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Abstract 12 

Diffusion creep is a fundamental mechanism by which Earth materials deform, but the way 13 

microstructure evolves during diffusion creep remains poorly understood, because the 14 

mechanism does not leave behind abundant microstructural indicators. Because most rocks are 15 

polyphase, this study used numerical simulations to investigate the influence of large second-16 

phase grains on the microstructural evolution of a fine-grained matrix during diffusion creep 17 

in both pure and simple shear. The results of the modelling show that large second-phase grains 18 

create stress heterogeneities that focus the effects of diffusion creep, which can lead to a 19 

profound drop in strength of a material, and dictate where grain boundary sliding surfaces 20 

develop within the fine-grained matrix. Rotations of matrix grains are strongly influenced by 21 

the rotation direction and velocity of the large grain, especially those that lie adjacent to it. The 22 

rotation direction of large grains is not simply either synthetic or antithetic to the shear 23 

direction. Instead, rotation directions of large grains can change due to interactions with the 24 

matrix. Such interactions could result in simple strain paths producing complex microstructures 25 

which could be misinterpreted to record much more complicated strain histories. 26 

  27 
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1 Introduction 28 

The geodynamic behaviour of the Earth is dependent on the physico-chemical properties of the 29 

Earth material being deformed, which itself is dependent on that material’s metamorphic and 30 

deformation history. A rock’s microstructure (texture) contains detailed information about the 31 

deformation and metamorphic processes that were operative during its history, provided 32 

geologists can correctly interpret the microstructural features. One aspect of textural 33 

interpretation that remains elusive is exactly how a microstructure evolves during diffusion 34 

creep. 35 

Diffusion creep is a fundamental process in the Earth’s lower mantle (Ammann et al., 2010; 36 

Karato and Li, 1992; Karato et al., 1995; Mohiuddin et al., 2020; Ritterbex et al., 2020), upper 37 

mantle (Hiraga et al., 2010; Hirth and Kohlstedt, 1995; Karato and Wu, 1993) and crust (Bell 38 

and Cuff, 1989; Kilian et al., 2011; Rosenberg and Stünitz, 2003; Rybacki and Dresen, 2000; 39 

Rybacki et al., 2006). In the mid-to-upper crust (to a depth of some 20 km), water is abundant. 40 

For example, in the fractured upper crust, an interconnected, fluid-filled network of pores 41 

characteristically makes up on the order of 1 vol%, and the crust behaves hydrologically like a 42 

homogeneous infinite aquifer (Bucher and Stober, 2010). Porosity vanishes below the brittle-43 

viscous transition (~12–15 km depth) but water remains adsorbed to grain boundaries, and 44 

occurs in hydrous phases and fluid inclusions (Bucher and Stober, 2010). In the presence of 45 

fluid, diffusion-dominated deformation is termed pressure solution or dissolution-precipitation 46 

creep (Menegon et al., 2008; Rutter, 1976; Rutter, 1983; Wheeler, 1992; Wintsch and Yi, 47 

2002). It is important to recognise that pressure solution occurs by diffusion of material along 48 

stressed H2O-rich grain boundary films, which have different physical properties and chemical 49 

behaviour to pockets of fluid that, for example, may collect in pores (Gratier et al., 2013; 50 

Wheeler, 1992). Hence, the processes of pressure solution and diffusion creep are equivalent 51 

and can be described by exactly the same equations (Elliott, 1973). The presence or absence of 52 
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a crystallographic preferred orientation (CPO) is commonly used to distinguish deformation 53 

by dislocation creep and diffusion creep. During dislocation creep a CPO is developed due to 54 

slip on specific crystallographic planes and in specific crystallographic weakening directions 55 

(Karato et al., 2008). During diffusion creep, a CPO is traditionally not expected to develop, 56 

and any pre-existing CPO is expected to be diminished or destroyed by rotations associated 57 

with grain boundary sliding (GBS), which is required for the material to maintain continuity 58 

during grain shape change (Elliott, 1973). The dominant deformation mechanism by which 59 

different parts of the mantle deform is inferred from an observed presence or absence of seismic 60 

anisotropy, where its presence is interpreted to be a product of preferentially aligned crystals, 61 

indicating dislocation creep (e.g. Karato et al., 2008; Skemer and Hansen, 2016). Where 62 

seismic anisotropy is absent, diffusion creep has been proposed to dominate deformation 63 

(Karato and Wu, 1993). 64 

Recent advances in our understanding of how diffusion creep operates in rocks have brought 65 

some of these ideas into question. A growing list of authors have reported evidence of CPOs 66 

developing during diffusion creep under specific conditions (Bons and den Brok, 2000; Díaz 67 

Aspiroz et al., 2007; Getsinger and Hirth, 2014; Gómez Barreiro et al., 2007; Imon et al., 2004; 68 

Miyazaki et al., 2013; Shelley, 1977; Sundberg and Cooper, 2008). More pertinent to the 69 

current study are results that show a CPO can be preserved or modified without being wiped 70 

out during diffusion creep. For example, Jiang et al. (2000) showed that an inherited CPO could 71 

be preserved to high strain in albite during diffusion creep. Wheeler (2009) used a numerical 72 

model to show that seismic anisotropy could be preserved during diffusion creep in a 73 

monophase material due to the suppression of grain rotations during deformation. Grain 74 

rotations were inhibited by slight elongation of grains, which occurred when diffusion creep 75 

rates were fast compared to grain growth rates. Grain elongation occurs during diffusion creep 76 

because dissolution at faces experiencing highest normal stress and precipitation at faces 77 
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experiencing lowest normal stress results in ‘flattening’ of grains (e.g., Rutter, 1983).  Grain 78 

growth, or annealing, results in more equiaxed grains, so if this is fast compared to diffusion 79 

creep, grain elongation is inhibited (Wheeler, 2009). In contrast to such observations, Elliott 80 

(1973) noted that if the strain path during diffusion creep is coaxial and grains do not rotate, 81 

then as grains become more elongate, diffusion paths will get longer, and so the process in 82 

theory could become self-exhausting. In practice this does not happen, because even on a 83 

coaxial strain path, grains continuously rotate with respect to each other because of GBS. Such 84 

rotations bring different crystal faces into contact, so newly precipitated parts of grains become 85 

subject to dissolution, which tends to keep grains equiaxed. For the most part, coaxial 86 

deformation is a rare case, only occurring locally within a body of deforming rock, and bulk 87 

coaxial deformation in natural rocks is often partitioned into zones of opposite-sense non-88 

coaxial strain (e.g. Bell et al., 2004). Typical non-coaxial strain paths will tend to keep grains 89 

equiaxed. Thus, the link between diffusion creep, grain rotations, and CPO development, 90 

preservation and/or annihilation remains ambiguous.  91 

Nearly all rocks are polyphase, and a number of previous numerical models have explored the 92 

interaction between different phases during deformation (e.g. Carreras et al., 2013; Dabrowski 93 

et al., 2012; Jessell et al., 2009 and references therein; Johnson, 2008). The rotation behaviour 94 

of large rigid grains embedded in a lower viscosity fine-grained matrix during deformation has 95 

been of particular interest because large grain rotations can record regional-scale strain 96 

histories (e.g. Holcombe and Little, 2001; Passchier and Trouw, 2005, and references therein). 97 

Microstructures such as spiral garnets have commonly been interpreted to record substantial 98 

rotation of porphyroclasts (Rosenfeld, 1970), although debate remains as to whether such 99 

patterns truly record rotation of large grains relative to geographic coordinates (e.g., Aerden 100 

and Ruiz-Fuentes, 2020; Bell and Johnson, 1989; Johnson, 1993; Williams and Jiang, 1999). 101 

However, previous studies of inclusion trails have also shown that rotation of large grains can 102 
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be supressed in deformed metamorphic rocks. For example, Steinhardt (1989) showed that 103 

porphyroclasts in non-coaxially deformed schists had undergone very little or no rotation 104 

during deformation relative to one another on the scale of an entire outcrop (tens of metres). 105 

