways to minimize arm/hand fatigue 

for these two types of approaches. Similarly, our experiment involved 12 participants 

in each group (24 in total), which according to Caine [36] is one of the most common 

sample sizes within HCI research. Given our sample size, we used the alpha value of 

0.01 to ensure that any replication could likely achieve similar results [1]. In the future, 

it will be useful to evaluate if performance and user experience can improve with larger 

sample size and longer experimental sessions, for example, 1-2 sessions over 

consecutive 4-5 days like PizzaText [295], RingText [287] in VR scenarios and 

WrisText [93] in smartwatch scenarios. 

 

Additionally, our evaluation experiment was conducted in a lab environment where 

the background is somewhat, but not fully, controlled to be clean and easy for the front 

camera to track the hand motions and gestures. Future work can consider 

experimenting with more realistic environments, e.g., in a park or a shopping mall with 

people walking in front of the camera. This future research can be informed by the 

results of this current experiment. 

 

Finally, as mentioned in the discussion section, the selected Pointing Methods and AR 

devices in general may not be suitable for long text entry sessions and heavy text 

editing of documents. Although AR devices are usually meant for short text entry 

sessions (like for sending short messages), it is worthwhile to explore and develop new 

techniques that will support text entry activities that are more involved and last longer. 

For instance, easily and widely accessible devices like smartphones, which have been 

reported to support users to type 50 WPM when they are sitting [50] and about 30 
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WPM when they are walking [90], can be part of this exploration. Also, voice input 

techniques, such as SilentVoice [77] which can mitigate privacy issues and work well 

in noisy environments, are also valuable and can be useful for some text entry activities. 

Further research is needed because both smartphones or SilentVoice have their 

inherent technical and usability issues and, if we are to develop new techniques that 

linked them to an AR system, these issues need to be overcome. 

 

Section 3.5 Conclusion 

In this work, we empirically and systematically investigated the combination of four 

pointing methods (Head, Hand, Hybrid, and Controller) and two input/selection 

mechanisms (Swype and Tap) that can be used for text entry in augmented reality (AR) 

head-mounted displays (HMDs). We run an experiment with eight techniques that 

resulted from their combinations to assess their relative performance and user 

preference. In general, the results show that the best pointing method is a ray-casting 

enabled handheld device, but its use is dependent on specific criteria and limitations 

(e.g., ray-casting enabled controller is not always available for AR systems, or users 

cannot hold it in a stable basis). Future AR systems may be commonly used for both 

indoor and outdoor scenario, but a ray-casting enabled controller may not be ideal for 

outdoor situations. Therefore, a device-free efficient text entry method is still a more 

practical and cost-efficient solution because it only requires the HMD to be able to 

track a user’s hand or head motions. On the other hand, user preference such as 

workload and user experience must be considered also. Between the two selection 

mechanisms that we explored, Swype and Tap, our results show that Swype is as fast 

as Tap for users who are new to Swype. But Swype brings increased workload (i.e., 

temporal and frustration). For lighter workload during text entry activities, users can 

use Tap. Our research is a first to explore the combination of most common pointing 

methods and selection mechanisms and can provide strong foundations for future 

research in text entry for augmented reality systems. 

 

Section 3.6 Summary 

In short, current motion-based interactions were worse than the controller-based 

interaction. In addition, through this exploratory study, we confirm the existence of 

the following issues: (1) hand/arm and lack of boundary awareness are crucial 
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problems for hand motions, (2) dwell could lead to bad performance for head-based 

interaction. These issues should be addressed in order to improve the motion-based 

interaction performance and experience for HMDs. Based on the findings from the 

literature review as well as the exploratory study, we summarize the research 

directions of this thesis in the next chapter. 
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Chapter 4 Core Challenges and Research Questions in the 

Design Space of Motion-based Interaction for HMDs 

In this thesis, the term motion-based interaction (MbI) is defined as “interaction that 

relies on the changes in acceleration, orientation, the velocity of the user’s body part(s), 

where there is no need for direct contact with a pre-defined button or interactive 

surface.” Based on the literature review (see Chapter 2) and the exploratory study (see 

Chapter 3), we have first identified a list of challenges in the design space of motion-

based interaction in a big picture. Then, we have selected the Core Challenges that 

need to be addressed in this thesis from the list and explained why other challenges are 

not selected. At last, for each Core Challenge, we have proposed the corresponding 

Research Question, as well as the user study that was used to address the Core 

Challenge. Moreover, we also explained the results that we got from the study (see 

Figure 4-1). 

 

Section 4.1 Challenges of Motion-based Interaction for HMDs 

From the previous two chapters, we have explored several challenges in the design 

space of MbI for HMDs. The main challenges that we aim to address in this thesis are: 

(1) boundary awareness for hand-based interaction, (2) efficient hands-free head-based 

interface for HMDs, (3) efficient and feasible full-body interaction for general tasks 

with HMDs, and (4) accessible full-body interaction for applications in HMDs. 

 

Other challenges are: (1) motion-induced sweating inside the HMD, (2) mid-air 

hand/arm fatigue, (3) input latency, (4) tracking dropouts, (5) limited 3D workspace, 

(6) limited gesture vocabulary, (7) hand-based interaction for distant object selection, 

(8) selecting the ideal gesture set for HMDs, (9) designing foot-based interaction for 

HMDs, etc. However, these challenges are not covered in this thesis due to the 

following reasons: (1) beyond the scope of the thesis (e.g., sweating in HMDs): 

motions could make users start sweating in HMDs, which can only be solved by 

attaching external fans to HMDs; (2) supported by guidelines (e.g., gesture 

vocabulary): for the issue of limited gesture vocabulary (e.g., foot-based interaction 

[265]), guidelines suggest that the more gestures provided to the users, the more 

difficulties they may face in using the system (e.g., remembering/recalling the gestures, 
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Figure 4-1. Challenges, Research Questions, and Answers to Research Questions in Motion-based 

Interaction for HMDs. 
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gesture recognition) [32], and (3) have been studied already (e.g., the ideal gesture set 

for HMDs): the challenge of proposing user accepted gestures has been explored in 

several investigations via user elicitation study (e.g., selection and manipulation tasks 

[199]). 

 

Section 4.2 Challenge 1: Boundary Awareness for Hand-based Interaction  

As mentioned in Chapter 2, boundary awareness has been observed in early works 

with motion tracking devices such as Leap Motion [10, 27] and Kinect [8] that 

unavoidably had to have a restricted tracked area due to technical limitations. Our 

exploratory experiment has confirmed that boundary awareness is also a problem for 

mid-air hand-based interaction for HMDs (see Chapter 3). A typical situation in HMDs 

is that users tend to gradually move their hand from the chest level to a lower level due 

to the tiredness of the interaction, and eventually go out of or leave the tracking volume 

(or area) that the devices’ sensor(s) can capture, but the users may not have a conscious 

awareness that their hands are no longer tracked.  

 

A possible solution to deal with this challenge is to apply visual feedback to the 

HMDs. Visual systems have been used for boundary awareness of the user leaving the 

play area in many HMDs. For instance, Oculus’s Guardian2 system displays an in-

application translucent mesh grid when users get near play-area borders they defined—

i.e., when the user gets too close to the edge of a boundary. Like the Guardian system, 

HTC VIVE’s Chaperone3 also displays visual grids to indicate the boundaries for the 

users. 

 

However, how to design a visual boundary awareness system for mid-air hand-based 

interaction remains unknown. As such, Research Question 1 asks:  How can visual 

boundary awareness techniques support mid-air hand-based interaction? 

 

To address Core Challenge 1 and answer Research Question 1, we have conducted 

a user study with an object translation task. Object translation task is selected because 

 
2 https://developer.oculus.com/documentation/native/pc/dg-guardian-system/ 
3 https://support.steampowered.com/kb_article.php?ref=6281-TOKV-4722 
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it is the most fundamental interaction for HMD based environments [31,32]. In 

addition, the object translation task requires users to keep their hands in mid-air to 

select objects and move them to various target locations with many repetitions. These 

repeated mid-air motions could lead to boundary awareness issues for hand-based 

interaction, which could help us understand the usefulness of our proposed visual 

techniques. 

 

Chapter 5 presents how we explore Core Challenge 1 and Research Question 1. 

We first examine the challenges that the user might face when interacting with HMDs 

without boundary information. Then, we propose two preliminary solutions to 

visualize the interaction boundary of HMDs and provide them statically and 

dynamically and evaluate them against the benchmark in the object translation task. 

Overall, our results suggest that visual boundary awareness methods could positively 

affect the user’s subjective feelings during hand-based interaction. Therefore, our 

answer to Research Question 1 is that visual boundary awareness methods should 

provide information on the distance between users and the boundary. In addition, the 

boundary information can be provided both statically and dynamically.  

 

Section 4.3 Challenge 2: Efficient Hands-free Head-based Interface for 

HMDs  

Dwell-based interaction is the most used device-free and hands-free technique for 

head-based interaction. However, existing work outlined in Chapter 2 showed that the 

dwell-based technique has certain limitations, such as: (1) a long dwell time may 

decrease performance, but a short dwell time can cause false-positive selections and 

errors [127], (2) a pre-set dwell time always “pushed” users to select a target key and 

quickly move to the next one, a process that can be stressful and error prone [142], and 

(3) keeping the pointer static for a while to avoid selecting unintentional keys could 

further lead to eye and neck fatigue [229]. In this context, it is essential to explore 

hands-free head-based interaction for HMDs that is not dwell-based. 

 

A feasible solution for addressing this challenge is through the use of alternative 

layout approaches. In our exploration, as an example, we investigated a circular 
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(radial) interface. Circular interfaces have been used for system control tasks (e.g., 

menu selection [54,226,227]) and daily tasks like text entry [174]. It could be used 

together with head-based input with an inner and outer circle design [174]: (1) the 

outer circle hosts items and users reach the target item through a go-and-hit fashion, 

avoiding the use of dwell-technique, (2) the inner circle does not contain any items so 

it can be used as a relaxing region, and hence avoiding eye and neck fatigue. 

 

However, the efficiency and usefulness of this design remains unexplored. As such, 

Research Question 2 asks:  Can a circular layout achieve an efficient and usable 

hands-free head-based interaction? 

 

We have conducted a user study with the text entry task to address Core Challenge 

2 and answer Research Question 2. We selected the text entry as the interaction task, 

not only because of the importance of text entry task for HMDs (see Section 2.3) but 

also because the efficiency and usefulness of the proposed method can be evaluated 

with the standard typing metrics [250] and be compared to other standard methods 

(e.g., dwell QWERTY).  

 

Chapter 6 presents how we explore Core Challenge 2 and answer Research 

Question 2. First, we explore the feasibility of applying a circular keyboard layout 

with two concentric areas for text entry that is both dwell-free and hands-free for 

HMDs. Then, we have compared the text entry performance of our technique, 

RingText, with four other possible pure head-based methods—dwell circular, swype 

circular, dwell QWERTY, swype QWERTY. The results show that RingText 

outperforms them; it has led users to achieve a significantly higher text entry rate and 

close to a significantly lower total error rate. To further explore its performance, we 

have conducted a 4-day study with two daily sessions and 10 participants to evaluate 

the learning effects of RingText on speed and error rates. The results show that after 

eight practice sessions even novice users can achieve an average text entry speed of 

11.30 WPM while expert users can achieve 13.24 WPM in the last session. These 

results suggest that a circular layout could achieve an efficient and useable hands-free 

head-based interaction. According to the above findings, the answer to Research 
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Question 2 is that a circular layout coupled with head-based interaction can be an 

efficient and useable interaction for HMDs.  

 

Section 4.4 Challenge 3: Efficient and Feasible Full-body Interaction for 

General Tasks with HMDs 

As mentioned in Chapter 2, full-body interaction has so far been studied in very limited 

ways in HMDs due to feasibility issues (e.g., motion sickness). Hence, the third 

challenge and fourth challenges focus on designing feasible full-body interaction for 

HMDs. Specifically, the third challenge aims to enable full-body interaction in the task 

domain (e.g., 3D manipulation, system control, navigation [32]). This type of 

interaction could avoid the pitfalls of hand-based interaction (i.e., arm/hand fatigue). 

However, the feasibility (e.g., motion sickness during the HMD use) and efficiency 

(i.e., speed and accuracy) of full-body interaction for HMDs remain underexplored. 

 

A feasible solution to address the third challenge is to combine directional full-body 

motions with a compass radial interface, as it allows the same distance to items 

position around the user’s body. Directional full-body motion-based interfaces (four 

cardinal directions and four intercardinal directions) have been used for dancing-like 

exergame [213]. These eight directional motions can be used to complete system 

control tasks (e.g., menu selection) when mapped with a compass radial style interface 

[297].  

 

However, feasibility and efficiency of this design for HMDs remains unknown. As 

such, Research Question 3 asks: Are directional full-body interaction feasible and 

efficient for HMDs? 

 

To address Core Challenge 3 and answer Research Question 3, we have conducted 

a user study with the menu selection task and compared the proposed method with 

commonly used commercial methods (i.e., hand-based interaction and hybrid—

head+hand interaction). The menu selection task is chosen because it is a universal 

task in 3D applications [32]. In addition, HMD users are often required to interact with 

one or more menus: from basic operations of application selection to video games 
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[45,65]. Further, the feasibility and efficiency of the proposed method can be evaluated 

with the standard metrics (task completion time and error rate [32]) and be compared 

to other standard motion-based interactions (e.g., hand-based interaction).  

 

Chapter 7 presents how we explore Core Challenge 3 and answer Research 

Question 3. To prove that this type of interface and interaction works, we present 

DMove, a directional full-body interaction for HMDs that is both hands- and device-

free. It uses directional walking to interact with virtual objects. To use DMove, a user 

needs to perform directional motions such as moving one foot forward or backward. 

We first investigate the recognition accuracy of our method and the social acceptance 

of this type of interaction, together with users’ comfort ratings for each direction. We 

have found that (1) the proposed recognition method is very accurate—100% for 8-

block DMove and 98.06% accuracy for 16-block DMove; (2) users prefer to use 

DMove in front of familiar people and indoor scenarios (like their home or office); (3) 

users felt more discomfort when moving towards directions that they cannot see.  

 

Then, we optimize its design and conduct a second study to compare DMove in task 

performance and user preferences (workload, motion sickness, user experience), with 

two approaches—hand-based interaction and hybrid-based (head+hand) interaction 

for menu selection tasks. Our results show that (1) DMove has an equal task 

completion time as Hand and Hybrid and a lower error than Hand when using a current 

consumer HMD and (2) DMove is preferred by users because it has a low workload 

score but high usability and novelty scores. Based on the above findings, our answer 

for Research Question 3 is that directional full-body interaction is a feasible and 

efficient interaction technique for general tasks with HMDs. 

 

Section 4.5 Challenge 4: Accessible Full-body Interaction for Applications 

in HMDs 

Literature suggests that users’ experience could be significantly different in HMDs and 

traditional 2D displays (e.g., users frequently suffer motion sickness when interacting 

with HMDs but not from traditional 2D displays; see Chapter 2). However, there was 

limited research on studying the effect of display type on full-body interaction. 
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Therefore, Research Question 4 asks: Will HMDs affect users experiencing full-body 

interaction? 

 

Literature also suggests that simulator sickness could be higher in concurrent multi-

tasking applications [293] and using the first-person viewing perspective [187]. 

However, these factors are studied in a flight simulator or a VR racing game. The 

findings may not be applicable to full-body interactions. As such, Research Question 

5 asks: Will sickness mitigation factors in other contexts work for full-body 

interaction? 

 

To address Core Challenge 4 and answer Research Question 4, we have conducted 

two user studies with the exergame as our task. Exergame, a combination of “motion-

based exercise” and “gaming”, is used because (1) it is the most commonly used 

application of full-body interaction both for industry (e.g., Ring Fit Adventure4, Kinect 

Sports5, Dance Central6) and academic research [30,41,85], (2) it is a suitable platform 

to address the accessibility issue of HMDs (i.e., motion sickness) since exergame 

would require variety full-body motions during the game, which could increase the 

risk of sickness, especially for HMDs, and (3) it provides a more significant interest 

within the Human-Computer Interaction community since exergames represent a 

promising approach for various population groups (i.e., children [3], young individuals 

[4], and older adults [5]) to promote regular exercise in unmotivated or inactive target 

groups [6,7].  

 

We address Core Challenge 4 and answer Research Question 4 and 5 by 

evaluating the effect of task mode (Chapter 8) and viewing perspective (Chapter 

9) on full-body interaction in HMDs. In addition, compare the performance and 

experience of full-body interaction in HMDs and the benchmark (i.e., large display—

50-inch 4K TV). Overall, our results suggest that HMDs could result in changes in 

physiological feelings (Chapter 8) and lead to a better game experience but also a 

higher sickness (Chapter 9). Hence, our answer for Research Question 4 is that HMDs 

 
4 https://ringfitadventure.nintendo.com/ 
5 https://marketplace.xbox.com/en-GB/Product/Kinect-Sports-Season-Two/66acd000-77fe-1000-9115-

d8024d5309d6 
6 https://www.dancecentral.com/ 
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could affect users experiencing full-body interaction. Regarding Research Question 5, 

it seems that factors that could help reduce simulator sickness in other contexts may 

not work for full-body interaction.  

 

Section 4.6 Summary 

In summary, this chapter lists four Core Challenges and five Research Questions that 

are addressed in the rest of the thesis. In addition, it also explains the reasons why other 

issues are not covered. 

 

The next chapter aims to answer the Research Question 1 (i.e., how can visual 

boundary awareness techniques support mid-air hand-based interaction?) and address 

the Core Challenge 1 (i.e., boundary awareness for hand-based interaction). It first 

conducts a formative study to gather the information that users needed for boundary 

awareness, and then it describes the development of visual boundary awareness 

techniques for mid-air hand-based interaction. Finally, it presents an experiment 

comparing the proposed visual boundary awareness techniques against the benchmark 

(where no boundary information is provided) with respect to object translation tasks 

regarding their performance and experience.  
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Chapter 5 Visual Methods for Boundary Awareness for HMDs 

Section 5.1 Introduction 

Hand-based interaction is one of the most commonly used interaction methods in head-

mounted displays (HMDs) [171] (e.g., Meta 2, HTC VIVE, Oculus Quest), because it 

is assumed to be natural, practical, and easy to use. The proliferation of reasonably-

priced depth cameras and sensors has warranted the investigation of natural user 

interfaces that are often based on mid-air hand interactions [114]. Currently, most AR 

HMDs have enabled mid-air hand interaction, but the supported tracked interaction 

volume is relatively small and limited. Due to this small tracked area, users often 

observe that the virtual object may not be responding to their gestures during regular 

interaction (see Figure 5-1a for a typical scenario). Such a situation could lead to 

unnatural and inaccurate interaction experience in different broad interaction scenarios 

(e.g., AR remote collaboration [83,270]) in specific tasks (e.g., hand-based text entry 

in AR HMDs [158]). One way to avoid or mitigate this issue is by allowing users to 

see via explicit visual cues the tracked interaction area (see Figure 5-1b for an example 

of such method). By knowing the boundary, it might enhance the performance of hand-

based text entry technique in HMDs, avoid wasting time in remote collaboration [83], 

enhance the remote learning experience in training like telemedicine [270]. 

 

 

Figure 5-1. (a; left) (1) The user is trying to drag the object closer to himself. (2) The object partially 

disappears once the user’s hand is outside the HMD’s interaction boundary. Because the user cannot 

see the interaction boundary, it can lead to confusion and errors. (b; right) By showing the interaction 

boundary, the user can interact with the virtual object in HMDs and know when to stop his movement 

to avoid going outside of the tracked interaction area. 

 

This research begins with a formative study to examine the challenges that the user 

might face when interacting with HMDs (i.e., AR) without boundary information. 

Then, based on the participants’ comments, our observations, and interviews, we 

propose two preliminary solutions to visualize the interaction boundary of HMDs. One 

solution is using an off-body indicator, which mimics the proprietary guardian 
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boundary system that is used by Oculus Rift HMDs. This visual technique displays a 

transparent colored surface to remind the user of the boundary. The other solution is 

using an on-body indicator, which mimics the hand state notification system that is 

utilized by Meta 2 AR HMDs. This technique displays a coordinate system on the 

users’ hands to remind the user of the interaction boundary. To understand how to 

provide such boundary awareness methods and their usefulness, we explore our 

preliminary solutions to be provided statically—i.e., the system always displays the 

boundary awareness information, and dynamically—i.e., it displays the information 

only when it is necessary. 

 

Our investigation of boundary awareness methods in HMDs began with one of the 

most common and essential mid-air interaction tasks—object translation [32]. To 

understand what the best way is for showing boundary awareness in HMDs, we 

conducted a controlled experiment to assess the accuracy and efficiency of boundary 

indicators for mid-air hand interactions with HMDs. More specifically, we 

investigated the following two research questions. 

 

RQ1: How accurately and efficiently can users interact with the system in dynamic 

tasks (e.g., translating virtual objects) when they cannot see the interaction area? 

 

RQ2: How do boundary awareness methods affect the user’s subjective feelings of 

translating virtual objects in HMDs? 

 

The contributions of the chapter include: (1) the first systematic exploration of visual 

methods for boundary awareness in HMDs, and (2) results of a user study comparing 

different visual boundary awareness methods for interacting with virtual objects in 

these systems. 

 

Section 5.2 Related Work 

Our current work builds on prior research on mid-air interaction and its related issues 

such as hand tracking, gesture recognition, and users’ awareness of the boundary of 

tracked areas. 
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Section 5.2.1 Mid-air Interaction 

Koutsabasis and Vogiatzidakis [140] indicated that mid-air interaction has the 

following characteristics: (a) touchless interaction, (b) real-time sensor tracking of 

(parts of) the user body, (c) body movements, postures and gestures that need to be 

identified and matched to particular user intentions, goals, and commands. In the 

following subsections, we describe motion tracking devices/sensors, gesture 

recognition techniques, and the use of mid-air hand interaction in AR HMDs. 

 

Low-cost Motion Tracking 

In 2006, one of the earliest commercial mass production motion tracking products 

released was the Wiimote controller by Nintendo, which uses an accelerometer and 

optical sensors to track the user’s hand movements. Later, the Sixth Sense [184] 

presented the first affordable, wearable mid-air gestural interface that enables on-

demand augmentation of the physical world with digital information, which can be 

manipulated via hand gestures. Since then, more and more affordable 3D depth 

cameras such as Kinect, Leap Motion, and Intel’s RealSense have been created to 

support users’ interaction in games or other interactive systems using their bodies to 

leverage the naturalness of hand and body movements for interaction [296]. 

 

Gesture Recognition 

Gesture-based interaction alongside other natural methods such as speech improves 

the efficiency and accuracy of the interactions, and reduces the training time and error 

rates [33,111,162]. Most prior studies on gesture-based recognition are based on the 

use of one or more RGB cameras [25]. For instance, Dani et al. [53] have proposed a 

low-cost approach that uses only one monocular RGB camera to enable hand pointing 

gesture detection and fingertip localization for mobile VR devices. Similarly, Jain et 

al. [128] presented a low-cost framework that works with just one RGB camera to 

manipulate objects in mid-air. Kinect, a device that contains an RGB camera and a 

depth camera, has been widely used for gesture recognition studies. Researchers 

[220,221] have developed a novel distance metric, the Finger-Earth Mover’s Distance 

(FEMD), to recognize gestures represented from zero to nine and using other 

arithmetic symbols with the data provided by a Kinect. Inspired by FEMD, Wang et 

al. [269] proposed a novel superpixel earth mover’s distance metric for hand gesture 
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recognition. Reyes et al. [165] presented a novel feature weighting approach within 

the Dynamic Time Warping framework for gesture recognition using depth video data. 

Combining RGB image and depth image to recognize gestures not only improves the 

accuracy of the gesture recognition but also allows one hand to overlap with the face 

or the other hand [21]. In short, with the recent advances of low-cost depth cameras 

and RGB cameras, many algorithms and techniques (see [42] for a recent review) have 

been developed to enable gesture recognition for mid-air interaction. 

 

Mid-air Interaction in AR HMDs 

There are three main types of interaction approaches for AR HMDs—controller-based, 

hand-based, hybrid-based (i.e., head pointing and hand gestures) [286]. However, only 

hand-based input is the most commonly used interaction method for wearable AR 

HMDs (e.g., HoloLens, Meta 2, Project North Star, and Magic Leap 1) since it is 

considered intuitive, natural, and cost-effective [33]. In commercial AR HMDs (like 

Magic Leap 1), users need to perform the following actions to select an object that is 

close to them. They need first to hover the hand over the virtual object and then 

perform a grab gesture to select the object [286]. 

 

Section 5.2.2 Boundary Awareness 

Issues 

According to Bowman et al. [33], current natural interactions (like mid-air hand 

interaction) provide little additional productivity but make the task more complicated 

and unnecessarily cumbersome. The main limitations of mid-air interaction in AR 

HMDs include limited precision with direct input on intangible surfaces [257], arm 

fatigue [114], and unnatural way of selecting a distant object [33]. 

 

In this work, we focus on one limitation of mid-air hand interaction that we refer to as 

boundary awareness (or lack of it), which is an issue that can occur in motion tracking 

applications that rely on any type of sensor. For instance, for mid-air interaction, in 

particular, the user’s hand can easily go out of or leave the tracking volume (or area) 

that the devices’ sensor(s) can capture, but the user may not have a conscious 

awareness that their hands are no longer tracked [183] (see Figure 5-1a above). This 

has been observed in early works with motion tracking devices such as Leap Motion 
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[52,183] and Kinect [48] that unavoidably had a restricted tracked area due to technical 

limitations.  

 

For AR systems, lack of boundary awareness could confuse, frustrate and discourage 

users towards the system because misinterpreted gestures would likely lead to 

unintentional actions and unresponsiveness for gestures that fall outside of the range 

and might lead to the users believe that the system recognition is flawed and unusable, 

thereby leading to an unpleasant experience. For instance, it might affect the text entry 

accuracy and performance of hand-based text entry techniques (i.e., a text entry 

technique that involves hand gestures) [158]. It might unnecessarily waste 

collaboration time due to loss of the hand tracking (due to fewer trackable features in 

the field-of-view). [83] reported this in a mock-up Boeing 737 cockpit when using a 

handheld AR to perform a remote collaboration with tasks like placing annotations, 

drawing, and live imagery (e.g., of hand gestures). Lack of boundary awareness might 

also affect other remote collaboration training situations (e.g., remote procedural 

training of telemedicine [270]). 

 

In short, these above issues become a major problem for interactions where gestures 

require a wider area of motion [183] and especially for dynamic tasks (e.g., translating 

virtual objects). 

 

Solutions 

Boundary awareness remains a crucial challenge for recent tracking technologies such 

as Leap Motion and Kinect due to their cameras’ limited field-of-view. One solution, 

as proposed in [152], is to use multiple devices at the same time to increase the tracked 

area. However, this is not feasible for HMDs as the sensors are fixed and mounted on 

the HMDs. In addition, because AR HMDs are meant to be mobile devices that enable 

users to move in both indoor and outdoor environments [66,156], setting up multiple 

depth sensors around the user is not a feasible solution for these AR devices. AR 

HMDs, unlike standard tracking devices like Leap Motion, is a combination of a 

tracking and display device, which can not only track users’ hands but also provide 

visual feedback to the users. Therefore, in this chapter, we propose and evaluate an 

alternative solution to allow users to notice the tracking boundary by (1) showing the 



Chapter 5 Visual Methods for Boundary Awareness for HMDs 

 

55 

 

tracking boundary all the time, or (2) displaying the tracking boundary when their 

hands are about to leave the device tracking area. To the best of our knowledge, our 

study represents the first attempt to explore this issue of boundary awareness in HMDs. 

 

Section 5.3 Formative Study 

We could not find any prior work that has focused on boundary awareness in HMDs. 

To guide our design, we carried out a formative study to observe and identify 

challenges faced by users when interacting with AR HMDs with no explicit boundary 

awareness. 

 

Section 5.3.1 Formative Study: Method 

We recruited six participants (two females) from a local university, whose ages ranged 

from 18 to 27. During the one-hour study, we observed participants experiencing a 

variety of mid-air hand interaction tasks (e.g., manipulating virtual objects, sushi cat, 

HoloQuarium), while no boundary awareness was provided. After a tutorial, 

participants interacted with the AR HMD while following a thinking-aloud protocol. 

They were asked to talk about what they saw, what challenges they had, and possible 

improvements by having a boundary awareness method to guide their interaction 

explicitly. 

 

Section 5.3.2 Formative Study: Findings 

Our formative study led to three main findings that were extrapolated from 

participants’ comments, our observations during their interaction, and post-experiment 

interviews.  

 

(1) Visualizing the boundaries. During the study, participants had to cope with the 

system when there was no response to their gestures. In most cases, non-

responsiveness was caused by the lack of awareness of the device’s tracking area 

because their hands would stray outside of it. Participants were confused because they 

were unsure whether it was because of something that they did wrong. This led to 

‘uncomfortable feelings’ and led them to question their ability to work with AR 

devices in general. This finding led us to hypothesize that if users could be made aware 
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of the tracked area (e.g., via some type of visualization), the cases of non-

responsiveness would likely be reduced. 

 

(2) Distance to the boundary. We wanted to investigate the issue of boundary 

awareness further and asked participants further questions. From the interviews, they 

indicated that it might be helpful to show how far between their hands were away from 

the boundary of the tracked interaction area (e.g., P3: ‘I could be careful of moving 

hands when I must interact the object near the boundary’). By knowing this, they could 

prevent their hands from hitting or going outside. 

 

(3) When to show the boundary? Although visualizing the boundary seemed necessary, 

participants also argued that knowing the boundaries may not be that useful when there 

would not be risks of moving their hands outside the boundary. This was reasonable 

because the visual field-of-view (FoV) of HMDs is not large, and having additional 

visual information would increase the amount of information shown. 

 

Section 5.4 Evaluated Boundary Awareness Methods 

Findings from the formative study allowed us to propose the following boundary 

awareness techniques. The testing platforms were all developed and run in Unity3D. 

We have summarized the advantages and disadvantages of our visual methods for 

boundary awareness in Table 5-1. 

