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Abstract. We develop an algorithm that combines the advantages of priority
promotion – the leading approach to solving large parity games in practice – with
the quasi-polynomial time guarantees offered by Parys’ algorithm. Hybridising
these algorithms sounds both natural and difficult, as they both generalise the
classic recursive algorithm in different ways that appear to be irreconcilable: while
the promotion transcends the call structure, the guarantees change on each level.
We show that an interface that respects both is not only effective, but also efficient.

1 Introduction

Parity games have many applications in model checking [38,18,16,1,64,39] and
synthesis [64,38,61,55,50,57,58]. In particular, modal and alternating-time µ-
calculus model checking [64,1], synthesis [58,50,57] and satisfiability check-
ing [64,38,61,55] for reactive systems, module checking [39], and ATL* model
checking [16,1] can be reduced to solving parity games. This relevance
of parity games led to a series of different approaches to solving them
[45,19,44,51,66,12,65,32,33,63,46,40,9,10,35,22,7,13,34,41,23,48,42,49,15].

The research falls into two categories: to develop fast solvers; to determine the
complexity of parity games or to find algorithms with a good worst-case complexity.
With its practical motivation, the leading algorithms most for solving real life parity
games are currently priority promotion techniques [7,6], a refinement of the classic
recursive algorithm [45,19,65] that follows the iterated fixed-point structure induced by
the parity condition. The complexity of solving parity games is still an open problem.
Parity games are memoryless determined [18,11], which implies that nondeterministic
algorithms can determine winning regions and strategies for both players. Due to their
symmetry, they are therefore in NPTIME ∩ CONPTIME [18], and by reduction to payoff
games [66], in UPTIME ∩ COUPTIME [32]. While determining their membership in
PTIME continues to be a major challenge, one of the most celebrated results in recent
years has been the landmark result of Calude et al. [13], which established that parity
games can be solved in quasi-polynomial time (QP). This was a major step from former
deterministic algorithms, which were (at least) exponential in the number of priori-
ties [45,19,66,12,65,33,10,53,54,7] (nO(c)), or in the square-root of the number of game
positions [44,35,10] (approximately nO(

√
n)). The breakthrough of Calude et al. [13] has

triggered a new line of research into QP algorithms, including [34,41,23,48,42,49,15].
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Algorithms that are good in practice do not tend to display their worst-case behaviour,
except for in carefully designed hostile examples. This holds in particular for strategy
improvement algorithms [44,51,63,10,53,20,56], which were considered candidates for
tractable algorithms until they were shown to be exponential by Friedman’s delicate
lower bound constructions [24,29,26] (with the notable exception of the symmetric
approach from [56], for which no hard families are known). But while it is easier to
design hard classes for recursive [25,5] and priority-promotion algorithms [6], these
classes are still not relevant in practice. However, with a host of QP algorithms at hand,
an upgrade of priority promotion that offers QP lower bounds without undue compromise
on efficiency will be an attractive challenge that combines the best of both worlds.

Interestingly, Parys’ algorithm [48] and variations thereof [42], which, like priority
promotion techniques, adjust the classic recursive algorithm [45,19,65], are relatively
fast among the QP algorithms, where [48] has the edge on benchmarks, while [42] has
the edge on guarantees. On first glance, this seems to invite synthesising one of these
algorithms with priority promotion. On second glance, the prospect of this synthesis
seems less promising. Priority promotion techniques [3,7,6] achieve their advancement
over the previously leading recursive algorithms [45,19,65] by globally bypassing the
call structure through temporally increasing the priority of a position. Parys’ approach,
on the other hand, locally creates sets with guarantees with quickly falling strength
along the recursive call structure, where subgames are split into areas that contain all
0-dominions with size up to a bound b0 and all 1-dominions of size up to a bound b1;
one of these bounds is halved in each call until the guarantees are trivial. Prima facie, it
seems clear that such guarantees are ill suited for a promotion across the call structure.
We did, however, find that, when one shifts the view on the essence of a promotion from
creating quasi-dominions to creating regions and promoting them to the lowest level
where they are no longer dominions, this allows for a concurrent treatment of sets with
bounded guarantees (the Parysian flair of our hybrid algorithm) and with unbounded
guarantees (the Priority Promotion core of our algorithm). While the integration of these
seemingly antagonistic concepts is intricate, it provides an efficient bridge between
the behaviour and the data structure of [7] and [48]: the resulting algorithm guaran-
tees a quasi-polynomial running time, and offers excellent practical behaviour on the
benchmarks we have tested it against.

2 Preliminaries

A two-player turn-based arena is a tuple A = 〈Ps0,Ps1,Mv〉, with Ps0 ∩ Ps1 = ∅
and Ps,Ps0 ∪ Ps1, such that 〈Ps,Mv〉 is a finite directed graph without sinks. Ps0
(resp., Ps1) is the set of positions of the Player (resp., the Opponent) and Mv ⊆ Ps×Ps
is a left-total relation describing all possible moves. A path in V ⊆ Ps is a finite or
infinite sequence π ∈ Pth(V) of positions in V compatible with the move relation, i.e.,
(πi, πi+1) ∈ Mv , for all i ∈ [0, |π| − 1). A positional strategy for player α ∈ {0, 1} on
V ⊆ Ps is a function σα ∈ Strα(V) ⊆ (V ∩ Psα) → V, mapping each α-position v
in V to position σα(v) compatible with the move relation, i.e., (v, σα(v)) ∈ Mv . With
Strα(V) we denote the set of all α-strategies on V. A play in V ⊆ Ps from a position
v ∈ V w.r.t. a pair of strategies (σ0, σ1) ∈ Str0(V)× Str1(V), called ((σ0, σ1), v)-play,
is a path π ∈ Pth(V) such that (π)0 = v and, for all i ∈ [0, |π| − 1), if (π)i ∈ Ps0
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then (π)i+1 = σ0((π)i) else (π)i+1 = σ1((π)i). The play function play : (Str0(V) ×
Str1(V)) × V → Pth(V) returns, for each position v ∈ V and pair of strategies
(σ0, σ1) ∈ Str0(V)× Str1(V), the maximal ((σ0, σ1), v)-play play((σ0, σ1), v).

A parity game is a tuple a = 〈A,Pr, pr〉 ∈ PG, where A is an arena, Pr ⊂ N is a
finite set of priorities, and pr : Ps→ Pr is a priority function assigning a priority to each
position. The priority function can be naturally extended to games and paths as follows:
pr(a),maxv∈Ps pr(v); for a path π ∈ Pth, we set pr(π),maxi∈[0,|π|) pr((π)i), if π
is finite, and pr(π), lim supi∈N pr((π)i), otherwise. A set of positions V ⊆ Ps is an α-
dominion, with α ∈ {0, 1}, if there exists an α-strategy σα ∈ Strα(V) such that, for all
α-strategies σα ∈ Strα(V) and positions v ∈ V, the induced play π = play((σ0, σ1), v)
is infinite and pr(π) ≡2 α. In other words, σα only induces on V infinite plays whose
maximal priority visited infinitely often has parity α. The winning region for player
α ∈ {0, 1} in game a, denoted by Wnαa, is the greatest set of positions that is also a
α-dominion in a. Since parity games are memoryless determined [17], meaning that
from each position one of the two players wins, the two winning regions of a game a
form a partition of its positions, i.e., Wn0a ∪Wn1a = Psa.

By a\V we denote the maximal subgame of a with set of positions Ps′ contained in
Ps\V and move relation Mv ′ equal to the restriction of Mv to Ps′. The α-predecessor
of V, in symbols preα(V), { v ∈ Psα | Mv(v) ∩V 6= ∅ }∪{ v ∈ Psα | Mv(v) ⊆ V },
collects the positions from which player α can force the game to reach some position in
V with a single move. The α-attractor atrα(V) generalises the notion of α-predecessor
preα(V) to an arbitrary number of moves. Thus, it corresponds to the least fix-point
of that operator. When V = preα(V), player α cannot force any position outside V to
enter this set that is,therefore, called α-maximal. For such a V, the set of positions of the
subgame a \V is precisely Ps \V. When the computation of the attractor is restricted
to a given set of positions X, we will use the notation atrα(V,X) which corresponds to
the least fix-point of preα(V) ∩X. Finally, the set escα(V), preα(Ps \V) ∩V, called
the α-escape of V, contains the positions in V from which α can leave V in one move.
Observe that all the operators and sets described above actually depend on the specific
game a they are applied to. In the rest of the paper, we shall only add a as subscript of
an operator, e.g. atrαa(V), when the game is not clear from the context.