Studies on the regional scale have also shown a lack of porphyroblast rotation in the Otago 106 

schists (Johnson, 1990; inclusion trails consistently oriented over 3000 km2), the Lys-107 

Caillaouas Massif in the Variscan Pyrenees (Aerden, 1995; inclusion trails consistently 108 

oriented over tens of km2), the Variscan Iberian Massif (Aerden et al., 2020), and many other 109 

places (see references in Fay et al., 2008 for other examples). 110 

As a result of the controversy surrounding whether rigid objects rotate or not during non-111 

coaxial deformation, a large number of modelling studies have focused on the issue. A 112 

summary of the previous literature can be found in Table 1 of Griera et al. (2013). For example, 113 

Fay et al. (2008) used finite element modelling of material with Mohr-Coulomb plasticity to 114 

show that anastomosing shear zones can develop around large strong rigid objects in a 115 

relatively fine-grained and weak matrix, because of stress concentrations generated around the 116 

large grains during initial shortening. When shear zones develop, no large grain rotation 117 

occurred, and if such shear zones were absent, large grains did rotate. Griera et al. (2011) note 118 

that experiments and numerical simulations that use viscous matrix rheologies result in the 119 

rotation of porphyroclasts, whereas those using Mohr-Coulomb rheologies generally result in 120 

non-rotation. Using a full-field crystal plasticity method in the Elle microstructural modelling 121 

suite (Bons et al., 2008), Griera et al. (2011) explored the effects of an anisotropic 122 

polycrystalline matrix deforming by dislocation creep on large grain rotation.  Their results 123 

suggested that the rotation of large grains is strongly dependent on the degree of anisotropy in 124 

the matrix grains, with more anisotropic matrix grains leading to the development of shear 125 

bands that inhibit the rotation of large grains.  126 
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Numerical models of large grain rotations in a matrix deforming by diffusive mass transfer are 127 

so far lacking. In diffusion creep, Wheeler (2009) showed that grain elongations do not have 128 

to be very large before they significantly impact grain rotations in monophase aggregates, but 129 

microstructural evolution within a polyphase sample depends strongly on how the different 130 

phases interact mechanically (e.g. Jessell et al., 2009). The viscosity of a polymineralic rock 131 

undergoing pressure solution can be much lower than its monomineralic counterparts, as 132 

predicted theoretically (Wheeler, 1992) and observed in experiments (Sundberg and Cooper, 133 

2008; Zhao et al., 2019). Grain boundary diffusion creep is also more efficient in fine-grained 134 

rocks as the length of diffusion pathways (i.e. grain boundary segments) are small, so the 135 

inhibition of grain growth by boundary pinning affects creep rates in multiphase materials. 136 

Variation in grain size within a sample may have a local effect on distribution of stress, and 137 

therefore how a given microstructure responds to an imposed far-field stress. Many of the 138 

factors that control how the microstructure of a polyphase rock may evolve during diffusion 139 

creep remain to be tested.  140 

Previous attempts at modelling the influence of a large second-phase grain on the evolution of 141 

a polycrystalline material deforming by diffusion creep have been made using the same 142 

modelling software employed in this study (described fully in section 3). Berton et al. (2006) 143 

investigated the development of fibrous pressure shadows at the interface between a rigid 144 

object and a fine-grained matrix of different compositions in a two-phase composite deforming 145 

by pure shear. Those authors showed that the ratio of CaCO3 diffusion rate along calcite-pyrite 146 

versus calcite-calcite boundaries strongly influenced pressure shadow growth, sliding and 147 

rotation of matrix grains, and the orientation of strain axes around the rigid object, which 148 

suggests that purely physical models of ductile flow around rigid clasts in rocks do not capture 149 

the complexity of microstructural evolution during diffusive mass transfer-driven deformation. 150 
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Berton et al. (2011) advanced these conclusions by exploring the effects of inclusion size and 151 

boundary smoothness on pressure shadow growth, again during pure shear. 152 

Here we present the first models for the effects of a large grain sitting in a fine-grained matrix 153 

of different mineralogy, during deformation by diffusive mass transfer in both pure and simple 154 

shear. We show how rotations and angular velocities of both the matrix grains and the large 155 

grain evolve with increasing strain, and discuss how such changes affect CPO modification 156 

and stress evolution in the model.  157 

2 Fundamental aspects of pressure solution and grain boundary diffusion (Coble) creep 158 

Elliott (1973) showed that the processes of pressure solution and grain boundary diffusion 159 

creep are equivalent, and flow laws have the same mathematical form, except that pressure 160 

solution may be faster due to fast diffusion along aqueous grain boundary films rather than 161 

along essentially dry grain boundaries. The most fundamental link between stress (a physical 162 

property) and diffusion (a chemical process) comes from the driving force for diffusion, which 163 

is the gradient in chemical potential, 𝜇, defined as:  164 

𝜇 = 𝐹 + 𝜎𝑛𝑉      (1) 165 

where σn is compressive normal stress across the interface, F is the molar Helmholtz free energy 166 

of the solid, V is the molar volume of the solid. Strictly, μ is the chemical potential of the solid 167 

in an adjacent ‘phase’ in which it can dissolve, and the ‘phase’ in this case is actually the grain 168 

boundary region. Eq. (1) shows that as normal stress increases on an interface, the chemical 169 

potential of the material next to that interface will also increase, that is it will dissolve more 170 

readily. Grain boundaries under higher normal stress will therefore have a higher chemical 171 

potential than grain boundaries under lower normal stress, which in turn results in a gradient 172 

in chemical potential along grain boundaries, and between different boundaries of the same 173 

grain (Fig. 1a). These gradients drive diffusion of material resulting in shape change. Variations 174 
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in normal stress can then give rise to gradients along interfaces (enabling Coble creep) and 175 

within grains (enabling Nabarro-Herring creep). 176 

Building on this fundamental relationship between stress and diffusion, Coble (1963) analysed 177 

diffusion creep of spherical grains of diameter a to find a linear relationship between stress and 178 

strain rate for pure shear. This relationship was revised by Raj and Ashby (1971) and Poirier 179 

(1985), and can be rewritten in terms of the shear stress to obtain the equivalent Newtonian 180 

viscosity 𝜂 (following Eq. (7.14) of Poirier, 1985): 181 

𝜂 =
1

141

𝑘𝑇𝑎3

𝐷𝑤Ω
=

1

141

𝑅𝑇𝑎3

𝐷𝑤V
      (2) 182 

where  k is Boltzmann’s constant, R is the gas constant, T is temperature, w is grain boundary 183 

width, D is the diffusion coefficient, 𝛺 is atomic volume, V is molar volume and a is grain size 184 

(diameter). This derivation assumed a spherical grain embedded in a medium with a simple 185 

stress system, so does not encompass the actual geometries of interlocking grains. To address 186 

this, Raj and Ashby (1971) modelled arrays of regular hexagons, but in such models each grain 187 

is identical and behaves the same way, so processes such as the reduction of CPO strength by 188 

grain rotation cannot be modelled. In such models, either the grains do not rotate and instead 189 

become elongate if grain boundary sliding is allowed to occur by two orthogonal ‘modes’ of 190 

sliding, or all the grains rotate the same amount and need not show any shape change, if sliding 191 

occurs by one dominant mode (Raj and Ashby, (1971). Ford et al. (2002) and Ford et al. (2004) 192 

thus went further, to model an arbitrarily complex space-filling array of grains. The model was 193 

extended to include an insoluble second phase (Berton et al., 2006; Berton et al., 2011), and to 194 

encompass spatially periodic microstructures (Wheeler 2009). 195 

Grain boundary sliding is intrinsic to diffusion creep (Raj and Ashby, 1971). This leads to 196 

collisions between triple junctions followed by neighbour switching, as first modelled by 197 
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Ashby and Verrall (1973). Spingarn and Nix (1978) pointed out the grain shape change during 198 

neighbour switching predicted in Fig. 4 of Ashby and Verrall (1973; redrawn in Fig. 1b) was 199 

incorrect, and presented a correct model, as shown and described in Figure 1c. Our modelling 200 

reproduces that behaviour when starting with a microstructure of regular hexagons. Some 201 

previous modelling of diffusion creep has encompassed finite grain boundary sliding viscosity 202 