 

Section 5.4.1 Static Surfaces (SS) 

This condition provides a visualization of the interaction area in the form of planes or 

borders (Figure 5-2a). The surfaces are shown in blue (i.e., RGB color (0,0,128)) but 

with 40% opacity to allow users to still see through them. Blue is selected because it 

works well in indoor environments with white walls [14], which is our experimental 

environment setting. The area surrounded by the surfaces represents the interaction 

area. Moving the hand outside the interaction volume leads to tracking issues by the 

AR headset. The advantages of this method include: (1) allowing users to notice the 

boundaries easily; and (2) providing such information constantly. On the other hand, 

the disadvantages of this method include: (1) users have to infer the distance between 
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the hand and the boundary; and (2) because it is visible at all times during interaction, 

it adds extra visual clutter that may occlude the view of other objects of interest. 

 

 

Figure 5-2. Design of static boundary awareness methods. (a) Static Surfaces (SS) that displays the 

interaction volume with colored transparent surfaces. (b) Static Coordinate Lines (SCL) that displays 

the distance to the closest interaction boundary in x-, y-, z-axes via coordinate system. 

 

Table 5-1. Summary of the advantages and disadvantages of visual methods for boundary awareness 

that were tested in our study. 

Techniques Advantages Disadvantages 

SS (1) allows users to notice the boundaries easily; 

and (2) provides this visual information 

constantly 

(1) users have to infer the distance 

between the hand and the boundary; 

and (2) may occlude the view 

SCL (1) provides distance information between the 

hand and the boundaries; (2) provides this 

information constantly; and (3) fewer visual 

objects in the scene when compared to Static 

Surfaces 

(1) visualizes the boundaries in an 

indirect way 

DS (1) helps visualize the boundaries in a clear 

way; and (2) provides such information 

dynamically and as such it does not occlude the 

interaction space when users’ hands are far 

from the boundary 

(1) users have to infer the distance 

between the hand and the boundary; 

and (2) there is still some degree of 

occlusion when users’ hands are 

close to the boundary and the visuals 

are activated 

DCL (1) provides distance information from the 

hand to the boundary; and (2) the scene is 

clearer than (i) Static Coordinate Lines as the 

lines only appear when users’ hands are close 

to the boundary; and (ii) does not occlude the 

view 

(1) visualizes the boundaries in an 

indirect way 
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Section 5.4.2 Static Coordinate Lines (SCL) 

In this approach, as long as the user’s hand is inside the interaction volume, the 

distance between the users’ hand to the volume’s surfaces is shown through a 3D 

coordinate axis. The position of the coordinate center follows the hand position. The 

length of the line(s) indicates the distance to the boundaries (see Figure 5-2b). The 

advantages of this method include: (1) providing distance information between the 

hand and the boundaries via simple visuals (in this case lines); (2) providing such 

information constantly; and (3) there are fewer visual objects in the scene than SS. The 

disadvantage of this method is that it indirectly visualizes the boundaries. 

 

Section 5.4.3 Dynamic Surface(s) (DS) 

This condition visualizes the surface(s) when the user’s hand only gets very close (i.e., 

1.5cm) to the corresponding boundary (see Figure 5-3). Otherwise, it is analogous to 

the Benchmark method (no visuals are given). The advantages of this method include: 

(1) visualizing the boundaries in a clear way; and (2) providing such information 

dynamically and as such, it does not occlude the interaction space when users’ hands 

are far from the boundary. The disadvantages include: (1) users have to infer the 

distance between the hand and the boundary; and (2) there will still be some degree of 

occlusion when users’ hands are close to the boundary and the visuals are shown. 

 

 

Figure 5-3. Design of Dynamic Surface(s) (DS) boundary awareness method. (a) The boundaries are 

not shown if they users are 1.5cm away the interaction boundary. (b) When users are about to move 

outside the interaction volume, at about 1.5cm to the surface, DS would highlight the corresponding 

surface(s) to let users be aware of the situation. 

 

Section 5.4.4 Dynamic Coordinate Line(s) (DCL) 

This condition is analogous to the SCL; the only difference is that the system only 

visualizes the coordinate line(s) when the user’s hand gets very close (i.e., 1.5cm) to 
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the corresponding boundary. Like DS, DCL does not show any visual elements for 

boundary awareness when the users’ hands are outside the interaction area (see Figure 

5-4). The advantages of this method include: (1) providing distance information from 

the hand to the boundary via simple visual lines; (2) the scene is clearer than (i) SCL 

as lines only appear when users’ hands are very close to the interaction boundary, and 

(ii) the surfaces approach as line approach does not occlude the view significantly. Its 

disadvantage is that it is an indirect way to visualize the boundaries. 

 

 

Figure 5-4. Design of Dynamic Coordinate Line(s) (DCL) boundary awareness method. (a) The 

coordinate lines are not shown if they users are 1.5cm away from the interaction boundary. (b) When 

users are about to move outside the interaction volume, at 1.5cm to the boundary, DCL would 

highlight the corresponding coordinate line(s) to let users be aware that they may possibly be exiting 

the area. 

 

Section 5.4.5 Benchmark 

This condition does not provide any visual feedback of the tracking boundaries and 

represents the case of how users currently interact with commercial HMDs. This 

approach acts as the benchmark when there is no boundary information provided to 

the users. It helps us to understand how users would perform and feel when there are 

visual cues provided to allow for a comparative analysis with the other four conditions. 

 

Section 5.4.6 Tested Environment 

The interaction volume is 25cm (width) × 20cm (length) × 16cm (height) and is placed 

at 42cm in front of the user as Magic Leap 1 can only display virtual items about 40cm 

away from the user. Users could only perform interaction when their hand is inside the 

interaction volume. Figure 5-5 shows the tested scenes together with the corresponded 

technique. There are eight cubes placed inside the interaction volume as target objects 

and four are outside the interaction volume (12 cm away from the surface and is outside 

the actual visual FoV of the Magic Leap 1) as target translation locations. Visual 
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support is added to help user complete the task in two ways: 1) changing the color of 

the cube to green when the user’s hand is hovering over a cube, this color would 

disappear when the player makes a successful selection, and 2) displaying an arrow to 

point out where the target location is when the user selects the cube successfully.  

 

 

Figure 5-5. Experiment setting for each boundary awareness technique. a) Static Surfaces, b) Dynamic 

Surface(s), c) Static Coordinate Lines, d) Dynamic Coordinate Line(s), and e) Benchmark. Note the 

default Unity3D background was not visible during the experiment. 

 

Section 5.5 Experiment: Object Translation 

To better understand what the best way is to notify users that they are moving their 

hands outside the tracking boundary, we looked at user performance and preference 

for one common and important mid-air interaction—object translation [32]. We 

conducted a controlled experiment investigating RQ1 (How accurately and efficiently 

can users interact with the system in dynamic tasks [e.g., translating virtual objects] 

when they cannot see the interaction area) and RQ2 (How do boundary awareness 

methods affect the user’s subjective feelings of translating virtual objects in HMDs) to 

explore mid-air translating (dynamic) tasks that would require a more complicated 

interaction process, from first selecting an object and then moving it to a different 

location within the AR environment. 

 

Section 5.5.1 Participants and Apparatus 

Twenty participants (seven females, average age: 20.2±2.2 years old, all right-handed 

with an average arm length 71.4±4.1 cm) were recruited from a local university 

campus. They all had normal or corrected-to-normal (using contact lenses) vision. 

Fourteen of them had prior experience with AR HMDs, but all were not frequent users. 

None had prior experience with the AR HMD used in the experiment—Magic Leap 1. 

The experiment was conducted in a university lab. 

 



Chapter 5 Visual Methods for Boundary Awareness for HMDs 

 

61 

 

Section 5.5.2 Evaluation Metrics 

We measured task performance in the form of objective data (speed and accuracy) and 

collected data describing users’ preference to the methods, including subjective 

feedback (system usability, user experience, workload, arm tiredness, vision 

tiredness). 

 

Task Performance 

The task-completion time was the translation time from the first successful selection 

of the cube made by the participant to the time when the cube was dragged and dropped 

at the target location. The error was the number of times the cube hits the boundary as 

the participant’s hand was not rendered by the AR system (i.e., moving outside of the 

boundary).  

 

User Preference 

User Preference was measured by 59 questions compiled from the System Usability 

Scale (SUS) questionnaire, NASA-TLX workload [107], User Experience 

Questionnaire (UEQ) [149], Borg CR10 [29], and Computer Vision Syndrome 

Questionnaire (CVSQ) [238]. 

 

Section 5.5.3 Experiment Design and Procedure 

The experiment employed a one-way within-subjects design where the independent 

variable was Technique (SS, DS, SCL, DCL, and Benchmark). The order of the 

techniques was counterbalanced. 

 

Before the trials started, participants were asked to complete a pre-experiment 

questionnaire to gather demographic information and were then given three minutes 

to get familiarized with the Magic Leap 1. Before each condition, they were briefed 

with the details of the next tested technique. During each condition, a one-minute 

training session was provided for each participant at the beginning. After each 

condition, participants were asked to fill in the user preference questionnaires. After 

the experiment, participants were asked to rank the techniques and give comments on 

the techniques. The whole experiment lasted about 80 mins. 
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Section 5.5.4 Task 

During the experiment, the system would randomly indicate a target by changing its 

color. Users could use their index finger to target the cube they want to select and 

select it by using a palm open gesture. The color of the cube would be changed back 

to the default color and the target location would appear when the selection of the cube 

was made successfully. To complete the task, the user would need to drag the cube 

and drop it on the target location (i.e., hitting the center of the cube in the target 

location). A wrong selection did not cause any effect while an error (i.e., dragging the 

cube and hitting the boundary) would stop the cube from moving. Participants had to 

re-select the target if they performed an incorrect selection or made an error. There 

was a one-second gap for the next target to be highlighted after a successful translation. 

Each cube would be moved to all target locations once. Overall, each participant 

moved 160 targets (32 cubes × 5 techniques). 

 

Section 5.5.5 Results 

We first applied a Shapiro-Wilk test to evaluate whether the collected data were 

normally distributed. Then, unless otherwise specified, we employed a one-way 

repeated ANOVA with Technique as the within-subjects variable. Bonferroni 

correction was used for pairwise comparisons and Greenhouse-Geisser adjustment was 

used for degrees of freedom if there were violations to sphericity in the data. 

 

User Performance 

The analysis unveiled that Technique had a significant (F2.733,51.936 = 2.872, p < .05) 

effect on the task-completion time. Post-hoc tests confirmed a significantly lower time 

for the DS compared to DCL. As for errors, a Shapiro-Wilk test indicated that the data 

were not normally distributed, therefore, we conducted a Friedman’s ANOVA where 

the analysis yielded a significant effect of Technique on errors (χ2(4) = 10.539, p < 

.05). Post-hoc analysis with Wilcoxon singed-rank tests were conducted with 

Bonferroni corrections, resulting in a significance level at p < .005. We found that DS 

had significantly (p < .001) smaller number of errors than DCL. Table 5-2 depicts the 

mean task-completion time and errors occurred for all conditions. 
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User Preference 

NASA-TLX workload. Table 5-2 depicts the mean mental workload for all conditions. 

The analysis yielded no significant effect of Technique on overall workload (F4,76 = 

1.164, p = .334). Regarding the NASA-TLX subscales, the analysis yielded a 

significant influence of Technique on Mental workload (F4,76 = 4.008, p < .01). Post-

hoc tests confirmed that SS caused a significantly (both p < .05) lower mental 

workload than DCL and Benchmark. We did not find any significant effect of 

Technique on Physical Demand (p = .301), Temporal (p = .582), Performance (p = 

.464), Effort (p = .778), and Frustration (p = .401) subscales. 

 

Table 5-2. Objective measurement and subjective feedback ratings with significant differences 

between the Boundary Awareness methods. Significance results are highlighted in green. 

Method Task-Completion Time Error Mental Workload 
SS 2.19±0.67 14.25±12.52 36.00±18.68 
DS 1.99±0.33 9.80±7.37 39.00±18.54 
SCL 2.87±1.86 22.45±22.13 43.50±18.07 
DCL 3.07±1.56 26.55±25.98 49.50±19.12 
Benchmark 3.05±1.75 28.55±41.35 47.50±22.91 
p < .05 < .05 < .01 

 

SUS. The analysis revealed that the Technique had no significant (F4,76 = 1.686, p = 

.162) effect on the system usability. Benchmark (M = 71.5, SD = 13.72) had the highest 

SUS score while SCL (M = 65.37, SD = 12.23) and DCL (M = 65.37, SD = 13.98) had 

the lowest.  

 

UEQ. The score for UEQ was analyzed using the excel tool provided by Laugwitz et 

al. [149] and had been adjusted between -3 (very bad) to 3 (excellent). The analysis 

yielded no significant influence of Technique on any of the UEQ subscale: stimulation 

(p = .983), efficiency (p = .702), perspicuity (p = .609), dependability (p = .859), 

attractiveness (p = .838), and novelty (p = .998). SCL (M = -0.23, SD = 0.20) had the 

highest UEQ score while Benchmark (M = -0.92, SD = 0.27) had the lowest. 

 

Borg CR10. The analysis yielded no significant effect of Technique on perceived 

exertion (F4,76 = .496; p = .739). DCL (M = 5.33, SD = 2.42) was rated that caused the 

highest physical fatigue for the participants while SS (M = 4.85, SD = 2.25) and SCL 

(M = 4.85, SD = 2.46) were rated the lowest. 
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CVSQ. A Shapiro-Wilk test indicated that the data were not normally distributed. 

Therefore, we conducted a Friedman’s ANOVA where the analysis yielded no 

significant effect of Technique on perceived visual fatigue (χ2(4) = 5.272, p = .261). 

SCL was rated the worst (M = 2.35, SD = 4.13) while DCL (M = 3.40, SD = 4.12) was 

the best. The number of participants reported suffering computer vision syndrome in 

SS, DS, SCL, DCL, benchmark were 4, 3, 2, 4, 3, respectively. A binary logistic 

regression test showed that each Technique had the same level likelihood to cause 

computer vision syndrome (χ2(4) = 1.082, p = .897). 

 

Ranking. The ranking of conditions shows a preference for SS (12 voted SS as the first 

option) before SCL (15 voted SCL as the second option). Benchmark was selected 

either the first or the last but mostly placed the last (14 voted it as the last option). 

Dynamic techniques were equally distrusted in the third and fourth places. 

 

Qualitative Feedback 

In general, most participants stated positive comments to Static and Dynamic 

Surface(s) boundary indicators: “great/good/wonderful” (P3, P13, P20), “easy to 

know the position and drag the cube” (P6, P19). However, we still observe a negative 

comment, “occluded the view” (P15). Regarding the Static Coordinate lines boundary 

indicator, participants indicated that “[it was] difficult to interact with the cubes” (P3, 

P10, P19). As for Dynamic coordinate line(s) boundary indicator, they stated that “like 

it” (P17), “easy to interact with cubes” (P2, P5). For benchmark, they stated, “the view 

is clear” (P18) but “extremely easy to move outside the boundary” (P10, P11, P19). 

 

Section 5.6 Discussion, Guideline, and Future Work 

Section 5.6.1 Task Performance and User Preference 

Task Performance. We found that DS could not only help complete the task faster but 

also caused fewer errors than DCL. This could be because surface-based boundary 

awareness is much more apparent, explicit, and obvious than Coordinate Line-based 

methods. For RQ1, boundary awareness methods, in general, did not help to reduce 

the errors in translation tasks when compared to Benchmark. However, this was highly 

user-dependent; for instance, P2 and P3 had no issue interact with the Benchmark 

technique (less than 10 errors) while P19 and P20 made more than 100 errors. 
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Moreover, although P19 and P20 had many problems interacting with the Benchmark 

technique, they had no issues interacting with the AR environment with any of the 

boundary awareness methods, having fewer than 20 errors for all of them. 

 

User Preference. For RQ2, boundary awareness methods could positively affect the 

user’s subjective feelings during the interaction as we found that SS led to a 

significantly lower mental workload than Benchmark. One possible explanation is that 

users must be aware that they are moving outside of the tracked boundary in 

Benchmark condition while they did not have such an issue in SS. Interestingly, 

although SCL presents the tracking boundary all the time, it was not found to have the 

same effect as SS. 

 

Based on the ranking data, SS is also preferred as the first option. Coordinate line-

based methods are preferred by most users.  

 

All in all, based on our results and user feedback, we suggest that in translation tasks, 

users should choose a surface-based technique (either SS or DS) over Benchmark as 

the technique could help users to know the boundary visually to guide their interaction. 

If users feel that their view is occluded and this interferes with their interaction, they 

could consider a coordinate line-based technique instead. 

 

Section 5.6.2 Guidelines for Boundary Awareness 

To our knowledge, this is the first exploration of boundary awareness for AR HMDs. 

Based on the results and observations of our study, we formulate the following 

guidelines and discuss implications for the design of boundary awareness methods in 

AR HMDs. 

 

User-Dependent 

Although there was no significant difference between methods on computer vision 

syndrome (CVS), we suggest that users should experience all available techniques first 

and avoid the one(s) which can cause computer vision syndrome to provide a better 

interaction experience. For example, P15, who suffered CVS with SS and Benchmark 

should not consider using them. In addition, participants, who made 117 errors (P19) 
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and 153 errors (P20) while using Benchmark, should consider the technique(s) that 

could help them (e.g., SS for P19 where only 15 errors occurred and DS for P20 where 

only six errors occurred). All in all, the boundary awareness method should be tuned 

to suit the individuals’ needs and predispositions. 

 

Providing Boundary Awareness Method by Default 

During the phase where participants tried the AR device to get to know it, we observed 

that novice users tended to over-value the FoV of the AR HMD. They would ignore 

the FoV of the AR device and assume that the interaction would be the same as what 

they would typically do during actual tasks. Therefore, we suggest that providing a 

boundary awareness method at the beginning stage to remind the users about the 

limited size of the tracked area and FoV of the device. It could be disabled when users 

think they could do without it. 

 

Section 5.6.3 Limitations and Future Work 

The design and results have some limitations, which could frame future research in 

this area. 

 

Our experiment is limited to the mid-air interaction gestures with one-handed only. 

Future work can explore whether our findings will also be applicable to two-handed 

gesture-based interactions where large motions are required. As reported in [183], a 

gesture that requires a large moving may cause more errors and, therefore, might lead 

to a different experience.  

 

Several values used in our experiment are pre-defined fixed values due to the lack of 

related prior work. For instance, we have set the color of the surface(s) blue since it 

works well in indoor environment with white wall [79]. Future work can 1) implement 

a dynamic color changing scheme for the surface(s) to suit the background [78,79]; 2) 

focus on exploring the most suitable values for opacity of the color and the distance 

for activating the dynamic visual cues for boundary awareness. 

 

In this research, we have investigated the use of boundary awareness methods in 

translation tasks [32], with visual methods, which is only the starting point for 
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investigating boundary awareness techniques in HMDs. It would be useful to examine 

the feasibility of boundary awareness methods in other common manipulating tasks in 

3D environments (e.g., 3D modeling [51] where the interaction would be more 

complicated), other AR applications, and even in VR environments (e.g., to compare 

boundary awareness methods with the one offered by HTC VIVE/Oculus Rift in VR 

HMDs). 

 

In addition, we have only implemented visual techniques for the boundary awareness 

problem. Other primary sensory channels [190], such as haptic and auditory, could 

present feasible and novel solutions but were beyond the scope of the current study. 

The development of non-visual techniques represents a rich area of future work. For 

example, audio, haptic, or their combination can be activated when users are about to 

move their hands outside the tracking boundary. This approach will involve less visual 

clutter, but more research is needed to understand how well they would work and to 

determine their optimal parameters. 

 

Section 5.7 Conclusion 

In this chapter, we present the first empirical study of visual methods for boundary 

awareness in head-mounted displays (HMDs). We have first conducted a formative 

study to understand the challenges that users would face when interacting with HMDs 

without boundary information. Then, we have introduced four preliminary candidates 

for boundary awareness that are then compared to the benchmark, where no boundary 

information is provided, in the common and important mid-air interaction task of 

object translation regarding task performance and user preference. Based on the results 

of our experiment, we suggest the boundary awareness method chosen should be user-

dependent. We also list two guidelines for the use of boundary awareness methods in 

HMDs. Because mid-air interaction is an important aspect of current HMDs, issues 

such as boundary awareness are becoming increasingly critical. Our paper represents 

a first attempt at exploring and providing low-cost techniques that can improve mid-

air interactions for these devices. 
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Section 5.8 Summary 

We can now answer Research Question 1 of this thesis (i.e., how can visual boundary 

awareness techniques support mid-air hand-based interaction?). Visual boundary 

awareness methods should provide information on the distance between users and the 

boundary. In addition, it can be provided both statically and dynamically. Overall, 

visual boundary awareness methods could positively affect the user’s subjective 

feelings during hand-based interaction.  

 

To answer the Research Question 2 of this thesis (i.e., can a circular layout achieve an 

efficient hands-free head-based interaction?) and address the Core Challenge 2 (i.e., 

efficient hands-free head-based interface for HMDs), the next chapter first proposes 

an optimized circular layout through an iterative process. Then, the proposed technique 

is compared with four other possible head-based methods to prove its efficiency among 

other benchmark techniques. Finally, it presents a 4-day study to understand its 

efficiency after a great amount of training.  
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Chapter 6 RingText: Dwell-free and Hands-free Interaction for 

HMDs Using Head Motions 

Section 6.1 Introduction 

Most virtual reality (VR) head-mounted displays (HMDs) (e.g., Oculus Rift, HTC 

VIVE, Pico) and some augmented reality (AR) HMDs (i.e., Magic Leap 1) come with 

a controller device. However, there are cases where users cannot access the controller; 

for example, the controller is not around, or the users’ hands are occupied with other 

activities. Besides, hands-free input will be useful for users who cannot manipulate a 

controller at all or with the precision required for text entry. Users who do not possess 

sufficient hand motor control skills like elderly users or those who have a motor 

deficiency disease will benefit from a hands-free technique. In this sense, having a 

technique that does not require users’ hands to hold a device for input can come in 

handy in a variety of situations and for various types of users and HMDs.  

 

Development of efficient text entry methods for HMDs without any dedicated 

handheld device has remained unexplored. A recent paper [294] reports a head-based 

text entry technique with dwell time that allows users to achieve an average of 10.59 

word-per-minute (WPM) after training for 50 minutes. One limitation observed from 

their data is that the slowest users cannot improve much, even after having training. 

Another limitation is the dwell technique itself; it is well-known that dwell-based 

techniques can limit typing speed because of an imposed waiting time for each 

character selection. Text entry rates of dwell-based methods are typically between five 

to ten WPM [168]. By eliminating dwell time and optimizing the layout for selecting 

not only the letters but also the recommended spelling correction words, it is possible 

to increase WPM.  

 

In this chapter, we explore the feasibility of applying a circular keyboard layout with 

two concentric areas for text entry that is both dwell-free and hands-free for HMDs 

(see Figure 6-1 for a picture of the technique and how it works). We have conducted 

three studies. The first study evaluates and compares how three possible factors 

(number of letters per region of the outer circle, size of the inner circle for resetting 
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selection, and alphabet starting position) affect the efficiency of text entry, error rates, 

workload, and simulator sickness. Informed by both quantitative and subjective data, 

we then have improved and optimized the best layout (and features) from the first 

study further by narrowing the letter trigger area, adding a spelling correction feature, 

and incorporating dynamic, instead of fixed, candidate word regions for fast selection. 

Unlike other techniques that show the recommended candidate words in a fixed 

position [130,294], our dynamic candidate regions are designed based on Fitts’ law 

[74] to enable users to choose quickly the desired word suggested by a spelling 

correction algorithm. In a second study, we have compared the text entry performance 

of our technique, RingText, with four other possible techniques: dwell QWERTY, 

dwell circular, Swype circular, and Swype QWERTY—the results show that RingText 

outperforms them. Finally, we have conducted a 4-day study with two daily sessions 

and 10 participants to evaluate the learning effects of RingText on speed and error 

rates. Our last session results indicate that the five novice users can achieve an average 

of 11.30 WPM (s.e. = 0.80) with 3.29% (s.e. = 0.34%) of the total error rate, and that 

the five ‘expert’ users (those who had performed the best in the second study) can 

achieve an average of 13.24 WPM (s.e. = 0.80) with 2.90% (s.e. = 0.22%) of the total 

error rate. Our results also show that our technique leads to a high selection rate of the 

recommended words due to the use of dynamic recommended word regions. 

 

 

Figure 6-1. (a) Text entry on a mobile head-mounted display through head motions; (b) To finish 

typing ‘ring’ after a user has already entered the letters ‘r’ and ‘i’, the user selects the letter ‘n’. The 

entered text is shown in the center of the screen; two candidate words are shown in the regions below 

and on each side of the last letter ‘N’. Then the user goes to select the recommended word ‘ring’ by 

moving the head down. The design rationale of the technique is to minimize eye and head movements 

(or distance traveled), but still maintain a reasonably low error rate, of users of mobile virtual reality 

head-mounted displays. 
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The contributions of this work include: (1) the first example of a formal evaluation of 

the circular keyboard layout for text input in HMDs; (2) the first comparison of hands-

free text entry mechanisms for both circular and QWERTY keyboard layouts in 

HMDs; (3) a case for the use of dynamic (rather than static) locations for recommended 

words—to our knowledge, this is a first case that shows the usefulness of using 

dynamic locations of these words; and (4) a demonstration of the effectiveness of 

RingText, a circular layout text entry technique that relies on head motions and uses 

dynamic locations for recommended words, through a 4-day user study. 

 

Section 6.2 Related Work 

In this section, we provide the literature review with respect to text entry for mobile 

VR HMDs (i.e., the device we used in the experiment); dwell-free text entry 

techniques; circular layouts; and dynamic vs. fixed positioning and use patterns of 

candidate words. 

 

Section 6.2.1 Text Entry for Mobile VR HMDs 

One of the biggest challenges for mobile VR HMD is to avoid the need of the 

peripheral devices generally used in stationary VR systems such as keyboards and 

mice [100] and game controllers [295]. This “accessory constraint” poses extra 

difficulties for text entry in immersive virtual environments (IVE) and limits the use 

of not only VR and also AR HMDs.  

 

One possible solution is to use speech-based text entry techniques. Bowman et al. [34] 

made a comparison among a speech-based text entry, a pen and tablet keyboard 

metaphor, a one-hand chording keyboard, and pinch gloves, and found that the speech 

technique is the fastest medium for entering text in IVE at around 14 WPM. A recent 

speech-based multimodal text-entry system called SWIFTER [205] has claimed to 

reach an average input rate of 23.6 WPM. Despite their potential use in text entry, one 

major limitation of speech recognition techniques is that their performance suffers in 

noisy environments [100]. Furthermore, they can bring privacy problems when the 

user uses a speech text entry method to input a password or send messages to friends 

in a public environment, like a bus, coffee shop, or library. This represents a severe 
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shortcoming for mobile VR HMDs which are often operated in an “uninstrumented” 

environment or public areas. 

 

Other researchers have investigated touchscreen-based text entry techniques 

[101,136,159] and reported fairly good entry speeds (e.g., 17-23 WPM with a 

prediction algorithm [159]). However, because users are not able to precisely locate 

their hands before the first press in IVE [101], the typing process might require extra 

movements for selecting the target characters. Moreover, since a smartphone might 

already be used as a display for the mobile VR HMD, an extra touchpad is required 

for text input, and the use of hands is needed, something that is not possible in 

situations where users’ hands are occupied. 

 

Numerous mid-air typing techniques have been explored for virtual environments 

including wearable glove-based techniques [34] and motion tracking techniques [291]. 

Although such techniques enable mobile text entry and some of them allow a fast text 

entry speed (23 WPM for novice users as reported in [291]), these techniques might 

require expensive extra sensors or devices like cameras or sensor-equipped gloves. In 

addition, most of them require a substantial learning curve [100] and may confine users 

to a fixed location and position. 

 

Current common mobile VR HMDs are designed to be operated using head rotation 

[101,197] by which users can move the cursor placed in the middle of the view to 

select target objects. Yu et al. [294] proposed and explored three types of text entry 

techniques using head-based interaction: Dwell, Tap, and Gesture with text entry 

speeds of 10.59, 15.58, and 19.04 WPM respectively for novice users after six training 

sessions. Among them, only their Dwell technique requires no extra device. Further, 

the input speed of their Dwell technique is not that high even with a prediction and 

error-correction algorithm (10.59 WPM). For these reasons, one of our key 

motivations is to propose a more efficient head-based device-free technique for mobile 

VR HMDs. Our design will eliminate dwell time and avoid the need of using hands 

(or additional input devices). More importantly, we aim to reduce motion sickness of 

users by minimizing the need to make large head motions. 
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Section 6.2.2 Dwell-free Text Entry Techniques 

Instead of dwelling on the target for a predetermined duration to trigger a selection 

[169], dwell-free techniques allow users to enter text on-the-fly. Kristensson and 

Vertanen [142] investigated an eye gaze dwell-free text entry approach in a non-VR 

scenario and indicated that dwell-free eye typing could theoretically be significantly 

faster than existing techniques with a theoretical text entry speed of 46 WPM. 

Although this result is based on an error-free simulation, it suggests a possible research 

direction for dwell-free text entry techniques.  

 

Dwell-free typing techniques can be divided into two major groups: gesture-based and 

selection-based. EyeWrite [281], the first gesture-based eye typing technique, has been 

shown to be significantly faster, easier to use, and prone to cause less ocular fatigue 

than the on-screen keyboard [282]. Eye-S [210] allows users to draw letters through 

sequential movements on nine hotspots and is claimed to reach 6.8 WPM for expert 

users. A later eye-typing technique, EyeSwipe [145], enables users to glance at the 

vicinity of the respective characters in the middle of the word but carefully selects the 

first and last characters of a word using the “reverse crossing” technique. It can reach 

11.7 WPM on average for ten participants with 30 minutes of training. This technique 

is not fully dwell-free since it requires users to look at the hotspot for a pre-defined 

threshold time to confirm the sequence starting point. Gesture-based techniques are 

shown to suffer from low-performance issues [209]. 

