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Abstract

At present, the Parton Distribution Functions (PDFs) for the quarks and gluons of QCD

extracted in global fitting analyses suffer from large uncertainties, particularly at low x and

low scales. This is mainly a reflection of the lack of experimental data constraints in this

kinematical regime. In this thesis, due to its enhanced sensitivity to the gluon PDF, we

will study the exclusive production of heavy vector mesons V , measured recently in ultra

peripheral pp collisions at the LHC, pp → p + V + p, as a means to reliably constrain,

probe and determine the gluon PDF in the very low x domain.

With the advent of new and improved colliders on the horizon, PDF phenomenology

is becoming more and more important at low x as particle collision energies increase.

The data for the exclusive production of the J/ψ meson from LHCb, specifically, will be

promoted as being at the frontier of new low x and low scale gluon PDF constraints,

providing the driving force in allowing this kinematic regime to start, and ultimately

become, an area of precision physics.

Using a fully furnished prediction for exclusive J/ψ photoproduction within the collinear

factorisation framework at NLO, a low x ∼ 10−5 and low scale µ2 ∼ 2.4 GeV2 gluon PDF

is obtained within a statistical reweighting framework using existing HERA and LHC ex-

clusive data. The significance of this result for low x global gluon PDF extractions is

quantified.

Finally, we build and use a computational workhorse to extract the exclusive electro

production of heavy vector mesons to NLO in collinear factorisation. This completes the

Q2 phase space for this observable and provides a calculation that is on solid grounds with

regards to the applicability of the factorisation ansatz.
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Chapter 1

Introduction

1.1 Overview

The exploration of the inner structure of the proton has long been at the forefront of the

field of Collider Phenomenology. With increasingly bigger and better collider machines

over the years, the field has fast evolved into one of precision physics, allowing for the

constituent quark and gluon valence and sea content of the proton to be understood and

unravelled to the highest level. Practically, the internal structure of the proton is encoded

into Parton Distribution Functions (PDFs), non-perturbative and rigourously defined enti-

ties in Quantum Field Theory that provide part of the input to the Collinear Factorisation

theorems of Quantum Chromodynamics (QCD). Developed in 1973 [1], QCD is the theory

of strong interactions of quarks and gluons based on the non-abelian SU(3) gauge group

and forms one of the pillars of the Standard Model of Particle Physics. The PDFs may

be interpreted as the underlying probability densities, xfi(x,Q
2), for a certain partonic

species i within the proton to have a longitudinal momentum fraction x at a given probing

resolution scale, Q2. As of now, with the high abundance and statistical quality of collider

data collected in the LHC era of high-energy physics, there is a need for the theory ac-

tivities to have similar precision to results from experiment. To date, PDF extractions at

next-to-leading order (NLO) and next-to-next-to-leading order (NNLO) in the systematic

expansion in the QCD strong coupling, αs, have become the norm and have provided for

an exciting phenomenological platform of interaction between the theory and experimental

communities.

The first results on PDF phenomenology were, for the most part, greatly centered

1



C.A.Flett

on collider measurements deemed to be of an inclusive nature. Deep Inelastic Scattering

(DIS) is the iconic inclusive process where the proton substructure was first revealed by an

experiment at SLAC in 1969, which directly detected the constituent quark via a highly

virtual electromagnetic probe [2]. The information from the lepton scattering in a DIS event

allows one to measure the structure functions of the proton, which depend on the PDFs.

Over the years, a wealth of DIS data with a wide kinematic coverage in the (x,Q2) plane

was collected and analysed from many different experimental machines and collaborations

to better ascertain the PDFs. The logic was that the inclusive DIS structure function

observables, F p2 , provided the cleanest and most straightforward access to these objects.

Initial fixed target data from e.g. NMC and SLAC were garnered but it was not until

the advent of the HERA ep linear collider and the H1, ZEUS and HERMES experiments

that the frontier in collider kinematics was extended to much lower x and much higher Q2.

The most important result from HERA is arguably the observation of a relatively steep

rise in the DIS proton structure function at low x, attributed to an increase in the gluon

density [3, 4].

Together with DIS data, the HERA collider reported measurements on a plethora of

other high-energy physics phenomena, including inclusive jet production, Drell-Yan and

heavy vector boson production as well as, notably, diffractive events [5, 6], discussed below.

While the DIS data from HERA provided for a relatively reliable and precise extraction of

the quark densities, the gluon density was still largely left in the dark for x <∼ 0.001 and

Q2 <∼ 20 GeV2 [7]. This is mainly a reflection of the fact that, within the Parton Model,

there is no direct coupling of the gluon to the proton-resolving probe in DIS events, and few

observables where the initial partonic subprocess is instead driven by gluons. Constraint

on the gluon density at larger x >∼ 0.001, besides DIS [8], came from high-pT inclusive

dijet and prompt photon production [9]. In both cases, the initiating partons are gluons.

In the intermediate regime, 10−4 < x < 10−3, the data from open charm production

and diffractive J/ψ production, the latter of which were part of a class of events that

comprised ∼ 5 − 10% of DIS signatures reported at HERA, served as further probes of

the gluon distribution [10]. The gluon density was also determined in this regime and at

even smaller x qualitatively via the derivative ∂F p2 /∂ lnQ2, however, beyond x ∼ 10−4, the

region was engulfed in a huge band of uncertainty with no constraining data resulting in a

gluon density that is, for all intents and purposes, unknown. See [4, 11] for reviews on the

state of affairs of high-energy phenomenology at the start of the new millennium.

Small x PDF phenomenology is now kinematically accessible in the LHC era of collider
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physics due to greater centre-of-mass energies,
√
s, of the colliding protons, allowing for

the data on open charm and diffractive J/ψ production to extend to unpredecented values

down to x ∼ 3 × 10−6. In this thesis, we will consider the exclusive production of heavy

vector mesons V mediated by γp (photoproduction) and γ∗p (electroproduction) hard

scatterings,

γ(γ∗) + p −→ V + p, V = J/ψ, ψ(2S),Υ. (1.1)

These are a specific class of diffractive events mentioned above in which the proton p re-

mains intact and the final state kinematics are fully specified, with no exchange of quantum

numbers between the initial and final states [10]. They constituted around 5% of the low

x events in bins of Q2 ≥ 10 GeV2 at HERA [12, 13, 14] and were characterised by the

presence of a rapidity gap, a term first coined by Bjorken in 1993 [15], corresponding to a

domain in the detector devoid of activity between the final state products. At the LHC,

these hard scatterings instead drive the ultraperipheral central exclusive production of the

vector mesons,

p+ p −→ p+ V + p, V = J/ψ, ψ(2S),Υ. (1.2)

The ‘+’ signs on the right hand side denote the rapidity gap either side of the vector

meson. Generally, exclusive processes allow for further tests of broad aspects of QCD and

hadron spectroscopy, as well as constraining the Beyond-the-Standard-Model (BSM) phase

space. Here, we are interested in the aspect of exclusive processes that allow for increased

sensitivity to the gluon PDF at low x and low Q2.

The cross section susceptibility of exclusive J/ψ production to the square of the gluon

density, xg(x,Q2), at leading-order (LO) in the QCD strong coupling αs is what makes

it an attractive observable to study. The demand of exclusivity results in a t-channel

two-gluon exchange interaction (the pomeron), where a photon fluctuates into a cc̄ heavy

quark pair and is subsequently projected onto the outgoing colourless hadronic state that

is the J/ψ. The utility of p + p → p + J/ψ + p as a probe of the low x domain was first

described in [16]. There, the exclusive cross section for the hard quasi-elastic subprocess

γ∗p → J/ψp, which drives the pp initiated reaction, was derived in the leading-log(Q2)-

approximation (LLQA) of perturbative QCD (pQCD). This is equivalent to the LO result

in conventional collinear factorisation and showcased the dependence of the process on the
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square of the gluon distribution. In 1993, Ryskin [16] showed that

dσ

dt
(γ∗p→ J/ψp)|t=0 =

ΓeeM
3
ψπ

3

48α

(
1 +

Q2

M2
ψ

)[
αs(Q̄

2)

Q̄4
xg(x, µ2

F )

]2

, (1.3)

with the electromagnetic coupling constant α = 1/137, µ2
F ∼ Q̄2 = (Q2 + M2

ψ)/4, where

Q2 is the photon virtuality, and Mψ and Γee the mass and electronic decay width of

the J/ψ meson, respectively. Unlike in DIS where one makes an inclusive cut over all

final state configurations, here we resolve a particular direction in the final state phase

space corresponding to the outgoing vector meson. This maximally breaks the collinear

factorisation theorems [17] but, by introducing so-called Generalised Parton Distribution

Functions (GPDs), we can maintain this formulation and persist in the use of collinear

factorisation, albeit with the GPDs as our non-perturbative input. Recall also that, while

in DIS there is no leading order contribution involving gluons in the corresponding hard

scattering, here we have a t-channel two-gluon exchange at LO that provides for the in-

creased sensitivity to the gluon PDF. However, this well-defined extraction of the final

state comes at a price - one must introduce additional ingredients into the quantum field

theory description of the underlying process amplitude amounting to GPDs, as mentioned

above, as well as non-perturbative matrix elements that characterise the dynamics of the

cc̄ → V transition vertex. In the case of J/ψ production, as we will see, non-relativistic

QCD (NRQCD) comes as a powerful tool but largely these non-perturbative objects need

to be extracted or fixed via the available data and outside the theory toolbox. The PDFs,

for example, may be extracted through a so-called global analysis, as discussed in Chapter

2, introducing additional model parametrisations or dealt with as a free parameter in some

simultaneous fit. The extent to which these objects introduce a further uncertainty into

a given calculation framework, thereby detracting from an otherwise robust extraction of

nucleon structure, remains an area of active research.

1.2 Structure of the thesis

A broad discussion in Chapter 2 of the elements constituting the theoretical and phe-

nomenological backbone that underlies our work is given. Amongst them, we systemati-

cally explore the state-of-the-art of GPD phenomenology and an important simplification

that may be made at small x - a critical ingredient in the description of exclusive J/ψ

4
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production. We then describe the recent new-and-improved theoretical result for the J/ψ

production based on a low-x resummation and low-Q power subtraction.

In Chapter 3 we show, for the first time, the impact that the exclusive J/ψ LHCb data

has on the behaviour of the low x and low Q2 gluon PDF within the collinear factorisation

framework at NLO, and that the exclusive J/ψ data from HERA can be successfully

described within this set-up by the global partons. We show the dramatic distinguishing

effect these LHCb data have on determining the gluon PDF at low x. Furthermore, it

is the first time that this newly refined framework within collinear factorisation at NLO

has been used to produce cross section level results. The chapter also includes a thorough

analysis of our predictions accounting for the uncertainty of the global partons, requiring

complete sets of central GPD and associated error grids to be produced.

In Chapter 4, having promoted the data as a serious and viable means to probe the

low-x regime, we show quantitatively the effect that including the exclusive J/ψ data from

LHCb has on a global fit through a Bayesian statistical reweighting procedure. The results

allow one, for the first time, to reliably include the J/ψ photoproduction data in a fixed

order NLO fitting machinery. We substantiate these findings by performing a fit to the

exclusive data in which the gluon density rises as a pure power, allowing conclusions to be

made regarding the onset of gluon saturation.

Finally, in Chapter 5, we build and use a computational workhorse to enable the calcu-

lation of exclusive electroproduction of heavy vector mesons to NLO in collinear factorisa-

tion. This extends the photoproduction computation of Ivanov et al. [18], allowing for an

additional mass scale provided by the photon virtuality, Q2 6= 0, and proceeds by means

of integral reduction to extract MS transverse and longitudinal NLO coefficient functions.

Our conclusions and possible future investigative avenues are detailed and summarised

in Chapter 6.
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Chapter 2

Preliminaries

In this chapter, we will present the concepts and underlying formalisms used throughout

this thesis. We begin these preliminaries with an exposition of collinear factorisation in

Section 2.1, the basis of all work presented here, and give an overview of parton distribution

functions in the context of global analyses in Section 2.2. Then, in Section 2.3, we provide

an introduction to the generalised parton distribution function and emphasise the utility of

the Shuvaev transform as a means to relate the conventional parton distribution function

to a generalised counterpart for low values of the momentum fraction. We highlight the

importance of automated Feynman integral reduction tools, employed in this work, in Sec-

tion 2.4 and end, in Section 2.5, with a discussion of the exclusive J/ψ production process

within the collinear factorisation framework and the far-reaching benefits a treatment of

double logarithmic contributions and a double counting carries.

2.1 Observables from Perturbative QCD

Smaller and smaller distance scales of the proton may be unravelled through larger and

larger momentum scales of cleanly interacting probes at colliders. Inclusive DIS exposed

the proton as a complicated sea of constituent quarks and gluons, aptly named partons,

at sufficiently large energies of neutral electromagnetic and charged electroweak probes.

The interaction of such a probe carrying a virtuality Q2 allows for a coarse-graining of the

matter content, resolving its underlying structure at lengths of 1/Q. With such resolving

capabilities available at colliders past and present, the probe is effectively interacting at

the constituent level of the colliding matter and gives rise to the so-called ‘Parton Model’

6



Chapter 2. Preliminaries

of sub-atomic particle interactions.

Within the framework of collinear factorisation [17], the observables, Oa, of high-energy

physics phenomena are expressed as a convolution of a process dependent, perturbatively

calculable coefficient function, Ca,j , and a universal parton distribution function (PDF),

xfj ,
1

Oa(x,Q
2) = (Ca,j ⊗ xfj) (x). (2.2)

Here, x is the fraction of (plus-component) momentum of the parent hadron carried by the

parton. The coefficient functions are calculated by replacing the hadronic state with an

on-shell parton j, in line with the ‘Parton Model’, and evaluated systematically in powers

of the QCD strong coupling, αs, so that

Ca,j =
∑

n

(αs
4π

)n
Cna,j . (2.3)

Beyond the leading power in this expansion, unphysical divergences manifest themselves in

loop momentum integrals as ultraviolet (UV) high energy singularities or originate in phase

space configurations where on-shell partons may go collinear, leading to infrared (IR) mass

and collinear singularities. Yet, experimentally measurable quantities, which these objects

are used to make predictions for, are finite. In a programme of renormalisation, these

divergences are removed order by order in αs, to render meaningful theory predictions

that can be compared to experiment.

In this work, we counteract these divergences using dimensional regularisation in d =

4 − 2ε space-time dimensions, where ε is small. This amounts to a shift from the phys-

ical d = 4 space-time to one where the aforementioned divergences instead appear on

an analytic level as simple poles in the regulator ε. From explicit power counting in the

mass dimensionality of the quark and gluon field and coupling content within the QCD

Lagrangian, one can infer that the QCD strong coupling is dimensionless in d = 4. To

maintain this in d = 4− 2ε, we introduce an arbitrary scale µ2
0. Explicitly, a given observ-

1The symbol ⊗ denotes a Mellin convolution. The Nth Mellin moment of a single variable function f(x)
is defined as the integral transform

fN :=

∫ 1

0

dxxN−1f(x) (2.1)

to Mellin space. In this space, these convolutions appear as simple products but they will not be discussed
in this work.

7
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able, Oa(x,Q
2), written in the collinear factorisation scheme is then

Oa(x,Q
2) =

(
Ĉa,j

(
α̂s,

Q2

µ2
0

, ε

)
⊗ xf̂j

)
(x). (2.4)

Hats denote unrenormalised, or bare, quantities so that e.g. α̂s represents the bare QCD

strong coupling.

The removal of UV divergences proceeds through the renormalisation of the strong

coupling constant. We introduce the renormalisation constant for the strong coupling,

Zαs , and the renormalisation scale, µ2
R, and write

α̂S = α̂sµ
2ε
0 , αS = αsµ

2ε
R and α̂S = Zαsαsµ

2ε
R , (2.5)

so that

α̂s = Zαsαs

(
µ2
R

µ2
0

)ε
. (2.6)

Setting µ2
0 = µ2

R for notational convenience gives,

Oa(x,Q
2) =

(
Ĉa,j

(
αs(µ

2
R),

Q2

µ2
R

, ε

)
⊗ xf̂j

)
(x). (2.7)

The remaining divergences correspond to initial state mass singularities (collinear diver-

gences) and are dealt with via mass factorisation, whereby they are absorbed into the PDFs.

The bare coefficient functions factorise2 into a piece that is finite as the d → 4 (ε → 0)

physical dimensionality is restored, and a piece that contains the divergences parametrised

by explicit poles in ε. This separation occurs at a factorisation scale µ2
F , and the manner

in which one makes this split is dependent on the choice of factorisation scheme, see below.

In this way, we obtain,

Oa(x,Q
2) =

(
Csch
a,i

(
αs(µ

2
R),

Q2

µ2
R

,
µ2
F

µ2
R

, ε

)
⊗ Zsch

ij

(
αs(µ

2
R),

µ2
F

µ2
R

,
1

ε

)
⊗ xf̂j

)
(x), (2.8)

where Zsch
ij is a scheme dependent IR renormalisation matrix and i, j run over the partons.

After this separation, the Csch
a,i (Zsch

ij ) factors admit a Taylor (Laurent) series in ε. The Zsch
ij

factors therefore carry the diverging terms, made explicit in its functional dependence. As

2Factorisation has been proven to hold for only a certain class of observables. In some cases, this
factorisation is only assumed or posited to hold. See [17] for a summary of QCD factorisation theorems.
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the bare PDFs, xf̂j , are unmeasurable quantities, we can absorb the mass divergences

within the Zsch
ij factors into them. The scheme dependent and renormalised PDFs are then

xf sch
i (x, µ2

F , αs(µ
2
R)) = Zsch

ij

(
αs(µ

2
R),

µ2
F

µ2
R

,
1

ε

)
⊗ xf̂j , (2.9)

and therefore

Oa(x,Q
2) =

(
Csch
a,i

(
αs(µ

2
R),

Q2

µ2
R

,
µ2
F

µ2
R

, ε

)
⊗ xf sch

i (x, µ2
F , αs(µ

2
R))

)
(x). (2.10)

Equation (2.10) is now finally a convolution of finite quantities and, after sending ε → 0,

can be used to produce numerical predictions for experimental observables. The Csch
a,i

encode the hard process dynamics and can be computed in perturbation theory. The

xf sch
i parametrise the non-perturbative soft physics and can be extracted from experiment,

see Section. 2.2. We reiterate that, as the index a is not carried by the PDF, it is a

universal quantity. The terms contributing to Oa(x,Q
2) at the leading power in αs are

called leading-order (LO). Those at the next to leading power are the next-to-leading-

order (NLO) contributions and so on. The PDFs admit a probabilistic interpretation at

LO in the ‘Parton Model’.

In the Minimal Subtraction (MS) scheme, the Zsch
ij contain only the terms proportional

to 1/ε. In this scheme, the strong coupling renormalisation constant

ZMS
αs = 1− 1

ε
β0αs +O(α2

s), (2.11)

where β0 is the leading order coefficient of the β-function3. Substitution of eqn. (2.11) into

eqn. (2.6), together with an expansion in ε to O(ε) inclusive, gives the relation between the

bare coupling and the renormalised coupling to O(α2
s) accuracy in the MS scheme. This

3The running of the strong coupling constant αs, a feature inherent in QCD by virtue of its asymptotic
freedom proven by Gross & Wilczek [19, 20] and independently Politzer [21] in 1973, is given by the
β-function. In QCD, this admits the perturbative expansion [21, 22, 23, 24, 25],

β(αs) = −αs
∞∑
n=0

βn
(αs

4π

)n+1

, (2.12)

where β0 = 11− 2/3Nf , with Nf the number of quarks with mass much smaller than the scale µR.
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is,

α̂s = αs

(
1− αsβ0

(
1

ε
+ ln

(
µ2
R

µ2
0

)))
+O(α3

s). (2.13)

Here, however, we will use the Modified Minimal Subtraction (MS) scheme where additional

factors of the Euler-Mascheroni constant, γE , and ln(4π), which appear in dimensionally

regularised loop integrals, are absorbed in the redefinition,

1

ε̂
=

1

ε
+ γE − ln(4π). (2.14)

In the MS scheme, we therefore have

α̂s = αs

(
1− αsβ0

(
1

ε̂
+ ln

(
µ2
R

µ2
0

)))
+O(α3

s). (2.15)

The coefficient β0 appearing in eqn. (2.11) is scheme independent and therefore unaffected

in this scheme transformation.

The evolution of the MS PDFs, xfi(x, µ
2
F , αs), in the scale µ2

F is given by, from

eqn. (2.9),

µ2
F

d

dµ2
F

xfi = µ2
F

d

dµ2
F

Zij ⊗ xf̂j = µ2
F

d

dµ2
F

Zik ⊗
(
Z−1
kj ⊗ xfj

)
= Pij ⊗ xfj , (2.16)

where

Pij(x, αs) =

(
µ2
F

d

dµ2
F

Zik ⊗ Z−1
kj

)
(x, αs) (2.17)

are the MS collinear splitting kernels of QCD. Eqn. (2.16) is the DGLAP equation [26, 27,

28] for the PDF xfi, giving its evolution from some initial energy scale µ2
F1

to some final

scale µ2
F2

. The Pij are known to NNLO in the literature [29, 30] and calculable within

pQCD. The DGLAP equation provides the resummation of ln(µ2
F2
/µ2

F1
) terms at each

order in αs. See Appendix B for another evolution equation, the BFKL equation, as well

as an introduction to resummation in the (x,Q2) plane.

Note that an all order computation would allow for the cancellation of all explicit

instances of µ2
R and µ2

F on the r.h.s of eqn. (2.10). In practice, however, this is not feasible

and conceptually ill-defined due to the asymptotic character of pQCD. Equation (2.10)

is therefore truncated at a particular order in αs with some residual dependence on the

(unphysical) renormalisation and factorisation scales remaining. In a scale fixing approach,
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one tries to find a sensible, physically motivated choice of scale so as to mimic the missing

higher order contributions. For single scale processes, such as DIS, the ‘optimal’ scale

choice is typically set to the energy scale of the process, µ2
R = µ2

F ∼ Q2. However, this

provides for one strategy only, and it is ambiguous as to whether one should finally choose

Q2, Q2/2 or 2Q2, for example.

We end this section by noting that the Operator Product Expansion (OPE) [31, 32, 33]

allows one to formally expand general operator interactions, in a given quantum field the-

ory, as a series of matrix elements of local operators with multiplicative coefficient functions.

The OPE, as applied to QCD, identifies the Mellin moments of the non-perturbative PDFs

with the local operators of this expansion [34]. The operators are ordered in powers of the

scale 1/Q2, introduced above. The leading, or so-called leading-twist4, term in this series

dominates for large Q2 and is equivalent to the leading contribution in the mainstream

approach of collinear factorisation.

2.2 Global PDF analyses

Parton distribution functions, xf(x,Q2) are the non-perturbative input into the conven-

tional collinear factorisation theorems. While their evolution in the scale Q is known from

the DGLAP equations of pQCD [26, 27, 28], see Section 2.1, their x dependence cannot

be extracted from first principles, but from experiment, requiring an interplay between

the experimental and theoretical communities. There has been progress on the frontier of

lattice QCD too as an independent, but complementary, means to extract the PDFs [35].

The increasing availability of high-precision experimental measurements from the Jef-

ferson lab, HERA, RHIC, the Tevatron and, the LHC, together with theoretical advances

in pQCD past the naive LO QCD parton model has meant in some cases an extraction

of PDFs at the percent level [36, 37]. There are a variety of different PDF-fitting collab-

orations providing so-called global PDF analyses, which all maintain the same conceptual

basis but differ in their mode of extraction and employment of methods to determine

the PDFs. Their results are publicly available as interpolation grids in x and Q2, typi-

cally up to and including NNLO, and are organised into a central member set together

with O(100− 1000) one-sigma variation error sets provided in Hessian eigenvector and/or

Monte-Carlo replica format. In this work, we will refer to the PDFs pertaining to the

4By twist of an operator, we mean the difference of its dimension and spin.
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NNPDF [38, 39], MMHT [40] and CT [41, 42] collaborations. Although recently there was

reported evidence for BFKL dynamics already at play at HERA energies [43], the DGLAP

formalism has remained the mainstream, with all global fitting groups using the conven-

tional DGLAP collinear factorisation formalism to extract process independent PDFs while

retaining a degree of uniqueness in their method of approach. In light of [43], the NNPDF

collaboration have, in addition, released PDF sets supplemented with small x BFKL re-

summation. We will consider these in Chapter 4.

The various groups are largely in agreement in their approaches but can differ in the

choice of data included in their fit via e.g. imposition of kinematic cuts, the treatment of

data uncertainties and of heavy quark thresholds as well as the input parametrisation at

some Q0. The input distribution, xf(x,Q2
0), at some starting scale Q2

0 ∼ 1− 2 GeV2 is the

DGLAP initial condition and is typically parametrised independently by each group with

some x dependence that describes the expected small x and large x behaviour of the PDF.

Typically it is the case, however, that different parametrisation forms lead to successful

fits of the data for a wide range of x. An attempt to remove this parametrisation bias

is given by the Monte-Carlo approach of NNPDF which use a Neural Network framework

to bypass the reliance on a specific ansatz for the input distribution - all structures are

implicitly taken into account in their sampling of the space of possible functional forms.

Generally speaking, it is desired that the functional form for the input distribution, with

a given number of free parameters {ai}, has enough flexibility and freedom to describe the

high energy physics data for a wide range of x. This form may be evolved via DGLAP to

any given scale, Q, to allow calculation of observables and compare with data. Practically,

evolution codes such as QCDNUM [44] automise this procedure and numerically solve the

DGLAP equations on a discrete grid in x and Q2. The input distributions typically involve

admixtures of small x and large x behaviour, with intermediate behaviours characterised by

additional multiplicative polynomials or exponential structures. The precise form depends

on the global fitting group and can generically be expressed as

xf(x,Q2
0) = xa1 (1− x)a2P (x, {a3, a4, . . . }), (2.18)

where {ai} are the free parameters to be determined and the function P is responsible

for the behaviour between the low x sea and large x valence regimes (described here by

parameters a1 and a2 respectively). The MMHT14 PDFs [40], for example, have refined

the input parametrisations used by the MSTW collaboration [45] with incorporation of
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Figure 2.1: Comparison of NLO gluon PDFs obtained in the NNPDF3.0, MMHT14 and
CT14 [38, 40, 42] global analyses at scale Q = 1.55 GeV, close to the input scale of the
assumed DGLAP evolution. Plot generated within APFEL [146, 147].

Chebyshev polynomial forms.

In Fig. 2.1, we show a comparison of NLO gluon PDFs obtained from the global anal-

yses NNPDF3.0 [38], MMHT14 [40] and CT14 [42] at a low scale Q = O(mc), where

mc ∼ 1.5 GeV.5 In the small x domain, the gluon PDF dominates. In this regime, the

parametrisations of the gluon density all boil down to a simple power law xg ∼ x−λ with

λ > 0. In global analyses to date, there is a lack of experimental data probing the low x

domain, x < 10−3. This comes hand in hand with theoretical complications at low x too,

such as the possible necessity of BFKL dynamics and low x resummation together with

the eventual onset of gluon saturation and recombination effects. As such, the PDFs that

are extracted in this kinematic regime are poorly understood and have large uncertainty

bands. Additionally some PDFs are consistent with decreasing or vanishing gluon densities

and are therefore arguably unphysical.

5Note that the NNPDF collaboration have published a more up to date global analysis PDF set,
NNPDF3.1 [39]. However, in this work we largely use its predecessor v3.0 and make comparisons be-
tween NNPDF3.0, MMHT14 and CT14 because they are based on similar data constraints and released
around the same time. There exist also CT18 PDFs [46] but these, to date, have not been published.

13



C.A.Flett

x
5−10 4−10 3−10 2−10 1−10 1

R
at

io

0.6

0.8

1

1.2

1.4

1.6
xg(x,Q), comparison

NNPDF3.0 NLO
CT14 NLO
MMHT14 NLO
Q = 1.55e+00 GeV

G
en

er
at

ed
 w

ith
 A

PF
EL

 2
.7

.1
 W

eb

Figure 2.2: Ratios xgCT14/xgNNPDF3.0 and xgMMHT14/xgNNPDF3.0 of NLO gluon PDFs taken
from [38, 40, 42] at a fixed scale Q = 1.55 GeV. Plot generated within APFEL [146, 147].

The relatively recent measurement of central exclusive photoproduction of heavy vector

mesons V = J/ψ, ψ(2S) via ultraperipheral pp collisions at the LHCb [47, 48] allows

kinematic coverage down to x ∼ few units of 10−6 and is a serious candidate to allow for

the extraction of a low scale (around the input scale, Q0 ∼ 1 − 2 GeV) and low x gluon

PDF.