(Wheeler 2010). This leads to a modified grain size dependence in the flow law, for which 203 

there is no clear support from experiments, and in the current model we set the grain boundary 204 

shear stress to zero. 205 

 206 

 207 

 208 
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 209 

Figure 1 Stresses and neighbour switching during diffusion creep. a) Initial and steady state 210 

stresses during diffusion creep of a rectangular grain microstructure. Normal stress evolves 211 

to a parabolic distribution during diffusion creep or pressure solution, and is visualised 212 

either by plotting it in the third dimension (redrawn from Fig. 1 of Wheeler, 1992, and see 213 

“Stresses” movies in the supplementary information), or colour coding it along boundaries 214 

in 2D (as used in Figs. 5 and 9). b) Shape change at three consecutive stages during diffusion 215 

creep, as represented incorrectly in the Ashby-Verrall neighbour switching model (redrawn 216 

from Figs. 4 and 7 of Ashby and Verrall, 1973). Dashed boundaries show final grain shape, 217 

red curved arrows show bulk diffusive flux, blue straight arrows show boundary diffusive 218 

flux. The model cannot be right because grains begin with identical shapes and are subject to 219 
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identical imposed stress, yet grain shapes are then illustrated as evolving differently (for 220 

details see Spingarn and Nix (1978)). c) Progressive shape change during neighbour 221 

switching in diffusion creep is correctly depicted in Fig. 7 of Spingarn and Nix (1978); 222 

slightly modified here to highlight boundary diffusive flux pathways (blue arrows). All fluxes 223 

are symmetric and grains evolve in identical ways in accord with their identical initial 224 

shapes. For initial regular hexagons the DiffForm modelling software reproduces the 225 

evolution shown. Spingarn and Nix add a final stage in which interface energy plays a role, 226 

but this is not included in our current model.     227 

 228 

Wheeler (1992) found it useful to use Onsager diffusion coefficients L (= Dc/RT), where D is 229 

the conventional diffusion coefficient, c is concentration, R is the gas constant, and T is absolute 230 

temperature, to describe diffusion of each chemical component during creep in multiphase 231 

systems. D as used in Fick’s law is insufficient to model diffusion creep as it represents 232 

diffusion proportional to a gradient in concentration, whereas diffusion in solid-state systems 233 

is more accurately described by assessing gradients in chemical potential, µ. µ is incorporated 234 

into the Onsager diffusion coefficient so its use is more appropriate than D in models of solid-235 

state diffusion. When multiplied by grain boundary width w, A = wL describes the overall ease 236 

of diffusion along a boundary (Eq. (4) in Wheeler, 1992). The net chemical current along a 237 

grain boundary is a function of the ‘conductances’, A, of all components that comprise the 238 

system. With several chemical components, A is a matrix and it proves useful to define its 239 

matrix inverse, K (Eq. (5) in Wheeler, 1992).  K values relate to the ‘resistances’ (or the inverse 240 

of the ‘conductances’) of each component to dissolution or growth by diffusion along the grain 241 

boundary (Wheeler, 1992). In the model we discuss here, the second phase is insoluble and the 242 

mathematics is simplified. With one soluble phase we define one chemical component with a 243 
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formula identical to that phase, and K = 1/A (Eq. (6) of Wheeler, 1992). This means that for 244 

spherical grains, from Eq. 2: 245 

𝜂 =
1

141

𝑅𝑇𝑎3

𝐷𝑤V
=

1

141

𝑎3

𝑤𝐿V2
=

1

141

𝐾𝑎3

V2
      (3) 246 

The model we present is grain scale and so provides precise details of grain rotations and 247 

viscosity evolution. The viscosity still scales with grain size etc. in accord with Eq. 3 but the 248 

key enhancement is that the single dimensionless number here (1/141) is replaced by an 249 

evolving and anisotropic function of microstructure. Elliott (1973) recognised that evolving 250 

grain shape changes viscosity; our model captures the more general dependence on 251 

microstructure. In addition, Wheeler (2010) showed that mechanical anisotropy develops 252 

during diffusional creep that includes a component of boundary sliding, which it always does 253 

(Raj and Ashby, 1971). The consequence of this is that as grain rotations occur, grains can 254 

become aligned in ‘weak’ or ‘strong’ directions with respect to the direction of maximum 255 

shortening. Consequently, the viscosity at each time depends on the microstructure and the 256 

orientation of strain rate axes relative to that microstructure. Eq. 3 provides a “benchmark” 257 

value for comparison between idealised spherical grains and more complex microstructures 258 

with the same average grain size. 259 

3 Methods 260 

Diffusion creep modelling was performed using the C++-based modelling suite DiffForm, and 261 

the results were visualised in MATLAB® using the DiffView software (Berton et al., 2006; 262 

Berton et al., 2011; Ford et al., 2002; Ford et al., 2004; Wheeler, 2009; Wheeler and Ford, 263 

2008). A rigorous treatment of the fundamental mathematics used by DiffForm can be found 264 

in Wheeler and Ford (2008) and Wheeler (2009). The intention here is to attempt to describe 265 

how DiffForm works in a way accessible to non-mathematicians, to emphasise the physical 266 

processes that are being modelled. 267 



Page 14 of 48 
 

Wheeler (1987) showed that the ideal distribution of stress (i.e. the chemical potential) along a 268 

boundary has a parabolic shape (Fig. 1a; distribution is cubic if there are relative grain 269 

rotations), toward which all other stress distributions evolve, with the consequence that 270 

material can be dissolved or precipitated at all points along the boundary. The flux, and 271 

therefore the current (i.e. the flux × the boundary width; Wheeler and Ford, 2008), can be 272 

determined at any point along the boundary, so dissolution and precipitation rates can be 273 

calculated for a given imposed normal stress. The divergence speed of any two adjacent grains 274 

can be calculated from the dissolution and precipitation rates at grain boundaries. Because 275 

grains are rigid and do not experience internal deformation, the relative motions of grains must 276 

be equivalent to their relative velocity plus a rotation around a reference point. As no internal 277 

deformation is assumed by the model, overgrowths must be either of constant width or wedge-278 

shaped.  279 

A set of simultaneous equations are solved to determine instantaneous velocities and angular 280 

velocities of grains, and stresses along each boundary. After each strain increment is applied, 281 

the microstructure is modified by repositioning grain boundaries in the middle of overgrowths 282 

and regions of dissolution. Triple junctions that overlap at any stage, representing the neighbour 283 

switching events common to GBS (Spingarn and Nix, 1978) are redrawn. The resultant 284 

microstructure is then used to solve for new velocities and streshses. Note that stress is not 285 

actually imposed on the model microstructure; instead an average strain rate tensor is imposed, 286 

for which the simultaneous equations are then solved to predict the average stress and the local 287 

stresses on grain boundaries, which in turn drive shape change.  288 

There are three inputs to the program. 289 

Input 1. The initial grain geometry (“net”) shown in Figure 2 was used to test how the 290 

presence of a large second phase grain might impact the microstructural evolution of a fine-291 



Page 15 of 48 
 

grained monophase matrix deforming by diffusion creep. This starting “net” was translated into 292 

the input format used for DiffForm from the input format used for Elle (Piazolo et al., 2010). 293 

This topology is roughly analogous to the porphyroclasts/blasts often found in metamorphic 294 

rocks, or the phenocrysts commonly observed in igneous lithologies. The matrix grains are 295 

designed to exhibit a shape preferred orientation, or shape fabric, which is again commonly 296 

observed in both metamorphic and igneous rocks. The shape fabric of the matrix is simplified 297 

to allow clear identification of any effects the large grain may have on matrix-grain evolution. 298 

