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Abstract

Accurate asymptotic solutions are presented for axisymmetric defor-
mation of thin layers constrained by either two rigid plates or two rigid
spheres. Those solutions are developed using Saint-Venant’s principle
and the layer thinness as the only assumptions. The solutions are
valid in the entire range of Poisson’s ratios, and allow one to distin-
guish among compressible, nearly incompressible, and incompressible
layers. That classification involves both material and geometric pa-
rameters.
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1 Introduction

This paper is concerned with analysis of axisymmetric deformation of thin
layers between two rigid surfaces. This problem has been studied in depth
in the fluid mechanics literature for flat surfaces (plates), because of its sig-
nificance to rheometry; see [1] for references which include a wide range of
constitutive models and conditions along the layer-plate interfaces. Accord-
ing to [1], the first asymptotic solution, which takes advantage of the layer
thinness, was published by Jožef Stefan in 1874.

In the basic setting, when perfect bonding and incompressibility are assumed,
squeezing of a thin Newtonian fluid layer by two plates is described by the
velocities

vr(r, z) =
3rV (h2 − z2)

4h3
, (1)

vz(r, z) =
V z (z2 − 3h2)

2h3
, (2)

and pressure

p(r, z) =
µV (3a2 + 2h2 − 3r2 + 6z2)

4h3
. (3)

In these equations, a and h are the layer radius and half-thickness, respec-
tively, and µ is the shear viscosity of the fluid. The cylindrical coordinates
are naturally aligned with the layer (0 ≤ r < a and −h < z < h), and each
plate moves toward the other with velocity V (Fig. 1a).

The fields in (1–3) do not result in traction-free boundary conditions on the
cylindrical surface, as

σrr(a, z) = −p(a, z) + 2µ
∂vr(r, z)

∂r |r=a
=

µV (h2 − 3z2)

h3

and

σrz(a, z) = µ

[

∂vr(r, z)

∂z
+

∂vz(r, z)

∂r

]

|r=a

= −3aµV z

2h3
.

Nevertheless, these boundary conditions are satisfied in Saint-Venant’s sense,
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as both resultants are equal to zero:
∫ h

−h

σrr(a, z) dz =

∫ h

−h

σrz(a, z) dz = 0 .

This means that the fields in (1–3) are valid only at sufficiently large distances
away from the cylindrical surface, which implies that (1–3) are meaningful
only when a ≫ h, that is, the layer must be thin. This Saint-Venant’s setting
is central to our and all preceding developments.

In the mathematical literature, Saint-Venant’s principle is associated with
asymptotic solutions of boundary-value problems defined on unbounded do-
mains. In particular, for infinite strips, Saint-Venant’s principle is directly
connected to analysis of boundary layers [2]. In this work, we exploit this
connection in the context of method of compound asymptotic approxima-
tions [3, 4], particularly effective for thin domains. This method implies
that rigid confining surfaces, which subject thin layers to Dirichlet bound-
ary conditions, induce boundary layers characterized by exponential decays
away from the cylindrical surface. That is, Saint-Venant’s principle is fully
expected to hold for the problems of interest.

Let us emphasize two remarkable properties of the fields in (1–3):

• The pressure at the center is

p(0, 0) ≈ 3µV

h
×
( a

2h

)2

.

The first fraction in this expression would be the pressure if the fluid
were allowed to slip freely along the plates. Thus the no-slip condition
on the fluid-plate interfaces results in a dramatic pressure build-up near
the center.

• The pressure on the plates at r = 0 exceeds that at the cylindrical
surface by two orders of magnitude, and the maximum deviatoric stress
by one order of magnitude. As a result, one can accurately calculate
the forces acting on the plates based on (3) alone, without taking into
account the deviatoric stresses.

These properties of the pressure field and the simplicity of (1–3) has re-
sulted in numerous approximate solutions involving non-Newtonian fluids
and partial-slip boundary conditions along the plate-fluid interfaces [1].
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Figure 1: Thin layers between two rigid surfaces: (a) plates and (b) spheres.

In this paper, we are primarily interested in solid rather than fluid layers.
In the simplest setting, when the layer is linear elastic, and the bonding is
perfect, the key difference between solids and fluids, at least as far as math-
ematics is concerned, is compressibility. This difference is so significant that
the basic asymptotic ansatz ubiquitous to analysis of thin incompressible
layers must be re-examined; this issue will be addressed in Section 2. This
may explain why existing analyses of compressible layers are based on vari-
ous additional assumptions, in the spirit of Bernoulli-Euler beam theory or
Reynold’s lubrication theory. Earlier solutions following this path are re-
viewed in [5]. There it is observed that most of those approximate solutions
are based on assumptions inspired by (1–3), in part because originally the
problem was motivated by studies of rubber, whose elastic response is very
close to being incompressible. We will discuss those solutions in Section 2,
once a proper mathematical setting has been introduced. More recent stud-
ies [6, 7, 8] adopt less restrictive assumptions, which may be useful for not
very thin layers. Of course, the problem does not pose significant challenges
for finite element computations, as long as the layer is not too close to being
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incompressible [7].

The significant role of compressibility can be further explored by considering
a closely-related problem involving a thin layer between two rigid spheres.
For this problem, asymptotic solutions are available for both compressible
[9] and incompressible [10] cases. Equations for the squeezing force derived
by those authors expose a chasm. In particular, for compressible layers,

F c ∼ 1

1− 2ν
log

a

h
,

where a is the sphere radius, 2h is the smallest layer thickness, and ν is
Poisson’s ratio (Fig. 1b). This equation becomes problematic as ν → 1/2,
that is, in the limit as the layer material approaches incompressibility. For
incompressible layers,

F i ∼ a

h
.

Thus it is unclear which of the two equations to use for nearly incompressible
solids like rubber, with Poisson’s ratio close to one half. Another interesting
feature of the two solutions is that for compressible layers

ur

uz
= O

(

h

a

)

,

whereas for incompressible layers

ur

uz

= O
(a

h

)

.

The chasm between the two asymptotic solutions is easy to explain, but not
resolve, in terms of asymptotic analysis. For nearly incompressible layers,
the problem involves two small parameters, h/a and 1− 2ν, and a proper
approach must take this into account. In contrast, the analyses of [9] and
[10] consider only the extremes, each involving only one small parameter
h/a. In this regard, it is not surprising that the two solutions do not match.
Also, let us mention that, besides similarities, the problems for flat and
spherical constraining surfaces are rather different. In particular, for flat
surfaces, the curvature κ = 0, whereas for spherical surfaces κa = 1. Thus
the two problems can be regarded as two extreme cases of a class of problems
where one may have two rather than one dimensionless geometric parameters,
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representing the layer thickness, constraint size, and curvature. Additional
differences will be exposed as the solutions are being developed.