3 A Hybrid Priority-Promotion Algorithm

We introduce the hybrid algorithm in three steps. In the first step (Section 3.1), we
introduce a variation of classic Priority Promotion, which serves as the backbone of our
hybrid algorithm in Section 3.3. We provide a recap of how Priority Promotion operates
and an introduction to the data structure that is later extended. In a nutshell, Priority
Promotion accelerates the classic recursive algorithm, by allowing to merge dominions in
subgames spanning non-adjacent recursive calls, which is the essence of the promotion
operations. In the following subsection (Section 3.2), we outline Parys’ algorithm, which
does not seek to identify all dominions on a level, but merely those up to given bounds
b0 and b1 for the dominions of Player 0 and Player 1, respectively. It truncates the size
of the call tree by making all but one call with half the precision for one of the players.
Here, we formulate the algorithm with a terminology analogous to Priority Promotion,
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and present it in a form similar to our hybrid algorithm. The two concepts or Priority
Promotion and truncated tree size through limited guarantees appear to be unlikely allies:
not only does the presence of Parys’ sets with limited guarantees impede the promotion
of dominions, any attempt to promote sets with bounded guarantees are set to fail, when
the bounds are larger (and thus the required guarantees stronger) along the call tree.
In Section 3.3, we see that, when synthesising the algorithms carefully, sets with the
‘region guarantees’ from Priority Promotion and with ‘bounded guarantees’ from Parys’
approach can co-exist, so long as they are kept carefully apart and treated differently.

The resulting algorithm can identify dominions in many places, and these dominions
can be promoted. This promotion can be to a set with ‘region guarantees’ at a higher
level, but it can also be that the correct target is a set with ‘bounded guarantees’ (which
works across levels because dominions have unbounded guarantees). The identification
of the right set to promote to, instead, remains fairly similar to the way it is identified
in classic Priority Promotion. While sets with bounded guarantees cannot be promoted
along the data structure (which follows the call tree), they lose parts of their locality:
positions can be promoted into them, and, crucially, they do not prevent promotions to
higher levels. This way, we can keep the Priority Promotion part, which usually carries
the main burden of solving the parity game and can play out its practical efficiency in full,
while we also retain the quasi-polynomial complexity from Parys’ algorithm, bypassing
the known hard cases for recursive algorithms. For practical considerations, it is still
computationally attractive to grow the bounded sets more slowly: we found that some of
the points where Parys’ algorithm applies a closure of sets with bounded guarantees are
merely for the convenience of the proof. For efficiency, we have restricted the closure
under attractor of these sets to the places, where it is necessary for correctness.

3.1 The Priority-Promotion Approach

The priority-promotion approaches [7,6] attack the problem of solving a parity game a ∈
PG by iteratively computing, one at a time, a sequence of α-dominions Dα0 ,D

α
1 , . . . ⊆

Ps, for some player α ∈ B,{0, 1}. These, indeed, are portions of the two winning
regions, Wn0 and Wn1, that need to be identified. The idea here is to start from a weaker
notion, called quasi dominion, and then compose them until a dominion is obtained. The
name of the approach comes precisely from the fact that this composition is computed
by applying the following operation of promotion: given two quasi dominions Q1 and
Q2 to which some priorities p1 < p2 of the same parity are assigned, Q1 is combined
with Q2 by promoting the former to the priority of the latter.

Similarly to a dominion, a quasi dominion is a set of positions over which one of the
two players, called the leading player, has a strategy defined on that set, whose induced
plays, if infinite, are winning for that player. As opposed to dominions, however, some
of these plays may be finite, since the opponent may have the possibility to escape from
those positions towards a different part of the game, hoping for a better outcome.

Definition 1 (Quasi Dominion). A set of positions Q ⊆ Ps is a quasi α-dominion, for
some player α ∈ {0, 1}, if there exists an α-strategy σα ∈ Strα(Q), called α-witness
for Q, such that, for all α-strategies σα ∈ Strα(Q) and positions v ∈ Q, the induced
play π = play((σ0, σ1), v), namely a (σα, v)-play, satisfies pr(π) ≡2 α, if infinite.
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The usefulness of the above concept, in addition to the property of being suitably
composable, resides in the fact that quasi dominions are closed under inclusion. Thus,
when a closed subset of a quasi dominion is found, a dominion is identified.

Theorem 1 (Induced Dominion). Let α ∈ {0, 1} be a player, Q ⊆ Ps a quasi α-
dominion, σ ∈ Strα(Q) one of its α-witnesses, and D ⊆ Q a subset such that σ(v) ∈ D,
if v∈Psα, and Mv(v)⊆D, otherwise, for all positions v∈D. Then, D is an α-dominion.

Intuitively, the solution algorithms following this approach carry on the search for a
dominion by exploring a finite strict partial order 〈St, sI ,≺〉, whose elements, called
states, record information about the quasi dominions computed up to a certain point.
In the initial state sI , the quasi dominions are initialised to the sets of positions with
the same priority. At each step, a new quasi α-dominion Q, for some player α ∈ B, is
extracted from the current state s and used to compute a successor state w.r.t. the order
≺, if Q is open, i.e., it if is not an α-dominion. If, on the other hand, it is closed, the
search is over and Q is added to the portion of the winning region Wnα computed so far.

We start by describing a new priority-promotion algorithm that instantiates the above
partial order and serves as a basis for the hybrid approach presented later in this section.
To do so, we first need to introduce few technical notions, all of which refer to some
fixed parity game a ∈ PG. By Pr⊥,Pr ∪ {⊥} and Pr>,Pr ∪ {>0,>1} we denote
the set of priorities in a extended with the bottom symbol⊥ and two top symbols>0 and
>1, one for each player. The standard ordering < on Pr is extended to these additional
elements in the natural way: ⊥ is the smallest element, while both >0 and >1 are strictly
greater than every other priority; we do not assume any specific order between the two
maximal elements, though, we consider >0 even and >1 odd.

The first step in the formalisation of the notion of state requires the concept of
promotion function, which represents the backbone of the algorithm, being the data
structure to which the promotion operation is applied. Intuitively, it is a partial function
from positions to priorities that over-approximates the priority function of the game.

Definition 2 (Promotion Function). A promotion function r ∈ Pm,Ps⇀Pr> is a
partial function such that r(v) ≥ pr(v), for every position v ∈ dom(r).

In the following, we adopt the same notation as in [7]. Given a promotion function r ∈
Pm and a priority p ∈ Pr, we denote with r(∼p), for∼∈ {<,≤,≡2,≥, >}, the function
obtained by restricting the domain of r to those positions v ∈ dom(r) whose priority
r(v) satisfies the relation r(v) ∼ p, i.e., r(∼p), r � { v ∈ dom(r) | r(v) ∼ p }, where � is
the standard operation of domain restriction. We may also use Boolean combinations
of the above restrictions, as in r(≡2α)∧(≥p). By Hαr , dom

(
r(≡2α)

)
we denote the set of

positions in r with a priority congruent to α ∈ B and with Hα,pr , dom
(
r(≡2α)∧(≥p)

)
its

subset with priorities greater than or equal to p.
A state encodes information about the quasi dominions computed up to a certain

point of the computation. To this end, we require all positions in a promotion function r
with priority of parity α ∈ B, i.e., the set Hαr , to form a quasi α-dominion. Moreover,
the idea is to store all α-dominions already identified by associating them with the
corresponding maximal priority >α.
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Definition 3 (Quasi-Dominion Function). A quasi-dominion function r ∈ Qs ⊆ Pm
is a promotion function satisfying the following conditions, for every α ∈ B: 1) the set
Hαr is a quasi α-dominion; 2) the set r−1(>α) is an α-dominion.

