
  

Abstract— It is well-known that the maximum power can be 

transferred to a load when its impedance is the complex conjugate 

of the source impedance in an electrical or electronic system 

although the power transfer efficiency is only 50% in this case. Is 

it true for a radio system as well? This has been a question for 

decades. In this paper, the equivalent circuits of  antenna systems 

are re-examined. It is demonstrated that the classical equivalent 

circuit models, based on the Thévenin or Norton theorem, are not 

suitable for a receiving antenna system since the antenna cannot 

be simply approximated by a voltage or a current source. A 

constant power source is required but not readily available. Thus, 

two new general power sources are introduced and examined. It is 

found that such a general power source model may be suitable for 

a transmitting antenna system but not accurate enough for a 

receiving antenna when the antenna loss is taken into account. A 

new special constant power source is therefore proposed, it is 

shown that this new equivalent circuit can well simulate the 

behaviour of a receiving antenna. When the load impedance is the 

complex conjugate of the antenna impedance, the maximum 

power is obtained, and the power transfer efficiency is also 

maximized simultaneously (up to 100% if the antenna system is 

lossless).  

 
Index Terms—Antennas, antenna modelling, equivalent 

circuits, radio system modelling. 

I. INTRODUCTION 

Adio systems are now everywhere and have become an 

essential part of our daily life. The most well-known 

examples are radio, TV, smartphones and radar. An antenna, as 

a vital element of these systems, is employed to radiate and/or 

receive radiowaves, thus electric signals (voltage and current) 

are converted to radiowaves (electric and magnetic fields), and 

vice versa. From the circuit point of view, an antenna is 

equivalent to an impedance which is a complex number: the 

real part is formed by the radiation resistance and loss 

resistance while the imaginary part is about the energy storage 

of the antenna. When the imaginary part is zero, the antenna 

operates at a resonant frequency. Ideally, the antenna 

impedance should be the same as the characteristic impedance 

of the transmission line connected to it, typically 50 ohms. To 

 
 

 

 

 

understand the role of an antenna in a radio system, an 

equivalent circuit is used in almost all antenna books [1-5]. At 

the transmitter (Tx), the antenna is considered as the load to the 

Tx source as shown in Fig. 1 where, for simplicity, the antenna 

is directly connected to the source without considering the 

characteristic impedance of the transmission line. The 

Thévenin equivalent circuit is given in Fig. 1(a) where the 

source is a constant voltage source with an internal impedance 

𝑍𝑆  in series with the load/antenna impedance 𝑍𝐿 , while the 

Norton equivalent circuit is presented in Fig. 1(b) where the 

source is a constant current source in parallel with its internal 

impedance 𝑍𝑆  and the antenna impedance 𝑍𝐿 [1, 2]. When to 

use Thévenin or Norton equivalent circuit, it depends on the 

feature of the source in practice. It can be proved that these two 

circuits are equivalent when both source impedances are the 

same (𝑍𝑆) as shown in Fig. 1. The Thévenin equivalent circuit 

can be easily converted to the Norton equivalent circuit, and 

vice versa. The source voltage 𝑉𝑆  and the source current 𝐼𝑆 

satisfy the following equation: 

𝑉𝑆 = 𝐼𝑆𝑍𝑆 (1) 

 

Fig. 1. The equivalent circuit of an antenna system: (a) The Thévenin 

equivalent circuit; (b) The Norton equivalent circuit. 

Since the impedance  

𝑍𝑆 = 𝑅𝑆 + 𝑗𝑋𝑆;  𝑍𝐿 = 𝑅𝐿 + 𝑗𝑋𝐿 (2) 

we can find that the average load power in both equivalent 

circuits is the same, which is: 

𝑃𝐿 =
|𝐼𝐿|2𝑅𝐿

2
=

1

2

|𝑉𝑆|2𝑅𝐿

(𝑅𝑆 + 𝑅𝐿)2 + (𝑋𝑆 + 𝑋𝐿)2
 

=
1

2

|𝐼𝑆|2𝑅𝐿(𝑅𝑆
2 + 𝑋𝑆

2)

(𝑅𝑆 + 𝑅𝐿)2 + (𝑋𝑆 + 𝑋𝐿)2
 

(3) 
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This power consists of both radiated and ohmic loss powers. It 

can be proved that the power is maximized when the 

derivatives of 𝑃𝐿 to 𝑅𝐿 and 𝑋𝐿 are zero. In this case, the antenna 

impedance must be the complex conjugate of the source 

impedance: 

𝑍𝑆 = 𝑍𝐿
∗ = 𝑅𝑆 + 𝑗𝑋𝑆 = 𝑅𝐿 − 𝑗𝑋𝐿 (4) 

Thus, when 𝑅𝑆 = 𝑅𝐿  and 𝑋𝑆 = −𝑋𝐿, the maximum power is 

transferred to the load/antenna. Fig. 2 shows clearly how the 

power at the load varies with the magnitude of the load 

impedance ZL. At the maximum, from (3), we have 

𝑃𝐿 =
1

8

|𝑉𝑆|2

𝑅𝑆
=

1

8

|𝑉𝑆|2

𝑅𝐿
 

=
1

8

|𝐼𝑆|2(𝑅𝑆
2 + 𝑋𝑆

2)

𝑅𝑆
=

1

8

|𝐼𝑆|2(𝑅𝐿
2 + 𝑋𝐿

2)

𝑅𝐿
 

(5) 

This result is the well-known maximum power transfer 

theorem. But in this case, the maximum power transfer 

efficiency from the source to the load (defined as the ratio of the 

load power over the source power) is just 50%! That is, only 

half of the total source power is delivered to the antenna.  