The goal of this paper is to construct new approximate solutions for axisym-
metric stretching of thin linear elastic layers constrained by two rigid plates
or two rigid spheres in the entire range of Poisson’s ratio −1 < ν ≤ 1/2.
These solutions are based on two assumptions: (i) the layer thinness and (ii)
Saint-Venant’s form of the boundary conditions on the cylindrical surface. In
contrast, existing approximate solutions rely on these two assumptions plus
some other assumptions. Note that the thinness assumption is not explicitly
stated in [7, 8], but it is implied once Saint-Venant’s form of the boundary
conditions on the cylindrical surface is adopted. We will demonstrate that
our solutions are accurate in the entire range of Poisson’s ratio −1 < ν ≤ 1/2.
Further, we will exploit the two solutions to properly define compressible, in-
termediate, and incompressible responses, which take into account not just
the proximity of Poisson’s ratio to one half, but also the geometry.

The remainder of this paper consists of five sections. In Sections 2 and 3, we
present complete leading order asymptotic solutions for stretching of linear
elastic layers constrained by two rigid plates (Section 2), and by two rigid
spheres (Section 3). In Section 4, we compare existing single-parameter and
new two-parameter asymptotic solutions, and define compressible, interme-
diate, and incompressible regimes. In Section 5, we develop an alternative
approach, based on asymptotic series, which provides a better understanding
of transitions from compressible to intermediate, and from intermediate to
incompressible regimes. In Section 6, we discuss various connections of our
work with related problems for thin layers, and outline possible extensions.

2 Thin layer between two plates

2.1 Problem statement

Consider a thin circular cylindrical layer Ω of thickness 2h and radius a. The
layer thinness is represented by the inequality

ξ :=
h

a
≪ 1 . (4)
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The layer is made of a linear elastic material characterized by Lamé’s con-
stants µ and λ. Cylindrical coordinates for Ω are chosen so that

r < a , −h < z < h , 0 ≤ θ < 2π . (5)

We denote the top and bottom surface of Ω by ∂Ω±, and the cylindrical
surface by ∂Ω0. The layer is perfectly bonded to two rigid plates, one is
above ∂Ω+ and the other is below ∂Ω−, whereas ∂Ω0 is neither loaded nor
constrained (Fig. 1a).

We are interested in analyzing the linear elastic response of Ω when the plates
are pulled apart, so that the top (bottom) plate is displaced by U (−U) along
the z-axis. We calculate this response by solving an axisymmetric boundary-
value problem of classical linear elasticity formulated for Navier’s equations

(λ+ µ)
∂

∂r

(

∂ur

∂r
+

ur

r
+

∂uz

∂z

)

+ µ

(

∂2ur

∂r2
+

1

r

∂ur

∂r
− ur

r2
+

∂2ur

∂z2

)

= 0 , (6)

(λ+ µ)
∂

∂z

(

∂ur

∂r
+

ur

r
+

∂uz

∂z

)

+ µ

(

∂2uz

∂r2
+

1

r

∂uz

∂r
+

∂2uz

∂z2

)

= 0 , (7)

with the boundary conditions on ∂Ω±

uz = ±U , ur = 0 , (8)

and on ∂Ω0

σrr = λ

(

∂ur

∂r
+

ur

r
+

∂uz

∂z

)

+ 2µ
∂ur

∂r
= 0 , (9)

σrz = µ

(

∂ur

∂z
+

∂uz

∂r

)

= 0 . (10)

2.2 Asymptotic solution

We seek the solution using Love-Galerkin’s bi-harmonic potential Φ [11, 12],
so that the displacements are expressed as

ur = − 1

2(1 − ν)

∂2Φ

∂r∂z
(11)

and

uz =
∂2Φ

∂r2
+

1

r

∂Φ

∂r
+

1− 2ν

2(1− ν)

∂2Φ

∂z2
, (12)
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and the potential must satisfy the bi-harmonic equation,

(

∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2

)2

Φ = 0 . (13)

Since we are interested in thin layers, it is meaningful to introduce scaled
dimensionless coordinates

R :=
r

a
and Z :=

z

h
=

z

ξa
. (14)

Also in lieu of Poisson’s ratio we use the dimensionless material parameter

χ :=

√

3(1− 2ν)

2(1− ν)
. (15)

The rationale behind this choice will become clear later, but for now it is
sufficient to recognize that χ → 0 as ν → 1/2, and 0 ≤ χ ≤ 3/2 as 1/2 ≥
ν ≥ −1. Thus nearly incompressible materials are characterized by χ ≪ 1.

Let us evaluate the bi-harmonic operator in the scaled coordinates:

(

∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2

)2

=
1

a2

(

∂2

∂R2
+

1

R

∂

∂R
+

1

ξ2
∂2

∂Z2

)2

. (16)

This expression implies that the last term is dominant and to the leading
order the bi-harmonic equation is reduced to

∂4Φ

∂Z4
= 0 ,

and therefore

Φ = ξ2a2U
{

A0(R) + A1(R)Z + A2(R)Z2 + A(R)Z3
}

+O(ξ4) . (17)

Here A’s are unknown functions of R to be determined by satisfying the
boundary conditions. The pre-multiplier is dictated by elementary dimen-
sional considerations, but of course its use is not essential. The term O(ξ4)
implies that we are content with the leading order term.
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Now we evaluate (11) and (12) in terms of (17), and substitute the displace-
ments ur and uz in (8). As a result we obtain

A0(R) = 0 , A1(R) = −3A(R) , and A2(R) = 0 , (18)

and the governing differential equation for A(R):

A′′(R) +
1

R
A′(R)−

(

χ

ξ

)2

A(R) = − 1

2ξ2
. (19)

This equation can be solved exactly using Bessel functions:

A(R) = CJ0

(

iχ

ξ
R

)

+ C1Y0

(

−iχ

ξ
R

)

+
1

2χ2
. (20)

The first two terms on the right-hand side of this expression represent the
homogeneous solution, and they involve two yet undetermined constants.
Further, the simple dependence of the Bessel functions on the parameters ξ
and χ in (20) justifies the choice of χ defined in (15). The constant C1 must
be set equal to zero because Y0(−ix) → ∞ as x → 0+. The constant C is
determined by satisfying the boundary conditions in (9) and (10). In the
adopted setting, these boundary conditions cannot be satisfied exactly, but
only in a Saint-Venant’s sense, for the normal and shear resultants:

∫ 1

−1

σrr |R=1 dZ = 0 (21)

and
∫ 1

−1

σrz |R=1 dZ = 0 . (22)

The first of these conditions yields

C = − 3 (3− 2χ2)

2χ2 (3− χ2)
[

3I0

(

χ
ξ

)

− 2ξχI1

(

χ
ξ

)] , (23)

whereas the second condition is trivially satisfied.
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At this stage, we can use back substitution to obtain the expressions for
Love-Galerkin’s potential

Φ =
a2ξ2U

2χ2



1− 3 (3− 2χ2)

(3− χ2)
[

3I0

(

χ
ξ

)

− 2ξχI1

(

χ
ξ

)]J0

(

iχ

ξ
R

)



 (−3Z + Z3) ,

(24)
and the displacements

ur = −
3 (3− 2χ2) I1

(

χ
ξ
R
)

(1− Z2)U

2χ
[

3I0

(

χ
ξ

)

− 2ξχI1

(

χ
ξ

)] , (25)

uz =

[

6 (3− χ2) I0

(

χ
ξ

)

− 4ξχ (3− χ2) I1

(

χ
ξ

)

+ 3 (3− 2χ2) I0

(

χ
ξ
R
)

(1− Z2)
]

ZU

2 (3− χ2)
[

3I0

(

χ
ξ

)

− 2ξχI1

(

χ
ξ

)] .