In this thesis, we will explain why the J/ψ photoproduction data are in a comfortable

position to be included in future global analyses, emphasising their utility and constraining

power in this low x and low Q part of the (x,Q) phase space. We will quantify the effect

that these data would have in a full fitting machinery through performing a reweighting

procedure based on a Bayesian statistics framework.

A useful way to compare the different PDF sets is to take one set as a reference and

produce ratios of the others relative to this. Fig. 2.2 applies this procedure to the data

in Fig. 2.1. Note that current PDF uncertainties in the valence regime, x >∼ 0.1, are also

rather sizeable. The origin of the error in the large x regime is different to that at small x

and important in e.g. BSM searches and PDF flavour separation. We will not, however,

discuss this issue here, but see [49, 50] where this is detailed further. In this work we
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will also not discuss nuclear PDFs, the non-perturbative input used to describe particle

formation via heavy-ion collisions at e.g. RHIC and the LHC [51, 52, 53]. These collisions

are regarded as more forthcoming signatures in the search for the saturation momentum,

Qs, due to the enhancement from the atomic number of the colliding nuclei, A1/3, but the

corresponding PDFs are currently poorer constrained.

2.3 Generalised Parton Distribution Functions

2.3.1 Introduction

The conventional collinear factorisation theorems used within the Parton Model to describe

inclusive processes, like DIS, implicitly integrate out the partonic transverse degrees of

freedom perpendicular to the direction of the nucleon and the hard scattering is initiated by

partons moving in a single space dimension, collinear to the parent nucleon. In less inclusive

processes, the interaction is no longer described on a two-dimensional plane spanned by

the directions of the incoming and outgoing electron, as in DIS, but instead, a resolved

final state defines another direction which need not, in some frame, lie in this plane.

This introduces some transversity in the final state in which a factorisation into objects

containing only collinear degrees of freedom will not do. Such processes may instead be

described by a factorisation into so-called off-forward distributions, where the transverse

degrees of freedom of the partons are then imprinted onto final state hadrons.

In this work, we will be concerned with the Generalised Parton Distribution (GPD),

a specific off-forward parton distribution function first introduced more than 20 years ago

by Mueller et al. [54], Ji [55, 56] and Radyushkin [57, 58] depending on x, the longitudinal

momentum fraction carried by the parton as well as a skewing parameter ξ and t-channel

momentum transfer squared t = ∆2 that account for the additional transverse kinematics.

In Fig. 2.3, we follow the symmetric set up of Ji [59] and introduce a light-cone coordinate

system. In this system, a generic four-vector vµ = (v0, v1, v2, v3) is expressed in the form

vµ = (v+, v⊥, v
−) via the transformation equations

v± =
1√
2

(
v0 ± v3

)
and v⊥ = (v1, v2). (2.19)

The input and output momenta for two partons are x = X+ξ and x′ = X−ξ with respect

to the average incoming proton plus momentum P+ = (p+ + p′+)/2. Here, pµ = (1 + ξ)Pµ
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and p′µ = (1− ξ)Pµ are the incoming and outgoing proton momenta respectively and the

momentum transfer ∆µ = (∆+,∆⊥,∆
−) = (p′ − p)µ, where ∆+ = −2ξP+ contains the

longitudinal momentum asymmetry,

ξ =
p+ − p′+
p+ + p′+

, (2.20)

parametrising the skewness of the active parton along the light-cone direction.

(X + ⇠)P+ (X � ⇠)P+

(1 + ⇠)P+ (1 � ⇠)P+

Figure 2.3: Parametrisation of the plus component of the hadronic and partonic momenta
used in this work.

These generalised objects do not uphold a probabilistic interpretation like PDFs may

do, but are well-defined in quantum field theory as matrix elements of bilocal quark and

gluon operators at a light-like separation. In the light-cone gauge at leading twist, the

quark GPD is

F q(X, ξ, t) =
1

2

∫
dz−

2π
eiXP+z−〈p′|ψ̄q

(
−z

2

)
γ+ψq

(z
2

)
|p〉|z+=z⊥=0

=
1

2P+

[
Hq(X, ξ, t)ū(p′)γ+u(p) + Eq(X, ξ, t)ū(p′)

iσ+µ∆µ

2mN
u(p)

] (2.21)

and the gluon GPD,

F g(X, ξ, t) =
1

P+

∫
dz−

2π
eiXP+z−〈p′|F+µ

(
−z

2

)
F+
µ

(z
2

)
|p〉|z+=z⊥=0

=
1

2P+

[
Hg(X, ξ, t)ū(p′)γ+u(p) + Eg(X, ξ, t)ū(p′)

iσ+µ∆µ

2mN
u(p)

]
,

(2.22)

where z = (z+, z⊥, z
−) are the light-cone coordinates, u and ū are nucleon spinors and mN

is the mass of the nucleon. Here, F q and F g are both expressed as a Fourier transform

of a matrix element of a chiral even operator formed from either quark fields ψq or the
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gluon field strength tensor Fµ ν . The result is a decomposition into twist-2 parton helicity

conserving GPDs H and E. The manifest gauge-invariance of eqns. (2.21) and (2.22) is

restored through insertion of a Wilson line U between the two fields at position −z/2 and

z/2. In a general gauge, we have in addition the factor

U
(
−z

2
,
z

2

)
= P

{
exp

(
−ig

∫ z/2

−z/2
dζ n ·A

)}
, (2.23)

where P is an explicit path-ordering and n ∼ (1, 0, 0,−1) is a light-like vector. It follows

that, as n ·A = A+ = 0 in the light-cone gauge, U = 1 identically.

We do not consider spin dependent GPDs here, which occur at higher twist and are

probed in measurements in which the spin or polarisation state is fully defined. If the

spin states are averaged over, as in the description of an unpolarised measurement, then

there is no way to have a direct dependence on, or be sensitive to, what these objects

represent. Moreover, there are also parton helicity-flip GPDs (chiral odd) considered in

the literature [60] in which the initial and final state hadrons have different polarisations,

but these are again not considered as they are not needed here.

The GPD naturally encodes more information on nucleon structure than the conven-

tional collinear PDF does and allows one to build up a more complete three-dimensional

tomographic picture of hadrons, in which one is also able to account for nucleon pressure

and shear forces [61, 62]. It is part of a hierarchical network of distributions in which the

Parton Correlation ‘mother’ function resides at the top and the GPD and PDF stem from

transformations of other functions. One can obtain PDFs from (equal initial and final state

helicity) GPDs by setting ξ, t→ 0, for example [63].

Deeply-Virtual-Compton-Scattering (DVCS) [55, 56, 57, 58], a hard exclusive reaction

in which an electron and proton scatter off each other via a high virtuality photon and

produce a real photon, has for a long time provided the cleanest experimental probe of

GPDs. There is currently DVCS Beam Spin Asymmetry data on a fixed target proton

from e.g. HERMES, as well as at the Hall-A and CLAS experiments at Jefferson Lab,

before and after the upgrade of its beam energy to 12 GeV [64, 65]. In addition to fixed

target data also provided by the COMPASS experiment at CERN, the kinematic range of

available data was extended further with first measurements of the DVCS cross section,

absolute and differential in t, at the HERA collider [66, 67]. The upcoming Electron-Ion-

Collider (EIC) will support these measurements with beam energies of
√
s = 45 and 140
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GeV in the rapidity interval 0.01 < Y < 0.95 [68].

The study of GPDs is a fast-evolving and dynamic field. While the extraction of GPDs

within analogous global analyses as performed for PDFs is not, as of yet, mainstream phe-

nomenology, there has been significant progress on this frontier through the understanding

of Compton-Form-Factors (CFFs). These parametrise the DVCS amplitude and depend

on the GPDs in convolution with known hard scattering subprocesses. See [69] for a recent

phenomenological analysis and [70] for a review. In the former, an extraction of the CFFs

via a LO global fit within the PARTONS framework [71] was made using available DVCS

data from Hall-A, CLAS, HERMES and COMPASS. More recently, the same experimen-

tal observable provided a means to separate different quark flavour GPDs in the valence

kinematic regime using neural networks, see [72]. The development of GPDs is therefore

akin to that of PDFs, in which the study of elastic-form-factors via DIS ultimately paved

the way to the PDFs used today.

The exclusive heavy vector meson production that we consider in this work is also

susceptible to a description via the GPDs. Here, the difference in the kinematic set-up, as

compared to DVCS, amounts to the replacement of the resolved final state photon with

a mesonic bound state. This complicates the underlying perturbative description of the

process, as additional structure is needed to describe the transition from open quarks to

bound hadron. This introduces a model uncertainty with possible unconstrained mass

corrections that interfere with an otherwise clean extraction of GPDs. Experimentally,

however, the DVCS process requires a careful background subtraction of the interfering

Bethe-Heitler process [73]. Exclusive vector meson production avoids such difficulty, while

retaining sensitivity to GPDs.

2.3.2 Symmetries and evolution

In this section, we collect some of the properties of GPDs that are useful and employed in

this work.

In the forward limit, p′ = p (or ξ → 0, see eqn. (2.20)), the defining equations for the

quark and gluon GPDs, eqn. (2.21, 2.22), reduce to the forward quark, q(x), and gluon,
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xg(x), parton distribution functions,6

Hq(x, 0, 0) = q(x), for x > 0,

Hq(x, 0, 0) = −q̄(x), for x < 0,

Hg(x, 0, 0) = xg(x).

(2.24)

Discrete time reversal invariance amounts to interchanging initial and final hadronic mo-

menta (p↔ p′) so that ξ → −ξ. This means,

Hq(x, ξ, t) = Hq(x,−ξ, t) and Hg(x, ξ, t) = Hg(x,−ξ, t). (2.25)

As gluons are their own antiparticles, it follows further that

Hg(x, ξ, t) = Hg(−x, ξ, t). (2.26)

No such symmetry exists in general for the quark distributions. The charge conjugation

odd (C = −) and charge conjugation even (C = +) unpolarised quark GPDs, however, do

uphold this symmetry and are defined by

(C = −) : Hq(−) = Hq(x, ξ, t) +Hq(−x, ξ, t),
(C = +) : Hq(+) = Hq(x, ξ, t)−Hq(−x, ξ, t).

(2.27)

Lastly, the Hermitean conjugate of eqn. (2.21, 2.22) leads to

[H(x, ξ, t]∗ = H(x,−ξ, t), (2.28)

which, together with eqn. (2.25), implies the GPDs considered in this work are real valued

quantities. In this thesis, the imaginary part of an amplitude (which is a convolution of

a coefficient function and a PDF or GPD) therefore completely arises from the imaginary

part of the coefficient function.

Like forward PDFs, the GPDs also depend on a factorisation scale µF and evolve ac-

cording to a generalised DGLAP evolution in which the perturbatively calculable forward

splitting kernels, introduced in Section 2.1, are replaced by off-forward analogues. As-

6No such relation holds for Eq and Eg as they decouple from the defining GPD equations in the limit
t → 0 due to the explicit ∆µ factor in eqns. (2.21) and (2.22). We will make use of this observation in
Chapter 5.
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suming an evolution in the perturbative region, the non-singlet GPDs for example evolve

according to

µ2
F

d

dµ2
F

FNS(x, ξ, t, µ2
F ) =

∫ 1

−1

dy

|ξ|V
NS

(
x

ξ
,
y

ξ

)
FNS(y, ξ, t, µ2

F ), (2.29)

where we have kept explicit the dependence on µF . Here, V NS are the non-singlet off-

forward splitting kernels and, for quarks i ∈ {u, d, s},

FNS
i(−)(x, ξ, µ

2
F ) = F i(−)(x, ξ, µ2

F ) + F i(−)(−x, ξ, µ2
F ),

FNS
ij(+)(x, ξ, µ

2
F ) = F i(+)(x, ξ, µ2

F )− F j(+)(x, ξ, µ2
F ), (i 6= j),

(2.30)

are, respectively, the quark charge conjugation odd flavour diagonal (i = j) and quark

charge conjugation even flavour off-diagonal (i 6= j) combinations derived from

(C = −) : F q(−) = F q(x, ξ, µ2
F ) + F q(−x, ξ, µ2

F ),

(C = +) : F q(+) = F q(x, ξ, µ2
F )− F q(−x, ξ, µ2

F ).
(2.31)

As in the forward case, the evolution of the singlet GPDs are coupled. The singlet GPDs

are the gluon GPD, F g(x, ξ, µ2
F ), and the quark charge conjugation even flavour diagonal

singlet combination,

FS(x, ξ, µ2
F ) =

∑

i

F i(+)(x, ξ, µ2
F ). (2.32)

As we will see, only the evolution of the singlet sector GPDs are relevant in this work.

See Appendix C for the explicit formulae of the corresponding singlet evolution kernels

along with their, in general, mixed evolution equation.

2.3.3 The Shuvaev Transform

Though exclusive J/ψ production is described by GPDs, at very low values of x and

small momentum transfer t, the GPD can be related to the conventional integrated PDF,

via the Shuvaev transform, with accuracy O(x) [74, 75]. The key observation is that

the Gegenbauer (conformal) moments, GN , of the GPDs evolve in the same manner as

the Mellin moments, MN , of the PDFs, that is the evolution is described by the same

anomalous dimensions [76, 77] - a consequence of conformal invariance of the evolution
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equations.7. Explicitly, at LO both MN and GN are multiplicatively renormalised and

follow the relations

MN
i (Q2) = MN

i (Q2
0)

(
Q2

Q2
0

)γN,i
, GNi (Q2) = GNi (Q2

0)

(
Q2

Q2
0

)γN,i
, (2.33)

where γN,i are the anomalous dimensions of the forward PDFs, defined as the Mellin

transform of the splitting functions introduced in Section 2.1.

Gegenbauer moments of the GPDs are the analogue of Mellin moments which diago-

nalise the Q2 evolution of PDFs. The corresponding operator diagonalises the Q2 evolution

of the GPDs [76]. As ξ → 0, the Gegenbauer moments become equal to the Mellin mo-

ments. These facts allow one to restore the full GPD function (at a given fixed scale)

through knowledge of its Gegenbauer moments. Explicitly, the relation between these

moments and the coordinate space GPDs is given by [76]

GNi (ξ) =

∫ 1

−1
dXRN,i(x, x

′)Hi(X, ξ), (2.34)

where x = X + ξ and x′ = X − ξ, and the kernels RN,i are polynomials of degree N given

by

RN,i(x, x
′) =

N∑

k=0

(
N

k

)(
N + 2p

k + p

)
xkx′N−k, (2.35)

with p = 1 for the quark GPD and p = 2 for the gluon GPD.

Owing to the polynomial condition, see e.g. [59], even for ξ 6= 0 the Gegenbauer mo-

ments can be obtained from the Mellin moments of the diagonal (non-skewed) PDFs to

O(ξ) accuracy at NLO. This condition manifestly respects the time reversal invariance

symmetry, admitting an expansion in even powers of ξ,

GNi =

b(N+1)/2c∑

k=0

cNk,iξ
2k = cN0,i + cN1,iξ

2 + cN2,iξ
4 + . . . , (2.36)

where cN0,i ≡ MN
i , the Mellin moments of the PDFs. Here, b·c denotes the floor function,

giving the greatest integer less than or equal to its argument.

7Strictly speaking, this is true only at LO with corrections of O(ξ2). At NLO, the evolution is susceptible
to off-diagonal elements in the anomalous dimension matrix, where the conformal invariance is violated due
to the running of αs which generates an O(αsξ) correction in the evolution kernel [78, 79, 80, 81]. This is
an additional suppression factor at O(αs) by ξ.
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We emphasise that despite the values of the Mellin (and the Gegenbauer) moments

maintaining sensitivity to the x behaviour throughout the whole x interval (including

large x ∼ 1), the polynomiality provides the accuracy of GN = MN , which depends on

the value of ξ only. Thus it is possible to obtain the full GPD function at small ξ from its

known moments. Based on this, we can obtain an expression that transforms the low x

PDF to the corresponding GPD, as shown below and first given by Shuvaev in [75].

Hq(X, ξ) =

∫ 1

−1
dx′

[
2

π
Im

∫ 1

0

ds

y(s)
√

1− y(s)x′

]
d

dx′

(
q(x′)

|x′|

)
,

Hg(X, ξ) =

∫ 1

−1
dx′

[
2

π
Im

∫ 1

0

ds (X + ξ(1− 2s)

y(s)
√

1− y(s)x′

]
d

dx′

(
g(x′)

|x′|

)
,

(2.37)

where the transform kernel,

y(s) =
4s(1− s)

(X + ξ(1− 2s))
. (2.38)

Strictly speaking, by using such a transform we assume the absence of additional sin-

gularities in the right half, j > 1, of the complex angular momentum j plane (or ReN > 1

in the Mellin N plane). This is because in the inversion of eqn. (2.34) to extract x-space

GPDs, one must perform an integral transform in which the Gegenbauer moments are

analytically continued into the complex-N plane. Any additional singularity in the right

half of this plane would introduce a non-negligible correction of O(ξ/X) and impair the

practicality of the Shuvaev transform, particularly for X ∼ ξ. As there is no formal proof

in the literature where these singularities are dismissed, the procedure has been cast into

doubt [82]. As discussed in [83], however, no such additional singularity may arise from

the anomalous dimensions describing the Q2 evolution of the Gegenbauer moments (i.e.

the Q2 evolution of the GPD), but may come from the input PDF distribution itself. This,

however, cannot happen in the right half of the N -plane in the space-like region according

to the arguments presented in [83], in which a low x input distribution is described within

the Regge theory8 of high-energy interactions at low scales.

These arguments are in addition well motivated phenomenologically, and it was shown

that the GPD results obtained from the Shuvaev transform procedure [83] agree with those

8Regge theory [84, 85] is the pre-QCD description of scattering amplitudes based on the analyticity and
unitarity of the S-matrix. Here, t-channel exchanges are governed by Regge trajectories α(t) = α(0) + α′t.
The Pomeron, relevant in this work, corresponds to the Regge trajectory with α(0) ≈ 1, carrying quantum
numbers of the vacuum and predating QCD for the description of the two-gluon exchange.
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obtained in independent NLO and NNLO analyses of the available HERA DVCS data [86].

The use of the transform is that it allows one to relate the GPD to the conventional

collinear PDF at small x, ξ � 1 outside the timelike, or ERBL, region X ∈ [−ξ, ξ] with

O(x) accuracy at NLO. In the literature [87], analytic and numerical approximations to

this poorly converging, computationally expensive transform in the so-called maximal skew

regime, X ∼ ξ, are derived and discussed. In Chapter 3, we employ the full transform while

in Chapter 4 we make use of such approximations, justified in due course. The GPD grids

are constructed from a three-dimensional parameter space in X, ξ/X and scale Q2 [83]

with forward PDF grids in X and Q2 taken from the LHAPDF6 [88] interface and suitably

interpolated before being cast into the Shuvaev transform. The GPD grid is optimised such

that an area that results in a flat interpolation is not overly populated - having more points

around ξ/X ∼ 1, the border between the DGLAP (|X| > ξ) and ERBL (|X| < ξ) region,

mitigates edge effects [83] while the interpolation in Q2 is relatively smooth and requires

fewer points. Below, we demonstrate the simplifications that arise when one restricts the

interpolation to the regime of small x, x� 1.

The Shuvaev transform, eqn. (2.37), for the gluon GPD may be written as

Hg(X, ξ) =
2

π

∫ 1

−1
dx′Is(X, ξ, x

′)
d

dx′

(
g(x′)

x′

)
, (2.39)

with

Is(X, ξ, x
′) = Im

∫ 1

0
ds

X + ξ(1− 2s)

y(s)
√

1− y(s)x′
, (2.40)

and y(s) given above in eqn. (2.38). Let us consider the gluon GPD in the region X = ξ � 1

only, following the derivation of [87]. This corresponds to the point x = X + ξ = 2ξ so

that ξ = x/2. By performing the integral over s in what follows, we can derive a one

dimensional integral expression for the point Hg(x/2, x/2) in terms of an arbitrary input

forward gluon PDF distribution. Further specification of this input distribution as the

Regge-picture inspired pure power law for the gluon at low x then allows for a closed form

solution to be obtained, giving rise to the so-called skewing factor Rg.

The integral,

Is(x, x, x
′) = x2 Im

∫ 1

0
ds

(1− s)
s
√

1− 2sx′/x
, (2.41)
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is non-vanishing for x/(2x′) < s < 1. With a = 2x′/x = z/s, it follows that

Is(x, x, x
′) = θ(a− 1) Ĩs(x, x, x

′) = θ(a− 1)x2

[
−2 arctan

√
a− 1 + 2

√
a− 1

a

]
, (2.42)

where the Heaviside step function restricts the outer integration over x′ to be from x/2 to

1. We then have

Hg(x, x) =
2x2

π

∫ 1

x/2
dx′Ĩs(x, x, x

′)
d

dx′

(
g(x′)

x′

)
. (2.43)

As Ĩs(x, x, x/2) = 0 and g(1) = 0, an application of integration by parts will produce a

vanishing surface term. The latter condition is satisfied for all physically motivated PDFs

(the input distributions discussed in Section 2.2 incorporate this condition via the explicit

(1− x) factor). Together with

d

dx′
Ĩs(x, x, x

′) = − x

x′2

√
2x′

x
− 1, (2.44)

and the substitution y = x/(2x′), we obtain

Hg(x/2, x/2) =
4x

π

∫ 1

x/4
dyy1/2(1− y)1/2g

(
x

4y

)
, (2.45)

after relabelling x→ x/2.

So, for a given input gluon PDF xg(x, µ2), eqn. (2.45) gives the corresponding gluon

GPD, Hg(X, ξ, µ
2), at the phase space point X = ξ via a much simpler one dimensional

integration. A similar relation holds for the quark GPD. The author of [87] further studied

the accuracy of eqn. (2.45) away from the point X = ξ and found that for X deviating from

ξ by ≈ 20% (or equivalently x >∼ 0.1x′), there was already a ∼ 10% difference compared to

the use of the full Shuvaev transform. We will make use of these results and observations

in Chapters 3 and 4 since, as we will see, the point X ∼ ξ is particularly important for

exclusive HVM production.

If one assumes a pure power behaviour for the low x gluon PDF, as is the usual assump-

tion in the global PDF parametrisation forms, eqn. (2.45) may be evaluated analytically.

Let

xg(x) = Nx−λ, (2.46)

where N and λ are the normalisation and gluon slope, respectively.
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Insert this into eqn. (2.45) and note that the lower limit of integration is approximately

zero for x � 1, while for ‘realistic’ phenomenologically fitted powers9 the integrand is

strongly dominated by the upper boundary y ∼ 1 as λ + 3/2 > 0. The integral readily

evaluates to an Euler Beta function and may be expressed as

Rg =
Hg(x/2, x/2)

Hg(x, 0)
≈ 22λ+3

√
π

Γ(λ+ 5/2)

Γ(λ+ 4)
, (2.47)

where Hg(x, 0) = xg(x). This is an analytic approximation to the Shuvaev transform and

encodes skewing effects via a simple multiplicative factor which we stress is valid only at

X = ξ and for an assumed pure power gluon PDF.

2.4 Loop calculation toolbox

The evaluation of dimensionally regularised Feynman integrals is the cornerstone of any

perturbative loop calculation in quantum field theory. To avoid the explicit calculation

of thousands of such integrals that can appear, in principle, in some computation, one

proceeds through a programme of integral reduction. This allows for a decomposition of

all integrals appearing in the loop calculation to be expressed in terms of a minimal set,

the so-called master integrals, which are a finite basis set of simpler loop integrals. It is

then these integrals which are dealt with numerically or, in some cases depending on the

loop order and ease of extraction, analytically.

This decomposition can be achieved through the solution of a system of linear equa-

tions, obtained by exploiting the manifest Lorentz invariance of the theory, giving rise to

Integration-By-Parts identities (IBPs) [90, 91] and Lorentz Invariance (LI) identities [92].

These equations form an under-determined system, with the integrals being the unknown

quantities while their coefficients are explicit rational functions of the external kinematics

and space-time dimension. The resolved system is one where each integral is expressed as

a linear combination of master integrals, whose values are not determined from the system.

A propagator Di is defined by Di = q̂2
i −m2

i +iε, where q̂i is some linear combination of

the loop and external momenta and mi is its mass. At one loop, q̂i ≡ l+ qi, where l is the

loop momentum and qi contains only external momenta. An integral family, or auxiliary

topology, is an ordered set of N propagators DN = {D1, . . . , DN}, such that any scalar

9See e.g. [89] for a global NLO fit that determined λ ≈ 0.25 for the gluon density in the region 4×10−4 <
x < 10−2 at Q2 = 20 GeV2 using ZEUS data on the proton structure function, F p2 , at lower x.
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product of a loop momentum li with another loop momentum lj or an external momentum

pj , can be uniquely expressed as a linear combination of elements of DN and kinematic

invariants. With E (L) the number of linearly independent external (loop) momenta, the

auxiliary topology must contain exactly L(L+ 1)/2 + LE propagators.

Associated to each auxiliary topology is an infinite set of dimensionally regularised

integrals of the form

I =

∫
ddl1· · ·

∫
ddlj

Ds1
jt+1

. . . D
sN−t
jN

Dr1
j1
. . . Drt

jt

, (2.48)

where {j1, . . . , jt} ⊂ {1, . . . , N} is a selection of t propagators, defining a sector of the

auxiliary topology. Here, the ri ≥ 1 and si ≥ 0 are integer powers of the propagators.

Along with the sector identification number, ID, the quantities r and s are defined as

r =
t∑

i=1

ri, s =
N−t∑

i=1

si, ID =
t∑

k=1

2jk−1. (2.49)

In dimensional regularisation [93], the integral over the total derivative of a loop momentum

vanishes. With q̂µ denoting an arbitrary loop or external momentum, and Ĩ an integrand

of the form appearing in eqn. (2.48), this observation allows for the generation of L(L+E)

equations from one (seed) integral, by considering each possible choice of q̂ and li in turn.

These are the IBP identities and are obtained from

∫
ddli

∂

∂lµi

(
q̂µĨ (p1, . . . , pE ; l1, . . . , lL)

)
= 0. (2.50)

The Lorentz invariance of the integrals I in eqn. (2.48) instead gives

E∑

i=1

(
pνi

∂

∂pνi
− pµi

∂

∂pµi

)
I(p1, . . . , pE) = 0. (2.51)

Explicit contractions of the left hand side with all possible antisymmetric combinations

of the external momenta produce E(E − 1)/2 equations. These are the LI identities

and, while they do not provide linearly independent equations from those generated via

eqn. (2.50) [94], the equations generated from a single seed integral need not correspond to

those generated from the same seed integral in the IBP approach. This allows for a faster

convergence of the reduction process.

Algorithmic procedures [94, 95, 96, 97, 98, 99], such as a variant of Laporta’s reduction
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algorithm, automise the application of the IBP and LI identities and are implemented in

software tools, such as REDUZE 2 [100], used in this work. In REDUZE 2, each appearing

integral in a given auxiliary topology is converted to an ordered string of the form

I(F, t, ID, r, s, {ν1, . . . , νN}) (2.52)

and subject to a lexicographic ordering, as introduced by Laporta [101]. Here, F denotes

a given auxiliary topology and the νi are integer powers. The numerical values of t, r, s

and ID are found using eqn. (2.49). Broadly, after generation of the IBP and LI identities,

Laporta first quantified and then ordered the resulting equations in a hierarchy of ‘most

complicated’ to ‘least complicated’, solving the system by back substitution. See [101] for

more details.

2.5 Taming of MS exclusive J/ψ production at NLO

In this section, we will make a whistle-stop tour through the current status and develop-

ments of exclusive J/ψ production in the collinear factorisation scheme at NLO. Spanning

more than a decade, we will see that the calculation is, as of now, on a firm theoretical

footing.

The strong sensitivity to the choice of scale in the predictions for exclusive J/ψ pho-

toproduction within collinear factorisation at NLO in the MS scheme was first observed

in [18, 102] and recently confirmed in [103]. There are two sources for this sensitivity to

the scale choice. First, there is the double logarithmic contribution which contains a large

ln(1/x) factor. For the region of interest, x ∼ 10−5, this means an order of magnitude

enhancement. Second, there is double counting in the coefficient functions for Q2 < Q2
0.

After a discussion of the MS result at NLO, we explore how these problems are overcome

in turn, in Sections 2.5.1 and 2.5.2.

The NLO contribution for exclusive J/ψ photoproduction in the MS collinear factori-

sation scheme has been known for some time [18]. However, it exhibited poor perturbative

convergence (with the NLO correction greater than LO and of opposite sign). Moreover,

there existed a strong dependence on the factorisation scale, µF . Both of these features

are illustrated in Fig. 2.4, showing the LO and NLO predictions for Im A/W 2 at scales

m2
c/2,m

2
c and 2m2

c , the typical variation of scales around the central value for the charm

quark mass squared, m2
c , in which to quantify the theory scale uncertainty. Here, A stands
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Figure 2.4: MS scale variations of ImA/W 2 at LO (black) and NLO (blue) generated using
CTEQ6.6 global partons at µ2

F = µ2
R = 1.2, 2.4, 4.8 GeV2. ImA is the imaginary part of the

amplitude. Plot adapted from [102].

for the amplitude for exclusive J/ψ production and W is the centre-of-mass energy for the

γp subprocess.