 

Several selection-based dwell-free typing techniques have also been proposed. EyeK 

[230] allows users to select a character by moving the pointer inside-outside-inside the 

activation area. The authors have claimed it can achieve an average speed of 6.03 

WPM. Filteryedping [203] can filter out unintentionally triggered letters from the 

sequence of letters swiped by the user and predicts the possible words. This technique 

is reported to achieve an average text entry speed of 14.75 WPM. One common 

drawback for most of these selection-based dwell-free techniques is that they might 

require extra movements to type the word (e.g., inside-outside-inside movements 

[230]). When used in HMDs this additional movement can increase motion sickness, 

which instead should be reduced. 
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There are some recent developments for VR HMD with eye tracking, but the cost of 

such devices is much higher than the standard HMD. For instance, the price of a FOVE 

0 is $599 USD which is seven times higher than the Samsung Gear VR ($76) and also 

higher than other PC HMDs (i.e., Oculus CV1 – $399). Also, some research (e.g., 

[106]) suggests that head-based typing is as fast as gaze typing but can induce fewer 

errors. In line with this, we believe that dwell-free techniques have benefits for head-

based text entry, including fast character selection, less error-prone than gaze typing, 

and high levels of acceptance by mobile VR HMD users. 

 

Section 6.2.3 Circular Layout 

Circular Keyboard Layout 

The circular keyboard is first designed to work with pen input for desktops and 

touchscreen phones (e.g., Cirrin [174]). Later circular keyboard styles are designed to 

work without the stylus. TUP [212] maps the letters at fixed positions around a circle. 

Users place their finger on the location of the letters for selection. With the aid of a 

prediction algorithm, novice users can achieve 6-7 WPM.  

 

The circular layout has also been used in gaze typing. pEYEs [120] employed a 

hierarchical circular interface with gaze-based input and reported a speed of 7.85 

WPM for novice users and 12.33 WPM maximum for an expert user. Topal et al. [262] 

developed SliceType by applying a language prediction model to merge keys of their 

inner-outer circle layout. Their method can achieve 3.45 WPM for gaze input with 1 

second dwell time. Apart from these works, the circular layout is also used in huge 

wall displays [244], VR with Dual Thumbsticks controller [295], and smartwatch 

[93,130,290]. So far, the best result for novice users using circular layout is appeared 

in WrisText [41], participants were able to type as fast as 15.2 WPM at the end of the 

fifth session. 

 

Hierarchical Marking Menu 

A hierarchical marking menu uses a set of multi-level radial menus and “zig-zag” 

marks to make selections [146]. This design concept has been used in many areas, such 

as fractal menus for AR HMDs [147] and Swipeboard [43] for smartwatch text entry 
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where users can reach 19.58 WPM after two hours training. However, these examples 

are not based on a circular layout. Our review shows that there does not seem to be 

any research that has explored a hierarchical marking menu design with alphabet 

letters and suggested words using a circular layout. 

 

Section 6.2.4 Placement of Candidate Words 

Auto-complete, recommended words, and spelling corrections are commonly used in 

both research prototypes [130,203,294] and commercial products, like phones and 

tablets, to show possible words that users are trying to type. These suggested words 

are typically placed just above the T9 and QWERTY keyboard layouts. 

 

Our review of the literature also shows that not much research has looked at the 

placement of suggested words for users to choose from. For QWERTY layouts, it is 

common to find word suggestions to be placed just above [294] or below [203] the 

virtual keyboard—the assumption seems to be that this placement will lead to fast and 

accurate selection. In addition, the placement is usually fixed in one region. While 

fixed placement either above or below the keyboard works for QWERTY layouts, this 

design may not be the most optimal for other keyboard layouts.  

 

For a circular keyboard layout, placing the candidate words far away from the 

keyboard [130] makes it difficult for users to check the words and select them. The 

candidate regions and its selection used in the circular layout on smartwatches are 

efficient; the user can choose a candidate word by pinching the thumb and index 

fingers [41] or by pressing a side button [290]. However, these techniques applied in 

smartwatches are unlikely feasible for hands-free and controller-free HMD text entry 

scenarios. 

 

Beyond smartwatches, our research points to a lack of research in the design and use 

of candidate word regions for circular keyboards. Their placement should be such that 

the user does not need to look back-and-forth between the keyboard and the suggested 

words, which are updated after each letter entry. Besides, if a cursor or a pointer is 

used for selection, its placement should aim to reduce the distance between the last 

selected key on the keyboard and the potential word that the user has in mind. In VR 
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systems when using hands-free and controller-free circular text entry layout, 

dynamically positioning the suggested words could be a way to minimize the back-

and-forth eye movement to check the words and can also reduce the distance (and 

hence the time) that is needed to make a fast selection. Our technique uses a dynamic 

location positioning for recommended words and, as described later, results from our 

experiment show that indeed dynamic placement brings advantages for text entry for 

circular layouts using head motions for selection.  

 

Section 6.3 RingText 

Section 6.3.1 Layout 

To achieve dwell-free, our technique divides the boundary of the outer circle into equal 

size regions to hold the characters (see Figure 6-2 below). The region can potentially 

hold one or more characters. The inner circle can be regarded as the rest/reset area; 

users can stay at the center, while their eyes are searching for the next letter. To 

minimize learning, we have organized the letters based on alphabetical order to 

leverage users’ familiarity with this sequencing. 

 

 

Figure 6-2. Design of the layouts and selection mechanism. (a) The 1 letter per region selection 

mechanism; and (b) The 2 letters per region selection mechanism. In both cases, a user is selecting the 

letter ‘A’. 

 

Keyboard size was determined in a pilot study with eight participants. We rendered 

the virtual keyboard far away from the user (8 meters) to avoid the parallax effect [294] 

and tested the keyboard size with a radius of 5, 5.5 and 6 meters in this preliminary 
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study. We employed the 5.5-meter keyboard in our subsequent studies because of these 

participants’ preference. 

 

Section 6.3.2 Selection Technique 

In this section, we describe briefly how our selection mechanisms work. First of all, it 

is important to note that two keyboard layouts are used in our first experiment. The 

first layout has only one letter per region and the second has two. 

 

The one letter layout uses a simple go-and-hit selection approach—i.e., as the cursor 

leaves the center entering the region of a letter, this letter is instantly selected (Figure 

6-2a). Since the second layout has two letters per region, the simple go-and-hit does 

not work. For this layout, we use the following approach: as the cursor leaves the center 

entering the two-letter region, these letters are split and parallelly placed opposite to 

each other just outside the current 2-letter region. The user then chooses the desired 

letter by moving the cursor towards the letter. As the cursor hits the area, the selection 

is made (Figure 6-2b). The users must move the cursor back to the inner circle to restart 

the selection process—so to make the process consistent. 

 

We also explored 3- and 4- letter-per-region keyboard designs, which have a selection 

mechanism similar to the 2 letters per region design. However, participants from our 

preliminary study believed those two designs to be too complicated to use; besides 

both led to a high error rate. 

 

Section 6.3.3 Visual and Sound Feedback 

Our technique incorporates a sound effect to notify the user after a letter has been 

selected. To complement the sound, the colour of the region also changes when the 

cursor enters the region so that the user knows whether the cursor is in the correct 

region. Also, the colour of the letter also changes for 0.2 seconds to inform the user 

that the letter has been selected. The typed words are placed at the center so that user 

can easily see them. 

 

Additional visual feedback is provided for the 2 letters per region layout. That means 

that once a region is selected the letters within it will move to their respective nearest 
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neighbours. The new position of the letters serves as a visual guide for the user to know 

to which direction to rotate their head to make the selection (Figure 6-2b (2)). 

 

Section 6.3.4 Advantages of RingText 

Our technique leverages the advantages of small head motions such as low cost and 

higher accuracy when compared to eye gaze [71,106]. Also, as the head moves, the 

eyes can move along, which might help users to perform faster the visual search of 

letters (and as described later, to find the recommended words). Further, we make use 

of head movements to eliminate the need for hand-held input devices; useful for a wide 

range of mobile scenarios when such devices are unavailable or inconvenient to use; 

it is actually preferred and suggested to use head pointing (or movement) when a hand-

held controller is not available (see [251]). Finally, our layout allows us to reduce 

selection time through dwell-free selection—selection is made only with small head 

movements. 

 

We next describe the three studies. The first study explores the factors that can 

influence typing speed and error rates so that they could be optimized in our technique. 

Study two then compares the tuned method with four other hands-free methods to 

evaluate their relative performance. Finally, Study 3 explores the performance of both 

novice and “expert” users over a longer training period.  

 

Section 6.4 Study One 

The goal of this experiment was to evaluate the effect of (1) the number of letters per 

region on the outer circle, (2) the size of the inner circle for resetting the selection, and 

(3) the starting position of the letters on speed and error rate. We also evaluated 

workload and simulator sickness. 

 

Section 6.4.1 Participants and Apparatus 

Eighteen participants (13 males and 5 females) between the ages of 18 and 28 (M = 

20.83, SD = 2.60) were recruited from a local university campus. All participants were 

familiar with the alphabet because the language of instruction at the university is 

English but were not native users. Participants had normal or corrected-to-normal 
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vision and reported an average of 4 for experience with the QWERTY keyboard on a 

scale from 1 (‘No Skill’) to 5 (‘Expert’). Fourteen participants had previous experience 

with HMDs before the experiment—they had either seen and/or interacted with them. 

The experiment was conducted on a 96-degree field-of-view Samsung Gear VR with 

an S6 Edge+ smartphone. Unity3D was used to develop and implement our proposed 

head-based text entry technique. Our application also logged the cursor movement data 

for further analysis (like the heat map of selection areas). 

 

Section 6.4.2 Experiment Design 

The experiment used a 2 × 2 × 3 within-subjects design with three independent 

variables. The first was the number of letters per region (LPR) which had two levels: 

1 LPR and 2 LPR. The second was the inner circle size (Center Size) which had two 

levels: Large (65% of the whole circular layout size—3.575-meters) and Small (55% 

of the whole circular layout size—3-meters). The last variable was the alphabet 

starting position: Left, Top, and Right (see Figure 6-3). 

 

 

Figure 6-3. Three alphabet starting positions. From left to right: alphabet starting on the left; alphabet 

starting on the top; and alphabet starting on the right. 

 

LPR and Center Size were counterbalanced; the alphabet starting positions were 

randomly assigned but also balanced for each condition. All three alphabet starting 

positions were tested by each participant. Each keyboard layout was randomly tested 

by six participants. 

 

Each participant transcribed eight phrases for each layout combination. All phrases 

were randomly sampled from the MacKenzie’s phrase set [167] with no repeated 

phrases within the session. Each phrase was displayed in the central area. The Gear 

VR touchpad was applied only for the user to switch to the next phrase. Text entry 

speed was measured in WPM, with a word defined as five consecutive letters, 
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including spaces. The error rate was calculated based on the standard typing metrics 

[250], where the total error rate (TER) = not corrected error rate (NCER) + corrected 

error rate (CER). 

 

Section 6.4.3 Procedure 

Before each session, all participants were briefed about the experiment details; then a 

1-minute training was provided for the participants before each layout to allow them 

to familiarize with it. After each layout, the participants were asked to fill the NASA-

TLX [107] and simulator sickness questionnaire (SSQ) [131]. Because our technique 

required frequent neck motions, we also added additional Neck Fatigue questions to 

SSQ. A 1-minute break was given if the participant felt tired. Before the experiment 

ended, all participants were asked to choose their preferred layout (LPR × Center Size) 

and alphabet starting position. This experiment took on average 45 minutes per 

participant. In total, we collected 18 participants × 2 Center Sizes × 2 LPR × 8 phrases 

= 576 phrases. 

 

Section 6.4.4 Results 

We employed a mixed factorial ANOVA and Bonferroni corrections for pair-wise 

comparisons. We also used a Greenhouse-Geisser adjustment to correct for violations 

of the sphericity assumption. Effect sizes were reported whenever feasible (ηp
2). 

 

Text Entry Speed 

Figure 6-4 illustrates mean text entry speed for each layout. A 2 × 2 × 3 (LPR, Center 

size, alphabet starting position) ANOVA tests revealed a significant difference of LPR 

(F1, 60 = 4.042, p < .05, ηp
2= .063, observed power = .507), LPR × alphabet starting 

position (F2, 60 = 3.254, p < .05, ηp
2 = .098, observed power = .598) and Center Size × 

LPR × alphabet starting position (F2, 60 = 4.364, p < .05, ηp
2 = .127, observed power = 

.734) on WPM. No other factors were found to have a significant effect on WPM. 
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Figure 6-4. Mean text-entry speed across 12 types of RingText layouts. Error bars indicate ±2 

standard errors. 

 

Post-hoc pairwise comparisons for LPR indicated that WPM for 1 LPR was 

significantly higher than 2 LPR (p < .05). Post-hoc pairwise comparisons for LPR × 

alphabet starting position indicated that the text entry rate in 1 LPR Left was 

significantly higher (p < .01) than 2 LPR Left. No other significant differences were 

found. To test for significant effects on Center Size × LPR × alphabet starting position, 

we made pairwise comparisons which revealed that participants were significantly (p 

< .01) faster when typing with 1 LPR Large Top than 2 LPR Large Top. Also, 

participants were significantly faster (p < .05) when typing with 1 LPR Large Left than 

2 LPR Large Left. Additionally, 1 LPR Large Top led to significantly faster (p < .05) 

speed than 1 LPR Small Top. No other significant differences were found. 

 

Error Rate 

Figure 6-5 shows TER and UCER for each layout. ANOVA testes revealed a 

significant difference of LPR on TER (F1, 60 = 8.601, p < .01, ηp
2 = .125, observed 

power = .823), while Center Size had a close to significant effect on TER (F1, 60 = 

3.739, p = .058, ηp
2 = .059, observed power = .477). No other significant differences 

were found on TER. No main effects were found to be significant on NCER. Center 

Size × alphabet starting position was the only interaction effect to be significant on 

NCER (F2, 60 = 3.683, p < .05, ηp
2 = .109, observed power = .656). Post-hoc pairwise 

comparisons revealed the Large Left layouts (M = 2.69%, s.e. = 0.80%) had a close to 

significant (p = .055) more NCER than Small Left layouts (M = 0.66%, s.e. = 0.19%). 



Chapter 6 RingText: Dwell-free and Hands-free Interaction for HMDs 

Using Head Motions  

 

82 

 

 

Figure 6-5. Mean TER and NCER across 12 types of RingText layouts. Error bars indicate ±2 standard errors. 

 

Subjective Feedback 

NASA-TLX. ANOVA tests showed that there was no significant difference of Center 

Size (F1,60 = 0.003, p = .910, ηp
2 = .000, observed power = .051), LPR (F1,60 = 2.021, p 

= .160, ηp
2 = .038, observed power = .327) and alphabet starting position (F2,60 = 0.048, 

p = .954, ηp
2 = .001, observed power = .056) on the overall workload and its subscales 

(Mental, Physical, Temporal, Performance, Effort, Frustration). No interaction effects 

were found either. 

 

Simulator Sickness. ANOVA tests yielded no significant difference of Center Size 

(F1,60 = .265, p = .609, ηp
2 = .004, observed power = .080), LPR (F1,60 = .009, p = .923, 

ηp
2 = .000, observed power = .051) and alphabet starting position (F2,60 = .675, p = 

.513, ηp
2 = .022, observed power = .158) on the overall simulator sickness scores and 

the subscales (Nausea, Oculomotion, Disorientation). No interaction effects were 

found on the overall simulator sickness scores and its subscales. 

 

User Preference. Fifteen participants (out of 18) preferred the alphabet to start on the 

Top; two users on the Right; and one user on the Left. In terms of the layout, seven 

participants preferred 2 LPR with the small inner circle; six users preferred 1 LPR with 

the large inner circle; two participants preferred 1 LPR with the small inner circle; 

three participants selected 2 LPR with the large inner circle. 
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Section 6.4.5 Discussion 

Because all layouts have similar simulator sickness and TLX workload, we discounted 

the results. We only considered the performance data, users’ preference and comments 

to decide the final layout and select the features that would be optimized and tested in 

the next experiment. 

 

Overall, 1 LPR was significantly faster than 2 LPR; TER could be potentially solved 

by a spelling correction algorithm—our results in the next experiments would support 

this. No significant difference was found between 1 LPR and 2 LPR on NCER. In 

addition, all participants commented that 1 LPR is much easier to understand and use 

than 2 LPR. Therefore, we decided to use 1 LPR layout. 

 

Although Center Size only had a close to significant difference on TER, the results 

showed a reliable trend that a large center should result in lower TER. Thus, we 

decided to use the large inner circle to minimize the possibility of inducing errors. 

 

Regarding the alphabet starting position, because it did not have any significant 

difference on WPM and error rates, we chose the alphabet starting at the top based on 

user preferences. Thus, the final layout we selected was the 1 LPR large center with 

the alphabet starting at the top. 

 

During the data analysis, we also observed that selecting a letter that was next to the 

intended one was the main reason why error rates were high. For example, one of our 

participants wanted to delete an erroneously selected letter. He then moved to the 

delete letter region, but unintentionally entered the space region twice because the 

trigger area for the space region and the delete region were very close to each other. 

To overcome this problem, we decided to narrow the letter region trigger area for the 

1 LPR layout; by doing this, we believe it could help reduce the TER and lead to a 

faster text entry speed than the Dwell Type approach. 

 

Besides, our observations also suggested that if the technique could include a spelling 

correction method, it would minimize erroneous inputs, thereby reducing the time that 
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participants would need to correct them. As such, it could potentially increase text 

entry speed. 

 

Section 6.5 Optimized Design 

Section 6.5.1 Narrower Trigger Area 

Figure 6-6 (a; left) presents the heatmap of the letter triggered locations collected from 

one participant. It shows that triggered locations are not in the midsections of the 

border adjacent to the inner circle, but across the whole border areas. Since the trigger 

areas are very close to each other, users may not find it easy to hit the intended letter 

region when they are not familiar with the circular layout of RingText, thus leading to 

error rates that are inevitably high. As shown in Figure 6-6 (b; right), to lower error 

rates due to accidental erroneous selections, a narrower trigger area for each letter is 

used (20% smaller than the original size). 

 

 

Figure 6-6. (a; left) An example of a heatmap of triggered locations. (b; right) Smaller trigger area of 

the letter regions used in Study 2 and 3. 

 

Section 6.5.2 Spelling Correction 

To further improve the performance of our text entry technique, SymSpell [81] was 

adopted with a dictionary of the ten thousand most frequently used English words 

[298]. To predict a word more precisely, we only allowed the algorithm to have its 

maximum search distance just two letters and return the top two spelling suggestions 

for the current typed letters. Figure 6-7 shows two examples of recommended words 

for two sets of letters. 
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Figure 6-7. Dynamic candidate word locations for the letters ‘C’ and ‘E’ regions. The two results of 

the spelling correction algorithm are displayed next to the current letter region and close to the cursor 

to minimize not only eye movement for checking the words but also head movement for rapid 

selection of the words. 

 

Section 6.5.3 Fixed vs Dynamic Candidate Word Locations 

We also explored whether to use a fix location to show the spelling corrections or to 

have the locations change dynamically so that they would be shown based on the 

cursor’s location. Suitable fixed locations could be the areas outside the circle, but this 

approach would force users to look back-and-forth frequently, and this was something 

we wanted to minimize to lessen simulator sickness. The central area could also be 

problematic because it might lead to erroneous selections because users would need to 

rotate their head to cross to other letter regions. Other possible solutions were to use 

dwell, or to use an additional input device; however, both approaches would go against 

our design criteria. Moreover, a fixed location within the center area would still require 

users to move their head or eyes every time they would enter a letter region and want 

to see whether the word(s) shown were the ones they would need. 

 

Instead of placing the recommended words in a fixed position, a dynamic solution was 

chosen. Dynamic locations could be based on the current location of the cursor. 

However, this would also require dwelling or an additional input device for selection. 

In the end, we decided that the two recommend words could appear just outside of the 

current letter region and, by implication, next to the location of the cursor (see Figure 

6-7). This dynamic solution would minimize not only eye movements to check the 

words, but also head movements to select a word because of their proximity to the 

cursor and users’ focal viewpoint. In one way, this represented an extension of our 

selection technique for letters but applied to select words without the need of dwelling 

time and an extra device. 
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Using this approach, the spelling correction would only work when the user entered a 

letter region. The words would disappear when the user went back into the center area. 

Similar to selecting a letter (by moving the cursor to the letter region) the user would 

move the cursor into the word region once. After each selection, the user must go back 

to the center area. The logic behind this was that after selecting a word, the user would 

need to go to another letter region. 

 

To further encourage users to select recommended words and improve text entry 

speed, a space character was automatically added to the end of a word after its 

selection. This design rationale followed Fitts’ law [74]. The completion time was 

analyzed based on Fitts’ law and the formula proposed by Mackenzie [166] 

 

Equation 6-1 Fitts’ law 

𝑀𝑇 = 𝑎 + 𝑏log2 (
𝐴

𝑊
+ 1) 

 

(1) 

 

where MT was the average time to complete the movement; a and b were model 

parameters; A was the distance from movement origin to the target center; and W was 

the width of the target. 

 

In our case, the distance A from the current letter, to the word selection region would 

always be smaller than the distance to reach the “space bar”. For W, we designed the 

candidate region to have a broader width than the “space bar” (Figure 6-7), so the 

completion time to get a space between words from the candidate region, in our layout, 

would always be smaller than the time to get it from the “space bar” (except from “A” 

or “<-”). In this way, there was no need for users to hit the space letter region. 

 

Section 6.6 Study Two 

The goal of Study Two was to compare five possible hands-free techniques, which 

were Dwell Circular (DC), Dwell-Free Circular (DFC), Swype Circular (SC), Dwell 

QWERTY (DQ) and Swype QWERTY (SQ). DFC was our technique that had been 

optimized based on features described earlier. Figure 6-8 shows examples of using SQ, 

SC, and DFC to enter the words “hello world”. The techniques are described briefly in 

the next section. 
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Figure 6-8. (a; top) An example of typing the word ‘world’ in Swype QWERTY; the interface of the 

Dwell QWERTY was same but without popup buttons (see the light grey block above letter ‘D’ and 

‘W’). (b; lower left) An example of typing a ‘world’ in Swype Circular. (c; lower right) An example 

of typing the ‘world’ in Dwell-Free Circular; the interface for Dwell Circular is the same except that 

users have to wait for 400 ms to select the letter from the letter regions. 

 

Section 6.6.1 Design of the Testing Techniques  

For each layout type, we kept the graphical aspects the same; the only difference was 

how letters could be selected. Between the circular and QWERTY layouts, we also 

kept all other parameters the same—e.g., the distance between the user and the 

keyboard. One difference between them was that the QWERTY layouts had four 

candidate words where circular layouts only had two. The reason for QWERTY 

layouts to have four candidate words was because previous research using the 

QWERTY layout had used four words instead of two. 

 

For SQ, we adopted the method used in [145] for indicating the select action. An 

example of typing the word ‘world’ is shown in Figure 6-8a. At the beginning, the user 

moves the cursor to the target, then a button representing an action appears above the 

target after a wait time of 400 ms (i.e., the start of a Swype path); after the button 

appears, the user moves the cursor to the button followed by moving the cursor back 

to the target to perform the selection. When the user finishes the Swype action, the 

system provides four recommended words in the candidate regions (See Figure 6-8a, 

‘world’ is the best-recommended word, ‘word’ is the fourth best-recommended word). 

The best match is automatically selected if the user starts Swyping the next vocable 
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(e.g., ‘world’ in Figure 6-8a), however, if the match is not the best the user must select 

it directly, following the same procedure as selecting a single letter. During the Swype 

action, only letters are active and selectable, other special characters (e.g., 

space/delete) are not. 

 

As stated earlier, the design of the dwell-free technique (DFC) was based on the 

features derived from the first study and described in the previous section. An example 

of how to use DFC can be found in Figure 6-8c. Of the three circular techniques, SC 

had a different selection feature; it allowed users to select the next letter (that was 

different from the last selected letter) without the need of returning to the inner circle—

i.e., they could Swype to the next letter. An example of how to use SC is presented in 

Figure 6-8b. 

 

For two dwell techniques (DC and DQ), we set 400 ms for one letter input and dwell 

for another 400 ms to make the double input. We adopted 400 ms because any smaller 

dwell time would be error-prone and larger dwell time would cause a low text input 

rate. This was consistent with the implementations of dwell techniques in prior 

research (e.g., [120]). 

 

Backspace deleted the last input, be that a complete word or a single letter. For all 

techniques, the system would append automatically a space if the word was selected 

from the candidate regions. Swype-based methods and the spelling correction used the 

Damerau–Levenshtein distance algorithm for word suggestions. The same dictionary 

[298] was used among all techniques. SC and SQ applied the Swype algorithm, other 

three techniques used the Symspell spell-correction algorithm as mentioned in the 

previous section where we set the algorithm with the max search distance of two to 

enhance the accuracy. 

 

Section 6.6.2 Hypotheses 

We had two hypotheses for this study. Our first hypothesis H1: DFC should be the 

fastest technique. Our second hypothesis H2: DFC should have the lowest error rate 

and the error rate should be significantly lower than other techniques. 
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Section 6.6.3 Participants and Apparatus 

Fifteen participants (10 males and 5 females; aged between 18 to 26; M = 21.4, SD = 

2.03) were recruited from the same university campus as in the Study One. None of 

the participants participated in Study One. Their alphabet familiarity was the same as 

in Study One since they were the same demographic. All participants had normal or 

corrected-to-normal vision and reported that they were familiar with the QWERTY 

keyboard (M = 4.1, from 1 – No Skill to 5 – Expert). Only one participant had no 

experience with HMD before. This experiment used the same apparatus as Study One. 

 

Section 6.6.4 Procedure and Design 

The study followed a within-subjects design with one independent variable: Technique 

(DC, DFC, SC, DQ, and SQ). The order of the five hands-free techniques was 

counterbalanced. For each technique, participants needed to enter eight phrases, which 

were randomly sampled from the MacKenzie’s phrase set [167] with no repeated 

phrases within the same session. Each phrase was displayed at the center of the inner 

circle for the circular layouts and above the candidate regions for the QWERTY 

layouts—this was consistent with practices from previous studies. Participants were 

instructed to type as quickly and accurately as possible. Between sessions, they were 

encouraged to take breaks if they felt tired. The study lasted around fifty minutes. In 

total, we collected 15 participants × 5 hands-free techniques × 8 phrases = 600 phrases. 

 

Section 6.6.5 Results 

We employed a one-way repeated measure ANOVA and Bonferroni corrections for 

pair-wise comparisons. We also used a Greenhouse-Geisser adjustment to correct for 

violations of the sphericity assumption. We indicate effect sizes whenever feasible 

(ηp
2). 

 

Text Entry Speed 

WPM ranged between 6.03 (s.e. = 0.40) for DC and 8.74 (s.e. = 0.53) for DFC (Figure 

6-9). ANOVA yielded a significant effect of Technique (F1.507,21.091 = 12.746, p < .001, 

ηp
2 = .477, observed power = .975). The pairwise comparisons showed significant 

differences between DC and DFC, DC and DQ, DFC and DQ, DFC and SC, DFC and 

SQ, DQ and SQ (all p < .05). 
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Figure 6-9. Mean text entry speed across the 5 hands-free techniques. Error bars indicate ±2 standard 

errors. The Dwell-Free Circular technique led to the fastest speed with 8.74 WPM on average. 

 

Error Rate 

Figure 6-10 shows the TER and NCER for the five hands-free techniques. Although 

the difference between each technique seemed large, from the ANOVA test we only 

found a trend toward a significant effect of the techniques on TER (F2.313,32.376 = 2.652, 

p = .079, ηp
2 = .159, observed power = .525). In addition, there was no significant 

effect of Technique on NCER (F2.282,31.952 = 2.315, p = .109, ηp
2 = .142, observed power 

= .464). 

 

 

Figure 6-10. Mean TER and NCER across 5 hands-free techniques. Error bars indicate ±2 standard 

errors. The Dwell-Free Circular technique led to the lowest TER (2.8%) and NCER (2.2%). 
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Section 6.6.6 Discussion 

Our results support H1 (DFC has outperformed all the other techniques in text entry 

rate). On the one hand, H2 is not supported where the difference in TER and NCER 

between DFC and other techniques is not significant (although the trend seems to be 

towards significance for TER). On the other hand, DFC has led to the lowest TER and 

NCER. 

 

Considering that all features, except for the selection mechanism, have been kept the 

same in the three circular layouts, our findings suggest that the go-and-hit selection 

seems to be a better approach for a circular layout and that can work well with head-

based motions. Surprisingly, the performance of SC is much lower than DFC, even 

though it can make selections which do not require users to move the cursor back to 

the inner circle. The reason may be because in DFC users only need to consider 

whether the candidate regions have the target word and, if they do not, they can directly 

go back to the inner circle to do the reset and move to the next letter. In SC, on the 

other hand, users not only need to consider the candidate regions, but they also need 

to consider whether they should go back to the inner circle or go through the outer 

circle to select the next letter—this cognitive process would have added extra burden 

and time for users to make the decision. A closer analysis of the typing process shows 

cases that users accidentally have typed some letters unrelated to the target word; this 

might have been caused by the wrong selection during the Swype action as users 

accidentally move back to the inner circle to select the wrong letter when they had 

decided to go through the outer circle. 

 

The text entry rate of DQ is in line with the DQ technique tested in [294]. For DQ, 

some users have commented that 0.4s is very (almost too) short and has made them 

frustrated and uncomfortable—they have felt that something is pushing them to move 

to the next letter very quickly in order to avoid unintentional selections—i.e., they have 

found it not very usable. In contrast, in a non-dwell technique like our DFC RingText, 

users have felt relaxed, and this might have been the reason that users have been able 

to achieve a significantly higher text entry rate and close significantly lower TER (but 

at the same time still feeling comfortable). 
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Section 6.7 Study Three 

Given that our dwell-free technique outperformed other four baseline techniques, we 

wanted to explore its performance if users could receive some more training for two 

groups, novices and experts. For the potential expert group, we ordered the participants 

from Study Two based on their average text entry speed, and invited those participants 

who achieved a relatively high text entry performance to continue for a 4-day study. 