The possible effects of the matrix grains all having exactly the same shape, size and shape 299 

orientation, compared to the heterogeneity of grain shape and size found in natural samples, is 300 

discussed in section 5.4.  301 

 302 

 303 

Figure 2 Starting geometry of model runs. Blue lines represent grain boundaries. The large 304 

central grain is defined to be of a different composition to the matrix grains. Scale is arbitrary 305 

in the model. 306 
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Input 2.  ‘K values’ (resistances) for each component and molar volumes for each phase. 307 

Here the second phase is required to be insoluble, but this would imply an infinite K so instead 308 

the K value is set to a large but finite value. A key point is that model outputs scale in a simple 309 

way with regard to parameters. The stress scales in accordance with Eq. 3. Grain angular 310 

velocities scale in accordance with strain rates, for each particular imposed strain geometry. 311 

This means that the choices for K, V and the grain size in the starting net will not affect the 312 

model outputs, except for the stress levels, for which scaling is simple.  313 

With this in mind ‘legacy’ values of various coefficients are used in the program. In the model 314 

runs presented here, the matrix grains were defined to have the composition of calcite, CaCO3, 315 

and the large grain was defined as pyrite, FeS2. These were used in Berton et al. (2006) and 316 

have not been changed subsequently, but we emphasise that our models make predictions about 317 

any insoluble mineral embedded in any mineral that is undergoing pressure solution or 318 

diffusion creep. The parameters used in the DiffForm input file for our experiments are: 319 

Average grain area for soluble phase G = 0.01 m2 320 

Diameter of equivalent circle a = ((4/π)G)1/2 = 0.112 m 321 

V = 3.693 × 1010 m3/mol 322 

K[CaCO3, CaCO3]= 2 × 1018 Pa.s m3 mol−2  323 

From which we find, from Eq. 3, a viscosity for equivalent spherical grains of 1.461 × 10-8 Pas 324 

– unrealistically small but needed only as a benchmark with which to compare model outputs. 325 

Input 3. Strain geometry, rate and timestep. In all experimental runs presented here, the 326 

starting net was set up to undergo at least 200 increments of either pure or simple shear at a 327 

strain of 0.5 per time step, with a time step length of 0.01 s. Multiplying strain by time step 328 

length results in a strain of 0.5% being imposed on the model per time step, so that 100% strain 329 
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would be achieved after 200 time steps). Time step length, and therefore strain rate, are 330 

arbitrary as there is a linear relationship between angular velocity and overall strain rate in the 331 

model (note this is on the scale of the whole model, as opposed to the angular velocities of 332 

individual boundaries. In our model, boundaries cannot be used as passive markers as grains 333 

undergo dynamic shape change), so faster strain rates simply mean the microstructural 334 

evolution occurs more quickly, but the final microstructure produced is identical (see Wheeler, 335 

2009, for more details).  336 

One consequence of the legacy coefficients is that values for stress in the model are small. The 337 

stress evolution of the model runs presented here are discussed fully in section 5.3. The small 338 

values for stress do not affect the predictions of how the microstructure evolves, since these 339 

depend on finite strain and are independent of strain rate; nor do they affect the predicted 340 

angular velocities, since these scale with strain rate.  341 

DiffForm models are spatially periodic (in essence, infinite) thus avoiding the undue influence 342 

of model boundaries in small finite models. The model tracks changes in the starting 343 

microstructure as it evolves along either coaxial (pure shear), non-coaxial (simple shear), or 344 

mixed strain pathways. DiffForm has been continually developed over the last two decades 345 

(Berton et al., 2006; Berton et al., 2011; Ford et al., 2002; Ford et al., 2004; Wheeler, 2009; 346 

Wheeler and Ford, 2008), with the most recent advancements allowing the modelling of two-347 

phase materials. Due to computational limitations, some starting geometries terminate after 348 

accumulating only very small strains. Once a starting geometry that can accumulate high strains 349 

has been defined, the time required for each model run is on the order of a few days. 350 

In the model runs presented here, the matrix grains have a shape-preferred orientation. This 351 

helps to give each grain an anisotropic rheology, which is common in natural crystals, and a 352 

key component of accurately modelling the deformation of polycrystals (e.g. Griera et al., 353 
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2013). Although the strong SPO is a simplification of the greater shape heterogeneity observed 354 

in natural microstructures, the effects of which are discussed in section 5.4.1, to our knowledge 355 

this is the first study that presents results of the effects of a matrix with anisotropic rheology 356 

deforming by diffusion creep on the rotation behaviour of a large rigid object. 357 

4 Results 358 

4.1 Pure shear 359 

The starting net shown in Figure 2 was deformed in both pure and simple shear. The model 360 

output files presented in the figures, together with software (“DiffView”) allowing 361 

visualisation of grain movements, stresses, and so on are available from the authors on demand. 362 

Numerical experiments performed using DiffForm eventually terminate because of problems 363 

with the evolving topology of the net (neighbour switching in particular; see section 5.4). If 364 

these occur at the edge of the net as represented in the model, there are a number of scenarios 365 

and some are difficult to deal with, hence the program terminates. The pure shear experiment 366 

terminated at 130 time steps, i.e. achieved a strain of 65%. Four strain increments of the 367 

microstructural evolution are presented in Figure 3a–d. Grains in Figure 3 are coloured by the 368 

finite rotation they have undergone from their original orientation, in degrees (readers are 369 

referred to the Pure_fin_theta simulation in the supplementary materials for an animation of 370 

evolution of finite rotations throughout the entire experiment). Note that the colour scale 371 

changes for each strain increment presented in Figure 3, to allow visualisation of larger finite 372 

rotations as deformation proceeds. The colour scale limits are set to the maximum rotation in 373 

each frame, and are changed in each plot so that the contrast between the largest and smallest 374 

rotations at each time increment can easily be seen. In contrast, the animations in the 375 

supplementary materials are set up so that the colour scale limits are the same for all frames. 376 

This leads to differences in rotations in the earliest stages of the model run being somewhat 377 

obscured by the colour scheme, because the rotations are small relative to the colour scale 378 
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limits. Figure 3a shows that, by a strain of about 0.16, most matrix grains have rotated about 379 

the same amount as the large grain (~15°), with the exception of a row of grains whose rotations 380 

appear to be subdued by their alignment with the long axis of the large grain (at an angle of 381 

approximately 55° to the direction of maximum shortening) and so have only rotated some 10°. 382 

Figure 3b shows a similar trend, with distinct regions of the matrix undergoing different finite 383 

rotations depending on their geometric relation to the large grain. The band of lowest rotations 384 

sits at 60° to the maximum shortening direction. By a strain of about 0.49 (Fig. 3c), the band 385 

has flattened to around 70° with respect to the maximum shortening direction, but the influence 386 

of the large grain is no longer apparent along the entire band. Instead, most matrix grains that 387 

do not neighbour the large grain have rotated more (some 45°) than the large grain itself (closer 388 

to 35°), and matrix grains that neighbour the large grain either have lower or higher finite 389 

rotations than the bulk matrix. By the last stage, a ‘sliding surface’ (perhaps a shear band) that 390 

links up across multiple grains has formed (this is best seen in the animation in the online 391 

supplementary information), at an angle of 75° to the maximum shortening direction (Fig. 3d). 392 

The sliding surface is composed of aligned boundaries of grains that undergo the smallest 393 

rotations in the early stages of deformation, so its development is fundamentally related to the 394 

presence of the large grain. By the time the model terminates, it has undergone a longitudinal 395 

strain of roughly 0.65. The model retains a constant area, a useful check that the mass 396 

conservation equations built into the code are satisfied. We note that under certain conditions 397 

(e.g. cleavage development as described in Bell and Cuff, 1989), pressure solution can result 398 

in substantial volume loss; here we are considering the simplest case. 399 
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 400 

Figure 3 Results of the pure shear experiment at four strain increments. The model terminated 401 

at a strain of 0.65. Grains are coloured by finite rotation with respect to starting orientation 402 

in degrees (anticlockwise positive; yellow arrow in (a)). Red arrows in (a) show direction of 403 

shortening. Note change in scale for each strain increment; colour scale was altered so unique 404 

features can be seen at each stage. For an animation of finite rotations throughout the entire 405 

evolution of the model, see the Pure_fin_theta simulation in the supplementary materials.  406 