From Fig. 1(a), we can see that the power transfer efficiency 

can actually be increased by either increasing the antenna 

impedance or reducing the source impedance. Similarly, in Fig. 

1(b), the power transfer efficiency can be increased by either 

reducing the antenna impedance or increasing the source 

impedance in the current source case. For both cases, the total 

load power would be reduced as a trade-off to increase the 

power transfer efficiency.  

 

Fig. 2. The power at the load as a function of the magnitude of its impedance. 

At the peak, the power transfer efficiency is 50% 

For a receiving antenna system, the power transfer efficiency 

is also just 50% in the perfectly matched case. That is, only half 

of the power received by the antenna is passed on to the 

receiver. A widely accepted explanation for the lower than 

expected power transfer efficiency is because of the 

re-radiation of the receiving antenna since a current is induced 

on the antenna which may re-radiate. This has been included in 

many popular antenna books [1-5]. But is this correct?  

In this paper, we aim to deal with this question. The classical 

equivalent circuits of an antenna system will be re-examined. 

The remainder of the paper is organized as follows. In Section 

II, we are going to review other people’s work on this 

interesting topic, and it is demonstrated that there is a problem 

with the classical model and concept. As a result, new 

equivalent circuits of two general constant power sources are 

introduced and discussed in Section III, but they are not 

accurate enough for a receiving antenna. In Section IV, a new 

equivalent circuit for a receiving antenna is introduced and 

discussed in detail. Conclusions are drawn in the final section. 

II. PREVIOUS STUDIES 

Friis’ formula is widely used in RF engineering and 

communications. It links the Rx power to the Tx power through 

antenna gains, propagation distance and frequency. However, it 

has not taken the whole radio system into account: the source of 

the Tx and the load of the Rx are not included in this formula. 

The power transfer efficiency issue is not dealt with in this 

formula.  

In practice, the power transfer efficiency of a radio system is 

a very important but complex issue since it has to take antennas 

and many other devices (such as filters and amplifiers) into 

account. Almost all university education and antenna books just 

introduce the simplified equivalent circuit using Thévenin’s 

and Norton’s Theorems as shown in Fig. 1. The limitation of 

the equivalent circuit of an antenna system was not discussed. 

However, this problem has drawn some researchers’ attention 

[6-14]. Quite a few interesting papers have been published. The 

focus of these studies has been on the receiving antenna and its 

scattered and/or absorbed power. Love proposed an equivalent 

circuit for aperture antennas in 1987 [6]. It was probably the 

first time that a constant power source was used to replace a 

voltage or current source for an antenna equivalent circuit. But 

it did not draw much attention, possibly because his discussion 

was limited to aperture antennas, not general enough. A few 

papers on the equivalent circuit of receiving antennas were 

presented in this magazine in 2002 and 2003 [7-11]. Basically, 

Love considered Van Bladel’s equivalent circuit in [7] not 

accurate for a receiving antenna [8] which stimulated Colin to 

conduct his own investigation [9]. Colin expressed his 

reservation on Love’s equivalent circuit but agreed that there 

were limitations on using the Thévenin and Norton equivalent 

circuits for a receiving antenna. He gave an interesting 

discussion on the re-radiated and scattered power by a receiving 

antenna. Their discussion finished without an agreed solution 

[10, 11]. A tutorial article on the receiving and scattering 

properties of antennas was presented in [12]. They concluded 

that the Thévenin/Norton equivalent circuit model can be used 

to determine the received and re-radiated powers for the 

antenna, but they “cannot be used to provide an accurate 

estimate of the total scattered power for the general antenna, 

since they cannot predict residual or structural scattering.” A 

more recent paper on this topic appeared in [13] where the 

complete equivalence of the Thévenin and the Norton circuits 

that describe the receiving properties of an N-port antenna was 

discussed using the Lorentz reciprocity theorem. Very recently, 

an equivalent model based on reciprocity theorem, consisting 

of a passive distributed transformer, was proposed for wire 

antennas (not for a general case) in both the transmit and 

receive modes [14]. It is apparent that the antenna equivalent 

circuit has been an interesting topic for many decades. But there 
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does not seem to have a generally accepted solution, and all 

these papers did not discuss the dilemma of 50% power transfer 

efficiency. Thus, the accurate antenna equivalent circuit and the 

50% power efficiency issue remain as an unsolved problem, 

and further work is required.  

III. TWO GENERAL CONSTANT POWER SOURCES 

Thévenin and Norton equivalent circuits were originally 

introduced for electrical and electronic systems where constant 

voltage and current sources are used. For example, a battery is a 

constant voltage source. These equivalent circuits may be 

applicable to a Tx antenna system, but they are definitely not 

suitable for an Rx antenna system since the receiving antenna is 

actually a constant power source. The power captured by an 

antenna is the product of the incoming power density and the 

effective area of the antenna [1-5]. For a given location and 

antenna, the received power is a constant and independent of 

the load impedance. Thus, a more accurate model for a 

receiving antenna should be a power source rather than a 

voltage or a current source.  

What is the equivalent circuit of a constant power source? 

This is surprisingly not a well-studied subject. There is very 

little information available in the public domain. It is 

interesting to note that, when dealing with the susceptibility of a 

transmission line in electromagnetic compatibility, both a 

voltage source (induced by the incident electric field) and a 

current source (induced by the incident magnetic field) are used 

simultaneously to model the incident wave [15]. This 

combination could act as a power a source. With this in mind, 

let us first introduce two new equivalent constant power 

sources in Fig. 3 which are based on the definition: power = 

voltage × current. Fig. 3(a) shows a power source formed by a 

voltage source and a current source in series (similar to Love’s 

model in [6]) while the power source in Fig. 3(b) is the 

combination of a voltage source and a current source in parallel. 