(26)

The force acting on the upper (or lower) plate can be calculated as

F = 2πa2
∫ 1

0

σzz |Z=1R dR =
3πµaU

8ξ3
×

8ξ2

χ3 (3− χ2)





3χ (3− χ2) I0

(

χ
ξ

)

− 2ξ (−χ4 − 3χ2 + 9) I1

(

χ
ξ

)

3I0

(

χ
ξ

)

− 2ξχI1

(

χ
ξ

)



 .

(27)

The rationale behind the particular factorization adopted in this equation
will become clear in Section 2.3. Let us emphasize that (24-27) are valid for
any χ.

2.3 Particular cases

In this section, we examine two limits for the solution given by (25-27). First,
in the limit as χ → 0 while ξ is fixed, (25-27) recover the classical solution
for incompressible layers:

Φ = −1

8
a2
(

1− R2
)

Z
(

3− Z2
)

U , (28)
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ur = −3R (1− Z2)

4ξ
U , (29)

uz =
1

2
Z
(

3− Z2
)

U , (30)

and

F =
3πµaU

8ξ3
. (31)

Note that (29) and (30) coincide with (1) and (2), respectively, and (27) is
expressed in a way that results in the function displayed on the second line
to become unity in the limit as χ → 0 while ξ is fixed. If needed, one can
calculate the deviatoric components from (29) and (30), and then determine
the pressure from the equilibrium equations.

The second particular case represents compressible layers characterized by
χ = O(1). To evaluate this case we introduce the variable

ζ :=
ξ

χ
, (32)

so that compressible layers can be associated with the limit ζ → 0 as ξ is
fixed. In evaluating this limit, we use

lim
ζ→0

ζI1(ζ
−1)

I0(ζ−1)
= 0 ,

to obtain

Φ =
1

2
a2
(

ξ

χ

)2

Z3U , (33)

ur = 0 , (34)

uz = ZU , (35)

and

F =
3πµaU

ξχ2
. (36)

These displacement fields and force represent the case of uniaxial straining
along the z-axis, so that the only non-zero strain component is

ǫzz =
U

h
=

U

aξ
.
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The corresponding stress state is

σrr = σθθ =
µU (3− 2χ2)

aξχ2
, σzz =

3µU

aξχ2
, σrz = 0 . (37)

This stress state has two remarkable properties. First, the shear stress on
the plate-layer interfaces is equal to zero, so that this stress state does not
differentiate between no-slip and shear-traction-free conditions on the plate-
layer interfaces. Second, the stress state results in non-zero normal traction
component on the cylindrical surface ∂Ω0, and no averaging procedure can
change that simply because the stress σrr is constant. Thus the adopted
basic asymptotic ansatz does not work in the limit as ζ → 0 while ξ is fixed.
This issue can be addressed by reformulating the original boundary-value as
a superposition of two problems (Fig. 2). The first problem is identical to the
original problem, except for the new boundary condition on ∂Ω0 replacing
(9) and (10):

σrr =
µU (3− 2χ2)

aξχ2
, σrz = 0 on ∂Ω0 . (38)

The second problem is characterized by the boundary conditions

uz = 0 , ur = 0 on ∂Ω± , (39)

and

σrr = −µU (3− 2χ2)

aξχ2
, σrz = 0 on ∂Ω0 . (40)

Then the solution for the first problem is given by (34-36). The second-
problem is of the boundary-layer type. It is characterized by an exponential
decay away from the cylindrical surface, but the decay length may signifi-
cantly depend on the problem parameters [3, 4]. This issue will be examined
in the next section, where we compare asymptotic and finite element solu-
tions.

2.4 Comparisons with finite element results

The problem of interest is straightforward to analyze using a finite element
method, and we did it using the commercial program ABAQUS. We employed
uniform meshes formed by square eight-node hybrid elements; CAX8H in the
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Figure 2: The problem for a compressible layer (a) as a superposition of
uniaxial straining (b) and a boundary-layer problem (c). The stress σc

rr is
σrr from (40).
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ABAQUS language. This choice of element type was beneficial for analyzing
problems in a wide range of χ. The mesh size was chosen based on conver-
gence studies, so that the force F was computed accurately up to the first six
significant digits. Comparisons between the asymptotic and finite element
solutions for the force are presented in Table 1, where the finite element so-
lutions are treated as the exact ones. Clearly, the asymptotic solution (27)
for the force becomes progressively more accurate as ξ decreases in the en-
tire range of χ. The number of correct significant digits increases by one
with each order of magnitude decrease in ξ. In particular, for ξ = 10−3,
the asymptotic solution accurately captures the first three significant digits
across all χ.

ξ = 10−3 ξ = 10−2 ξ = 10−1

χ = 10−3 3× 10−4 3× 10−3 5× 10−2

χ = 10−2 2× 10−4 3× 10−3 5× 10−2

χ = 10−1 2× 10−4 7× 10−4 5× 10−2

χ = 1 8× 10−4 8× 10−3 8× 10−2

Table 1: Errors of the asymptotic solution for the force (27) in comparison
to finite element solutions accurate up to the first six significant digits.

The fact that the asymptotic solution for the force agrees well with the finite
element solutions implies that the boundary-layer correction is insignificant,
at least as far as the force calculations are concerned. To get an additional
confirmation of this statement we compared the asymptotic versus finite
element solutions for the stress σzz along the interface Z = 1. To this end, we
plotted the ratio of the asymptotic versus finite element solution as a function
of R for ξ = 10−3 and χ = 10−3, 10−2, 10−1, 1 (Fig. 3). Note that we used
0.98 ≤ R ≤ 1 for plotting because the ratio is very close to unity for R < 0.98.
It is clear that the asymptotic solution is incapable of predicting singular
stresses near the corner, as it does not include the boundary-layer asymptotic
corrections. Those corrections decay exponentially, and the rate of decay
mildly depends on χ. Apparently the region of dominance of those singular
stresses is sufficiently small, so that the singularity does not significantly
affect the force. We further examined the stress field by plotting the stress
σrr in the same manner as we did for σzz (Fig. 4). In this case, the objective
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was to examine Saint-Venant’s effect associated with the weak imposition of
the boundary conditions at the surface ∂Ω0. Figure 4 suggests that the strong
boundary-layer effect decays exponentially fast over distances comparable to
ξ = 10−3, which is consistent with Saint-Venant’s principle. The observed
exponential decays are consistent with the analysis of [3], for the case of
Dirichlet boundary conditions on the flat surfaces. While the decay rate
mildly depends on χ, which makes the analysis interesting, there are no
surprises here – the boundary layer is localized and has no significant effect
on the force.

Figure 3: The ratio of the asymptotic and finite element solutions for σzz

along the interface at Z = 1 for ξ = 10−3.