 407 

Figure 4a shows a plot of the finite rotations of each grain with respect to their initial 408 

orientation, with the rotation behaviour of the large grain highlighted as a thick red line. A thick 409 

blue line shows the mean rotation behaviour of all matrix grains. Notably, most matrix grain 410 

rotations tend to steadily increase in an anticlockwise direction with increasing strain 411 

(anticlockwise rotation is defined as positive). This is interpreted to be an effect of the 412 

orientation of the strong shape fabric in the matrix with respect to the direction of maximum 413 

shortening, and more variation in rotations might be expected in model nets with more 414 

heterogeneous grain shapes. The large grain begins rotating in the same, anticlockwise, 415 

direction as the matrix grains, but at a strain of about 37% its direction of rotation reverses. 416 
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This is reflected in a plot of the angular velocities of all grains (Fig. 4c), where the rotation 417 

velocity of the large grain initially accelerates, before stabilising at around 60° per arbitrary 418 

time unit at a strain of approximately 0.1. The grain then slows and eventually reverses its 419 

rotation direction at a strain of 0.37. At this point the red line in Figure 4c crosses the dashed 420 

line representing zero angular velocity, as the grain switches from positive to negative rotation. 421 

The large grain then begins to accelerate in the new rotation direction until it reaches about 25° 422 

per time unit (Fig. 4c), before slowing to around 30° per time unit at a strain of around 0.4.  423 

Between 0.4 and 0.6 strain, the large grain’s angular velocity is somewhat erratic, first slowing 424 

by about half and then accelerating sharply at around 0.56 strain. The large grain rapidly 425 

reverses rotation direction again just before failure after achieving a strain of 0.6. Overall, the 426 

matrix grains experience a less variable rotation history, with the majority of grains rotating at 427 

a fairly constant angular velocity of around 50° per time unit (blue line in Fig. 4c), until a strain 428 

of around 0.45. After a strain of 0.45 is reached, this steady-state behaviour in the angular 429 

velocities of the matrix grains comes to an end and nearly all grain rotations slow down (mean 430 

angular velocity drops to around 20° per time unit; blue line in Fig. 4c), before the matrix grain 431 

population undergoes a wide spread in accelerations/decelerations at a strain of about 0.6, just 432 

before the model terminates. The spread in angular velocities of the matrix grains appears to 433 

be caused by the acceleration in angular velocity of the large grain, which begins just before 434 

0.6 strain, and influences matrix grains directly adjacent to it, which then undergo relatively 435 

turbulent behaviour compared to grains in the bulk matrix. The large spread in angular 436 

velocities of the matrix grains at the end (after 0.6 strain) of the pure shear experiment is 437 

qualitatively similar to a large spread in angular velocities of matrix grains at the beginning 438 

(~0.1 strain) of the simple shear experiment (see section 4.2). In simple shear, the spread in 439 

angular velocities of matrix grains is observed to be associated with a change in angular 440 

velocity of the large grain, and a drop in overall strength of the model net. However, because 441 
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the model terminates directly after this spread occurs in the pure shear model, it is not possible 442 

to observe or predict whether angular velocities of grains would return to steady-state 443 

behaviour in pure shear. Likewise, mean matrix grain rotations suggest that the microstructure 444 

may be asymptotically approaching a rotational steady-state as per Wheeler (2009), but 445 

termination of the model makes this difficult to be sure of. Readers are referred to the 446 

Pure_fin_theta simulation in the supplementary materials for an animation of angular velocity 447 

evolution throughout the entire experiment. 448 

The development of the sliding surface by grain boundary alignment has a profound effect on 449 

the strength of the model. Differential stress steadily increases with increasing deformation 450 

until a critical point, just after a strain of 0.5, is reached (Fig. 4d), i.e. just after the steady-state 451 

behaviour of the matrix grains observed in the angular velocity plot ends. As the model 452 

terminates, the differential stress evolves along a stress-strain path reminiscent of typical rock 453 

deformation laboratory experiments stressed to brittle failure (e.g. the room temperature 454 

experiments performed by Tullis and Yund, 1992; see their Fig. 3). The stress-strain curve 455 

shows the strength of the material, which initially increases, before dropping substantially just 456 

after a strain of 0.5, just before the model run terminates.  457 
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 458 

Figure 4 a) Absolute rotation in degrees of each grain (grey lines) as a function of increasing 459 

strain in the pure shear model (anticlockwise positive). The red line tracks rotation of the large 460 

grain, and the blue line shows the mean rotation behaviour of matrix grains. b) Mean and 461 

standard deviation of all grain rotations in the pure shear model. c) Angular velocity of all 462 

grains (grey lines) as a function of strain in the pure shear model. The red line tracks the 463 

angular velocity of the large grain, and the blue line shows the mean angular velocity of matrix 464 

grains. For an animation of angular velocities throughout the entire evolution of the model, 465 

see the Pure_ang_vel simulation in the supplementary materials. d) Evolution of differential 466 

stress (i.e. strength evolution of the deforming microstructure) during the model run. 467 

 468 

DiffForm also models stress evolution on individual grain boundaries. Figure 5 shows grain 469 

boundary stresses at four time increments throughout the experiment (readers are referred to 470 
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the Pure_stresses simulation in the supplementary materials for a 3D animation of grain 471 

boundary stress evolution during the experiment). Figure 5a shows that stresses are close to 472 

zero on most boundaries at the start of the experiment. Some higher compressional (positive) 473 

and extensional (negative) stresses are observed on boundaries with or adjacent to the large 474 

grain. In the first quarter of the experiment, stresses increase fairly homogeneously on all 475 

boundaries. When a strain of approximately 0.2 is reached, boundary stresses on a column of 476 

matrix grains above and below the large grain, in a direction parallel to the axis of maximum 477 

shortening in the model, and phase boundaries in the same column, become substantially larger 478 

than on other boundaries. The growth of these boundary stresses is most easily visualised in 479 

the Pure_stresses simulation in the supplementary materials. As strain proceeds, stress is 480 

transmitted to matrix grain boundaries in the same row of grains further from the large grain 481 

until a strain of around 0.35, when the maximum stress differences between those grain 482 

boundaries and surrounding matrix grain boundaries are reached (Fig. 5b). This coincides with 483 

the change in rotation direction of the large grain. After 0.35 strain, stresses are rapidly 484 

redistributed onto all matrix grain boundaries, and by a strain of around 0.5, stress magnitudes 485 

are roughly equal on all boundaries (Fig. 5c). Subsequently, at the same time as a large spread 486 

in angular velocities is observed to occur at a strain of around 0.6, stresses on boundaries in the 487 

initial row of grains parallel to the direction of maximum shortening drop rapidly (Fig. 5d), and 488 

this behaviour spreads throughout the matrix just before the model terminates (Fig. 5d). 489 
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 490 

Figure 5 Grain boundary stresses at four time increments in the pure shear model run. a) At 491 

the start of the experiment, stresses on most matrix boundaries are close to zero. Boundaries 492 

associated with the large grain show the highest positive (compressive) and negative 493 

(tensional) stresses. Red arrows show direction of shortening. b) High compressive stresses 494 

first develop on matrix grain boundaries in a column parallel to the axis of maximum 495 

shortening above and below the large grain, and on the phase boundaries between the large 496 

grain and small grains. c) As strain proceeds, compressive stress develops on other matrix 497 

boundaries. d) As the rotation direction of the large grain changes, stress on small grain-large 498 

grain phase boundaries, and matrix grain boundaries in a column parallel to the axis of 499 

maximum shortening above and below the large grain, drops substantially. With further strain, 500 

stress magnitudes on the other matrix grains also drop (see the Pure_stresses simulation in the 501 

supplementary material for a 3D animation of the full model run). 502 
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4.2 Simple shear 503 

Dextral simple shear was applied to the same starting geometry as the pure shear experiment 504 