For the novice group, we recruited participants who were not involved in either study 

one or two. The design of the third study followed a similar approach reported in 

previous works [93,295]. 

 

This third study was to last for four days with two daily sessions for each participant. 

The goal was to measure how well novice and expert users could improve their text 

entry speed and standard typing metrics [250] through practice over time. 

 

Section 6.7.1 Participants and Apparatus 

Ten participants (nine males; aged from 19 to 28, M = 21.6, SD = 3.17) were recruited 

from the same university campus as the previous two experiments; five of them who 

achieved a relatively high text entry speed in Study two agreed to join this 4-day study. 

They formed the potential ‘expert’ group. The five participants who were not involved 

in study one and two formed the ‘novice’ group. These participants had similar visual 

acuity and alphabetical knowledge as the ones from the previous studies since they 

represented the same demographic. They reported an average 4 for experience with 

the QWERTY keyboard on a scale from 1 (‘No Skill’) to 5 (‘Expert’). All participants 

had some previous experience with HMD before. This experiment used the same 

apparatus as the previous studies. 

 

Section 6.7.2 Procedure and Design 

The study consisted of a series of sessions over four consecutive days, with two 

sessions per day. In each session, participants needed to complete eight phrases, which 

were randomly sampled from the MacKenzie’s phrase set [167] with no repeated 

phrases within the same session. Each phrase was displayed at the center of the inner 
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circle. All eight sessions lasted approximately an hour. In total, we collected 640 

phrases (10 participants × 8 sessions × 8 phrases). 

 

Section 6.7.3 Results 

We employed a mix-design ANOVA with Sessions (from one to eight) as the within-

subject variable and Group (novice and potential expert) as the between-subjects 

variable. Bonferroni correction was used for pair-wise comparisons and Greenhouse-

Geisser adjustment was used for degrees of freedom if there were violations to 

sphericity in the data. We indicate effect sizes whenever feasible (ηp
2). 

 

Text Entry Speed 

ANOVA tests yielded a significant effect of Session (F2.592,20.733 = 31.344, p < .001, 

ηp
2 = .797, observed power = 1.000) and a close to significant effect of Session × 

Group (F2.592,20.733 = 31.344, p ꞊ .058, ηp
2 = .276, observed power = .591) on text entry 

speed. There was a significant effect of Group (F1,8 = 8.127, p < .05, ηp
2 = .504, 

observed power = .705) on text entry speed. This suggests that although participants 

in the two groups had a significant difference in text entry speed, their learning over 

time was somewhat similar.  

 

Post-hoc pair-wise comparisons revealed significant differences between session 1-4, 

1-5, 1-6, 1-7, 1-8, 2-4, 2-5, 2-6, 2-8, 3-8, 4-8, 5-8, 6-8 and 7-8 (all p < .05). 

 

Overall, the average speed across all sessions was 10.45 WPM (s.e. = 0.28). In 

particular, the novice group achieved 8.9 WPM (s.e. = 0.30), while the potential expert 

group achieved 11.99 WPM (s.e. = 0.34). Figure 6-11 shows the mean WPM by 

sessions for each participant and the two groups. The average speed for the first session 

was 8.50 WPM (s.e. = 0.76); it bumped up to 12.27 WPM (s.e. = 0.62) in the last 

session, with an increase of 44.4%. 

 

In the last session, the potential expert group improved their performance to 13.24 

WPM (s.e. = 0.80) from the first session of 10.26 WPM (s.e. = 0.72); the novice group 

improved to 11.30 WPM (s.e. = 0.80) from the first session of 6.75 WPM (s.e. = 0.72). 
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Figure 6-11. Mean WPM using RingText over 8 sessions for each participant (left) and the mean 

WPM for each group (right). Error bars indicate ±2 standard errors. The graphs show an upward trend 

for all participants. They also show that participants have not yet reached the peak. 

 

Error Rate 

For TER, ANOVA tests yielded no significant effect of session (F7,56 = 1.462, p = .200, 

ηp
2 = .154, observed power = .563), Group (F1,8 = .109, p = .749, ηp

2 = .013, observed 

power = .060), or Session × Group (F7,56 = .452, p = .864, ηp
2 = .054, observed power 

= .182). For NCER, ANOVA tests also yielded no significant effect of session (F7,56 = 

.574, p = .774, ηp
2 = .067, observed power = .226), Group (F1,8 = .157, p = .702, ηp

2 = 

.019, observed power = .064), or Session × Group (F7,56 = .913, p = .504, ηp
2 = .102, 

observed power = .356). 

 

Figure 6-12 shows the mean TER and NCER over eight sessions. Overall, the average 

TER and NCER across all sessions were 3.10% (s.e. = 0.25%) and 2.25% (s.e. = 

0.14%) respectively. In particular, the average TER and NCER for the potential expert 

group were 2.90% (s.e. = 0.22%) and 2.44% (s.e. = 0.25%), whereas for the novice 

group they were 3.29% (s.e. = 0.34%) and 2.05% (s.e. = 0.22%). 

 

 

Figure 6-12. Mean TER (left) Mean NCER (right) over 8 sessions. All Error bars indicate ±2 standard 

errors. 
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Spelling Corrections Statistics 

The total words participants were supposed to type in the experiment were 3261 

(excluding the words with length fewer than two letters). Of these words, 2822 (again 

excluding the words with length fewer than two letters) were selected from candidate 

regions, including 986 words predicted in advanced and 1836 words corrected in the 

last letter. For those 2822 words suggested by the spelling correction algorithm, there 

were 2341 correct selections and 185 wrong selections. 

 

Section 6.7.4 Is RingText Applicable to AR/MR HMDs? 

We conducted a small, follow-up experiment at the end of the eighth session to test 

whether RingText would be applicable to AR/MR HMDs and could lead to similar 

performance to the VR version. We asked participants to try our technique on Meta 2 

AR HMD. Five participants agreed to do the experiment. Thus, we collected 5 

participants × 8 phrases = 40 phrases. 

 

The results from these five participants pointed to a positive experience. They were 

able to achieve an average text entry speed of 12.06 WPM with a low level of TER 

and NCER (1.82% and 1.44% respectively) on the Meta 2 HMD. This performance 

was very similar to the results in the last session using the Gear VR device (12.24 

WPM, 1.42% TER, and 1.13% NCER).  

 

Based on these results, we can infer that our technique has the potential to lead to 

comparable results not only in AR but also likely in MR HMDs as well; thus, it is very 

likely that RingText can be easily adapted to other HMD systems. 

 

Section 6.7.5 Discussion, Limitation, and Future Work 

Text Entry Speed and Error Rate. The average speed of RingText across sessions for 

novice and expert users are 8.9 WPM and 11.99 WPM. Novice users can type 11.30 

WPM after 1 hour of practice where expert users can reach 13.24 WPM after 1.5 hours 

of training (including the time they spent in Study two with circular layouts). This 

result indicates that RingText outperforms some other dwell-free techniques such as 

EyeK [230], Eye-S [210], and EyeWrite [281] with 6.03 WPM, 6.87 WPM, 7.99 

WPM, respectively. The text entry rate after training is comparable to the speech input 
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(6-13 WPM) [96,117], and leads to better performance than the head-based dwell 

method in [294] (10.59 WPM). In terms of word-level TER and NCER, RingText 

achieved a 3.10% and 2.25% across sessions, which are comparable with the head-

based dwell techniques for HMDs reported in [294] (3.79% and 2.46%). 

 

As mentioned before, all our participants are not native alphabet users. It can be argued 

that given their familiarity with the alphabet, native users could lead to higher text 

entry speeds than non-native users, similar to the result reported in [295]—this latter 

group are almost identical to our participants (they are university students within the 

same age range and whose language of instruction is English but are not native 

alphabet users). However, future work is needed to confirm whether native users could 

achieve a significantly better result than non-native alphabet users with RingText.  

 

Overall, significant learning effects were observed in text entry speed, indicating the 

possibility of even higher text entry speeds with further practice—as Figure 6-11 

shows an increasing trend for text entry speeds even in the final session and 

participants’ performance has not peaked yet. 

 

Design of dynamic, non-fixed candidate regions. This work makes the first attempt to 

combine the circular layout with dynamic candidate regions that are placed just next 

to the region of the last selected letter. The percentage of the candidate word selections 

shows that our candidate regions are used very frequently (86.5% of the words have 

been chosen from the candidate regions). There are three main reasons that explain 

why our design has led to such high frequent use. 

(1) Minimal checking time. The time for users to check whether a candidate 

region had the correct suggested word is reduced as these regions are close to 

the current letter region which would likely be where the users would be 

paying to attention to at the moment. 

(2) Reduced travel distance. Unlike the design in [130], users only need to travel 

a short distance to hit the region to select a word because the cursor is just 

next to the candidate regions. 

(3) Space automatically appended. Users have commented that they have 

automatically thought of the candidate regions as an easy way to get the space 
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character. Our observations show that even though in cases when all letters of 

a word are already entered corrected, participants would move the cursor to 

the candidate region to select because its distance is often shorter the distance 

to the letter region of the space character. 

An additional option for the hands-free and controller-free scenario. Considering the 

design guidelines in [251], we recommend the RingText as an additional option for 

hands-free and controller-free scenarios, since the text entry rate is significantly better 

than the head pointing dwell techniques and comparable to the speech input [96,117] 

but with no significant drawbacks in recognition problems and no privacy problems 

for users when typing in public places. There are several scenarios that people can use 

RingText; for example, when users receive a message while watching a movie in VR 

or when they want to send a quick chat text in a VR multiplayer game, they can simply 

popup RingText and quickly type the message.  

 

Limitations and Future Work. The present research has several limitations, which can 

also serve a possible direction for future work.  

 

RingText is based on head-pointing so that it might be inappropriate for people who 

cannot rotate their head—e.g., users with a neck injury. Moreover, we have evaluated 

in a lab which shows that users have no issues using it in a non-public environment. 

We have not looked at issues of social acceptability when users want to use it in public 

places. 

 

It would have been good to use a standardized interface usability survey (like the 

System Usability Scale) in our first two studies so that we can compare across 

techniques. This is something that could be done in future studies dealing with new 

keyboard designs. 

 

RingText shared one limitation with other keyboard design where the default keyboard 

letters are in lowercase where uppercase letters, symbols, and emoji are required. 

Future research could explore how RingText would scale up to support uppercase 

characters and symbols. One possible solution is to use the forward head movement to 
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switch between sub-layouts with different types of characters and symbols. We have 

tried measuring forward and backward head movements, and current mobile devices 

can detect these types of motions. It is possible to set a forward acceleration threshold 

which can be used as an indicator for when users want to switch layouts. Future 

research is needed to determine how this approach will work. 

 

We have not investigated the optimal size of the trigger area for RingText. Smaller 

trigger areas of the letter regions can lead to a lower error rate, but it might also result 

in a lower text entry rate since users may miss the trigger area of the intended letter 

and must re-enter it to make the selection. Future work is needed to investigate the 

optimal size(s) of the trigger area to let users select letters quickly without incurring 

many mistakes. Additionally, we can apply a static decoding method [97] to handle 

the noise of the input further. This is similar to a method to mitigate the “fat finger” 

problem in smartphones [268] where users with large fingers may mistakenly select 

unintended buttons. In our case, it may be possible to use this model to help us 

understand which letters the user is aiming to type. 

 

As stated earlier, participants in Study Three did not reach peak performance after 

eight sessions. In similar experiments reported in [93,294,295], their participants had 

5-6 sessions and could not reach it either. We designed the experiment with eight 

sessions assuming that 2-3 extra sessions would have allowed participants to reach a 

stable text entry rate. It may be of interest to explore if there is a common minimum 

period of training time that participants need to reach maximum performance with 

RingText and similar techniques.  

 

Finally, the dwell-time for Dwell technique and the algorithm for Swype technique 

tested are based on their common implementation. In the future, it may be useful to 

compare RingText with other variations of these techniques that use some optimized 

features.  

 

Despite these limitations, our results show the potential use of circular layouts in head-

based dwell- and hands-free text entry in HMDs system (e.g., mobile VR HMDs). 
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Section 6.8 Conclusion 

We have provided the first example of a formal evaluation of ring-based text input for 

head-mounted displays (HMDs) that is both dwell-free and hands-free. Our example 

technique, RingText, allows users to enter text by making small motions with their 

head and select letters from a circular keyboard layout with two concentric circles: the 

outer circle contains letters housed in distinct regions, while the inner circle serves to 

reset selection and allows users to search for the next letter.  

 

In our first study, we determine the suitable size of the inner circle, the number of 

letters per region (LPR) in the areas of the outer circle, and alphabet starting position. 

The results show that 1 LPR leads to a significantly better performance in entry text 

speed; a larger center area can potentially decrease error rates, and users preferred the 

alphabet to start from the top. Based on the results, an optimized layout that shows two 

recommended words placed dynamically next to the cursor is adopted to develop 

RingText. Then, a first comparative study of hands-free text entry techniques in HMDs 

has been conducted by comparing the RingText with four other text entry mechanisms. 

Results show that RingText is the most efficient technique; it has led users to achieve 

a significantly higher text entry rate and close to a significantly lower total error rate. 

To further explore its performance, a third study is undertaken with 10 participants 

doing two daily sessions for four consecutive days. The results of this last study show 

that after eight practice sessions even novice users can achieve an average text entry 

speed of 11.30 WPM while expert users can achieve 13.24 WPM in the last session. 

Because performance over these sessions shows an increasing trend, we believe that 

there is some place for improvement in their text entry speed with further practice 

sessions. 

 

All in all, RingText is an efficient technique for text entry in head-mounted displays 

that do not require users to hold any additional input devices. We hope this work can 

inform future work on dwell-free and hands-free text entry techniques based on a 

circular layout for all types of HMDs. 
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Section 6.9 Summary 

According to the above findings, the answer to Research Question 2 of this thesis (i.e., 

can a circular layout achieve an efficient and usable hands-free head-based 

interaction?) is that a circular layout coupled with head-based interaction can be an 

efficient and useable interaction for HMDs. The efficiency of our proposed interface 

was proved through a comparison with traditional Head+Dwell techniques and 4-day 

training.  

 

The following chapter aims to answer the Research Question 3 of this thesis (i.e., are 

directional full-body motion-based interaction feasible and efficient for HMDs?) and 

address the Core Challenge 3 (i.e., efficient and feasible full-body interaction for 

general tasks with HMDs). It first investigates the recognition accuracy of our method 

and the social acceptance of directional full-body motion-based interaction, together 

with users’ comfort ratings for each direction. Then, we optimize its design and 

conduct a second study to compare DMove to Hand-based interaction and hybrid-

based (Head+Hand) interaction for system control tasks (i.e., menu selection).  
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Chapter 7 DMove: Directional Full-body Interaction for HMDs 

Section 7.1 Introduction 

Augmented reality (AR) allows users to interact with virtual objects that are overlaid 

on the physical space via see-through head-mounted/worn displays (HMDs/HWDs). 

Ordinarily, gestural input [67,259] is preferred to keyboard and mouse. AR HMDs 

have sensors that can detect head and hand movements [47,180,300]. What these 

sensors can also capture is body motion (e.g., moving the body forward/backward or 

left/right) by assuming that the position of the head is the position of the user and that 

users' head can move along with their body towards a certain direction. Unlike head- 

and hand-based gestures, body motion is underexplored and thus underutilized in 

current HMD systems. Body motion can present several benefits compared to hand- 

and head-based motion. Hand-based motion usually requires users to keep their hands 

in mid-air which could result in arm fatigue during prolonged interactions [195]; it can 

also cause inaccurate interactions (e.g., unwanted menu item selection)—for example 

when users' hands accidentally go off the small tracked area of HMDs. Similarly, 

HMDs often cause motion sickness and, when using frequent head motions, there is 

the risk of increased sickness [295]. With body motion, it is possible to avoid arm 

fatigue and to minimize motion sickness and, as shown later in our results, still allows 

for high accuracy of interaction and good usability ratings. Our research explores the 

use of directional body motion to interact with HMDs based on the accuracy of object 

selection, task completion time, and users’ subjective feedback on workload, motion 

sickness, and overall usability. Our focus in this chapter is on menu item selection, but 

the results are applicable to other types of interaction and interface. 

 

 

Figure 7-1. Interaction in three commercial HMDs, (a) HoloLens—Head+Hand-based (Hybrid) 

interaction (b) Meta 2—Hand-based interaction (c) Magic Leap 1—Controller-based interaction. 

 

At present, there are three main commercial AR HMDs—the Meta 2 [47], Magic Leap 

1 [300], and HoloLens [180]. Figure 7-1 shows how each device supports users' 
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interaction with the virtual environment. Meta 2 allows hand-based interaction where 

users need to move their hand to the menu item and confirm the selection by using a 

hand gesture (i.e., grab). HoloLens uses a hybrid approach for menu selection, where 

a ray is extended from the virtual camera position towards the viewing direction and 

into the virtual environment. The end of the ray is akin to a cursor and users confirm a 

selection by a hand/finger gesture (i.e., hand-tap)—in other words, it requires users to 

use their head to move the cursor and their hand for selection. This research only 

considers device-free approaches since they are more flexible than device-based 

approaches and can be used in more scenarios, environments, and types of HMDs. 

 

In this chapter, we present DMove, an approach to interact with HMDs that is hands-

free, does not require handheld devices, and avoids the need to use head motions; 

instead, it uses directional body movements. In our approach, the system is trained to 

recognize the possible directional body motions around the user with two distances 

(Far and Close). Selection is made when the system predicts that the user has made a 

particular movement. Our approach only needs the sensors that already come in current 

HMDs, like Meta 2; and unlike Magic Leap, it does not require a handheld device. In 

the first study, we explore two aspects. The first deals with the feasibility and accuracy 

of our recognition method, and the second is about assessing users' social acceptance 

of directional motion-based interactions and their perceived physical and mental 

comfort levels in each direction. Based on the results, we then optimize our technique 

and, in a second study, we compare DMove with Hand-based interaction (like what is 

available to Meta 2 users) and Head+Hand-based interaction (akin to what users do 

with HoloLens). Menu selection is the chosen task because it is a common activity in 

all HMDs. Based on the results of the two studies, we are able to extract a set of 

guidelines for interfaces that are based on directional motions. Also, we present two 

sample applications that can leverage DMove-type apart from menu selection. 

 

The contributions of the chapter include: (1) a motion direction recognition method 

that requires no additional handheld devices nor sensors for current HMDs; (2) an 

optimized directional motion-based interface (DMove); (3) an evaluation of three 

menu selection methods for HMDs; (4) a set of guidelines for applications that use 

directional motion-based interactions; and (5) two applications external to menu 

selection and that use DMove as their interaction interface.  
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Section 7.2 Related Work 

Section 7.2.1 Device-free Interaction in AR HMDs 

Mine [182] pointed out that interacting with virtual objects requires (1) a mechanism 

for the identification of the objects to be selected, and (2) some signal or command to 

indicate their selection. We next describe two commonly used device-free interactions 

for HMDs.  

 

Hand-based Interaction 

Hand-based interaction is one of the most commonly used selection methods in HMDs 

[170] because it is assumed to be natural and practical. To perform a selection of a 

near object [182], users first need to choose the virtual object to be selected by 

hovering the hand over it and then selecting it by performing a gesture—e.g., in Meta 

2 [47] users select the item by making a grab gesture. To select an item that is placed 

further away from the user, Mine [182] suggests that users can utilize their finger to 

point at the object followed by a selection gesture. Studies have looked at the finger 

pointing [22,154], but these techniques require an additional external sensor like 

Kinect that is placed at a distance to detect and classify the gestures.  

 

In general, hand-based interactions that require users to keep their hands in mid-air are 

uncomfortable and can be tiring, particularly for HMDs [251]. This is because users 

are forced to keep their hands within the small area tracked by the sensors. Inaccuracies 

can often occur when the hands go off the area. In addition to issues with the 

recognition algorithm and other technical limitations [273], mid-air hand interactions 

are also sensitive to users' physical abilities which can lead to unpredictable 

performance. 

 

Head-Pointing 

Together with hand-based techniques, head-based interaction has been actively studied 

in the virtual reality (VR) HMDs [32,46]. It has been widely adopted as a standard way 

of pointing at virtual objects without using hands or hand-held pointing devices [148]. 

Instead, it relies on the HMDs' built-in IMU sensors. Recent studies further have 

explored head-based techniques in both VR [10] and AR [148]. Like techniques based 

on eye-gaze, using the head may lead users to suffer the ‘Midas Touch’ [126] problem 
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of unintentional selection because head-pointing has this same problem when 

confirmation of a selection is needed. Researchers have investigated solutions to this 

problem such as using dwell time [126,202,245,263], adopting gaze gestures 

[13,62,122,125], applying a second modality such as controllers [148], but these 

solutions are at times not ideal. For example, having a dwell time can slow 

performance; gaze requires additional expensive trackers but still suffers from 

accuracy issues; and not every HMD can track a handheld device, furthermore forcing 

users to hold a device prevents their hands from being used to manipulate the virtual 

objects in these systems. 

 

One solution used in commercial HMDs is combining both head and hand-which is 

referred to as hybrid interaction, which relies on the use of the head to move the cursor 

to a target and hand gestures to confirm the selection, like it is done with HoloLens 

[180]. However, this approach still suffers from the limitations of hand-based 

interaction. 

 

Section 7.2.2 Body Motion-based Interaction 

Foot-based Interaction 

Alexander et al. [5] suggest that foot-based interactions can be grouped into two 

categories based on how foot actions are mapped to system commands. Discrete foot 

gesture [49,237,288] are those that are mapped to specific tasks (e.g., locking and 

unlocking a mobile phone). Continuous gestures [105,116,201,215,219,234] are those 

that are mapped to tasks with a spatial component (e.g., moving in one direction in a 

space). Although it can add an extra dimension to users' interaction, in general the 

proposed techniques using users’ feet require additional external sensors. This 

constraint limits users to fixed environments and within the space tracked by the 

sensors. Because AR HMDs are meant to allow freedom of movement, the need to 

have external sensors is not desirable. Our approach avoids this constraint and relies 

solely on the sensors that already come with current commercial AR HMDs. 

 

Full Body-based Interaction 

Body motion direction-based interactions have several advantages. As our results 

show, they can be accurately predicted by a system that requires minimal training. 
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They avoid the pitfalls of hand- and head-based interaction. Body motion tends to be 

natural and does not force users to be in uncomfortable, unnatural positions for long 

periods (like hand interactions which users must keep their hands in mid-air). Also, as 

our results show, they do not increase motion sickness despite the need for users to 

make body movements.  

 

Given their potential benefits, but without the limitations of other types of gestures, 

we want to explore the use of the motion-based interactions for current consumer 

HMDs. We also want this type of interaction to be hands- and device-free. As this 

research shows, our technique DMove is as fast as other methods for menu item 

selection and also brings a subjectively better user experience. 

 

Besides, full body motion-based interactions can be applied to other domains (e.g., 

gameplay [85,213]). Further, this type of interaction can encourage physical activity 

in offices and homes and as such can bring health benefits to their users—e.g., just ten 

minutes of physical activity can help users gain cognitive and physical benefits [137]. 

Besides work-related applications, body motion can be used for gaming interfaces. For 

instance, an exergame leveraging body motion as input has the potential to be utilized 

to encourage physical activity, so that for example elderly users or children can do 

exercises in a fun way regularly at home to develop their physical strength [91,258]. 

At the end of this chapter, we present a sample of exergame that uses motion-based 

interactions. 

 

Section 7.3 DMove 

In this section, we discuss the DMove's motion recognition method and the interface 

for our Study One. 

 

Section 7.3.1 Motion Recognition Method 

We use machine learning to classify the user's motion direction. Instead of classifying 

it through movement patterns (i.e., changes in the sensors' acceleration values in three 

dimensions), we identify the gesture (i.e., posture at the end of the movement). This is 

because the former approach will not always work because some HMDs, like Meta 2, 
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do not allow access to their acceleration data; we want to make this method suitable 

for all HMDs. 

 

Next, we describe our method in detail. In three dimensions, a spatial position is 

defined as P = (
𝑥
𝑦
𝑧
) (see Figure 7-2). A spatial path 𝜫 describes the spatial progression 

of movement. It is an ordered list of measured spatial positions: 𝜫 =

(𝑷0, … , 𝑷𝑖, … , 𝑷𝑛); where P0 is the starting position, Pi is the position we predict the 

performed movement, Pn is the position where the user finishes the motion (see Figure 

7-2). The values used in our analysis process are described in the following formula: 

 

Equation 7-1 Distance moved from the starting position to a predicted position on a specific axis 

∆𝑷𝑥𝑖,0 = 𝑷𝑥𝑖 − 𝑷𝑥0 
 

(1) 

 

Where ∆𝑷𝑥𝑖,0 is the distance users moved/traveled from the starting position (𝑷0) to 

the position to be predicted (𝑷𝑖). This formula also applies to ∆𝑷𝑧𝑖,0. 

 

Equation 7-2 Moving speed on a specific axis 

𝑣𝑥𝑗,𝑗−1 =
∆𝑷𝑥𝑗,𝑗−1

∆𝑡𝑗,𝑗−1
 

 

(2) 

 

Where 𝜐𝑥𝑗,𝑗−1is the current speed of the head along the X-axis. ∆𝑷𝑥𝑗,𝑗−1 and ∆𝑡𝑗,𝑗−1 

are the distance and time differences between this frame and the respective last frame. 

This formula also applies to 𝜐𝑧𝑗,𝑗−1. 

Equation 7-3 Slope calculation based on travelled distance on x- and z- axis 

𝒎 =
∆𝑷𝑥𝑖,0

∆𝑷𝑧𝑖,0
 

 

(3) 

 

Where m is the slope of the line from 𝑷0 to 𝑷𝑖 in X-axis and Z-axis.  
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Figure 7-2. An example of a movement. (a) Starting State—A user is ready to move toward the North-

East direction. The blue dot is the starting position tracked by the system. (b) Prediction State—The 

state used to predict the moving direction where the user has nearly finished the movement. The green 

dot is the end position tracked by the system. The system calculates 𝝊𝒙𝒋,𝒋−𝟏, 𝝊𝒛𝒋,𝒋−𝟏, ∆𝑷𝒙𝒊,𝟎, ∆𝑷𝒛𝒊,𝟎 

and then sends the results to the algorithm. (c) End State—A movement is finished. 

 

Figure 7-3. Algorithm flowchart for predicting the motion direction; we set the constraint to 0.1 m/s 

since it works well according to our test trials. 

 

Classification. Tested features are ∆𝑷𝑥𝑖,0, ∆𝑷𝑦𝑖,0, ∆𝑷𝑧𝑖,0, distance traveled between 

𝑷0  and 𝑷𝑖 , slope m. Only ∆𝑷𝑥𝑖,0  and ∆𝑷𝑧𝑖,0  are included in our dataset since the 

features analysis using Weka [104,279] has shown that they are the top two features 

and all predictions are based on them. We apply the Random Forest classifier provided 

by Weka for predicting the motion directions. Figure 7-3 shows the algorithm 

flowchart. 
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Section 7.3.2 Interface and GUI 

We proposed two interfaces that are based on eight direction—East (E), North-East 

(NE), North (N), North-West (NW), West (W), South-West (SW), South (S), and 

South-East (SE). Figure 7-4 shows the two designs. The first design is 8-block DMove 

which each direction has one distance level—No Limit (we suggest at least 20 cm 

away from the starting position to improve the accuracy); the other is 16-block DMove 

which each direction has two distance levels—Close (we suggest 30 cm away from 

the starting position) and Far (we suggest 60 cm away from the starting position). We 

wanted to use two levels of the distance (Far and Close) around the user because, with 

two levels, the technique can have more interface items, but this may also affect the 

prediction accuracy of distinguishing between the two levels. To guide users visually, 

both interfaces are displayed in front of their view like a GUI where the tiny white 

point in Figure 7-4 represents the head position. 

 

 

Figure 7-4. (a) 8-block and (b) 16-block DMove interface. 

 

Section 7.4 Study One 

In this study, we focused on the accuracy of our motion direction recognition technique. 

We also investigated the social acceptance of the motions (i.e., in front of whom users 

would accept to perform these motions and where) and comfort levels (mental and 

physical) of doing such motions. 

 

Section 7.4.1 Participants and Apparatus 

Twelve participants (four females) aged between 17 and 28 were recruited from a local 

university campus to participate in the study. They all had normal or corrected-to-

normal vision. The study was conducted using a Meta 2 AR HMD [47] connected to 

a standard computer with an i7 CPU, 16 GB RAM and an Nvidia GeForce GTX 

1080Ti GPU. We implemented the system in Unity3D. All experiments were 

conducted in a lab where users cannot be seen from outside. 
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Section 7.4.2 Design and Evaluation Metrics 

The experiment employed a one-way within-subjects design where the independent 

variable was interface—16-block and 8-block. We were interested in two variables, (1) 

Target Direction—E, NE, N, NW, W, SW, S, SE; and (2) Target Distance—Close, 

Far, and No Limit. Participants were asked to do a training data collection session first 

for both interfaces and then do the testing sessions. The order of the interface was 

counterbalanced. 

 

The evaluation metrics used were listed below. 

• Accuracy. Accuracy was measured based on reproducibility [94] and how 

stable and scalable the system was against the data collected from a different 

session. An error was recorded when the classifier failed to predict the correct 

movement direction.  

• Physical and Mental Comfort. It quantified how the users’ comfort levels 

(both physical and mental) varied across each Target Direction × Target 

Distance combination. We used 5-point Likert questions to collect the data. 

• Social Acceptability. We adopted the questionnaire from [3] to assess in 

which places and in front of whom users were comfortable doing the motions. 