An important property of dominions is that the extension of an α-dominion by means
of its α-attractor is still an α-dominion. This property, however is not enjoyed by arbitrary
quasi dominions. Indeed, there may even be cases where the α-attractor of a quasi α-
dominion is a α-dominion. Moreover, to efficiently verify whether a quasi dominion is
actually a dominion, an explicit representation of one of its witnesses is usually required.
To overcome these complications, we consider a subclass of quasi dominions that meets
the following requirements: 1) the set esc(Q, σ), { v ∈ Psα ∩Q | σ(v) 6∈ Q } of α-
positions, which leave a quasi α-dominion Q ⊆ Ps by following one of its α-witnesses
σ ∈ Strα(Q), is a subset of the α-escape positions escα(Q); 2) all these α-escape
positions have priorities congruent to α and greater than the ones of the positions
that can be attracted. The first requirement ensures that, to verify whether Q is an α-
dominion, it suffices to check for the emptiness of escα(Q). The second one, instead,
can be exploited to regain closure under extension by α-attractor.

Definition 4 (Region Function). A region function r ∈ Rg ⊆ Qs is a quasi-dominion
function satisfying the following conditions, for every α ∈ B: 1) there exists an α-witness
σα ∈ Strα(Hαr ) for Hαr such that esc(Hα,pr , σα) ⊆ escα(Hαr ), for all p ∈ rng(r), with
p ≡2 α; 2) p ≤ pr(v) ≡2 α, for all p ∈ rng(r), with p ≡2 α, and v ∈ escα(Hα,pr ).

Notice that, every set Hα,pr , with p ∈ rng(r), is a quasi α-dominion, being a subset
of the quasi α-dominion Hαr . Also, it is immediate to see that the priority function pr
of a given parity game a is always a region function. Indeed, it is trivially a promotion
function. Moreover, the positions with a priority of parity α, i.e., Hαpr, form a quasi
α-dominion with α-witness any strategy that always chooses to remain inside the set,
if allowed by the move relation. Thus, it is a quasi-dominion function as well. Finally,
since Hα,ppr cannot contain positions of parity α and thanks to the way the α-witness is
chosen, it is clear that pr also satisfies the conditions of Definition 4.

At this point, we have the technical tools to introduce the search space that instanti-
ates the finite strict partial order described in the intuitive explanation of the approach.
In particular, to account for the current status of the search of a dominion in a game
a, we define a state s as a pair, comprising a region function r and a priority p, with
the idea that 1) all quasi α-dominions computed so far are contained in Hα,qr , for some
q > p, 2) the current quasi dominion to focus on is contained in r at priority p, and 3) all
positions with priorities smaller than or equal to p correspond to the portion of the game
that has still to be processed. The initial state is composed of the priority function pr of
the game and its maximal priority pr(a). Finally, we assume that a state s1 is lower than
another state s2 w.r.t. the partial order relation ≺, if the set of unprocessed positions in
s1 is a subset of those in s2.

Definition 5 (Search Space). A search space is a tuple S , 〈St, sI ,≺〉, whose three
components are defined as follows:
1. S ⊆ Rg × Pr⊥ is the set of all pairs s,(r, p), called states, where dom(r) = Ps;

for every state s ∈ St, we set (i) αs, p mod 2, (ii) Hαs ,Hαr , (iii) Hα,qs ,Hα,qr ,
(iv) Rs, r−1(p), and (v) Ls, dom

(
r(≤p)

)
;
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2. sI ,(pr, pr(a)) is the initial state;
3. s1 ≺ s2 if either Ls1 ⊂ Ls2 or Ls1 = Ls2 and ps1 < ps2 .

Given a state s ∈ St, we refer to Ls as the local area, i.e., the set of unprocessed
positions yet to be analysed. This also includes the quasi αs-dominion Rs, called region,
on which the next step of the search will focus. The two quasi dominions H0

s and H1
s

partition the entire set of positions in the game, while H0,q
s and H1,q

s represent the
portions of these quasi dominions to which the region function has assigned a priority at
least equal to q ∈ Pr. Notice that the pseudo-priority ⊥ is used to indicate the situation
where all positions have been processed, which corresponds to an empty local area.

a/0 b/7

c/1 d/5

e/3 f/6

g/4 h/2

a
>0 >1

7

6

3

Rs

Ls

g ∅

b

d, f, h

e

a, c

Fig. 1. A game and a corresponding state representation.

To exemplify the above notions,
consider the game depicted in Fig-
ure 1, where circled shaped po-
sitions belong to Player 0 and
square shaped ones to Player 1.
Clearly, g and h are won by
Player 0, while the rest of the
game is won by the opponent. At
the state s = (r, 3), where r =
{a 7→ 0; c 7→ 1; e 7→ 3; d, f, h 7→ 6;
b 7→7; g 7→>0}, the local area Ls
contains the positions a, c, and
e. Of these only e is part of the
current region Rs. The quasi 0-
dominion H0

s contains the positions a, d, f, h, and g, while the quasi 1-dominion H1
s

takes the remaining ones, namely b, c, and e. Position g forms a 0-dominion on its own,
represented in the picture by the solid closed line. Apart from this position, all the other
ones are contained in open quasi dominions, indicated, instead, by the dashed closed
lines. For example, the set r−1(6) = {d, f, h} is a quasi 0-dominion, since, if Player
1 decides to remain inside, the adversary wins the play. However, Player 1 also has
the choice to escape from position f moving to e, i.e., esc1(r−1(6)) = {f}. Similarly,
esc0(r−1(7)) = {b}. Finally, notice that H0,4

s = {d, f, g, h} and H1,4
s = {b}.

During the exploration of the search space, a priority-promotion algorithm typically
traverses several types of states, some of which enjoy important properties that need to
be explicitly identified, as they are exploited during the search for a dominion. Given a
player α ∈ B, we say that a state s ∈ St is α-maximal, if the quasi α-dominion Hαs \ Ls
is α-maximal w.r.t. Ls, i.e., the α-attractor atrα(Hαs \ Ls,Ls) to Hαs \ Ls of positions
from the local area Ls is empty. If s is α-maximal w.r.t. both players α ∈ B, we simply
say that it is maximal and denote by StM ⊆ St the corresponding subset of states and by
as,a \ dom

(
r
(>ps)
s

)
the induced subgame. A maximal state s is strongly maximal, if

the current region Rs is αs-maximal w.r.t. Ls. By StS ⊆ StM we denote the set of strongly
maximal states. Recall that region Rs of a state s is contained in the quasi αs-dominion
Hαs,pss . We say that s is open if the opponent αs can escape from Hαs,pss starting from
Rs using a single move, i.e., if Rs ∩ escαs(Hαs,pss ) 6= ∅. In this case, the opponent may
escape from Rs by either moving to the remaining portion of local area Ls \ Rs or to
the quasi αs-dominion Hαs,pss . The state is said to be closed, otherwise. For technical
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convenience, a state with an empty region is always considered open. Finally, a closed
state s is promotable, if it αs-maximal and Rs is αs-maximal w.r.t. Ls. By StP ⊆ St we
denote the set of promotable states.