Variation of the factorisation scale at such low scales in this way (close to the PDF input

scale) will drastically change the parton distributions, however. Of course, if the whole

perturbative series were present, the hard matrix elements would provide the compensation

and cancel this change. With a NLO truncation, the matrix element admits only one parton

emission, while the parton distributions can emit many more. Indeed, the mean number

of gluons in the interval ∆ lnµ2
F is [102]

〈n〉 ' αsNc

π
ln(1/x)∆ lnµ2

F ' 8, (2.53)

with the µF scale variation in the interval µ2
F /2 to 2µ2

F . That is, at low x and at LHC

energies, there is not the compensation between the contributions coming from the PDF

and the coefficient function as the scale is varied.
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From inspection of Fig. 2.4 and as mentioned above, the LO contribution is roughly

the same size as the NLO contribution and of opposite sign. This relative difference

in the contribution to the imaginary part of the amplitude for the quasi-elastic γp →
J/ψ + p scattering is at odds with the interaction being modelled as an elastic forward

hard scattering, where the imaginary part should not change sign [104]. The explanation is

that due to the lack of data constraints at low x and low scale, the evolution of the global

parton fit analyses in this part of the phase space are arbitrary and lead to too small

(or arguably ‘unphysical’) parton PDFs. Once convolved with the coefficient functions,

this leads to such unwanted behaviour, indicative of the lack of perturbative stability at

this order. At high scales, where the PDFs are driven by evolution effects and not by the

structure of the input distribution, these effects are all washed out and the NLO prediction

becomes sensible.

Note that such issues are prevalent in the description of high-energy physics phenomena,

particularly for low scale observables. The theoretical description of the hadroproduction

of one of the simplest quarkonia, the ηc meson, for example, has for a long time suffered

from a negative cross section yield at high energies, attributed to, perhaps, the choice of

scale and/or behaviour of the PDFs [105], like above. Work is, however, ongoing to resolve

this problem for this particular observable.

2.5.1 Treatment of double logarithmic contributions

It was shown in [102] that it is possible to find a scale (namely Q ≡ µF = Mψ/2)

which effectively ‘resums’ all the double logarithmic corrections enhanced by large val-

ues of ln(1/ξ) into the gluon and quark PDFs, where ξ is the skewedness parameter of

the Generalised Parton Distributions (GPDs) introduced earlier. That is, it is possible

to take the (αS ln(1/ξ)ln(µ2
F )) term from the NLO gluon (and quark) coefficient functions

and move it into the LO GPDs. This allows a resummation of all the double logarithmic,

i.e. (αS ln(1/ξ)ln(µ2
F ))n, terms into the LO contribution C

(0)
g ⊗ Fg(µF ) by choosing the

factorisation scale to be µF = Mψ/2. The details are given in [102], see also [106]. The

different types of resummation are summarised in Appendix B.

The result is that the γp → J/ψ p amplitudes, taken at factorisation scale µf , are

schematically of the form

A(µf ) = C(0)
g ⊗ Fg(µF ) +

∑

i=q,g

C
(1)
i,rem(µF )⊗ Fi(µf ), (2.54)
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F (µf)

µf

µF

Figure 2.5: Lower part of Feynman diagrams for exclusive J/ψ production. Left panel: LO
contribution evaluated at µF . Right panel: Division of cells at factorisation scale µF allows for
a shifting of terms with virtualties µ < µF between LO and NLO.

to NLO. With the choice µF = Mψ/2, the remaining NLO coefficient function, C
(1)
rem(µF ),

does not contain terms enhanced by ln(1/x) ' ln(1/ξ). Note that µF 6= µf , see the

discussion below. The remaining µf scale dependence in eqn. (2.54) is small. This equation

may in principle be extended to NNLO and iterated to higher orders.

The effect of this scale change is driven by the LO DGLAP evolution. In the left panel

of Fig. 2.5, we evaluate the LO amplitude at some scale µF by treating the explicit pair of

qg → q corrections ∝ αs, depicted in the right panel, to be part of the LO contribution.

In this way, through variation of the factorisation scale, we move the contribution of this

naive NLO correction into the LO result. We can therefore write

A(0)(µF ) =

(
C(0) +

αs
2π

ln

(
µ2
F

µ2
f

)
C(0) ⊗ V

)
⊗ F (µf ), (2.55)

where V denotes the skewed splitting kernels (the quark line may be replaced by gluons and,

indeed at small x, gluon ladder diagrams dominate because their splitting kernels ∼ 1/x).

The logarithm of µ2
F /µ

2
f is generated assuming the DGLAP strong scale ordering condition,

µ2
f � µ2

F , giving the C
(1)
i,rem its µ2

F dependence. The idea is then to use this scale-shifting

procedure to find the ‘optimal’ scale µ0 that removes the largest contribution from the

NLO correction. At small x, ξ, this is the double logarithmic contribution ∼ ln(1/ξ) lnµ2
F

which arises in the high-energy limit, or strong x ordering regime, 1� x� ξ. An explicit

computation, the result of which is shown in Chapter 3, shows that these terms can be

resummed with the scale setting µF = mc. Of course, we can not eliminate all possible

large dependencies because the NLO coefficient function is a function of the ratio x/ξ and
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µF2

Fg

µF1

Cg

Figure 2.6: Different choices of the factorisation scale µFi allow for different division of cells
between the parton evolution and the hard matrix element. The uppermost gluon (labelled
red) may not be absorbed into the parton evolution in this scale-shifting approach, described
in the text.

so is, too, energy dependent while the scale choice µF = mc is a single numerical value.

However, gluon ladders strongly ordered in longitudinal momentum fraction and virtuality

generate the largest enhancement, the double logarithmic contribution, and are resummed

through this choice of scale. Other NLO corrections, e.g. the upper gluon correction in

Fig. 2.6, amount to those not of this type (that is, they can not be affected by this scale-

shifting) and contain intermediate states of mass ∼ mc that are accounted for in the hard

matrix element.

Thus, to summarise, eqn. (2.54) allows one to consider different factorisation scales

µf with the scale in the first term on the right-hand-side, however, fixed to be µF = mc

independent of the value of µf . Since the contribution from the second term is small, we

predominantly probe the gluon distribution at scale µF = Mψ/2. The upshot is a shifting

of terms from the NLO coefficient function, now evaluated at a fixed scale µF = mc, to the

LO GPD and a residual smaller scale dependence, µf , residing in the NLO GPD. With this

choice, large contributions arising from the specific scale and momentum fraction hierarchy,

as discussed above, are absorbed into the parametrisation of the input GPD.
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Moreover, it is found that after the scale µF in eqn. (2.54) is fixed to µF = Mψ/2,

the result (shown in the upper panel in Fig. 2.8, see later) 10 becomes more stable with

respect to variations of the factorisation scale µf in comparison to the huge variations

seen in [18] and Fig. 2.4. That is, the deviation between the curves with µ2
f = 2.4 GeV2

and µ2
f = 4.8 GeV2 in the upper panel of Fig. 2.8 has decreased by roughly a factor

of two as compared to that in Fig. 2.4. However, in spite of this, the NLO correction

is still comparable to the LO term and opposite in sign. As we discuss and explain in

Section 2.5.2, this is due to one other crucial effect - double counting between the NLO

coefficient function and the contribution coming from DGLAP evolution. Once this double

counting is avoided, the perturbative treatment will be seen to be finally brought under

control, as well as allowing for a further reduction of the scale sensitivity.

2.5.2 Treatment of double counting power corrections

In this subsection, we consider a power correction which may further reduce the NLO

contribution and, moreover, may reduce the sensitivity to the choice of scale. The cor-

rection is O(Q2
0/µ

2
F ) where Q0 denotes the input scale in the parton evolution and, while

formally suppressed, may be numerically significant and relatively important for low scale

processes where Q0 is comparable to the typical process factorisation scale, µF . This power

correction originates from a so-called ‘Q0’ subtraction that can be made within the hard

matrix element at NLO (and beyond) of a pQCD calculation. For an outline of the general

formulation and the procedure applied to the NLO coefficient functions of inclusive DIS

and Drell-Yan production of low-mass lepton pairs, see [109]. Here, we will restrict our

consideration to the effect of the ‘Q0’ subtraction for exclusive J/ψ production which, as

the form of the correction indicates, will be important for factorisation scales around the

size of the relatively light charm quark mass, mc 'Mψ/2 ' Q0.

Note that despite its form, such a correction is not one of ‘higher twist’. The subtraction

of the low lT < Q0 region amounts to a power correction to the same leading twist operator

of conventional collinear factorisation. Higher twist corrections here instead correspond

to the exchange of a pair of gluon ladders in the t-channel or polarisation of the two

gluon exchange. But, these contributions are outwith the scope of the leading twist PDFs

10In Figs. 2.4 and 2.8 we choose to use the old CTEQ6.6 partons to demonstrate the problem with
the scale uncertainties simply to relate to the original papers [18, 107, 108] which long ago observed and
discussed these uncertainties. The small scale variation obtained within our present approach using the
modern CT14 NLO PDF is shown later in Chapter 3, see Fig. 3.2.
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extracted from the global analyses in collinear factorisation and are not considered here.

See Section 4.3.4 for further discussion about these higher twist corrections.

Let us explain the origin of this ‘Q0 subtraction’ following [107]. Denote the gluon

virtuality by l, as shown in Fig. 2.7. We begin with the collinear factorisation approach at

LO. Here, we never consider parton distributions at low virtualities, that is for Q2 < Q2
0.

We start the PDF evolution from some phenomenological PDF input at Q2 = Q2
0. In

other words, the contribution from |l2| < Q2
0 of the diagrams in Fig. 2.7, (which can be

considered as the LO diagram, left panel of Fig. 2.5, supplemented by one step of the

DGLAP evolution from quark to gluon, Pgq) is already included in the input gluon GPD

at Q0. That is, to avoid double counting, we must exclude from the NLO diagram the

contribution coming from virtualities less than Q2
0. We thereby subtract from the evolution

the contribution of t-channel loop momentum |l|2 < Q2
0, in order to avoid a double counting.

In this way, through an explicit insertion of the theta function θ(|l2| −Q2
0), we restrict the

virtuality of the four momentum circulating in the gluon ladder diagrams to be above Q0.

Note that this has never been a ubiquitous feature of an MS calculation but is important as

the subtraction amounts to a power correction of O(Q2
0/µ

2
F ), which is sizeable here because

the process sits at a low scale, of the order of mc. Regardless of this, without its inclusion,

one cannot obtain an accuracy better than O(αnsQ
2
0/µ

2
F ) at each order n in the systematic

expansion of the strong coupling [109]. At large scales, Q2 � Q2
0, this double-counting

correction will give small power suppressed terms of O(Q2
0/Q

2), since there is then no

infrared divergence in the corresponding integrals as a result of the explicit subtraction.

Practically, it is only the ladder-type diagrams that are susceptible to a double counting,

see Fig. 2.7. The imaginary part of these diagrams is then obtained through application

of Cutkosky’s rules, where cut propagators are replaced by on-shell momenta constraining

delta distributions. The resulting expressions are then subtracted from the imaginary part

of the known MS coefficient functions. Here, with Q0 ∼ 1 GeV and µF = mc (∼Mψ/2), a

correction of O(Q2
0/m

2
c) will typically be O(1) and turns out to be crucial.

By using the NLO correction, C
(1)
rem, for J/ψ photoproduction and excluding the contri-

bution coming from the low virtuality domain11 (< Q2
0) it is observed that this procedure

substantially reduces the resulting NLO contribution and reduces the scale dependence of

11Note that the value of Q0 may differ from the value q0 at which the initial PDFs were parametrised.
For example, in the MMHT analysis [40] q0 is set equal to 1 GeV, but only data with Q2 > 2 GeV2 are
included in the fit. This means that actually the input was fitted at Q2 = 2 GeV2 and all the partons below
2 GeV2 are obtained by the extrapolation via the backward pure DGLAP evolution.
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l " "l

Figure 2.7: Two cut diagrams contributing to the imaginary part of the NLO quark coefficient
function. The corresponding cut diagrams for the NLO gluon coefficient function can be
obtained by replacing the light quark line by gluons. All permutations of the gluons to the
heavy quarks are implicit.

the predictions. It indicates the stability of the perturbative series.

Indeed, as shown in the upper panel of Fig. 2.8, before the Q0 subtraction the NLO

corrections may exceed the value of the LO contribution and, depending on the scale,

even the sign of the amplitude can change. However, after the subtraction and choosing

the optimal scale µF = Mψ/2 in the leading order part of the amplitude (first term of

eqn. (2.54)), a rather good scale stability is observed as shown in the lower panel of Fig. 2.8.
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Figure 2.8: LO and LO+NLO contributions to the imaginary part of the γp→ V +p amplitude
as a function of the γp centre-of-mass energy, W , with µF = mc before (upper panel) and
after (lower panel) the double counting correction has been implemented, as explained in the
text. The dashed, continuous and dot-dashed (red) curves correspond to three choices of the
factorisation scale µf : namely µ2

f = 2m2
c , m

2
c , Q

2
0, respectively, where m2

c = M2
ψ/4 = 2.4

GeV2. Here Q0 = 1.3 GeV is the starting scale of the input NLO PDFs from CTEQ6.6 [41]
which were used. The dotted black curve is the LO contribution. Plots adapted from [107].
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Chapter 3

How to include exclusive J/ψ

production data in global PDF

analyses

We compare the cross section for exclusive J/ψ photoproduction calculated at NLO in

the collinear factorisation approach with HERA and LHCb data. Using the optimum

scale formalism together with the subtraction of the low kt contribution (below the input

scale Q0) from the NLO coefficient function to avoid double counting, we show that the

existing global parton distribution functions (PDFs) are consistent with the data within

their uncertainties. This is the first time that J/ψ production data at HERA are shown

to be successfully described within the NLO collinear factorisation framework using the

PDFs of the global parton analyses. At lower x, surpassing the range accessible at HERA

energies, the uncertainties of the present global PDFs are large while the accuracy of

the LHCb data are rather good. Therefore, these data provide the possibility to directly

measure the gluon PDF over the very large interval of x, 10−6 < x < 10−2, at a fixed

low scale.
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3.1 Introduction

The parton distributions of the proton at NLO are relatively well constrained at moderate

to large x but plagued with large uncertainties at low x.1 Nowadays, global analyses

performed at NNLO are regarded as the state of the art, yet the small x region remains

largely unconstrained. In this section, we demonstrate how to bring the small x region

under control at NLO. Our approach may be generalised and extended to NNLO as well.

We note that the present uncertainties on PDFs at very small x and also as x tends to

one have a completely different nature. As x approaches unity we have data and describe

them using a reasonably justified ansatz for the input PDFs. On the contrary, at very low

x, we have few data and the small x predictions of the current global fits are simply an

extrapolation of these input distributions from larger x.

To be more specific, for 10−3 <∼ x <∼ 10−1, the NLO (and similarly the NNLO) results

of the different groups [38, 40, 42] agree with each other quite well, see Figs. 2.1, 2.2 in

Section 2. However, the uncertainty in the parton distributions strongly increases as we

go to lower values of x, especially at low scales. This simply reflects the fact that no

experimental data are used to directly probe this region. Besides its intrinsic value, there

are at least two further reasons to be interested in the behaviour of the gluon PDF at very

small x and low scales µ ∼ 1.5 GeV. First, recall that the distribution of gluons as x→ 0

governs the high-energy asymptotics of the scattering amplitude. In particular, the gluon

distribution at some relatively low scale can be used as the boundary condition for the

BFKL equation. This boundary condition for BFKL is needed to account for the effects

of confinement. As was shown in [111, 112, 113], such a boundary condition replaces the

BFKL cut (in the complex momentum j-plane) by a series of Regge poles. At very low x,

the boundary condition should indicate the presence of saturation effects that are needed

to stop the power growth of the original BFKL amplitude. Second, a reliable gluon PDF

at small x may be used to evaluate the production cross section of a possible new light

particle, with mass of the order of a few GeV, at the LHC (if such a new particle exists) or

to put a limit on the corresponding coupling. In this thesis, we consider the distributions

at a rather low scale (∼ M2
ψ/4) where the parton densities are driven mainly by some

1Global PDFs have also large uncertainties in the region x > 0.1, especially as x → 1, caused, among
other issues, by mass and higher-twist effects. However, this region is beyond our present interest since
it gives a negligible contribution for exclusive J/ψ production at very high energies. There is, however, a
fixed target collision programme underway at the LHCb detector using the upgraded SMOG2 system [110].
The data for a possible exclusive J/ψ detected in this kinematic configuration would lie at larger x.

37



C.A.Flett

phenomenological input (PDF(x,Q2
0)) and cannot be calculated within perturbative QCD.

Here, Q0 is the PDF input scale. In particular at such low scales one may need to consider

the effects of parton density saturation. They should reveal themselves as gluon behaviour

with xg constant as x→ 0.

The LHCb detector detects particles in the forward rapidity interval, 2 < Y < 5.

In particular, the collaboration have measured the differential cross sections for open

charm [114, 115, 116] (and bottom [117, 118]) quark pairs, and also for exclusive J/ψ

(and Υ) vector mesons [47, 48], which, in principle, allow the determination of the low x

gluon PDF for x ∼ 10−5 or less at factorisation scales µF =
√
m2
q + p2

T,q and µF = mq,

where q = c, b and pT is the transverse momentum of the quark.

The differential cross sections for open cc̄, bb̄ production are determined by LHCb by

observing D and B meson decays. These data are then studied to extract information

about the gluon PDF at low x [119, 120, 121, 122, 123, 124]. Here, we may say the

experimental measurement is not simple while the theory is more straightforward. In

fact careful analyses, for example, [123, 124] indicate that there are serious tensions and

inconsistencies in the D and B data, and that no conclusion about the very low x behaviour

of the gluon PDF is possible. In a sense, for exclusive J/ψ, the opposite is true. The

LHCb data are somewhat more effortless to collect and the accuracy of the exclusive J/ψ

differential cross sections is much better [47, 48]. However, here the theory is more involved.

In short, there are two theoretical problems to address. First, the corresponding cross

section is not described by the usual PDFs but by the more complicated Generalised Parton

Distributions (GPDs), see Section 2.3 and [60] for a review. Next, the NLO corrections

are large and the results strongly depend on the choice of scale.

In Chapter 2, we showed how these two problems can be solved within the conventional

collinear approach by using the Shuvaev transform [74, 75], which at small x allows for

the calculation of the GPDs from the conventional integrated PDFs. The strong scale

dependence was shown to be reduced by choosing a factorisation scale which effectively

resums the double logarithmic αs ln(µ2) ln(1/x) terms (which are enhanced by the large

values of ln(1/x) at small x) and transfers them into the incoming PDFs. Finally, and most

importantly, to avoid double counting, we had to subtract the low transverse momentum,

lt = kt, contributions below the input scale Q0 from the NLO coefficient functions, as these

contributions are already included in the input PDFs. The subtraction is of the form of a

power correction which, as expected, is large.

Previously, the LHCb data for forward ultraperipheral J/ψ production were successfully
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described in [125] using the kt factorisation framework. However, the kt factorisation

approach does not include the complete set of NLO corrections. Thus this approach does

not allow these J/ψ data to be included in the NLO global analyses based on the collinear

factorisation theorems. Our formalism is based on the conventional collinear framework

and includes all NLO corrections. In Section 3.4 we show that three existing sets of PDFs

(NNPDF3.0 [38], MMHT2014 [40] and CT14 [42]) taken at the optimal scale mentioned

above, and convoluted with the NLO coefficient functions from which the low kt < Q0

contribution has been subtracted, give a satisfactory description of the diffractive J/ψ

HERA data [126, 127, 128, 129], but vastly different predictions in the region of the LHCb

J/ψ data [47, 48].

The outlook of this chapter is as follows. In Section 3.2 we give our notation. In

Section 3.3 we explain how our approach can be used to probe the PDFs. In Section 3.4

we show that the PDFs given by the existing global analyses agree with the J/ψ exclusive

photoproduction data measured at HERA and that they can be constrained at even smaller

x ∼ 10−6 using LHCb ultraperipheral J/ψ data. We discuss our results in Section 3.5 and

present our conclusions in Section 3.6.

3.2 Notation and collinear factorisation

The exclusive J/ψ photoproduction amplitude may be written, using collinear factorisa-

tion, in the form [18]

A =
4π
√

4παeq(ε
∗
V · εγ)

Nc

(〈O1〉V
m3
c

)1/2 ∫ 1

−1

dX

X
[Cg (X, ξ)Fg(X, ξ) + Cq(X, ξ)Fq(X, ξ)] ,

(3.1)

where we have suppressed the dependence on the renormalisation and factorisation scales,

µR, µF , and on the invariant transferred momentum squared, t. Here, the non-relativistic

QCD (NRQCD) matrix element 〈O1〉V describes the formation of the J/ψ meson, with mc

the charm quark mass. We present a broader discussion of the application of NRQCD to

the description of the exclusive J/ψ process below, see Section 3.2.1. The quark singlet

and gluon GPDs are denoted Fq and Fg, respectively. The singlet comprises the sum over

the light quark flavours u, d, s. The quark and gluon coefficient functions Cq and Cg are
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known at NLO [18] and are given at tree level by

C(0)
g (X, ξ) = αs

X

(X − ξ + iδ)(X + ξ − iδ)
, (3.2)

C(0)
q (X, ξ) = 0. (3.3)

The kinematics of the process are displayed in Fig. 3.1. The partons carry momentum

fractions (X + ξ) and (X − ξ) of the plus-component of the mean of the incoming and

outgoing proton momenta P = (p + p′)/2. The photon-proton centre of mass energy

squared is given by W 2 = (q + p)2, where q is the photon momentum. The asymmetry

between the momentum fractions carried by the partons is parametrised by the skewness

parameter,

ξ =
p+ − p′+
p+ + p′+

=
M2
ψ

2W 2 −M2
ψ

. (3.4)

Due to the vanishing of the quark coefficient function at LO, the process is predominantly

sensitive to the gluon GPD. At LO, the gluon coefficient function is strongly peaked for

|X| ∼ ξ and so the gluon GPD is probed close to Fg(ξ, ξ). In fact, for the imaginary part

of the amplitude, the LO gluon coefficient function acts as a Dirac delta function and the

GPD is probed at exactly |X| = ξ. This follows from the form of C
(0)
g given above.

3.2.1 Non-Relativistic QCD (NRQCD)

We use NRQCD to describe the formation of the J/ψ wave function, Ψ. Ever since the

discovery of the J/ψ as the first heavy quarkonium bound state at SLAC and BNL in

1974, there has been widespread interest in understanding the decay rates and production

mechanisms of quarkonia. The development of NRQCD [130], an effective field theory for

bound heavy quark mass systems in which one performs a well-defined Taylor expansion

in the relative velocity v of the constituent heavy quark anti-quark qq̄ pair, allows one

to consistently factorise the hard process dynamics from the non-relativistic formation

of the bound state. Consideration of successively higher powers of the parameter vµ =

qµ1 − qµ2 amount to a systematic expansion in the relativistic corrections to the production

of the bound state, where qµ1 and qµ2 are the velocity of the heavy quark and anti-quark

respectively. The transition amplitude, A(V ), from an open qq̄ pair to a bound state meson
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V can be expanded in powers of v,

A(V ) ∼ (Aρ +Bρσv
σ + Cρστv

σvτ + . . . ) ερ ∗V , (3.5)

where ερ ∗V is the polarisation vector for the outgoing vector meson. Here, we will work at

LO in NRQCD, assuming the zeroth order term in the above relativistic velocity expansion.

We will therefore set the relative velocity of the quark and anti-quark pair to be identically

zero, qµ1 = qµ2 and work with the colour-singlet Fock state |qq̄〉. That is, in the notation

introduced in Section 3.3, M2
ψ = M2

qq̄. We will assume that the heavy quarks carry the

same longitudinal momentum fraction z = 1/2 with no relative transverse momentum,

κ⊥ = 0. The non-relativistic form for the J/ψ wave function is then of the form

Ψ(z, κ⊥) ∼ δ
(
z − 1

2

)
δ(2)(κ⊥). (3.6)

At this order in v, only the NRQCD operator 〈O1〉V contributes so that

A(V ) =

(〈O1〉V
2Ncm

)1/2

Aρ ε
ρ ∗
V . (3.7)

In this section, we take V = J/ψ. The S-wave spin triplet operator 〈O1〉J/ψ ≡ 〈O1(3S1)〉J/ψ
can be extracted from the experimentally determined leptonic decay width of the J/ψ

meson [130],

Γ(J/ψ → l+l−) =
2e2
qπα

2

3

(〈O1〉J/ψ
m2
c

)(
1− 8αs

3π

)2

. (3.8)

In this equation, α (αs) is the fine-structure constant (strong coupling) and mc and eq are

the pole mass and electric charge of the charm quark. The factor (1− 8αs/(3π)) accounts

for the one-loop NLO pQCD correction. So, in our LO analyses, we omit this factor from

the defining relation between 〈O1〉J/ψ and Γ(J/ψ → l+l−) for consistency.

The issue of ascertaining to what extent relativistic corrections would have an effect

on the J/ψ wave function and, therefore, on cross section predictions for exclusive J/ψ

production was a controversial one [131, 132, 133, 134, 135, 136]. Earlier work [134, 135]

found a J/ψ wave function correction factor, with all relativistic effects ignored except

accounting for non-zero Fermi motion κ⊥ 6= 0, which deviated far from unity and gave

a significant suppression. In [131], however, the authors pointed out a possible overes-

timation of this factor related to the treatment of the ratio Mψ/(2mc) and argued that
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restricting the longitudinal momentum fraction z of the heavy quarks to be equal was a

valid approximation up to O(v4).

It was realised later that, for consistency, by including relativistic corrections one must

also simultaneously account for the higher, cc̄+g, Fock component of the J/ψ wave function

to maintain gauge invariance. As was shown in [136], with these careful considerations

regarding the power counting in αs and v taken into account, the two corrections largely

cancel each other, leading to a final correction of the order of a few percent provided that

the NRQCD matrix element is normalised to the leptonic decay width, J/ψ → l+l−, and

the charm quark mass is chosen to be mc = Mψ/2, as is kept in our study. The gauge

invariant cross section correction factor was found to be

(
1 +

8

9

∇2Ψ

M2
ψΨ

)
, (3.9)

where∇2Ψ is the derivative of the non-relativistic J/ψ wave function. With∇2Ψ/(M2
ψΨ) ≈

−0.07, the correction factor due to Fermi motion was estimated to be≈ 6%. This correction

affects the normalisation of the J/ψ cross section but does not affect the x (or W ) behaviour

of it.

To summarise, in our approach, we project the open heavy cc̄ quark pair onto the colour

singlet configuration with the corresponding transition matrix element 〈O1〉V , which is

fixed by the experimentally measured leptonic decay width of the J/ψ. The exclusive final

state requires a colourless high energy scattering (modelled by the two-gluon exchange)

and therefore does not allow for a colour-octet contribution, as this would populate the

rapidity gap and destroy the exclusivity of the final state. Higher order corrections within

NRQCD are not included here, but have been discussed in [136]. For the total cross section,

they occur at O(v2) and have to be considered together with higher Fock states ∼ α2
s. The

resulting correction is of the order of a few percent and beyond the accuracy we require.

3.3 Connecting exclusive production to the PDFs

Let us recall the advantage of using the exclusive J/ψ LHCb data in global parton analyses

in the collinear factorisation scheme. It offers the possibility to probe PDFs (mainly the

gluon PDF) at extremely low x in a so far unexplored kinematic regime. In particular, for
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forward ultraperipheral production, pp→ p+ J/ψ + p, the LHCb experiment can reach2

x ∼ (Mψ/
√
s) e−Y ∼ 3 × 10−6 (3.10)

for
√
s = 13 TeV and rapidity Y = 4.5. Moreover, the cross section is proportional to the

square of the parton density, so the uncertainty on the PDF is reduced.

However, as mentioned in Section 3.1, there appear to be two disadvantages. First,

the description of the exclusive J/ψ process depends on the GPDs, and, second, there is a

strong dependence on the choice of scale, indicating a large theoretical uncertainty. In Sec-

tions 2.5.1 and 2.5.2, we discussed how these problems were resolved through a systematic

taming of the naive MS result, amounting to resumming logarithmically enhanced small-x

terms and implementation of a small-Q power correction.

