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Abstract.  8 

In this paper, a novel mathematical programming formulation is derived based on the u-p form 9 

for the dynamic analysis of saturated porous media. The mixed finite element is used for the 10 

interpolation of field variables and after discretization the formulation is remolded into a 11 

standard second-order cone programming problem that can be resolved using modern 12 

optimization engines. The proposed optimization-based computational scheme is verified 13 

against typical benchmarks such as the dynamic consolidation problem and the wave 14 

propagation in saturated soils. To tackle issues such as mesh distortions and severe free-surface 15 

evolutions resulting from large deformations, the scheme is further implemented into the PFEM 16 

framework. The capability of the proposed method for analyzing porous media with large 17 

deformations is illustrated by modelling the collapse of a saturated granular column in air and 18 

the post-failure of an embankment due to seepage with results being compared to the ones from 19 

lab tests and the modelling using other numerical approaches such as the material point method 20 

and the smoothed particle hydrodynamics method.  21 

 22 
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 30 

1 Introduction 31 

Although the finite element method (FEM) has obtained a strong position in 32 

geotechnical analysis and design, the standard Lagrangian FEM has its limitations 33 

when it comes to geotechnical problems with large deformations and free-surface 34 

evolutions. Owing to the fixed mesh topology, the standard Lagrangian FEM cannot 35 

capture severe free-surface evolutions as occur in problems such as landslides, debris 36 

flows and pile installation. Excessive mesh distortions are also inevitable when 37 

geo-materials undergo large deformations which deteriorate the accuracy of the FEM 38 

analysis and even result in non-convergence issues.  39 

 40 

Because of the limitations of the standard Lagrangian FEM, a series of advanced 41 

continuum numerical approaches have been developed in the past decades and applied 42 

to large deformation geotechnical problems. Representatives include, but are not 43 

limited to, the unconventional finite element techniques, such as the Arbitrary 44 

Lagrangian-Eulerian (ALE) method [1] and the Coupled Eulerian Lagrangian (CEL) 45 

method, and approaches of particle natures, such as the Smoothed Particle 46 

Hydrodynamics (SPH) method [2,3], the Material Point Method (MPM) [4,5], and the 47 

Particle Finite Element Method (PFEM) [6,7]. Among them, the PFEM is attracting 48 

increasing attention from the community of geotechnical engineering. As a mixture of 49 

the FEM and the particle approach, the PFEM was originally invented for solving 50 

free-surface flow problems [8,9]. It adopts particles, which are in fact mesh nodes, to 51 
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represent materials. At each analysis step, the computational domain is identified first 52 

based on the particles followed by the mesh generation via triangulation of the 53 

identified domain. Afterward, solutions are pursued using the standard FEM over the 54 

mesh. By doing so, the PFEM inherits both the solid mathematical foundation of the 55 

standard FEM and the flexibility of particle approaches for handling extreme 56 

deformations. To date, a series of geotechnical problems that are challenging to the 57 

standard FEM have been simulated successfully using the PFEM, for example ground 58 

excavations [10], granular flows [11–13], subaerial/submarine landslides [14–17], 59 

debris flows [18], soil-structure interactions [18], penetration problems [19], etc.  60 

 61 

Despite the contributions to the PFEM in geotechnical engineering, most versions 62 

developed are limited to the case of undrained conditions that total stress analysis is 63 

performed. Only very recently, the PFEM was extended for analyzing coupled 64 

hydro-mechanical processes based on effective stresses, for instance, the effective 65 

stress analysis of foundation penetration into saturated soils [20] and consolidation of 66 

saturated soils [21]. Saturated soils are assumed to behave under quasi-static conditions 67 

in these works implying dynamic effects are neglected. Although quasi-static 68 

conditions apply to many cases, there are geotechnical problems where dynamic effects 69 

are not negligible such as stress wave propagation in soils, debris flows, landslides, etc. 70 

 71 

In this paper, a version of the PFEM is developed for saturated soil dynamics. 72 
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Specifically, a generalized Hellinger-Reissner (HR) variational principle is proposed 73 

for dynamic analysis of saturated porous media. After discretization using mixed finite 74 

elements, the principle is reformed as a standard second-order cone programming 75 

(SOCP) problem that can be solved using the interior-point method. Compared to the 76 

conventional FEM algorithm developed based on the Newton-Raphson iteration 77 

scheme, the FEM in SOCP has advantages including the possibility of analyses of 78 

convergence properties of solutions [22,23], straightforward treatment of singularities 79 

in the Mohr-Coulomb model [24] and the the Bingham model [17], and the forthright 80 

extension from single-surface plasticity to multi-surface plasticity. The generalized HR 81 

variational principle for solid and fluid dynamics and the corresponding FE formulation 82 

in SOCP have been constructed in [17]. The hydro-mechanical effects will be further 83 

considered in this framework in this paper with the resulting FE formulation in SOCP 84 

being merged into the PFEM for saturated soil dynamics with large deformations and 85 

free-surface evolutions.   86 

 87 

2 Hellinger-Reissner variational principle for static elasticity 88 

While algorithms for finite element analysis are commonly derived from the principle 89 

of virtual work where displacements are the sole master field, multi-field variational 90 

principles can also be adopted for this purpose [25].  91 

 92 

For static elasticity of a solid, the Hellinger-Reissner functional is expressed as 93 
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П(𝝈, 𝒖) = ∫ (−
1

2
𝝈𝑇ℂ𝝈 + 𝝈𝑇𝑺𝒖) 𝑑Ω −

 

Ω
∫ 𝒃𝑇𝒖𝑑Ω − ∫ 𝒕𝑇𝒖𝑑𝛤

 

𝛤

 

Ω
        (1) 94 

where 𝝈 is the Cauchy stress, 𝒖 is the displacement, 𝒃 is the body force, 𝒕 is the 95 

traction, ℂ is the elastic compliance matrix, and the operator 𝑺 takes the form  96 

𝑺 = [
𝜕

𝜕𝑥
 0 0 

𝜕

𝜕𝑦
; 0 

𝜕

𝜕𝑦
 0 

𝜕

𝜕𝑥
]𝑇                           (2) 97 

In functional (1), both the displacement 𝒖 and the stresses 𝝈 are master fields. The 98 

variation of the functional δП(𝝈, 𝒖) = 0  leads to a pair of the stress and the 99 

displacement which is at a saddle point of the functional. This is in contrast to the FEM 100 

based on virtual work that the variation results in a point for the extreme value of the 101 

functional. The problem hence falls in the min-max optimization category: 102 

    𝒖
min          𝝈

  max   − 1

2
∫ 𝝈𝑇ℂ𝝈𝑑Ω + ∫ 𝝈𝑇𝑺𝒖𝑑Ω

 
Ω

− 
Ω ∫ 𝒃

𝑇
𝒖𝑑Ω − ∫ 𝒕𝑇𝒖𝑑𝛤 

𝛤
 

Ω
         (3) 103 

Based on the HR variational principle for elasticity, the generalized HR variational 104 

principles have been developed for analysing elastoplastic problems, elastoviscoplastic 105 

problems, and quasi-static poro-elastoplastic problems [6,17,26,27]. In this work, the 106 