The new priority-promotion-based approach, called recursive priority promotion
(RPP, for short), is reported in Algorithm 1. The left-hand side shows the main func-
tion sol, while the right-hand side provides the auxiliary function NextPr and the two
procedures Maximise and Promote. The function sol assumes the input state s to be
maximal, i.e., s ∈ StM. At Line 1 it checks if there are still unprocessed positions in the
game, namely if the priority of the current state is different from ⊥. If this is the case,
Line 2 maximises the region of the current state, namely Rs, r−1(p), by computing its
αs-attractor, so that the resulting set is αs-maximal and, therefore, s becomes strongly
maximal, i.e., s ∈ StS. For convenience, we abbreviate the update of some component in
a state s, say component Rs for instance, simply as Rs ← exp, for some expression exp.
Therefore, the instruction at Line 2 updates the state s by replacing the original region
Rs with atrαsas(Rs) within the state. If the resulting state s is closed, it is also promotable,
i.e., s ∈ StP, being maximal by hypothesis, and, therefore, a promotion can be applied
at Lines 4, by means of a call to procedure Promote. If, instead, s is open, which means
that the opponent can escape from Rs moving outside the quasi αs-dominion Hαs,pss ,
the algorithms proceeds to analyse the part of the game still unprocessed. To do this,
we first compute the next state by means of NextPr(s), which simply identifies the next
priority to consider, namely the maximal priority of the unprocessed positions. The
resulting state is then given as input to the recursive call at Line 4. Once the recursive
call completes, the state is updated with the new region function returned by the call.
The new state s is such that the local area Ls coincides with Rs, since the recursive
call ends after analysing all the previously unprocessed positions. As a consequence,
either the opponent cannot escape from Rs anymore or it can only move to its own quasi
dominion Hαs,pss . Line 5 checks which one of the two possibilities occurs. In the first
case, the new state s is closed, hence αs-maximal. Moreover, since Ls = Rs, the region
Rs cannot attract any other positions and is, therefore, αs-maximal. This means that s is
promotable, i.e., s ∈ StP, and Line 7 promotes the region within the quasi αs-dominion.
If, on the other hand, s is still open, then the opponent can escape to Hαs,pss from some
positions in Rs. This means that the current state is not αs-maximal and Line 6 fixes this
by calling the procedure Maximise. The aim of this function is to reestablish maximality
of the quasi dominions Hαs,pss and Hαs,pss associated with the state s. This is done by
attracting positions from the current region Rs = Ls. The surviving positions in Rs,
if any, need not form a quasi αs-dominion anymore and are set by Maximise to their
original priority according to the priority function pr of the game. In any case, when the
computation reaches Line 9, whether coming from Line 6, Line 7 or Line 8, the state
s is maximal, i.e., s ∈ StM, and a second, and final, recursive call is performed on s to
process the remaining positions in Ls, if any.

The auxiliary function NextPr generates a new maximal state ŝ = NextPr(s) ∈ StM,
starting from a strongly-maximal one s ∈ StS. The state ŝ is obtained by changing the
current priority ps to the highest priority q of the positions in Ls \Rs. Observe that when
no such position exists, namely when Ls = Rs, the new priority coincides with ⊥.

Maximise enforces the maximality property on the state s received as input, so that,
in the resulting state obtained by modifying s in-place, no position of the local area Ls
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Algorithm 1: RPP Solver
function sol(s : StM) : Rg

1 if ps 6= ⊥ then
2 Rs ← atrαsas (Rs)

3 if s is open then
4 rs ← sol(NextPr(s))
5 if s is open then
6 Maximise(s)

else
7 Promote(s)

else
8 Promote(s)

9 rs ← sol(s)

10 return rs

Auxiliary Functions / Procedures

function NextPr(s : StS) : StM

1 q ← max(rng
(
r
(<ps)
s

)
)

2 return (rs, q)

procedure Maximise(s : St)
1 foreach α ∈ B do
2 X← atrα(Hαs \ Ls,Ls)
3 q ← min(rng(rs � (Hαs \ Ls)))
4 rs ← rs[X 7→ q]

5 rs ← rs[v ∈ Ls 7→ pr(v)]

procedure Promote(s : StP)
1 q ← bepαs(Rs, rs)
2 rs ← rs[Rs 7→ q]

can be attracted by the quasi α-dominions Hαs , with α ∈ B. To this end, the procedure
computes at Line 2 the α-attractor atrα(Hαs \ Ls,Ls), collecting all the position of Ls
that player α can force to move into Hαs \ Ls. The minimum priority q assigned by r
to a position in the attracting set is extracted at Line 3. The attracted positions are then
assigned priority q in the region function rs at Line 4. Since removing positions from
the local area Ls may induce a violation of the two requirements of Definition 4, the
positions that remain in Ls at the end of the for-each loop of Lines 1-4 need to be reset
to their original priority, as prescribed at Line 5.

To conclude, the procedure Promote requires a promotable state s ∈ StP and applies
a promotion operation to the region Rs, while preserving any maximality property
already enjoyed by the input state. It first computes the opponent best-escape priority q
for the set Rs w.r.t. rs (Line 1). Intuitively, this is the smallest priority the opponent can
reach with one move when escaping from the region Rs. Formally, it is defined as:

bepαs(Rs, rs),min(rng(rs � rng(I ))),

where I ,Mva ∩ (escαs(Rs)× (dom(rs) \ Rs)) contains all the moves leading outside
Rs that the opponent can use to escape. The procedure, then, promotes Rs to q, by
assigning at Line 2 the priority q to all the positions of Rs in the region function rs.
Observe that, thanks to the αs-maximality of the input state, q is necessarily congruent
to αs. In particular, when the only possibility for player αs to escape from Rs is to reach
r−1s (>α), the value of q is>α. In this case, we are promoting Rs from the status of quasi
αs-dominion to that of αs-dominion. The correctness of this is ensured by Theorem 1.

At this point, by defining sol(a),(r−1(>0), r
−1(>1)), where r, sol(sI), we ob-

tain a sound and complete solution algorithm for parity games. In particular, the sound-
ness follows from the fact that RPP always traverses states having as invariant the
property that r−1(>0) and r−1(>1) are dominions (see Item 2 of Definition 3). Com-
pleteness, instead, is due to the recursive nature of the algorithm, whose base case
ensures that no position is left unprocessed at any given priority.
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Algorithm 3: Parys Solver

function sol(s : St) : 2Ps

1 if ps=⊥ ∨ b0s=0 ∨ b1s=0 then
2 return (rs, us)

else
3 hsol(s)
4 ŝ← s
5 (rs, us)← sol(NextPr(s))
6 Maximise(s)
7 if s ≺ ŝ then hsol(s)
8 return Und(s)

Auxiliary Functions / Procedures I
function NextPr(s : St) : St

1 return ((rs, ps−1), (us, ps, b0s, b1s))
function Half(s : St) : St

1 (b0s, b1s)← (
⌊
b0s

1+αs

⌋
,
⌊

b1s
2−αs

⌋
)

2 return NextPr(s)

procedure hsol(s : St)
1 repeat
2 Rs ← atrαsas (Rs)

3 ŝ← s
4 (rs, us)← sol(Half(s))
5 Maximise(s)

until s 6≺ ŝ

Auxiliary Functions / Procedures II
procedure Maximise(s : St)

1 X← atrαs
(
Hαss ,Ls

)
2 rs ← rs \X
3 us← us[X 7→ ps]

function Und(s : St) : Rg×Pm
1 rs ← r

(>ps)
s [v∈Us 7→ pr(v)]

2 us ← us[Ls 7→ ps + 1]
3 return (rs, us)

3.2 Parys’ Algorithm

In order to obtain a quasi-polynomial time priority-promotion-based solution procedure,
we entangle the algorithm of the previous subsection with Parys’ idea [48] to suitably
truncate the recursion tree. Naturally, cutting some of the recursive calls may prevent us
from deciding the winner for some of the positions with certainty. These intermediate
results are thus undetermined (we use a function u, read ‘undetermined’, to refer to these
results). Parys’ contribution was to design the truncation in a way that offers bounded
guarantees, namely that these sets contain all small dominions of one player and do
not intersect with small dominions of the other. The bounds up to which these limited
guarantees hold are shed quickly in the call tree: most of the calls are made with half
precision—meaning that one of the bounds is halved—and only one is made with full
precision—meaning that both bounds are kept. A first step in the integration of Parys’
approach with Priority Promotion is to formulate it in the same terms and to use the
opportunity to introduce the notation needed when hybridising the approaches. To this
end, we assume Us, u−1s (ps) is the set of undetermined positions at a certain stage s of
the search. We require that Us satisfies the following property: it must contain all the
α-dominions of size less than or equal to some given bound bα and it cannot intersect
any α-dominion of size less than or equal to a second given bound bα.