 

Section 7.4.3 Task and Procedure 

The experiment began with the data collection session for each interface where the 

order of the interface was counterbalanced. The system would ask participants to 

perform each directional movement five times starting from N followed by the other 

directions in a clockwise order till the last direction, i.e., 

NE→E→SE→S→SW→W→NW. For the 16-block DMove, the system would ask 

participants to do the Target Direction × Close first then Far. For the 8- block DMove, 

they only needed to do the No Limit movement for each direction. They were asked to 

let the head follow their body movement in a natural way to help them keep their 

balance and their head steady. In between conditions, participants were requested to 

fill out the Physical/Mental Comfort questionnaire. 
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After the data collection session, they did the testing session. The order of interfaces 

was the same as the data collection session for each participant. However, unlike the 

data collection session, which had a fixed order for the direction, in this phase, the 

system randomized the directions. This was done to better assess the accuracy of the 

system and to avoid participants’ muscle memory. Similar to the data collection 

session, participants had to reach each direction five times. 

 

At the end of the experiment, participants completed the social acceptability 

questionnaire. The whole experiment lasts around 30 minutes for each participant. 

 

Section 7.4.4 Results 

Accuracy 

We used 2880 instances collected from the training session to train the model and used 

another 2880 instances from the testing session to test it. The accuracy, precision, 

recall, F-Measure for 8-block DMove were all 100% while for 16-block were 98.06%, 

98.2%, 98.1%, 98.0%, respectively. As can be observed from the red blocks of the 

confusion matrix in Figure 7-5a, most of the wrong predictions were in South Close 

where our recognition method predicted South Close as South Far. 

 

 

Figure 7-5. 16-block DMove Confusion matrix (a). Comfort ratings for each direction for Physical (b) 

and Mental (c). 

 

Subjective Feedback 

The collected data were analyzed using a two-way repeated measures ANOVA with 

two factors (1) Target Location and (2) Target Distance. Bonferroni corrections were 

used for pairwise comparisons. For violations of sphericity, we used a Greenhouse-

Geisser adjustment for degrees of freedom. 
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Physical Comfort. Figure 7-5b shows the Physical Comfort ratings of each direction 

for Target Distance. An ANOVA showed significant effects of Target Direction 

(F3.029,16.737 = 11.130, p < .001) and Target Distance (F1.860,20.458 = 13.899, p < .001) on 

Physical Comfort. However, no significant interaction effect of Target Direction × 

Target Distance (F14,154 = 1.076, p = .383) was found. For Target Direction, post-hoc 

pairwise comparisons revealed significant differences between N-SW, E-SE, E-S, E-

SW, SE-W, SW-W, SW-NW (all p < .05). It also yielded a close significant difference 

between N-SE (p = .073), N-S (p = .076), SE-NW (p = .053), and S-W (p = .063). For 

Target Distance, pairwise comparisons revealed a significant difference between Close 

and Far (p = .001), No Limit and Far (p = .005), but not between Close and No Limit 

(p = 1.000). 

 

Mental Comfort. Figure 7-5c shows the Mental Comfort ratings of each direction for 

Target Distance. An ANOVA yield a significant effect of Target Direction (F2.420,26.619 

= 17.492, p < .001) and Target Distance (F2,22 = 8.305, p < .05) on Mental Comfort. 

However, there was no significant interaction effect of Target Direction × Target 

Distance (F4.032,44.355 = 1.868, p = .132). For Target Direction, post-hoc pairwise 

comparisons revealed significant differences between N-SE, N-S, NE-SE, NE-S, NE-

SW, E-SE, E-S, E-SW, SE-W, SE-NW, S-W, S-NW, SW-NW (all p < .05). For Target 

Distance, pairwise comparisons revealed a significant difference between Close and 

Far, No Limit and Far (both p < .05) but there was no significant difference between 

Close and No Limit (p = 1.000). 

 

Social Acceptability. Participants’ overall feelings during the task were rated 4.5 out 

of 6 (s.e. = 0.195). We calculated the acceptance rate for each given audience and 

location using the percentage of participants who selected each audience/location in 

their answers (see Figure 7-6). A Cochran’s Q test showed a significant difference 

between audiences (χ2(5) = 20.606, p < .001). Post-hoc McNemar tests (Bonferroni: 

α-levels from .05 to .004) showed that the acceptance rates for strangers were 

significantly lower than if participants were alone (p < .004). Also, participants’ 

responses suggested that the location would influence their willingness to use 

directional motions. A Cochran’s Q test showed a significant difference between 

locations (χ2(6) = 39.368, p < .001). Post-hoc McNemar tests (Bonferroni: α-levels 

from .05 to .004) showed that the acceptance rates for using DMove at home was 
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significantly higher than at a shop or other public places, and on sidewalks (all p 

< .004). 

 

Section 7.4.5 Discussion 

Direction Motion-based Interface 

Our method showed very good accuracy for identifying the users' movement direction 

in both 8- and 16-block DMove interfaces. The reason was that the attributes used in 

our dataset clearly distinguished the movement directions (see Figure 7-7). 

Participants' subjective feedback indicated that motions toward the South direction led 

to both physical and mental discomfort. During the experiment, we also observed that 

each participant had his or her own predisposed way of making directional movements 

due to their physical attributes—e.g., taller users were able to take a longer step than 

the shorter users. As such, we believe that using a user's own motion data will likely 

increase prediction performance because it will consider the physical characteristics 

of each participant. 

 

 

Figure 7-6. Acceptance rates for different audiences (a; left), and locations (b; right). 

 

 

 

Figure 7-7. 8-block (a; left) and 16-block (b; right) DMove’s plot image of ∆𝐏𝐱𝐢,𝟎, and ∆𝐏𝐳𝐢,𝟎,  where 

each color represents a movement direction. 
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Social Acceptability 

According to the results of the social acceptability questionnaire, most participants 

were quite positive towards a DMove-based interface; only one participant gave a low 

rating of 3. They were willing to do directional motions alone or in front of familiar 

people (see Figure 7-6a). They preferred private spaces (such as their home and 

workplace) rather than public areas (see Figure 7-6b). Based on this feedback, we 

suggest that a DMove-type of interface should be used in in-door scenarios (i.e., home 

or workplace) and in front of people familiar to the user. 

 

Optimization 

Based on the performance and subjective feedback, we decided to work further with 

the 16-block interface and optimize it. Since users have difficulty moving towards the 

S direction, we decided to make some adjustments to S and also SE and SW directions. 

We removed S and combined the 2-levels SE and SW directions into one single 

direction each. In this way, users could easily move towards these two (now much 

larger) directions. After these changes, the DMove interface had 12 items (Figure 7-9b). 

 

Section 7.5 Study Two 

In the second study, we explored the use of DMove for menu selection, a very common 

activity in HMDs. We compared the performance, suitability, and usability of DMove 

with two device-free interaction methods, Hand-based and Hybrid (Head+Hand), for 

menu selection because they represent two of the most common, and available ways 

for selecting menu items in current AR devices. Similar to Study One, we also 

measured workload, motion sickness, and user experience of the three methods. We 

only considered device-free approaches because they are applicable to a wider range 

of scenarios, and types of HMDs. 
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Figure 7-8. Using Hand, Hybrid, and DMove to select an item from the menu. (1) Hand (a) A user 

needs to move the hand to the target and hover it, (b) and then performs a close palm gesture to select 

it. (2) Hybrid (c) A user needs to rotate the head to move the cursor to the target, (d) and then 

performs a palm closing gesture to select it. (3) DMove (e) A user needs to go the NE direction, (f) a 

selection is made when the user (nearly) completes the action. 

 

Section 7.5.1 Evaluated Conditions 

We evaluated the following three Selection Methods for menu selection: 

1. Hand-based interaction (or simply Hand). This was similar to what Meta 2 

would provide. To select an item in a menu, a user had to move the cursor 

controlled by one hand in mid-air to hover it on the item and then make a palm 

closing gesture to confirm its selection. Figure 7-8(1) shows this scenario. Visual 

feedback, in the form of extra green light and enlarged item, was provided to 

indicate whether the hand was correctly positioned on the item. A sound would 

be played to confirm the selection. We modified the code from one of the sample 

demos provided by Meta Company, the developers of the Meta 2. 

2. Hybrid-based interaction (or simply Hybrid). This was analogous to how menu 

selection was done in HoloLens, where a user had to move the head to control a 

cursor and position it on an item—selection was confirmed by a hand gesture. 

The HMD would track the head motions casting a ray to the virtual environment. 

The end of the ray was akin to a cursor, which served as visual feedback. Hand 

detection cursor was provided to inform the user of the cursor’s state. A sound 

would be played when a selection was made. Figure 7-8(2) shows an example of 

this approach. 

3. Directional Motion-based interaction (DMove). In this condition, a user had to 

move their body with one foot towards a direction location that represented a 

menu item. For any motion performed, the classifier would return the direction 

and block. A cursor presenting the user’s position was provided on the HMD as 

visual feedback and a sound would be played if a selection was made. Figure 

7-8(3) shows an example of how a user would select the NE item.  
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We designed the menu items (see Figure 7-9) based on official design guidelines [299], 

which suggested that they should be located at around 0.5m away from the user. 

However, regardless of this, the users could still adjust the position between them and 

the menu items to a comfortable distance before the start of the experiment. We used 

grid menu layout for Hand and Hybrid interaction because both HoloLens and Meta 2 

have applications that rely on this type of layout. For example, the developers of Meta 

2 provided guidelines and an official application using a grid layout—we followed the 

guidelines and adapted the application for this experiment. We did not use the grid 

layout for DMove because it did not represent a natural mapping for around body 

interactions. Our choice of radial layout was based on feedback from a pilot study and 

also from previous research [110,153]. 

 

 

Figure 7-9. (a) Hand/Hybrid—Meta 2 Workspace-like menu interface, and (b) final-DMove 

interface—optimized based on the 16-block layout with S removed and had one single larger area for 

SE and SW directions (only 1 level due to users’ discomfort with two levels). 

 

Section 7.5.2 Participants and Apparatus 

Eighteen participants (six females) aged between 17 and 28 were recruited from the 

same local university campus as in Study One. They all had normal or corrected-to-

normal vision and were right-handed. To avoid biases, none of these participants did 

Study One. This experiment used the same apparatus and lab location as Study One. 

 

Section 7.5.3 Experiment Design, Task, and Procedure 

The experiment followed a 3 × 2 within-subjects design with two factors: Selection 

Method (Hybrid, Hand, and DMove) and Menu Size (Large—same size as Meta 2 

Workspace, and Small—80% of the Large). The combinations of Selection Method × 

Menu Size were counterbalanced. The whole experiment lasted about one hour for 

each participant. Before the trials started, the participants were asked to complete a 

pre-experiment questionnaire to gather demographic information and were informed 
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of the purpose of the study. Since Study One suggested that using the user's dataset 

could help improve recognition accuracy, we collected data from each user before the 

first testing session to train our system. This data collection session was conducted in 

the same way as in Study One but with fewer directions and took just around 2-4 

minutes. To balance the conditions, participants were also given up to five minutes of 

training with both Hand and Hybrid interactions. When participants felt rested and 

ready, they would proceed to the testing session. 

 

In each session, each block (representing a menu item) would randomly appear once, 

one by one, for a total of five times. After each session participants completed three 

questionnaires: NASA-TLX [107], user experience [149], and motion sickness 

assessment (MSAQ) [87]. We instructed participants to maintain their head steady and 

in a comfortable position whenever possible. In the end, we asked them to provide 

comments on each of the interfaces. The experiment returned 3 (Selection Method) × 

2 (Menu Size) × 12 (blocks) × 5 (times) × 18 (participants) = 6480 trials. 

 

Section 7.5.4 Results 

We analyzed the data using a two-way repeated measures ANOVA with two 

independent variables, Selection Method (Hand, Hybrid, DMove) and Menu Size 

(Large and Small). Bonferroni correction was used for pairwise comparisons, and 

Greenhouse-Geisser adjustment was used for degrees of freedom for violations of 

sphericity. 

 

Task Performance 

Figure 7-10 presents the task completion time and error rate among the six layouts. 

For task completion time, the ANOVA test yielded no significant effect of Selection 

Method (F1.197,20.341 = 2.555, p = .121), Menu Size (F1,17 = 1.108, p = .307), and 

Selection Method × Menu Size (F1.219,20.715 = 1.177, p = .303), which showed that the 

completion time for each Selection Method was equal. For error rate, there was a 

significant main effect of Selection Method (F1.506,25.610 = 14.138, p < .001), but no 

significant main effect of Menu Size (F1,17 = .524, p = .479) and no significant 

interaction effect of Selection Method × Menu Size (F1.940,32.980 = 2.069, p = .144). 

Post-hoc pairwise comparison revealed a significant difference between Hand and 
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Hybrid, Hand and DMove (both p < .05); this meant that hand had higher error rates 

than Hybrid and DMove. There was no significant difference between Hybrid and 

DMove. 

 

 

Figure 7-10. Mean task completion time (a; left) and error rate for the six layouts (b; right). Error bars 

indicate ±2 standard errors. 

 

NASA-TLX Workload 

For overall workload, DMove Large was rated the best (M = 36.63, SD = 17.07) and 

Hand Small (M = 47.80, SD = 21.13) was rated the worst. ANOVA tests yielded a 

significant effect of Selection Method (F1.514,25.732 = 4.676, p < .05), but not of Menu 

Size (F1,17 = 2.806, p = .112) and Selection Method × Menu Size (F2,34 = .211, p = .811). 

Post-hoc pairwise comparisons revealed a significant difference between Hybrid and 

Hand, DMove and Hand (both p < .05; see Figure 7-11a). 

 

Regarding NASA-TLX workload subscales, ANOVA tests yielded a close significant 

effect of Selection Method (F2,34 = 2.947, p = .066) on Mental; a close significant effect 

of Selection Method (F2,34 = 2.927, p = .067) on Temporal; a close significant effect 

of Selection Method (F1.544,26.240 = 3.533, p = .054) on Frustration; and a close 

significant effect of Selection Method (F2,34 = 3.094, p = .058) on Effort. No other 

significant or close significant effects were found. 
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Figure 7-11. Overall NASA-TLX workload (a; left) and overall UEQ scores among all 6 layouts (b; 

right). Error bars indicate ±2 standard errors. 

 

User Experience 

The score for UEQ was adjusted between -3 (very bad) to 3 (excellent). Figure 7-11b 

shows the overall UEQ score among the six layouts. ANOVA tests yielded a 

significant effect of Selection Method (F2,34 = 6.371, p < .01), but not of Menu Size 

(F1,17 = 2.498, p = .132). No significant interaction effect was found on Selection 

Method × Menu Size (F1.350,22.956 = .202, p = .730). Post-hoc pairwise comparisons 

showed a significant difference between Hybrid and DMove as well as Hand and 

DMove (both p < .05). 

 

Regarding the UEQ subscales, ANOVA tests yielded a significant main effect of 

Selection Method (F2,34 = 6.167, p < .01) on attractiveness. The pairwise comparison 

indicated DMove was more attractive than both Hand and Hybrid (both p < .05). There 

was a significant effect of Menu size (F1,17 = 6.115, p < .05) on stimulation. Post-hoc 

pairwise comparison showed Small Menu bought more stimulation from users than 

Large Menu (p < .05). No other significant effects were found. DMove outperformed 

Hand, Hybrid across the UEQ subscales (see Figure 7-12). 
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Figure 7-12. UEQ ratings for all 6 layouts with respect to benchmarks. 

 

Motion Sickness 

For the overall sickness score, DMove Small was rated the worst (M = 19.29%, SD = 

12.55%) and Hand Small was rated the best (M = 16.59%, SD = 8.73%). ANOVA 

tests yielded no significant effect of Selection Method (F1.207,20.521 = 2.860, p = .100), 

Menu Size (F1,17 = 1.569, p = .227), and Selection Method × Menu Size (F1.390,23.626 = 

1.224, p = .297) on overall motion sickness. Regarding MSAQ subscales 

(gastrointestinal, central, peripheral, sopite-related), ANOVA tests yielded a 

significant effect of Selection Method (F2,34 = 4.265, p < .05) on peripheral and a close 

significant main effect of Selection Method (F1.149,19.532 = 4.022, p = .054) on central. 

No other significant effects were found. Post-hoc pairwise comparisons showed no 

significant effect between any Selection Method on peripheral. 

 

Section 7.6 Discussion 

In this section, we discuss the reasons why DMove is a strong candidate interface for 

menu selection based on users' performance and experience for the current AR HMDs. 

 

Section 7.6.1 Task Performance 

The results indicated that Hand, Hybrid, DMove have equal selection time, while 

Hybrid and DMove had lower error rates than Hand. We observed that the high error 

rate in Hand was due to wrong selection of the item that was next to the intended 

targets. Although visual feedback was provided (by expanding the size and adding 
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additional highlight color) for the item that the users' hands were currently hovering 

on, the system's detection time for whether their hands were on the virtual item was 

slow (1-2 seconds). Faced with this, users chose to trust their spatial knowledge and 

performed the selection gesture which was often incorrect, and this led to higher error 

rates. This was not the case for Hybrid which the users' hands were only used to 

perform a gesture to confirm a selection. Interestingly, we found that Menu Size had 

no effect on task performance. This might have been because the difference between 

Large and Small was not big enough to cause a significance. Based on performance 

alone, we suggest Hybrid and DMove should be considered before Hand for current 

AR HMDs. 

 

Section 7.6.2 User Preference 

NASA-TLX Workload. Regarding the overall workload, Hand was worse than Hybrid 

and DMove. One reason why participant felt that the overall workload was higher for 

Hand was that to use it well they had to focus very carefully to gauge where the items 

were located and the location of the virtual cursor. This process was tiresome. 

Although there was no difference in physical workload among three methods, 

participants had arm fatigue in both Hand and Hybrid—several of them said it was too 

difficult and tiring to keep their hand for long periods or to perform the hand gesture 

repeatedly to make a selection. In contrast, for DMove there was no need to exercise 

the visual focus required in Hand because they could rely on their spatial awareness of 

the location of the items around them to make a quick motion for their selection. So, 

users should avoid using the Hand approach if they consider workload to be a crucial 

factor. 

 

Motion Sickness. Our results indicated that performing directional movements in 

DMove did not result in a higher motion sickness than selecting menu items via Hand 

and Hybrid. Thus, in terms of motion sickness, we believe DMove was as comfortable 

as Hand and Hybrid. 

 

User Experience. ANOVA tests showed that DMove provided a better user experience 

than Hand and Hybrid. As mentioned earlier, we considered Hand and Hybrid because 

they were used in current the AR HMDs and presumably were thought to be usable. 
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Our results showed that only DMove was rated above average to excellent while Hand 

or Hybrid was rated much worse. Although our data samples were not sufficient 

enough to compare with the benchmarks [235], they still provided a sense of how much 

more usable DMove would likely be when compared to the other two interfaces. In 

summary, using DMove results in better user experience than Hand and Hybrid, and 

if users regard usability and user experience as the most important factors, DMove is 

the recommended choice. 

 

Section 7.6.3 User Comments 

According to Bowman et al. [33], natural interactions (like Hand in our study) provide 

little additional productivity but actually can make the task more complicated and 

unnecessarily cumbersome. Hand interaction not only caused some physical 

discomfort and arm pain (P7: “my arms are sores after a while”) but participants did 

not like it because of the lack of tactile feedback (P10: “It feels empty when I use my 

hand to select the virtual objects, because I don't sense when the action is finished”). 

Physical issues are not easy to solve—the only way is to ask users to rest. The tactile 

feedback issue could be solved by using a haptic glove. However, it is expensive. In 

the case of Hybrid interaction, participants seem generally happy with its task 

performance, but it seems to be bored and may also cause issues like arm muscle 

tiredness and pain (P3: “In the end, I felt a bit sleepy and my arms get tired fast”). On 

the other hand, participants have found DMove interesting and very easy to use. 

Participants suggested that we develop an exergame (like [213]) based on DMove, as 

eloquently put by P9: “[DMove] is fun, I would recommend using it as an exergame, 

it's good for health”. 

 

Section 7.6.4 Design Guidelines for DMove Interactions 

Guideline 1: Cater to Individual Differences 

Based on our findings from Study One, DMove should use an individual's dataset to 

maintain (100% or close to 100%) accuracy to take into account each user's height, 

weight, movement speed, and step distance. To account for these factors and to prevent 

poor accuracy, DMove for general users should be calibrated according to individual 

physical features and abilities. Besides, we predict a motion just right before a user 

finishes it by comparing the head movement speed with a pre-set constraint, which 
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should also be tuned to suit the individuals. As our second study show, training the 

system is easy and fast and needs to be done only once. 

 

Guideline 2: Flexibility, Efficiency of Use, Customizability 

The comfort ratings from Study One suggests that the Close level is much easier to 

reach, and it does not cause discomfort, while directions that users can see—N, NE, 

NW, E, W are much easier to perform. As such, we suggest putting frequently used 

items/functions in Close directions and avoid putting them at the directions that users 

cannot see easily to increase efficiency and usability. 

 

Guideline 3: Not in Front of Strangers and Public Venues 

Based on the social acceptance results from the Study One, we recommend using 

DMove for indoor scenarios such as at home/work environment (or outdoor but when 

there is nobody around). In addition, we suggest that an interface based on DMove 

should be used in front of the people users are familiar with instead of strangers. 

 

Guideline 4: Provide Feedback and Keep Consistency with Other Interfaces 

Results from Study Two point out two advantages of DMove over Hand and Hybrid. 

On the one hand, DMove provides users actual tactile feedback when they select an 

item/function because when placing the foot on the ground they will receive immediate 

and clear feedback. On the other hand, DMove is an interface that can be considered 

eyes-free because users can use their spatial awareness and memory to remember 

where the items are around them. Although it can be eyes-free, we suggest that the 

menu should always appear as a simple non-obtrusive visual interface on the HMD 

on-demand, similar to a context menu, whenever users want to use it and so that they 

do not have to memorize the items of the menu. Similar to what we have done in this 

research, we suggest that the interface shows the user’s movement location—e.g., a 

simple visual cue like a dot can be used to indicate to which direction they are moving. 

Visual and/or audio feedback can be included to tell them that a selection has been 

successfully made. 
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Section 7.7 Sample Applications 

In this section, we present two applications where DMove can be used for not only AR 

HMDs but also possible for VR/MR HMDs. 

 

Section 7.7.1 Remote Control of an Environment 

We developed a prototype application (Figure 7-13) to remotely control electrical 

appliances and devices in an environment (i.e., home/workplace). There are existing 

methods for controlling home appliances via voice or a smartphone; however, such 

methods have limitations—they either are affected by ambient noise [115] or require 

users to have access to an additional device. DMove does not have any of these 

limitations. Users can use it to control smart IoT-linked devices such as a TV, lights, 

air condition, with a DMove-type interface. For instance, when using an AR HMD, a 

user realizes that the light in the room is too dark (Figure 7-13a), then he/she can take 

a small step forward, to turn the light on (Figure 7-13b). Further, the user is not limited 

to turning devices on/off only but can also to interact with a smart TV, for instance, to 

switch channels by taking a small step leftward and staying at “-” icon to continuously 

change the channels until the TV shows the desired one. If the items are not in the 

current interface, users can add a new item and customize its function. 

 

 

Figure 7-13. An example of a smart environment remote control using an AR HMD; a user realizes 

the environment is dark (a; left) so he/she uses remote control to switch the lights on (b; right). 

 

Section 7.7.2 Dance Exergame 

Our second prototype application is a dance exergame, which can be accessed and 

played via a DMove-type interface. Such a game can be helpful for users of all ages to 

entrain themselves while doing exercise and in the process to improve their health 

[23,112,241,246,283,284]. The game starts with the system randomly activating some 

blocks (see Figure 7-14). To deactivate a block successfully, the user needs to perform 
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the corresponding directional motion within a time period, which can be adjusted 

based on difficulty levels. If the user fails to move and tap on the blocks before the 

time limit expires, the user cannot get points, which are needed to move to other levels. 

To avoid motion sickness, we allow users to set a time limit per round of gameplay 

(e.g., about 3-5 minutes akin to the length of a typical song). To make the game suitable 

for the elderly, one can follow the recommended guidelines provided (e.g., in [85]). In 

addition, the game can be multiplayer based and be played with friends via an online 

platform, so it could potentially bring in a social component into the gameplay. Overall, 

our second prototype is a dance exergame that can be played in an office or home 

environment with an AR HMD and potentially for a VR system as well. 

 

 

Figure 7-14. An example of a dance game; the DMove interface (a; left), the particle effect when a 

correct movement is made (b; mid), (c; right) to help users engage with the game. 

 

Section 7.8 Limitations and Future Work 

Although DMove does not cause arm and neck fatigue, repeated use in a long period 

may cause some degree of tiredness in the user’s leg or body. On the other hand, the 

AR HMDs are commonly used by users in standing position. Also, as indicated earlier, 

standing and moving one’s body is often encouraged in today’s sedentary society—

e.g., standing rather than only sitting while typing. As such, DMove may offer extra 

benefits in the form of physical activity. 

 

As stated earlier, we have selected the grid menu for Hand and Hybrid interactions 

based on example applications used in two current AR HMDs. It can be argued that 

their layout or the items can be made smaller so that they can fit better in the common 

small field-of-view of AR HMDs or allow faster selection. However, there is usually 

a tradeoff between smaller menu items and hence smaller layout on accuracy. Our 

research has not been focused on exploring the ideal size of menu items and this could 
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be a possible line of research to help us develop techniques that require Hand or Hybrid 

selection of items. 

 

There are several paths to further strengthen DMove. (1) The levels in one direction 

can be increased to allow for more items. This may be useful because, although the 

number of items in the radial menu is large enough to meet the needs of applications 

in AR systems, there can be cases which a large number of items are needed. As such, 

having more levels will allow more items to be included. (2) It is possible to optimize 

the layout further—e.g., finding the most suitable distance for each level in one 

direction instead of pre-defined values (i.e., 30cm) that we used in our study. (3) Since 

we want DMove to be accessed on-demand, future work can also focus on exploring 

ways to separate DMove from ordinary moving. We have done some preliminary 

explorations and one way that is possible for all commercial AR HMDs, for instance, 

is to use the third dimension (Y-axis) where users can perform an on tiptoe (up/down) 

action to wake up the DMove. This way, DMove can also be suitable for users with 

arm/hand disabilities as it does not require hands or any input device. 

 

Section 7.9 Conclusion 

In this chapter, we have presented DMove, a device-free and hands-free directional 

motion-based interaction for head-mounted displays (HMDs) that can be used for a 

range of applications including menu selection, remote control, and exergame. We first 

propose a method that can be used for recognizing directional movements in HMDs 

that does not need any additional external trackers. Then, we conduct a study to 

examine the accuracy of the proposed method for 8- and 16-block interfaces and also 

to understand their social acceptability and physical/mental comfort. We then optimize 

the interface based on findings from the first study and conduct a second study to 

compare the menu selection performance of DMove with Hand and Hybrid 

(Head+Hand) approaches. 

 

We have found that (1) Our proposed recognition method is very accurate—100% for 

8-block DMove and 98.06% accuracy for 16-block DMove; (2) Users prefer to use 

DMove in front of familiar people and indoor scenarios (like their home or office); (3) 

Users felt more discomfort when moving towards directions that they cannot see; (4) 
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DMove has an equal task completion time as Hand and Hybrid and a lower error than 

Hand when using a current consumer HMD; and (5) DMove is preferred by users 

because it has low workload but high usability and novelty. 

 

Based on our results, we list several design guidelines including allowing for 

customization due differences in users' physical features, placing frequently used items 

near the user and in the frontal directions, and offering visual and/or auditive 

feedback—no additional tactile feedback is needed because DMove inherently comes 

with it, as users can feel when their foot touches the ground. 

 

Section 7.10 Summary  

Based on the above findings, we can now answer Research Question 3 of this thesis 

(i.e., are directional full-body interaction feasible and efficient for general tasks with 

HMDs?): directional full-body interaction is a feasible and efficient interaction 

technique for general tasks with HMDs. It is feasible since users are highly receptive 

to its use and it did not cause a higher sickness than other motion-based interactions. 

Regarding efficiency, it outperforms Hand-based interaction and is comparable to 

Head+Hand interaction. 

 

The following two chapters aim to answer the Core Challenge 4 (i.e., accessible full-

body interaction for applications in HMDs) and Research Question 4 of this thesis (i.e., 

will HMDs affect users experiencing full-body interaction?) and Research Question 5 

(i.e., will sickness mitigation factors in other contexts works for full-body interaction). 

It first investigates the effect of tasking mode on full-body motion-based exergame 

and then explores the effect of viewing perspective on full-body motion-based 

exergame.   
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Chapter 8 Assessing the Effects of Tasking Mode in Full-body 

Motion-based Exergames 

Section 8.1 Introduction 

Physical inactivity has been identified as the fourth leading cause of death worldwide 

[151]. In recent years, the idea of using exergames (i.e., video games that are also a 

form of exercise) to enhance people’s health has been promoted by researchers and 

medical practitioners. Prior studies [15,16,73,185,240] have shown that exergames can 

increase enjoyment and intrinsic motivation compared to conventional exercises and 

as such, they can be effective in promoting physical and mental health [207,224]. 

 

People are often challenged when attempting to simultaneously accomplish multiple 

tasks (multi-tasking) due to limitations of how we process information [63]. In the 

context of games, this challenge can promote users to play them. Since exergames are 

often used to enhance people’s health, researchers have looked at the use of multi-task 

physical activities as a way to achieve this in different population groups (e.g., elderly 

[7,44]). 

 

Recently, more and more researchers have assessed the use of Electroencephalography 

(EEG) to analyze players’ physiology feelings and cognitive activities during the 

gameplay to help to provide a better gaming experience. One of the first studies to deal 

with games and EEG is [225], their research defines events during gameplay and 

analyzed the Event-Related Potential (ERP) of the brain when those events are 

performed. More recently, Monteiro et al. [188] investigated the effect of viewing 

perspective on players’ Arousal-Valence and Focus level. Nacke [193] studied how 

the use of different kinds of controllers influences the brain during gameplay. 

 

Researchers have also investigated full-body motion-based exergames (e.g., [85,86]). 