Hellinger-Reissner (HR) variational principle [28] is used to establish the finite element 107 

formulation for analyzing saturated porous media in dynamics. 108 

 109 

3 Hellinger-Reissner variational principle for dynamic saturated porous media  110 

The HR variational principle for dynamic elastoplastic analysis of saturated porous 111 

media is developed in this section. 112 

 113 
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3.1 Governing equations 114 

The so-called u-p model for dynamic analysis of saturated porous media is adopted. 115 

This model neglects the derivative of the relative velocity of fluid with respect to solid 116 

and is widely used for the case of low-frequency loading [29,30]. In a two-dimensional 117 

case, the governing equations for a saturated porous medium with a domain Ω and 118 

boundary Γ are as follows (see also Figure 1): 119 

 120 

Figure 1. The domain of a saturated medium and its boundary partition. The surfaces 121 

Γu ,Γt , Γp and Γq are subjected to the prescribed displacement, traction, pore water 122 

pressure and fluid flux, respectively.  123 

 124 

(a) Linear momentum balance equation for the mixture 125 

𝜌�̈� = 𝑺𝑇(𝝈′ + 𝒎𝑝) + 𝒃                    (4)                              126 

(b) Darcy’s law  127 
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∇𝑝 + 𝒃𝑓 −
𝛾𝑓

𝑘
𝒘 = 𝜌𝑓�̈�                      (5) 128 

(c) Mass balance equation of pore fluid  129 

∇𝑇𝒘 + ∇𝑇�̇� = 0                          (6) 130 

(d) Strain decomposition and stress-strain relationship 131 

𝜺 = 𝜺𝑒 + 𝜺𝑝 where  {
𝜺𝑒 = ℂ𝝈′ = ℂ(𝝈 − 𝒎𝑝),          

𝜺𝑝 = 0  if 𝐹 < 0 ; 𝜺𝑝 = 𝜆∇𝜎′𝐺  if 𝐹 = 0   
          (7) 132 

where 133 

 ρ is the density of mixture; 134 

 u is the displacement of the solid skeleton; 135 

 ρf is the density of fluid; 136 

 𝛔′ is the effective stress acting on solid skeleton; 137 

 p is the pore water pressure with tensile pore water pressure being positive; 138 

 b is the body force of the mixture; 139 

 𝒃𝑓 is the body force of the fluid; 140 

 𝛾𝑓 is the unit weight of the fluid; 141 

 k is the Darcy hydraulic conductivity; 142 

 w is the velocity of pore fluid relative to the solid skeleton; 143 

 𝜺 is the strain vector defined as 𝜺 = 𝑺𝐮, consisting of 𝜺𝑒 (elastic strain) and 𝜺𝑝 144 

(plastic strain); 145 

 𝜆 is the plastic multiplier, 𝜆 ≥ 0; 146 

 F is the yield function, 𝐹 ≤ 0; 147 

 G is the plastic potential; 148 

 ℂ is the elastic compliance matrix; 149 

 𝛔 is the total Cauchy stress of the mixture; 150 

 𝒎 = [1; 1; 1; 0].  151 

The density of the mixture is 𝜌 = 𝑛𝑓𝜌𝑓 + (1 − 𝑛𝑓)𝜌𝑠 in which 𝜌𝑠 and 𝑛𝑓 are the 152 

density of solid and the porosity of the mixture, respectively. The superficial velocity 153 
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w in Eq. (6) can be eliminated by substituting Eq. (5): 154 

∇𝑇 𝑘

𝛾𝑓
(∇𝑝 + 𝒃𝑓 − 𝜌𝑓�̈�) + ∇𝑇�̇� = 0                   (8) 155 

In addition to the governing equations (4), (7) and (8), the following boundary 156 

conditions (see also Figure 1) should be satisfied to complete the boundary-value 157 

problem  158 

𝒖 = �̅� on Γ𝑢                         (9) 159 

𝑵𝑇𝝈 = �̅� on Γ𝑡                        (10) 160 

𝑝 = �̅� on Γ𝑝                        (11) 161 

𝑵𝑇 𝑘

𝛾𝑓
(∇𝑝 + 𝒃𝑓 − 𝜌𝑓�̈�) = �̅� on Γ𝑞                (12) 162 

where �̅� , �̅� , �̅�  and �̅�  are the prescribed displacements, tractions, pore water 163 

pressure and fluid flux. N is the outward vector normal to the corresponding surface 164 

of the boundary.   165 

 166 

3.2 Time discretization 167 

The standard θ-method is introduced for the time discretization of the effective stress 168 

𝝈′, the velocity 𝒗 and the pressure p:  169 

𝝈′ = 𝜃1𝝈𝑛+1
′ + (1 − 𝜃1)𝝈𝑛

′                      (13) 170 

𝒗 =
∆𝒖

∆𝑡
= 𝜃2𝒗𝑛+1 + (1 − 𝜃2)𝒗𝑛                 (14) 171 

𝑝 = 𝜃3𝑝𝑛+1 + (1 − 𝜃3)𝑝𝑛                     (15) 172 
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The subscripts n and n+1 denote the known and unknown states, respectively, and Δt is 173 

the time increment. The governing equations (4) and (8) can then be re-arranged as: 174 

𝑺𝑇𝝈𝑛+1
′ +

(1−𝜃1)

𝜃1
𝑺𝑇𝝈𝑛

′ +
𝜃3

𝜃1
𝑺𝑇𝒎𝑝𝑛+1 +

(1−𝜃3)

𝜃1
𝑺𝑇𝒎𝑝𝑛 + �̃� = 𝜸𝑛+1      (16) 175 

∇𝑇 𝑘𝜃1

𝛾𝑓
(

𝜃3

𝜃1
∇𝑝𝑛+1 + �̃�𝑓) + ∇𝑇 ∆𝒖

∆𝑡
= 0                 (17)   176 

in which  177 

�̃� =
𝜌

𝜃1𝜃2
, �̃� =

1

𝜃1
𝒃 + �̃�

𝒗𝑛

∆𝑡
,  𝜸𝑛+1 = �̃�

Δ𝒖

∆𝑡2              (18) 178 

 �̃�𝑓 =
𝜌𝑓

𝜃1
, �̃�𝑓 =

1

𝜃1
𝒃𝑓 +

(1−𝜃3)