Just as pure Priority Promotion does not use undetermined positions, Parys’ approach
does not use regions (beyond the attractor of the nodes with highest priority). Conse-
quently, little happens to the region functions in our representation of Parys’ algorithm:
positions that are added to Us are removed from the region function, and when Us is
destroyed, they are added (with their native priorities) back to rs.

We only outline the principles here together with slight generalisations of the standard
lemmas employed in each step, required later for hybrid approach. In hsol, the attractor
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of the positions with maximal priority is removed, and the recursive call of sol adds
all small dominions ≤

⌊
bαs
2

⌋
(but no part of any small region (≤ bαs) of player α)

of the remaining subgame to Us. Lemma 2 provides that, if such an αs dominion was
contained in the game before removing Rs then a sub-dominion of it still remains after
Rs is removed.

Lemma 1. If a dominion D for Player α in a game a does not intersect with a set S of
nodes, then it does not intersect with atrαa(S) either.

For α ≡2 p, a p-Region is a quasi α-dominion, such that (1) all nodes have priority
≤ q, and (2) all escape positions have priority p.

Lemma 2. If the highest priority in a non-empty dominion D for player α is p and it
intersects with a q-region R for q 6≡2 α and q ≥ p, then α’s parity (i.e. α 6= p mod 2),
then D contains a non-empty sub-dominion that does not intersect with atrαa(R).

These dominions are then closed under attractor by a call of Maximise, until s does
not change, and thus until no αs dominion ≤ b bαs2 c is left. This guarantee is used in
sol to ensure that a dominion D of player αs is in Us at the end of the function: all
αs dominions returned in the recursive call of line 5 are > b bαs2 c. Closing them under
attractor through a call of Maximise (line 6) leaves, by Lemma 1, a (possibly empty)
αs dominion of size ≤ b bαs2 c, when hsol is called for the second time, and thus fully
included in Us. After Parys’ Solver is run (with full precision) on a game with maximal
priority pmax, u−1(pmax + 1) contains the winning region of player pmax mod 2.

3.3 A Hybrid Algorithm

In our hybrid approach, we have to synthesise the use of regions and the use of undeter-
mined sets. To formalise this intuition, a state for the hybrid algorithm needs to embed
quite a bit of additional information w.r.t. a simple state of RPP. It obviously contains
both a region function r, tracking the quasi dominions already analysed, and the current
priority p. It also features an additional promotion function u, used to maintain the set
of undetermined positions, which only satisfy the relative guarantees mentioned above,
the priority of the caller used in the update of this function, and two numbers b0 and b1,
representing the two bounds w.r.t. which the guarantees are expressed. The initial state,
from which the search starts, contains, as is the case in the exponential algorithm, the
priority function pr and the maximal priority pr(a). In addition, the two bounds are both
set to the number of positions in the game, while the accessory function u is empty. For
technical convenience, we set the caller priority to >0. Finally, the ordering between the
states is again defined in terms of the sets of unprocessed positions in the two states.

Definition 6 (Hybrid Search Space). A hybrid search space is a tuple S , 〈St, sI ,≺〉,
whose three components are defined as follows:

1. S ⊆ (Rg×Pr⊥)×(Pm×Pr>×N×N) is the set of all tuples s,((r, p), (u, c, b0, b1)),
called hybrid states, where:
a) dom(r)∩dom(u)=∅, dom(r)∪dom(u)=Ps, dom

(
(r∪u)(>p)∧(<c)

)
=∅, p<c;
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b) u−1(>1) = dom
(
u(<p)

)
= ∅ and if c 6= >0 then u−1(>0) = ∅;

c) dom(u) ∩ escα(Hα,qs ) = ∅, with Hα,qs ,Hα,qr ∪Hα,qu , for all α ∈ B and q ≥ p;
for every state s ∈ St, we set (i) αs, p mod 2, (ii) Hαs ,Hαr ∪Hαu , (iii) Us, u−1(p),
(iv) Rs, r−1(p), and (v) Ls, dom

(
r(≤p)

)
;

2. sI ,((pr, pr(a)), (∅,>0, |a|, |a|)) is the initial state;
3. s1 ≺ s2 if either Ls1 ⊂ Ls2 or Ls1 = Ls2 and ps1 < ps2 .

Intuitively, Item 1a ensures that the set of positions in the game is partitioned into two
categories: (i) those contained in the region function r, which are considered determined,
in the sense that they belong to known quasi dominions; and (ii) those contained in the
promotion function u, which are undetermined, since they form sets that only satisfy the
bounded guarantees. Obviously the priority of the caller has to be higher than the current
one and no position can be associated with a priority between those two. Moreover,
since positions assigned to the two top pseudo-priorities must be determined, as they
form dominions, u cannot refer to those two values, except for the outermost call, when
c = >0. In this case, indeed, any undetermined position is necessarily won by player 1,
i.e., u−1(>0) ⊆Wn1. Moreover, all positions with priorities lower than the current one
are still unprocessed, therefore they cannot be undetermined. Both these requirements
are expressed by Item 1b. Finally, we need to ensure that a player cannot immediately
escape from a set of undetermined positions, as specified in Item 1c. This property is
crucial to maintain, after the update of the promotion function u, the implicit invariant
stating that, if a strongly-maximal state is closed, then it is promotable.

a
>0 >1

Ls

r r

r

r

u

u

Rs Us
r u

r

Fig. 2. The structure of a hybrid state.

Figure 2 reports a graphical representation of the
structure of a hybrid state. Most of the concepts and
notation introduced for the states of RPP have a
similar meaning and play a similar role for hybrid
states. In particular, given a hybrid state s ∈ St,
the set Ls identifies the local area, i.e., the set of
positions yet to analyse, while Rs is the quasi αs-
dominion, called region, included in Ls, which the
algorithm is currently focusing on. Moreover, the
two sets H0

s and H1
s partition the game, while H0,q

s

and H1,q
s represent the portions of these sets having

a priority, assigned either in r or in u, at least equal
to q ∈ Pr. As opposed to the previous notion of
state, however, these sets are not necessarily quasi
dominions, since they may include undetermined positions, namely those contained in
H0,q
u and H1,q

u . Only the two subsets H0
rs and H1

rs , as well as their relativised versions
H0,q

rs and H1,q
rs , are known to be quasi dominions.

Given a player α ∈ B, we say that a hybrid state s ∈ St is α-maximal, if the quasi
α-dominion Hαs \ Ls is α-maximal w.r.t. Ls. If s is α-maximal w.r.t. both players α ∈ B,
we say that it is maximal. We denote with StM ⊆ St the set of maximal hybrid states
and with as,a \ dom

(
r
(>ps)
s ∪ us

)
the induced subgame over the local area Ls. A

maximal hybrid state s is strongly maximal, if the current region Rs is αs-maximal w.r.t.
Ls and the the quasi αs-dominion Hαss \ (Ls ∪ Us) is αs-maximal w.r.t. Ls ∪ Us. By
StS ⊆ StM we denote the set of strongly maximal hybrid states. Again, we say that s is
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open if Rs ∩ escαs(Hαs,pss ) 6= ∅, and we say that it is closed, otherwise. For technical
convenience, we always consider a hybrid state with an empty region open. Finally, a
closed hybrid state s is promotable, if it is αs-maximal and Rs is αs-maximal w.r.t. Ls.
By StP ⊆ St we denote the set of promotable hybrid states.

The hybrid priority-promotion algorithm (HPP, for short) reported in Algorithm 6
synthesises the recursive priority-promotion technique of Algorithm 1 and the recursion-
tree truncation idea of Algorithm 3 in a single approach. As for the RPP, the main
function sol assumes the input state s to be maximal, i.e., s ∈ StM. Line 1 checks whether
(i) there are no unprocessed positions in the game or (ii) one of the two bounds on the
guaranties over the undetermined positions has reached threshold zero. If one of these
conditions is satisfied, the current region function rs and the promotion function us are
returned unmodified at Line 2, as no further progress can be achieved in the current
recursive call. Otherwise, similarly to Parys’ approach, the search for a dominion is split
into three phases: (i) a first search with halved precision made by calling the auxiliary
mutually-recursive procedure hsol (Line 3); (ii) a second search with full precision via a
recursive call to sol itself (Lines 4 to 8); (iii) a final search by means of hsol, again with
halved precision, conditioned to the actual progress obtained during the previous phase
(Line 9). Once these three phases terminate, the information about the undetermined
positions still contained in the local area Ls or in the undetermined set Us is suitably
updated by the function Und at Line 10.