The high energy limit of the NLO correction, that is the asymptotic limit W 2 � M2
ψ,

takes the form [18]

A(1)(ξ, µF ) ∼− iπC(0)
g

[
αs(µ

2
R)Nc

π
ln

(
m2
c

µ2
F

)∫ 1

ξ

dX

X
Fg(X, ξ, µ

2
F )

+
αs(µ

2
R)CF
π

ln

(
m2
c

µ2
F

)∫ 1

ξ
dX (Fq(X, ξ, µ

2
F )− {X → −X})

]
,

(3.11)

where we used the symmetry properties of the quark and gluon GPDs in the regions

X > ξ and X < −ξ, see Section 2.3.2. The contribution from this logarithmically large

integration interval is enhanced by a ln(1/ξ), that is, the leading contribution to this high

energy correction comes from the strongly ordered region, ξ � X � 1. Together with

the explicit logarithm factors outside of the integrals shown in eqn. (5.7), this generates

the NLO contribution to DLLA accuracy. The structure of this equation then warrants

the choice µ2
F = m2

c argued in Section 2.5.1, allowing for a resummation of the complete

NLO correction in the high energy limit into the input distributions. There is therefore no

longer a logarithmically increasing large contribution at X � ξ.

The GPD function (denoted by Fa(X, ξ) with a = g, q in Fig. 3.1) accounts for the fact

that the momenta of the ‘left’ and ‘right’ partons in the diagrams of Fig. 3.1 are different.

In particular, they carry proton momentum fractions X + ξ and X − ξ respectively. The

Shuvaev transform relates the GPD Fa(X, ξ) to the PDF fa(X + ξ). It turns out (see

2Note that this value corresponds to the lower limit of the x interval felt by the process. In practice the
main contribution to the amplitude comes from a slightly larger value of x, as discussed in Section 3.5.
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γ

CLO
g

V

(X + ξ)P+ (X − ξ)P+

Fgp p′

γ

CNLO
q

V

(X + ξ)P+ (X − ξ)P+

Fqp p′

l

Figure 3.1: (a) LO contribution to γp→ V +p. (b) NLO quark contribution. For these graphs
all permutations of the parton lines and couplings of the gluon lines to the heavy-quark pair
are to be understood. Here the momentum P ≡ (p+p′)/2 and l is the loop momentum. Note
that the momentum fractions of the left and right input partons are x = X+ξ and x′ = X−ξ
respectively; for the gluons coupled directly to the on-shell heavy-quark pair, we have x′ � x
and so x ' 2ξ.

later) that the values of X that are most relevant in the convolution of the GPD with the

coefficient function are of the order of ξ and so x′ � x. Thus, in this way we probe the

gluon PDF at values of x close to 2ξ.

The momentum fractions carried by the t-channel gluons are

x =
M2
qq̄

W 2
and x′ =

M2
qq̄ −M2

ψ

W 2
, (3.12)

where M2
qq̄ is the mass of the intermediate qq̄ pair. This deviates from the mass squared

of the J/ψ meson through corrections of O(ε), where ε is its binding energy. It therefore

follows that
x′

x
= 1−

M2
ψ

M2
qq̄

∼ O(ε)

M2
qq̄

, (3.13)

and so the value of x′ is driven by the difference of the mass of the vector meson and

the energy of its on-shell constituent quarks. As will be discussed in Section 3.2.1, we set

M2
ψ = M2

qq̄. This means that for the upper gluons in the last cell of evolution in Fig. 3.1(b)

(or for the gluon pair in Fig. 3.1(a)) the hierarchy x′ � x holds. In the computation of the

imaginary part of the amplitude, we have checked that the on-shell constraint for the heavy
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quarks necessitates X = ξ, so that at LO the momentum fractions carried by the gluons

are x = 2ξ and x′ = 0 exactly. After one (or more steps) of evolution, i.e. at NLO and

beyond, we instead deal with the many parton system, where the x and x′ values carried

by the gluons are both driven mainly by the momentum fraction of the lowest parton. In

Fig. 3.1, this corresponds to the quark.

The results of this chapter have been obtained by incorporating the double logarith-

mic resummation and the ‘Q0’ cut procedure into the MS result, discussed above and in

Sections 2.5.1 and 2.5.2.3 As mc is a relatively low scale, there naively seems to be a need

to additionally resum the single αs ln(1/x) BFKL terms in the coefficient functions. In

particular, in [137], instead of fixing µF = µ0, it was proposed to resum the BFKL cor-

rections, like αs ln(1/x), already in the coefficient function. It was stated that this would

allow good scale stability to be obtained.

However, we do not resum the BFKL corrections for the following reasons. First, we

note that we cannot use the standard LO BFKL summation. We would have to account

for the effects of the Q0 subtraction. The LO BFKL gives the behaviour xg ∼ x−ω0 where

ω0 = (3αs/π) 4 ln 2 ' 0.6 (3.14)

which is too large and inconsistent with the LHCb data. Next, a detailed study [111,

112, 113] found that at low Q2, the higher-twist effects (that is, gluon reggeization [138]

and absorptive corrections) strongly modify the low x behaviour of the BFKL amplitude.

Absorptive effects are those that come into play at very small x, where the probability

of interactions between partons, as their number density increases, becomes so sizeable

that they start to recombine with each other. The consequence of these higher-twist

effects is why the effective Pomeron intercept, measured for example, via the vector meson

diffractive electroproduction (photoproduction) falls from α(0)P ' 1 + 0.3 (at large Q2)

down to 1+0.1 (at low Q2). Without the BFKL resummation, all these effects are absorbed

in the behaviour of the ‘input’ phenomenological gluons.

In addition to the problems above, if the coefficient functions were to absorb the BFKL

effects, then the convolution of the GPD with the coefficient function

ImA (ξ) ∼
∑

a=q,g

∫ 1

−1

dX

X
Ca(X, ξ)Fa(X, ξ), (3.15)

3We emphasise that the full NLO contribution was considered in the analysis that follows. The high
energy limit was shown only to argue our choice of scale, µF = mc.
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is such that the coefficient function, Ca(X, ξ), occupies almost the whole available ln(1/X)

interval; that is the dominant contribution comes from X ∼ O(1) and not X ∼ ξ. Thus,

we would lose the main advantage of probing the unexplored very small x regime. Beyond

NLO, single logarithmic terms, ln(1/x), may again be present in the amplitude and not

resummed with the choice µF = mc. This was shown schematically in [137] where the MS

amplitude was shown to take the form

A ∼ 1 + z ln

(
m2
c

µ2
F

)
+ z2

(
π2

6
+

1

2
ln2

(
m2
c

µ2
F

))
+ . . . , (3.16)

with zn ∼ αns lnn(1/ξ). At NNLO, that is at order z2, we have a BFKL-type logarithm

contribution remaining with our scale choice µF = mc. The LO BFKL evolution equation

can formally resum terms ∼ αs ln(1/x), however we anticipate that by including the Q0

subtraction in the LO BFKL kernel their impact will anyway be much smaller. This is

because in BFKL evolution, we have no strong kt ordering and the exact scale dependence

(the c̃n(Q2) of Appendix B) consists of contributions kt < Q and kt > Q. With our choice

Q = Q0 = mc, one may expect that after the ‘Q0’ subtraction, that is after the removal of

the low kt < Q contribution, the BFKL contributions will be suppressed. The argument is

multi-facetted in that we also remove the enhanced αs(k
2
t ) contribution in the low kt < Q

region.

Fig. 3.2 shows the individual quark and gluon contributions to the imaginary part

of the amplitude to NLO after the Q0 subtraction. We show the results for ImAa with

a = g, q for the choice µF = Mψ/2 = mc and two values of the factorisation scale, µ2
f =

m2
c , 2m2

c , using eqn. (3.15). We take µR = µf .4 Here, Aa=g,q are the gluon and quark

contributions to the γp→ J/ψ+p amplitude in the collinear factorisation scheme at NLO.

The plot shows the stability of the amplitude with respect to variations of µf , and also

that the Q0 subtraction practically fully absorbs the quark contribution. We find that

the alleviation of the factorisation scale dependence upon imposition of the low scale Q0

cut off has paid dividends in leading to the dominance of the gluon contribution over

4This corresponds to the Brodsky-Lepage-Mackenzie (BLM) scale prescription [139]. Such a choice
eliminates the contribution proportional to β0 (i.e. the term β0 ln(µ2

R/µ
2
f ) from the NLO terms in eq. (3.95)

of [18]). Furthermore, following the discussion in [140] for the analogous QED case, we note that the new
quark loop insertion into the gluon propagator appears twice in the calculation. The part with scales
µ < µf is generated by the virtual component (∝ δ(1 − z)) of the LO splitting during DGLAP evolution,
while the part with scales µ > µR accounts for the running αs behaviour obtained after the regularisation
of the ultraviolet divergence. In order not to miss some contribution and/or to avoid double counting we
take the renormalisation scale equal to the factorisation scale, µR = µf .
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Figure 3.2: The gluon LO+NLO and quark NLO contributions to the imaginary part of the
γp→ J/ψ+p amplitude for two different choices of the factorisation scale µ2

f = µ2
R = m2

c , 2m2
c

shown by the continuous and dashed curves respectively. CT14 NLO global PDFs [42] are used
and the ‘optimal’ scale µF = mc is chosen.

the quark contribution. With this set-up, we can therefore say that low x exclusive J/ψ

photoproduction probes predominantly only the gluon distribution.

This is emphasised in Fig. 3.3, where we show both the full amplitude plotted to NLO

and the contribution coming from the gluon sector alone, using three global parton sets

with Q0 = µF = µR = µf = mc. CT14 shows the most prominent enhancement of the

amplitude due to the quark inclusion. At the largest W , the CT14 NLO quark contribution

provides ∼ 6% enhancement while for NNPDF3.0, the enhancement is below a percent.

Actually, the relative contribution of the quarks changes sign for some W >∼ 1200 GeV in

the case of MMHT14. We have checked that these features are due to the small x and

small scale quark behaviour of the global parton sets, also poorly constrained for x <∼ 10−4.

Note that within the DGLAP approach (with the strong kt ordering), the kt of the

light quarks are much smaller than µF (since the quark contribution is separated from the

outgoing J/ψ meson by at least one step of DGLAP evolution - only the gluons may enter

the hard scattering). This means that practically the whole quark contribution comes from

the region kt < Q0 and therefore, after the Q0 subtraction, is completely absorbed into

47



C.A.Flett

CT14

NNPDF3.0

MMHT14

 Im
 A

 / 
W

2  [G
eV

-2
]

W [GeV]

Ag
(0) + Ag

(1)

Ag
(0) + Ag

(1) + Aq
(1)

-3

-2.5

-2

-1.5

-1

-0.5

 0

 400  600  800  1000  1200  1400  1600  1800

Figure 3.3: The gluon LO + NLO amplitude, A
(0)
g +A

(1)
g (solid lines) and the full amplitude,

A
(0)
g +A

(1)
g +A

(1)
q (dashed lines) for three global parton sets with all scales set at the ‘optimal’

value, µ0 = mc. The inclusion of the quark NLO contribution is negligible for the large range
of W we consider.

the input PDF. Our results are therefore in line with the conceptual underpinnings of the

DGLAP collinear factorisation framework.

3.4 Description of exclusive J/ψ photoproduction data

In this section, we describe additional ingredients that are incorporated into our theoretical

description of the exclusive J/ψ production process, before presenting the first comparison

to data of our predictions.

3.4.1 Real part correction

All of the calculations presented so far are performed for the imaginary part of the pro-

duction amplitude. Indeed, from Regge theory based arguments and the optical theorem,

this is expected to be the dominant contribution to the scattering amplitude, especially

at high energies. This is because with the interaction modelled as a quasi-forward (t = 0)
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elastic hard scattering, the imaginary part of the amplitude receives a positivity constraint

from the optical theorem, with no such similar constraint for the real part. It is there-

fore consistently sub-dominant to the imaginary part, more so at higher energies. The

real part is obtained via a dispersion relation on general grounds of analyticity, which in

the high energy limit (for the even signature amplitude in which two reggeized gluons are

exchanged) can be written in the simplified form [131]

ρ =
ReA

ImA
= tan

(
π

2

∂(ln ImA/W 2)

∂(lnW 2)

)
∼ π

2
λeff. (3.17)

This provides a correction factor of (1 + ρ2) to the cross section and is implemented nu-

merically by sampling points densely enough so that local gradients evaluated between

neighbouring points allow for a meaningful estimate of this quantity bin by bin in W .

Note that after the Q0 subtraction, Im A does not change sign over the range of W we

consider and so eqn. (3.17) is well-defined. The overall phase of other model dependent

factors, e.g. that of the J/ψ wavefunction, are irrelevant in this regard. For CT14, the

imaginary part of the amplitude grows only moderately with energy, see Figs. 3.2 and 3.3,

so that the effective lambda, λeff, is small, leading to a relatively small real part enhance-

ment via the derivative in eqn. (3.17). This is demonstrated in Fig. 3.4, in comparison with

the effective lambda obtained in each W bin using MMHT14 and NNPDF3.0 partons. For

W < 100 GeV (x >∼ 10−3), where the behaviour of the global gluon PDFs are similar, see

Fig. 2.1, the contribution coming from the real part is at most a 10% effect for all three

groups. For W > 100 GeV, however, the growth of the MMHT14 and NNPDF3.0 global

gluons are a lot faster than that of CT14, leading to a much larger real part enhancement.

Note that this modest growth of the CT14 global gluon at lower x leads to a real part

contribution that is decreasing with increasing W . As we will demonstrate in Fig. 3.5, all

cross section predictions based on the three parton sets agree well with the HERA data

in the region W < 100 GeV, while the fast growth of the global gluons at lower x dis-

played by MMHT14 and NNPDF3.0 is not compatible with the LHCb data at larger W .

Their growth must be much slower, which would again lead to a relatively small real part

enhancement at large W , too, in line with the predictions of Regge theory.
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Figure 3.4: The enhancement (1+ρ2) at the cross section level due to the real part correction,
ρ, given over the range of W considered.

3.4.2 Restoring the t dependence

The unpolarised cross section for exclusive J/ψ production to NLO is given by the modulus

square of the sum of eqn. (3.1) at LO and NLO, which represents the helicity summed

amplitude with the explicit contractions of the polarisation vectors included. In the quasi-

forward limit, t = 0, the differential cross section is

dσ

dt
(γp→ J/ψp)|t=0 =

|A|2
16πW 4

, (3.18)

where 1/(16πW 4) is the explicit flux factor. So far, we have tacitly assumed the kinematical

limit t = 0 in the description of the forward ‘elastic’ scattering. See Chapter 5 for this

realised naturally in the language of the Bjorken limit at leading-twist when we construct

the kinematics for HVM electroproduction. Here, we calculate the value of ImA at t = 0

and then restore the total γp→ J/ψ+p cross section assuming an exponential t behaviour
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with the experimentally determined slope [126],

B = 4.9 + 4α′P ln(W/W0) GeV−2

with W0 = 90 GeV and α′P = 0.06 GeV−2. This parametrisation grows more slowly with

W than the formula used by H1 [129], but is still compatible with the HERA data. We

have chosen the slope parameter α′P to be compatible with Model 4 of [141] which fits a

wider variety of data. That is, we suppose σ ∼ exp(−Bt) so that

σ(γp→ J/ψp) =
1

B

|A|2
16πW 4

, (3.19)

integrated over t. In earlier analyses, see e.g. [142], the B slope is assumed to be

B = 4.5 GeV2 = const, (3.20)

as the data only probed a limited range of W at the time and negligence of its mild energy

dependence produced an offset in the predictions that was comparable to the error between

the H1 and ZEUS experimental data points.

Note that the calculation of |A|2 = |A(0) +A(1)|2 is truncated at O(α3
s) so that, strictly

speaking, we do not include a subset of corrections that we deem to be part of the NNLO

contribution.

3.4.3 HERA data

Fig. 3.5 shows the J/ψ photoproduction data obtained at HERA [126, 127, 128, 129] are

described reasonably well by all three sets of global partons [38, 40, 42] within our collinear

approach. These data sample x values in the interval5

x = M2
ψ/W

2 ∼ 10−3 − 10−4. (3.21)

In our approach, we are free to choose the subtraction scale Q0 and the µF scale in the NLO

correction. For a given µF , in principle one would like to achieve cross section stability in

the small window q0 ≤ Q0 ≤ µF , where q0 is the PDF input scale. We have performed

some exploratory studies to ensure this is the case. In particular, as shown in Fig. 3.6,

5We see that when x <∼ few× 10−4 the central global partons fail to describe the HERA data.
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Figure 3.5: The γp → J/ψ + p data obtained at HERA [126, 127, 128, 129] and LHCb [47,
48] compared with the predictions obtained using the NLO PDFs taken from three different
sets of global partons [38, 40, 42] with µf = mc (solid lines). The dashed line for the CT14
prediction, corresponding to µ2

f = 2m2
c , is added to demonstrate the scale stability of our NLO

predictions; but note that our optimal choice µ2
f = m2

c agrees better with the HERA data.

for Q2
0 = µ2

F = 1.2m2
c fixed (a variation from our optimal value by 20%), together with

µ2
f = µ2

R ∈ {1.2, 2.4, 3.6} ·m2
c and q0 = 1.3 GeV (CTEQ6.6 input PDF scale), we find a

good scale stability of our cross section predictions.

We work at LO in NRQCD and the description used for the results shown in Fig. 3.5

corresponds to the choices

Q0 = µF = mc = Mψ/2. (3.22)

The running of αs is determined via the package CRunDec [143, 144], with αs(M
2
Z) = 0.118,

and a two-loop evolution is used to incorporate NLO effects. Recall that the choice µF = mc

provides the complete summation of the double log terms [102]. Besides giving a good

description of the HERA data, the above choice of Q0 and µF give a stable theoretical
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Figure 3.6: Cross section predictions evaluated with Q2
0 = µ2

F = 1.2m2
c fixed and variations

µ2
f = µ2

R ∈ {1.2, 2.4, 3.6} ·m2
c using CTEQ6.6 partons [41]. A good scale stability is observed

over the entire HERA energy range considered.

prediction also when the scales µf and µR are varied, see Figs. 3.2 and 3.5. In addition,

the fact that at x >∼ 0.001 the data are well described by the existing global gluons is an

argument in favour of the correct normalisation, that is, in favour of small relativistic

corrections to our approach. We have added an upper axis to these figures which show

the value of 2ξ probed at a given W . This corresponds to the momentum transfer in the

longitudinal direction and is close to the value of x carried by the incoming gluon.6

The HERA data considered for exclusive J/ψ photoproduction are summarised in Ta-

ble 3.1. The ZEUS and H1 collaborations at the HERA collider have also reported events

outside the 〈Q2〉 ∼ 0 photon virtuality bin, but these do not concern us here. Moreover,

we exclude photoproduction data from ZEUS-1995, 1997 and H1-1996, 2000 as these have

been superseded by the data sources presented in the Table.

We would like to remark that in an earlier version of Fig. 3.5, published in our [145], the

6To be more precise, x = 2ξ/(1 + ξ) = 2ξ −O(ξ2) for small ξ. Therefore, actually 2ξ >∼ x.
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Data Source & Year Data Period No. of Data Points Points Considered

ZEUS-2002 [126] 1996/7, 1999/2000 22 19∗

ZEUS-2004 [127] 1998-2000 3 3
H1-2006 [128] 1999/2000 17 17
H1-2013 [129] 2006/7 11 10∗

∗Data Points with x >∼ 5× 10−3 neglected

Table 3.1: HERA data selection for exclusive J/ψ photoproduction. 49 data points are con-
sidered with x >∼ 5× 10−3.

MMHT14 NLO PDF set with αs(M
2
Z) = 0.120 had been used which caused a mismatch

between the MMHT14 central cross section prediction and the relatively good NNPDF3.0

and CT14 ones in the HERA domain 10−3 < x < 10−2. Down to a few units of 10−4, the

NNPDF3.0 and CT14 predictions (which use αs(M
2
Z) = 0.118) were essentially coincident

while the MMHT14 prediction was consistently below. Despite the MMHT14 parton set

including additional NMC structure function data at x = 10−2 that is missed by the other

sets due to their low scale cut7, from plots generated in APFEL [146, 147], it was found

that the MMHT14 NLO parton set with αs(M
2
Z) = 0.120 gave a gluon that is around 30%

lower than that of the CT14 NLO set (with αs(M
2
Z) = 0.118) at x = 10−3. This may be

contrasted with the MMHT14 NLO set with αs(M
2
Z) = 0.118, shown here, in which the

difference is reduced to ∼10%. At low scales, this difference in the coupling has therefore a

sizeable effect and leads to different gluon evolutions. The difference in shape washes out

at higher scales, as one might expect. The implications of this observation emphasises the

utility of the exclusive data already in the HERA regime. It is non-trivial and assuring that

our predictions, with our preferred scale choice, agree with the HERA data and between

the global PDFs.

3.4.4 LHCb data

The LHCb experiment, by design, does not directly measure cross section events for J/ψ

photoproduction but instead that for exclusive pp→ p+J/ψ+p [47, 48]. This is an ultrape-

ripheral initiated reaction between the two colliding protons, where the impact parameter

is greater than the sum of the two proton radii. As a result, an electromagnetic interaction

is favoured over a strong interaction and the two protons interact via a flux of high energy

7I would like to thank Robert Thorne for this information in a private communication.
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photons. In the Equivalent Photon Approximation (EPA) or Weizsacker-Williams (WW)

approximation [148, 149, 150], the electromagnetic field generated by the relativistic pro-

ton is replaced by an on-shell photon. The experiment is unable to tag forward protons

accompanying the J/ψ so instead only the rapidity of the J/ψ is measured. Events are

selected by ensuring a large rapidity gap on both sides of the J/ψ - measurements where

the transverse momentum of the J/ψ are small and assumed to correspond to exclusive

reactions. The lack of forward proton tagging means it is also not possible to determine

which of the two protons emitted the photon. The ultraperipheral amplitude for a given

W+

8
>>>>>>>>>>>>>><
>>>>>>>>>>>>>>: p p0

x x0

J/ 

�
W�

8
>>>>><
>>>>>:

J/ 

�
qT

Figure 3.7: The two diagrams describing exclusive J/ψ production at the LHC. The left
diagram, the W+ component, is the major contribution to the pp→ p+ J/ψ+ p cross section
for a J/ψ produced at large rapidity Y . Thus such data allow a probe of very low x values,
x ∼ Mψexp(−Y )/

√
s ; recall that for two-gluon exchange we have x � x′. The qT of the

photon is very small and so the photon can be considered as a real on-mass-shell particle.

J/ψ rapidity is then generally the sum of two photoproduction amplitudes with different

W 2 depending on which proton emitted the photon and which was the target, see Fig. 3.7.

The interference contribution is suppressed as the photon’s transverse momentum, qT , is

much smaller than that of the proton exchanging the gluons. This interference term is

proportional to the angle φpp between the two outgoing protons. As the J/ψ meson is

produced at small transverse momentum, φpp is small and this azimuthal-angle correlation

may be neglected. In fact, in the absence of absorptive corrections (additional strongly

interacting factorisation breaking corrections such as those accounted for in the survival

factor mentioned below), this correlation vanishes identically [151]. The contribution cor-

responding to the right graph, with a smaller photon-proton energy W− , comes from

relatively large x ∼ 10−2, and can be subtracted using the existing description of HERA

data. The power law fit to existing HERA data proposed by the H1 collaboration [129],

σγp→J/ψp(W ) = 81(W/90)0.67 nb, provides an alternative means to extract the W = W−
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component. The cross section for J/ψ photoproduction at the large energy, W+, may

therefore be extracted from the LHCb measurements.

Y 7 TeV 13 TeV

S2(W+) S2(W−) S2(W+) S2(W−)

2.125 0.766 0.882 0.786 0.885
2.375 0.752 0.885 0.744 0.888
2.625 0.736 0.888 0.762 0.891
2.875 0.718 0.891 0.748 0.893
3.125 0.698 0.894 0.732 0.896
3.375 0.676 0.897 0.715 0.899
3.625 0.650 0.899 0.695 0.901
3.875 0.621 0.902 0.672 0.903
4.125 0.587 0.904 0.647 0.905
4.375 0.550 0.906 0.618 0.907

Table 3.2: Rapidity gap survival factors S2 for exclusive J/ψ production, pp→ p+ J/ψ + p,
in each J/ψ rapidity Y bin, as measured by the LHCb. For each pp centre of mass energy,
7 TeV and 13 TeV, we give the survival probability for each of the two independent γp→ J/ψp
subprocesses at γp centre of mass energies W±.

Additionally, at the LHC, there is a non-negligible probability of additional soft interac-

tions between the two colliding protons that can result in secondary particles polluting the

rapidity gaps used to select the exclusive events. This will suppress the number of events

deemed exclusive and therefore one must account for the gap survival probability, S2 < 1,

to have no such additional interaction. See Fig. 3.8 for the classes of spurious emissions

considered here. The value of S2 depends on the pp collider energy and the partonic energy

W . The survival factors are estimated from general rescattering principles, accounting for

factorisation breaking corrections and describe the probability that the rapidity gap will

not become populated with additional emissions. In this work, the values of S2(W ) as a

function of W were calculated using the Khoze-Martin-Ryskin (KMR) eikonal model [152]

which well describes the data for the differential dσ(pp)/dt cross section and low-mass

diffractive dissociation. In particular, as compared to [141, 153], we use an updated model

for the gap surivival probabilities tuned to the precise TOTEM data [154] for pp scattering

at 7 TeV. The values of the survival factors used for pp centre-of-mass energies 7 TeV and

13 TeV for the relevant range of the J/ψ rapidity Y is given in Table 3.2.
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Figure 3.8: The ultraperipheral exclusive J/ψ production process with rescattering correc-
tions. The blue shaded segment represents interactions between so-called spectator partons in
the protons, contributing to the eikonal survival factor, S2

eik. The red shaded segment repre-
sents interactions between spectator partons in one proton and the partons (gluon or quark) in
the hard process evolution ladder, contributing to the enhanced survival factor, S2

enh. The en-
hanced rescattering effects are highly suppressed in comparison with those entering the eikonal
contribution.

As the proton is an extended object with an extended charge distribution, the photon

flux dN/dk of quasi-real photons will not be that due to a point particle but instead have

an explicit dependence on the proton form factors. To describe the photon flux, we will

follow [155], using a precise expression and keeping all corrections of O(x).8 The photon

flux double-differential in the photon energy, k, and its virtuality Q2 can be written as

dN

dkdQ2
=
α

π

1

kQ2

((
1− k

EP

)(
1− Q2

min

Q2

)
FE +

k2

2E2
P

FM

)
, (3.23)

where Q2
min is the minimum photon virtuality permitted by the kinematics and EP =

√
s/2

is the energy of the incoming proton, of mass mP . Here, FE (FM ) is the electric (magnetic)

proton form factor. In the dipole approximation [155],

FM = G2
M , FE = (4m2

PG
2
E +Q2G2

M )/(4m2
P +Q2), G2

E = G2
M/µ

2
P =

(
1 +

Q2

Q2
0

)−4

,

(3.24)

8The numerical analysis was performed using the simpler form in [156], which yields essentially the same
photon flux result of [155].
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where the magnetic moment of the proton is µ2
P = 7.78 [157] and the fitted scale Q2

0 =

0.71 GeV2 [155]. Due to the steep decrease in the form factors with increasing Q2, the

photon flux is dominated by a density of on-shell photons. This thereby warrants the

application of the WW approximation. Integration of eqn. (3.23) over Q2 from Q2
min =

m2
Pk

2/(EP (EP − k)) to a sufficiently large value Q2
max ≈ 2− 4 GeV2 gives

dN

dk
=
α

π

1

k

(
1− k

EP

)(
φ

(
Q2

max

Q2
0

)
− φ

(
Q2

min

Q2
0

))
, (3.25)

where

φ(x) = (1 + ay)

(
− ln(1 + 1/x) +

3∑

k=1

1

k(1 + x)k

)
+

(1− b)y
4x(1 + x)3

+ c(1 + y/4)

(
ln

(
1 + x− b

1 + x

)
+

3∑

k=1

bk

k(1 + x)k

)
,

(3.26)

with

y =
k2

EP (EP − k)
, (3.27)

a =
1 + µ2

P

4
+

4m2
P

Q2
0

≈ 7.16, (3.28)

b = 1− 4m2
P

Q2
0

≈ −3.96, (3.29)

c =
µ2
P − 1

b4
≈ 0.028. (3.30)

The LHCb collaboration present values of dσ(pp)/dY in 10 rapidity bins, each at

7 TeV [47] and at 13 TeV [48]. In the EPA, we write σ(pp) as the convolution of the above

WW photon flux and the on-shell photon initiated subprocess σ(γp),

σ(pp) =

∫
dN

dk
σ(γp)dk. (3.31)

Using the chain rule, we can express

dσ(pp)

dY
=

dσ(pp)

dk

dk

dY
= k

dN

dk
σ(γp), (3.32)
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where k = Mψ/2 e
Y .