For simplicity, the power source is directly connected to a load 

with impedance ZL. The power source impedance is divided 

into two, Z1 and Z2, which could be considered as the internal 

impedances of the voltage and current source impedance, 

respectively. We are going to study these two power sources 

separately, and evaluate if they are suitable for an antenna 

system.  

 

3.1  For the series power source given in Fig. 3(a) 

 

  The total source impedance is:  𝑍𝑆 = 𝑍1 + 𝑍2 . The total 

(average) power 𝑃0  consists of the power dissipated at the 

source 𝑃𝑆 and the power at the load 𝑃𝐿: 

𝑃0 = 𝑃𝑆 + 𝑃𝐿 = (
1

2
|𝐼1|2𝑅1 +

1

2
|𝐼2|2𝑅2)

+
1

2
|𝐼1|2𝑅𝐿 

 (6) 

Using the circuit theory to obtain: 

𝐼1 = 𝐼𝑆 + 𝐼2 (7) 

𝑉𝑆 = 𝑍1𝐼1 + 𝑍2𝐼2 + 𝑍𝐿𝐼1 (8) 

 

 

Fig. 3. Two constant power sources: (a) Series power source; (b) Parallel 

power source. 

That means: 

𝐼1 =
𝑉𝑆 + 𝑍2𝐼𝑆

𝑍1 + 𝑍2 + 𝑍𝐿
; 𝐼2 =

𝑉𝑆 − (𝑍1 + 𝑍𝐿)𝐼𝑆

𝑍1 + 𝑍2 + 𝑍𝐿
 

(9) 

We can find the total power: 

𝑃0 =
1

2
|

1

𝑍1 + 𝑍2 + 𝑍𝐿
|

2

{|𝑉𝑆 + 𝑍2𝐼𝑆|2(𝑅1+𝑅𝐿)

+ |𝑉𝑆 − (𝑍1 + 𝑍𝐿)𝐼𝑆|2𝑅2} 

(10) 

As a constant power, it is not a function of the load; thus, the 

following conditions should be satisfied:  

𝜕𝑃0

𝜕𝑅𝐿
=

𝜕𝑃0

𝜕𝑋𝐿
= 0 

(11) 

After a lengthy process, in order to ensure that (11) is valid for 

all load impedance 𝑍𝐿, we must have: 

𝑋2 = 0, 𝑉𝑆 = 𝐼𝑆𝑅2 (12) 

This means that the voltage source 𝑉𝑆 and current source 𝐼𝑆 are 

linked through 𝑅2  only. The total power of the source is 

therefore proven to be: 

𝑃0 =
1

2
|𝑉𝑆𝐼𝑆| =

1

2
|𝐼𝑆|2𝑅2 

(13) 

It is determined by 𝑽𝑺, 𝑰𝑺, 𝑹𝟐 , but not 𝒁𝟏  (i.e. it does not 

affect the total power in the circuit). The power delivered to the 

load is 
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𝑃𝐿 =
1

2
|𝐼1|2𝑅𝐿 =

1

2
|

𝑉𝑆 + 𝑍2𝐼𝑆

𝑍1 + 𝑍2 + 𝑍𝐿
|

2

𝑅𝐿

=
2|𝑉𝑆|2𝑅𝐿

(𝑅𝑆 + 𝑅𝐿)2 + (𝑋𝑆 + 𝑋𝐿)2
 

(14) 

where 

𝑅𝑆 = 𝑅1 + 𝑅2, 𝑋𝑆 = 𝑋1 (15) 

Compared with (3), this power is four times larger than that in 

(3) which is resulted from the change of the source model. The 

total voltage produced by the source is actually 2𝑉𝑆, not 𝑉𝑆.  
Now let us examine three special cases.  

1) The perfectly matched case: as we did for (3), it can be 

proved that the power delivered to the load is maximized when 

the load impedance is the complex conjugate of the source 

impedance, i.e. 𝑅𝐿 = 𝑅𝑆 and 𝑋𝐿 = −𝑋𝑆 . Using (14), the 

maximum power delivered to the load can therefore be obtained 

as: 

𝑃𝐿𝑚𝑎𝑥
=

|𝑉𝑆|2

2𝑅𝑆
=

|𝑉𝑆|2

2(𝑅1 + 𝑅2)
 (16) 

The power transfer efficiency in this case is: 

𝜂 =
𝑃𝐿

𝑃0
=

𝑅2

(𝑅1 + 𝑅2)
 

(17) 

If 𝑅1 = 0, the load power is increased to the maximum, the 

same as the source power and we can find that 𝐼2 = 0: this 

means that there is no current passing through the resistance 𝑅2 

and no power dissipation at the source! The power transfer 

efficiency from the source to the load, as defined in (17), is now 

100%, not 50%. Here we have demonstrated that the total 

source power can now be fully delivered to the load when the 

perfect matching condition in (4) is met. It is interesting to note 

that the role of 𝑹𝟏 is about the loss of the source. If 𝑹𝟏is zero 

in the perfectly matched case, there is no power dissipation 

at both 𝑹𝟏 and 𝑹𝟐. However, if 𝑅1 is not zero, there will be 

power dissipation, and the power transfer efficiency will be 

smaller than 100%. 

2) The open-circuit (OC) case: the equivalent circuit in Fig. 

3(a) can be simplified to Fig. 4(a) in this case. The total source 

power 𝑃0 = |𝐼𝑆|2𝑅2/2  is only dissipated at the internal 

impedance 𝑅2 and no power is consumed by the load and 𝑅1.  