To discuss the guarantees and their effects in more detail, let us fix a small dominion
D, with |D| ≤ bαs . The call to hsol at Line 3 modifies in-place the maximal state s
given as input into a strongly-maximal one such that dom(r(≤ps)) does no longer contain
any tiny dominions of player αs of size ≤ b bαs2 c. Moreover, D′ = D ∩ dom(r(≤ps)) is a
dominion in dom(r(≤ps)), while D \D′ has been processed and added to dom(u(≥ps))∪
dom(r(>ps)). After that, at Line 4, the obtained state is locally recorded in order to
determine, later on, whether the second phase achieves any progress. The algorithms
then proceeds to analyse the remaining part of the game still unprocessed. To do so, the
next state computed by NextPr(s) is given as input to the recursive call at Line 5. Once
the call completes, the state is updated with the two new functions returned by the call.
At this point, the guarantee that all αs dominions in dom(r(≤ps)) are larger than b bαs2 c
entails that, if D′ is not empty (and thus D completely processed), then a non-empty
sub-dominion D′′ of D′ is part of the call. As dom(r(≤ps)) contains no tiny αs dominion,
|D′′| > b bαs2 c, and D′′ \D′ ≤ b bαs2 c.

Depending on whether the state is closed or not, either a promotion or a maximisation
operation is performed (Lines 6 to 8), to ensure that the new state is maximal. If the
middle phase has made some progress in the search, a last call to hsol at Line 9 is
performed, which again modifies in-place the current state into a strongly-maximal
one. As D′′ \ D′ ≤ b bαs2 c, it is processed in hsol. If no progress occurred, instead,
the current state is equal to the one previously returned by the first call to hsol and,
thus, strongly-maximal. It also entails that D′ was empty, and D therefore processed
completely in the fist call of hsol. In both cases, the state is fed to the function Und,
after which the current call terminates.
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Algorithm 6: HPP Solver

function sol(s : StM) : Rg × Pm
1 if ps=⊥ ∨ b0s=0 ∨ b1s=0 then
2 return (rs, us)

else
3 hsol(s)
4 ŝ← s
5 (rs, us)← sol(NextPr(s))
6 if s is open then
7 Maximise(s)

else
8 Promote(s)

9 if s ≺ ŝ then hsol(s)
10 return Und(s)

Algorithm 7: Half-Solver

procedure hsol(s : StM)
1 repeat
2 Rs ← atrαsas(Rs)

3 ŝ← s
4 if s is open then
5 (rs, us)← sol(Half(s))
6 if s is open then
7 Maximise(s)

else
8 Promote(s)

else
9 Promote(s)

until s 6≺ ŝ

Auxiliary Functions / Procedures I

function NextPr(s : StS) : StM

1 q ← max(rng
(
r
(<ps)
s

)
)

2 return ((rs, q), (us, ps, b0s, b1s))

function Half(s : StS) : StM

1 (b0s, b1s)← (
⌊

b0s
1+αs

⌋
,
⌊

b1s
2−αs

⌋
)

2 return NextPr(s)

function Und(s : StS) : Rg×Pm
1 if cs ≡2 αs then
2 us ← us[Us 7→ cs]

else
3 us ← u

(≥cs)
s [Ls 7→ cs]

4 rs ← r
(≥cs)
s [v∈Us 7→ pr(v)]

5 return (rs, us)

Auxiliary Functions / Procedures II

procedure Promote(s : StP)

1 (pr, pu)←(bepαs(Rs, rs), bep
αs(Rs, us))

2 if pr ≤ pu then
3 rs ← rs[Rs 7→ pr]

else
4 (rs, us)← (rs\Rs, us[Rs 7→ pu])

procedure Maximise(s : St)
1 Z← Rs
2 foreach α ∈ B do
3 X← atrα(Hαs \ Ls,Ls ∪Us)
4 q ← min(rng((rs ∪ us) � (Hαs \ Ls)))
5 if q ≡2 α then
6 rs ← rs[X 7→ q]
7 us← us \X

else
8 rs ← rs \X
9 us ← us[X 7→ q]

10 if Z 6= Rs then rs← rs[v∈Ls 7→pr(v)]

The procedure hsol simply executes the main body of the RPP algorithm by
making mutually-recursive calls to the sol function (Line 5) with halved precision, until
no progress on the search for a dominion can be made. The auxiliary function NextPr
generates a new maximal state ŝ = NextPr(s) ∈ StM, starting from the strongly-maximal
one s ∈ StS in input. The state ŝ is obtained by first setting the caller priority to the current
one ps and, then, by computing the highest priority q among the unprocessed positions in
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Ls\Rs. The promotion and maximisation procedures, Promote and Maximise, generalise
the corresponding ones associated with RPP. The only difference is that here we need
to determine which one, between the region function r and the promotion function u,
has to receive the promoted region Rgs, in case of Promote, or the positions attracted
from Ls ∪ Us, in case of Maximise. As before, Promote asks for the input state to be
promotable, i.e., s ∈ StP, while Maximise does not require any specific property on it.

Similarly to Parys’ algorithm, the Half function halves the bound of the opponent
player αs, leaving the bound of player αs unchanged. Finally, the Und function, starts
from a strongly maximal state s ∈ StS where all small dominions of player αs of
size ≤ bαs from the time of the call are processed. Thus, neither do any of the small
dominions (≤ bαs) of player αs intersect with Us, nor do any of the small dominions
(≤ bαs) of player αs intersect with Ls. Depending on the parity of the calling priority,
we can then return the respective set and, where the parity is different, reset the positions
of Us in r to their original priority.

At this point, by defining the winning regions of the players as W1 = r−1(>1) ∪
u−1(>0) and W0 = Ps\W1, i.e., sol(a),(W0,W1), where (r, u), sol(sI), we obtain
a sound and complete solution algorithm, whose time-complexity is quasi-polynomial,
as we shall show in the next section.

4 Correctness and Complexity

We now discuss how we can entangle the concepts of Priority Promotion—the transfer
of information across the call structure, which makes it so efficient in practice—with the
concept of relative guarantees that provides favourable complexity guarantees to Parys’
algorithm. Before turning to the principle guarantees provided by the algorithm, we note
that the two algorithms from the previous sections, Parys’ algorithm and the selected
variation of Priority Promotion, can be viewed as variations of our hybrid algorithm.
This is particularly easy to see for the exponential Priority Promotion algorithm from
Section 3.1: when we set the bounds to infinity—or to 2c, where c is the number of
different priorities of the game—then the algorithm never runs out of bounds. In this
case, the function u is never used, and the algorithm behaves exactly as Algorithm 3. The
connection to Parys’ algorithm is slightly looser, but essentially it replaces Maximise
by closing only Us under attractor, and skips the promotions (through calling Promote)
altogether. Note that these changes would not impact the partial correctness argument,
while the remaining parts of the algorithm alone are strong enough to guarantee progress.

4.1 Correctness

As the algorithm is a hybrid one, its correctness proof has both local and global aspects.
The global guarantees are that the regions stored in r(>ps) and the bounded dominions
stored in u(≥ps) retain their properties in all function calls. These properties are not
entirely local, and to conveniently reason about the effect of updates, we use Bs =
Hαs \ Rs = Hα,psu ∪ (Hα,psr \ Rs) for the states that are bad for Player αs in that they
contain the states in u−1s (q) for all q ≥ ps with q ≡2 αs and all states in r−1s (q) for all
q > ps with q 6≡2 αs, and Gs = Hαs \Rs = Hα,psu ∪ (Hα,psr \Rs) for the states that are
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good for Player αs in that they contain the states in u−1s (q) for all q > ps with q 6≡2 αs
and all states in r−1s (q) for all q > ps with q ≡2 αs.