The details of the procedure to extract σ(γp → J/ψ + p) at large W+ energies is

described in [125]. Using measurements of the cross section for pp→ p+J/ψ+p, differential

in bins of rapidity Y ∼ 2.0 − 4.5, the LHCb collaboration extract the cross section for

γp→ J/ψp upon rearrangement of

dσ(pp)

dY
= S2(W+)k+

dN

dk+
σ+(γp) + S2(W−)k−

dN

dk−
σ−(γp), (3.33)

with S2(W±) and k±dN/dk± the rapidity gap survival factors and photon fluxes, respec-

tively, for γp centre of mass energies W 2
± = MJ/ψ

√
se±|Y |. For each value of Y , we evaluate

k± and dN/dk±, using eqn. (3.25). Together with the corresponding values of the sur-

vival factors S2(W+) and S2(W−) at each Y , as given in Table 3.2, we can determine the

corresponding prediction for σ+(γp).

In Figs. 3.5 and 3.9 we plot the low x LHCb ‘data’ points obtained in this way by the

LHCb collaboration [47, 48]. In eqn. (3.33), the interference term is manifestly set to zero.

In [151], it is shown to vanish identically neglecting the dependence on S2. Restoring this

dependence then yields a non-zero interference, albeit strongly suppressed. For consistency,

as the survival factors depend implicitly on the photon flux, we must determine them using

the same expression as we do for the photon flux factor appearing explicitly in eqn. (3.33).

Note that the two-fold ambiguity present in eqn. (3.33) is ubiquitous in the description

of ultraperipheral collisions, in the absence of p-tagging in the experimental set-up. It is

resolved when one of the colliding objects is instead a heavy ion because then the emitted

photon flux is enhanced by the atomic number Z.

3.5 Towards the bigger picture

The theoretical predictions, obtained using the approach described above, are presented in

Fig. 3.5. There we compare our predictions for the cross section for J/ψ photoproduction

obtained using three different sets of global partons [38, 40, 42] with the HERA and LHCb

data. The curves correspond to using the central values of the global PDFs. At the lower

energy of the HERA data, where the global gluon PDF uncertainty is not too large, the

predictions agree with the experimental values reasonably well. In the kinematic region

covered by the LHCb experiment the present global PDF analyses do not sample any data,

and hence they have almost no predictive power in this low x regime. This is well illustrated
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Figure 3.9: The central scale prediction σ for a given global input set of NLO partons, here
NNPDF3.0 [38], together with its 1σ (shaded) error band show that the current PDF uncer-
tainties are much greater than the experimental uncertainty and the scale variations of the
theoretical result. For comparison we also show the NNPDF3.1 [39] predictions, indicated by
the dotted lines but with the error band unshaded; in this case the σ+δσ upper limit follows the
HERA data for x > 10−3 while for smaller x it widens to encompass the data. The exclusive
J/ψ data are therefore in a position to improve the global PDF analyses at low x.

in Fig. 3.9 which shows the prediction of, for example, the NNPDF3.0 [38] parton set

together with its 1σ error band. A similar plot has been produced for MMHT14 and CT14,

however the qualitative features of the display are as presented in Fig. 3.9. Consequently,

we do not show them here, as they do not illuminate the argument further but see our [158]

for the band obtained using MMHT14 partons. We also show, for completeness, the

corresponding prediction based on NNPDF3.1. We have checked, via APFEL [146, 147],

that the behaviour of the NNPDF3.1 central cross section prediction is wholly reflective of

the shape of the NNPDF3.1 NLO gluon at low scale. Its plateau-like behaviour for larger

W (smaller x) is washed out at NNLO.

A comparison of the uncertainties on the data and the predictions in Fig. 3.9 show
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that by exploiting the LHCb data for exclusive J/ψ production we have the possibility to

greatly improve our knowledge of the gluon PDF down to x ∼ 3×10−6. The GPD Fg(X, ξ),

obtained via the Shuvaev transform, is driven dominantly by the value of x = X + ξ ' 2ξ,

while x′ = X − ξ � x is small. Recall that in the LO contribution (given by the first

term of eqn. (2.54)) we sample the gluon PDF at x = X + ξ = 2ξ exactly, while in the

NLO contribution (the second term) the momentum fraction carried by the gluon may be

larger. As a check we have calculated the median value, med(X), of the corresponding X,

defined in such a way that X > med(X) gives 0.5 of the NLO contribution. By interval

halving, in the convolution of the coefficient function with the GPD (see eqn. (3.15)), we

find that the X distribution is sharply peaked at X ' ξ for the gluon contribution, while

for the quark NLO contribution the value of med(X) ' 1.2 ξ, approximately 20% larger

than ξ. This procedure is equivalent to finding some constant M0 ∈ [ξ, 1] such that the

one dimensional integration at a given ξ = ξ0, with a monotonic and suitably normalised

integrand,

f(M0) = 2

∫ M0

ξ0

dX

X
|Ca(X, ξ0)Fa(X, ξ0)| = 2

∫ 1

M0

dX

X
|Ca(X, ξ0)Fa(X, ξ0)| = 1

2
, (3.34)

for a = q, g. Note that the factor of two reflects the symmetry of the integrand in the other

half of the DGLAP region, X ∈ [−1,−ξ], see Section 2.3.2. In other words, we perform

the ‘Newton-Raphson’ method to find, by iteration, the value M = M0 satisfying

f(M0)− 1

2
= 0. (3.35)

However, as it is seen from Fig. 3.2 and 3.3, the quark term is practically negligible.

Thus we can say that the exclusive J/ψ production indeed probes the gluons at x = X+ξ '
2ξ.

3.6 Summary

We have shown that the J/ψ meson photoproduction process and ultraperipheral exclusive

J/ψ production, pp → p + J/ψ + p, at the LHC, can be consistently described in the

collinear factorisation framework at NLO. The choice of the optimal scale µF = µ0 =

Mψ/2 effectively resums the large double logarithmic terms, i.e. (αs lnµ2
F ln(1/ξ))n, which,

together with the Q0 subtraction (needed to avoid double counting between the NLO
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coefficient function and the DGLAP input PDFs), leads to a largely improved scale stability

of the theoretical prediction. In other words, this framework overcomes the extremely large

scale uncertainties found in the existing NLO predictions [18, 102, 103] of diffractive J/ψ

photoproduction in the collinear factorisation approach. It is not surprising that at these

low scales the power correction arising from the Q0 subtraction is crucial. Another power

correction coming from absorptive effects should reveal itself as the saturation of the gluon

density. At the moment this is not noticeable; for small x the data appear to be compatible

with the gluon PDF parametrisation xg ∝ x−λ.

Huge uncertainties in the low x gluon PDF found in the existing global PDF analyses

reflect the fact that no corresponding low x data were included in the fitting procedure.

The current cross section errors shown within an individual PDF set (Fig. 3.9) together

with the discrepancy of the predictions between the sets (Fig. 3.5), contrasted with the

data quality and the relative stability of our theoretical predictions, provides support for

our claim that the exclusive J/ψ data are in a unique position to provide constraints down

to unprecedented values of x in a fully-fledged global fit analysis. Using the proposed

approach, the good accuracy of the exclusive J/ψ cross section presented by LHCb will

allow the determination of the NLO gluon PDF down to x ∼ 3 × 10−6, and the HERA

data will improve the determination of the gluon for 10−4 <∼ x <∼ 10−3.

62



Chapter 4

A low x determination of the gluon

PDF via exclusive J/ψ production

The low x behaviour of the gluon density xg(x, µ2) at scale µ2 = 2.4 GeV2 is determined

using exclusive J/ψ production data from HERA and LHCb within the framework of

collinear factorisation at NLO. It is shown that in the interval 3 × 10−6 < x < 10−3

the gluon distribution function grows as xg(x, µ2) ∝ x−λ with λ = 0.135 ± 0.006. The

impact this experimental data will have for the global PDF analyses in this low x domain

is quantified. No indication in favour of parton density saturation is observed.

4.1 Introduction

In the previous chapter, we showed that the stability of the perturbative predictions at the

amplitude level allowed one to sensibly obtain results at the cross section level, producing a

sound description of the HERA data on diffractive J/ψ photoproduction [126, 127, 128, 129]

with energies corresponding to x > 10−3 and affirming cross section stability in this regime

and indeed for the large range of W considered. Despite the central NLO global gluon for

all three parton sets decreasing with smaller x in the interval 10−3 < x < 10−2, see Fig. 2.1,

once convolved with the Q0-subtracted and double-log resummed NLO coefficient function,

produced a W dependence that collectively gave rise to a monotonically increasing cross

section that well described the exclusive data in this regime (see Fig. 3.5). The individual

global gluon errors propagated through to the J/ψ cross section for x < 10−3 were shown

to be comparable to the spread in the current low x central cross section predictions based
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on the global gluons from the three sets, but much greater than the uncertainties on the

experimental data points and the scale dependence of the theoretical result. In turn, this

quality and accuracy of the data sets at small x as well as the reliability and dependability

of the collinear factorisation prediction, allows one to seriously consider the implications

of their inclusion into the global analyses that constrain the PDFs. In this chapter, having

demonstrated the efficiency of our method, we will extract the behaviour of the NLO gluon

in the low x region (x < 10−3) from the exclusive J/ψ LHCb data [47, 48] (as well as HERA

photoproduction data that lie in this region).

As was shown in Figs. 3.2 and 3.3, after the kt < Q0 subtraction, the quark contribution

to the exclusive J/ψ production is negligibly small in this x region. Thus we determine

just the gluon PDF and use the quark PDF from the existing global fits. The evolution of

the gluon PDF and the singlet quark PDF is intertwined, so to treat them differently is,

strictly speaking, not fully consistent but permissible at this level.

Of course, at the moment, global PDF analyses are performed to NNLO accuracy.

However, as a first step, we start fitting the J/ψ data at NLO. In the future this approach

can be extended to NNLO.1

This chapter is organised as follows. In Section 4.2 we describe the ansatz that we

will use to parametrise the NLO gluon PDF in the collinear factorisation scheme in the

low x domain, x < 0.001. In Section 4.3, after a brief comparison of the LO and NLO

approaches, we describe how we determine the low x gluon directly from the data. In

Section 4.4, we compare the results we find for the low x gluon with those obtained by

reweighting the NNPDF gluon using the D-meson LHCb data. Finally, in Section 4.5, we

provide a reweighting of the NNPDF3.0 gluon via the exclusive J/ψ data and compare

and contrast this with the gluon obtained from the above alternative approaches. Our

conclusions are briefly summarised in Section 4.6.

4.2 Ansatz for the low x gluon

It was demonstrated in Chapter 3 that the diffractive J/ψ cross section is driven by the

Generalised Parton Distribution, GPD(X+ξ,X−ξ), of the gluon with X ' ξ, see Fig. 3.1.

That is, to describe the LHCb data, we effectively need the gluon in the region of low

x ' X + ξ only. So, it is sufficient to parametrise the gluon in the region x < 10−3. On

1This would require knowledge of the 2-loop hard scattering coefficient function and extension of NRQCD
to NNLO.
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the other hand, the Shuvaev transform, that relates the GPD to the conventional collinear

gluon PDF, includes an integral over the whole x < 1 interval. Moreover, the transform

was derived assuming that the gluon had a smooth analytical behaviour with the property

that g(x) → 0 as x → 1. In order to satisfy these requirements we choose the following

ansatz for the conventional gluon PDF,

xg(x, µ2
0) = C xgglobal(x, µ2

0) + (1− C) xgnew(x, µ2
0) (4.1)

with C =
x2

x2 + x2
0

, (4.2)

where xgglobal is the value of the gluon PDF obtained in a global PDF analysis. The

simplest low x form for the gluon would be the power ansatz

xgnew(x, µ2
0) = nN0 (1− x) x−λ, (4.3)

where the normalisation factor N0 is chosen so that for n = 1 the gluon PDF has the

matching at x = x0,

x0g
new(x0, µ

2
0) = x0g

global(x0, µ
2
0). (4.4)

The parameters to be fitted are denoted n and λ. Here, n is a normalisation and the power

growth of the gluon PDF is governed by λ. The factor n in (4.3) is close to 1. It allows

the possibility of matching to a global gluon whose normalisation differs from N0 but still

lies within the global gluon error band at x = x0. The factor (1− x) in (4.3) provides the

vanishing xg → 0 as x→ 1. This factor was added to satisfy the formal conditions for the

validity of the Shuvaev transform, allowing for the elimination of a crucial surface term,

see Section 2.3.3. Practically, the results do not depend on the behaviour of the gluon at

relatively large x. The corresponding effects are not visible in our Figs. 4.2, 4.3, 4.5, see

later. Note that due to the smooth form of C in (4.2) the complete distribution (4.1) does

not violate analyticity even for n 6= 1.

Alternatively, in order to compare our present collinear determination of xgnew with

an earlier determination of the low x gluon obtained in the kt factorisation approach [125],

we also use the DLA-inspired ansatz

xgnew(x, µ2
0) = nN0 (1− x) x−a

(
µ2

0

q2
0

)−0.2

exp
[√

16(Nc/β0) ln(1/x) lnG
]

(4.5)
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with G =
ln(µ2

0/Λ
2
QCD)

ln(q2
0/Λ

2
QCD)

, (4.6)

where the parameter a now plays the role of λ. Here, with three light quarks (Nf = 3)

and Nc = 3 we have β0 = 9. We take ΛQCD = 200 MeV and q2
0 = 1 GeV2, as in [125],

with µ2
0 = 2.4 GeV2 fixed. The exponent in eqn. (4.5) resums, to all orders in m, the

double logarithmic terms (αs ln(1/x) lnµ2)m and hence we find that, to good accuracy,

we reproduce the NLO DGLAP low x evolution in the interval of Q2 from 2 to about 30

GeV2. Therefore this parametrisation can be used to describe Υ photoproduction data as

well. In this way, the construction of eqn. (4.5) provides a reasonable deviation from the

pure power behaviour of eqn. (4.3) and allows us to study if the low x data prefer an input

distribution that deviates from a pure power exponent.

In what follows, by virtue of the heavily peaked diffractive J/ψ cross section at X = ξ,

we construct the input GPDs via the result in eqn. (2.45) derived at the end of Section 2.3.3.

When it comes to using these ansatze in a fitting procedure, the employment of these

simpler one dimensional integrations will make the procedure less time-consuming and less

computationally straining, while introducing a negligible error [87].

4.3 Determination of the low x gluon from J/ψ data

Here, we show the results of our fits to J/ψ photoproduction data for x < 10−3, using an

ansatz for the gluon PDF as described in eqns. (4.1)–(4.4). In the following, we refer to

this as a ‘power fit’ to the data. The matching is made at x0 = 10−3 using the gluon PDF

from three NLO parton global analyses, NNPDF3.0 [38], MMHT14 [40] and CT14 [42].

Due to the small contribution of the quark sector at NLO to the J/ψ cross section, we do

not attempt to fit the quark PDFs but only the gluon PDF around its input scale. The

quark PDFs obtained in the global NLO analyses are therefore used for all x.

4.3.1 Description of the J/ψ data

To set the scene, we first use eqns. (3.1, 3.19, 3.33) at LO and NLO to generate and com-

pare cross section predictions using the existing LO and NLO partons from [38, 40, 42],

respectively, for the x-range where we have used exclusive J/ψ data from H1, ZEUS and

LHCb. In this way, we are able to quantify the scale dependence of the theoretical predic-

tion as well as the size of the NLO result relative to the LO one. In Fig. 4.1, we show such
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a comparison using CT14 partons [42]. Our choice of scales is explained in Section 2.5.2.

The NLO scale variation is smaller than that at LO and a better description of the HERA

data is obtained with the NLO result. The plot emphasises that the LO prediction is not

sufficient and that in the region where the current PDFs are well constrained, it is still

crucial to use the NLO description. We see that our NLO prediction at the ‘optimum’

scale choice agrees most favourably with the HERA data - this is non-trivial and need not

have been the case but provides reassurance for our procedure.

σ
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 p
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nb
]
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 100

 200

 300

 400

 500

 600

 100  1000

 3x10-610-510-410-3

CT14 LO

CT14 NLO

µ f
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Figure 4.1: LO and NLO cross section predictions obtained using the central values of the
existing global partons from [42]. Dashed (dotted) lines correspond to the scale choices µ2

f =

µ2
R = m2

c (µ2
f = µ2

R = 2m2
c) with µF = Q0 = mc fixed.

We now determine the low-x gluon by performing a two-parameter (λ and n, as defined

in eq. (4.3)) fit of all the σ(γp → J/ψ + p) LHCb and HERA data with x < 0.001 using,

as input, NLO parton PDFs from [38, 40, 42]. The results are shown in Table 4.1 and

Fig. 4.2.
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λ n χ2
min χ2

min/d.o.f

NNPDF3.0 0.136± 0.006 0.966± 0.024 44.51 1.04
MMHT14 0.136± 0.006 1.082± 0.027 47.00 1.09
CT14 0.132± 0.006 0.946± 0.024 48.25 1.12

Table 4.1: The values of λ and n obtained from fits to the J/ψ data using three sets of global
partons. The respective values of the total χ2

min (and χ2
min/d.o.f) for 45 data points are also

shown.

The construction of our χ2 figure of merit is as follows,

χ2(λ, n) =

Ndat∑

i,j=1

(σi(λ, n)−mi)(cov−1
t0

)ij(σj(λ, n)−mj), (4.7)

where Ndat is the number of experimental data points, σi(λ, n) is the theoretical cross

section prediction in energy bin i for a given λ and n, and mi are the experimental mea-

surements. Our definition of the input ‘t0’ prescribed covariance matrix, which gives the

covariance between the measurements in energy bins i and j, is

(covt0)ij =

(Ncorr∑

k=1

∆σi,k∆σj,k + δij∆σ
2
i,uncorr

)
mimj +

(Nmult.∑

l=1

∆σi,l∆σj,l

)
σ

(0)
i σ

(0)
j , (4.8)

where ∆σi,k are the relative Ncorr correlated sources of uncertainty, ∆σi,uncorr are the uncor-

related sources of uncertainty (and therefore proportional to δij , the Kronecker delta) and

∆σi,l are the relative Nmult. multiplicative (normalisation) sources of uncertainty. These

last set of errors are organised in this way in order to avoid the d’Agostini bias [159, 160],

which becomes important when systematic errors are multiplicative rather than additive.

The σ
(0)
i are iteratively-refined quantities that are updated at each step in the fit procedure

- at the zeroth iteration or initialisation step, they may, for example, presume the values

of the experimental measurements. In this treatment of the normalisation uncertainties,

we do not have to introduce additional shift parameters to counteract such a bias, as is

commonly done instead in other approaches.

For the ZEUS 2002 and 2004 data sets [126, 127] we allow for a fully correlated 6.5%

normalisation error. For the H1 2006 data set [128] we include a fully correlated 5%

normalisation error while for the H1 2013 data set [129] we use the full covariance matrix
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Figure 4.2: The description of the J/ψ photoproduction HERA [126, 127, 128, 129] and
LHCb [47, 48] data based on using the central value of the global gluon PDF from the three
global parton analyses [38, 40, 42] for x > 0.001. The solid red, blue and green lines show the
central power fit predictions while the dotted lines show the ± 1σ boundaries, using the errors
of the parameters in Table 4.1. We also show by dashed lines the cross section predictions
obtained using the current central values of the global gluons for all x.

as provided by H1. For the LHCb 2014 data [47] we allow for a fully correlated ∼ 7%

normalisation error. Finally, for the LHCb 2018 data [48], we use the covariance matrices

supplied by the collaboration as well as a fully correlated normalisation error of ∼ 4%. This

error accounts for the uncertainties in the luminosity and branching fraction to dimuon

determinations, correlated between bins.

The respective values of the χ2
min statistic, the minimum value of our χ2 function in

the space of λ and n, were calculated accounting for the bin-to-bin correlated errors within

each individual experimental data set as well as uncorrelated errors.2 The covariance

2An earlier exploratory analysis was performed in which only the diagonal covariance matrix was used.
Here, the resulting χ2

min/d.o.f ∼ 0.3 < 1, an artificially small χ2
min and underestimation of this statistic as

a result of the negligence of the correlations between the experimental data points.
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matrix was constructed, and iterated, according to the ‘t0 prescription’ as outlined above,

see [161] for more details. We use all HERA data points [126, 127, 128, 129] with W > 100

GeV (x <∼ 10−3) and all LHCb [47, 48] data points.

Below, in Table 4.2, we show a more detailed breakdown of contributions to our χ2

statistic. Let LHCb-14 (LHCb-18) denote the LHCb data taken at
√
s = 7 TeV (

√
s =

13 TeV) and published in 2014 (2018) [47, 48]. For each global parton set, we find that

χ2
min,HERA/d.o.f < 1 and χ2

min,LHCb-14/d.o.f > 1, while χ2
min,LHCb-18/d.o.f ∼ 1. We have

checked that the relatively larger value of the contribution to the chi-square due to the

LHCb data taken at
√
s = 7 TeV is the result of its last two data points at the highest

W . These points favour a larger gluon slope, as is clear from Fig. 4.2. Removing their

contribution from the chi-square construction gives then χ2
min, LHCb-14/d.o.f ∼ 1. However,

we emphasise these points are nonetheless kept in our numerical analysis and are not

treated as statistical outliers. The consistently small value of χ2
min,HERA across all three

global sets is attributed to an overestimation of the underlying statistical and systematic

uncertainties in [126, 127, 128, 129]. The structure of our fit ansatz and interrelation of

χ2
min χ2

min,HERA χ2
min, LHCb-14 χ2

min,LHCb-18

NNPDF3.0 44.51 8.10 26.18 10.23
MMHT14 47.00 8.12 30.63 8.26
CT14 48.25 8.42 27.20 12.63

Table 4.2: Individual χ2
min contributions due to HERA (Ndat = 25), LHCb-14 (Ndat = 10) and

LHCb-18 (Ndat = 10) data for the three global parton sets.

the parameters, together with the monotonically increasing data, explain why the fitting

procedure was readily able to find a global minimum. The locus of
{
n, λ, χ2

}
points maps

out a tunnel-like surface in this space.

The description of the exclusive J/ψ cross section is shown in Fig. 4.2, while the

gluons extracted from the J/ψ data at µ2 = 2.4 GeV2 and x < 0.001 are shown in

Fig. 4.3. The error bands are obtained by sampling over the two parameters within their

individual 1σ standard deviations, accounting for their correlation. The hatched green

band in Fig. 4.3 in addition accounts for the uncertainty due to the choice of the global

(NNPDF3.0, MMHT2014 or CT14) partons. The shaded blue band is the NNPDF3.0

global gluon PDF. The gluon at very small x shows no hint of the onset of saturation; the

data are consistent with a rising power and a χ2
min of the order of unity. Starting from
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three different sets of global partons, we obtain practically the same low x gluons with the

same quality (χ2
min) of the description. The typical errors are ±2.5% for the normalisation

and ±4% for λ. The covariance matrix in the space of λ and n gives the variances and

covariances of our fitted parameters due to the experimental error. Specifically, it is given

by

Ccov =
1

2

(
∂2χ2/∂λ2 ∂2χ2/∂λ ∂n

∂2χ2/∂n ∂λ ∂2χ2/∂n2

)
, (4.9)

evaluated at the best fit values for λ and n. In the NNPDF3.0 fit, for example, we obtain

the 2× 2 covariance matrix,

Ccov
NNPDF3.0 =

(
3.29× 10−5 −1.11× 10−4

−1.11× 10−4 5.95× 10−4

)
. (4.10)

Here, the diagonal elements give the variances σ2
λλ and σ2

nn of the fitted parameters and

the off-diagonal elements are a measure of the correlation between them and give the

covariance, σλn, of λ and n. The negative sign is indicative of an anti-correlation. The

square root of the matrix element Ccov
11 (Ccov

22 ) gives the 1σ standard deviation error for λ

(n), given in Table 4.1.

We see from Fig. 4.2 that the simple two-parameter form of the gluon density provides

an excellent description of the J/ψ data in the fitted x < 10−3 region, irrespective of which

global parton set is used. In fact, the three descriptions only visibly differ for x < 10−5.

Note that the observed hierarchy of central cross section predictions at x ∼ 3×10−6 differs

from that expected given the power behaviours in Table 4.1. That is to say, the value of

the central cross section prediction at 2ξ = 3× 10−6 using CT14 partons is largest yet the

best fit value of its gluon slope is smallest. We have checked that this is due to the small

x and small scale quark behaviour of the global sets.

Figure 4.2 also shows the cross section predictions obtained using the central values

of the gluon from the global parton sets extrapolated into the low x region. Clearly here

the global analyses have no predictive power and in each case they have huge uncertainty

bands (shown in Fig. 4.3 for NNPDF3.0 only) which cover the (unfitted) J/ψ data. The

value of including the J/ψ data is apparent.

In the left hand side of Fig. 4.4 we compare the uncertainties of the gluon densities

given at x = 0.001 and µ2 = 2.4 GeV2 by the global analyses, while in the right hand side

we show the values that are obtained after fitting the J/ψ data. The J/ψ data are seen to
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Figure 4.3: The cross-hatched region shows the range of behaviour of the low x NLO gluon
determined by fitting to exclusive J/ψ data using ansatz eqn. (4.3) with xgglobal taken from
NNPDF3.0 [38], MMHT14 [40] or CT14 [42] parton sets. The shaded blue area is the
NNPDF3.0 global gluon PDF error band.

greatly improve the knowledge of the gluon in the low x interval 3× 10−6 < x < 10−3. In

particular, we find at x0 = 0.001 that, by averaging the results from the three sets,

x0g(x0, µ
2 = 2.4 GeV2) = 2.28± 0.06, (4.11)

where the central value is determined from eqns. (4.1)-(4.3) and the 1σ standard deviation

from

∆xg(x) = N0 (1− x)x−λ
√
σ2
nn + n2 ln2

(x0

x

)
σ2
λλ + 2n ln

(x0

x

)
σλn (4.12)

evaluated at x = x0 = 10−3. This follows from the sum in quadrature of correlated
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Figure 4.4: (a) The global gluon PDF, xg(x, µ2), at the matching point x = 0.001 and
µ2 = 2.4 GeV2, (b) the global gluon PDF, xg(x, µ2), at the matching point x = 0.001 and
µ2 = 2.4 GeV2 after fitting to HERA+LHCb exclusive J/ψ data. Note that the errors shown
on the right hand side are those obtained by propagating the 1σ experimental data errors to
our result, but do not account for theoretical uncertainties.

variables,

δ xg(x) =

√√√√
∑

ij

∂xg

∂ai
Ccov
ij

∂xg

∂aj
, (4.13)

with {ai} = {λ, n}.

4.3.2 The alternative double-log parametrisation

While the simple two parameter ansatz in eqn. (4.3) leads to a very good description of

the J/ψ data, it is still informative to repeat the procedure using the double-log ansatz

in eqn. (4.5). Recall that a similar form was used in [125]. In the low x region, the ex-

pected x dependence of the gluon density follows a pure power law but evolution in the

scale quickly modifies this behaviour, with a larger effective λ at larger µ2. For suffi-

ciently low x and large µ2, the gluon density is well approximated by an asymptotic form

xg ∼
√
αs ln(1/x) ln(µ2). This double-log enhancement is contained (and resummed) in
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eqn. (4.5). The fit result obtained using the NNPDF3.0 NLO parton set is

a = −0.046± 0.006, n = 0.979± 0.025, χ2
min/d.o.f = 1.05.

The description and the behaviour of the low x gluon are very similar to that obtained

using eqn. (4.3). We find that the fit using the double log parametrisation gives the central

value x0g(x0, µ
2 = 2.4 GeV2) = 2.31 in agreement with eqn. (4.11).

Note that the double-log parametrisation gives a result close to that obtained in the

kt-factorisation approach [125]. However now, accounting for the complete set of NLO

corrections, we find that the gluon growth with energy (1/x) is less steep than that obtained

in [125]. Instead of a = −0.10 we now have a ∼ −0.05. The data used in [125] have been

replaced by the data in [48] that is used here, but this is not accountable for the difference

in a. This points towards genuine differences between the two factorisation schemes.

4.3.3 Is there evidence of saturation from exclusive J/ψ data?

High energy exclusive J/ψ production was recently described in [162] based on a BFKL

approach. The authors claim that ‘there are strong hints for the presence of the saturation

effects in exclusive photo-production of J/ψ at small x’. We have to emphasise that

actually the authors of [162] refer to absorptive corrections rather than saturation. Indeed,

saturation means that the gluon density tends to a constant value, xg(x, µ2) → const as

x → 0 and at a fixed scale µ [163]. That is, the power λ in (4.3) behaves as λ → 0. A

first hint of saturation would be to observe that the power λ (measured in some small-x

interval) starts to decrease with decreasing x. The data, as shown in Fig. 3, do not indicate

such behaviour.

What is actually shown in [162] is that the LO BFKL intercept, αBFKL = 1+ω0 = 1+λ

is too large to describe the high energy J/ψ data and that absorptive corrections (which

are included into the non-linear BK [164, 165] equation) are needed to tame the growth of

the gluon density (4.3), that is to decrease the value of λ.