3) The short circuit (SC) case: the equivalent circuit in Fig. 

3(a) becomes Fig. 4(b). The total power:  

𝑃0 = 𝑃𝑆 = (
1

2
|𝐼1|2𝑅1 +

1

2
|𝐼2|2𝑅2) (18) 

It is dissipated at both internal resistances 𝑅1 and 𝑅2 which is 

different from the open-circuit case. If 𝑅1 = 0, 𝐼2 is equal to 𝐼𝑆 

and all power is only consumed by 𝑅2, which is the same as the 

OC case. 

 

 

Fig. 4. The equivalent circuits of two special cases 

(a) an OC load (b) a SC load. 

Up to now, we have examined the series power source case 

presented in Fig. 3(a), understood the role of each element and 

demonstrated that it can indeed provide a constant power given 

by (13) which can be 100% transferred to the load when the 

internal resistance 𝑅1 = 0. A very important message is that, 

when a power source is used, the maximum power and 

maximum power efficiency can be obtained at the same 

time – this is very different from a voltage source and a current 

source.  

 

3.2  For the parallel power source given in Fig. 3(b) 

 

 The two internal impedances are in parallel, thus the total 

source admittance is:  𝐺𝑆 = 𝐺1 + 𝐺2 , the impedance is in 

parallel with the current and voltage sources and can be 

expressed as: 

𝑍𝑆 =
𝑍1𝑍2

𝑍1 + 𝑍2
= 𝑅𝑆 + 𝑗𝑋𝑆 (19) 

Similar to the series power source, the total (average) power 𝑃0 

consists of the power dissipated at the source 𝑃𝑆 and the power 

at the load 𝑃𝐿: 

𝑃0 = 𝑃𝑆 + 𝑃𝐿 = (
1

2
|𝐼1|2𝑅1 +

1

2
|𝐼3|2𝑅2)

+
1

2
|𝐼4|2𝑅𝐿 

 (20) 

Using the circuit theory, we can find that the total power can 

be expressed as: 

𝑃0 =
1

2
{|𝐼1|2𝑅1 + |

𝑉𝑆 − 𝑍1𝐼1

𝑍2
|

2

𝑅2

+ |
𝑉𝑆 − 𝑍1𝐼1

𝑍𝐿
|

2

𝑅𝐿} 

(21) 

The expression for 𝐼1 is given by:  

                           (a)                                                       (b) 



𝐼1 =
(𝑍2 + 𝑍𝐿)𝑉𝑆 − 𝑍2𝑍𝐿𝐼𝑆

𝑍1𝑍2 + 𝑍2𝑍𝐿 + 𝑍𝐿𝑍1
 

(22) 

Thus, the total power in (21) can be determined by the current 

and voltage sources and the impedances in Fig. 3(b). Since the 

total power should be a constant and not a function of the load, 

it should satisfy equation (10), which results in the following 

conditions: 

𝑋1 = 0, 𝑉𝑆 = 𝐼𝑆𝑅1 (23) 

This means that the voltage 𝑉𝑆 and current 𝐼𝑆 are linked through 

𝑅1 only. The total power of the source is, therefore: 

𝑃0 =
1

2
|𝑉𝑆𝐼𝑆| =

1

2
|𝐼𝑆|2𝑅1 

(24) 

It is determined by 𝑽𝑺, 𝑰𝑺, 𝑹𝟏, but not 𝒁𝟐. It is interesting to 

note that this power 
1

2
|𝑉𝑆𝐼𝑆| is the same as the power provided 

by the series power source given by (13) although the roles of 

internal impedances are changed. 

 Similar to the series power source, for the parallel power 

source: 

  1) The perfectly matched case: it can be proved that the 

power delivered to the load is maximized when the load 

impedance is the complex conjugate of the source impedance, 

i.e. 𝑅𝐿 = 𝑅𝑆 and 𝑋𝐿 = −𝑋𝑆. The total source power can also be 

100% (not 50%) delivered to the load in this case. It is 

interesting to note that the role of 𝑹𝟐 is about the loss of the 

source. If 𝑹𝟐 is zero, there is no power dissipation at both 

𝑹𝟏and 𝑹𝟐 . However, if 𝑅2  is not zero, there will be power 

dissipation at both 𝑅1and 𝑅2, and the power transfer efficiency 

will be smaller than 100%. 

2) The OC case: This is equivalent to the SC case of Fig. 

3(a). 

3) The SC case: This is equivalent to the OC case of Fig. 3(a). 

 

3.3 Discussions 

 

In this section, we have introduced the equivalent circuits of 

two general constant power sources given in Fig. 3. Are they 

suitable for a Tx and Rx antenna system? 

For a Tx antenna system, the source is normally complicated. 

It is possible to use the equivalent circuit of a voltage, or a 

current or a power source introduced here to approximate the 

source connected to the Tx antenna. Which one is the most 

appropriate source – depending on the specific system. For 

example, if an antenna were connected to a signal generator or a 

network analyzer, the source could be approximated by a 

constant power source as shown in Fig. 3, while the Tx antenna 

could be simply represented by a load impedance 𝑍𝐿  in an 

equivalent circuit. The power transfer efficiency could be up to 

100%.  

For an Rx antenna system, the Rx antenna acts as a constant 

power source – the power is determined by the incoming wave 

power density and the antenna effective area. Can we use a 

source in Fig. 3 to represent the receiving antenna? This is a 

critical question of this study.  