𝜃1
∇𝑝𝑛 − �̃�𝑓�̈�             (19) 179 

Note that the term �̃�𝑓�̈� in Eq. (19) is calculated based on the known velocity field that 180 

�̃�𝑓�̈� = �̃�𝑓
𝒗𝑛−𝒗𝑛−1

∆𝑡
 for the sake of simplicity. The traction boundary condition (10) and 181 

the fluid flux boundary condition (12) are rendered as: 182 

𝑵𝑇(𝝈𝑛+1
′ +

𝜃3

𝜃1
𝒎𝑝𝑛+1) +

(1−𝜃1)

𝜃1
𝑵𝑇𝝈𝑛

′ +
(1−𝜃3)

𝜃1
𝑵𝑇𝒎𝑝𝑛 = �̃�, �̃� =

𝟏

𝜃1

𝒕 ̅     (20) 183 

𝑵𝑇 𝑘𝜃1

𝛾𝑓
(

𝜃3

𝜃1
∇𝑝𝑛+1 + �̃�𝑓)   = �̅�                    (21) 184 

 185 

3.3 Min-max problem  186 

Following [6,27], the min-max problem equivalent to the time-discretized governing 187 

equations for incremental dynamic analysis of saturated porous media can now be 188 

given:  189 

 190 

 191 
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 192 

     𝛥𝒖
min  (𝝈′,𝑝,𝜸)

𝑛+1

     max   П = − 1

2
∫ Δ𝝈′𝑇ℂΔ𝝈′𝑑Ω 

Ω  193 

               + ∫ (𝛔𝑛+1
′ +

𝜃3

𝜃1
𝒎𝑝𝑛+1)𝑇𝑺(Δ𝒖)𝑑Ω

 

Ω
 194 

           + ∫ (
1−𝜃1

𝜃1
𝛔𝑛

′ +
1−𝜃3

𝜃1
𝒎𝑝𝑛)𝑇𝑺(Δ𝒖)𝑑Ω

 

Ω
 195 

−
Δ𝑡

2
∫(

𝜃3

𝜃1
∇𝑝𝑛+1 + �̃�𝑓)𝑇

 

Ω

𝑘𝜃1

𝛾𝑓
(
𝜃3

𝜃1
∇𝑝𝑛+1 + �̃�𝑓)𝑑Ω 196 

          − ∫ �̃�𝑇Δ𝒖𝑑Ω − ∫ �̃�𝑇Δ𝒖𝑑𝛤
 

𝛤𝑡
+ ∫ 𝜸𝑛+1

𝑇 Δ𝒖𝑑Ω
 

Ω

 

Ω
 197 

              −
Δ𝑡2

2
∫ 𝜸𝑛+1

𝑇 

Ω
�̃�−1𝜸𝑛+1𝑑Ω − ∆𝑡 ∫

𝜃3

𝜃1
𝑝𝑛+1�̅�𝑑𝛤

 

𝛤𝑞
 198 

  subject to   𝐹(𝝈𝑛+1
′ ) ≤ 0                                       (22)       199 

The validity of this min-max problem can be demonstrated by showing the associated 200 

Karush-Kuhn-Tucher (KKT) conditions. To this end, the Lagrangian of the problem 201 

(22) is first constructed, which is 202 

ℒ = −
1

2
∫ Δ𝝈′𝑇ℂΔ𝝈′𝑑Ω + ∫ (𝛔𝑛+1

′ +
𝜃3

𝜃1
𝒎𝑝𝑛+1)𝑇𝑺(Δ𝒖)𝑑Ω

 

Ω

 

Ω
   203 

+ ∫ (
1−𝜃1

𝜃1
𝛔𝑛

′ +
1−𝜃3

𝜃1
𝒎𝑝𝑛)𝑇𝑺(Δ𝒖)𝑑Ω

 

Ω
  204 

−
Δ𝑡

2
∫ (

𝜃3

𝜃1
∇𝑝𝑛+1 + �̃�𝑓)𝑇 

Ω

𝑘𝜃1

𝛾𝑓
(

𝜃3

𝜃1
∇𝑝𝑛+1 + �̃�𝑓)𝑑Ω  205 

    − ∫ �̃�𝑇Δ𝒖𝑑Ω − ∫ �̃�𝑇Δ𝒖𝑑𝛤
 

𝛤𝑡
+ ∫ 𝜸𝑛+1

𝑇 Δ𝒖𝑑Ω
 

Ω

 

Ω
−

Δ𝑡2

2
∫ 𝜸𝑛+1

𝑇 

Ω
�̃�−1𝜸𝑛+1𝑑Ω 206 

   −∆𝑡 ∫
𝜃3

𝜃1
𝑝𝑛+1�̅�𝑑𝛤

 

𝛤𝑞
+ ∫ ∆𝜆𝐹(𝝈𝑛+1

′ )𝑑Ω
 

Ω
                              (23)                                                                                               207 

Following [31], the KKT conditions of (22) can be derived which are 208 

• Stationarity  209 
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𝜕ℒ

𝜕Δ𝒖
= {

  𝑺𝑇(𝛔𝑛+1
′ +

𝜃3

𝜃1
𝒎𝑝𝑛+1) +    𝑺𝑇(

1−𝜃1

𝜃1
𝛔𝑛

′ +
1−𝜃3

𝜃1
𝒎𝑝𝑛) + �̃� = 𝜸𝑛+1   in  Ω     

𝑵𝑇(𝛔𝑛+1
′ +

𝜃3

𝜃1
𝒎𝑝𝑛+1) +    𝑵𝑇(

1−𝜃1

𝜃1
𝛔𝑛

′ +
1−𝜃3

𝜃1
𝒎𝑝𝑛)   = �̃�           on 𝛤𝑡      

 (24) 210 

    
𝜕ℒ

𝜕𝛔𝑛+1
′ = 𝑺(∆𝒖) − ℂ∆𝛔𝑛+1

′ − ∆𝜆
𝜕𝐹

𝜕𝛔𝑛+1
′ = 𝟎                     (25) 211 

𝜕ℒ

𝜕𝑝𝑛+1
= {

∇𝑇(Δ𝒖) + ∆𝑡∇𝑇 𝑘𝜃1

𝛾𝑓
(

𝜃3

𝜃1
∇𝑝𝑛+1 + �̃�𝑓) = 𝟎   in  Ω           

𝑵𝑇 𝑘𝜃1

𝛾𝑓
(

𝜃3

𝜃1
∇𝑝𝑛+1 + �̃�𝑓)   = �̅�           on 𝛤𝑞        

       (26) 212 

𝜕ℒ

𝜕𝜸𝑛+1
= Δ𝒖 − Δ𝑡2�̃�−1𝜸𝑛+1 = 0                   (27) 213 

• Complementary slackness       214 

 ∆𝜆𝐹(𝝈𝑛+1
′ ) = 0                        (28) 215 

• Primal feasibility  216 

𝐹(𝝈𝑛+1
′ ) ≤ 0                          (29) 217 

• Dual feasibility  218 

∆𝜆 ≥ 0                          (30) 219 

Remark:  220 

It is clear that 221 

(24) consists of the discretized linear moment equilibrium equations of the 222 

mixture, Eq. (16), and the boundary condition in (20);  223 

(25), (28)-(30) are the incremental form of the constitutive equations; 224 

(26) indicates the governing equation in (17) and the boundary condition related 225 