2.5 Comparisons with other approximate solutions

Due to significance of stretching/squeezing of thin layers between stiff plates
for mechanical characterization of rubber and other polymers, there is a large
number of approximate solutions available in the literature. As far as testing
is concerned, the most accessible specimen property is the so-called apparent
modulus defined as the ratio of the average axial stress and strain

EA :=
F

πa2
÷ U

h
. (41)
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Figure 4: The ratio of the asymptotic and finite element solutions for σrr

along the interface at Z = 1 for ξ = 10−3.

It is natural to normalize the apparent modulus with the actual Young’s
modulus of the layer, and define

Ê :=
EA

E
. (42)

The normalized apparent modulus according to our analysis follows directly
from (27):

Ê =
9χ (3− χ2) I0

(

χ
ξ

)

− 6ξ (9− 3χ2 − χ4) I1

(

χ
ξ

)

χ3 (9− 4χ2)
[

3I0

(

χ
ξ

)

− 2ξχI1

(

χ
ξ

)] . (43)

The two extremes of this expression are

Êi =
1

8ξ2
for χ = 0 , (44)

and

Êc =
3 (3− χ2)

χ2 (9− 4χ2)
for χ = O(1) . (45)
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These expressions can be derived either directly from (43) or from (31) and
(36).

Since historically the configuration was used for testing rubber, it is appropri-
ate to compare various approximate solutions by choosing ν = 0.499905 [13],
which corresponds to χ = 0.0238724. In Table 2 we present relative errors
for various approximate solutions for Ê, when compared to finite element
solutions accurate up to the first six significant digits. The approximate so-
lutions are arranged in the chronological order and the errors are computed
for ξ = 10−1, 10−2, 10−3. It is clear that, beside our solution, seven solutions

ξ = 10−3 ξ = 10−2 ξ = 10−1

Ref. [14] 7× 10−2 1× 10−1 3× 10−2

Ref. [15] 7× 10−5 3× 10−3 3× 10−2

Ref. [16] 4× 10−3 5× 10−3 3× 10−2

Ref. [17] 2× 10−4 2× 10−3 5× 10−2

Ref. [18] 4× 10−4 3× 10−3 3× 10−2

Ref. [19] 7× 10−5 3× 10−3 3× 10−2

Ref. [6] 7× 10−2 1× 10−1 4× 10−2

Ref. [7] 6× 10−5 3× 10−3 3× 10−2

Ref. [8] 2× 10−4 2× 10−3 5× 10−2

Eq. (43) 2× 10−5 2× 10−3 5× 10−2

Table 2: Relative errors in the normalized apparent modulus of rubber when
compared against finite element results for ν = 0.499905 [13]. Rejected
solutions are shown in gray.

stand out as very accurate: Lindsey’s et al. [15], Lindley’s [16], Chalhoub
and Kelly’s [17], Gent’s [18], Tsai and Lee’s [19], Qiao and Lu’s [7], and
Schapery’s [8]. All seven solutions relied on satisfying the boundary condi-
tions on ∂Ω0 weakly, and therefore, not surprisingly, all of them improve as
ξ → 0. Further, all chosen solutions recover exactly the limit as χ → 0. In
[15, 16, 17, 18, 19, 8] it was assumed that ur has a parabolic profile. This is an
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excellent assumption, confirmed by our asymptotic and finite element anal-
yses. Qiao and Lu assumed that each displacement field can be expressed as
a separable product of a function of R and a function of Z. This assumption
holds for ur, but, according to our analysis, uz requires two products rather
than one. The expressions derived by Lindsey et al. [15] and Tsai and Lee
[19] are identical, although the approaches are different. The same statement
applies to the solutions of Chalhoub and Kelly [17] and Schapery [8]. We
rejected two solutions because they are characterized by significant errors,
and the errors do not decay as ξ decreases. Let us mention that concerns
about [6] have been expressed in [20].

In the next verification round, we considered the eight approximations which
passed the first round, and compared them with accurate finite element so-
lutions for ν = 0.3. Results of those comparisons are summarized in Table 3.
Among those approximations three, shown in gray, were rejected. This was
not surprising as the three rejects were constructed for nearly incompressible
materials.

ξ = 10−3 ξ = 10−2 ξ = 10−1

Ref. [15] 2× 10−5 1× 10−4 2× 10−3

Ref. [16] 3× 10−5 3× 10−4 2× 10−3

Ref. [17] 4× 10−1 4× 10−1 5× 10−1

Ref. [18] 4× 10−1 4× 10−1 3× 10−1

Ref. [19] 2× 10−5 1× 10−4 2× 10−3

Ref. [7] 3× 10−6 5× 10−5 3× 10−4

Ref. [8] 4× 10−1 4× 10−1 5× 10−1

Eq. (43) 5× 10−4 5× 10−3 5× 10−2

Table 3: Relative errors in the normalized apparent modulus when compared
against finite element results for ν = 0.3. Rejected solutions are shown in
gray.

The remaining five were compared with each other for 0 < ν < 0.49999 and
they were in excellent agreement.
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The approximation obtained by Lindsey et al. [15] and later by Tsai and Lee
[19] has the form

ÊL =
(3− χ2)

[

9χI0

(

χ
ξ

)

− 2ξ (4χ4 − 9χ2 + 9) I1

(

χ
ξ

)]

χ3 (9− 4χ2)
[

3I0

(

χ
ξ

)

− 2ξχI1

(

χ
ξ

)] , (46)

which is very close to (43). Indeed the denominators of the two expressions
coincide, and the difference between the two approximations is estimated as

ÊL − Ê

Ê
≈ −2χ (4χ4 − 24χ2 + 27)

9 (3− χ2)
ξ . (47)

The function of χ in this estimate is equal zero at χ = 0, as expected, and
it varies between minus one and plus three. Thus we conclude that the
difference between ÊL and Ê is small in the entire range of χ. Analyti-
cal comparisons of our approximation with those of Lindley’s [16] and Qiao
and Lu [7] are somewhat cumbersome because the former has a conditional
structure, and the latter is predicated on solving a transcendental equation.

It is remarkable that the approximate solution in [15], presented more than
fifty years ago, is accurate in the entire range of χ. That solution was devel-
oped by assuming the displacements in the form

ur(R,Z) = f(R)(1− Z2) and uz(R,Z) = UZ , (48)

with the function f(R) determined upon averaging the governing differential
equations and boundary conditions on the cylindrical surface through the
thickness. It turns out that f(R) derived in this manner gives rise to ur

which coincides with our solution (25). Of course uz in (48) is different from
our solution (26) simply because our solution is a cubic polynomial in Z.
Recently, Schapery [8], who is a co-author of [15], proposed the displacements
in the form

ur(R,Z) = f(R)(1− Z2) and uz(R,Z) = UZ + g(R)(Z − Z3) . (49)

He did not derive the function g(R), but it can be chosen to match our
solution (26) exactly. Further, Schapery suggests that (49) can yield accurate
approximations without requiring either ξ or χ to be small. We disagree with
this position, as we believe that it is essential for ξ ≪ 1, because, without this
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assumption, Saint-Venant’s principle becomes meaningless for the problem
at hand.

Schapery did not derive the function g(R) because he was interested in nearly
incompressible layers. In this case, the dominant contribution to the force
(or apparent modulus) is the pressure derived from the equilibrium equation
along r, whose leading order asymptotic form is

− ∂p

∂R
+

µ

ξ

∂ur

∂Z
= 0 .