Mathematically, the antenna impedance can be expressed as: 

𝑍𝐴 = 𝑅𝐴 + 𝑗𝑋𝐴 = 𝑅𝑟 + 𝑅𝑙𝑜𝑠𝑠 + 𝑗𝑋𝐴 (25) 

where 𝑅𝑟 is the radiation resistance and reflects the ability of 

the antenna for the energy conversion, 𝑅𝑙𝑜𝑠𝑠  is the loss 

resistance and represents the ohmic or dielectric loss of the 

antenna. This loss is independent of the load connected to the 

antenna and should be included in the equivalent circuit of the 

power source. From the above discussion, we have seen that: 

1) For Fig. 3(a), 𝑅1  represents the loss resistance of the 

source, thus it should be equivalent to 𝑅𝑙𝑜𝑠𝑠 of the antenna. It 

seems to work for both the perfectly matched case and the SC 

case. However, for the open-circuit case as shown in Fig. 4(a), 

the loss resistance 𝑅1  (i.e. 𝑅𝑙𝑜𝑠𝑠)  is not linked to the 

power, which is wrong for a receiving antenna. Because, as 

shown in Fig. 5, the received power into the antenna 𝑃𝑖𝑛 is first 

partially consumed by the antenna due to its loss 𝑅𝑙𝑜𝑠𝑠 (it is also 

linked to the antenna radiation efficiency) and then absorbed by 

the load 𝑅𝐿. If it is not perfectly matched, some power will be 

reflected from the load back to the antenna and go through 

another round of power consumption by 𝑅𝑙𝑜𝑠𝑠  and finally 

re-radiated back to space via 𝑅𝑟  (equivalent to 𝑅2). Thus, the 

total power consumed in the circuit should include the loss. 

When it is perfectly matching, the power contains the antenna 

loss once. For any other cases, it consists of the antenna loss 

twice plus the re-radiation. Thus, Fig. 3(a) is not accurate 

enough to take the antenna loss into account.  

 

Fig. 5. The power going through a receiving antenna. 

2) For Fig. 3(b), similarly, it does not properly take the 

antenna loss into account for the SC case where the power is 

only dissipated at the internal impedance 𝑅1 and no power is 

consumed by 𝑅2 which is linked to the antenna loss resistance 

in this case. Thus, Fig. 3(b) is also not accurate enough to 

represent a receiving antenna system.  

Although the two general constant power sources introduced 

in Fig. 3 could be used for a Tx antenna system, for an Rx 

antenna, they have difficulties in taking the antenna loss fully 

into account, thus, a more accurate circuit model is required for 

an Rx antenna.  

IV. THE PROPOSED RECEIVING ANTENNA MODEL 

As discussed in Fig. 5, the power delivered to the load is the 



received power taking away the loss power of the antenna 

through the ohmic loss and re-radiation. Thus, the antenna loss 

resistance is present for any load impedance. A new equivalent 

circuit model for a receiving antenna is proposed and shown in 

Fig. 6 where Rr, Rloss, RL, XA, and XL represent the antenna 

radiation resistance, the antenna loss resistance, the load 

resistance, the antenna reactance and the load reactance, 

respectively. The model is similar to the parallel power source 

model in Fig. 3(b), the only change is the parallel loss resistance 

𝑅2 (which is Rloss for the antenna) is now placed in series with 

the current source to ensure that the antenna loss is included for 

all cases as we will see later.  

As shown in Fig. 5, the antenna loss power appeared twice 

which is also reflected in Fig. 6 by the loss resistance Rloss.  

It is worth noting that the voltage source V0 and the current 

source I0 are linked by the relationship presented in (1) (V0 = I0 

ZA and ZA = Rr + Rloss + jXA is the antenna impedance for the 

case in Fig. 6). 

To obtain the load power (PL) and re-radiated power (Prrad), 

we can apply the superposition method [16]. First, we replace 

the current source I0 with an OC to find the load current (IL1) 

and the antenna current (IA1) as shown in Fig. 7(a). Then, we 

replace the voltage source V0 with an SC to find the load current 

(IL2) and the antenna current (IA2) as shown in Fig. 7(b). The 

overall load current is IL = IL1 + IL2 and the overall antenna 

current is IA = IA1 - IA2 (due to the opposite direction). 

From Fig. 7(a), we have 

𝐼𝐿1 = 𝐼𝐴1 =
𝑉0

(𝑅𝑟 + 𝑅𝑙𝑜𝑠𝑠 + 𝑅𝐿) + 𝑗(𝑋𝐴 + 𝑋𝐿)
 (26) 

From Fig. 7(b) 

𝐼𝐿2 =
𝐼0(𝑅𝑟 + 𝑅𝑙𝑜𝑠𝑠 + 𝑗𝑋𝐴)

(𝑅𝑟 + 𝑅𝑙𝑜𝑠𝑠 + 𝑅𝐿) + 𝑗(𝑋𝐴 + 𝑋𝐿)
 (27) 

𝐼𝐴2 =
𝐼0(𝑅𝐿 + 𝑗𝑋𝐿)

(𝑅𝑟 + 𝑅𝑙𝑜𝑠𝑠 + 𝑅𝐿) + 𝑗(𝑋𝐴 + 𝑋𝐿)
 (28) 

Note that IA2 flows counter-clockwise (CCW) while IL1, IA1 

and IL2 flow clockwise (CW). 