This research has been primarily conducted with common flat displays such as large-

screen TV that are placed at some distance for the gamers. Virtual reality (VR) allows 

a greater degree of immersions and there is a recent trend to use VR for exergames—

for example for athletic training [242], fitness training [301], and High-intensity 

interval training [17]. Although there are a growing number of VR exergames in the 
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market, there is limited research on the feasibility and effect of such games. The 

advantage of VR is its ability to immerse users in the environment and afford full-body 

motions. Most of the exergames explored in the recent literature are based on a 

stationary setting (e.g., on a cycling bike [17]) and to our best knowledge, no study has 

been done on investigating full-body motion-based exergames in VR, especially 

focusing on their feasibility and cognitive effects elicited during gameplay.  

 

In this research, we have developed a multi-tasking motion-based video game called 

KIMove. The game combines the advantages of multi-tasking [7,19] and exercises 

[39,272] to understand the feasibility of playing full-body motion-based exergames in 

VR, the effect of multi-tasking on the gamers and the type of responses elicited in 

players’ brains using EEG data collected during the experiment. 

 

Section 8.2 KIMove 

To study the effect and gameplay experience of single- and multi-tasks involving 

hands and feet in VR, we implemented KIMove, a game that was inspired by Beat 

Saber and Fruit Ninja. The game was implemented in Unity3D and written in C#. It 

uses Microsoft’s Kinect to capture full body motions. We had two versions, one for 

VR and the other for Large Display, which served as the baseline condition. 

 

The gameplay consisted of performing hand motions in mid-air and foot movements 

in the form of stepping on the ground through three minutes of game time. There were 

two types of game objects. Fruits would appear in mid-air for users’ hands to hit them, 

while rectangular prims or cubes would show up on the floor for their feet to step on 

them.  

 

Objects would appear close to the player and move in a straight line, passing in front 

(like apples and pears) or going towards (yellow prims) the player. The player’s hand 

and feet had colored balloons attached to them (red, green for each arm and yellow for 

the legs). The different colors were used to allow fast differentiation of the limbs and 

also to link the objects to the limbs that should be used to catch and destroy them. The 

score was given when players successfully eliminate (i.e., catch) the game objects. 
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We used the Kinect for motion capture and designed the game to be playable at about 

two meters away from the device which was required for tracking user’s limb 

movements. A door frame was designed as a reminder for the users to be aware of the 

playing area in the virtual world. Figure 8-1 shows that a player is lifting the left arm 

to catch the apple while Figure 8-2 presents an example of the player stepping left-

wards to stop the foot game object. 

 

 

Figure 8-1. A user is trying to kill the arm object (apple) by using the left hand. (a) In a virtual view. 

(b) In a real-life view. Fruits are passing in front (x-direction) the user during the game. (c) Axis 

system used by the game. 

 

Figure 8-2. A user is trying to destroy the foot object (cubes) by stepping the left foot on it. (a) In a 

virtual view. (b) In a real-life view. Cubes moving towards the user in the z-direction during the game. 

The red line indicates the movement area (3m long) that required throughout the game. 

 

The game has two different game modes: Single-tasking and Multi-tasking. For single-

tasking, the game spawns one object in every five seconds so that only one object 

moving at a time during the game. For multi-tasking, it would present to players 

multiple concurrent objects to be destroyed by both feet and arms in every five 

seconds. This means that players were required to perform two tasks in rapid 

succession and sometimes in parallel. All game objects have the same speed which 

was 0.2 m/s. These values were chosen after a preliminary study. 

 

Section 8.3 Experiment 

Section 8.3.1 Participants and Apparatus 

Twelve participants (three females) between the ages of 19-29 (M = 22.42) were 

recruited from a local university campus to take part in this experiment. Five of them 
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had experience on VR but were all infrequent VR users. We used an Oculus Rift CV1 

as our VR device and a 50-inch 4K TV as our Large Display device. Both devices 

were connected to a standard computer with an i7 CPU, 16GB RAM, and a GeForce 

GTX 1080Ti GPU. The brainwave signals Alpha (8-14 Hz), Beta (14-30 Hz), Theta 

(4-8 Hz), Delta (1-4 Hz), and Gamma (30-50 Hz) were measured and collected by the 

MUSE headset edition 1. A Kinect was used to capture the players’ movements. 

 

Section 8.3.2 Experiment Design, Task, and Procedure 

To understand the feasibility of playing the exergame in VR HMDs, we conducted an 

experiment using 2 × 2 within-subjects design. There were two independent variables: 

(1) Game Mode—Single-tasking and Multi-tasking, and (2) Display (or Device) 

Type—VR and TV. The order of Game Mode × Display Type combinations was 

counterbalanced in the experiment. Nacke [193] have shown that playing games with 

different types of controllers could affect brain activity differently. We were interested 

in whether Game Mode and Display Type have a similar effect on brain activity. 

 

Before the experiment started, the participants were asked to complete a pre-

experiment questionnaire to gather demographic information and were informed of the 

purpose of the study. Before each session, the participants were taught the game rules 

and were asked to calibrate the position in the game, and then they were asked to play 

a 1-min warm-up round to familiarize themselves with the game. Once the warm-up 

round finished, participants were asked to wear and calibrate the EEG device with the 

help from a researcher. We only started to record the EEG data when the actual 

experiment round began and stopped recording once each experiment round had 

finished. After each session, participants were asked to completed two questionnaires: 

Game Experience Questionnaire (GEQ) [123], Simulator Sickness Questionnaire 

(SSQ) [131]. Between sessions, they could rest as much as they want. The whole 

experiment lasted about 35 minutes for each participant.  

 

Section 8.3.3 Results 

We analyzed the data using a two-way repeated measures ANOVA with two 

independent variables, Display Type (VR and Large Display) and Game Mode 

(Single-tasking and Multi-tasking). Bonferroni correction was used for pairwise 
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comparisons, and Greenhouse-Geisser adjustment was used for degrees of freedom for 

violations to sphericity. We reported effect size ƞp
2 whenever possible. 

 

The gameplay performance data were recorded in the background during gameplay. 

We evaluated the data using the Missing Target Rate (MTR) which was the percentage 

of the objects missed by the users among all objects generated by the system. MTR for 

foot and arm objects was analyzed separately. For EEG data, we excluded the Delta 

and Gamma data in the analysis because Delta waves could be affected by blinking 

and Gamma waves by muscle movements. Therefore, we only analysis the Alpha, 

Beta, and Theta waves in this study. In details, Alpha power increases have been 

associated with cortical inactivity and mental idleness. Beta activity is most evident in 

the frontal cortex and has been connected to cognitive processes, decision making, 

problem-solving, and information processing. Theta activity seems to be related to 

creativity, intuition, memory recall, emotions and sensations [193].  

 

Gameplay Performance. Figure 8-3a shows the mean MTR for each condition for foot 

game objects. ANOVA tests yielded a significant effect of Game Mode (F1,11 = 37.864, 

p < .001, ƞp
2 = .775), but not for Display Type (F1,11 = 2.628, p = .133, ƞp

2 = .193). 

There was also a significant interaction effect on Display Type × Game Mode (F1,11 = 

7.918, p < .05, ƞp
2 = .419). Post-hoc pairwise comparison showed that participants 

missed more foot game objects (p < .001) in multi-tasking mode (M = 23.5%, s.e. = 

2.0%) than single-tasking mode (M = 9.8%, s.e. = 1.8%). No main and interaction 

effects were found for hand game objects. 

 

  

Figure 8-3. (a; left) Mean missing target rate on foot game object. (b; right) Mean nausea score from 

SSQ. Error bars indicate ±2 standard errors. 
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Simulator Sickness Questionnaire. Regarding the participants’ perceived level of 

simulator sickness (Nausea, Oculomotor), there was a significant main effect of Game 

Mode on Nausea (F1,11 = 5.333, p < .05, ƞp
2 = .356), but not for Display Type (F1,11 = 

4.115, p = .067, ƞp
2 = .272) and Display Type × Game Mode (F1,11 = .169, p = .689, 

ƞp
2 = .015). Post-hoc pairwise comparison indicated that participants felt sicker (p < 

.05) when playing in the multi-tasking mode (M = 1.29, s.e. = 0.35) than single-tasking 

mode (M = 0.63, s.e. = 0.21). Figure 8-3b shows the mean nausea score from SSQ for 

each condition. No main and interaction effects were found on Oculomotor. 

 

Game Experience Questionnaire. The core GEQ module consists of seven components 

(Competence, Tension, Sensory and Imaginative Immersion, Flow, Negative Affect, 

Positive Affect, Challenge). ANOVA tests yielded a significant effect for Game Mode 

(F1,11 = 7.957, p < .05, ƞp
2 = .420) on Challenge, but not for Display Type (F1,11 = .166, 

p = .691, ƞp
2 = .015) and Display Type × Game Mode (F1,11 = .617, p = .449, ƞp

2 = 

.053). Post-hoc pairwise comparison revealed that users felt multi-tasking (M = 1.85, 

s.e. = 0.18) was more challenge (p < .05) than single-tasking (M = 1.38, s.e. = 0.20). 

Figure 8-4a shows the mean challenge score from GEQ for each condition. However, 

no other main and interaction effects were found on Competence, Tension, Sensory 

and Imaginative Immersion, Flow, Negative Affect, Positive Affect. 

 

 

Figure 8-4. (a; left) Mean challenge score from GEQ. (b; right) Mean Theta power during the 

gameplay. Error bars indicate ±2 standard errors. 

 

EEG. We calculate the mean value of each brainwave signal. Figure 8-4b presents the 

mean Theta value during the gameplay among the 4 conditions. ANOVA tests showed 

there was a main effect of Display Type for Theta (F1,11 = 7.415, p < .05, ƞp
2 = .403), 
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but not of Game Mode (F1,11 = .031, p = .864, ƞp
2 = .003) and Display Type × Game 

Mode (F1,11 = 3.604, p = .084, ƞp
2 = .247). No other main and interaction effect were 

found for both Alpha and Beta waves. 

 

Section 8.4 Discussion 

Section 8.4.1 Gameplay Performance 

We found that multi-tasking affects the way how participants would decide to 

eliminate the game objects. From our observation and comments from the participants, 

they prefer to eliminate the easy option (hand game object) when in a complicated 

situation (hand and foot game object come in one time). 

 

Section 8.4.2 Simulator Sickness 

We found that VR did not generate a higher level of simulator sickness than Large 

Display. This shows that VR exergames are as feasible as those shown in Large 

Display for Nausea and Oculomotor. Meanwhile, we found that participants felt sicker 

when played in multi-tasking mode than single-tasking, suggesting multi-tasking may 

cause a higher sickness than single-tasking in a full-body motion-based exergame. 

Therefore, we suggest the future designer should carefully design a game that may 

consist of a series of multi-tasking tasks, as it may cause a higher sickness. 

 

Section 8.4.3 Game Experience 

We found that multi-tasking mode is more challenging than the single-tasking mode, 

but VR and Large Display share the same level of challenge for participants. Regarding 

the other GEQ components (Competence, Tension, Sensory and Imaginative 

Immersion, Flow, Negative Affect, Positive Affect), VR and Large Display have 

brought similar game experience to participants while single-tasking and multi-tasking 

also have no effect on their game experience. 

 

Section 8.4.4 EEG 

We found a higher mean Theta value for the users when they played the game in VR 

than Large Display. One possible explanation is that VR might at some point affect 

the ways participants calculate the spatial position of the game objects. Early studies 
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[129,139] have shown that Theta power increases during spatial navigation, especially 

during processing of spatial cues and landmarks, which was also required in our game. 

We have not found any significant effect of Display Type and Game mode on Alpha 

and Beta waves. 

 

Section 8.4.5 Limitation and Future Work 

The experiment has one issue where each game session only last three minutes, which 

is a relatively short time period and may lead to a different result. Future work will 

increase the time for each session, test different game elements (i.e., game object’s 

moving speed). We will also seek an opportunity to examine how feasible for elderly 

to play VR Exergame. Moreover, we have recorded the gameplay video for each 

condition, and the next step will focus on the analysis of Event-Related Potential 

(ERP), which analyses brain waves as an event is happening, helping us to have a 

deeper understanding of what is happening during gameplay [188]. Also, we will 

investigate how the EEG metrics related to the subjective questionnaires [186]. 

 

Section 8.5 Conclusion 

This chapter has explored the effects of display/device type (virtual reality and large 

display) and game mode (single-task and multi-task) for exergames. Our experiment 

with 12 young adults indicates that (1) players have the same level of game experience 

and motion sickness when playing the exergame in either VR and large display; (2) 

VR has led to increasing Theta power in players’ brain; (3) players believe multi-

tasking is more challenging and brings a higher of motion sickness than single-tasking; 

and (4) players have a worse game performance in multi-tasking than single-tasking. 

For the last two findings, we suggest that if the sickness is crucial for players, they 

should avoid playing multi-tasking mode, if sickness and performance are not a 

concern and the players would like to train their hand-foot coordination skills, they 

should play multi-tasking mode. 
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Chapter 9 Exploring the Effects of Viewing Perspective in Full-

body Motion-based Exergame 

Section 9.1 Introduction 

Physical inactivity has been identified as the fourth leading cause of death globally 

[151]. It is now well established that a sedentary lifestyle is a unique risk factor for 

several diseases such as type 2 diabetes and cardiovascular disease [276], which 

account for about 30% of global mortality. In recent years, the idea of using interactive 

computing systems that leverage gamification to promote physical activity has been 

widely researched [173]. Prior studies [15,73,185,240] have shown that exergames, a 

type of games that encourage physical activity, can increase enjoyment and intrinsic 

motivation compared with conventional exercises; as such, they can be effective in 

promoting physical and mental health [207,224]. 

 

Given the advantages of engaging people in long-term and regular physical activity, 

various non-HMD (like using interfaces such as a flat-screen television/monitor) 

exergames have been designed to encourage people to be more active [85], promote a 

positive lifestyle [80] and self-care [68]. Previous literature has shown that exergames 

could bring physical and mental health outcomes to players. For example, Peng et al. 

[204] have performed a meta-analysis of energy expenditure in exergames where their 

main finding suggests that exergames are as effective as traditional physical activities 

that facilitate light- and moderate-intensity physical exertion. Huang et al. [119] found 

that exergames can induce positive changes in happiness, perceived energy levels, and 

relaxation for people who are enthusiastic about doing exercises. Other studies have 

shown that exergames are as effective as conventional balance training exercises 

[14,228]. Moreover, the benefits of playing exergames include, but not limited to, 

improving the quality of life [247], reducing state anxiety [267], as well as 

improvements in the number of steps taken, standing balance, gait speed, and mobility 

[82]. 

 

Given the recent emergence of affordable head-mounted displays (HMDs), especially 

for virtual reality (VR), there is limited and only preliminary research on VR 

exergames. Recently, Barathi et al. [17] have implemented an exercycle game with 
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interactive feedforward method using VR to improve players’ performance and 

maintain intrinsic motivation. Ioannou et al. [124] found that virtual augmented 

running and jumping in VR could increase intrinsic motivation, perceived competence, 

and flow. Xu et al. [285] have found that playing exergame in VR would not result in 

a higher cybersickness than a 50-inch TV. In general, researchers have suggested that 

VR is useful in promoting physical activity in sedentary and obese children [223], 

especially to increase their motivation to exercise [179,206]. However, the difference 

between exergaming with a common display and VR is still largely underexplored, 

especially regarding their physical and health benefits. 

 

Traditional approaches such as direct observations [196] and subjective measurements 

[85] are the commonly used methods to measure user experience during games. 

However, they can be intrusive and not reliable. Psychophysiological methods, such 

as using electroencephalography (EEG), provide relatively non-intrusive, covert, and 

reliable measurements of affective states that determine user experience, and this 

makes them suitable for studying interactive entertainment [217]. Such methods have 

been used to investigate the effect of controller types [193], viewing angles [189], 

display types (DTs), and tasking modes [285] on players’ brainwave patterns. 

 

Chang et al. [38] and Stoffregen et al. [255] have proved that videogames can carry a 

significant risk of cybersickness. One solution to reduce it is by seeking the most 

suitable viewing perspective (VP) (e.g., first-person vs. third-person). For example, 

Medina et al. [178] found that cybersickness were more pronounced for the first-

person viewing perspective (1PP) group than the third-person viewing perspective 

(3PP) group when performing locomotion walking in navigation tasks in an VR 

environment. Similarly, Monteiro et al. [187] pointed out that playing an VR racing 

game in 3PP is less likely to induce cybersickness when compared with playing it in 

1PP. 

 

Given the considerations just mentioned, the aim of this study was to investigate the 

effect of DT (VR and large TV) and VP (1PP and 3PP) on players’ exertion, 

engagement, and overall gaming experience of exergames. To this end, we conducted 

a first study to select a gesture set for a gesture-based game to make sure that the 
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selected gestures would not affect players’ gameplay in both DTs. Afterward, in a 

second study, we investigated the effect of DTs and VPs when interacting with an 

exergame. 

 

The current investigation has been guided by the following hypotheses. Because 

previous research [240] showed that playing an exercycle game with a common flat 

monitor and VR led to an equal level of burned calories, we hypothesized that: 

H1: a) There would be no significant differences in gameplay performance (i.e., 

completing the same number of gestures) among DTs; therefore, b) we believe the 

levels of exertion (%HRmax, calories burned, and Borg RPE) should also be the same 

among the DTs. 

 

H2: VR could result in a higher game experience than Large Display (LD). 

 

Similarly, because prior work that tested different types of interventions showed that 

3PP could lead to a lower motion sickness than 1PP [178,187], we predicted that: 

H3: During a gameplay of more than three minutes, a) 3PP could lead to a lower 

cybersickness than 1PP in exergames. As for VR, we believe that b) it could lead to a 

higher level of cybersickness than LD. 

 

Section 9.2 Study One 

In the interest of removing any possible bias toward a DT, Study one aimed at 

identifying a set of full-body gestures for the exergame to be used in Study two. That 

is, we evaluated gestures that would not be affected by DT. 

 

Section 9.2.1 Participants 

Twenty-four participants were recruited from a local university campus to participate 

in this experiment. Because two participants’ EEG data were lost due to bad 

connection between the devices, we recruited another two participants. The final 24 

participants (six females) were aged between 19 and 27 (mean = 22.04) years old. 

Twenty-two played videogames regularly (17 of them played weekly). For the VR 

group, only two of them were frequent users of VR.   
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The inclusion criteria of the participants for the study were those who: (1) answered 

“no” to all Physical Activity Readiness Questionnaire [261], (2) had a resting blood 

pressure lower than 140/90 mmHg, and (3) had a common (10%~90%) [200] resting 

heart rate depending on their age and gender. 

 

Section 9.2.2 Instruments 

To avoid familiarity with gestures that could potentially affect the selection of 

gestures, we employed a one-way between-subjects experiment design with 24 

participants (six females) equally distributed in two groups where the independent 

variable was DT—VR and LD. The experiment was conducted at a university lab. We 

used an Oculus Rift CV1 as our HMD and a 50-inch 4K TV as our LD. Both devices 

were connected to a standard computer with an i7 CPU, 16GB RAM, and a GeForce 

GTX 1080Ti GPU. The brainwave signals were collected by a MUSE headset Edition 

1. The program was built in Unity3D, and players' gestures were detected by a 

Microsoft Kinect 2. 

 

The National Aeronautics and Space Administration-Task Load Index (NASA-TLX) 

[107] is a validated instrument for measuring workload [109], which consists of six 

subscales that represent independent clusters of variables: mental, physical, and 

temporal demands, frustration, effort, and performance. It first presents users with a 

series of pairs of rating scale titles (e.g., effort vs. mental demands) and asks users to 

choose which of the items was more important to the experience of workload in the 

task(s) that were just performed. Then, it asks users to rate each workload cluster in a 

21-Likert scale [109]. The NASA-TLX has been widely used by universities, 

industries, and governments [108]. 

 

Participants’ Rating. Participants needed to rate each gesture via a 7-point Likert scale, 

ranging from 1, strongly disagree, to 7, strongly agree. A higher score indicated that 

participants would like to have such a gesture into the final version of the game. 

 

The EEG metric we used for this study was the engagement index, which has been 

widely used in the research of biocybernetics and automation systems 

[40,58,75,181,208], is a measurement of how cognitively engaged a person is in a task 
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[75]. It can be calculated by the formula 𝐸 =
β

(α+θ)
 [208] where α , β , and θ  are 

averaged value of Alpha, Beta, and Theta waves from the EEG device (i.e., MUSE 1). 

 

Section 9.2.3 Task: Performing the Gestures 

Participants needed to perform 12 different gestures in a computer program (Figure 

9-1), which was developed by the researchers, with the TV or VR device depending 

on their assigned group. All gestures were evaluated by rehabilitation doctors we had 

access to. There were six simple gestures (Psi: raising two hands; Squat: performing a 

squat; Kick: raising any leg; Walk: performing walk-in-place; Wheel: performing 

steering wheel motion; Zoom: leaning arms forward and stretching them out), and six 

complex gestures which were combinations of simple gestures (Squat+Psi; 

Squat+Wheel; Kick+Zoom; Kick+Wheel; Walk+Psi; Walk+Zoom). For each gesture, 

instructions were given to participants via a pre-recorded 5-second video (Figure 9-1a). 

Then, they were requested to repeat each gesture in two 10-second sessions, with 5 

seconds of rest in between. The order of the gestures was counterbalanced during the 

experiment. 

 

 

Figure 9-1. Screenshot of Study 1 program. (a) Video display area for participants to follow. (b) A 

character represents the participant. 

 

Section 9.2.4 Procedure 

Before the experiment, participants were told about the purpose of the experiment, 

given the information sheet to read, and the consent form to sign. Once they agreed to 

participate, participants were asked to complete a pre-experiment questionnaire to 

collect demographic data. After the devices used in the experiment were described to 
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them, a researcher helped calibrate the MUSE (to make sure that the MUSE had a good 

connection with the MUSE application running on a mobile device). 

 

After they understood the process, participants proceeded to play the computer 

program and perform the gestures. After the experiment, participants needed to 

complete the post-experiment questionnaire and give comments on the gestures to the 

experimenter through an interview. The whole experiment lasted about 40 minutes for 

each participant. The experiment was conducted under the supervision of the 

experimenter, and the surroundings were cleared of any obstacles to give a safe 

environment to the participants. 

 

Section 9.2.5 Statistical Analysis 

Statistical Package for the Social Sciences (SPSS) version 24 for windows was used 

for analysis. The Kolmogorov–Smirnov test was used to verify the normality of the 

data. For NASA-TLX [107] overall workload, we analyzed the data using a univariate 

analysis of variance (ANOVA) and for its subscales, we employed a multivariate 

ANOVA to evaluate the effects of DT on gestures that had been performed by 

participants. For participants’ ratings and the EEG Engagement Index, we employed a 

mix-design ANOVA with gesture (12 gestures) as the within-subjects variable and DT 

as the between-subjects variable. Bonferroni correction was used for pairwise 

comparisons and Greenhouse-Geisser adjustment was used for degrees of freedom if 

there were violations to sphericity in the data. 

 

Section 9.2.6 Results 

NASA-TLX 

A univariate ANOVA yielded no significant effect of DT (F1,22 = .115, p = .737) on 

overall workload. A multivariate ANOVA also showed no significant effect of DT on 

the six NASA-TLX subscales: mental (p = .442), physical (p = .274), temporal (p = 

.421), performance (p = .430), effort (p = .783), frustration (p = .283). See Table 9-1 

for results. 
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Table 9-1. Means (standard deviations) of national aeronautics and space administration-task load 

index questionnaire results. 

 Overall Mental Physical Temporal Performance Effort Frustration 

VR 49.11 

(14.67) 

40.42 

(19.82) 

52.92 

(19.71) 

48.75 

(19.08) 

45.83 

(19.75) 

43.33 

(18.26) 

25.83 

(20.10) 

LD 47.42 

(9.15) 

34.17 

(19.29) 

61.25 

(16.53) 

43.75 

(9.08) 

39.17 

(20.87) 

41.67 

(9.85) 

17.50 

(12.70) 

 

Gesture Set 

Participants’ Ratings. Results of participants’ ratings of each gesture can be found in 

Table 9-2. ANOVA tests yielded a significant effect of Gesture (F5.539,121.848 = 4.288, 

p < .001) but not of Gesture × Group (F11,242 = .970, p ꞊ .474) on the rating scores of 

the gestures. There was no significant effect of Group (F1,22 = .049, p = .826) on 

participants’ rating of each gesture. Post-hoc pairwise comparisons revealed 

significant differences between gesture Psi – Kick+Zoom, Psi – Kick+Wheel, Walk – 

Kick+Zoom (all p < .05). 

 

EEG Engagement Index. ANOVA tests yielded no significant effect of Gesture (F11,242 

= 1.727, p = .175), Group (F1,22 = 2.619, p = .120), or Gesture × Group (F11,242 = .712, 

p = .726) on task engagement for each gesture. Results of EEG Engagement Index of 

each gesture can be found in Table 9-2. 

 

Table 9-2. Means (standard deviations) of participants' ratings and electroencephalography 

engagement index results of each gesture 

 Participants’ Rating  EEG Engagement Index 

Gesture VR LD  VR LD 

Psi 5.92 (0.79) 5.67 (1.16)  0.81 (0.48) 0.51 (0.44) 

Squat 4.92 (1.38) 4.92 (1.98)  0.76 (0.33) 0.64 (0.27) 

Kick 5.08 (1.08) 5.58 (1.38)  0.74 (0.37) 0.52 (0.41) 

Walk 5.83 (0.84) 5.67 (1.07)  1.06 (1.48) 0.71 (0.81) 

Wheel 5.00 (1.28) 5.25 (1.82)  0.77 (0.37) 0.55 (0.23) 

Zoom 5.58 (1.17) 5.17 (1.47)  0.95 (0.75) 0.47 (0.35) 

Squat+Psi 5.42 (1.17) 4.67 (1.88)  0.82 (0.83) 0.55 (0.27) 

Squat+Wheel 4.83 (1.59) 4.17 (1.70)  0.66 (0.44) 0.48 (0.36) 

Kick+Zoom 4.08 (1.51) 5.00 (1.13)  0.65 (0.44) 0.36 (0.32) 

Kick+Wheel 4.17 (1.40) 4.25 (1.42)  0.70 (0.58) 0.54 (0.24) 

Walk+Psi 5.50 (1.57) 5.25 (1.29)  0.25 (1.01) 0.46 (0.18) 

Walk+Zoom 5.50 (1.57) 5.33 (1.37)  0.59 (0.38) 0.46 (0.23) 
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Section 9.2.7 Discussion 

Our results indicated that DT did not affect players’ preference of the gestures, their 

workload, and the engagement index when performing these full-body gestures. We 

also observed that some gestures might raise issues for future gameplay. We therefore 

selected the gesture set with the following exclusion considerations: (1) Based on the 

participants' ratings and comments, we decided to exclude Wheel, Squat+Wheel, and 

Kick+Wheel gestures since the ratings of these gestures were low. In addition, 20 out 

of 24 participants complained during the interview that performing these gestures was 

too hard (e.g., P9 from the non-VR group: “This gesture is too difficult to do”). (2) 

Based on our observations, we decided to exclude Walk, Walk+Psi, and Walk+Zoom 

gestures since participants could easily go forward instead of walking-in-place when 

performing such gestures, which could cause tracking issues because, similar to nearly 

all motion tracking devices, the Kinect 2 we used in Study two only had a limited 

operational tracking area. 

 

In summary, our exergame in the second study was designed to have four simple 

gestures—Psi, Squat, Kick, Zoom, and two complex gestures—Squat+Psi and 

Kick+Zoom. 

 

Since task engagement index was the same, therefore, we hypothesize that: 

H4: DT and VP would not affect the EEG Task Engagement Index. 

 

Section 9.3 Study Two 

In Study two, we investigated the impact of DT (Large TV and VR) and VP (1PP and 

3PP) on gesture-based exergame gameplay performance and experience. 

 

Section 9.3.1 Participants 

Another 16 participants were recruited for this study. Because one participant’s EEG 

data were lost due to bad connection, we recruited one more participant. The final 16 

participants (five females) included in the data analysis were between the ages of 18 

and 28 (mean = 21.75). Ten of them had some prior experience with VR (2 of them 
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interacted with it weekly). Fifteen participants played videogames regularly (12 of 

them weekly). 

 

We used the same inclusion criteria as Study 1 for this study. 

 

Section 9.3.2 Instruments 

The experiment followed a 2 × 2 within-subjects design with combinations of (1) VP—

(1PP and 3PP) and (2) DT—(VR and LD). The order of VP × DT was counterbalanced 

in the experiment.   

 

In addition to the devices used in Study 1, we used a Polar OH1, which has been proved 

to be able to capture good heart rate (HR) data when compared with the gold standard 

of HR measurement of an electrocardiography device [113,236], to record 

participants’ heart rate and calorie consumption. 

 

Participants’ task performance was evaluated in terms of the percentage of blocks 

removed (i.e., when the gesture was performed correctly). 

 

Participants’ game experience was measured using the 33-item core module of the 

Game Experience Questionnaire [123]. It consists of seven components: competence, 

sensory and imaginative immersion, flow, tension, challenge, negative affect, and 

positive affect. 

 

Cybersickness was assessed using the 16-item Simulator Sickness Questionnaire 

[131]. It measures a wide range of possible symptoms of cybersickness, including (but 

not limited to) nausea, eyestrain, dizziness, and vertigo. Each symptom was rated on a 

severity scale that ranged from 0 (none) to 3 (severe). The scale had an observed 

Cronbach’s α of 0.91. This scale was aggregated to produce two measures of 

cybersickness (Nausea and Oculomotor) with 27 and 21 points, respectively. 

 

Exertion was evaluated by (1) the average heart rate (%HRmax) and was expressed as 

a percentage of a participant’s estimated maximum HR (220 minus age) [6]. (2) 
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Calories burned and (3) ratings of perceived exertion were measured by the Borg RPE 

6-20 scale [28]. 

 

Physiological involvement was assessed by the EEG Engagement Index. For details 

of this measurement, see Study 1: Instruments section. 

 

Participants’ preference of the conditions (VR-1PP, VR-3PP, LD-1PP, LD-3PP) was 

measured by their rankings of the condition from 1 to 4, where 1 stood for the most 

preferred option and 4 for the least preferred option. 