It is well known that the LO BFKL intercept is too large [166, 167, 168]. It becomes

smaller in the next-to-leading-log-1/x (NLLxA) approximation. Indeed, it is seen from [162]

(the short dashed green curve of their Fig. 1) that the HSS gluons [169, 170], based on

the NLO BFKL linear equation, are in agreement with the exclusive J/ψ data. Moreover,

the approach of [162] does not use a stable NLO prediction (which we have within the

framework of collinear factorisation via the important Q0 subtraction) and contains some-
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what arbitrary K factors. From our viewpoint, this makes it impossible to make conclusive

statements about the non-linear corrections. The authors of [171] concur with our analysis

that we presented in [172] and affirmed that the exclusive data are not indicative of gluon

saturation at current centre-of-mass energies.

Therefore, the growth of the gluon density with a smaller but non-zero λ is not evidence

for ‘saturation’. At the moment, no hint of saturation is observed in exclusive J/ψ data

at the scale µ2 = 2.4 GeV2 and x down to 10−5.

4.3.4 Note on higher-twist contributions

Absorptive corrections, which provide the saturation at some low value of x, are described

by higher-twist operators. Formally, within the collinear factorisation approach, we do

not know the value of these higher-twist terms. They have their own evolution and input

conditions/functions that must be fitted from experiment. In other words, only experiment

can give us the values of the higher-twist operator contributions. Nevertheless, let us

estimate the possible role of the higher-twist absorptive effects in the J/ψ photoproduction

amplitude.

The relative size of the contribution of the next twist absorptive correction (in our µ2

region of interest) is driven by the parameter (see [163])

c = αs
xg(x)

R2µ2
0

, (4.14)

where R can be as large as the proton radius (R ∼ 0.84 fm = 4.2 GeV−1). Eqn. (4.14)

gives an estimate of the relative percentage effect of absorptive corrections and is the factor

appearing in the Gribov-Levin-Ryskin (GLR) equation [163]. This equation provides non-

linear negative terms through the computation of so-called ‘fan’ diagrams in pQCD that

tame the BFKL evolution. This was later improved upon in the BK equation [164, 165].

It may be assumed that the low x partons group together in so-called ‘hot-spots’, with

a radius smaller than that of the proton. If we consider the value of R as the ‘hot spot’

radius, then we have to take a smaller gluon density, xg, corresponding to only one hot

spot. With αs = 1/3 and µ0 = Mψ/2 we obtain c = 0.008xg ∼ 0.04 for our gluon density

xg ≤ 5. A relatively large value of xg = 5 includes/accounts for the power growth of

gluon densities at low x. However, actually this result is overestimated. Indeed, the cross

section of an additional high energy (gluon) interaction is proportional to the c-quark
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separation 〈r2〉. This means that we have to replace in eqn. (4.14) the factor 1/(R2µ2
0) by

the ratio 〈r2〉/R2. At the beginning of the photoproduction process, the photon produces

a point-like cc̄ pair. The lifetime of this pair is about 2Eγ/M
2
ψ, where Eγ is the energy

of the photon. Accounting in addition for the Lorentz factor of the J/ψ, the quarks have

their ‘own’ time τ ∼ 2/Mψ = 1/µ0 to separate from each other. However, the J/ψ meson

is a non-relativistic system and the heavy quark velocity 〈v2〉 ∝ αs is small. That is

we expect the higher-twist contribution to be suppressed by an additional power of αs

and, correspondingly, actually c < 0.015.3 Accounting for the velocity 〈v2〉 ∝ αs can be

considered as a NNLO contribution.

Therefore, this semi-quantitative order of magnitude estimate anticipates, in the region

relevant to our fit (µ2 = 2.4 GeV2 and x = 3× 10−6 − 10−3) a percent level enhancement

due to higher-twist absorptive terms. In our approach, all physics below Q0 (i.e. at scales

µ2 < 2.4 GeV2) is considered as a phenomenological input distribution formed mainly by

non-perturbative interactions inside the proton. We never go below Q0, subtracting all

the contributions with kt < Q0. One therefore cannot use our higher-twist estimate (of

perturbative origin) at lower scales. In principle, there may be other sources of higher-twist

contributions which are not known and that must be extracted from experiment (e.g. in

DIS there is the so-called Vector Meson Dominance (VMD) contribution [173]). However,

there are no reasons for these other contributions to be large or to grow as x→ 0.

4.4 Comparison with low x gluons from D-meson data

As mentioned in the introduction of Chapter 3, it is also possible to determine the low

x gluon density from the data for various modes of inclusive open charm production of

D-mesons and their excited states. In this section, we provide a comparison of the re-

sults obtained from the data for inclusive D-meson production, already appearing in the

literature, and that for exclusive J/ψ production, considered in this work.

Inclusive D-meson production data via pp collisions at the LHC are available at centre

of mass energies 5, 7 and 13 TeV [114, 115, 116]. The kinematics of the different modes

3This correction factor is susceptible to modification by an overall numerical factor which could inflate
our estimate of the relative size of the higher-twist contribution. If one takes into consideration the colour
factor calculated assuming that the low x gluon is emitted by the valence quark in the proton, then there is
an additional factor of 81/16 which enhances our estimate to ∼ 6.5%. However, we stress that our intention
here was solely to show that the higher-twist contribution may be relatively small and that, together with
the additional factor of αs, all the parametric dependence is included in eqn. (4.14).
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of production of the D-mesons allow for a coverage down to x ∼ few × 10−6. In [122] the

authors studied the impact these data for
{
D0, D+, D+

s

}
final states would have on the

small x NLO gluon within the NNPDF3.0 global analysis through a Bayesian reweighting.

While the corresponding NLO calculation for D-meson production suffers from large theory

uncertainties attributed to the dependence on the factorisation scale and large higher order

corrections, construction of ratios of the double-differential cross section in rapidity and

transverse momentum bins provides a means to combat this residual scale dependence

(through cancellation of uncertainties between the numerator and denominator of the ratio)

and thereby quantitatively assess the impact the data would have in the PDF fit. Of course,

the overall normalisation is forfeited but the sensitivity to the x dependence of the gluon is

maintained in this approach. In Fig. 4.5 we show the NNPDF3.0 global gluon reweighted

using the ratios of inclusive D-meson cross section data at
√
s = 5, 7, 13 TeV and evolved

down to the J/ψ scale µ2 = 2.4 GeV2 (the lower grey band). Note that this band is entirely

contained within the blue band for the NNPDF3.0 global gluon. As shown and explained

in [122], the data favour a decreasing gluon at the lowest value of x which the D-meson

data may probe.

This is to be contrasted with the same analysis performed for NNPDF3.1 supplemented

with the inclusive D-meson data but now together with small x resummation [174].4 In

this case, the reweighting favours a much higher gluon, as shown by the upper grey band in

Fig. 4.5. It is known that including the BFKL (small x) resummation (without a kt < Q0

subtraction) the low scale gluons extrapolated into the low x < 0.001 region are too large

and grow too fast (see e.g. [175]). That is, as shown in Fig. 4.6, the cross section prediction

using NNPDF3.1 together with the resummation strongly overshoots the exclusive J/ψ

data while the prediction using NNPDF3.0 is too low.

The comparison of these two (based on NNPDF3.0 and on NNPDF3.1) bands, together

with the inconsistencies of D-meson data mentioned in [123, 124], demonstrates that the

quality and accuracy of D-meson data are not sufficient to get an unambiguous result and

to obtain accurate low x gluons.

4I would like to thank Valerio Bertone for private communications and for providing us with these
constraints in LHAPDF6 format.
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Figure 4.5: Comparison of the low x behaviour of the NLO gluon density xg(x, µ2) at µ2 = 2.4
GeV2 obtained from exclusive J/ψ data and from inclusive D-meson data, see text for details.

4.5 Reweighting of NNPDF3.0 gluon via exclusive J/ψ data

In this work, we too have performed a Bayesian reweighting of the NNPDF3.0 gluon but

this time constrained by the exclusive J/ψ cross section. As discussed above, these data

are in a position to be readily included in a collinear NLO global analysis due to alleviation

of the large scale dependence through implementation of a Q0 cut and resummation of a

class of large logarithms.

The Bayesian reweighting approach [176] takes PDF probability distributions as input

and applies weights wk to these distributions, in accordance with their description of the

new data set. A refined, updated probability distribution is then outputted in this pro-

cedure. Here, the PDF probability distributions correspond to finite ensembles of Nrep

parton distribution Monte-Carlo replicas, fk. Observables O dependent on these PDF
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Figure 4.6: The lower and upper bands are, respectively, the cross section predictions obtained
using NNPDF3.0 and NNPDF3.1 global partons constrained by the D-meson LHCb data [122,
174]. The latter includes low x resummation effects. The shaded blue band is the cross section
prediction obtained based on our reweighting of the NNPDF3.0 NLO global gluon via the
exclusive J/ψ data. The experimental data points are presented as in Fig. 4.2.

distributions are obtained via the expectation values,

〈O〉 =
1

Nrep

Nrep∑

k=1

O(fk), (4.15)

which are updated to

〈Onew〉 =
1

Nrep

Nrep∑

k=1

wkO(fk), (4.16)

in the reweighting prescription. In the literature, two different functional forms have

appeared for the wk, the so-called wGK
k weights proposed by the authors in [176] and those

advocated by the NNPDF collaboration, wNNPDF
k , see [177]. The latter have been shown to

work consistently with the NNPDF fit methodology and are used in this work. The utility
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of this procedure is the ability to assess quantitatively the impact a new data constraint has

on a PDF set, without having to redo a new fit. Another procedure via a Hessian matrix

profiling has also been discussed in the literature, see [178]. Both techniques are fully

implemented in the xFitter framework [179]. An update of the quark and gluon PDFs

from early LHCb electroweak data based on the Hessian method is given in e.g. [180].

We perform the reweighting using the J/ψ data in the region x < 0.01 for the NNPDF3.0

NLO set with Nrep = 1000 replicas. Since the central NNPDF3.0 low x gluons are too

large to describe the J/ψ data (see Fig. 4.2), the Shannon entropy (or effective number of

contributing replicas)5,

Neff = exp


 1

Nrep

Nrep∑

k=1

wk ln(Nrep/wk)


 ≈ 40� Nrep. (4.17)

Therefore, the reweighting approach is not fully adequate. Still, the gluon obtained as a

result of the reweighting procedure, the hatched blue band in Fig. 4.5, is rather close to

that obtained within the fit using ansatz (4.3) (the red band). Since the NNPDF input

distribution is mainly driven by other data at larger x ∼ 0.01 (where the effective value of

λ is noticeably smaller), the reweighted NNPDF3.0 gluon has a slightly less steep growth

at x < 0.001 in comparison with that coming from the power fit (4.3). Correspondingly,

the J/ψ reweighted gluon density overshoots our (power fit) result at x = x0 = 0.001 while

undershooting it at the smallest x = 3 × 10−6.6 On the other hand, our J/ψ reweighting

result demonstrates that the additional J/ψ data add important or new information, which

is to be expected as there were no data in the previous PDF analyses in this domain.

The small value of the Shannon entropy means it would be desirable for the reweighting

procedure to be backed up by a full new global fit. This quantifies the statements in the last

chapter about the utility of the J/ψ data. The closeness of our reweighted gluon with the

5The same analysis was also performed with Nrep = 100, but here Neff = O(1) and the low-x region
was not sampled densely enough. This resulted in the inability to quantify the error in this region in a
statistically meaningful manner.

6The slightly larger normalisation, at x = 10−3, of the prediction based on the reweighting procedure is
due to the greater number of data points that are fitted in this region in the global analysis. For smaller x,
where the only constraining power comes from the exclusive J/ψ data in both the reweighting and power
fit approaches, the predictions are in better agreement. The power fit gluon in Fig. 4.3, however, exhibits
a steeper slope than our reweighted gluon at x = 10−3, evident in the comparison plot of Fig. 4.5. The
effective lambda of the former, λeff > 0, is therefore more enhanced by the Shuvaev transform than the
latter, with λeff ≈ 0. This provides for overlapping bands in the cross section predictions at x ≈ 10−3 based
on both power and reweighted gluons.
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fitted gluons, using particular ansatze, that we have obtained, provides further support for

this claim. Considering all data points with W > 100 GeV, the effective χ2
min/Ndat ∼ 1.07

for the reweighted central cross section prediction. This compares well with the same

statistic computed for the NNPDF3.0 power fit, where χ2
min/Ndat = 0.99. The deviation

of 8% is attributed to the differing behaviours of the two predictions around x = 10−3,

explained above. In principle, one could repeat the analysis using MMHT14 and CT14

parton sets. This would allow us to probe the relevance of the different input distributions

of the three sets. As the MMHT and CT collaborations provide their error sets in Hessian

eigenvector format by default, the first step in the reweighting procedure when using these

sets would be to convert the eigenvector error representation to a Monte-Carlo replica

probability distribution. See also [181] for an alternate approach.

As a main result of this work, exploiting the J/ψ exclusive data we reach a much better

accuracy. Now, down to x = 3× 10−6, the low scale gluons (near the input Q0 value) are

known to better than 5-7% uncertainty.

An interesting observation is that in the low x < 0.001 region, the low scale fitted gluons

start to grow (with 1/x) even faster (as xg(x) ∝ x−λ with λ ' 0.14) than the low scale

global gluons do in the interval 0.001 < x < 0.01. We are able to fit a low x gluon power

ansatz for the large range x < 0.001 with a single slope but find that we cannot extend this

same description to 0.001 < x < 0.01. Attempting to do so results in a worsened fit and

a much smaller λ. Indeed, this reflects the differing behaviour of the NLO global gluons

in the intervals 0.001 < x < 0.01 and x < 0.001, see Fig. 2.1. The fact that the effective

power λ increases with 1/x (within the 10−2 − 10−5 interval) is in contradiction with the

assumption of saturation for which one would expect a decreasing λ → 0 as x → 0. The

data with x < 0.01, therefore, cannot be described by a single power behaviour, indicative

of non-trivial non-perturbative effects in the input proton wave function.

On the other hand note that the power λ ' 0.14 (that we obtained in the description of

the J/ψ data with x < 0.001) is close to that predicted by the NLL BFKL re-summed with

the optimal (BLM [139]) scale renormalisation [182]. Moreover, contrary to the common

expectation, even at x ∼ 10−5 and µ2 = 2.4 GeV2 in our approach we see no hint for the

beginning of parton density saturation.
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4.6 Summary

High energy HERA and LHCb data on exclusive J/ψ production were described us-

ing a consistent collinear factorisation approach at NLO. We fix the ‘optimal’ factori-

sation scale µF = Mψ/2, which allows for the resummation of the double-logarithmic

(αs ln(1/x) lnµF )m corrections into the incoming PDF, and subtract the low kt < Q0

contribution from the coefficient function to avoid double counting between the NLO coef-

ficient function and the contribution hidden in the input PDF (or GPD) at Q = Q0. This

provides good stability of the results with respect to variations of µf . The generalised GPD

distribution was related to the conventional (non-skewed) PDF via the Shuvaev transform.

The renormalisation scale is µR = µf .

With this, we find collinear NLO gluons at µ2 = 2.4 GeV2 which give an excellent

description of all available accurate J/ψ data throughout the very low x interval, 3×10−6 <

x < 10−3, to about ± 5-7 % accuracy at the lowest x. The gluon PDF xg(x, µ2) ∝ x−λ

increases with 1/x with λ = 0.135 ± 0.006 without any hint in favour of parton density

saturation at µ2 = 2.4 GeV2 and x down to 10−5. We emphasise that this does not infer

that the power growth of xg ∝ x−λ will continue indefinitely. Clearly, it must stop at some

very small x. The question was, whether we can see if this growth is directly tamed by

using very low x exclusive J/ψ production data. The present data do not indicate such a

behaviour. This does not mean that the data cannot be described by a more complicated

expression which ultimately, at very small x, will provide saturation. However, within the

presently available x interval, a simple power dependence is consistent with the data and

provides a good description without including the higher-twist terms.

A Bayesian reweighting approach leads to a similar behaviour of the small x gluon that

was determined from our power fits, emphasising the utility and constraining power of

the exclusive J/ψ data. This work therefore clearly demonstrates the gains which will be

achieved once these data are included in the global PDF fits.
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Chapter 5

Exclusive HVM electroproduction

in collinear factorisation at NLO

We compute the exclusive electroproduction, γ∗p→ V p, of heavy quarkonia V to NLO in

the collinear factorisation scheme, which has been formally proven for this process. The

inclusion of an off-shell virtuality Q2 carried by the photon extends the photoproduction

phase space of the exclusive heavy quarkonia observable to electroproduction kinematics.

This process is relevant for diffractive scattering at HERA and the upcoming EIC, as well

as at the proposed LHeC and FCC.

5.1 Introduction

As emphasised in Chapter 1, the exclusive production of vector mesons has long been an

interesting and attractive observable to study. First measured in the fixed target mode and

then in diffractive deep-inelastic scattering (DIS) events at the ep linear HERA collider

more than 25 years ago, they constitute ∼ 10% of the total inclusive DIS cross-section

and are characterised by the presence of a large rapidity gap. They provide a means to

investigate the phenomenology of quarkonium production and function as more sensitive

probes of the low-x and low scale input gluon parton distribution than any other known

high-energy physics phenomenon.

In 1993, around the same time as the first measurements of such diffractive activity in

a collider environment, the exclusive electroproduction of a heavy vector meson (HVM),

V = J/ψ,Υ, ψ(2S), . . . via γ∗p → V p, was showcased to be proportional to the square
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of the gluon PDF [16] in the leading-logarithmic-approximation (LLA) of perturbative

QCD (pQCD), within the framework of kT -factorisation [183, 184, 185, 186]. This is

a high-energy factorisation scheme where observables are expressed as a convolution of

a universal parton distribution function with an off-shell matrix element, retaining the

transverse momentum dependence in the hard scattering coefficient function. The use

of this scheme at LLA is coincident with the leading-order (LO) term in the systematic

expansion of the strong coupling, αs, within the alternate collinear factorisation scheme,

where matrix elements are explicitly on-shell. This process is on solid ground in terms of

the applicability of factorisation theorems and viability of a pQCD treatment due to the

large virtuality Q2 (∼ few GeV2) provided by the incoming photon, γ∗. See [187, 134] for

the proof of the factorisation theorem for this observable.

On the experimental side, the HERMES collaboration [188] reported leptoproduction

measurements for the lightest vector mesons in the range 1 GeV2 < Q2 < 7 GeV2 in fixed-

target kinematics. Exclusive electroproduction data for the J/ψ HVM via dimuon and

dielectron decays has been measured in the collider mode at HERA in a narrow range of

photon virtualities at both ZEUS and H1 experiments, extending up to the largest bin of

〈Q2〉 = 22.4 GeV2 [127, 128]. As in photoproduction, the cross section exhibits a steep rise

with increasing centre of mass energies of the γ∗p→ J/ψp subprocess. Today, in the LHC

era of collider physics, central exclusive photoproduction of vector mesons V have been

measured in the forward rapidity interval 2.0 < Y < 4.5 by the LHCb collaboration via

ultraperipheral pp→ p+V +p collisions instead [47, 189, 48]. These are driven by the hard

scattering subprocesses γp→ V p, measured directly at HERA. Here, the photoproduction

reaction (Q2 = 0) is initiated by a real on-shell photon, γ. Despite the vanishing of this

scale, the factorisation theorems are still assumed to hold for photoproduction since the

masses of the produced final state heavy mesons are above the perturbative scale threshold.

Various theoretical models within pQCD exist in the literature that provide a descrip-

tion of the exclusive heavy vector meson photo and electroproduction processes, see [190]

for a review. In the colour dipole approach, the exclusive HVM formation is dominated

by scatterings in which the photon fluctuates into a qq̄ pair with a transverse separation

r ≈ 0, carrying fractions z ≈ 1/2 and 1 − z ≈ 1/2 of the incoming photon momen-

tum. The dipole model formulation is also able to describe light meson production and

photon hadron scattering and is equivalent to the kT -factorisation formalism in the leading-

ln(1/x)-approximation. Following earlier work, in [125], the explicit kT integral had been

performed in the last cell of evolution, in effect leading to a description beyond the LLA,
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to mimic a subset of the full next-to-leading order (NLO) contribution. This accounts for

those terms in the conventional DGLAP evolution that are enhanced at small x and that in

an axial gauge correspond strictly to gluon-ladder-rung Feynman diagrams. However, we

emphasise this does not encompass the complete NLO contribution that one would obtain

in the conventional systematic evaluation of Feynman diagrams within the MS collinear

factorisation framework.

In this chapter, we remain entirely within the collinear factorisation set-up at NLO to

extract the electroproduction renormalised transverse and longitudinal coefficient functions

to NLO in the MS scheme. Previously in the literature [18, 191], next-to-leading order MS

coefficient functions were calculated in the case of photoproduction of HVMs. The authors

of [18] constructed the imaginary part of Feynman diagrams via Cutkosky-cuts in the s-

channel and then restored their real parts using the corresponding u-channel contributions,

via a dispersion relation. For the quark initiated subprocess, which only occurs at NLO,

they find that such a dispersion integral is readily convergent and are able to directly

restore the real part. However, for the gluon contribution at NLO, they find it necessary to

construct a once-subtracted dispersion integral. The gluon contribution at the subtracted

point is computed by arguing the extension of the low energy theorem for radiation of a soft

photon, a result from QED and due to Low [192], to the non-abelian case of QCD. In our

approach for electroproduction, we directly compute the real and imaginary parts of the

amplitude using a semi-automated integral reduction procedure. As will be discussed and

explained, the zero photon virtuality limit of our electroproduction coefficient functions

coincide with these photoproduction results. Note that a subset of the authors in [18] also

computed the electroproduction of light neutral vector mesons Ṽ = ρ0, ω and φ [193]. In

our computation, both the virtuality of the photon and the mass of the heavy quark are

included and constitute massive scales, which adds complexity.

In [102, 107], and as discussed in Section 2.5.1 and 2.5.2, the exclusive J/ψ photopro-

duction result within collinear factorisation at NLO was shown to no longer have a huge

theory scale uncertainty as a result of the implementation of a crucial low-Q power cor-

rection and resummation of logarithmically enhanced low-x terms. This treatment, that

avoids a critical double counting, was a necessary supplement in combating the residual

scale dependence of the MS result, as the exclusive J/ψ photoproduction sits at a low

x ∼ 10−5 and low Q2 ∼ 2.4 GeV2. Upsilon photoproduction [194], γp→ Υp, on the other

hand, suffers less from such perturbative instability due to its higher mass, but this comes

hand in hand with suppressed cross-section rates and lack of statistics. The exclusive J/ψ
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production has therefore been, as of late, the more forthcoming phenomenological mode of

study, particularly in searches of gluon saturation and/or recombination effects. We antic-

ipate that the effects of this Q0-subtraction [109], where Q0 is the input scale of DGLAP

evolution, are also less important for our electroproduction calculation as the typical pro-

cess factorisation scale is much greater and the subtraction generates a power correction

∼ O(Q2
0/Q

2) which is formally suppressed in this case.

The chapter is organised as follows. In Section 5.2.1, we give our set-up and model

assumptions within collinear factorisation at NLO. In Section 5.3, we outline the workflow

of our calculation. In Section 5.4 and Section 5.5, we give analytic expressions for the LO

and NLO coefficient functions for the quark and gluon initiated subprocesses. We finish,

in Section 5.6, by checking the explicit cancellation of initial state mass divergences to

NLO within a consistent UV and IR subtraction scheme, before making a comparison with

literature and presenting the chapter summary in Sections 5.8 and 5.9 respectively.

5.2 Notation and collinear factorisation

5.2.1 Kinematics and set-up

P − ∆/2 P + ∆/2

q + ∆/2 q − ∆/2

Figure 5.1: Schematic representation of HVM electroproduction.

We describe the matrix element for exclusive HVM electroproduction as the fluctuation

of a hard incoming photon with momentum qµ + ∆µ/2 into a heavy QQ̄ pair, which then

interacts with the proton (or nuclei) carrying momentum Pµ − ∆µ/2 via a two-parton

colour singlet exchange mechanism, as shown in Fig. 5.1. The proton recoils slightly with

momentum Pµ + ∆µ/2. The modelling of the open quark-antiquark recombination into

the observed exclusive final state HVM with momentum qµ − ∆µ/2 is made, as in [18,

191], via LO Non-Relativistic-QCD (NRQCD). In this approach, the amplitude for the
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production of two on-shell heavy quarks is calculated and projected onto the outgoing HVM

quarkonium state. The amplitude can be expanded in powers of αs and the heavy quark

relative velocity. Here, we compute the αs corrections. The relativistic corrections have

been studied elsewhere, see [136]. To LO in the NRQCD relative velocity expansion, the

momenta of the quark and anti-quark are equal such that their sum equals the momentum

of the HVM.

Following the set-up in [195], the three independent momenta defined above may be

decomposed in terms of high energy light-like Sudakov basis vectors {p, n,∆⊥} , satisfying

p · p = n · n = 0 and p · n = 1. See Appendix A.0.1 for their explicit definition. The mean

of the incoming and outgoing proton momenta, Pµ, defines the collinear direction.

In this basis, the momenta decompose as

Pµ = pµ +
M2
N − t/4

2
nµ, (5.1)

qµ = −ζpµ +
Q̃2

2ζ
nµ, (5.2)

∆µ = −2ξpµ + ξ(M2
N − t/4)nµ + ∆µ

⊥, (5.3)

where MN is the initial and final state proton mass and q2 = −Q̃2 and ζ are auxiliary

parameters. Here, t = ∆2 and ξ is the skewedness parameter. The analogue of the Bjorken

scaling variable is defined as

xB =
Q̃2

2P · q , (5.4)

which allows us to write

ζ =
Q̃2

2xB(M2
N − t/4)

(
−1 +

√
1 +

4x2
B(M2

N − t/4)

Q̃2

)
. (5.5)

To leading-twist accuracy, we may take the Bjorken limit, Q̃2 →∞ with xB fixed. Then

lim
Q̃2→∞, xB fixed

ζ = xB (5.6)
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with

lim
Q̃2→∞, xB fixed

Pµ = pµ, (5.7)

lim
Q̃2→∞, xB fixed

qµ = −xBpµ +
Q̃2

2xB
nµ, (5.8)

lim
Q̃2→∞, xB fixed

∆µ = −2ξpµ. (5.9)

Let us now impose that the incoming photon (outgoing HVM) is off-shell (on-shell).

This means

(qµ + ∆µ/2)2 = −Q̃2

(
1 +

ξ

xB

)
= Q2, (5.10)

(qµ −∆µ/2)2 = −Q̃2

(
1− ξ

xB

)
= M2, (5.11)

and therefore,

Q̃2 = −Q
2 +M2

2
and

ξ

xB
=
Q2 −M2

Q2 +M2
, (5.12)

where Q2 is the virtuality of the photon and M2 is the mass squared of the HVM.

In the Bjorken limit to leading-twist accuracy, i.e. neglecting the masses of the protons,

the kinematics of the process have simplified and can be entirely expressed in terms of Q2,

M2 and ξ. It is in this sense we call Q̃2 and ζ ‘auxiliary’ variables. Here, Pµ ≈ pµ and

∆µ ≈ −2ξpµ, where 2ξ is the ‘kick’ which the active quark or gluon receives along the

collinear direction so that the t-channel momentum exchange, t = ∆2 = 0. The probed

partons (gluons or quarks) carry momenta p1 = (X + ξ) p and p2 = −(X − ξ) p, the

momentum fraction X is integrated over in the convolution with the GPDs.

Note that, as can be seen from eqn. (5.12), the off-shellness, Q2, of the incoming

photon permits the use of the leading-twist term only. The higher inverse powers of Q̃2 in

the systematic twist-expansion are formally sub-dominant. As the photon tends to on-shell

kinematics, Q2 → 0, the scale Q̃2 is kept sufficiently large only due to the mass of the heavy

quark.

We further perform the mappings

pµ → p̂µ = Xpµ, nµ → n̂µ = nµ/X, ξ → ξ̂ = ξ/X, (5.13)
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which reduces the number of dimensionless variables appearing in our description by one.

Note that these transformed basis vectors still respect p̂ · p̂ = n̂ · n̂ = 0 and p̂ · n̂ = 1 and

so all possible scalars formed from our momenta are unaffected by this change.

p1 p2

p5 p3

p4

p1 p2

p5 p3

p4

Figure 5.2: The kinematics of quark and gluon initiated processes. Massive quark lines are
indicated in bold.