Since 𝐼𝐿 = 𝐼𝐿1 + 𝐼𝐿2, 𝐼𝐴 = 𝐼𝐴1 − 𝐼𝐴2, the load power 𝑃𝐿 and 

the re-radiated power 𝑃𝑟𝑟𝑎𝑑 can be expressed as: 

𝑃𝐿 =
1

2
|𝐼𝐿|2𝑅𝐿 =

2|𝑉0
2|𝑅𝐿

(𝑅𝑟 + 𝑅𝑙𝑜𝑠𝑠 + 𝑅𝐿)2 + (𝑋𝐴 + 𝑋𝐿)2
 (29) 

𝑃𝑟𝑟𝑎𝑑 =
1

2
|𝐼𝐴|2𝑅𝑟 =

1
2

|𝑉0 − 𝐼𝑜𝑍𝐿|2𝑅𝑟

(𝑅𝑟 + 𝑅𝑙𝑜𝑠𝑠 + 𝑅𝐿)2 + (𝑋𝐴 + 𝑋𝐿)2
 (30) 

The load power in (29) and the load powers obtained from 

Thévenin and Norton equivalent circuits shown in Fig. 1 are 

plotted against load impedance (ZL) and presented in Fig. 8. The 

powers are normalized to the maximum input power in each 

case while the load impedance is normalized to the antenna 

impedance (ZA). Assuming lossless antennas (Rloss = 0), it is 

clear that in Thévenin and Norton equivalent circuits, the load 

powers for both cases are the same as shown in Fig. 8 (they are 

overlapping) and reach up to 50% of the input power at the 

perfectly matching condition (|ZA| = |ZL|), but it reaches 100% 

for the proposed model which agrees with the behaviour of a 

lossless antenna in the receiving mode.  

 

 

Fig. 6. The proposed receiving antenna model. 

 

 

Fig. 7. Applying the superposition method to the proposed model by 

(a) replacing I0 with an OC (b) replacing V0 with an SC 

Regarding the loss power, there are two loss resistances in 

our proposed model which is a bit more complex than normal. 

A load-independent loss power (which is the first PLoss in Fig. 5) 

is due to the loss resistance (Rloss) in series with I0 as shown in 

Fig. 6. It can be expressed as 
1

2
|𝐼0|2𝑅𝑙𝑜𝑠𝑠 . Furthermore, an 

additional loss power (which is the second PLoss in Fig. 5) exists 

due to the loss resistance in series with V0. This loss power 

equals to 
1

2
|𝐼𝐴|2𝑅𝑙𝑜𝑠𝑠 – this is load-dependent as we will see 

later: 𝐼𝐴 = 0 when it is perfectly matched. The antenna total 

loss power (PLoss) is the sum of these two losses 

(a) 

(b) 



(load-independent and load-dependent) and can be expressed 

as: 

𝑃𝐿𝑜𝑠𝑠 =
1

2
|𝐼0|2𝑅𝑙𝑜𝑠𝑠 +

1

2
|𝐼𝐴|2𝑅𝑙𝑜𝑠𝑠 (31) 

 

Fig. 8. The normalized load power as a function of the impedance ratio of the 

load and antenna on a logarithmic scale. 

This can be explained using Fig. 5: in the receiving antenna 

system, when the received signal travels to the load, the 

load-independent loss occurs due to the finite conductivity of 

the antenna. Once the signal is delivered to the load, a portion 

of it may be reflected in correspondence to the mismatch 

between the antenna impedance and the load impedance. This 

portion is reflected back to the antenna to be re-radiated. Hence, 

the load-dependent loss occurs.  

For the case ZA ≠ ZL, the antenna current IA exists and hence 

Prrad exists. The larger the difference between ZA and ZL (i.e. 

more mismatching), the larger the value of IA due to the 

dominance of one of its components (IA1 or IA2) over the other. 

Hence, more power is re-radiated, and less power is consumed 

by the load. This typically implies the behaviour of an antenna 

in the receiving mode. 

Fig. 9 shows various powers for an antenna with 80% 

antenna efficiency which are obtained using (29), (30) and (31). 

All the plotted powers are normalized to the input power. It is 

clear that both the input power and the load-independent loss 

power are constant (black and green horizontal lines 

respectively) with the variation of ZL for a fixed ZA. This 

demonstrates their independency of the antenna load 

impedance. The other powers are dependent on the load. The 

load power reaches its maximum (80% of the input power) in 

the perfect matching case while it decreases when deviating 

from the matching point until it vanishes at the OC and SC 

cases. The load-dependent loss power is zero at the perfect 

matching case because of the absence of the reflected power 

from the load and it increases until it reaches its maximum 

value at the OC and SC loads (to be the same as the 

load-independent loss power) because of the total reflection at 

the load. The re-radiated power is also zero at the perfect 

matching point and then increases when the impedance moves 

towards the edges. The maximum re-radiation occurs when the 

antenna is terminated with an OC or SC load. Note that in this 

case, the re-radiated power is 60% of the input power due to the 

doubled loss power (20% load-independent loss + 20% 

load-dependent loss). In general, at any load condition, the sum 

of the load power, load-independent loss power, 

load-dependent loss power and re-radiated power should equal 

to the constant input power. 

 

 
Fig. 9. The normalized various powers as a function of the impedance ratio of 

the load and antenna on a logarithmic scale for a lossy case. 

Now let us consider the three special cases again. 

1) The perfectly matched case: Rr + Rloss = RL and XA = -XL, 

the antenna current 𝐼𝐴 = 0 as its two components IA1 and IA2 are 

equal in magnitude and opposite in direction. Thus, 

Prrad is zero (i.e. no re-radiation). PL in (29) is maximized and 

equals to: 

𝑃𝐿𝑚𝑎𝑥
=

𝑉0
2

2𝑅𝐿
 (32) 

2) The OC case: RL = XL = ∞. Using equations (26), (27) and 

(28), IA1 = IL1 = IL2 = 0. Hence PL is zero as shown in (29) and in 

Fig. 10(a) while IA2 = I0. So, IA = I0 and flows CCW. The 

re-radiated power and the loss power are maximized and can be 

re-written using equations (30) and (31) as: 

𝑃𝑟𝑟𝑎𝑑 =
1

2
|𝐼0|2𝑅𝑟 (33) 

𝑃𝐿𝑜𝑠𝑠 = |𝐼0|2𝑅𝑙𝑜𝑠𝑠 (34) 

In this case, both the load-independent and load-dependent 

loss powers are identical and equal to 
1

2
|𝐼0|2𝑅𝑙𝑜𝑠𝑠. 