 

Section 9.3.3 Task: GestureStar Game 

Inspired by the commercial exergames Beat Saber and Just Dance, we developed 

GestureStar. In GestureStar, players encountered blocks flying toward them every six 

seconds and were required to make the corresponding gesture to eliminate each block 

within six seconds; otherwise, they would miss it. One game lasted about eight minutes 

(one minute for training and seven minutes for the actual experiment). In total, 

participants were required to perform 10 gestures during training and 70 during 

gameplay. 

 

As stated earlier, the game had four simple gestures (Psi, Squat, Kick, Zoom), and two 

complex gestures (Squat+Psi and Kick+Zoom). We employed six different blocks to 

represent the gestures in the game (Figure 9-2). Figure 9-3a shows a screenshot of the 

game and Figure 9-3b shows the setup of a player playing the game. 

 

 

Figure 9-2. The 6 blocks that were used in the game: (left to right) Kick, Squat, Zoom, Psi, Squat+Psi, 

Kick+Zoom. 
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Figure 9-3. A screenshot of the exergame where the name and colored lines in the game work as a 

reminder of each gesture for the player (a; top) and an example of a participant performing Psi+Squat 

gesture during the game (b; bottom). 

 

Section 9.3.4 Procedure 

Participants were briefed of the purpose of the experiment and asked to sign the 

consent form and complete a pre-experiment questionnaire. Afterward, a researcher 

helped participants to wear and calibrate the MUSE 1 and Polar OH1. We only 

recorded EEG and heart rate data for the 7-minute experimental part. After each 

condition, participants were asked to complete the post-experiment questionnaire. 

They could rest as much as they want between conditions. After the experiment, they 

were asked to give feedback and rank each condition. The whole experiment lasted 

about 1 hour for each participant. 

 

Section 9.3.5 Statistical Analysis 

Similar to Study 1, SPSS version 24 for windows was used for analysis. The 

Kolmogorov–Smirnov test was used to verify the normality of the data. We used the 

two-way repeated measures ANOVA and Bonferroni correction for pairwise 

comparisons. 
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Section 9.3.6 Results 

Hypothesis Testing 

Analytical results of game performance, exertion (average %HRmax, calories burned, 

and Borg RPE), simulator sickness questionnaire, and EEG Engagement Index can be 

found in Table 9-3. 

 

Table 9-3. P values of two-way repeated analysis of variance results on game performance, exertion, 

simulator sickness questionnaire, and electroencephalography task index. Significant results where p < 

.05 are shown in light green, p < .01 are shown in green, and p < .001 in dark green. 

 Completion 

Rate 

%HRmax Calories 

Burned 

Borg 

RPE 

Nausea Oculom

otor 

EEG 

Engagement 

Index 

DT .468 <.01 <.01 <.001 <.05 <.01 .439 

VP .338 .852 .320 .403 .072 .812 .446 

DT×VP .929 .086 1.000 .333 .300 .510 .303 

 

Details of participants’ task performance and exertion for each condition can be found 

in Table 9-4. No significance was found on task performance between conditions, 

supporting H1a. However, VR had led to a higher %HRmax (p = .005), calories burned 

(p = .001), and Borg RPE rating (p = .000) than LD, not supporting H1b. 

 

Table 9-4. Means (standard deviations) of completion rates, exertion, nausea, oculomotor, and 

electroencephalography engagement index. 

 Completion 

Rate 

%HRmax Calories 

Burned 

Borg 

RPE 

Nausea Oculomotor EEG 

Engagement 

Index 

VR_1PP 91.79% 

(3.28%) 

53.60% 

(6.82%) 

42.81 

(13.11) 

14.50 

(1.90) 

1.88 

(1.54) 

2.81 (2.54) 0.36 (0.23) 

VR_3PP 92.77% 

(3.36%) 

52.78% 

(6.33%) 

43.81 

(13.38) 

13.94 

(1.12) 

2.56 

(2.13) 

3.13 (2.22) 0.26 (0.43) 

LD_1PP 92.41% 

(5.64%) 

50.60% 

(6.03%) 

34.75 

(12.07) 

11.94 

(1.57) 

1.69 

(1.89) 

1.69 (1.82) 0.35 (0.30) 

LD_3PP 93.57% 

(4.92%) 

51.25% 

(5.77%) 

35.75 

(13.00) 

12.06 

(1.84) 

1.50 

(1.41) 

1.50 (1.41) 0.38 (0.22) 
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Table 9-5. P Values of two-way repeated analysis of variance results of the game experience 

questionnaire. Significant results where p < .05 are shown in light green, p < .01 are shown in green, 

and p < .001 in dark green. 

 Competence Sensory and 

Imaginative 

Immersion 

Flow Tension Challenge Negatice 

Affect 

Positive 

Affect 

DT .588 <.01 <.01 .730 <.01 <.05 .125 

VP .181 .284 .070 .453 .133 .060 .348 

DT × VP .085 <.01 .073 .224 .118 .770 <.05 

 

Table 9-6. Means (standard deviations) of game experience questionnaire subscales. 

 Competence Sensory and 

Imaginative 

Immersion 

Flow Tension Challenge Negatice 

Affect 

Positive 

Affect 

VR_1PP 2.79 (0.58) 2.66 (0.52) 2.51 

(0.69) 

0.90 

(0.74) 

2.09 

(0.85) 

0.86 

(0.84) 

3.09 

(0.83) 

VR_3PP 2.74 (0.69) 2.38 (0.63) 2.26 

(0.70) 

0.98 

(0.75) 

2.06 

(0.79) 

1.10 

(0.81) 

2.78 

(1.03) 

LD_1PP 2.54 (0.55) 2.01 (0.51) 1.78 

(0.46) 

1.00 

(0.82) 

1.81 

(0.85) 

1.19 

(0.78) 

2.64 

(0.75) 

LD_3PP 2.88 (0.63) 2.09 (0.61) 1.74 

(0.43) 

0.81 

(0.78) 

1.50 

(0.56) 

1.34 

(0.76) 

2.78 

(0.72) 

 

Analytical results of each Game Experience Questionnaire component are shown in 

Table 9-5. The score for VR was higher than LD regarding challenge (p = .002), flow 

(p = .004), sensory and imaginative immersion (p = .002), while VR had a lower score 

regarding negative affect (p = .023) than LD. Therefore, the results supported the H2. 

Table 9-6 shows the scores for each component. 

 

No significance was found for Nausea and Oculomotor on VP, not supporting H3a. 

H3b was supported since VR had caused a higher level of Nausea (p = .016) and 

Oculomotor (p = .010) than LD. Details of the sickness scores for each condition can 

be found in Table 9-4. 

 

H4 was supported as no significant effect of DT and VP was found on EEG 

engagement index. Values of EEG engagement index can be found in Table 9-4. 

 

User Preference 

Friedman tests yielded a significant difference depending on which version 

participants preferred χ2(3) = 10.059, p = .018. However, post-hoc analysis with 
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Wilcoxon signed-rank tests and Bonferroni correction did not reveal any significant 

difference between conditions, although 63% of the participants selected VR-1PP as 

their top choice. 

 

Section 9.4 Discussion 

Section 9.4.1 Discussion on the Hypotheses 

We found support in our results for H1a, where participants completed the same 

number of gestures in both VR and LD conditions. However, H1b was not supported, 

even though the completion rates of the gestures were the same. One possible 

explanation might be because the weight of the VR HMD that participants had to carry 

during the VR condition increased the intensity of the exergame, although the Oculus 

CV1 just weighted 470 g. 

 

We found support for H2; that is, playing exergames in VR had a better gameplay 

experience as it was more challenging, immersive (based on the flow, sensory and 

imaginative immersion components) to participants, and had fewer negative effects. 

Interestingly, our findings did not support the results from a previous study [285] in 

which researchers found that playing a motion-based exergame in VR might have the 

same level of game experience. One possible explanation might be because the length 

of our game was much longer than theirs. 

 

Previous studies [178,187] suggested that 3PP could lead to a lower sickness level than 

1PP; however, we did not find support for H3a. That is, playing an exergame in 3PP 

did not result in a lower cybersickness level than in 1PP. We hypothesize that since 

our game demanded a reasonable amount of movement the bone vibration equated in 

lower levels of cybersickness in both versions equally [271]. Further, in our 

experiment, participants often focused on a fixed point, so they could better observe 

the oncoming objects, which equated to the same advantage as 3PP, thus not bringing 

any special advantage in this scenario. H3b was supported, as our data indicated that 

players felt sicker (both nausea and oculomotor) when playing in VR than LD, which 

is in line with previous VR studies [4,239]. 
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We confirmed our H4 that DT and VP did not affect the EEG engagement index. 

 

Section 9.4.2 Practical Implications 

Our results indicate that playing a full-body gesture exergame in VR could lead to a 

higher exertion level than LD (i.e., it burned more calories, and led to a higher 

%HRmax, and perceived exertion level on the Borg RPE). Moreover, playing an 

exergame in VR can induce not only a higher immersion level but also a lower negative 

feeling than LD. As such, when players need some exercise, they could be introduced 

to playing exergames with VR HMDs. However, if players start to get cybersicked 

quickly, they should play exergames with LD. 

 

For game designers, consideration should be taken with respect to gestures: (1) by not 

designing and including complex gestures (e.g., wheel used in Study 1); (2) by 

avoiding gestures such as walk-in-place because players might need to move around, 

which could lead to tracking issues and potentially dangerous situations. 

 

Section 9.4.3 Strengths, Limitations, and Future Work 

The strengths of our research include: (1) the gestures used for the exergame were 

selected systematically (from Study one) to remove any bias toward any particular type 

of display that could originate from a gesture; (2) the effect of DT (VR and LD) and 

VP (1PP and 3PP) on cybersickness and exertion in exergames were never previously 

examined. To our knowledge, we are the first ones to conduct this research; (3) another 

strength of the study is that it has contributed to the limited research topic of VR on 

health benefits to its users (e.g., exertion). 

 

There are some limitations to this research. One limitation is that the research involved 

a relatively small sample (though this is normal in research published in this area [36]). 

Future work can involve a larger and more diverse group of participants. Moreover, 

the current version of GestureStar seems only to be a light-intensity game as 

participants’ HRmax% is lower than 64% (see Table 9-4), which is the lower bound of 

moderate intensity exercises [37]. One possible solution to increase the intensity of the 

game is by narrowing the wait time for the next block if the player eliminates the 

current block in advance. In addition, future work can focus on reducing potential 
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nausea and other adverse side effects while increasing the intensity of the VR version 

of the exergame. 

 

Section 9.5 Summary 

Overall, our results suggest that HMDs could result in changes in physiological 

feelings (Chapter 8) and lead to a better game experience but also a higher sickness 

(Chapter 9). Hence, our answer for Research Question 4 (i.e., will HMDs affect users 

experiencing full-body interaction?) is that HMDs could affect users experiencing full-

body interaction. Regarding Research Question 5 (i.e., will sickness mitigation factors 

in other contexts works for full-body interaction), it seems that factors that could help 

reduce simulator sickness in other contexts may not work for full-body interaction. 

Our results show consistent results where multi-tasking leads to a higher sickness 

[293], but viewing perspective does not affect the simulator sickness [187]. 

 

  



Chapter 10 Discussion, Conclusion, and Future Work 

 

151 

 

Chapter 10 Discussion, Conclusion, and Future Work 

Section 10.1 Summary 

This thesis has examined the design of motion-based interaction (MbI) for head-

mounted displays (HMDs). This thesis first outlines the literature of HMDs, MbI that 

can be used for HMDs, and formulates four Core Challenges (CC) of motion-based 

interaction for HMDs that need to be addressed: (CC1) boundary awareness for hand-

based interaction; (CC2) efficient hands-free head-based interface for HMDs; (CC3) 

efficient and feasible full-body interaction for general tasks with HMDs; and (CC4) 

accessible full-body interaction for applications in HMDs.  

 

Based on these Core Challenges, we further formula the following five Research 

Questions (RQ): 

RQ1 – CC1 – Chapter 5: How can visual boundary awareness techniques support mid-

air hand-based interaction? 

RQ2 – CC2 – Chapter 6: Can a circular layout achieve an efficient and usable hands-

free head-based interaction? 

RQ3 – CC3 – Chapter 7: Are directional full-body interaction feasible and efficient for 

general tasks with HMDs? 

RQ4 – CC4 – Chapter 8: Will HMDs affect users experiencing full-body interaction?  

RQ5 – CC4 – Chapter 9: Will sickness mitigation factors in other contexts work for 

full-body interaction? 

 

These Core Challenges and Research Questions are addressed in the context of 

different research studies. The first study is designed to explore visual techniques for 

boundary awareness issues for HMDs and comparing them against the non-visual 

feedback benchmark. The second study evaluates the feasibility of a novel hands-free 

head-based interaction with a circular interface for HMDs. The third study proposes a 

directional full-body interaction for general tasks with HMDs and evaluates it against 

hand-based interaction and hybrid-based (head+hand) interaction. The last challenge 

was addressed through two studies focusing on designing accessible full-body 

interactions for applications in HMDs. These two studies investigate the effect of 

tasking mode and viewing perspective on full-body motion-based interactions for 
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HMDs and compared their performance and experience against the benchmark (i.e., 

large display—50-inch 4K TV).  

 

The final chapter of this thesis provides a discussion of Core Challenges and Research 

Questions listed in Chapter 4, lists a set of design guidelines and takeaway messages, 

and future work of MbI for HMDs. 

 

Section 10.2 Have Core Challenges and Research Questions Been Addressed?  

Section 10.2.1 Challenge 1: Boundary Awareness for Hand-based Interaction 

This challenge has been addressed in Chapter 5. We introduced the idea of using visual 

methods for boundary awareness during interaction for HMDs. In that chapter, we first 

conducted a systematic formative study to identify the challenges users might face 

when interacting with HMDs without any boundary awareness information (i.e., how 

current systems work). Based on the findings, we then propose four methods as our 

visual solutions: static surfaces, dynamic surface(s), static coordinated lines, and 

dynamic coordinate line(s). To further explore whether the use of visual technique 

could make users aware of the tracked interaction area for HMDs, we conducted an 

experiment with twenty participants to evaluate these four methods against the 

benchmark (i.e., baseline condition without boundary awareness). Our results show 

that visual methods for boundary awareness can help with dynamic mid-air hand 

interactions in AR HMDs. 

 

Chapter 5 also answered RQ1 (i.e., how can visual boundary awareness techniques 

support mid-air hand-based interaction?). Visual boundary awareness methods should 

provide information on the distance between users and the boundary to support users 

in mid-air hand-based interaction. Besides, visual boundary awareness methods can be 

provided both statically and dynamically.  

 

In summary, the contributions to boundary awareness include:  

(1) The first systematic exploration of visual methods for boundary awareness in 

HMDs. 

(2) Results of a user study comparing different visual boundary awareness 

methods for interacting with virtual objects in these systems. 
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Section 10.2.2 Challenge 2: Efficient Hands-free Head-based Interface for HMDs 

This challenge has been addressed in Chapter 6, with a focus on the text entry task. In 

that chapter, we presented a case for interaction using a circular layout for HMDs that 

is dwell-free and does not require users to hold a dedicated input device for letter 

selection. We have implemented RingText, whose design is based on a circular layout 

with two concentric circles to support the case. The outer circle is subdivided into 

regions containing letters. Selection is made using a virtual cursor controlled by the 

user’s head movements—entering a letter region triggers a selection and moving back 

into the inner circle resets the selection. The design of RingText follows an iterative 

process, where we initially conduct one first study to investigate the optimal number 

of letters per region, inner circle size, and alphabet starting location. We then optimize 

its design by selecting the most suitable features from the first study and creating 

candidate regions that incorporate two suggested words to appear next to the current 

letter region (close to the cursor) using a dynamic approach. Our second study 

compares the text entry performance of RingText with four other hands-free 

techniques and the results show that RingText outperforms them. Finally, we run a 

third study lasting four consecutive days with ten participants (five novice users and 

five expert users) doing two daily sessions and the results show that RingText is quite 

efficient and yields a low error rate. 

 

The results from Chapter 6 answered RQ2 (i.e., can a circular layout achieve an 

efficient and useable hands-free head-based interaction?) that a circular layout with 

head-based interaction can be an efficient interaction for HMDs.  

 

The contributions of this chapter include:  

(1) The first example of a formal evaluation of the circular keyboard layout for 

text input in HMDs. 

(2) The first comparison of hands-free text entry mechanisms for both circular 

and QWERTY keyboard layouts in HMDs. 

(3) A case for using dynamic (rather than static) locations for recommended 

words—to our knowledge, this is the first case that shows the usefulness of 

using dynamic locations of these words. 
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(4) A demonstration of the effectiveness of RingText, a circular layout text entry 

technique that relies on head motions and uses dynamic locations for 

recommended words, through a 4-day user study. 

 

Section 10.2.3 Challenge 3: Efficient and Feasible Full-body Interaction for General 

Tasks with HMDs 

This challenge has been addressed in Chapter 7. We presented a directional full-body 

interaction for HMDs that is both hands- and device-free (i.e., DMove). To use DMove, 

a user needs to perform directional motions such as moving one foot forward or 

backward with the body also move in the direction. The design of DMove was decided 

through an experiment while we investigated the recognition accuracy of the motion 

directions of our method and the social acceptance of this type of interaction together 

with users’ comfort rating for each direction. We then conducted a second study to 

compare DMove with two other device-free motion-based approaches—hand-based 

interaction and hybrid-based (head+hand) interaction for menu selection tasks 

regarding task performance and user preferences (workload, motion sickness, user 

experience). Our results showed that DMove outperforms (1) hand-based interaction 

regarding task performance and user experience and (2) hybrid-based interaction 

regarding user experience. 

  

Results from Chapter 7 confirmed that directional full-body interaction is highly 

accepted by users and does not cause a higher sickness than other MbI. In addition, it 

outperforms hand-based interaction and is comparable to hybrid-based (head+hand) 

interaction. Overall, this answers our RQ3 (i.e., are directional full-body interaction 

feasible and efficient for general tasks with HMDs?) that directional full-body 

interaction is a feasible and efficient interaction technique for general tasks with 

HMDs. 

 

Overall, we have made the following contributions:  

(1) A motion direction recognition method that requires no additional handheld 

devices nor sensors for current HMDs. 

(2) An optimized directional motion-based interface (DMove). 

(3) An evaluation of three menu selection methods for HMDs. 
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(4) A set of guidelines for applications that use directional motion-based 

interactions.  

(5) Two applications external to menu selection and that use DMove as their 

interaction interface. 

 

Section 10.2.4 Challenge 4: Accessible Full-body Interaction for Applications in 

HMDs 

This challenge has been addressed in Chapters 8 and 9, focusing on full-body motion-

based exergames. We have addressed this challenge by (1) exploring the differences 

between performing full-body interaction for HMDs and common displays (i.e., TV) 

and (2) providing a set of design guidelines.  

 

In Chapter 8, we evaluated the effect of tasking mode (single-tasking and multi-tasking) 

on exergame with 12 participants and found that multi-tasking could lead to a worse 

performance, gameplay experience, and a higher sickness than single-tasking. In 

Chapter 9, we found that playing exergame in HMDs could lead to greater health 

benefits (i.e., exertion) and provide a much positive gameplay experience than in large 

displays. Meanwhile, we proposed and evaluated a list of full-body motion-based 

gestures that is accessible and safe for HMDs.  

 

Chapter 8 suggests that HMDs could result in higher Theta brainwave and Chapter 9 

indicates that HMDs could lead to a better game experience but also a higher sickness. 

Hence, we believe HMDs could affect users to experience full-body motion-based 

interaction differently in HMDs and common display, which answers RQ4 (i.e., will 

HMDs affect users experiencing full-body interaction). 

 

Regarding RQ5 (i.e., will sickness mitigation factors in other contexts works for full-

body motion-based interaction), we suggest factors that could reduce simulator 

sickness in other contexts may not work for full-body motion-based interaction. Our 

results show consistent results where multi-tasking leads to a higher sickness [293], 

but viewing perspective does not affect the simulator sickness [187]. 

 

In summary, we made the following contributions:  
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(1) The first investigation of display type and tasking mode in full-body motion-

based exergame on gameplay performance, experience, and physiological 

feeling. 

(2) The first investigation of display type and viewing perspective in full-body 

motion-based exergame on gameplay performance, experience, physiological 

feeling, and exertion. 

(3) A list of gestures that can be used for full-body motion-based exergame for 

HMDs. 

(4) A list of design guidelines for designing full-body motion-based exergame 

for HMDs. 

(5) Two standing full-body motion-based exergames for HMDs. 

 

Section 10.3 Design Recommendations 

Section 10.3.1 Visual Methods for Boundary Awareness 

Providing boundary awareness method by default 

During the phase where participants tried the device to get to know it, we observed 

that novice users tended to over-value the FoV of the HMD. They would ignore the 

FoV of the HMD device and assume that the interaction would be the same as what 

they would typically do during actual tasks. Therefore, visual boundary awareness 

methods should be provided for users at the beginning stage to remind them about the 

limited size of the tracked area and FoV of the device. It could be disabled when users 

think they could do without it. 

 

User-dependent  

Visual boundary awareness methods should be tuned to suit the individuals’ needs and 

predispositions. One way to do this is to let users experience all available techniques 

first and select the ones which can bring a better interaction experience. Users should 

avoid the method that could lead them to a high error rate, computer vision syndrome, 

or workload.  
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Section 10.3.2 DMove: Directional Motion-based Interaction for HMDs 

Cater to individual differences 

Based on our findings, DMove should use an individual's dataset to maintain (100% 

or close to 100%) accuracy to take into account each user's height, weight, movement 

speed, and step distance. To account for these factors and prevent poor accuracy, 

DMove for general users should be calibrated according to individual physical features 

and abilities. Besides, we predict a motion just right before a user finishes it by 

comparing the head movement speed with a pre-set constraint, which should also be 

tuned to suit the individuals.  

 

Flexibility, efficiency of use, customizability 

The comfort ratings from our study suggest that the Close level is much easier to reach, 

and it does not cause discomfort, while directions that users can see—N, NE, NW, E, 

W are much easier to perform. As such, we suggest putting frequently used 

items/functions closer to the users and avoid putting them at the directions that users 

cannot see easily to increase efficiency and usability. 

 

Not in front of strangers and public venues 

DMove should be used for indoor scenarios such as at home/work environment (or 

outdoor but when there is nobody around). In addition, an interface based on DMove 

should be used in front of the people users are familiar with instead of strangers. 

 

Provide feedback and keep consistency with other interfaces 

Although DMove can be eyes-free, we suggest that the menu should always appear as 

a simple non-obtrusive visual interface on the HMD on-demand, similar to a context 

menu, whenever users want to use it and so that they do not have to memorize the 

items of the menu. Similar to what we have done in this research, we suggest that the 

interface shows the user’s movement location—e.g., a simple visual cue like a dot can 

be used to indicate to which direction they are moving. Visual and/or auditory 

feedback can be included to tell them that a selection has been successfully made. 
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Section 10.3.3 Full-body Motion-based Interaction 

Avoid multi-tasking situations 

Multi-tasking could not only lead to worse performance but also bad experience (e.g., 

simulator sickness). Hence, when performing full-body motion for HMDs, designers 

should avoid situations where players need to use their hands and feet to interact with 

multiple virtual objects separately. 

 

Consideration should be taken with respect to gestures 

Game designers should not design and include complex gestures (e.g., wheel—turning 

a wheel motion). In addition, designers should avoid designing gestures such as walk-

in-place because players might need to move around, which could lead to tracking 

issues and potentially dangerous situations.  

 

Warning signs should be provided for standing exergames 

We observed that players tend to move around during gameplay, which could lead to 

potentially dangerous situations (e.g., hitting objects that are in the environment and 

going out of the safe tracking area) or decrease the recognition performance of the 

sensors (e.g., tracking may not work when they are too close to or far from the sensors). 

Therefore, we suggest providing warning signs for standing exergames if users have 

left (or are about to leave) the calibration position and are too far to keep them 

protected.  

 

Section 10.4 Summary of Takeaways 

Below we summarize the takeaway messages for designers and researchers of the MbI 

for HMDs: 

• For mid-air hand-based interaction, visual boundary awareness methods 

should be provided by default, and users should have the option to select their 

desired method. 

• Circular layouts with go-and-hit selection style could form an efficient hands-

free head-based input for HMDs. 

• Directional full-body motion-based interaction is a feasible and efficient 

interaction technique for HMDs, but its usage should be limited when users 

are in public venues or front of strangers. 
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• Visual support should be provided to directional full-body interfaces. 

• Frequently used functions in directional full-body interaction should be 

mapped to the directions that users can easily see. 

• Extra consideration should be taken when design full-body interaction, 

especially for HMDs, because (1) factors that could help reduce simulator 

sickness in other contexts may not work for full-body interaction, (2) users 

could perceive differently in HMDs regarding game experience, simulator 

sickness, and physiological feeling. 

• Multi-tasking should be avoided in full-body interaction if multi-tasking 

training is not a must because multi-tasking could be more challenging to do 

and can lead to worse performance and higher-level simulator sickness. 

• For standing full-body interaction where external motion-tracking devices are 

used, warning signs should be provided if users leave their position; 

otherwise, this will affect the gameplay. 

 

Section 10.5 Conclusion 

In conclusion, this dissertation has investigated the design of motion-based interaction 

(MbI) for head-mounted displays (HMDs). It has first identified four challenges in the 

context of MbI for HMDs (boundary awareness for mid-air hand-based interaction, 

efficient hands-free head-based interaction, feasible and efficient full-body interaction 

for general tasks in HMDs, and accessible full-body interaction for applications in 

HMDs). Then, we have presented solutions to each challenge: (1) visual boundary 

awareness techniques for hand-based interaction, (2) circular interface for hands-free 

head-based input, (3) directional full-body interaction with directions mapped to 

functions/items for general tasks in HMDs, and (4) several recommendations (e.g., 

gestures and design guidelines) for full-body interaction applications. At last, we have 

concluded this dissertation with a set of design recommendations and takeaway 

messages for MbI for HMDs. 

 

All in all, this thesis can act as a starting point for designers who are interested in 

designing MbI for HMDs. With the rapid advancements of motion-tracking devices 

and algorithms, MbI can play a significant role in HMDs and are capable of much 

more than they are currently used. 
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Section 10.6 Future Work 

Several features could further enhance the performance and experience of MbI for 

HMDs but that could not be implemented due to the time constraint. 

 

We only tested boundary awareness with one-handed gestures and translation tasks 

[32]. Future work can explore whether our findings will also be applicable to two-

handed gesture-based interactions where large motions are required and other tasks in 

3D environments (e.g., for 3D modeling [51] where the interaction would be more 

complicated).  In addition, several values used in our experiment are pre-defined fixed 

values due to the lack of related prior work. Future work can (1) implement a dynamic 

color changing scheme for the surface(s) to suit the background [78,79]; (2) focus on 

exploring the most suitable values for the opacity of the color and the distance for 

activating the dynamic visual cues for boundary awareness. 

 

RingText and other similar circular layouts could also be strengthened in two ways. 

(1) Currently, RingText only contains 28 items in one level. A technique that could 

switch the item layer to enrich the interaction is needed. One possible solution that has 

been tested initially is to use the forward head movement. However, future research is 

needed to determine how this approach will work. (2) We have not investigated the 

optimal size of the trigger area for RingText. Future work is needed to investigate the 

optimal size(s) of the trigger area to let users select letters quickly without incurring 

many mistakes. One possible solution is to apply a static decoding method [97] to 

handle the input noise further. This is similar to a method to mitigate the “fat finger” 

problem in smartphones [268], where users with large fingers may mistakenly select 

unintended buttons. In our case, it may be possible to use this model to help us 

understand which letters the user is aiming to type. 

 

There are several paths to further strengthen DMove. (1) The levels in one direction 

can be increased to allow for more items. This may be useful because, although the 

number of items in the radial menu is large enough to meet the needs of applications 

in AR systems, there can be cases in which a large number of items are needed. As 

such, having more levels (i.e., used to hold items/functions) will allow more items to 

be included. (2) It is possible to optimize the layout further—e.g., finding the most 
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suitable distance for each level in one direction instead of the pre-defined values (i.e., 

30cm) that we used in our study. (3) Since we want DMove to be accessed on-demand, 

future work can also focus on exploring ways to separate DMove from ordinary 

moving. We have done some preliminary explorations and one way that is possible for 

all commercial HMDs, for instance, is to use the third dimension (Y-axis) where users 

can perform an on tiptoe (up/down) action to wake up the DMove. This way, DMove 

can also be suitable for users with arm/hand disabilities as it does not require hands or 

any input device. 

 

Our investigation mainly focuses on healthy young adults. Future work could focus on 

investigating the motion-based interaction with different target user groups (i.e., 

middle-aged adults, older adults, disabled users) since different population groups 

could face unique challenges. For instance, age-related declines are unique challenges 

for middle-age adults and older adults, previous studies show that reduction include, 

but not limited to, cognitive abilities [72,266], motor skills [133], muscle strength 

[35,141]). While physically disabled users could not use walking as an interaction 

technique, instead, they could use the wheelchair. 
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Appendix 1 – NASA-TLX Questionnaire 

1. Mental: How mentally demanding was the task (thinking, remembering, 

looking, searching, etc). Rate from 1 (low workload) to 21 (high workload). 

2. Physical: How physically demanding was the task (e.g. turning, controlling, 

activating, etc.)? Rate from 1 (low workload) to 21 (high workload). 

3. Temporal: How hurried or rushed was the pace of the task? Rate from 1 (low 

workload) to 21 (high workload). 

4. Effort: How hard did you have to work to accomplish your level of 

performance? Rate from 1 (low workload) to 21 (high workload). 

5. Frustration: How insecure, discourage, irritated, stressed, and annoyed were 

you? Rate from 1 (low workload) to 21 (high workload).  

6. Performance: How successful were you in accomplishing what you were 

asked to do? Rate from 1 (superb) to 21 (Failure).  