to the fluid flux; 226 

(27) is the expression for the dynamic force 𝜸𝑛+1.   227 
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Note that the above is for the associated plastic flow. The scheme proposed in [32] 228 

can be used in order to consider non-associated flow rules. Specifically, for 229 

two-dimensional cases, the yield function F and the plastic potential G for 230 

non-associated Mohr-Coulomb model are given as  231 

𝐹 = √(𝜎𝑥𝑥
′ − 𝜎𝑦𝑦

′ )
2

+ 4𝜎𝑥𝑦
′2 + (𝜎𝑥𝑥

′ + 𝜎𝑦𝑦
′ )sinφ′ − 2𝑐′cosφ′      (31) 232 

𝐺 = √(𝜎𝑥𝑥
′ − 𝜎𝑦𝑦

′ )
2

+ 4𝜎𝑥𝑦
′2 + (𝜎𝑥𝑥

′ + 𝜎𝑦𝑦
′ )sin𝜓                 (32) 233 

where φ′ is the effective friction angle, 𝑐′ is the effective cohesion, and 𝜓 is the 234 

dilation angle. The associated computational schemes [32] implies that an 235 

approximate form of F is used (𝐹 ≈ 𝐹∗ →
𝜕𝐹∗

𝜕𝛔𝑛+1
′ =

𝜕𝐺

𝜕𝛔𝑛+1
′ ):  236 

𝐹 ≈ 𝐹∗ = √(𝜎𝑥𝑥
′ − 𝜎𝑦𝑦

′ )
2

+ 4𝜎𝑥𝑦
′2 + (𝜎𝑥𝑥

′ + 𝜎𝑦𝑦
′ )sin𝜓 237 

      +(𝜎𝑥𝑥
′ + 𝜎𝑦𝑦

′ )
0

(sinφ′ − sin𝜓) − 2𝑐′cosφ′ 238 

               =√(𝜎𝑥𝑥
′ − 𝜎𝑦𝑦

′ )
2

+ 4𝜎𝑥𝑦
′2 + (𝜎𝑥𝑥

′ + 𝜎𝑦𝑦
′ )sin𝜓 − 2�̃�′cos𝜓                                   239 

(33) 240 

where �̃�′ is treated as a constant and updated by 241 

�̃�′ = 𝑐′ cosφ′

𝑐𝑜𝑠𝜓
+

1

2
(𝑡𝑎𝑛𝜓 −

sinφ′

𝑐𝑜𝑠𝜓
)(𝜎𝑥𝑥

′ + 𝜎𝑦𝑦
′ )

0
           (34) 242 

The subscript 0 in (34) represents the state solved from the last analysis step. Such an 243 

approximation has been validated against typical benchmarks in geotechnical 244 

problems [32–34].    245 

  246 
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4 Finite element discretization 247 

The standard finite element discretization of the optimization problem (22) is carried 248 

out using a mixed triangular element in this section. The discretized optimization 249 

problem is then reformed as a standard second-order cone programming problem that 250 

can be resolved using available optimization engines.   251 

4.1 The mixed triangular element  252 

The mixed triangular element shown in Figure 2 is adopted for the discretization. In 253 

detail, the field variables are approximated as: 254 

 255 

 256 

Figure 2. An illustration of the mixed triangular element. 257 

 258 

𝝈 ≈ 𝑵𝜎�̂�                                 (35) 259 

𝒖 ≈ 𝑵𝑢�̂�                                (36) 260 

𝜸 ≈ 𝑵𝛾�̂�                                (37) 261 

𝑝 ≈ 𝑵𝑝�̂�                                (38) 262 
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𝝌 ≈ 𝑵𝜒�̂�                                (39) 263 

where �̂�, �̂�, �̂� and �̂� are vectors consisting of the stress, displacement, dynamic 264 

force and pressure at element nodes. An intermediate variable 𝝌𝑛+1 =
𝜃3

𝜃1
∇𝑝𝑛+1 + �̃�𝑓 265 

is introduced for brevity and �̂� is a vector of the intermediate variable at element 266 

nodes. Nσ, Nu, Nγ, Np and N𝜒 are the matrices of the corresponding shape functions. 267 

 268 

4.2 Discretized optimization problem 269 

Substituting Eqs. (35)-(39) into the optimization problem (22) leads to its discretized 270 

form: 271 

  𝛥�̂�
min  (�̂�,�̂�,�̂�,�̂�,�̂�)𝑛+1

     max      −
1
2

Δ�̂�′𝑇𝑪Δ�̂�′ −
1
2

Δ𝑡2�̂�𝑛+1
𝑇 𝑫�̂�𝑛+1

 
 272 

              −
Δ𝑡

2
�̂�𝑛+1

𝑇 𝑲�̂�𝑛+1 + Δ�̂�𝑇𝑩𝑇�̂�𝑛+1 273 

                               +Δ�̂�𝑇𝑨𝑝
𝑇�̂�𝑛+1

 + Δ�̂�𝑇𝑨𝑇�̂�𝑛+1
 − Δ�̂�𝑇�̃�𝑒    274 

              −∆𝑡�̂�𝑛+1
𝑇 𝒇𝑞 + (𝑬𝑢�̂�𝑝)𝑇�̂�𝑛+1 − Δ�̂�𝑇𝑬𝑢�̂�𝑛+1                          275 

subject to             𝐹∗(�̂�𝑛+1
𝑗

) ≤ 0,    𝑗 = 1, … , 𝑛𝜎                                       276 

              𝑰𝜒�̂�𝑛+1 − 𝑩𝑝�̂�𝑛+1
 = �̃�𝑏                                (40) 277 

where 𝑛𝜎 is the total number of Gauss integration points and  278 

 279 

 280 

 281 
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 282 

 283 

 284 

 285 

 286 

 287 

𝑪 = ∫ 𝑵𝜎
𝑇ℂ𝑵𝜎𝑑Ω

 