3) The SC case: RL = XL = 0, as in Fig. 10(b), IL1 = IA1 = V0 /ZA 

= I0, IL2 = I0 and IA2 = 0. Although IL = 2I0, the load power PL in 

(29) is zero due to the fact that RL = XL = 0. IA, in this case, 

equals to I0 and flows CW. Again, the re-radiated power and the 



loss power are maximized and can be expressed by (33) and 

(34) respectively. 

 

Fig. 10. The proposed receiving antenna model terminated by 

(a) an OC (b) an SC. 

 

 
Fig. 11. The antenna current and the load current as a function of the 

impedance ratio of the load and antenna on a logarithmic scale 

It is worth noting that although IA has the same magnitude in 

both OC and SC cases, it has opposite directions (CCW and 

CW respectively). This can be linked to the fact that an OC has 

a reflection coefficient Γ = 1 while a SC results in a reflection 

coefficient Γ = -1. This can be better clarified by plotting the 

responses of IA and IL to the variation of ZL using equations 

(26), (27) and (28) as shown in Fig. 11, where the currents are 

normalized to the value of the current source I0. It is clear that IA 

changes its sign when the load impedance changes from the SC 

(IA = 1) to the OC (IA = -1). It becomes zero at the perfect 

matching point (it means no re-radiation). This indicates the 

180° phase change between the reflection coefficients at the 

two extreme cases (SC and OC loads). Moreover, load current 

IL equals to twice of the source current when the load is the SC 

while it reaches zero when the load is the OC. These currents 

are not affected by the antenna impedance and they are the 

same for loss-free and lossy cases.  

In case there is a doubt on the antenna input impedance (Zin) 

in the proposed model, Thévenin theorem is applied by 

replacing I0 with an OC and V0 with an SC then looking at the 

antenna through its load terminals [16], as shown in Fig. 12. It 

is clear that Zin = Rr + Rloss + jXA = ZA. This is a standard input 

impedance of an antenna and also proves the validity of 

equation (1). 

 

Fig. 12. The input impedance of the proposed antenna model using 

Thévenin theorem 

Another very important issue is how to link the equivalent 

circuit source to the incoming radiowave (i.e. the fields E and 

H). If the the polarization of the wave is well matched with the 

antenna, the antenna received power should be the same as the 

equivalent source power, that is 

𝑃𝐴 =
1

2
(𝐸 × 𝐻∗)𝐴𝑒𝑓𝑓 =

1

2
(𝑉0 × 𝐼0

∗) (35) 

where 𝐴𝑒𝑓𝑓 is the effective aperture of the antenna. We can find 

that   

𝑉0 = 𝐸√
𝑍𝐴

𝜂
𝐴𝑒𝑓𝑓     ,     𝐼0 = 𝐻√

𝜂

𝑍𝐴
𝐴𝑒𝑓𝑓 

(36) 

where η is the medium intrinsic impedance (377 ohm in free 

space) and equals to the ratio of E and H. This agrees with 

source equation V0 = I0 ZA, we can use (36) to link the incoming 

fields and the equivalent circuit source. It should be pointed out 

that here we have not taken the antenna scattered wave/power 

into account, since the wave scattering of the receiving antenna 

is dependent on the antenna configuration and structure [11, 

12]. The power in (35) is the received power, excluding the 

scattered power. How to take the the scattered power into 

account could be a direction for future study. 

V. VERIDATION AND CONCLUSIONS 

As pointed out earlier, the major difference between the 

power source models in Fig. 3 and the Rx antenna model in Fig. 

6 is the loss. To better understand this point, we have plotted the 

normalized loss powers of the sources in Fig. 3(a) (the series 

power source) and in Fig. 6 (the proposed Rx antenna source) 

for the lossless and a lossy case (with an efficiency of 80%). 

(a) 

(b) 



The load impedance changes from the SC to OC. The results 

are shown in Fig. 13. As expected, the loss powers for both 

sources are zero for the lossless case. However, they are 

different for the lossy case except when it is perfectly-matched 

(the normalized/relative loss power is 20% for both cases). As 

discussed in Fig. 6, we understand why the loss power is 40% 

for both OS and SC cases. For the source in Fig. 3(a), the loss 

power reaches its maximin 4η(1-η) = 64% at the SC and the 

minimum 0% at the OC (For Fig. 3(b), the results are just the 

opposite). This further confirms the validity of Fig. 6 and 

deficiency of Fig. 3 as the Rx antenna model.  

 

 

Fig. 13. Normalized loss power in two different power sources for the lossless 

and a lossy case. 

To validate the proposed new antenna equivalent circuit, 

both simulation and measurements have been carried out. For 

example, two microstrip patch antennas resonating at 3 GHz 

with a realized gain of 6.3 dBi were used in an anechoic 

chamber as shown Fig. 14. 

 

 

Fig. 14. Two patch antennas were used to measure the S11 with different loads. 

The reflection coefficient (S11) of the transmit antenna was 

measured for the standalone (no receive antenna), a 

well-matched receive antenna, an OC receive antenna and an 

SC receive antenna cases, respectively. The results are shown 

in Fig. 15 where we can see that  

1) there was almost no difference in S11 between the 

standalone and matched load cases. This indicates that there 

was almost no re-radiation from the well-matched antenna 

(small chang may be due to scattered power from the antenna).  