Therefore, to leading order in the relative heavy quark velocity and in the Bjorken

limit, the Sudakov decomposed momenta of Figure 5.2 are1

pµ1 = (1 + r1/r3)pµ, pµ2 = −(1− r1/r3)pµ, (5.14)

pµ3 = pµ5 =
(r2 − r1)

2r3
pµ +

r3

2
nµ, pµ4 = −(r1 + r2)

r3
pµ − r3n

µ, (5.15)

where

r1,2 =
Q2 ∓ 4m2

4
and r3 =

Q2 − 4m2

4ξ̂
.

Our convention is that all momenta are incoming. Moreover, in accordance with the leading

term in the NRQCD expansion, we make the approximation that the on-shell pole mass of

the heavy quarks is m = M/2.

At leading order only the gluon induced process,

γ∗(p4) + g(p1)→ Q(−p5) + Q̄(−p3) + g(−p2), (5.16)

contributes. At NLO the QQ̄ pair may scatter from a light quark via a gluon exchange

1Henceforth, for notational simplicity, we will suppress the hat notation from the transformed Sudakov
vectors p and n.
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and so a new partonic channel opens. We compute in addition the quark induced process:

γ∗(p4) + q(p1)→ Q(−p5) + Q̄(−p3) + q(−p2), q = u, ū, d, d̄, s, s̄. (5.17)

5.2.2 HVM and GPD spin projections

The S-wave, spin-triplet projection may be written to leading order in the heavy quark

relative velocity as [196, 197, 198]

viα(−p3)ūjβ(−p5)→ −δ
ij

4Nc

1

4m2

(〈O1〉V
m

) 1
2 [

(−/p3
−m)/ε∗S(− /K +M)(−/p5

+m)
]
αβ
, (5.18)

where, in the non-relativistic limit, we take the vector meson momenta K = 2p3 = 2p5

and mass M = 2m. Here, ūjβ (viα) is the outgoing heavy quark (anti-quark) spinor. The

indices i and j label their colour while α and β label their spin. 〈O1〉V represents the

non-perturbative NRQCD matrix element. The vector εS describes the polarisation of the

HVM; it satisfies εS · ε∗S = −1 and K · ε∗S = 0. In eqn. (5.18), relative to [198], we have

an overall minus sign. It multiplies the overall amplitude and so has no effect on the cross

section. Note that the form of eqn. (5.18) differs from that used in [18]. There, they use

viα(−p3)ūjβ(−p5)→ δij

4Nc

1

4m2

(〈O1〉V
m

) 1
2 [
/ε∗S(− /K +M)

]
αβ

(5.19)

for the HVM spin projection. Our projector has therefore an additional term ∼ Kν which

will in any case vanish due to K · ε∗S = 0. In essence, this allows for gauge dependent terms

to cancel at the diagram level thereby avoiding the introduction of extraneous terms that

would conspire to cancel. The utility of this modification to the projector will become

clear in the next subsection.

Quark: On a pragmatic level, in our calculation the quark GPD contraction is imple-

mented as a spin projection of the on-shell quark scattering matrix. We replace the spinors

of the quark and anti-quark connecting to the quark GPD, F q(X, ξ), by

uiα(p1)ūjβ(−p2)→ δij

Nc

1

2
F q(X, ξ)/pαβ. (5.20)

The factor /pαβ will result in a trace over the spin line of the quarks connecting to the GPD

at the amplitude level. This can be understood by considering the numerator of a quark
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diagram. Representing the product of quark propagator numerators as [A] and applying

the spin projection we obtain

ūβ(−p2) [A]βα uα(p1)→ [A]βα /pαβ = Tr
[
A/p
]
. (5.21)

Gluon: Similarly, for the gluon induced partonic channel the contraction with the gluon

GPD, F g(X, ξ), is implemented as a projection of the on-shell gluon scattering matrix.

Throughout this chapter we will use dimensional regularisation in d = 4 − 2ε space-time

dimensions and make the replacement

εµ1 ε
∗
2
ν → − δab

(N2
c − 1)

1

2

1

(d− 2)

F g(X, ξ)

x+x−
gµν⊥ , (5.22)

where εµ1 and ε∗2
ν are the polarisations of the incoming and outgoing gluons respectively.

Here, x+ = X + ξ − iδ and x− = X − ξ + iδ. The correct iδ prescription for the poles

has been discussed extensively in the literature, see for example [199]. The prescription

given here is valid for both DVCS and HVM production [200, 18]. Here the indices a,

b are gluon colour indices in the adjoint representation. The factor 1/(N2
c − 1) averages

over the gluon colours. The factor 1/(d− 2) is the reciprocal of the number of transverse

polarisations of a gluon in d dimensions. It appears due to the average over the gluon

polarisations. The factor of 1/2 is required to prevent double counting when both s and

u channel gluon diagrams are computed (as done here) and the momentum fraction X

is integrated over from −1 to 1 (see later). The object gµν⊥ carrying the gluons’ Lorentz

indices is the perpendicular metric tensor, see Appendix A.0.1.

5.2.3 Lorentz-invariant tensor decomposition

We consider only the vector part of the amplitude at leading twist and at t = 0. Higher-

twist terms are formally suppressed and axial-vector contributions are neglected, as they are

not needed here with an unpolarised nucleon in the initial state. As shown in Section 5.2.1,

in the Bjorken limit at leading twist, all of our external kinematics can be expressed in the

Sudakov basis {p, n} with ∆⊥ = 0. We decompose the part of the amplitude insensitive

to the helicities of the incoming partons in the nucleon target in terms of the available

Lorentz structure in this basis. Explicitly, we factor off the polarisation vectors for the
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incoming photon and outgoing HVM and work with the amputated amplitude T (µν).2 It

follows that

T (µν) = Agµν +Bpµnν + Cnµpν +Dpµpν + Enµnν , (5.23)

where A,B,C,D and E are the arbitrary coefficients of the decomposition. Imposing

local current conservation at the photon vertex, p4,µT (µν) = 0, together with the identity

KνT (µν) = 0, constrains the coefficients. The former is the familiar Ward-identity while

the latter is, strictly speaking, not as it holds at the Feynman diagram level and is true

due to our choice of HVM spin projection, eqn. (5.18), as discussed in Section 5.2.2. The

equations p4,µT (µν) = 0 and KνT (µν) ≡ 2p3,νT (µν) = 0 give

Apν4 +B(p · p4)nν + C(n · p4)pν +D(p · p4)pν + E(n · p4)nν = 0, (5.24)

Apµ3 +B(n · p3)pµ + C(p · p3)nµ +D(p · p3)pµ + E(n · p3)nµ = 0. (5.25)

Insertion of the momenta, pµ3,4 = αp3,4p
µ + βp3,4n

µ, and using the linear independence of

pµ, pν , nµ and nν , the system admits the resulting matrix form:




αp4 0 αp4 βp4 0

βp4 βp4 0 0 αp4

αp3 αp3 0 βp3 0

βp3 0 βp3 0 αp3







A

B

C

D

E




= 0. (5.26)

This matrix has rank 3 so there are at most only two linearly independent coefficients in

the system. If we parametrise freely, A = −T⊥ and D = T̃L/4, then

T (µν) = −gµν⊥ T⊥ +

(
p4 · p
p4 · n

nµ − pµ
)(

p3 · p
p3 · n

nν − pν
)
T̃L
4

(5.27)

= −gµν⊥ T⊥ + `µνTL, (5.28)

where

`µν =
N
4

(αnµ − pµ) (βnν − pν) and TL = T̃L/N , (5.29)

2The round brackets (µν) denote the vector part of the amplitude, T , which is all that is needed in the
description of an unpolarised measurement.
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with

α ≡ p4 · p
p4 · n

and β ≡ p3 · p
p3 · n

. (5.30)

An explicit exposition of the available Lorentz structure has therefore produced a man-

ifest decoupling of the system into two overarching degrees of freedom, parametrised by

T⊥ and TL. Contractions of eqn. (5.28) with explicit realisations of the physical transverse

and longitudinal polarisation vectors of the photon εγµ and HVM εV ∗ν pick out one of the

two scalar coefficients in each case. This may be seen as follows. The transverse polarisa-

tion vectors have only a transverse component in their Sudakov-basis decomposition so, by

construction, their contraction with pµ, pν , nµ, nν in `µν vanishes and the only contribution

is due to gµν⊥ :

εγ±,µε
V ∗
±,ν T (µν) = −εγ±,µεV ∗±,ν gµν⊥ T⊥ = −εγ± · εV ∗± T⊥ = T⊥, (5.31)

where εγ±,µ and εV ∗±,ν are the transverse polarisation vectors for the photon and HVM in

the helicity basis, respectively. The corresponding longitudinal polarisation vectors are

εγ,µL =
2Qξ̂

M2 −Q2
pµ +

(Q2 −M2)

4Qξ̂
nµ, (5.32)

εV,ν∗L =
2Mξ̂

M2 −Q2
pν +

(Q2 −M2)

4Mξ̂
nν , (5.33)

satisfying εγL · ε
γ
L = −1 and p4 · εγL = 0, with similar relations for the HVM. Then,

εγL,µε
V ∗
L,ν T (µν) = εγL,µε

V ∗
L,ν `

µν TL, (5.34)

where there is now no contribution from gµν⊥ . This may be understood from the general

expression for a longitudinal polarisation vector, εµL(q), of a boson of mass M carrying

momentum q,

εµL(q) =
1

M

(l · q)qµ −M2lµ√
(l · q)2 −M2

. (5.35)

Indeed, the contraction of this object and the perpendicular metric tensor gives

− εL,µ(q)gµν⊥ ∼ ((l · q)qµ −M2lµ)(−gµν + pµnν + pνnµ) = 0, (5.36)

where, for example, l = (1, 0, 0, 0) satisfies l2 = 1.
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The decompositions in eqns. (5.27,5.28) are therefore readily identifiable as a separa-

tion into transverse and longitudinal components, with T⊥ and TL having the physical

interpretation now as the process’s transverse and longitudinal form factors, respectively.

We choose N in `µν such that

εγL,µε
V ∗
L,ν `

µν = 1. (5.37)

With this choice3, the transverse and longitudinal helicity amplitudes, A±± = εγ±,µε
V ∗
±,νT (µν)

and A00 = εγL,µε
V ∗
L,ν T (µν), are equal to T⊥ and TL, respectively. Note also that the intro-

duction of the N factor into `µν in eqn. (5.29) allows for both tensors in multiplication

with the scalar coefficients T⊥ and TL to have mass dimension zero. In this way, one may

extract these coefficients in turn through suitable projections onto the T (µν) structure.

We remark that eqn. (5.27) coincides with the leading-twist tensor decomposition found

in Generalised-Deeply-Virtual-Compton-Scattering (GDVCS), see e.g. [201], upon neglect-

ing the axial-vector and helicity flip contributions. This is to be expected as the only

distinction in the kinematical set-up is the final state production of a heavy photon in-

stead of a heavy vector meson that we have here, however this remains indifferent in the

construction of the underlying tensorial structure and the applicability of our Ward and

Ward-like identities.

The vector part of the amplitude may be written, using collinear factorisation, as

T (µν) =− gµν⊥
∫ 1

−1

dX

X

[∑

q

F q(X, ξ)C⊥,q

(
ξ

X
,Q2

)
+ C⊥,g

(
ξ

X
,Q2

)
F g(X, ξ)

X

]

+ `µν
∫ 1

−1

dX

X

[∑

q

F q(X, ξ)CL,q

(
ξ

X
,Q2

)
+ CL,g

(
ξ

X
,Q2

)
F g(X, ξ)

X

]

+ . . . .

(5.38)

where the ellipses represent contributions that appear beyond the leading term in the twist

expansion and outwith the chiral-even theory with t = 0, but which would appear in e.g.

polarised scattering or if the nucleon mass would not be neglected. The renormalised quark

and gluon GPDs are denoted F q and F g respectively. C⊥,q and C⊥,g are the renormalised

quark and gluon vector transverse coefficient functions, while CL,q and CL,g are the renor-

3This degree of freedom is evident in eqn. (5.29), where the introduction of N allows for a shuffling of
terms between `µν and TL.
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malised quark and gluon vector longitudinal coefficient functions. The dependence of the

GPDs F q and F g on the factorisation scale µF and on t has been suppressed. The depen-

dence of the renormalised coefficient functions C⊥,q, C⊥,g, CL,q and CL,g on m2, µF and the

renormalisation scale µR has been suppressed, too. We recall that the Lorentz indices µ

and ν are those of the incoming photon and outgoing HVM respectively. Measurements of

HVM production from unpolarised targets probe only the charge conjugation even quark

GPD and so we may replace
∑

q F
q with the singlet quark GPD FS/2. There is also an

additional photon helicity flip term which is not considered here due to our kinematical

set-up.

5.3 Overview of calculation

We generate all LO and NLO Feynman diagrams using QGRAF [202] and select those di-

agrams that are compatible with our external colour and kinematical constraints. Each

selected diagram is converted into an expression through insertion of Feynman rules, de-

rived in an arbitrary linear covariant gauge. The appropriate GPD quark or gluon projector

is applied to each diagram, together with the HVM spin projection, and the resulting Dirac

traces are computed and handled in FORM4.2 [203] in d = 4− 2ε space-time dimensions.

Due to the external colour and kinematical constraints, the integral structures obtained

contain in general linearly dependent propagators. They therefore cannot be reduced in the

typical fashion using standard integral reduction tools. We express them first as structures

containing only linearly independent propagators by applying a partial fractioning routine

in line with the Leinartas’ algorithm [204]. In this way, we eliminate the linear dependence

amongst the propagators and proceed with the integral reduction via REDUZE 2 [100] which

encodes Laporta’s integration by parts algorithm [101].

We obtain bare electroproduction transverse and longitudinal NLO coefficient functions

expressed in a basis of logarithms and dilogarithms arising from the Feynman integration.

Finally, the singular terms in ε are removed via a consistent ultraviolet (UV) and in-

frared (IR) subtraction scheme to render finite renormalised coefficient functions that may

be suitably convoluted with GPDs to produce observable predictions.

All results presented below are given in the ERBL region, |ξ̂| > 1 (i.e. |X| < ξ), where

we expect an absence of imaginary parts. The results in the physical region, |ξ̂| < 1 (i.e.

|X| > ξ), may be obtained by restoring the correct analytic continuation. Explicitly, this
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is

ξ̂ → ξ̂ − sgn(ξ̂) iδ with δ → 0+. (5.39)

The coefficient functions are expanded in the bare strong coupling âs = α̂s/(4π) as,

Ĉi,j = âs Ĉ
(0)
i,j + â2

s Ĉ
(1)
i,j +O(â3

s), (5.40)

with i =⊥, L and j = q, g.

5.4 LO results

At leading-order (LO) in αs, there is only a gluon initiated subprocess. There is no contri-

bution from an initial state light quark as it may only couple to the outgoing heavy quark

system via a loop-induced gluon insertion at next-to-leading-order (NLO).

There are 8 tree level diagrams at LO generated by QGRAF, two of which contain a

single gluon exchange. A single gluon exchange is ∝ fabc, which vanishes due to our GPD

spin projection ∝ δab and antisymmetry of the SU(3) structure constants. The tree level

contribution is therefore dominated by a gluon-gluon (pomeron-like) exchange,

γ∗(p4) + g(p1)→ Q(−p5) + Q̄(−p3) + g(−p2). (5.41)

The six tree level gluon initiated subprocess diagrams are shown in Fig. 5.3. The bare

(denoted by hat script) transverse and longitudinal coefficient functions at LO are

Ĉ
(0)
⊥,q = Ĉ

(0)
L,q = 0, (5.42)

while

Ĉ
(0)
⊥,g =

2(w2 − 1)

w2

TF
Nc

B0, (5.43)

and

Ĉ
(0)
L,g = −2

√
w2 − 1

w2

TF
Nc

B0. (5.44)

Here,

B0 = (4π)2 geeq

(〈O1〉V
m3

) 1
2 X2

(X − ξ + iδ)(X + ξ − iδ)
, (5.45)

where ge (gs) is the electromagnetic (strong) coupling, eq is the photon-quark charge and
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(1) (2) (3)

(4) (5) (6)

Figure 5.3: The six gluon LO diagrams.

〈O1〉V is the NRQCD matrix element. The colour factor TF = 1/2, and

w =

√
1− 4m2

Q2
. (5.46)

Eqns. (5.42-5.44) are true up to and including O(ε). There is a cancellation of ε terms

between those appearing in the 1/(d− 2) factor of eqn. (5.22) and those in the numerators

of the Feynman diagrams. This observation is important as the tree level results enter

into the renormalisation of the NLO result. We will therefore not generate finite surplus

contributions of the form ε/ε in the computation of the NLO counterterms, see Section 5.6.

The Q2 → 0 (i.e. w → ∞ ) limit of these results coincide with the photoproduction

result, [18], where only the amplitude to produce a transversely polarised HVM is non-

vanishing.4 Note that the limiting point w → 0 is not kinematically attainable. The

production of a time-like vector meson (with invariant mass squared, M2 = 4m2 > 0)

initiated by a space-like photon, Q2 < 0, does not, as expected within the analytic structure

of the S-matrix, produce a pole at LO.

4Away from t = 0, the quantum numbers of the photon and the HVM need not be the same so there is
an (albeit suppressed) amplitude to produce a longitudinally polarised HVM from a transversely polarised
photon.
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5.5 NLO results

At NLO, there are quark and gluon initiated subprocesses. We compute

γ∗(p4) + g(p1)→ Q(−p5) + Q̄(−p3) + g(−p2), (5.47)

γ∗(p4) + q(p1)→ Q(−p5) + Q̄(−p3) + q(−p2), q = u, ū, d, d̄, s, s̄, (5.48)

and express our bare quark and gluon NLO coefficient functions in terms of sets of coef-

ficients ci and a universal basis set {fi, i = 1, . . . , 12} of logarithms and dilogarithms that

arise from the Feynman loop integration. They are

f1 = 1, f2 = ln

(
w − 1

w + 1

)
, f3 = f2

2 , f4 = ln

(
2w2

w2 − 1

)
,

f5 = f2
4 , f6 = ln

(
2vw2

vw2 − 1

)
, f7 = 2f4f6 − f2

6

f8 = Li2

(
1− v

v(w2 − 1)

)
, f9 = Li2

(
1 + w2

1− w2

)
,

f10 = Li2

(
− 1

vw2

)
+ Li2

(
1 + v

1− vw

)
+ Li2

(
1 + v

1 + vw

)
+ Li2

(
v − 1

v2w2 − 1

)
,

f11 =

√
−1 +

2(1 + v)

1 + vw2
ln

(
1 + vw2

v(w2 − 1)

(
1 + v

1 + vw2
+

√
−1 +

2(1 + v)

1 + vw2

))
,

f12 = f2
11.

(5.49)

See Appendix A.0.2 for the definition of the dilogarithm, Li2. Here, v = ξ̂/w2 and so, with

this choice of variables, the analytic continuation to the DGLAP regime, as specified in

eqn. (5.39), is restored via

v → v − sgn(v)iδ with δ → 0+ and where sgn(v) = sgn(ξ̂). (5.50)

5.5.1 Linear Reduction

Within the framework of collinear factorisation in the Bjorken limit, the initial state quark

and gluons connected to the non-perturbative GPDs are collinear partons. Moreover, at

leading-order in the NRQCD expansion, the relative velocity of the outgoing heavy quark

and anti-quark is zero. Together with overall energy-momentum conservation, this amounts

to non-trivial linear dependences in the external kinematic scales due to the inputs of our
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model construction. Explicitly, from eqns. (5.14-5.15), these are

• ∑5
i=1 pi = 0,

• p1 ∝ p2,

• p3 = p5.

This leads to linearly dependent propagators in our loop integrals. We exploit the

possible linear relationships amongst the propagators, obtainable via the SolveAlways

routines in MATHEMATICA, and use them in the first step to cure the problem of linear

dependence in our five-leg NLO matrix element computation.

Algorithm

The permissible (cubic) interaction vertices for the quark and the gluon within the QCD

Lagrangian allow for at most a pentagon integral to appear in our NLO one-loop matrix

element. In order to proceed with a programme of integral reduction using standard

tools such as e.g. REDUZE 2 [100], the problem of linear dependence amongst the external

kinematic scales must be eliminated. With this in mind, we utilise a generalised partial

fractioning routine in line with the Leonartas’ algorithm [204], in which linear relations

amongst the propagators are used to iteratively remove this linear dependence. Valid

only at one-loop, this allows for the systematic decomposition of the pentagon integral

(containing five propagators) to box integrals (containing four propagators) and then finally

to triangle integrals (containing three propagators). This is sufficient as the constraints

above imply that one can form at most three linearly independent momenta from the set

{l, pi}, where l is the loop momentum. This coincides with the combinatorial number

N = L(L + 1)/2 + LE of scalar products or linearly independent propagators one can

form between L loop momenta and E linearly independent external scales. Here, L = 1

and E = 2 as we compute a one-loop correction with all external momenta decomposed in

terms of two basis vectors, p and n.

In a generic multi-loop and multi-scale computation, one deals with tensor integrals

comprising products of the various loop momenta, lµ1 , l
ν
2 , . . . in the numerator and products

of propagators in the denominator, containing the external scales pj . The aim is to write

such integrals as a sum of scalar integrals, which are then subsequently reduced to a

basis of master integrals using reduction procedures implemented in various tools, such as
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REDUZE 2 used here. At one-loop, the tensor integrals are of the form

Iµ···ν(ν1, . . . , νN ) =

∫
[dl]

lµ · · · lν
Dν1

1 · · ·DνN
N

, (5.51)

where Di = (l + qi)
2 −m2

i + iε, with mi the mass of the ith propagator and νi are integer

powers. Here, the notation [dl] denotes the integration measure for the loop integration and

contains the overall normalisation factors of our loop integrals, given later in eqn. (5.73).

The qi are linear combinations of the external momenta. As our amplitude is written

with two free Lorentz indices, µ and ν, for the incoming photon and outgoing HVM, we

need at most a basis decomposition for the rank-two tensor lµlν . The rank-one tensor

decomposition in our chosen Sudakov basis is simply

lµ = (l · n)pµ + (l · p)nµ, (5.52)

while

lµlν = gµνT00 + pµpνT11 + pµnνT12 + nµpνT21 + nµnνT22, (5.53)

where the tensor coefficients are found to be

T00 =
lρlσ

(d− 2)
(gρσ − pρnσ − nρpσ), (5.54)

T11 = lρlσnρnσ, (5.55)

T12 =
lρlσ

(d− 2)
(−gρσ + pρnσ + (d− 1)nρpσ), (5.56)

T21 =
lρlσ

(d− 2)
(−gρσ + (d− 1)pρnσ + nρpσ), (5.57)

T22 = lρlσpρpσ. (5.58)

After performing this tensor reduction in the Sudakov basis5 the resulting scalar integrals

resume the form

I(ν̃1, . . . , ν̃N ) =

∫
[dl]
N (l · l, pi · l)
Dν̃1

1 · · ·Dν̃N
N

(5.59)

multiplied by tensor structures depending only on the external momenta (those structures

5Expansion of the rank-one and -two tensors in the basis of external momenta {pj , j = 1, . . . , 5} instead
leads to a vanishing Gram determinant in the solution of the coefficients Tij via linear algebra matrix
inversion. This is a reflection of the linear dependence amongst the external momenta. Note also in four
dimensions, there can be at most four linearly independent external momenta.
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appearing in eqn. 5.53). In general, ν̃i 6= νi.

The massive version of the Passarino-Veltmann reduction formulae [205] are employed

to cast each appearing scalar product as a linear combination of the Di. These are

l · l = D1 +m2
1, (5.60)

l · pi =
1

2

[
(l + qi)

2 +m2
i − (l + qi−1)2 −m2

i−1 − q2
i + q2

i−1

]
, (5.61)

=
1

2

[
Di −Di−1 +m2

i −m2
i−1 − q2

i + q2
i−1

]
. (5.62)

For higher powers of scalar products, these formulae may be used iteratively. The naive

finalised set of scalar integrals are then

I(ν̂1, . . . , ν̂N ) =

∫
[dl]

1

Dν̂1
1 · · ·Dν̂N

N

, (5.63)

where again, in general, ν̂i 6= ν̃i. At this point, typically all such integrals obtained

are converted to an ordered string and read by the software that is used to perform the

reduction to a basis of master integrals. However, as noted above, due to the linear

dependence in our external scales giving rise to linearly dependent propagators, this step

is premature and would otherwise lead to an incomplete reduction (where the basis of

master integrals is not minimal). We now discuss the manner in which we alleviate this

linear dependence.

For each integral structure of the form C · Dν̂1
1 · · · Dν̂n

n , where C is a function of

the external scales only, establish whether there exists a linear dependence amongst the

denominators. If not, then the integral need not be considered further here and may be

passed to the integral reduction stage. If there is such a dependence, then there exists a

relation of the form ∑

i

AiDi +B = 0, (5.64)

where again the Ai and B are functions of the external scales only. Suppose B 6= 0. Then

we can multiply the integral structure by the identity

1 = − 1

B

∑

i

AiDi. (5.65)

If, however, there is a dependence but B = 0, then choose some Dk and multiply the
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integral structure instead by

1 = − 1

AkDk

∑

i 6=k
AiDi. (5.66)

In this way, through a careful resolution of unity, we have systematically expressed an in-

tegral structure containing n denominators as a sum of structures containing n−1 denom-

inators. The procedure should be repeated until the linear dependence has been removed.

In one (two) iteration(s) of the algorithm, this allows, for example, the box (pentagon)

integral to be linearly decomposed into a sum of triangle integrals.

Other solutions also exist in the literature to cure such linear dependences. In [206],

for example, a method was devised to generate supplementary IBP identities accounting

for linearly dependent momenta. This, however, requires a manual override of the IBP

identities generated within the integral reduction tools and, moreover, leads to the in-

troduction of many additional redundant equations in the system. A different procedure

from this, but again based on a generalised partial fractioning routine, was implemented in

the $Apart package. In its first guise [207], this allowed for the decomposition of a prod-

uct of propagators from the integral topology {D1, . . . , Dn}, containing linearly dependent

momenta, to be expressed as a sum of terms containing propagators
{
D̃1, . . . , D̃n

}
with

linearly independent momenta. Here, in general, D̃i 6= Di. The momentum shifts that the

package performs therefore may produce a decomposition into structures containing dif-

ferent propagators from those in the original topology, which can be non-optimal for some

applications. Recently, this was circumvented through an updated $FCApart routine in

FeynCalc for one-loop integrals and $ApartFF for multi-loop ones. We have checked that

the package then produces results in the same vein as that of the Leonartas’ algorithm.

5.5.2 Integral Reduction

We map each Feynman diagram topology appearing in the quark and gluon subprocesses to

a so-called naive auxiliary topology (NAT), defined as an auxiliary topology, see Section 2.4,

generated neglecting the linear dependence of the external momenta (except that due to

overall energy-momentum conservation). This mapping is surjective and we find that we

can associate every diagram topology to at least one NAT in a collective set of fourteen.

The explicit composition of each NAT is given in Appendix D.

As mentioned above, the rank-one and -two tensor user-specified decompositions above

allow each diagram to be expressed as a linear combination of integral structures built
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out of the linearly dependent propagators within its associated NAT and powers of scalar

products between p, n and the loop momentum, l. After the use of the Passarino-Veltmann

reduction formulae, the resulting integral structures are then linearly decomposed according

to the Leinartas’ algorithm [204], see above, before the finalised set of scalar integrals are

expressed in terms of a basis of master integrals according to the output of REDUZE 2 [100].

This linear reduction algorithm maps integrals in a given NAT to integrals belonging to a

sub-topology of the given NAT. The sub-topologies are chosen such that their propagators

contain only linearly independent momenta. Importantly, the algorithm will not produce

a linear decomposition of an integral appearing in NAT A into integrals belonging to a

different NAT B - it therefore maintains the original mapping of the diagrams to a single

NAT. The utility of this observation is that it allows us to construct a REDUZE 2 database

with at most s = 4 and r = 7 for each NAT and readily express each diagram as a sum

of master integrals. Note that without the implementation of such a procedure, a priori,

the resulting scalar to master integral reduction via common reduction algorithms, such

as REDUZE 2 used here, would be incomplete, as they assume the input external momenta

are linearly independent. We find that all appearing integrals across all NAT’s can be

reduced to a basis set of master integrals comprising one tadpole, six bubbles and fourteen

triangles. For the quark-subprocess, the results may be expressed in terms of the tadpole,

three bubble and two triangle master integrals. All master integrals appearing in the quark

subprocess also appear in the calculation of the gluon subprocess.

The integral reduction procedure generates decompositions containing d dependent

coefficients that multiply the master integrals. These coefficients can give rise to spurious

poles in ε. We find that, in all decompositions across all NATs, a single spurious pole

is only introduced in multiplication with a tadpole or bubble master integral. When an

integral is multiplied by a spurious pole, we expand the integral to O(ε) inclusive. This

produces terms of the form ε/ε which therefore contribute to the finite part of our coefficient

functions. The spurious pole overlaps with the manifest poles in the ε expansion of the

tadpole and the bubble integral and gives rise to double poles in ε. We find, however, that

all double pole contributions vanish at the amplitude level. This is to be expected within

the framework of collinear factorisation.