Ω

,  288 

𝑩 = ∫ 𝑵𝜎
𝑇𝑩𝑢𝑑Ω

 

Ω

 with 𝑩𝑢 = 𝑺𝑵𝑢,  289 

𝑫 = ∫ 𝑵𝛾
𝑇 

Ω
�̃�−1𝑵𝛾𝑑Ω, 290 

𝑲 = ∫ 𝑵𝜒
𝑇

𝑘𝜃1

𝛾𝑓

 

Ω

𝑵𝜒𝑑Ω,  291 

𝑨 = ∫ 𝑵𝛾
𝑇

 

Ω

𝑵𝑢𝑑Ω,  292 

𝑨𝑝
𝑇 =

𝜃3

𝜃1
∫ 𝑩𝑢

𝑇
 

Ω

𝒎𝑵𝑝𝑑Ω, 293 

𝑰𝜒 = ∫ 𝑵𝜒

 

Ω

𝑑Ω, 294 

�̃�𝑒 = ∫ 𝑵𝑢
𝑇 

Ω
�̃�𝑑Ω + ∫ 𝑵𝑢

𝑇 

𝛤𝑡
�̃�𝑑𝛤 −

(1−𝜃1)

𝜃1
𝑩𝑇�̂�𝑛 −

1−𝜃3

𝜃3
𝑨𝑝

𝑇�̂�𝑛 , 295 

𝑩𝑝 = ∫
𝜃3

𝜃1
∇𝑵𝑝

 

Ω

𝑑Ω,  296 

�̃�𝑏 = ∫ �̃�𝑓

 

Ω

𝑑Ω,  297 

𝒇𝑞 =
𝜃3

𝜃1
∫ 𝑵𝑝

𝑇
 

𝛤𝑞

�̅�𝑑𝛤 298 
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 (41) 299 

In (40), the underlined terms account for the displacement boundary condition, and 300 

the newly introduced variable 𝒓𝑛+1 is the reaction force at the element nodes with 301 

prescribed displacements. 𝑬𝑢 is the index matrix consisting of 1 and 0 indicating the 302 

nodes with/without prescribed displacements. To verify its correctness, the stationarity 303 

of the associated Lagrangian with respect to the field variable �̂�𝑛+1 is derived  304 

𝜕ℒ

𝜕�̂�𝑛+1
= 𝑬𝑢Δ�̂� − 𝑬𝑢�̂�𝑝 = 0                             (42) 305 

where �̂�𝑝  is the discretized form of the prescribed displacement �̅�  and this 306 

relationship is obviously the displacement boundary condition in Eq. (9). For the 307 

min-max problem (40), the minimization part can be solved analytically leading to a 308 

maximization problem which is 309 

 (�̂�,�̂�,�̂�,�̂�,�̂�)𝑛+1

    max       −
1

2
Δ�̂�′𝑇

𝑪Δ�̂�′ −
1

2
Δ𝑡2�̂�𝑛+1

𝑇 𝑫�̂�𝑛+1
 −

Δ𝑡

2
�̂�𝑛+1

𝑇 𝑲�̂�𝑛+1   310 

             +(𝑬𝑢�̂�𝑝)𝑇�̂�𝑛+1 − ∆𝑡�̂�𝑛+1
𝑇 𝒇𝑞                         311 

 subject to      𝐹∗(�̂�𝑛+1
𝑗

) ≤ 0,    𝑗 = 1, … , 𝑛𝜎 312 

            𝑩𝑇�̂�𝑛+1 + 𝑨𝑇�̂�𝑛+1
 + 𝑨𝑝

𝑇�̂�𝑛+1
 − 𝑬𝑢�̂�𝑛+1 = �̃�𝑒  313 

            𝑰𝜒�̂�𝑛+1 − 𝑩𝑝�̂�𝑛+1
 = �̃�𝑏                                  (43) 314 

 315 

4.3 Reformulated mathematical program 316 

The discretized optimization problem (43) is reformulated as a standard second-order 317 

cone programming (SOCP) problem in this section. A standard SOCP problem is in the 318 
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form     319 

                                 𝒙
min            𝒄𝑇𝒙      320 

subject to     𝒂𝒙 = 𝒃 321 

                         𝒙 ∈  𝒦                        (44) 322 

where x = (x1, x2, …, xn)T consists of field variables, a, b and c are the matrices and 323 

vectors of factors, and 𝒦 is a tensor product of second-order cones such that 𝒦 =324 

𝒦1 × ⋯ × 𝒦𝑙. The second-order cones can be in the type of:  325 

• Quadratic cone: 326 

𝒦𝑞
𝑛 =  {𝒙 ∈  ℝ𝑛: 𝑥1 ≥  √𝑥2

2 + ⋯ + 𝑥𝑛
2}                   (45) 327 

or 328 

• Rotated quadratic cone: 329 

𝒦𝑟
𝑛 =  {𝒙 ∈  ℝ𝑛: 2𝑥1𝑥2 ≥ ∑ 𝑥𝑗

2𝑛
𝑗=3 , 𝑥1, 𝑥2 ≥ 0 }                (46) 330 

As shown, the standard SOCP (44) is a minimization of a linear objective function 331 

subjected to linear constraints and/or second-order cones. Following the procedure in 332 

[34], the discretized maximization problem (43) can be reformulated as the following 333 

SOCP problem  334 

 335 

 336 

 337 

 338 

 339 
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 (�̂�,�̂�,�̂�,�̂�,�̂�,𝑠1,𝑠2,𝑠3)𝑛+1

               min    𝑠1 + 𝑠2 + 𝑠3 340 

                  −(𝑬𝑢�̂�𝑝)𝑇�̂�𝑛+1 + ∆𝑡�̂�𝑛+1
𝑇 𝒇𝑞     341 

subject to              𝑩𝑇�̂�𝑛+1 + 𝑨𝑇�̂�𝑛+1
 + 𝑨𝑝

𝑇�̂�𝑛+1
 − 𝑬𝑢�̂�𝑛+1 = �̃�𝑒 342 

              𝑰𝜒�̂�𝑛+1 − 𝑩𝑝�̂�𝑛+1
 = �̃�𝑏 343 

              Δ�̂�′𝑇
𝑪Δ�̂�′ = ∑ (𝑪𝑗

1/2
Δ�̂�𝑗

′)2𝑛𝜎
𝑗=1  ≤ 2𝑠1 344 

              �̂�𝑛+1
𝑇 𝑫�̂�𝑛+1

 = ∑ (𝑫𝑗
1/2

�̂�𝑛+1
𝑗

)2𝑛𝛾

𝑗=1
≤ 2

𝑠2

Δ𝑡2 345 

              �̂�𝑛+1
𝑇 𝑲�̂�𝑛+1 = ∑ (𝑲𝑗

1/2
�̂�𝑛+1

𝑗
)2𝑛𝜒

𝑗=1
≤ 2

𝑠3

Δ𝑡
 346 

   (𝐹∗(�̂�𝑛+1
𝑗

) ≤ 0) {
𝝆𝑗 = 𝑯�̂�𝑛+1

𝑗
+ 𝒅

𝜌1
𝑗

≥ √(𝜌2
𝑗
)