(Figure 2). The dextral simple shear experiment reached a strain of 108% (215 timesteps) 505 

before terminating. Figure 6 shows four strain increments of the microstructural evolution of 506 

the model during simple shear. The Simple_fin_theta and Simple_ang_vel simulations in the 507 

supplementary materials show animations of the entire model run. The colour scheme in Figure 508 

6 shows finite rotation of grains, in degrees. Note that the colour scale changes between plots 509 

to accommodate higher-angle finite rotations at increased strains. The simulations in the 510 

supplementary information are set up so that the colour scale limits are the same for all frames. 511 

The influence of the large grain on matrix grain rotations is quite different to that observed in 512 

pure shear, but equally noteworthy.  513 

 514 

Figure 6 Results of the simple shear experiment at four strain increments. The model 515 

terminated at a strain of 1.08. Grains are coloured by finite rotation with respect to starting 516 

orientation, in degrees (anticlockwise positive, yellow arrow in (a); clockwise negative, blue 517 

arrow in (a)). Red arrows in (a) show direction of shear. Note change in scale for each strain 518 

increment; colour scale was altered so unique features can be seen at each stage. For an 519 
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animation of finite rotations throughout the entire evolution of the model, see the 520 

Simple_fin_theta simulation in the supplementary materials.  521 

 522 

Initially, the large grain begins to rotate in a clockwise direction, i.e. synthetically to the 523 

imposed shear strain direction. The rotation of the large grain influences a row of grains 524 

perpendicular to the shape fabric to rotate in the same direction as itself (seen as a blue band in 525 

Fig. 6a–d). Rotation of these grains results in neighbouring grains forming two rows of grains 526 

either side of the first (i.e. perpendicular to original shape fabric) that rotate in the opposite 527 

direction (anticlockwise). The initial shape preferred orientation in the matrix is substantially 528 

reduced with increasing strain. Figure 7 shows the evolution of grain shapes as best-fit ellipses, 529 

using the ellipse shape averaging method reported in Wheeler (1984). The average aspect ratio 530 

of the grains decreases from > 1.8 at the start of the experiment to a minimum of 1.12 at 110 531 

time steps, before increasing again to 1.53 by the end of the run (Fig. 7a, which shows aspect 532 

ratio evolution throughout the full model run; 215 time steps). The average orientation of the 533 

long axis of grains rotates synthetically with increasing shear strain (Fig. 7b–d), i.e. clockwise, 534 

but the change in average aspect ratio shows this is not simply due to rigid body rotation; grains 535 

shorten in directions parallel to the shortening axis of the incremental strain ellipse, and 536 

lengthen in directions parallel to the stretching axis of the incremental strain ellipse.   537 
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 538 

Figure 7 a) Aspect ratio evolution during dextral simple shear. b) Best fit ellipses to grains in 539 

the starting net have an average aspect ratio (R) of 1.84, and the average angle of grain long 540 

axes to the horizontal is 45° clockwise. c) At a strain of 0.55 (half way through the model run) 541 

average aspect ratio of the best fit ellipses drops to 1.12, and on average long axes have rotated 542 

to almost vertical (87°). d) When the model run terminates, best fit ellipses have an average 543 

aspect ratio of 1.53, and long axes have continued to rotate to an average of 45° to the 544 

horizontal.   545 

 546 

Most grains retain their initial rotation direction for the duration of the experiment. Finite 547 

rotation over total strain is plotted for each grain in Figure 8a. Finite rotations are quite small 548 

until a strain of around 0.15, when grain rotations spread out rapidly in both rotation directions 549 

(Fig. 8a). Individual grain rotations subsequently decelerate with increasing strain, and the 550 
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mean of matrix grain rotations also flattens off, suggesting grain rotations are fairly stable (Fig. 551 

8a–b).  The standard deviation shows the spread in rotations continues to increase with strain 552 

(Fig. 8b). In Figure 8c, the angular velocity of each grain is plotted against total strain. The 553 

angular velocity plot shows a rapid increase in rotational velocity of individual grains in both 554 

rotation directions between a strain of around 0.15 to a strain of around 0.2, after which rotation 555 

velocities begin to fall. However, the mean angular velocity of the matrix grains (blue line in 556 

Fig. 8c) remains fairly constant, indicating that the increase in angular velocities in each 557 

direction is roughly the same, and suggesting that the angular velocities of matrix grains 558 

directly impact their neighbours. The angular velocities of most grains flatten off at a strain of 559 

around 0.4 and gradually evolve towards zero, again indicating evolution of the microstructure 560 

towards a rotational steady state (Wheeler, 2009). Matrix grain rotations are clearly influenced 561 

by the large grain, as they broadly follow the same pathway in both the finite rotation and 562 

angular velocity plots (Figs. 8a and c). The differential stress evolution plot shows a constant 563 

value until a strain of about 0.15 when it drops suddenly indicating a decrease in strength in 564 

the net. This drop in strength correlates with the sharp increase in the angular velocity of the 565 

large grain (and therefore all grains). As grain rotations stabilise, the differential stress curve 566 

flattens, indicating the strength of the net has stabilised at a new, but lower, value.   567 
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 568 

Figure 8 a) Absolute rotation, in degrees, of each grain as a function of increasing strain in 569 

the dextral simple shear model (anticlockwise positive). The red line tracks rotation of the large 570 

grain, and the blue line shows the mean rotation behaviour of matrix grains. b) Mean and 571 

standard deviation of all grain rotations in the simple shear model. c) Angular velocity of all 572 

grains as a function of strain in the simple shear model. The red line tracks the angular velocity 573 

of the large grain, and the blue line shows the mean angular velocity of matrix grains. For an 574 

animation of angular velocities throughout the entire evolution of the model, see the 575 

Simple_ang_vel simulation in the supplementary materials. d) Evolution of differential stress 576 

(i.e. strength evolution of the deforming microstructure) during the model run. 577 

 578 

Figure 9 provides further insight into stress evolution in the simple shear model on the grain 579 

scale. In contrast to the pure shear experiment, starting stresses are not close to zero (compare 580 
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Fig. 9a with Fig. 5a). Similar to the pure shear experiment, however, there is a row of matrix 581 

grains parallel to the maximum shortening axis and in line with the large grain that 582 

experience notably higher boundary stresses than their neighbours (Fig. 9a). In the animation 583 

of this model run (Simple_stresses in the supplementary materials), this band of high stress 584 

boundaries can be observed to rotate, as the axis of maximum shortening also rotates with 585 

increasing strain. By a strain of approximately 0.25, the band of high stress boundaries 586 

becomes obscured by stress on most other boundaries building to similar magnitudes (Fig. 587 

9b). As strain proceeds, stress magnitudes on nearly all matrix boundaries drop substantially, 588 

which appears to re-focus stress on boundaries associated with the large grain, so that at a 589 

strain of around 0.5, a band of high stress boundaries reappears, in line with the large grain 590 

and parallel to the axis of maximum shortening (Fig. 9c). Stress on other matrix grains then 591 

builds again to obscure this band after a strain of around 0.9 (Fig. 9d), before the model 592 

terminates.        593 
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 594 

Figure 9 Grain boundary stresses at four time increments in the simple shear model run. a) 595 

At the start of the simple shear run, grain boundaries experience noticeable stress. A row of 596 

grains with larger boundary stresses runs top left to bottom right through the net due to the 597 

presence of the large grain, similar to pure shear (compare Fig. 5b and see 3D simulation 598 

Simple_stresses in the supplementary materials). b) As strain proceeds, stresses on all grain 599 

boundaries evolve to similar magnitudes, similar to pure shear. c) After a drop in stress on 600 

all boundaries, as also seen in pure shear, boundary stresses begin to build again on a row of 601 

grains associated with the large grain (see also the 3D simulation Simple_stresses in the 602 

supplementary materials). d) As strain proceeds, stresses on all boundaries evolve to similar 603 

magnitudes again, suggesting the pattern in both pure and simple shear may be cyclical (see 604 

the Simple_stresses simulation in the supplementary material for an animation of the full 605 

model run). 606 
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5 Discussion 607 