Thus, for nearly incompressible layers, it is important to accurately calculate
ur but not uz. This also explains why (48) is accurate at least for nearly
incompressible layers. Of course the fact that (48) works for all χ is a tribute
to the clever averaging scheme that yielded f(R).

The ansatz in (49) provides a natural connection with [15] and our work, but
it is not the central theme of [8]. Rather that work focuses on an asymptotic
method restricted to nearly incompressible layers, which allows one to solve
a large class of practically important three-dimensional problems [8, 21]. For
this reason, Schapery’s approximate solution compared well with finite ele-
ment results for nearly incompressible but not compressible cases. We will
discuss Schapery’s approach to three-dimensional problems for nearly incom-
pressible layers later, in connection to an alternative asymptotic methodol-
ogy, applied to analysis of thin layers between spheres.

3 Thin layer between two spheres

The problem for a thin layer between two equal rigid spheres of radius a
and minimum separation distance 2h (Fig. 1b) can be formulated and solved
similarly to the problem for two plates. The mathematical differences turned
out to be mostly technical rather than conceptual, as the equations become
complicated to an extent that one should heavily rely on symbolic manipula-
tors. To this end, let us mention that the ordinary differential equation which
parallels (19) could only be solved with Maple but not Mathematica. Due
to similarities between the two problems and very long expressions for the
case of two spheres, our presentation focuses on emphasizing the differences
between the two problems rather than solution details.
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3.1 Problem statement

In cylindrical coordinates shown in Figure 1b, the spheres are prescribed by
the equations

r2 + (z − h− a)2 = a2 (upper sphere) (50)

and
r2 + (z + h+ a)2 = a2 (lower sphere). (51)

We assume that the layer is bounded by a circular cylindrical surface ∂Ω0 of
radius a. Then the bounding surfaces ∂Ω+ (top) and ∂Ω− (bottom) are hemi-
spheres prescribed by (50) and (51), respectively. With these definitions, the
boundary-value problem for a thin layer between two equal rigid spheres is
prescribed by (6-10), with the provision that (9) and (10) are imposed weakly,
similar to (21) and (22).

3.2 Asymptotic solution

Following [10] we introduce the scaled coordinates,

R :=
r

a
√
ξ

and Z :=
z

h
=

z

ξa
, (52)

different from those adopted in the previous section. In these coordinates, to
a leading order, (50) and (51) can be combined in the form

Z = ±
(

1 +
1

2
R2

)

. (53)

The new scaled coordinates do not affect the leading order approximation
for the bi-harmonic operator, but Love-Galerkin’s potential has a slightly
different form,

Φ = ξa2U

{

A0(R) +

[
∫

A1(R) dR

]

Z + A2(R)Z2 + A(R)Z3

}

+O
(

ξ2
)

.

(54)
This form differs from (17) in two aspects. First, the pre-multiplier in (54)
is consistent with the scaled coordinates in (52) rather than (14). Second,
A1(R) is replaced with its anti-derivative to simplify the calculations.
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The equations for the A-functions in (54) are

A0(R) = 0 , A1(R) = −3

(

1 +
1

2
R2

)2

A′(R) , and A2(R) = 0 , (55)

and

A′′(R) +
7R2 + 2

R3 + 2R
A′(R)− 4χ2

ξ (R2 + 2)2
A(R) = − 4

(R2 + 2)3
. (56)

This differential equation can be solved in terms of hypergeometric functions
using Maple but not Mathematica:

A(R) = C1

(

1 +
1

2
R2

)−1−β

2F1

(

−1 − β, 2− β, 1− 2β, 1 +
1

2
R2

)

+ C2

(

1 +
1

2
R2

)−1+β

2F1

(

−1 + β, 2 + β, 1 + 2β, 1 +
1

2
R2

)

+
1 + β2 +R2

4β2 (1− β2)
(

1 + 1
2
R2
) , (57)

with

β =

√

1− χ2

2ξ
. (58)

The integration constants C1 and C2 can be determined using the conditions
that the solution must be finite at R = 0, and the resultants on the cylindrical
surface must be equal to zero:

∫ 1+1/2/ξ

−1−1/2/ξ

σrr |R=1/
√
ξ dZ =

∫ 1+1/2/ξ

−1−1/2/ξ

σrz |R=1/
√
ξ dZ = 0 .

As in the case of flat layers, the last condition is trivially satisfied and the
other two result in

A(R) = CΓ(−β − 1)Γ(2− β)

(

1 +
1

2
R2

)−1−β

2F1

(

−1− β, 2− β, 1− 2β, 1 +
1

2
R2

)

− C
Γ(−1 + β)Γ(2 + β)

Γ(1 + 2β)

(

1 +
1

2
R2

)−1+β

2F1

(

−1 + β, 2 + β, 1 + 2β, 1 +
1

2
R2

)

+
1 + β2 +R2

4β2 (1− β2)
(

1 + 1
2
R2
) , (59)
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with

C =
3(1− β) (1 + β2) Γ(2− β)Γ(−β)

21−3ββ2ξβ
×

[

6 (1 + β) 2F̃1

(

3− β,−β, 2− 2β,
1

2ξ

)

− (3− β)(4 + β) 2F̃1

(

4− β,−β, 2− 2β,
1

2ξ

)]

+
3 (1 + β) (1 + β2) Γ(β)Γ(2 + β)

21−ββ2ξ3β
×

[

3(2 + β) 2F̃1

(

β, 3 + β, 2 + 2β,
1

2ξ

)

+ β(4− β) 2F̃1

(

1 + β, 3 + β, 2 + 2β,
1

2ξ

)]

.

In these equations, the tilde denotes the regularized hypergeometric function
and Γ is Euler’s Γ-function. Let us mention that β can take on both real
and imaginary values, and the hypergeometric functions can take on complex
values. Nevertheless, once the boundary conditions have been imposed, the
resulting function A(R) is real-valued.

It is clear that the displacement and stress fields are straightforward to derive
from (59) by differentiation using a symbolic manipulator, but the resulting
expressions are too long and hardly provide any insight. The force,

F = 2πa2ξ

∫ 1/
√
ξ

0

σzz |Z=1+ 1

2
R2 R dR = 6πaµUΨ(χ, ξ) , (60)

can be calculated only numerically. Here Ψ(χ, ξ) is introduced as a dimen-
sionless force, whose behavior at the extremes of χ = 0 and χ = O(1) are
known from [10] and [9], respectively:

Ψi(0, ξ) =
1

4ξ
(61)

and

Ψc(χ, ξ) =
1

χ2
log

1

2ξ
. (62)

Rather than verifying A(R) by establishing that the corresponding fields re-
cover their counterparts provided in [9] and [10], we chose to compare Ψ(χ, ξ)
directly with with finite element solutions accurate up to the first six signifi-
cant digits for ξ = 10−5, 10−4, 10−3, 10−2 and χ = 10−3, 10−2, 10−1, 1. This is
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done in Table 4, where we also include the predictions based on Ψi(0, ξ), and
Ψc(χ, ξ). Thus for each pair of ξ and χ we compare four numbers. The data
clearly shows that Ψi(0, ξ) and Ψc(χ, ξ) match the finite element solutions
as expected: Ψi(0, ξ) works well for χ = 10−3 and Ψc(χ, ξ) works well for
χ = 1. Both Ψi(0, ξ), and Ψc(χ, ξ) are outright inapplicable for χ = 10−1.
Note that Ψi(0, ξ) works well for χ = 10−2 for all ξ except for ξ = 10−5,
which is somewhat perplexing because Ψi(0, ξ) is expected to be increasingly
accurate as ξ decreases. In contrast Ψ(χ, ξ) corresponding to (59) matches
the finite element solutions well in the entire parametric space.