2
+ (𝜌3

𝑗
)

2 ,    𝑗 = 1, … , 𝑛𝜎              (47) 347 

In the above, 𝝆, H, d are determined according to the Mohr-Coulomb yield criteria 348 

(33): 349 

𝝆 = (𝜌1, 𝜌2, 𝜌3), 𝝈 = (σ𝑥𝑥
′ , σ𝑦𝑦

′ , σ𝑧𝑧
′ , σ𝑥𝑦

′ )                         (48) 350 

𝑯 = [
−𝑠𝑖𝑛𝜓 −𝑠𝑖𝑛𝜓

1 −1
0 0

     
0
0
0

   
0
0
2

  ] and 𝒅 = [2�̃�′cos𝜓, 0, 0]𝑇        (49) 351 

The program (47) follows the standard mathematical program using the second-order 352 

cone programming, and details of its implementation can be found in [34].   353 

   354 

5 Particle finite element method 355 

The particle finite element method (PFEM) is a mixture of the particle approach and the 356 

Lagrangian FEM in the way that it treats mesh nodes as free particles [8] but solves the 357 
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governing equations using the Lagrangian FEM. The essential step of the PFEM is the 358 

use of the alpha-shape method to identify the boundaries of computational domains 359 

followed by the mesh generation for the Lagrangian finite element analysis. More 360 

details on the PFEM can be found in [6,8,35,36]. The version of the PFEM developed 361 

in [6,17] is adopted in this paper. In a given time interval, the PFEM solution includes: 362 

(a) updating the mesh nodes location according to the incremental displacement 363 

obtained in the last analysis step; (b) identifying the boundary of the computational 364 

domain based on the updated mesh nodes by means of the alpha-shape technique; (c) 365 

Triangulation of the identified domain to generate new meshes; (d) Mapping the 366 

history field variables from the old mesh to the new mesh; and (e) Solving the 367 

equations over the new mesh using the Lagrangian FEM. Owing to step (b), the PFEM 368 

possesses the capability of modelling separation and reconnection of parts of the 369 

computational domain as well as single isolated particles [8] which may occur in fluid 370 

dynamics problems such as the breaking of a wave and water splashing and 371 

geotechnical problems such as dry granular flows and landslides. After the separation, 372 

the motion of an isolated particle is treated as freely falling body and can be solved 373 

analytically while the motion of a subdomain is solved via the FEM. When they are 374 

close to the major domain, the isolated particle and subdomain will be reconnected to 375 

the major domain when step (b) is operated. Note that the boundary detection using the 376 

alpha-shape method may cause volume variations (or the variation of the total mass) 377 

artificially. However, Numerical investigations indicate that the volume preservation 378 

can be kept within an acceptable range (below 2% for challenging fluid-structure 379 
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problems) by using a proper value of alpha and mesh refinement [37]. 380 

 It is notable that, although the developed formulation for dynamic analysis of 381 

saturated porous media is based on the small-deformation theory, the configuration of 382 

the material is updated after each incremental analysis. The idea of using a series  of 383 

incremental analysis based on infinitesimal strain theory with an updated geometry for 384 

large deformation problems has been widely in the sequential limit analysis [38–40]. 385 

Later it has been adopted in the development of the so-called Remeshing and 386 

Interpolation Technique with Small Strain (RITSS) that has been applied successfully 387 

to various large deformation geotechnical problems [41–43]. Additionally, this idea has 388 

been adopted in the PFEM for modeling numerous challenging large deformation 389 

problems such as the breakage of a water dam, the granular column collapse, the 390 

underwater granular flow and induced waves [17] for which good agreements between 391 

the PFEM results and the lab testing data are obtained. 392 

 393 

6 Numerical examples 394 

In this section, the proposed finite element formulation and its PFEM version are used 395 

for the dynamic analysis of saturated porous media. A total of four examples are 396 

accounted for in this section. The 1D dynamic consolidation of a saturated soil column 397 

is simulated with emphases on the time integration scheme and simulation results are 398 

compared with analytical solutions and numerical results available in literature. 399 

Afterwards, wave propagations in a layer of saturated soils are considered where the 400 
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validity of the developed mixed triangular elements overcoming pressure oscillation 401 

and the solution convergence with respect to mesh sizes are concerned. Displacement 402 

and pore water pressure are compared with available date in literature. A lab testing of 403 

the collapse of a saturated sand column in air is simulated as the third example to 404 

validate the proposed method for dynamic modelling of elastoplastic saturated porous 405 

media with large deformations. Simulation results are compared to both available data 406 

from lab tests and results from the material point method. The failure of an 407 

embankment is the fourth example where the PFEM simulation results are compared to 408 

the ones from the SPH modelling.         409 

 410 

6.1 1D dynamic consolidation 411 

The 1D dynamic consolidation problem is illustrated in Figure 3 where the saturated 412 

soil column is subjected to two loading types, namely 𝑓1(𝑡) and 𝑓2(𝑡). 413 

 414 

Since the standard θ-method is employed for time discretization, the time 415 

integration scheme is implicit and unconditional stable if all three constants, 𝜃1, 𝜃2 416 

and 𝜃3  (indicated by 𝜃1,2,3  for brevity), are greater than or equal to 0.5 [44]. 417 

Otherwise, the time integration scheme is explicit. For 𝜃1,2,3 = 0.5, the integration 418 

scheme is the midpoint rule while it is the backward Euler scheme if 𝜃1,2,3 = 1. To 419 

illustrate the feature of the time integration scheme, the vertical loading 𝑓1(𝑡)  is 420 

applied at the surface of the soil column. Three sets of time integration parameters (e.g. 421 
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𝜃1,2,3 = 0.495, 0.5, 1.0) are used. The time step is ∆𝑡 = 5 × 10−3 s. The displacement 422 

at the top surface (e.g. point A (x = 1 m, y = 10 m)) and the pressure at the bottom (e.g. 423 

point B (x = 1 m, y = 0 m)) are monitored. The selected parameters are in line with these 424 

from [45]: density of the mixture 𝜌 = 2000 kg/m3, Young’s modulus 𝐸 = 104 kPa, 425 

Poisson’s ratio 𝜐 = 0.2, porosity 𝑛𝑓 = 0.35, Darcy permeability is 𝑘 = 10−2 m/s.  426 