5.1 Grain rotations 608 

The rotation of large grains within a fine-grained matrix has received a considerable amount of 609 

attention from the microstructural modelling community in the last few decades (e.g., Fay et 610 

al., 2008; Griera et al., 2011; Griera et al., 2013; Johnson, 2009), primarily because 611 

porphyroblast/clast rotation microstructures are routinely used in the interpretation of strain 612 

histories. To date, models have tended to focus on deformation in the dislocation creep regime. 613 

Because grain rotations are inherent to diffusion creep, which is promoted at finer grain sizes, 614 

it is also important to assess the effects that diffusion creep in a fine-grained matrix may have 615 

on the rotation of large grains. Grain rotations during diffusion creep occur in a very dynamic 616 

environment, where rotations have a measurable impact on adjacent grains. In particular, 617 

rotations of large grains can have significant effects on the surrounding matrix. Rotations of 618 

large grains are generally assumed to be either synthetic or antithetic to shear (Griera et al., 619 

2013). The results presented here suggest a more complex picture, where the rotation direction 620 

of the large grain can in fact change over time as the large and matrix grains interact (Fig. 4a), 621 

which in turn can lead to significant changes in local stress distributions (Fig. 5) and an 622 

associated drop in strength (Fig. 4d). This observation has significant implications for the 623 

extrapolation of strain histories from microstructures. For example, metamorphic garnets are 624 

commonly littered with inclusions whose distributions are interpreted as regional-scale shear 625 

sense indicators. If local changes in the rotation direction of large grains can occur due to 626 

interactions between large and matrix grains during pressure solution/diffusion creep, 627 

relatively simple imposed strain paths could potentially give rise to microstructures that might 628 

be interpreted as the product of vastly more complicated strain histories, e.g. a single 629 

deformation phase may erroneously be interpreted as multiphase (Fossen et al., 2019). The 630 

counter argument to this is that inclusion trails are often observed to be correlated between 631 
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different porphyroblasts on the outcrop to regional scale (Aerden, 1995; Aerden and Ruiz-632 

Fuentes, 2020; Fay et al., 2008; Johnson, 1990; Steinhardt, 1989), and if inclusion trail patterns 633 

resulted from locally turbulent behaviour, it would be impossible for them to maintain 634 

regionally consistent orientations. Further, it would be impossible for different age sets of 635 

porphyroclasts to develop distinct inclusion trail sets with regionally-consistent orientations 636 

(Aerden et al., 2020; Aerden and Ruiz-Fuentes, 2020). However, it is not always the case that 637 

inclusion trails in a single sample have consistent orientations. For example, Johnson et al., 638 

(2006) analysed staurolite inclusion trails in low-pressure, high-temperature schists that formed 639 

during the development of crenulation cleavage, finding a spread in inclusion trail orientations 640 

of 40–75° that provided clear evidence for the large staurolite grains rotating relative to one 641 

another and to the crenulation cleavage. More detailed modelling on the evolution of grain 642 

rotations to very high strains, and their effects on stress distributions on the grain scale, would 643 

give valuable insight into how finite strain microstructures should be interpreted. Of particular 644 

use would be DiffForm models that included more than one large grain, so their relative 645 

rotations could be analysed. At present, there are computational constraints on constructing 646 

and running such starting geometries in DiffForm (see section 5.4.2). 647 

In the current model runs, rotations of matrix grains are clearly influenced by the presence of 648 

the large grain. In the pure shear model, the presence of the large grain appears to affect the 649 

overall strength the microstructure by suppressing the rotations of certain grains, which results 650 

in stress build-up on specific boundaries. The local distribution of stress in this case happens 651 

to lead to an alignment of grain boundaries, which acts as a plane of weakness within the net. 652 

The inference here is that a rock comprised of grains with a homogeneous grain size deforming 653 

by diffusion creep may be stronger than those with greater diversity of grain size, because large 654 

grains can act to focus stresses, and resultant microstructural modifications inherent in 655 

diffusion creep, into specific areas. This can result in the development of mechanical 656 
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heterogeneities that weaken the bulk rock, and may lead to weak zones/decoupling of interfaces 657 

around large grains similar to those previously modelled in the dislocation creep regime (Griera 658 

et al., 2011).   659 

5.2 Preservation or formation of a CPO 660 

Shape preferred orientations (SPOs) have been observed to develop during diffusion creep (e.g. 661 

Díaz Aspiroz et al., 2007; Getsinger and Hirth, 2014; Imon et al., 2004), and CPOs can develop 662 

in tandem with an SPO. Furthermore, it has been shown that inherited CPOs can be retained 663 

during diffusion creep deformation (Jiang et al., 2000; Wheeler, 2009). In the pure shear 664 

experiment performed here, a CPO would not be expected to develop from a random initial 665 

texture, as the rotations of all grains follow the same path, i.e. all grains largely rotate the same 666 

amount, and in the same direction, so the initial random texture is preserved. However, if there 667 

was an initial CPO in the matrix grains of such a rock, it would be largely preserved, albeit 668 

weakened, by the diffusion creep deformation. A starting net with a more heterogeneous grain 669 

size may evolve quite differently so further work is required in this area.  670 

In the simple shear experiment, the story is more complex but follows the same trend; a rock 671 

with no initial crystallographic alignment would not develop one during diffusion creep 672 

deformation. However, if an initial CPO did exist, crystallographic alignment would also be 673 

observed in the final geometry, but the original CPO would have been split into two smaller 674 

CPO ‘domains’ – one whose grains share an orientation because they rotated in the same 675 

direction as the large grain, and another whose grains share a different orientation, related to 676 

rotation directions that are antithetic to the large grain rotation direction, but share the same 677 

direction and velocity as one another, so any initial shared orientation is preserved during 678 

rotation.  679 



Page 36 of 48 
 

5.3 Strength evolution 680 

Grain rotations have effects beyond those on the rock’s texture. Microstructure influences the 681 

physical properties of deforming crystalline materials, and the experimental results presented 682 

here clearly indicate that the strength of a rock (or other crystalline material) deforming by 683 

diffusion creep can be influenced by grain rotations. When rotations are large and fast, the 684 

microstructure can be interpreted to ‘destabilise’ (i.e. transiently evolve away from overall 685 

steady-state behaviour; Figs. 4c and 8c), with an associated drop in strength (Figs. 4d and 8d), 686 

in both pure and simple shear. This transient behaviour appears to be controlled by how rapid 687 

the rotation of the large grain is within the fine-grained matrix. Again, it is the heterogeneity 688 

in the microstructure that causes these effects.   689 

The presence of a large insoluble grain is also shown to affect the local distribution of grain 690 

boundary stresses, with those grains in closest proximity to and in line with the large grain 691 

parallel to the axis of maximum shortening experiencing a greater magnitude and more rapid 692 

build-up of stress than other matrix grains (Figs. 5 and 9). In pure shear, the change in rotation 693 

direction appears to have a profound effect on the way stresses are distributed on boundaries 694 

throughout the model, with high stresses rapidly redistributed away from the single row of 695 

grains to all other boundaries (Fig. 5). A similar pattern of stress redistribution behaviour 696 

occurs in the simple shear run, but the sequence of i) a build-up of stresses close to the large 697 

grain before ii) redistribution onto matrix grains, followed by iii) a drop in stress on all 698 

boundaries, appears to at least begin a second cycle.  This can best be seen in the Pure_stresses 699 

and Simple_stresses animations in the supplementary information. The suggestion of such 700 

cyclical behaviour warrants further investigation to higher strains.    701 

The low stress values shown in Figures 4d and 8d are a result of legacy values for some 702 

coefficients used during model development: in section 2 we showed that for equivalent size 703 

spheres  𝜂 = 1.461 x 10−8 Pa.s. For simple shear (Figs.6–9), the shear strain rate is 𝛾̇ = 0.5 s−1, 704 
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so the equivalent differential stress (twice the shear stress) is 1.5 x 10−8 Pa. This value is of a 705 

similar order of magnitude to the starting value of differential stress in the model, which is 1.9 706 

x 10−8 Pa. The theoretical value is slightly lower than the modelled value because elongate 707 

grains are stronger than equant grains of equivalent area; e.g. Elliott (1973) showed that at 708 

constant stress, grain elongation results in a decrease in strain rate. Moreover, Coble’s (1963) 709 

derivation is for notional spherical grains. These provide diffusion pathways in all three 710 

dimensions and so strength is lower than for “two-dimensional” grains which in effect have 711 

infinite length in the third dimension. 712 

The initial strength of the net in pure shear was close to zero (Figs. 4d & 5a). Wheeler (2010) 713 

discussed anisotropic rheology during diffusion creep, with particular reference to a periodic 714 

microstructure constructed of a single irregular hexagonal grain shape. The results of Wheeler 715 