7. From these 2 which caused the greatest workload 

a. Mental 

b. Physical 

8. From these 2 which caused the greatest workload 

a. Mental 

b. Temporal 

9. From these 2 which caused the greatest workload 

a. Mental 

b. Performance 

10. From these 2 which caused the greatest workload 

a. Mental 

b. Effort 

11. From these 2 which caused the greatest workload 

a. Mental 

b. Frustration 

12. From these 2 which caused the greatest workload 

a. Physical 

b. Temporal 
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13. From these 2 which caused the greatest workload 

a. Physical 

b. Performance 

14. From these 2 which caused the greatest workload 

a. Physical 

b. Effort 

15. From these 2 which caused the greatest workload 

a. Physical 

b. Frustration 

16. From these 2 which caused the greatest workload 

a. Temporal 

b. Performance 

17. From these 2 which caused the greatest workload 

a. Temporal 

b. Effort 

18. From these 2 which caused the greatest workload 

a. Temporal 

b. Frustration 

19. From these 2 which caused the greatest workload 

a. Performance 

b. Effort 

20. From these 2 which caused the greatest workload 

a. Performance 

b. Frustration 

21. From these 2 which caused the greatest workload 

a. Effort 

b. Frustration  
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Appendix 2 – Slater-Usoh-Steed Questionnaire 

Please indicate how you felt during the condition for each of the items. Rate from 1 

(not at all) to 7 (very much). 

1. Please rate your sense of being in the virtual environment.  

2. To what extent were there times during the experience when the virtual 

environment was the reality for you?  

3. Do you think of the virtual environment more as images that you saw or more 

as somewhere that you visited?  

4. Which was the strongest on the whole, your sense of being in the virtual 

environment or of being elsewhere?  

5. How similar in terms of the structure of the memory is this to the structure of 

the memory of other places you have been today? By ‘structure of the 

memory’ consider things like the extent to which you have a visual memory 

of the virtual environment, whether that memory is in color, the extent to 

which the memory seems vivid or realistic, its size, location in your 

imagination, the extent to which it is panoramic in your imagination, and 

other such structural elements.  

6. Did you often think to yourself that you were actually in the virtual 

environment?  
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Appendix 3 – User Experience Questionnaire 

Please indicate how you felt during the condition for each of the items.  

1. Annoying/Enjoyable. Rate from 1 (annoying) to 7 (enjoyable). 

2. Not understandable/Understandable. Rate from 1 (not understandable) to 7 

(understandable). 

3. Dull/Creative. Rate from 1 (dull) to 7 (creative). 

4. Difficult to learn/Easy to learn. Rate from 1 (difficult to learn) to 7 (easy to 

learn). 

5. Inferior/Valuable. Rate from 1 (inferior) to 7 (valuable). 

6. Boring/Exciting. Rate from 1 (boring) to 7 (exciting). 

7. Not interesting/Interesting. Rate from 1 (not interesting) to 7 (interesting). 

8. unpredictable/Predictable. Rate from 1 (unpredictable) to 7 (predictable). 

9. Slow/Fast. Rate from 1 (slow) to 7 (fast). 

10. Conventional/Inventive. Rate from 1 (conventional) to 7 (inventive). 

11. Obstructive/Supportive. Rate from 1 (obstructive) to 7 (supportive). 

12. Bad/Good. Rate from 1 (bad) to 7 (good). 

13. Complicated/Easy. Rate from 1 (complicated) to 7 (easy). 

14. Unlikable/Pleasing. Rate from 1 (unlikable) to 7 (pleasing). 

15. Usual/Leading edge. Rate from 1 (usual) to 7 (leading edge). 

16. Unpleasant/Pleasant. Rate from 1 (unpleasant) to 7 (pleasant). 

17. Not secure/Secure. Rate from 1 (not secure) to 7 (secure). 

18. Motivating/Demotivating. Rate from 1 (motivating) to 7 (demotivating). 

19. Does not meet expectations/Meet expectations. Rate from 1 (does not meet 

expectations) to 7 (meet expectations). 

20. Inefficient/Efficient. Rate from 1 (inefficient) to 7 (efficient). 

21. confusing/Clear. Rate from 1 (confusing) to 7 (clear). 

22. Impractical/Practical. Rate from 1 (impractical) to 7 (practical). 

23. Cluttered/Organized. Rate from 1 (cluttered) to 7 (organized). 

24. Unattractive/Attractive. Rate from 1 (unattractive) to 7 (attractive). 

25. Unfriendly/Friendly. Rate from 1 (unfriendly) to 7 (friendly). 

26. Conservative/Innovative. Rate from 1 (conservative) to 7 (innovative). 
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Appendix 4 – Motion Sickness Assessment Questionnaire 

Please indicate how you felt during the condition for each of the items. Rate from 1 

(not at all) to 9 (severely). 

1. I felt sick to my stomach.  

2. I felt faint-like.  

3. I felt annoyed/irritated.  

4. I felt sweaty.  

5. I felt queasy.  

6. I felt lightheaded.  

7. I felt drowsy.  

8. I felt clammy/cold sweat.  

9. I felt disoriented.  

10. I felt tired/fatigued.  

11. I felt nauseated.  

12. I felt hot/warm.  

13. I felt dizzy.  

14. I felt like I was spinning.  

15. I felt as if I may vomit.  

16. I felt uneasy.  
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Appendix 5 – System Usability Scale 

Please indicate how you felt during the condition for each of the items. Rate from 1 

(strongly disagree) to 5 (strongly agree). 

1. I think that I would like to use this system frequently.  

2. I found the system unnecessarily complex.  

3. I thought the system was easy to use.  

4. I think that I would need the support of a technical person to be able to use 

this system.  

5. I found the various functions in this system were well integrated.  

6. I thought there was too much inconsistency in this system.  

7. I would imagine that most people would learn to use this system very 

quickly.  

8. I found the system very cumbersome to use.  

9. I felt very confident using the system.  

10. I needed to learn a lot of things before I could get going with this system.  
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Appendix 6 – Borg RPE CR10 

1. Please select one option from the list that can describe your tiredness during 

the experiment: 

a. 0 – Nothing at all 

b. 0.5 – Very, very slight (just noticeable) 

c. 1 – Very slight 

d. 2 – Slight  

e. 3 – Moderate  

f. 4 – Somewhat severe 

g. 5 – Severe  

h. 6  

i. 7 – Very severe 

j. 8  

k. 9 – Very, very severe (almost maximal) 

l. 10 – Maximal  
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Appendix 7 – Computer Vision Syndrome Questionnaire 

(0-3) 

Frequency, intensity 

1. Frequency of burning occurrence 

a. Never  

b. Occasionally 

c. Often 

d. Very often 

2. Intensity of burning 

a. Moderate 

b. Intense 

c. Very intense 

3. Frequency of itching occurrence 

a. Never  

b. Occasionally 

c. Often 

d. Very often 

4. Intensity of itching 

a. Moderate 

b. Intense 

c. Very intense 

5. Frequency of feeling of a foreign body occurrence 

a. Never  

b. Occasionally 

c. Often 

d. Very often 

6. Intensity of feeling of a foreign body 

a. Moderate 

b. Intense 

c. Very intense 

7. Frequency of tearing occurrence 

a. Never  

b. Occasionally 
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c. Often 

d. Very often 

8. Intensity of tearing 

a. Moderate 

b. Intense 

c. Very intense 

9. Frequency of excessive blinking occurrence 

a. Never  

b. Occasionally 

c. Often 

d. Very often 

10. Intensity of excessive blinking 

a. Moderate 

b. Intense 

c. Very intense 

11. Frequency of eye redness occurrence 

a. Never  

b. Occasionally 

c. Often 

d. Very often 

12. Intensity of eye redness 

a. Moderate 

b. Intense 

c. Very intense 

13. Frequency of eye pain occurrence 

a. Never  

b. Occasionally 

c. Often 

d. Very often 

14. Intensity of eye pain 

a. Moderate 

b. Intense 

c. Very intense 

15. Frequency of heavy eyelids occurrence 
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a. Never  

b. Occasionally 

c. Often 

d. Very often 

16. Intensity of heavy eyelids 

a. Moderate 

b. Intense 

c. Very intense 

17. Frequency of dryness occurrence 

a. Never  

b. Occasionally 

c. Often 

d. Very often 

18. Intensity of dryness 

a. Moderate 

b. Intense 

c. Very intense 

19. Frequency of blurred vision occurrence 

a. Never  

b. Occasionally 

c. Often 

d. Very often 

20. Intensity of blurred vision 

a. Moderate 

b. Intense 

c. Very intense 

21. Frequency of double vision occurrence 

a. Never  

b. Occasionally 

c. Often 

d. Very often 

22. Intensity of double vision 

a. Moderate 

b. Intense 
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c. Very intense 

23. Frequency of difficulty focusing for near vision occurrence 

a. Never  

b. Occasionally 

c. Often 

d. Very often 

24. Intensity of difficulty focusing for near vision 

a. Moderate 

b. Intense 

c. Very intense 

25. Frequency of increased sensitivity to light occurrence 

a. Never  

b. Occasionally 

c. Often 

d. Very often 

26. Intensity of increased sensitivity to light 

a. Moderate 

b. Intense 

c. Very intense 

27. Frequency of colored halos around objects occurrence 

a. Never  

b. Occasionally 

c. Often 

d. Very often 

28. Intensity of colored halos around objects 

a. Moderate 

b. Intense 

c. Very intense 

29. Frequency of feeling that sight is worsening occurrence 

a. Never  

b. Occasionally 

c. Often 

d. Very often 

30. Intensity of feeling that sight is worsening 
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a. Moderate 

b. Intense 

c. Very intense 

31. Frequency of headache occurrence 

a. Never  

b. Occasionally 

c. Often 

d. Very often 

32. Intensity of headache 

a. Moderate 

b. Intense 

c. Very intense  
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Appendix 8 – Simulator Sickness Questionnaire 

Please indicate how you felt during the condition for each of the items. Rate from 0 

(none) to 3 (severe). 

1. General discomfort 

2. Fatigue 

3. Headache 

4. Eye strain 

5. Difficulty focusing 

6. Salivation increasing 

7. Sweating 

8. Nausea 

9. Difficulty concentrating 

10. Fullness of the Head 

11. Blurred vision 

12. Dizziness with eyes open 

13. Dizziness with eyes closed 

14. Vertigo (vertigo is experienced as loss of orientation with respect to vertical 

upright) 

15. Stomach awareness (stomach awareness is usually used to indicate a feeling 

of discomfort which is just short of nausea) 

16. Burping 
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Appendix 9 – Game Experience Questionnaire 

Please indicate how you felt while playing the game for each of the items. Rate from 

1 (not at all) to 5 (extremely). 

1. I felt content 

2. I felt skilful 

3. I was interested in the game's story 

4. I thought it was fun 

5. I was fully occupied with the game 

6. I felt happy 

7. It gave me a bad mood 

8. I thought about other things 

9. I found it tiresome 

10. I felt competent 

11. I thought it was hard 

12. It was aesthetically pleasing 

13. I forgot everything around me 

14. I felt good 

15. I was good at it 

16. I felt bored 

17. I felt successful 

18. I felt imaginative 

19. I felt that I could explore things 

20. I enjoyed it 

21. I was fast at reaching the game's targets 

22. I felt annoyed 

23. I felt pressured 

24. I felt irritable 

25. I lost track of time 

26. I felt challenged 

27. I found it impressive 

28. I was deeply concentrated in the game 

29. I felt frustrated 

30. It felt like a rich experience 



Appendix 10 – Borg RPE CR6-20  

 

200 

 

31. I lost connection with the outside world 

32. I felt time pressure 

33. I had to put a lot of effort into it 

Appendix 10 – Borg RPE CR6-20 

1. Please select one option from the list that can describe your tiredness during 

the experiment: 

a. 6 – Non Exertion (Little to no movement, very relaxed 

b. 7 – Extremely Light (Able to maintain pace) 

c. 8  

d. 9 – Very Light (Comfortable and breathing harder) 

e. 10  

f. 11 – Light (Minimal sweating, can talk easily) 

g. 12  

h. 13 – Somewhat Hard (Slight breathlessness, can talk) 

i. 14 – (Increased sweating, still able to hold conversation but with 

difficulty) 

j. 15 – Hard (Sweating, able to push and still maintain proper form) 

k. 16  

l. 17 – Very Hard (Can keep a fast pace for a short time period) 

m. 18  

n. 19 – Extremely Hard (Difficulty breathing, near muscle exhaustion) 

o. 20 – Maximally Hard (STOP exercising, total exhaustion) 
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Appendix 11 – Intrinsic Motivation Inventory 

For each of the following statements, please indicate how true it is for you, rating from 

1 (not at all) to 7 (very true): 

1. I enjoyed doing this activity very much 

2. This activity was fun to do 

3. I thought this was a boring activity 

4. This activity did not hold my attention at all 

5. I would describe this activity as very interesting 

6. I thought this activity was quite enjoyable 

7. While I was doing this activity, I was thinking about how much I enjoyed it 

8. I think I am pretty good at this activity 

9. I think I did pretty well at this activity, compared to other students 

10. After working at this activity for awhile, I felt pretty competent 

11. I am satisfied with my performance at this task 

12. I was pretty skilled at this activity 

13. This was an activity that I couldn’t do very well 

14. I did not feel nervous at all while doing this 

15. I felt very tense while doing this activity 

16. I was very relaxed in doing these 

17. I was anxious while working on this task 

18. I felt pressured while doing these 

19. I believe this activity could be of some value to me 

20. I think that doing this activity is useful for health 

21. I think this is important to do because it can improve my health 

22. I would be willing to do this again because it has some value to me 

23. I think doing this activity could help me to build up my health 

24. I believe doing this activity could be beneficial to me 

25. I think this is an important activity 
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Appendix 12 – Physical Activity Readiness Questionnaire 

1. Has your doctor ever said that you have a heart condition and that you should 

only do physical activity recommended by a doctor? 

2. Do you feel pain in your chest when you do physical activity? 

3. In the past month, have you had chest pain when you were not doing physical 

activity? 

4. Do you lose your balance because of dizziness or do you ever lose 

consciousness? 

5. Do you have a bone or joint problem that could be made worse by a change 

in your physical activity? 

6. Is your doctor currently prescribing drugs (for example, water pills) for your 

blood pressure or heart condition? 

7. Do you know of any other reason why you should not do physical activity? 
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Appendix 13 – Questionnaire Used in Chapter 3  

Pre-experiment questionnaire: 

1. Participant Number (given by researcher) 

2. Your age  

3. Gender  

a. Female 

b. Male 

c. Prefer not to say 

4. How familiar are you with the QWERTY keyboard? Rating from 1 (no skill) 

to 5 (expert). 

5. How good are you in remembering short English sentences? Rating from 1 

(no skill) to 5 (expert). 

6. How often do you type long texts? Rating from 1 (never) to 5 (always) 

7. Have you ever experienced AR device (if yes in question 7)? 

a. Yes 

b. No 

8. How often you use AR device? 

a. Daily 

b. Weekly 

c. Monthly 

d. Yearly 

 

Post-condition questionnaire: 

1. NASA-TLX questionnaire 

2. Motion sickness assessment questionnaire 

3. Slater usoh steed questionnaire 

4. User experience questionnaire 

5. Any comments for the technique you just tried? Feel free to write anything. 

 

Post-experiment questionnaire: 

1. Feel free to write anything.  
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Appendix 14 – Questionnaire Used in Chapter 5  

Pre-experiment questionnaire: 

1. Participant Number 

2. Age 

3. Gender 

a. Female 

b. Male 

c. Prefer not to say 

4. Have you ever experienced AR device? 

a. Yes 

b. No 

5. How often you use AR device (if yes in question 4)? 

a. Daily. 

b. Weekly 

c. Monthly 

d. Yearly 

6. Have you ever experienced Magic Leap (if yes in question 4)? 

a. Yes 

b. No 

7. Strong hand. 

a. Left-Handed 

b. Right-Handed 

 

Post-condition questionnaire: 

1. System usability scale 

2. NASA-TLX questionnaire 

3. User experience questionnaire 

4. Borg CR10 

5. Computer vision syndrome questionnaire 

6. Any comments for the technique you just tried? Feel free to write anything. 

 

Post-experiment questionnaire: 
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1. Please rank the 5 techniques (Static surface, dynamic surface, static 

coordinate line, dynamic coordinate line, benchmark). 1 for the most 

preferred option and 5 for the least preferred option. 

2. Feel free to write anything. 
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Appendix 15 – Questionnaires Used in Chapter 6 

Study 1 

Pre-experiment questionnaire: 

1. Participant Number (given by researcher) 

2. Your age  

3. Gender  

a. Female 

b. Male 

c. Prefer not to say 

4. How familiar are you with the QWERTY keyboard? Rating from 1 (no skill) 

to 5 (expert). 

5. How good are you in remembering short English sentences? Rating from 1 

(no skill) to 5 (expert). 

6. How often do you type long texts? Rating from 1 (never) to 5 (always) 

7. Have you ever experienced VR device? 

a. Yes 

b. No 

8. How often you use VR device (if yes in question 7)? 

a. Daily 

b. Weekly 

c. Monthly 

d. Yearly 

 

Post-condition questionnaire: 

1. Rate your experience of the technique you just experienced. From 1 (novice) 

to 5 (expert) 

2. NASA-TLX questionnaire 

3. Simulator sickness questionnaire 

 

Post-experiment questionnaire: 

1. Please rank the 3 alphabet starting position (top, left, right). 1 for the most 

preferred option and 3 for the least preferred option. 
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2. Please rank the 4 alphabet starting position (1 letter per region with small 

inner circle, 1 letter per region with large inner circle, 2 letters per region 

with small inner circle, 2 letters per region with large inner circle). 1 for the 

most preferred option and 4 for the least preferred option. 

3. Feel free to write anything. 

 

Study 2 

Pre-experiment questionnaire: 

1. Participant Number (given by researcher) 

2. Your age  

3. Gender  

a. Female 

b. Male 

c. Prefer not to say 

4. How familiar are you with the QWERTY keyboard? Rating from 1 (no skill) 

to 5 (expert). 

5. How good are you in remembering short English sentences? Rating from 1 

(no skill) to 5 (expert). 

6. How often do you type long texts? Rating from 1 (never) to 5 (always) 

7. Have you ever experienced VR device? 

a. Yes 

b. No 

8. How often you use VR device (if yes in question 7)? 

a. Daily 

b. Weekly 

c. Monthly 

d. Yearly 

 

Post-condition questionnaire: 

1. Any comments for the technique you just tried? Feel free to write anything. 

 

Post-experiment questionnaire: 

1. Feel free to write anything. 
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Study 3 

Pre-experiment questionnaire: 

1. Participant Number (given by researcher) 

2. Your age  

3. Gender  

a. Female 

b. Male 

c. Prefer not to say 

4. How familiar are you with the QWERTY keyboard? Rating from 1 (no skill) 

to 5 (expert). 

5. How good are you in remembering short English sentences? Rating from 1 

(no skill) to 5 (expert). 

6. How often do you type long texts? Rating from 1 (never) to 5 (always) 

7. Have you ever experienced VR device? 

a. Yes 

b. No 

8. How often you use VR device (if yes in question 7)? 

a. Daily 

b. Weekly 

c. Monthly 

d. Yearly 
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Appendix 16 – Questionnaire Used in Chapter 7 

Study 1 

Pre-experiment questionnaire: 

1. Participant Number 

2. Age 

3. Gender 

a. Female 

b. Male 

c. Prefer not to say 

4. Have you ever experienced AR device? 

a. Yes 

b. No 

5. How often you use AR device (if yes in question 4)? 

a. Daily. 

b. Weekly 

c. Monthly 

d. Yearly 

6. Strong hand. 

a. Left-Handed 

b. Right-Handed 

7. Rate your balance skill in real-life. Rate from 1 (very bad) to 7 (strong) 

 

Post-condition questionnaire: 

Physical comfort for 8-direction model 

1. Comfort score on North direction. Rate from 1 (extremely easy) to 5 

(extremely hard).  

2. Comfort score on North-East direction. Rate from 1 (extremely easy) to 5 

(extremely hard). 

3. Comfort score on East direction. Rate from 1 (extremely easy) to 5 

(extremely hard). 

4. Comfort score on South-East direction. Rate from 1 (extremely easy) to 5 

(extremely hard). 



Appendix 16 – Questionnaire Used in Chapter 7  

 

210 

 

5. Comfort score on South direction. Rate from 1 (extremely easy) to 5 

(extremely hard). 

6. Comfort score on South-West direction. Rate from 1 (extremely easy) to 5 

(extremely hard). 

7. Comfort score on West direction. Rate from 1 (extremely easy) to 5 

(extremely hard). 

8. Comfort score on North-West direction. Rate from 1 (extremely easy) to 5 

(extremely hard). 

Mental comfort for 8-direction model 

1. Comfort score on North direction. Rate from 1 (extremely easy) to 5 

(extremely hard).  

2. Comfort score on North-East direction. Rate from 1 (extremely easy) to 5 

(extremely hard). 

3. Comfort score on East direction. Rate from 1 (extremely easy) to 5 

(extremely hard). 

4. Comfort score on South-East direction. Rate from 1 (extremely easy) to 5 

(extremely hard). 

5. Comfort score on South direction. Rate from 1 (extremely easy) to 5 

(extremely hard). 

6. Comfort score on South-West direction. Rate from 1 (extremely easy) to 5 

(extremely hard). 

7. Comfort score on West direction. Rate from 1 (extremely easy) to 5 

(extremely hard). 

8. Comfort score on North-West direction. Rate from 1 (extremely easy) to 5 

(extremely hard). 

 

Physical comfort 16-directional model 

1. Comfort score on North direction close. Rate from 1 (extremely easy) to 5 

(extremely hard). 

2. Comfort score on North direction far. Rate from 1 (extremely easy) to 5 

(extremely hard). 

3. Comfort score on North-East direction close. Rate from 1 (extremely easy) to 

5 (extremely hard). 
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4. Comfort score on North-East direction far. Rate from 1 (extremely easy) to 5 

(extremely hard). 

5. Comfort score on East direction close. Rate from 1 (extremely easy) to 5 

(extremely hard). 

6. Comfort score on East direction far. Rate from 1 (extremely easy) to 5 

(extremely hard). 

7. Comfort score on South-East direction close. Rate from 1 (extremely easy) to 

5 (extremely hard). 

8. Comfort score on South-East direction far. Rate from 1 (extremely easy) to 5 

(extremely hard). 

9. Comfort score on South direction close. Rate from 1 (extremely easy) to 5 

(extremely hard). 

10. Comfort score on South direction far. Rate from 1 (extremely easy) to 5 

(extremely hard). 

11. Comfort score on South-West direction close. Rate from 1 (extremely easy) 

to 5 (extremely hard). 

12. Comfort score on South-West direction far. Rate from 1 (extremely easy) to 

5 (extremely hard). 

13. Comfort score on West direction close. Rate from 1 (extremely easy) to 5 

(extremely hard). 

14. Comfort score on West direction far. Rate from 1 (extremely easy) to 5 

(extremely hard). 

15. Comfort score on North-West direction close. Rate from 1 (extremely easy) 

to 5 (extremely hard). 

16. Comfort score on North-West direction far. Rate from 1 (extremely easy) to 

5 (extremely hard). 

 

Mental comfort 16-directional model 

1. Comfort score on North direction close. Rate from 1 (extremely easy) to 5 

(extremely hard). 

2. Comfort score on North direction far. Rate from 1 (extremely easy) to 5 

(extremely hard). 

3. Comfort score on North-East direction close. Rate from 1 (extremely easy) to 

5 (extremely hard). 

4. Comfort score on North-East direction far. Rate from 1 (extremely easy) to 5 

(extremely hard). 



Appendix 16 – Questionnaire Used in Chapter 7  

 

212 

 

5. Comfort score on East direction close. Rate from 1 (extremely easy) to 5 

(extremely hard). 

6. Comfort score on East direction far. Rate from 1 (extremely easy) to 5 

(extremely hard). 

7. Comfort score on South-East direction close. Rate from 1 (extremely easy) to 

5 (extremely hard). 

8. Comfort score on South-East direction far. Rate from 1 (extremely easy) to 5 

(extremely hard). 

9. Comfort score on South direction close. Rate from 1 (extremely easy) to 5 

(extremely hard). 

10. Comfort score on South direction far. Rate from 1 (extremely easy) to 5 

(extremely hard). 

11. Comfort score on South-West direction close. Rate from 1 (extremely easy) 

to 5 (extremely hard). 

12. Comfort score on South-West direction far. Rate from 1 (extremely easy) to 

5 (extremely hard). 

13. Comfort score on West direction close. Rate from 1 (extremely easy) to 5 

(extremely hard). 

14. Comfort score on West direction far. Rate from 1 (extremely easy) to 5 

(extremely hard). 

15. Comfort score on North-West direction close. Rate from 1 (extremely easy) 

to 5 (extremely hard). 

16. Comfort score on North-West direction far. Rate from 1 (extremely easy) to 

5 (extremely hard). 

 

Post-experiment questionnaire: 

Social Acceptance 

1. On a scale from 1 (I hated it, it felt terribly awkward) to 6 (I enjoyed it, it felt 

comfortable), what was your overall impression/emotion during the task. 

2. Imagine that this motion direction gestures can be used to control a menu or 

to play dance game. Now, in front of whom do you think you would feel 

comfortable using such gestures? Select one or more items from the list 

below. 

a. I would not feel comfortable using them even when alone 

b. when alone 

c. in front of my partner 
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d. in front of friends 

e. in front of family 

f. in front of colleagues 

g. in front of strangers 

3. Now, in which locations do you think you would feel comfortable using 

such gestures? select one or more items from the list below.  

a. I would not feel comfortable using them no matter where I am 

b. at home 

c. on the sidewalk 

d. in a pub, cafe, or restaurant 

e. in a shop 

f. in a museum 

g. as a passenger on a bus or train 

h. at my workplace 

 

Study 2 

Pre-experiment questionnaire: 

1. Participant Number 

2. Age 

3. Gender 

a. Female 

b. Male 

c. Prefer not to say 

4. Have you ever experienced AR device? 

a. Yes 

b. No 

5. How often you use AR device (if yes in question 4)? 

a. Daily. 

b. Weekly 

c. Monthly 

d. Yearly 
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Post-condition questionnaire: 

1. NASA-TLX questionnaire 

2. User experience questionnaire 

3. Motion sickness assessment questionnaire 

4. Any comments for the technique you just tried? Feel free to write anything. 

 

Post-experiment questionnaire: 

1. Feel free to write anything. 
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Appendix 17 – Questionnaire Used in Chapter 8 

Pre-experiment questionnaire: 

1. Participant Number (given by researcher) 

2. Your age  

3. Gender  

a. Female 

b. Male 

c. Prefer not to say 

4. Have you ever experienced VR device? 

a. Yes 

b. No 

5. How often you use VR device (if yes in question 4)? 

a. Daily 

b. Weekly 

c. Monthly 

d. Yearly 

 

Post-condition questionnaire: 

1. Simulator sickness questionnaire 

2. Game experience questionnaire 

3. Any comments for the technique you just tried? Feel free to write anything. 

 

Post-experiment questionnaire: 

1. Overall, what did you think about the game?  

2. What did you like about the game?  

3. What did not you like about the game?  

4. Was there anything more difficult than you expected in the game? 

5. Was there anything more confusing than you expected in the game?  
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Appendix 18 – Questionnaire Used in Chapter 9 

Study 1 

Pre-experiment questionnaire: 

1. Participant Number (given by researcher) 

2. Your age  

3. Gender  

a. Female 

b. Male 

c. Prefer not to say 

4. Have you ever experienced VR device (if the user belongs to VR group)? 

a. Yes 

b. No 

5. How often you use VR device (if yes in question 4)? 

a. Daily 

b. Weekly 

c. Monthly 

d. Yearly 

 

Post-experiment questionnaire: 

1. NASA-TLX questionnaire 

2. I like performing Psi. Rating from 1 (strongly disagree) to 7 (strongly agree). 

3. I like performing Squat. Rating from 1 (strongly disagree) to 7 (strongly 

agree). 

4. I like performing Kick. Rating from 1 (strongly disagree) to 7 (strongly 

agree). 

5. I like performing Walk. Rating from 1 (strongly disagree) to 7 (strongly 

agree). 

6. I like performing Wheel. Rating from 1 (strongly disagree) to 7 (strongly 

agree). 

7. I like performing Zoom. Rating from 1 (strongly disagree) to 7 (strongly 

agree). 

8. I like performing Squat+Psi. Rating from 1 (strongly disagree) to 7 (strongly 

agree). 
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9. I like performing Squat+Wheel. Rating from 1 (strongly disagree) to 7 

(strongly agree). 

10. I like performing Kick+Zoom. Rating from 1 (strongly disagree) to 7 

(strongly agree). 

11. I like performing Kick+Wheel. Rating from 1 (strongly disagree) to 7 

(strongly agree). 

12. I like performing Walk+Psi. Rating from 1 (strongly disagree) to 7 (strongly 

agree). 

13. I like performing Walk+Zoom. Rating from 1 (strongly disagree) to 7 

(strongly agree). 

 

Study 2 

Pre-experiment questionnaire: 

1. Participant Number (given by researcher) 

2. Your age  

3. Gender  

a. Female 

b. Male 

c. Prefer not to say 

4. Have you ever experienced VR device? 

a. Yes 

b. No 

5. How often you use VR device (if yes in question 4)? 

a. Daily 

b. Weekly 

c. Monthly 

d. Yearly 

6. Have you played videogames before? 

a. Yes 

b. No 

7. How often you play videogames (if yes in question 6)? 

a. Daily 

b. Weekly 
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c. Monthly 

d. Yearly 

 

Post-condition questionnaire: 

1. Fill in average heart rate (by experimenter) 

2. Fill in max heart rate (by experimenter) 

3. Fill in calories burned (by experimenter) 

4. Simulator sickness questionnaire 

5. Game experience questionnaire 

6. Borg RPE CR6-20 

7. Any comments for the technique you just tried? Feel free to write anything. 

 

Post-experiment questionnaire: 

1. Please rank the 4 versions (VR-1PP, VR-3PP, LD-1PP, LD-3PP). 1 for the 

most preferred option and 4 for the least preferred option. 

2. Overall, what did you think about the game?  

3. What did you like about the game?  

4. What did not you like about the game?  

5. Was there anything more difficult than you expected in the game? 

6. Was there anything more confusing than you expected in the game? 

 