We also introduce additional data for each function, namely a set Ps, which stores
the local area Ls at the beginning of the call of sol, which is then available also in the
hsol at the level where they are called. This additional set Ps of initial positions is
relevant, as the guarantees of finding small dominions is formulated relative to this initial
set, and not relative to the local area Ls at the end of sol. The correctness proof falls
into lemmas that refer to the guarantees maintained by the auxiliary functions, and an
inductive proof of the main theorem. While the proofs for the auxiliary functions and of
the main result will be reported in the extended version, while the inductive proof of the
correctness is outlined below.

Theorem 2. Let s ∈ StM be a maximal hybrid state for a parity game a, where
cs = min{dom(Ps) ∪ >0} and b0s, b1s ≥ 1. Assume sol is called on s and let
s′,((̂r, p′), (û, c′, b0s, b1s)) be the hybrid state, for (̂r, û), sol(s), p′, cs, and some
c′ > cs. The following holds:

– if cs ≡2 αs then Bs = Bs′ , hence, Bs′ preserves all global guarantees of Bs.
– if cs 6≡2 αs then:
• Gs contains all small dominions of player αs of size ≤ bαs in Ps and intersects

with no small αs dominions of size ≤ bαs in Ps; and
• Bs′ = Gs.

Moreover, if hsol is called on s ∈ StM, then it modifies s into a strongly-maximal hybrid
state with the following property: Ls does not contain a small dominion of player αs of
size ≤ b bαs2 c, and Rs and Bs are closed under attractor in Ps.

Proof sketch. We prove this theorem by induction, using the lemmas from the previous
section. Establishing the base case for sol and maximal priority ⊥, hsol and maximal
priority 0, and sol and maximal priority 0 is straight forward.

The induction step for hsol then establishes that, after return, Ls contains no tiny αs
dominion of size ≤ b bαs2 c, as they would otherwise (using Lemma 2) be found in the
last recursive call of sol. We also have that Rs is closed under attractor because, since
closed states lead to promotion, the resulting state s must be open, so that Maximise
provides closure of Rs under attractor.

Using this, the induction step for sol has mainly to show that an initial small
dominion D (|D| ≤ bαs ) of player αs is entirely in Bs when Und is called. Let D′ be the
intersection of D with Ls. Obviously, D′ is a dominion of player αs (Lemma 1). If D′ is
empty, we are done. Otherwise, D′ must have a non-empty sub-dominion D′′ that does
not intersect with Rs (Lemma 2), and these are added, by inductive hypothesis, to Bs
by the full precision call (Line 5). In addition, |D′′| > b bαs2 c by the return guarantees
of hsol. The rest of the dominion included in D′ \ D′′, is then ≤ b bαs2 c and, by the
guarantees of hsol, is added to Bs by the second call of hsol (note that we have s′ ≺ s).

With the global guarantee that Bs does not intersect with small dominions of size
≤ bαs of player αs, we have added all small dominions of the players αs and αs to Bs
and Gs ∪ Ls, respectively and, depending on the priority, we can insert either Us or Ls
into u−1(cs). ut

Correctness is then the special case that we call sol with cs = >0 and full precision.
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Corollary 1. When sol is called with the initial state sI , i.e. with cs = >0 and full
precision bα = |a|, for all α ∈ B, then, after sol returns, r−1(>1) ∪ u−1(>0) is the
winning region of player 1. ut

This is because r−1(>1) and r−1(>0) contain dominions of the respective players
and are closed under attractor by our global guarantees. It is also clear that u−1(>0) can
only be filled in the final call of Und, such that u>0 ∪ r>1 contains all dominions (as
the bound does not exclude any) of Player 1, but does not intersect with any dominion
(as the bound again does not include any) dominion of Player 0. Note that the wining
region of Player 0 is simply the complement of the winning region of Player 1. It is
interesting to note an algorithmic difference between the parts of the winning regions in
the dominions r−1(>0) and r−1(>1), and the rest of the the winning regions of both
players: r−1(>0) and r−1(>1), are computed constructively, and winning strategies
are simply the contribution attractor strategies / arbitrary (on their subgame) exits from
states with the dominating priority of their region. This is not the case for the remainder
of the winning regions, as their calculation is not constructive.

4.2 Complexity

As a hybrid between Priority Promotion and Parys’ approach, the algorithm retains
both complexity bounds. We show the quasi-polynomial bound, as retaining the quasi-
polynomial bound and practical efficiency of Priority Promotion is our main goal. The
argument is exactly the same as Parys’ (Section 5 of [48]): we use 2 parameters, c for
the number of priories, and l = 2blog2(pos)c+ 1, where pos is the number of positions.
We estimate the number of times sol is called, excluding the trivial calls that return
immediately (in line 2), because we run out if priorities or bounds, by R(h, l). If h = 0,
then we have run out of priorities (ps = ⊥), and R(h, l) = 0. If l = 0, then we have run
out of bounds (b0s = 0 or b1s = 0, with the other value being 1). As argued in Section 5
of [48], we can estimate R(h, l) ≤ nl

(
h+l
l

)
− 1. As the cost of all operations are linear

in the size of the game, and as l is logarithmic in the number of positions, this provides
us with a quasi-polynomial running time.

5 Experimental Evaluation

The practical effectiveness of the solution algorithms presented here, namely RPP and
HPP, has been assessed by means of an extensive experimentation on both concrete and
synthetic benchmarks. Both the algorithms have been incorporated in Oink [59], a tool
written in C++ that collects implementations of several parity game solvers proposed in
the literature, including the known quasi-polynomial ones. We shall compare solution
times against the quasi-polynomial solvers SSPM [34], QPT [21], and ZLKQ [47],
as well as the best exponential solvers, namely the optimised version of the recursive
algorithm ZLK from [43] and the original priority promotion NPP [7], whose superior-
ity in practical contexts is widely acknowledged (see, e.g., [52,59]). The benchmarks
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considered include the games from [36] as well as some additional synthetic randomly
generated games, designed to further stress the considered solvers.3

5.1 Keiren’s Benchmarks

The first set of benchmarks we consider were first proposed in [36] and comprises a
number of concrete verification problems, ranging from model-checking, to equivalence-
checking and decision problems for different temporal logics. They can be divided in the
following four categories.
Model-checking benchmarks. The first group contains 313 games, with size up to
O(107) positions. It includes a number of different verification problems. A first set
contains encodings of a variety of communication protocols from [37,14,30,2]: the
alternating bit protocol, the positive acknowledgement with retransmission protocol, the
bounded retransmission protocol, and the sliding window protocols. The protocols are
parameterised with the number of messages to send and, when applicable, the window
size. The set also contains verification problems for the cache coherence protocol of [62]
and the wait-free handshake register of [31], as well as the classic elevator and towers-
of-Hanoi benchmarks from [27]. The verification tasks under analysis cover fairness,
liveness and safety properties. A second set, instead, contains encodings of two-player
board games, such as Clobber, Domineering, Hex, Othello, and Snake, all parameterised
by their board size. Here, the existence of a winning strategy for the game is the property
considered. The encoding into parity games results in games with very few priorities: up
to 4 in some cases.
Equivalence checking benchmarks. This group contains 216 games encoding equiva-
lence tests between processes. The verification problems test various forms of process
equivalences, such as strong, weak and branching bisimulation, as well as branching
simulation. Most of the processes are the ones already considered in the model-checking
benchmarks. The encoding into parity games results in games with at most two priorities,
hence the only relevant measure of difficulty is the size, again reaching O(107) nodes
for the bigger instances.
Decision problem benchmarks. The third group contains encodings of satisfiability and
validity problems for formulae of various temporal logics: LTL, CTL, CTL*, PDL
and the µ-CALCULUS, and comprises 192 games. The maximal size of a benchmark is
around 3 · 106 positions. The parity games encoding have been obtained with the tool
MLSolver [28]. The situation here is more interesting, since these concrete problems
feature a higher number of priority, up to 20 in few cases. Hence, unlike the previous
two groups, these benchmarks allow us to stress a bit more the scalability of the solution
algorithms w.r.t. the increase in priorities.
PGSolver. This group contains 291 synthetic benchmarks, corresponding to known
families of hard cases for specific solvers and randomly generated ones. The sizes and
number of priorities vary significantly, depending on the specific class of games.