 427 

Figure 3. Set-up for 1D dynamic consolidation. 428 

 429 

Figure 4. Time histories for displacement at Point A and pore water pressure at Point B 430 

for 𝑘 = 10−2 m/s in 1 second with ∆𝑡 = 0.005 s. 431 
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 432 

As shown in Figure 4, stable solutions for both displacement and pore water pressure 433 

are ensured when using the value 0.5 and 1.0 for all time integration parameters (e.g. 434 

𝜃1,2,3 = 0.5  and 𝜃1,2,3 = 1.0). For time integration parameters 𝜃1,2,3 = 0.495 , the 435 

pore water pressure is severely oscillated from t = 0.2 s while unstable displacements 436 

are observed from t = 0.75 s. This phenomenon also agrees with the observation in [45] 437 

that the pressure response at point B is easier to be unstable compared to the 438 

displacement response at point A.  439 

 440 

To investigate the convergence of the solution with respect to the time step, two other 441 

time steps (e.g. ∆𝑡 = 2.5 × 10−3s and 1 × 10−2s) are used to simulate the problem 442 

with time integration parameters 𝜃1,2,3 = 0.5 and 1.0, respectively. The simulation 443 

results are compared to the ones using ∆𝑡 = 5 × 10−3 s. As shown in Figure 5, 444 

satisfactory agreements are obtained for all cases. In the following, the time integration 445 

parameters 𝜃1,2,3 = 1.0 are selected for all simulations indicating the backward Euler 446 

scheme. 447 
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 448 

Figure 5. Evolution of displacement at Point A and pore water pressure at Point B from 449 

simulations using different time steps and time integration parameters. 450 

 451 

The proposed formulation is further verified against the dynamic response of an infinite 452 

half-space subjected to surface loading for which the analytical solution is available 453 

[46,47]. The problem is treated as a plane-strain problem with the surface loading 𝑓2(𝑡). 454 

The set-up of the problem is the same as that in [47] with the following material 455 

parameters: density of solid 𝜌𝑠 = 2000 kg/m3, density of fluid 𝜌𝑓 = 1000 kg/m3, 456 

porosity 𝑛𝑓 = 0.33 , Lamé constants of solid skeleton 𝜇𝑠 = 5.583 MPa  and 𝜆𝑠 =457 

8.375 MPa. The dynamic response in terms of the displacement at the top surface 458 

obtained from the proposed formulation is compared with the analytical solution from 459 

[47] where a great agreement is obtained.  460 
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 461 

Figure 6. Top displacement history at Point A for 𝑘 = 10−2 m/s in 0.5 seconds. The 462 

analytical result is from [47]. 463 

 464 

6.2 2D wave propagation 465 

In this example, the wave propagation in a rectangular saturated poroelastic medium 466 

(21 m long and 10 m deep) studied in [47] is concerned. The illustration of the problem 467 

is shown in Figure 7. The medium is subjected to a surface loading with a width Wf = 468 

1 m. Material parameters are the same as the ones used in the analytical example in 469 

section 6.1 which are also in line with these in [47]. The input force, lasting for 0.04 s, 470 

is   471 

𝑓(𝑡) = 102 sin(25𝜋𝑡) 𝐻(𝑡 − 0.04)   [𝑘𝑃𝑎]                (50) 472 

in which H denotes the Heaviside step function (see also Figure 7). 473 

 474 

Evolution of the displacement at Point A and pressure at Point B are monitored (see also 475 
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Figure 7). Three mesh configurations with the length of mesh edge he being 1/2Wf 476 

(MESH1), 1/4Wf (MESH2), and 1/8Wf (MESH3) are used for investigating solution 477 

convergence with respect to mesh size. A fixed time step of 5×10-4 s is adopted in all 478 

simulations. 479 

 480 

Figure 7. Illustration of 2D wave propagation in a rectangular domain with three mesh 481 

configurations MESH1, MESH2 and MESH3. The loading function is shown in the 482 

left-top sub-figure, and the mesh density of MESH1 and MESH3 in a section (y ≥ 8 m) 483 

of the domain is also presented. 484 

 485 

Figure 8. The motion of Point A and the pore water pressure evolution at Point B. 486 

 487 
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The curves displayed in Figure 8 (A) depict the in-plane motion of Point A from 0 to 488 

0.2 s. The trajectories of Point A obtained using different meshes agree with each other 489 

which are also consistent with the published results in [47,48]. Figure 8 (B) shows the 490 

evolution of the pore water pressure at Point B, and the good agreement also verifies 491 

our formulation.  492 

 493 

The wavefields of the total displacement at different scenarios are illustrated in Figure 494 

9 which are similar to these found in [47–49]. The pressure field at t = 0.05 s is 495 

illustrated in Figure 10 in which the simulation results from [48] are also illustrated. 496 

Note that an additional stabilization technique is required to ensure the stability of pore 497 

water pressure in [48] since linear elements are used. In contrast, the stabilization 498 

technique is not necessitated for the proposed formulation because quadratic 499 

interpolations are used for displacement-like fields and linear interpolations are for 500 

stress-like fields in the element (see also Figure 2).        501 

 502 

Figure 9. Wavefields of the total displacement at four instants from the simulation with 503 
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MESH2 (ℎ𝑒 = 𝑊𝑓/4). The deformed mesh is rescaled with a factor of 500. 504 

 505 

Figure 10. Wavefields of pore water pressure at t = 0.05 s: (A) without stabilization 506 

technique from [48]; (B) with pressure stabilization technique from [48]; (C) from the 507 

proposed formulation with the mixed triangular element. Deformation is scaled by a 508 

factor of 250. 509 

 510 

6.3 Collapse of a saturated granular column in air 511 

The experiment of the granular column collapse has been widely used to investigate 512 

the mechanism of many geophysical phenomena due to its similarity to rapid 513 

movements of mass flows, such as landslides, debris flows and avalanches. In this part, 514 

the proposed numerical method is applied to a recent experimental study of the collapse 515 

of a saturated granular column in air [50]. Here we reproduce this experiment with one 516 

configuration in [50] to verify the correctness of the proposed method. The experiment 517 
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set-up is illustrated in Figure 11 in which the saturated column collapses in a flume after 518 

removing the gate. 519 

 520 

 521 

Figure 11. Illustration of the experiment set-up in [50] used for saturated column 522 

collapse tests. The case selected has a geometry of 𝐿0 = 4 cm and 𝐻0 = 6 cm.  523 

 524 

In the simulation, the saturated granular column is discretized into two configurations: 525 

(i) 4000 elements (dense mesh) and (ii) 2507 elements (coarse mesh). The adopted 526 

material parameters are from [50]: density of solid 𝜌𝑠 = 2600 kg/m3, density of fluid 527 