2) S11 was increased (at the resonant frequency) for the OC 

and SC cases, which was resulted from the re-radiations of the 

receive antenna. 

All these results are in very good agreement with our 

equivalent circuit prediction and software simulation results.  

 

 

Fig. 15. Measured S11 of the Tx antenna when the Rx was connected to 

different loads. 

There might be a question on if we could use the proposed 

receiving antenna model for a transmitting antenna. As 

discussed earlier, if the transmitting antenna system, is not a 

power source, thus the equivalent circuit in Fig. 6 (and Fig. 3) is 

not suitable. However, if it is a power source, we could use 

equivalent circuits in Fig. 3 and Fig. 6 – depending on the 

feature of the source in reality. When 𝑍2 = ∞  and 𝑅𝑙𝑜𝑠𝑠 =
0, Fig. 3(b) and Fig. 6 become the same. 

Another question is linked to the use of the equivalent circuit 

for the proof of the reciprocity theorem. Some books (such as 

[1, 2]) used the voltage source which is not correct as we know 

now. It should be replaced by our proposed power source 

although the results are the same. A main impact of the 

proposed power source model is for us to better understand how 

an antenna works from the circuit point of view and obtain the 

power and power transfer efficiency accurately. One example is 

to use the new circuit model for rectenna design which is a hot 

topic for wireless energy harvesting and power transfer.  

In this paper, we have studied the equivalent circuits of an 

antenna system. When it is used as a Tx antenna, the antenna 

acts as a complex load impedance to the source. The equivalent 

circuit of a Tx antenna system could have a constant voltage, 

current or power source as shown in Figs. 1, 3 or 6, depending 

on which source is actually used in reality. When it is used as an 

Rx antenna, the antenna acts as a constant power source. It has 

shown that the two new general power source models in Fig. 3 

is not suitable for an Rx antenna system since they cannot take 

the antenna loss fully into account, thus another new special 

constant power source has been introduced and presented in 

Fig. 6 where the antenna loss power is formed by a 

load-independent part and a load-dependent part which have 

 

Transmit 

antenna 

Receive 

antenna 
30 cm 

Load  

(50Ω – O.C – S.C) 



shown clear physical meanings. It has also shown that for an 

antenna system with a constant power source, the maximum 

power and maximum power transfer efficiency can be achieved 

at the same time when the load impedance is the complex 

conjugate impedance of the source/antenna. The power transfer 

efficiency could be 100% for a loss-free case.  

 

REFERENCES 

[1] J. D. Kraus, Antennas, 2nd Edition, New York, McGraw-Hill Book 

Company, Chapter 2, 1988. 

[2] C. A. Balanis, Antenna Theory: Analysis and Design, John Wiley & 

Sons, New York, NY, USA, 2ed Edition, Chapter 2, 1997. 

[3] Y. Huang and K. Boyle, Antennas: from theory to practice, John Wiley 

& Sons, Chapter 5, 2008. 

[4] W. L. Stutzman and G. A. Thiele, Antenna Theory and Design, 3rd 

Edition, John Wiley & Sons, p. 101, 2012 

[5] C. A. Balanis, Modern Antenna Handbook, Wiley-Interscience New 

York, NY, USA, Chapter 21, 2008. 

[6] A. W. Love, “Equivalent circuit for aperture antennas,” Electron. Lett., 

vol. 23, no. 13, pp. 708–710, 1987.  

[7] J. Van Bladel, “On the Equivalent Circuit of a Receiving Antenna”, 

IEEE Antennas and Propagation Magazine, pp. 164-165, Feb. 2002. 

[8] A. W. Love, "Comment on the equivalent circuit of a receiving antenna," 

IEEE Antennas and Propagation Magazine, vol. 44, no. 5, pp. 124-125, 

Oct. 2002. 

[9] R. E. Collin, "Limitations of the Thévenin and Norton equivalent circuits 

for a receiving antenna," IEEE Antennas and Propagation Magazine, 

vol. 45, no. 2, pp. 119-124, April 2003. 

[10] A. Love, “Comment on “limitations of the Thévenin and Norton 

equivalent circuits for a receiving antenna”, IEEE Antennas Propag. 

Mag., vol. 45, no. 4, pp. 98–99, Aug. 2003.  

[11] R. Collin, “Remarks on “Comments on the limitations of the Thévenin 

and Norton equivalent circuits for a receiving antenna”, IEEE Antennas 

Propag. Mag., vol. 45, no. 4, pp. 99–100, Aug. 2003.  

[12] S. Best and B. Kaanta, “A tutorial on the receiving and scattering 

properties of antennas,” IEEE Antennas Propag. Mag., vol. 51, no. 5, pp. 

26–37, Oct. 2009. 

[13] A. T. de Hoop, M. Stoopman, et al, “Equivalent Thévenin and Norton 

Kirchhopp Circuits of a Receiving Antenna,” IEEE Antennas and 

Wireless Prop. Letters, vol. 12, pp.1627-1630, 2013. 

[14] J. R. Bray, “An improved antenna scattering model: an equivalent model 

based on the reciprocity theorem,” IEEE Antennas and Propagation 

Magazine, vol. 61, no. 4, pp. 30-39, Aug. 2019. 

[15] C. R. Paul, “Introduction Electromagnetic Compatibility”, 

Wiley-Interscience New York, NY, USA, Chapter 8, 2002. 

[16] A. S. Sedra and K. C. Smith, Microelectronic Circuits, Oxford 

University Press, 7th ed., New York, NY, USA, 2014. 

 