ξ = 10−5 ξ = 10−4 ξ = 10−3 ξ = 10−2

χ = 10−3

FE 0.25× 105 0.25× 104 0.25× 103 0.26× 102

Ψ(χ, ξ) 0.25× 105 0.25× 104 0.26× 103 0.26× 102

Ψi(0, ξ) 0.25× 105 0.25× 104 0.25× 103 0.25× 102

Ψc(χ, ξ) 1.08× 107 0.85× 107 0.62× 107 0.39× 107

χ = 10−2

FE 0.12× 105 0.22× 104 0.25× 103 0.26× 102

Ψ(χ, ξ) 0.12× 105 0.22× 104 0.25× 103 0.26× 102

Ψi(0, ξ) 0.25× 105 0.25× 104 0.25× 103 0.25× 102

Ψc(χ, ξ) 1.08× 105 0.85× 105 0.62× 105 0.39× 105

χ = 10−1

FE 0.54× 103 0.32× 103 0.12× 103 0.23× 102

Ψ(χ, ξ) 0.55× 103 0.32× 103 0.12× 103 0.23× 102

Ψi(0, ξ) 0.25× 105 0.25× 104 0.25× 103 0.25× 102

Ψc(χ, ξ) 1.08× 103 0.85× 103 0.62× 103 0.39× 103

χ = 1
FE 1.02× 101 0.80× 101 0.57× 101 0.34× 101

Ψ(χ, ξ) 1.03× 101 0.81× 101 0.56× 101 0.34× 101

Ψi(0, ξ) 0.25× 105 0.25× 104 0.25× 103 0.25× 102

Ψc(χ, ξ) 1.08× 101 0.85× 101 0.62× 101 0.39× 101

Table 4: Dimensionless functions Ψ for finite element solutions (FE), Ψ(χ, ξ),
Ψi(0, ξ), and Ψc(χ, ξ).
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4 Two-parameter versus single-parameter asymp-

totic solutions

The new asymptotic solutions developed in Sections 2 and 3 allow one to
identify conditions under which the single-parameter asymptotic solutions,
for χ = 0 or χ = O(1), are acceptable. This is not just interesting, but
also important in deciding whether one can treat the layer material as in-
compressible, and thus measure just one material constant. This issue is
straightforward to address for flat layers, for which one can simply compare
the normalized apparent moduli (44) and (45) versus (43). To this end, let
us use (32) to eliminate χ in favor of the parameter ζ , which has been al-
ready exploited for extracting the solution for χ = O(1) in Section 2.3. Then
(43-45) yield the following ratios:

Êi

Ê
=

I0

(

1
ζ

)

8ζ2
[

I0

(

1
ζ

)

− 2ζI1

(

1
ζ

)] +O
(

ξ2
)

(63)

and

Êc

Ê
=

I0

(

1
ζ

)

I0

(

1
ζ

)

− 2ζI1

(

1
ζ

) +O
(

ξ2
)

. (64)

These expressions make it clear that ζ is an appropriate single parameter
for identifying the domains of validity for the single-parameter asymptotic
solutions. This can be done as follows. For a chosen error tolerance, one can
solve (63) for ζ i, such that for all ζ > ζ i, the error associated with using Êi

rather than Ê will be below the tolerance. Similarly, one can solve (64) for
ζc, such that for all ζ < ζc, the error associated with using Êc rather than
Ê will be below the tolerance. That is, the single-parameter asymptotic
solutions become too inaccurate in the interval ζc < ζ < ζ i . For example, let
us choose the error tolerance of 10%, and solve (63) for ζ i = 1.3 and (64) for
ζc = 0.046. Then, for ξ = 10−2 and ξ = 10−3, these bounds translate into
the intervals 0.49 < ν < 0.49999 and 0.4999 < ν < 0.4999999, respectively.
Thus for thin flat layers, with rare exceptions, the apparent response should
not be treated as incompressible. This point has been well appreciated in
the solid mechanics literature, where the approximate solutions accounting
for compressibility are common.
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At this point, we can divide the parametric ζ-axis into three intervals (0, ζc),
(ζc, ζ i), and (ζ i,∞), and refer to them as compressible, intermediate, and in-
compressible regimes, respectively. Further, we refer to the transition points
ζc and ζ i as nearly compressible and nearly incompressible, respectively.

Identification of regimes and transitions for layers between two spheres has
to be approached differently, as we do not have an explicit expression for the
force. To this end we observe that ζ could have been identified directly from
(19), as the dimensionless characteristic length for R. By applying this logic
to (56) we conclude that, for layers between two spheres, the dimensionless
characteristic length should be

ζ̄ :=

√
ξ

χ
. (65)

In the absence of equations similar to (63) and (64), we can assess the use-
fulness of ζ̄ from Table 4, by comparing Ψi and Ψc with the finite element
solutions. We observe that Ψi(0, ξ) is accurate if and only if ζ̄ ≥ 1. Thus we
can adopt ζ̄ i = 1 as the nearly incompressible transition point. In contrast,
the data does not support the notion that there is a well-defined ζ̄c. Rather
it appears that the nearly compressible transition is dictated by χ. This issue
will be resolved in the next section.

5 Alternative asymptotic approach

In this section, we approach the problem for layers between two spheres by
developing asymptotic series approximations for Navier’s equations directly,
without relying on Love-Galerkin’s potential. This approach allows us to
identify the transitions and regimes; for mathematical details we refer to
[3, 4].

Let us begin with rewriting Navier’s equations (6,7) in terms of the scaled
coordinates in (52):

1

ξ2
µ

λ

∂2ur

∂Z2
+

1

ξ3/2

(

1 +
µ

λ

) ∂2uz

∂Z∂R
+

1

ξ

(

1 +
2µ

λ

)(

∂2ur

∂R2
+

1

R

∂ur

∂R
− ur

R2

)

= 0,

1

ξ2

(

1 +
2µ

λ

)

∂2uz

∂Z2
+

1

ξ3/2

(

1 +
µ

λ

)

(

1

R

∂ur

∂Z
+

∂2ur

∂Z∂R

)

+
1

ξ

µ

λ

(

∂2uz

∂R2
+

1

R

∂uz

∂R

)

= 0.(66)
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Here we use the ratio µ/λ rather than more conventional λ/µ because we
are interested in ν ≈ 1/2, where µ/λ ≪ 1. Accordingly, µ/λ = O(1) in the
compressible regime, and can be chosen as O(ξq) with q > 0 in the nearly
incompressible regime.