𝜌𝑓 = 1000 kg/m3, porosity 𝑛𝑓 = 0.4, Poisson’s ratio 𝜐 = 0.3, elastic modulus 𝐸 =528 

10 MPa , effective cohesion 𝑐′ = 0 Pa  and effective friction angle φ′ = 35° . The 529 

dilation angle is set as 𝜓 = 0° . The Darcy permeability is computed through the 530 

Kozeny-Carman equation [50]: 531 

 𝑘 =
𝑘𝐿𝑔

𝜂𝑑
 with 𝑘𝐿 =

𝐷2

150
𝑛𝑓

3/(1 − 𝑛𝑓)2              (51) 532 

where 𝐷 is the mean diameter of the granular material, 𝑘𝐿 is the intrinsic permeability 533 

and 𝜂𝑑 is the dynamic viscosity for fluid. The measured value of 𝐷 is 2.5 mm. The 534 
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dynamic viscosity 𝜂𝑑  for water is chosen as a typical value of 10−3 Pa ∙ s.  The 535 

bottom of the column is fully fixed while the left side is fixed in horizontal direction. 536 

The gravity loading is first applied to generate stresses with the gate being fixed. In this 537 

gravitational step, only the top surface of the column is set as drainable. After that, the 538 

gate is removed to release the granular column. Meanwhile, the surfaces exposed to air 539 

are set as drainable. To save computational cost, an adaptive time step is used in the 540 

way that the maximum incremental displacement at each step is smaller than the length 541 

of the mesh edge.    542 

 543 

Figure 12. Simulation results from this study using coarse and dense meshes compared 544 

with MPM and experimental results from [50] at three instants. 545 

  546 

Figure 12 shows the scenarios of the collapse at three instants 
𝑡

𝑡𝑟𝑒𝑓
= 1, 2, 5 , 547 

respectively, where the reference time is 𝑡𝑟𝑒𝑓 = √𝐻0/𝑔′  and the reduced gravity 548 

acceleration is computed by 𝑔′ = 𝑔(𝜌𝑠 − 𝜌𝑓)/𝜌𝑠. It can be seen that the simulation 549 
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results obtained from two mesh configurations in this study agree well with the MPM 550 

results in [50], which verifies the proposed version of the PFEM for dynamic analysis 551 

of saturated porous media with large deformations. However, a visible difference 552 

exists between the simulated final deposit and experimental data which may be 553 

attributed to the complex behavior of saturated medium during rapid movement in 554 

reality and further studies are required to provide a more reasonable constitutive 555 

relationship.     556 

   557 

6.4 Embankment failure  558 

The failure of an embankment is studied using the proposed PFEM in this section with 559 

simulation results compared to these from the classical Bishop’s method and the SPH 560 

method. The concerned embankment is a two-sided model and triggered by the 561 

difference of pore water pressure between the high reservoir water level on the left hand 562 

side and the low ground water table on the right hand side. The model of the 563 

embankment is from [51] and illustrated in Figure 13. Instead of prescribing pore water 564 

pressure boundary condition along the embankment surface in [51], the water region is 565 

part of our simulation. Nevertheless, the direct enforcement of the pore water pressure 566 

on the embankment is also possible in the proposed approach.       567 
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 568 

Figure 13. Two-sided slope embankment model from [51]. The model is discretized 569 

using 2277 elements. Lateral boundaries are set as free-roller and the bottom is fixed in 570 

the simulation. 571 

 572 

As shown in Figure 13, the model consists of four parts: water, foundation 573 

(saturated), unsaturated soil and slope (saturated), marked in different colors. The 574 

unsaturated soil is treated as dry for the sake of simplicity which is in line with the 575 

assumption made in [51]. The groundwater table is represented as a green dashed line 576 

in Figure 13. The parameters are as given in [51]: unit weight of the water 𝛾𝑓 =577 

10 kN/m3, unit weight of the unsaturated soil 𝛾𝑢𝑛𝑠𝑎 = 18.5 kN/m3, unit weight of the 578 

saturated soil in the slope 𝛾𝑠𝑎1 = 20 kN/m3, unit weight of the saturated soil in the 579 

foundation 𝛾𝑠𝑎2 = 22 kN/m3. For the saturated and unsaturated soils in the slope, 580 

elastic modulus is 𝐸1 = 25 MPa, internal friction angle is φ1 = 22°, cohesion is 𝑐1 =581 

4 kPa, dilation angle is 𝜓1 = 0° and Poisson’s ratio is 𝜐1 = 0.3. For foundation soils, 582 

we have 𝐸2 = 50 MPa , φ2 = 22° , 𝑐2 = 10 kPa , 𝜓2 = 0°  and 𝜐2 = 0.3 . As for 583 

water, both the cohesion and friction angle are set as zero as in [17], and the Poisson’s 584 

ratio is set as 0.499 to approximate the non-compressibility.  585 
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 586 

Figure 14. Final deposit profile with displacement distribution after the slope failure. 587 

The data of Bishop’s method and SPH result are extracted from [51]. 588 

 589 

The whole model is set as stable during the gravitation loading step by adopting a large 590 

cohesion and an internal friction angle. Then dynamic analysis is performed by 591 

decreasing the strength to the specified value which triggers the failure of the 592 

embankment. The dynamic analysis is carried out using a time step Δt = 0.01 s. The 593 

final deposit profile obtained from our simulation agrees well with that from the SPH 594 

modelling and the shear band also agrees with the classical Bishop’s slip surface from 595 

[51], indicating the correctness of the proposed method for dynamic analysis of 596 

embankment consisting of saturated soils.  597 

 598 

7 Conclusions 599 

In this paper, a generalized Hellinger-Reissner (HR) variational principle is developed 600 

for dynamic analysis of saturated porous media. With a proposed mixed finite element, 601 
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the variational principle leads to a min-max optimization problem which can be 602 

reformed as a standard second-order cone programming problem to be resolved 603 

efficiently using an advanced optimization algorithm. To enable the large deformation 604 

analysis, the formulation is further merged into the PFEM framework. The correctness 605 

of the proposed formulation has been validated against the benchmark of the dynamic 606 

consolidation and the wave propagation in saturated soils. It is shown that the 607 

simulation results agree well with the analytical solution and with these from 608 

conventional finite element analysis. The capability of the proposed PFEM version for 609 

large deformation dynamic analysis of saturated porous media is also illustrated by 610 

simulating the collapse of a saturated granular column in air and the post-failure of an 611 

embankment owing to seepage with results being compared to these from lab testing 612 

and the numerical modelling using the material point method and the smoothed particle 613 

hydrodynamics method. 614 
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