Table 1 reports the results of the experiments for all the solvers considered in the
analysis, divided by class of benchmarks. For each solver, the total completion time, the

3 Experiments were carried out on a 64-bit 3.9 GHz INTEL® quad-core machine, with i5-6600K
processor and 16GB of RAM, running UBUNTU 18.04 with LINUX kernel version 4.15.0. Oink
was compiled with gcc 7.4.
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Exponential Quasi Polynomial

Benchmarks ZLK NPP RPP SSPM QPT ZLKQ HPP

Tot. Time 27.16 20.12 53.66 >849.01 >1259.84 42.38 64.21
Model-Ch. Avg. Time 0.08 0.06 0.17 >2.71 >4.02 0.13 0.2

TimeOut 0% 0% 0% 22% 36.4% 0% 0%
Tot. Time 202.95 137.92 242.32 >2681.33 >3139.85 208.3 280.81

Equiv. Ch. Avg. Time 0.94 0.63 1.12 >12.41 >14.53 0.93 1.3
TimeOut 0% 0% 0% 28.2% 27.3% 0% 0%
Tot. Time 13.20 11.75 13.27 >360.8 >853.64 66.85 14.27

Decision Prb. Avg. Time 0.07 0.06 0.07 >1.87 >4.44 0.35 0.07
TimeOut 0% 0% 0% 11% 26.5% 0% 0%

Tot. Time 1.54 2.21 2.89 >3615.22 >4069.12 8.62 4.04
PGSolver Avg. Time 0.005 0.007 0.009 >12.42 >13.98 0.03 0.01

TimeOut 0% 0% 0% 78% 92.4% 0% 0%

Table 1. Solution times in seconds on Keiren’s benchmarks (1012 games).

average time per benchmark and the percentage of timed-out executions are given. We set
a timeout of 10 seconds for all the benchmarks, except for the equivalence-check class,
for which 40 seconds is used instead. As expected, the exponential solvers perform better
on all the classes, with NPP taking the lead most of the time. SSPM and QPT both
perform quite poorly, between two and three orders of magnitude worse than the other
solvers, and do not seem to scale beyond the simplest instances, as also evidenced by the
high number of timeouts. Both ZLKQ and HPP, instead, perform relatively well in all
the benchmarks, being able to solve all the instances without incurring in timeouts and
maintaining a short distance from the exponential solvers performance-wise. ZLKQ has
a slight edge over HPP on the model-checking and equivalence checking problems, both
of which feature a very low number of priorities, though the time advantage on average
is typically negligible. On the other hand, when the number of priorities increases, like
in the decision problems, the situation reverses and HPP takes the lead over ZLKQ
and practically matches the performance of the exponential solvers. This seems to
suggest that HPP may scale better w.r.t. the number of priorities in the games. To further
investigate this behaviour we decided to perform additional experiments, whose results
are reported in the next subsection.

5.2 Randomly generated benchmarks

The objective of this second set of benchmarks is to assess scalability w.r.t. the number
of positions and priorities, so as to evaluate how sensitive the solvers are to variations of
those two parameters. To this end, we set up two types of synthetic benchmarks. The first
kind of benchmarks keeps the number of priorities fixed and only increases the size of
the underlying graph, while the second one maintains a linear relation between positions
and priorities. Here we drop both SSPM and QPT, since they could not solve any of
these benchmaks.

Figure 3 reports the solution times of the quasi polynomial solvers on 10 clusters,
each composed of 100 randomly generated games, of increasing size varying from 104 to
105. Each point corresponds to the total time to solve all the games in the cluster. On the
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left-hand side the number of priorities grows linearly with the positions, i.e., equal to n
4 ,

with n the number of positions. On the right-hand side, instead, all the games have 500
priorities. In both cases, the timeout was set to 25 seconds. In these experiments, HPP
and ZLKQ are joined by the exponential solvers. The results seem to confirm what we
already observed with the decision procedure benchmarks of the previous subsection.
HPP definitely scales very well w.r.t. the number of priorities, as opposed to ZLKQ,
which is very sensitive to this parameter and starts hitting the timeout already on the
smallest instances. HPP, indeed, behaves very much like the exponential solvers, none
of which seems to be particularly sensitive to this parameter in practice, despite requiring
time exponential in the number of priorities in the worst case.
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Fig. 3. Results on random games with linear (on the left) and fixed (on the right) number priorities.

What seems to emerge from the experimental analysis is that HPP behaves quite
nicely in practice, often competing with the leading exponential solution algorithms.
The algorithmic overhead that guarantees its quasi-polynomial upper bound does not
seem to impact the performance in any meaningful way, unlike what happens for all the
other quasi-polynomial solvers, which do not scale with the number of positions and/or
the number of priorities. This bodes quite well for the applicability of the approach in
the more challenging practical contexts, such as deciding temporal logic properties or
solving reactive synthesis problems, where the number of priorities is typically higher.

Worst Case NPP u-ZLK HPP

Index Nodes Time Iterations Time Iterations Time Iterations
10 88 0.00 11267 0.00 1295 0.00 69
15 170 0.18 524294 0.00 10175 0.00 177
20 278 7.70 22020104 0.03 133631 0.00 339
25 410 - - 0.17 796671 0.00 879
30 568 - - 1.99 8863743 0.00 1217
35 750 - - 11.25 47120383 0.01 2125
40 958 - - - - 0.02 2952

Table 2. Solution times in seconds on the robust worst case family [5].
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5.3 Robust Worst Case Family

Figure 3 shows that, for simple games, HPP is the only quasi-polynomial algorithm
that behaves very much like the exponential solvers. For complex games, instead, it
is well known that even the most efficient solvers in practice, i.e. u-ZLK [25,60,8]
and NPP [4,60,8], take exponential time, while HPP has a quasi-polynomial worst
case complexity. To show this behaviour, we have evaluated these three solvers on the
robust worst case family [5]. The results are reported in Table 2. Clearly the complex
infrastructure required by the HPP can pay off in terms of running time.

Note that in the experiments of Table 1 and Figure 3 we used the optimised implemen-
tation of Zielonka’s algorithm, the ZLK, while in this benchmark we used the original
version, namely u-ZLK. The reason for this choice is that the improvement targets the
structure of the hard examples, without changing the complexity of the algorithm. Thus,
the ’hard examples’ would need to be updated in the usual arms race. Such an update is
possible, but adjusting the benchmarks does not add to the insight.

6 Discussion

We have synthesised two generalisations of the classic recursive algorithm: the quasi-
polynomial recursion scheme of Parys, which is relies on the local spread of imperfect
guarantees, and a Priority Promotion scheme, which relies on identifying and realising
the global potential of perfect guarantees. That these improvements can be synthesised
bodes well, as it promises to perfectly join the advantages of both schemes, and the
first experimental data collected in Section 5 suggests that the algorithm lives up to this
promise. The salable random benchmarks suggest that our solver behaves very much
like the fastest solver classes available—Zielonka and Priority Promotion. There is a
slight overhead to pay for the additional data structure, but this is merely a small linear
factor of some 50%. While this is well within the range that depends on the quality
of implementation, we assume that the slight overhead of our more expressive data
structure shows. Most notably, the behaviour differs significantly from Parys’ algorithm,
which behaves – unsurprisingly – quite nicely when the number of priorities is so small
that it never runs out of bound. Just like our algorithm, it simply behaves like its parent
algorithm, Zielonka, in that case. The data also shows quite nicely at what cost the
more efficient treatment of pathological examples come in Parys’ approach—ironically,
its weakness in practice are games with a high number of priorities. While our hybrid
algorithm runs out of bounds in the majority of these cases, too, it proves to be quite
resilient: the presence of entries to the u function has no similar effect on our approach.
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