5.1 Compressible regime

For µ/λ = O(1), the system of equations (66) can be written in the matrix-
operator form, which highlights its asymptotic structure

{

1

ξ2
L0 +

1

ξ3/2
L1 +

1

ξ
L2

}

u = 0. (67)

Here

L0 :=

(

µ
λ

0
0 1 + 2µ

λ

)

∂2

∂Z2
,

L1 :=
(

1 +
µ

λ

)

(

0 ∂2

∂Z∂R
∂2

∂Z∂R
+ 1

R
∂
∂Z

0

)

,

L2 :=





(

1 + 2µ
λ

)

(

∂2

∂R2 +
1
R

∂
∂R

− 1
R2

)

0

0 µ
λ

(

∂2

∂R2 +
1
R

∂
∂R

)



 ,

and

u =

(

ur

uz

)

.

For (67) the appropriate asymptotic approximation for the displacement field
column-vector is

u ≃ u(0)(R,Z) +
√

ξu(1)(R,Z) + ξu(2)(R,Z). (68)

Now the asymptotic approximation can be constructed as a recurrence of
boundary-value problems on the scaled cross section

L0u
(n) = −L1u

(n−1) − L2u
(n−2), when |Z| < 1 +

1

2
R2, (69)

with the boundary conditions

u(n) = ±Uezδn0 as Z = ±
(

1 +
1

2
R2

)

. (70)
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In (69) the terms with negative superscript indices must be set equal to zero.

By solving the sequence of problems defined by (69) and (70) for n = 0, 1, 2,
we obtain the asymptotic approximation of (68) in the form

u ≃





√
ξ λ+µ

2µ
R
[

4Z2

(2+R2)2
− 1
]

2Z
2+R2 − ξ

3
λ
µ
2−R2

2+R2

[

2Z2

(2+R2)
− 1
]

Z



U . (71)

This displacement field coincides with that derived in [9] for the χ = O(1).

5.2 Nearly compressible transition

Now we start considering regimes for which the ratio µ/λ ≪ 1. Based on
elementary analysis of the coefficients in (66) we conclude that, as µ/λ → 0,
the asymptotic structure changes qualitatively from that in (67) when

µ

λ
=
√

ξ.

Then the corresponding matrix-operator equation is
{

1

ξ2
L0 +

1

ξ3/2
L1 +

1

ξ
L2 +

1

ξ1/2
L3

}

u = 0. (72)

Here

L0 :=

(

0 0
0 1

)

∂2

∂Z2
,

L1 :=

(

∂2

∂Z2

∂2

∂Z∂R
∂2

∂Z∂R
+ 1

R
∂
∂Z

2 ∂2

∂Z2

)

,

L2 :=

(

∂2

∂R2 +
1
R

∂
∂R

− 1
R2

∂2

∂R∂Z
∂2

∂Z∂R
+ 1

R
∂
∂Z

0

)

,

L3 :=

(

2
(

∂2

∂R2 +
1
R

∂
∂R

− 1
R2

)

0

0 ∂2

∂R2 +
1
R

∂
∂R

)

.

By extending the setting of (68–70) to include L3, we obtain

u ≃





1
2
R
[

4Z2

(2+R2)2
− 1
]

+
√
ξ
2
R
[

4Z2

(2+R2)2
− 1
]

2Z
2+R2 − ξ

3
2−R2

2+R2

[

2Z2

(2+R2)
− 1
]

Z



U . (73)
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This solution is new. Notice that in contrast to (71), where ur ≪ uz ≃ U ,
the displacement field in (73) is characterized by ur ≃ uz ≃ U .

5.3 Nearly incompressible transition

As µ/λ → 0, (66) changes its asymptotic structure qualitatively again when

µ

λ
= ξ.

Then the corresponding matrix-operator equation is

{

1

ξ2
L0 +

1

ξ3/2
L1 +

1

ξ
L2 +

1

ξ1/2
L3 + L4

}

u = 0. (74)

Here

L0 :=

(

0 0
0 1

)

∂2

∂Z2
,

L1 :=

(

0 ∂2

∂Z∂R
∂2

∂Z∂R
+ 1

R
∂
∂Z

0

)

,

L2 :=

(

∂2

∂R2 +
1
R

∂
∂R

− 1
R2 +

∂2

∂Z2 0

0 2 ∂2

∂Z2

)

,

L3 :=

(

0 ∂2

∂Z∂R
∂2

∂Z∂R
+ 1

R
∂
∂Z

0

)

,

L4 :=

(

2
(

∂2

∂R2 +
1
R

∂
∂R

− 1
R2

)

0

0 ∂2

∂R2 +
1
R

∂
∂R

)

.

The procedure, which worked for the two previous cases, does not work
here, because neither u

(0)
r nor u

(0)
z depend on Z, so that the boundary-value

problem in (69) and (70) becomes degenerate. Further, it becomes apparent
that the asymptotic series (68) must be replaced with

u ≃
(

1√
ξ
u
(0)
r (R,Z) + u

(1)
r (R,Z)

u
(0)
z (R,Z)

)

U . (75)
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With this ansatz, (74) yields the following system of equations for u
(0)
r (R,Z)

and u
(0)
z (R,Z)

∂2u
(0)
r

∂Z2
+

∂

∂R

(

∂u
(0)
r

∂R
+

u
(0)
r

R
+

∂u
(0)
z

∂Z

)

= 0 ,

∂

∂Z

(

∂u
(0)
r

∂R
+

u
(0)
r

R
+

∂u
(0)
z

∂Z

)

= 0 . (76)

With the introduction of

Θ :=
∂u

(0)
z

∂Z
+

∂u
(0)
r

∂R
+

u
(0)
r

R
, (77)

we observe that the second equation in (76) implies that Θ is independent of
Z, and therefore the first equation can be easily solved:

u(0)
r (R,Z) = −Θ′(R)

2

[

Z2 −
(

1 +
1

2
R2

)2
]

. (78)

Once u
(0)
r (R,Z) is substituted back in (77), and the boundary conditions

u(0)
z (R,Z)|Z=±(1+ 1

2
R2) = ±U

are imposed, one obtains the ordinary differential equation

Θ′′(R) +
7R2 + 2

R3 + 2R
Θ′(R)− 12

(R2 + 2)2
Θ(R) = − 24U

(R2 + 2)3
. (79)

This equation appears to be very similar to (56). Indeed, for the chosen
µ = λξ, the corresponding

χ2

ξ
≃ 3 and β =

i√
2
,

which means that the left-hand sides of (79) and (56) coincide and

Θ(R) = 6A(R)U for β ≃ i√
2
. (80)
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We could have arrived to this relationship by recognizing that Θ = ξdivu ,
and calculating divu from (54).

Let us recognize that (75) is characterized by the asymptotic structure ξ
identical to that developed in [10] for the incompressible case. This means
that there is no need to consider ratios µ/λ of order less than O(ξ), as those
ratios would result in the asymptotic structure of the incompressible case.