(2010) showed that anisotropy occurred in two orthogonal strong directions, and two 716 

orthogonal weak directions that lie at 45° to the strong directions. The model runs in this study 717 

were set up so that grain boundaries had zero viscosity, and, under these conditions, the weak 718 

directions have low strength. The large grain was expected to have some effect on the strength 719 

of the starting net, but it seems to have been minor. The initial very low strength of this net is 720 

explained by the fact that the elongate hexagons which comprised the initial microstructure 721 

were oriented in such a way that the direction of imposed pure shear happened to be aligned 722 

with the weak directions. As finite grain rotations occurred, the strength of the microstructure 723 

increased as the weak directions rotated away from parallelism with the imposed shear stress 724 

(Fig. 4d).   725 

A periodic microstructure can create spurious results in models of diffusion creep, as discussed 726 

below in section 5.4. In pure shear, alignment of matrix grain boundaries is considered to lead 727 

to the observed drop in strength. Could the periodicity in the starting net be the reason for 728 

boundary alignment and associated strength drop? This is not thought to be the case, as sliding 729 
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surfaces nearly always develop due to boundary alignment in starting nets with heterogeneous 730 

grain geometry during diffusion creep, and affect the strength of the nets in the same way as 731 

observed here (Wheeler, 2009, and unpublished models). Thus, boundary alignment is simply 732 

a natural product of diffusion creep deformation. The results of both the pure and simple shear 733 

simulations show that the presence of large grains will influence where within the 734 

microstructure such boundary alignment (and therefore sample weakening) will occur. 735 

5.4 Model limitations and future work 736 

5.4.1 Effect of a periodic matrix on microstructure evolution 737 

Although many natural rocks do exhibit an SPO, the geometry of the matrix grains in the start 738 

net used here is somewhat artificial. Such periodicity of grain shape can cause problems in 739 

diffusion creep modelling because the neighbour switches that occur as a natural product of 740 

diffusion-accommodated grain boundary sliding (Spingarn and Nix, 1978) all occur at the same 741 

time throughout the microstructure. Such synchronised grain switching is unrealistic and thus 742 

will produce a somewhat simplified deformation behaviour. In addition, the grain shape 743 

anisotropy in our starting net is orientated at 45° to the maximum shortening axis of the 744 

instantaneous strain ellipse in both the pure shear and simple shear model runs. As discussed 745 

in section 5.3, Wheeler (2010) showed that irregular hexagons develop an anisotropic rheology 746 

in diffusion creep, so that a polycrystal made of repeating hexagons exhibits an overall 747 

anisotropic rheology in DiffForm models (see Fig. 4 of Wheeler, 2010. The effect of this 748 

anisotropy is reflected in the stress evolution of the pure shear and simple shear models 749 

presented here (Figs. 4d and 8d). Work in progress suggests there is a rigorous mathematical 750 

basis to expect anisotropic rheology will also develop in more irregular microstructures, with 751 

initial results comparable to those presented in Figure 4 of Wheeler (2010). Therefore, we do 752 

not expect the initial shape anisotropy of our starting nets to have spuriously influenced 753 

evolution of the microstructure.  754 



Page 39 of 48 
 

The advantage of a mostly-periodic matrix is that it is easy to identify differences in the 755 

behaviour of matrix grains that are a result of (in this case) the presence of a large grain. Despite 756 

the differences between the simplified starting net and natural microstructures, such modelling 757 

is an important first step in understanding how microstructural evolution proceeds in crystalline 758 

materials with grain size heterogeneity during diffusion creep. Further work on more realistic, 759 

heterogeneous starting geometries is necessary to elucidate the effects of large grains on stress, 760 

grain rotations, and other aspects of microstructural evolution in real rocks. 761 

5.4.2 Relative size of large grain and matrix grains 762 

In the current model microstructure, the second phase grain is an order of magnitude larger 763 

than the matrix grains. Porphyroblasts in natural rocks have cross-sectional areas that are 764 

commonly 3 to 4 orders of magnitude larger than matrix grains (e.g. Vernon, 2018), meaning 765 

many more matrix grains lie adjacent to large grains. At present, this difference in grain size 766 

cannot be modelled in DiffForm due to issues with boundary switching at key nodes that 767 

compose grain boundaries lining the edge of the model net. When a finer matrix grain size is 768 

used, greater issues with boundary switching lead to model runs terminating at low strain, 769 

before much microstructural change has occurred. Similarly, it would be insightful to compare 770 

the behaviour of more than one large grain within a single experiment, but this cannot currently 771 

be achieved due to constraints on the smallest workable matrix grain size. Solving this issue is 772 

an important next step in the future development of the DiffForm modelling suite.     773 

We speculate that an increased difference in relative size of large and matrix grains is unlikely 774 

to substantially change the rotational behaviour of large grains from that observed here. A finer 775 

grain size would make the matrix weaker (due to grain boundary diffusion creep having a grain 776 

size exponent of 3 in Eq. 2; Poirier, 1985), which may decrease the rotational stability of the 777 

large grain. However, the ductility contrast between the two phases is already defined to be 778 

(almost) infinite in the model, so the relative weakness of the matrix with respect to the large 779 
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grain would not noticeably change. One instance where a greater number of fine grains lining 780 

a porphyroblast boundary could potentially arrest rotation behaviour is if those fine grains all 781 

rotated in the opposite direction to their neighbours, as observed in the simple shear model, in 782 

such a way that the resulting sum of traction on all large grain boundary segments was equal 783 

to zero. However, in a matrix where grain shapes show greater heterogeneity, as observed in 784 

nature, it is difficult to see this scenario occurring.    785 

6 Conclusions 786 

During the microstructural evolution of a fine-grained matrix undergoing diffusion creep: 787 

1) Rotations of matrix grains are strongly influenced by rotation of large grains, especially 788 

matrix grains that lie adjacent to large grains. 789 

2) The rotation direction of a large grain does not have to be simply either synthetic or 790 

antithetic; rotation directions can change due to interactions with the matrix, and the 791 

overall evolution of grain rotations in a rock undergoing diffusion creep is complex. 792 

3) The presence of large grains is unlikely to influence formation of a CPO. However, a 793 

pre-existing CPO can be largely preserved, and depending on the shear geometry may 794 

be split into smaller domains due to the influence that large grain rotation has on matrix 795 

grains. 796 

4) Large grains create stress heterogeneities that focus the effects of diffusion creep. This 797 

can influence how and where grain boundaries align within a microstructure, which can 798 

lead to a profound drop in strength of a material. 799 

5) The local distribution of matrix grain boundary stresses is clearly influenced by 800 

proximity to large second phase grains. Stresses are greater on boundaries oriented 801 

favourably to the axis of maximum shortening. The model results suggest some kind of 802 

cyclical transfer of stress into different parts of the matrix may occur during diffusion 803 

creep, which is influenced by switches in the rotation direction of large grains.   804 
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6) An increase in the velocity of a rotating large grain can lead to the angular velocities of 805 

matrix grain rotations transiently evolving away from steady-state, which results in a 806 

significant drop in the strength of a material deforming by diffusion creep. However, 807 

individual grain rotations can return to a steady-state, which re-stabilises the strength 808 

of the material, but at a value lower than the starting strength. 809 
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