5.4 Implications for the transitions

The two asymptotic solutions, for µ/λ =
√
ξ and µ/λ = ξ, lend themselves to

a better understanding of the transitions introduced in Section 4. Indeed, it
is natural to adopt the former as the point of nearly compressible transition,
and the latter as the point of nearly incompressible transition. Further,
µ/λ =

√
ξ and µ/λ = ξ imply

ζ̄ ≃ 1√
3
ξ1/4 and ζ̄ =

1√
3
, (81)

respectively. The second condition is consistent with the reasoning in Sec-
tion 4 for using ζ̄ as the parameter for describing the nearly incompressible
transition. In particular, it explains why the function Ψi(0, ξ) was a good
approximation for χ = 10−2 for all ξ except for ξ = 10−5. Indeed, for this
case

ζ̄ =
1√
10

is simply insufficiently large. The first condition in (81) suggests that the
nearly compressible transition should be characterized by

ζ̃ :=
ξ1/4

χ
. (82)

Indeed, this choice is supported by the data in Table 4. The single-parameter
asymptotic solution for χ = O(1) holds if and only if ζ̃ < 1/

√
10, that is, for

the last row.

6 Discussion

The asymptotic solutions developed in Sections 2 and 3 allowed us to address
several important open issues pertaining to axisymmetric deformation of thin
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layers constrained by either two rigid plates or two rigid spheres. While our
solution for thin layers between plates has the advantage of relying only on
the layer thinness and Saint-Venant’s principle as the only assumptions, it
does not impact significantly the quantitative aspect of the problem. Indeed,
for all practical purposes, the problem was quantified in [15] back in 1963.
Nevertheless our analysis introduced the parameter ζ , which represents the
interplay between the thinness and compressibility; see (32). This single
parameter is necessary and sufficient for differentiating among the compress-
ible, intermediate, and incompressible regimes. For thin layers between two
spheres, the impact was more significant, as we bridged the chasm between
the single-parameter asymptotic solutions for compressible [9] and incom-
pressible [10] layers. Further, we demonstrated that the interplay between
the thinness and compressibility requires two parameters ζ̄ and ζ̃; see (65)
and (82). The former allowed us to identify the transition from the nearly
incompressible to incompressible regimes, and the latter from the compress-
ible to nearly compressible regimes. These transitions were identified using
the asymptotic analysis in Section 5.

The two problems considered in this work belong to a well-established class
of singularly perturbed elliptic boundary-value problems defined on slender
domains. A general theory for these problem has been developed in [3],
and numerous applications of this theory to boundary-value problems aris-
ing in classical elasticity, conductivity, and electromagnetism can be found
in [4]. An important feature of singularly perturbed elliptic boundary-value
problems is the presence of boundary layers. In particular, Saint-Venant’s
principle for elastic beams, dating back to 1855, can be formally related to
exponentially decaying boundary layers. For plates and shells, formal asymp-
totic analysis gives rise to a combination of exponentially decaying boundary
layers associated with local plane strain and anti-plane shear boundary-value
problems defined on scaled transverse sections. In this context, boundary-
value problems for thin plates were analyzed in [22, 23], where Saint-Venant’s
principle was framed in terms of an exponentially decaying boundary layer
in an infinite stripe. The influence of boundary conditions for plates under
bending on the exponential decay was examined in [24].

Asymptotic solutions presented in Sections 2 and 3 constitute leading or-
der approximations, whereas the analysis of Section 5 is based on develop-
ing asymptotic series. For Dirichlet boundary conditions, considered in this
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work, the algorithm for constructing asymptotic series is straightforward, as
the construction is reduced to a recurrence of boundary-value problems on
the scaled cross-section. The problem becomes more technical if Neumann
boundary conditions are prescribed on the upper and lower boundaries of
the layer. In general, the asymptotic series ansatz can be developed using
Jordan chains [3]. In particular, a Jordan chain of length two is required for
each in-plane displacement, and a Jordan chain of length four is required for
the transverse displacement. Among more problem-specific results, we single
out Ling’s work [25], who examined boundary layers in both compressible
and incompressible elastic materials. There it was shown that the boundary
layer (i) exhibited an exponential decay, (ii) had an insignificant contribution
globally, and (iii) mildly depended on Poisson’s ratio. These conclusions are
in complete agreement with our analysis.

Results and techniques presented in this paper can be extended in several
directions. We describe those extensions by dividing them into three groups,
in the ascending order of difficulty.

The problem for two spheres can be solved for non-equal spheres, as it was
done in both [9] and [10]. We decided to solve the simpler problem because
the formulas were already too long and not particularly insightful. This
generalization results in the surfaces ∂Ω± asymptotically characterized as

Z− = −1− 1

2
R2 and Z+ = 1 +

1

2α
R2 . (83)

Here it is assumed that a is the radius of the lower sphere and αa is the
radius of the upper sphere. This generalization will give rise to Φ being
a general cubic polynomial in Z, and a slightly different but still solvable
in hypergeometric functions equation for A(R). Also note one can choose
α = 0 for a plane ∂Ω+ or α < 0 for a ”convergent” layer. Further, since the
asymptotic analysis reduces the spheres to parabaloids of revolution locally, it
is straightforward to extend our analysis to other surfaces, which locally can
be approximated by parabaloids of revolution. Those, for example, include
power-log cusps.

Problems for axisymmetric domains subjected to non-axisymmetric loading,
can be solved using trigonometric series,

1

2
a0(r, z) +

∞
∑

n=1

an(r, z) cos(nθ) + bn(r, z) sin(nθ) ,
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in which Love-Galerkin’s potential used in this work can be regarded as the
term a0(r, z) [11]. Here θ is the angle of the cylindrical coordinate system
(r, θ, z). This approach may be useful for analyzing thin layers subjected to
shear, bending, and twisting [26].

The asymptotic analysis of Navier’s equations can be extended to full-three
dimensional, by simply rewriting the governing equations in scaled coordi-
nates, as it was done in Section 5. In particular, we can generalize the scaling
in (52) to Cartesian coordinates chosen so that x3 is in the thickness direction,

X1 =
x1√
ξa

, X2 =
x2√
ξa

, X3 =
x3

ξa
.

Here a is the smallest radius of curvature for the confining surfaces ∂Ω− and
∂Ω+, and the minimum distance between these surfaces is set equal to ξa.
In these coordinates the gradient operator takes the form

∇ = e1
∂

∂x1
+ e2

∂

∂x2
+ e3

∂

∂x3
=

1√
ξa

(

e1
∂

∂X1
+ e2

∂

∂X2
+ e3

1√
ξ

∂

∂X3

)

.

This approach may be very difficult to realize, as the challenging ordinary
differential equations will be replaced with even more challenging partial dif-
ferential equations. Nevertheless it may be useful for identifying transitions
from the compressible to intermediate, and intermediate to incompressible
regimes for general three-dimensional problems for thin layers.

Let us conclude that the asymptotic analyses in Sections 3 and 5 were nicely
connected by the relationship (80). On the one hand, it provided an insight-
ful interpretation for A(R), and, on the other hand, it allows us to connect
(56) and (79). This connection, valid in the nearly incompressible regime,
echoes that examined in [8]. Indeed, both approaches use Navier’s equa-
tions as the point of departure, and recognize the importance of Θ being
independent of Z, as a cornerstone of the solution. In our case, Navier’s
equations are restricted to axisymmetric problems, whereas [8, 21] considers
three-dimensional problems.
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