All one-loop master integrals obtained may be expressed analytically using existing lit-

erature, see [208] and [209]. We have derived expressions for all our master integrals in the

ERBL region, |ξ̂| > 1, and checked them numerically to order ε inclusive, where required,

via QCDLoop [210] and pySecDec [211]. An initial attempt to extract an analytical expres-
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sion for a particular triangle master integral appearing in both the quark and gluon subpro-

cesses via PackageX [212] led to a bug being uncovered in the software’s analytic continua-

tion prescription. This resulted in the generation of an incorrect non-vanishing imaginary

part for this particular integral. Explicitly, the analytic expression that is produced for the

two-mass propagator triangle ScalarC0[Qsq, (4msq + Qsq(-1+xi))/(4 xi), (-4msq +

Qsq(1+xi))/(4 xi), m, m, 0] gives incorrect numerical results for a subset of the ERBL

phase space, namely Q2 < 4m2/(1 − ξ̂2), for a given m > 0 and |ξ̂| > 1. The fault was

reported to the current author of the package and is to be corrected in its next patch

version.6

5.5.3 Quark subprocess

At NLO, there are 62 quark initiated subprocess diagrams generated by QGRAF. All but 12

of these diagrams are not compatible with our colour and external kinematical constraints,

so are rejected. A further 6 collectively vanish, as explained below. The quark q subprocess

amplitude, Aq, to NLO therefore consists of the 6 Feynman diagram contributions, Aa,q,

of Fig. 5.4 with

Aq =
6∑

a=1

Aa,q and where Aa,q ∼
∫

ddl

(2π)d
Tr
(
χ1Γ(1)

a

)
Tr
(
χ2Γ(2)

a

)
. (5.67)

Here, χ1,2 are the HVM and GPD projectors and Γ
(1,2)
a encode the Dirac structure for

each spin line in diagram a. The appearance of a trace at amplitude level is particularly

noteworthy and is a reflection of our external colour and kinematical constraints.

Each of the four quark diagrams where the external photon couples to the open heavy

quark or antiquark lines ((1),(2),(3) and (4) of Fig. 5.4) may be decomposed into a tadpole

and two bubble master integrals that emerge from the Laporta algorithm. When the

photon instead attaches to the heavy quark propagator ((5) and (6) of Fig. 5.4), there is

in addition two triangle master integrals in the diagram decomposition. In this latter case,

we have decomposed a pentagon integral, containing linearly dependent propagators, into

a sum of triangles, bubbles and the tadpole integral which, by construction, contain only

linearly independent propagators.

There are an additional six diagrams, analogous to those of Fig. 5.4, where the photon

6I would like to thank Hiren Patel for this private communication.
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(1) (2) (3)

(4) (5) (6)

Figure 5.4: The six NLO quark subprocess diagrams.

instead attaches to the light quark line. We have checked that the sum of these diagrams

equals zero. In fact, they cancel pairwise and this can be understood as a relative sign

appearing between a diagram and its crossed counterpart. It arises as follows. Consider,

without loss of generality, the two diagrams where the photon attaches to the light quark

propagator on the lower spin line. The trace over the upper heavy quark spin line is the

same for the diagram and its crossed version. The trace over the lower light quark spin

line for the diagram is

Tr(γσ(/l + /q1)γµ(/l + /q2)γρ/p), (5.68)

while that for the crossed diagram is,

Tr(γρ(−(/l − /q1))γµ(−(/l − /q2))γσ/p) (5.69)

= Tr(γρ(/l + /q1)γµ(/l + /q2)γσ/p) (5.70)

= −Tr(γσ(/l + /q1)γµ(/l + /q2)γρ/p). (5.71)

Here, qi are combinations of external momenta and, in the first equality, we used the

reparametrisation invariance of the loop momentum l → −l under the integral. In the

second equality, we used the anticommutivity of the gamma matrices to reorder terms,
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generating a minus relative to eqn. (5.68). Their sum therefore vanishes; a similar argument

holds for the diagrams where the photon instead attaches to an external light quark line.

We normalise our quark NLO coefficient function with the factor

A1 = (4π)4 geeq

(〈O1〉V
m3

)1/2

Cε

(
µ2

0

m2

)ε
, (5.72)

where

Cε =
πd/2

(2π)d
Γ2(d/2− 1)Γ(3− d/2)

Γ(d− 3)
=

1

16π2

(
1− ε(γE − ln(4π))

)
+O(ε2), (5.73)

arises from our loop integrals and the scale µ0 is a mass parameter introduced in dimen-

sional regularisation to maintain a dimensionless bare coupling. We recall that γE is the

Euler-Mascheroni constant. The bare transverse quark NLO coefficient function can be

written in the form

Ĉ
(1)
⊥,q =

T 2
F

N2
c

A1

(
12∑

i=1

c⊥,ifi + {v → −v}
)
, (5.74)

where the fi are given in eqn. (5.49) and the c⊥,i are

c⊥,1 =π2

(−8v2 + 16v − 8

−1 + vw2
+

8v2 + 16v + 8

1 + vw2
+

16

w4
− 32

w2

)
,

c⊥,2 =
32

w3
− 32

w
, c⊥,3 =

−12v2 + 24v − 12

−1 + vw2
+

12v2 + 24v + 12

1 + vw2
+

24

w4
− 48

w2
,

c⊥,4 =− 32

(v + 1) (w2 + 1)
+

16

(v + 1)w2
+

32

(v − 1) (w2 + 1)
− 16

(v − 1)w2
+

32

w2
− 32,

c⊥,5 =0, c⊥,6 =
1

ε

(
64

vw4
+

64v + 64

1 + vw2
− 64

vw2
− 64

w2

)
+
−32v − 64

1 + vw2
− 64

(v − 1) (1 + vw2)

+
32

(v − 1)w2
+ 32, c⊥,7 = − 64

vw4
+
−64v − 64

1 + vw2
+

64

vw2
+

64

w2
, c⊥,8 = −c⊥,7,

c⊥,9 =
−24v2 + 16v + 8

−1 + vw2
+

24v2 + 16v − 8

1 + vw2
+

48

w4
− 32

w2
,

c⊥,10 =
−48v2 + 96v − 48

−1 + vw2
+
−48v2 − 96v − 48

1 + vw2
− 64

vw4
+

64v

w2
+

64

vw2
+ 32v,

c⊥,11 = 0, c⊥,12 = 0.

(5.75)
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Similarly, the bare longitudinal quark NLO coefficient function can be expressed as

Ĉ
(1)
L,q =

T 2
F

N2
c

A1

√
w2 − 1

(
12∑

i=1

cL,ifi + {v → −v}
)
, (5.76)

where the fi are given in eqn. (5.49) and the cL,i are

cL,1 = 0, cL,2 =
32

w
− 64

w3
, cL,3 = 0,

cL,4 =
16

(v + 1)w2
− 16

(v − 1)w2
− 16

v + 1
+

16

v − 1
− 64

w2
+ 32,

cL,5 =0, cL,6 =
1

ε

(
64

vw4
+

64v

1 + vw2
− 64

w2

)
+

64v

1 + vw2
+

32

(v − 1)w2
− 32

v − 1
− 32,

cL,7 =− 64

vw4
− 64v

1 + vw2
+

64

w2
, cL,8 = −cL,7, cL,9 = − 32v

−1 + vw2
− 32v

1 + vw2
+

64

w2
,

cL,10 =− 64

vw4
+

64v

w2
− 32v, cL,11 = 0, cL,12 = 0.

(5.77)

The expressions for both the bare quark transverse and longitudinal coefficient functions

are written in a manifestly symmetrised form, where v → −v corresponds to the physical

ξ̂ → −ξ̂ symmetry. The expressions have been expanded in ε, retaining the singular term

in 1/ε and the finite term, while neglecting O(ε) terms which are not required at this order.

5.5.4 Gluon subprocess

There are 160 gluon initiated subprocess diagrams at NLO, again generated in QGRAF,

of which 63 are zero due to the GPD and NRQCD kinematical constraints. A further

16 vanish because they consist of an internal light quark or heavy quark fermion loop

with two gluon attachments and one photon attachment. The vacuum expectation value

of a time ordered product of an odd number of vector current insertions is zero so, as

the time ordering encapsulates the two possible orientations of the fermion loop flow at

the Feynman diagram level, we have a pairwise cancellation of diagrams in the gluon

sector too, consisting of a closed polygon with three vector boson attachments. This is

an analogous cancellation to that demonstrated in eqns. (5.68)-(5.71), following the same

argument and is the perturbative realisation of Furry’s theorem [213]. There are therefore

81 non-vanishing diagrams for the gluon subprocess at NLO, shown in Fig. 5.5.
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(1) (2) (3) (4)

(5) (6) (7) (8)

(9)

b

(10)

b

(11) (12)

(13) (14) (15) (16)

(17) (18) (19) (20)

Figure 5.5: The NLO gluon subprocess diagrams, continued.
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(21) (22) (23) (24)

(25) (26) (27) (28)

(29) (30) (31) (32)

(33) (34) (35) (36)

(37) (38) (39) (40)

Figure 5.5: The NLO gluon subprocess diagrams, continued.
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(41) (42) (43) (44)

(45)

b

(46) (47)

g

(48)

(49) (50) (51) (52)

(53) (54) (55) (56)

(57) (58) (59) (60)

Figure 5.5: The NLO gluon subprocess diagrams, continued.
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(61) (62) (63) (64)

(65) (66) (67) (68)

(69) (70) (71) (72)

(73) (74) (75) (76)

(77) (78) (79) (80)

Figure 5.5: The NLO gluon subprocess diagrams, continued.
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(81)

Figure 5.5: The NLO gluon subprocess diagrams.

We normalise our gluon NLO coefficient function with the factor

B1 = (4π)4 geeq

(〈O1〉V
m3

)1/2 X2

(X − ξ + iδ)(X + ξ − iδ)
Cε

(
µ2

0

m2

)ε
, (5.78)

where Cε is defined in eqn. (5.73).

The bare transverse gluon NLO coefficient function can be written in the form

Ĉ
(1)
⊥,g =

B1

Nc(N2
c − 1)

(
12∑

i=1

c⊥,ifi + {v → −v}
)
, (5.79)

where the fi are given in eqn. (5.49) and the c⊥,i are

c⊥,1 =
CF

ε

(
−6− 12

w4
+

6

w2
+
−6 + 6v

−1 + vw2
+

6 + 6v

1 + vw2

)
+ CF

(
−32 +

2

1 + v
− 2

−1 + v

+ π2

(
−16 +

16

3w4
− 22− 80v2

3w2

)
− 16

w4
+

40

w2
− 2

(1 + v)w2
+

2

(−1 + v)w2
+

8

1 + w2

+
π2
(
− 22

3 + 85v
3 − 104v2

3 + 41v3

3

)

(−1 + vw2)2
− 2− 2v

−1 + vw2
+
π2
(
− 49

3 + 32v − 7v2

3 − 40v3

3

)

−1 + vw2

+
π2
(
− 22

3 − 85v
3 − 104v2

3 − 41v3

3

)

(1 + vw2)2
+

2 + 2v

1 + vw2
+
π2
(

49
3 + 32v + 7v2

3 − 40v3

3

)

1 + vw2

)

+ CA

(
π2

(
22

3
− 4

w4
+

8(1− v2)

w2

)
+
π2
(

10
3 − 37v

3 + 44v2

3 − 17v3

3

)

(−1 + vw2)2

+
π2
(

9− 58v
3 + 19v2

3 + 4v3
)

−1 + vw2
+
π2
(

10
3 + 37v

3 + 44v2

3 + 17v3

3

)

(1 + vw2)2

+
π2
(
−9− 58v

3 − 19v2

3 + 4v3
)

1 + vw2

)
,
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c⊥,2 =CF

(
8v2w3 − 24v2w +

128v2

w
+
−56v3w + 52v2w − 4vw

−1 + vw2
+
−56v3w − 52v2w − 4vw

1 + vw2

+
40

w3
− 40

w

)
+ CA

(
−64v2

w
+

32v3w − 52v2w + 20vw

−1 + vw2
+

32v3w + 52v2w + 20vw

1 + vw2

− 8

w3
+

8

w

)
,

c⊥,3 =CF

(
32v2

w2
+
−16v3 + 32v2 − 24v + 8

−1 + vw2
+
−16v3 − 32v2 − 24v − 8

1 + vw2
+
−3v3 + 8v2 − 7v + 2

(−1 + vw2)
2

+
3v3 + 8v2 + 7v + 2

(1 + vw2)
2 +

10

w4
− 12

w2
+ 14

)
+ CA

(
−8v2

w2
+

4v3 − 6v2 + 2

−1 + vw2
+

4v3 + 6v2 − 2

1 + vw2

+
3v3 − 8v2 + 7v − 2

(−1 + vw2)
2 +

−3v3 − 8v2 − 7v − 2

(1 + vw2)
2 − 6

w4
+

12

w2
+ 2

)
,

c⊥,4 =CF

(
8v2w4 − 24v2w2 +

72v2 − 44v − 16

−1 + vw2
+

8v2 − 52v − 56

1 + vw2
+ 16v2 − 4vw4 + 20vw2

+
4w2 + 4

w2 − 8

(v + 1)2
+

8

(v + 1) (w2 + 1)
− 8

(v + 1) (vw2 − 1)
+

8

(w2 + 1) (vw2 + 1)
− 64v

w2

+
−4w4 − 8w2 − 8

w2 + 12

v + 1
− 32v + 4w4 + 4w2 − 72

w2 + 1
+

16

(w2 + 1)
2 +

56

w2

)

+ CA

(−8v2 + 20v − 12

−1 + vw2
+

8v2 + 4v − 4

1 + vw2
+

8− 8
w2

v + 1
+

16

w2 + 1
− 8

w2
− 8

)
,

c⊥,5 =CA

(
16

vw4
+

16− 16v

−1 + vw2
+

16v + 16

1 + vw2
− 16

vw2

)
,

c⊥,6 =
CA

ε

(
− 16

vw4
− 32v + 32

vw2 + 1
+

16

vw2
+

16

w2
+ 16

)

+ CF

(
−8v2w4 + 24v2w2 +

−88v2 + 136v − 48

−1 + vw2
+

168v2 + 128v − 16

1 + vw2
− 16v2 − 4vw4

+ 20vw2 +
−4w2 − 4

w2 + 8

(v − 1)2
+

16

(v − 1) (vw2 + 1)
− 64v

w2
+
−4w4 − 8w2 − 8

w2 + 12

v − 1
− 32v

− 4w4 − 4w2 − 16

)
+ CA

(−40v2 − 80v − 40

1 + vw2
+

40v2 − 64v + 24

−1 + vw2
+

8− 8
w2

v − 1
+ 64

)
,

c⊥,7 =CA

(
16

vw4
+

32(v + 1)

vw2 + 1
− 16

vw2
− 16

w2
− 16

)
,

c⊥,8 =CF

(
−64v2

w2
+
−12v3 − 56v2 + 100v − 32

−1 + vw2
+

76v3 + 24v2 − 84v − 32

1 + vw2

+
76v3 − 192v2 + 156v − 40

(−1 + vw2)
2 +

12v3 + 32v2 + 28v + 8

(1 + vw2)
2 +

32v

w2
+

8

w2
+ 24

)

+ CA

(
32v2

w2
+

4v3 + 16v2 − 28v + 8

−1 + vw2
+
−36v3 − 16v2 + 20v

1 + vw2
+
−28v3 + 72v2 − 60v + 16

(−1 + vw2)
2

113



C.A.Flett

+
−12v3 − 32v2 − 28v − 8

(1 + vw2)
2 − 16

vw4
+

16

vw2
+

16

w2
− 16

)
,

c⊥,9 =CF

(
96v2

w2
+
−48v3 + 42v2 + 16v − 10

−1 + vw2
+
−48v3 − 42v2 + 16v + 10

1 + vw2
+

28

w4
− 36

w2
− 12

)

+ CA

(
−32v2

w2
+

16v3 − 6v2 − 12v + 2

−1 + vw2
+

16v3 + 6v2 − 12v − 2

1 + vw2
− 12

w4
+

8

w2
+ 8

)
,

c⊥,10 =CF

(
−8v3w4 + 24v3w2 − 16v3 +

−20v3 + 60v2 − 52v + 12

−1 + vw2
+

20v3 + 60v2 + 52v + 12

1 + vw2

+
−12v3 + 32v2 − 28v + 8

(−1 + vw2)
2 +

−12v3 − 32v2 − 28v − 8

(1 + vw2)
2 + 8vw2 − 64v

)

+ CA

(−4v3 + 4v2 − 4v + 4

−1 + vw2
+

4v3 + 4v2 + 4v + 4

1 + vw2
+

12v3 − 32v2 + 28v − 8

(−1 + vw2)
2

+
12v3 + 32v2 + 28v + 8

(1 + vw2)
2 +

16

vw4
− 32v

w2
− 16

vw2
+ 8v

)
,

c⊥,11 =CF

(−88v2 + 64v + 8

−1 + vw2
+

88v2 + 136v + 48

1 + vw2
+

16(v + 1)

vw2 − 2v − 1
− 24

)

+ CA

(
40v2 − 64v + 24

−1 + vw2
− 40v2 + 64v + 24

1 + vw2
− 8(v + 1)

vw2 − 2v − 1
+ 40

)
,

c⊥,12 =CF

(
−22v2 + 34v + 12

1 + vw2
+

22v2 − 34v − 10w2 + 22

−1 + vw2
− −4v − 10w2 + 6

vw2 − 2v − 1
+ 28

)

+ CA

(
10v2 + 16v + 6

1 + vw2
− 10v2 − 14v + 2

(
w2 + 1

)

−1 + vw2
+

6v + 2w2 + 4

vw2 − 2v − 1
− 4

)
.

We have checked that the Q2 → 0 (w →∞) limit of the above maps onto the expression

given in [18] for the photoproduction set-up. We remind that

v =
ξ̂

w2
with w =

√
1− 4m2

Q2
. (5.80)

The bare longitudinal gluon NLO coefficient function can be written in the form

Ĉ
(1)
L,g =

B1

Nc(N2
c − 1)

√
w2 − 1

(
12∑

i=1

cL,ifi + {v → −v}
)
, (5.81)

where the fi are given in eqn. (5.49) and the cL,i are

cL,1 =− CF

ε

12

w4
+ CF

(
272v − 256v3

−1 + vw2
+

256v3 − 272v

1 + vw2
+ π2

(
−64v2

3w2
− 20

3w4
+

28

3w2

)
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+
π2
(

32v3

3 + 14v2 − 74v
3

)

−1 + vw2
+
π2
(

32v3

3 − 14v2 − 74v
3

)

1 + vw2
+
π2
(
− 64v3

3 + 128v2

3 − 64v
3

)

(−1 + vw2)
2

+
256v3 − 512v2 + 256v

(−1 + vw2)
2 +

π2
(

64v3

3 + 128v2

3 + 64v
3

)

(1 + vw2)
2 +

256v3 + 512v2 + 256v

(1 + vw2)
2

− 2w2

v − 1
+

2w2

v + 1
+

2

(v − 1)w2
− 2

(v + 1)w2
− 16

w4
− 4w2 +

32

w2

)

+ CA

(
64v3 − 64v

−1 + vw2
+

64v − 64v3

1 + vw2
+

8π2v2

w2
+
π2
(
−4v3 − 8v2

3 + 20v
3

)

−1 + vw2

+
π2
(
−4v3 + 8v2

3 + 20v
3

)

1 + vw2
+
−64v3 + 128v2 − 64v

(−1 + vw2)
2 +

π2
(

16v3

3 − 32v2

3 + 16v
3

)

(−1 + vw2)
2

+
−64v3 − 128v2 − 64v

(1 + vw2)
2 +

π2
(
− 16v3

3 − 32v2

3 − 16v
3

)

(1 + vw2)
2

)
,

cL,2 =CF

(
−8v2w3 + 32v2w − 160v2

w
+

64v3w − 72v2w

−1 + vw2
+

64v3w + 72v2w

1 + vw2
− 32

w3
+

32

w

)

+ CA

(
32v2

w
+

16v2w − 16v3w

−1 + vw2
+
−16v3w − 16v2w

1 + vw2
+

16

w3
− 8

w

)
,

cL,3 =CF

(
−40v2

w2
+

20v3 − 26v2 + 2v

−1 + vw2
+

20v3 + 26v2 + 2v

1 + vw2
− 8

w4
+

12

w2

)

+ CA

(
16v2

w2
+
−8v3 + 16v2 − 8v

−1 + vw2
+
−8v3 − 16v2 − 8v

1 + vw2

)
,

cL,4 =CF

(
−8v2w4 + 32v2w2 +

−48v2 + 48v − 16

−1 + vw2
+

80v2 + 80v

1 + vw2
− 32v2 + 4vw4 − 24vw2

− 16

(v + 1) (w2 + 1)
+

16

(v + 1) (−1 + vw2)
− 16

(w2 + 1) (1 + vw2)
− 64v + 16

w2
− 8

(v + 1)w2

+
4

(v + 1)2w2
+
−4w4 − 16w2 + 44

v + 1
− −4w4 + 4w2 + 4

(v + 1)2
+ 48v + 20w2 +

48

w2 + 1
− 40

)

+ CA

(−16v2 − 48v

1 + vw2
+

16v2 + 16v

−1 + vw2
− 8

(v + 1)w2
+

8

v + 1
+

16

w2
− 8

)
,

cL,5 =CA

(
16

vw4
− 16v

−1 + vw2
+

16v

1 + vw2

)
,

cL,6 =
CA

ε

(
− 16

vw4
− 32v

1 + vw2
+

16

w2

)
+ CF

(
8v2w4 − 32v2w2 +

128v2 − 128v

−1 + vw2
+
−96v2 − 96v − 32

1 + vw2

+ 32v2 + 4vw4 − 24vw2 − 32

(v − 1) (1 + vw2)
− 64v

w2
+
−4w4 − 16w2 − 8

w2 + 44

v − 1

+
−4w4 + 4w2 − 4

w2 + 4

(v − 1)2
+ 48v − 20w2 + 40

)
+ CA

(
32v − 32v2

−1 + vw2
+

32v2 − 32v

1 + vw2
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+
8− 8

w2

v − 1
+ 8

)
,

cL,7 =CA

(
16

vw4
+

32v

1 + vw2
− 16

w2

)
,

cL,8 =CF

(
−64v2

w2
+

96v3 − 16v2 − 80v

−1 + vw2
+
−32v3 − 16v2 + 16v

1 + vw2
+
−128v3 + 256v2 − 128v

(−1 + vw2)
2

+
32v

w2
+

8

w2

)
+ CA

(
32v − 32v3

−1 + vw2
+

32v2

w2
+

32v3 − 64v2 + 32v

(−1 + vw2)
2 − 16

vw4
− 32v

1 + vw2
+

16

w2

)
,

cL,9 =CF

(
−48v2

w2
+

24v3 − 24v2

−1 + vw2
+

24v3 + 24v2

1 + vw2
− 8

w4
+

8

w2

)

+ CA

(
16v2

w2
+
−8v3 + 16v2 + 8v

−1 + vw2
+
−8v3 − 16v2 + 8v

1 + vw2
− 16

w2

)
,

cL,10 =CF

(
8v3w4 − 32v3w2 + 32v3 +

16v3 − 32v2 + 16v

−1 + vw2
+
−16v3 − 32v2 − 16v

1 + vw2
+ 16v

)

+ CA

(−16v3 + 32v2 − 16v

−1 + vw2
+

16v3 + 32v2 + 16v

1 + vw2
+

16

vw4
− 32v

w2
− 8v

)
,

cL,11 =CF

(−128v2 − 128v

1 + vw2
+

128v2 − 144v

−1 + vw2

)
+ CA

(
32v − 32v2

−1 + vw2
+

32v2 + 32v

1 + vw2

)
,

cL,12 =CF

(−32v2 + 36v + 4

−1 + vw2
+

32v2 + 32v

1 + vw2
− 4v + 4

vw2 − 2v − 1

)

+ CA

(
8v2 − 16v + 8

−1 + vw2
− 8v2 + 8v

1 + vw2
− 8(v + 1)

vw2 − 2v − 1

)
.

Here, CF and CA are the fundamental and adjoint Casimirs of SU(Nc). With Nc = 3,

CF = 4/3 and CA = 3. The result is expressed using the recent MultivariateApart pack-

age [214] which performs a partial fractioning routine of rational functions via polynomial

reductions, resulting in coefficients that contain terms with modest numerator and denom-

inator degrees. Diagram group theory factors recur in three combinations: CF , CA and

CF −CA/2, see Appendix A.0.3. The CF factor arises from the one loop bubble insertions

in Figs. 5.5.1-5.5.12, while a gluon attachment to the gluon or quark line therein gives a

factor CA or CF − CA/2, respectively, which are all diagrams in the NLO computation.

The physical symmetry ξ̂ → −ξ̂ is again made apparent in our presentation of the NLO

gluon coefficient functions, eqns. (5.79) and (5.81).

We remark that the length of the expressions is due to the appearance of two inde-

pendent massive scales, Q2 and m2, in our kinematic set-up which, nonetheless, possess a

physical symmetry and well-defined Q2 → 0 limit. The m2 → 0 limit, however, is not well-

defined and therefore does not map onto the coefficient functions for the electroproduction
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of a light vector meson. The ξ̂ → 0 limit corresponds to the high energy limit and will be

considered in Section 5.7.

We have observed that a subset of the diagrams of Fig. 5.5 contribute at O(ε) or O(ε2)

to the gluon transverse NLO coefficient function and therefore vanish in the limit ε → 0.

In particular, diagrams in Figs. 5.5.20, 5.5.22, 5.5.24, 5.5.26, 5.5.37, 5.5.38, 5.5.39 and 5.5.40

contribute at O(ε) and diagrams in Figs. 5.5.13 and 5.5.15 contribute at O(ε2). The latter

correspond to a gluon correction of the photon, heavy-quark, heavy-antiquark vertex and

correspond to one-loop corrections of the tree level diagrams in Figs. 5.3.5 and 5.3.6 which

contribute at O(ε) to the gluon transverse LO coefficient function. Of those diagrams

mentioned above that contribute at O(ε) to the gluon transverse NLO coefficient function,

we find that their contribution to the gluon longitudinal NLO coefficient function vanishes.

These correspond to an equivalence class of one-particle reducible diagrams where a triangle

loop insertion is on one side of the diagram after snipping a heavy-quark propagator.

Another analogous set of diagrams in Figs. 5.5.1, 5.5.3, 5.5.5 and 5.5.7, where there is

instead a bubble loop insertion on one side, again have a vanishing contribution to the gluon

longitudinal NLO coefficient function but contribute at O(ε0) to the transverse degree of

freedom.

5.6 UV renormalisation and mass factorisation

We renormalise the gluon, heavy quark field and heavy quark mass in the on-shell (OS)

scheme. The strong coupling constant is renormalised with light flavours treated in the

MS scheme and with the heavy quark loop of the gluon self-energy subtracted at zero

momentum. The UV renormalised amplitude AUV may be written in terms of the bare

amplitude A using the relation7,

AUV =Z
ng/2
A Z

nq/2
2 A(âs → as S

−1
ε (µ2

R/µ
2
0)εZα, m̂→ mZm)

=as S
−1
ε

(
µ2
R

µ2
0

)ε(
A(0) + as

(ng
2
δZA +

nq
2
δZ2 + δZα

)
A(0)

+ as δZmAmct,(0) + as S
−1
ε

(
µ2
R

µ2
0

)ε
A(1) +O(a2

s)

)
. (5.82)

7Here we omit the renormalisation of the light-quark wave function, which is not relevant at this order
as the quark amplitudes enter only at a2

s.
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Here, âs = α̂s/(4π) and as = αs(µ
2
R)/(4π) are the bare and renormalised strong couplings,

respectively. We have introduced Sε = (4π)εe−γEε, which accounts for the modification of

eqn. (2.6) in the MS scheme. The heavy quark bare mass parameter is denoted m̂ and

the renormalised quark mass is denoted m. The gluon and heavy quark renormalisation

constants are denoted ZA and Z2 and the number of external gluons and heavy quarks are

denoted ng and nq, respectively. In the second line the bare amplitude and renormalisation

constants are expanded using

A = âsA(0) + â2
sA(1) +O(â3

s),

Zi = 1 + asδZi +O(a2
s) (i = A, 2, α,m). (5.83)

We have also introduced the mass counterterm amplitude Amct which is found, as part of

the typical quantum field theory UV renormalisation procedure, by inserting mass countert-

erm vertices into the tree level gluon diagrams of Fig. 5.3 and cross-checked by computing

the derivative of the bare amplitude with respect to m̂. Explicitly,

A(m̂)→ A(Zmm) = A(m) + asδZm
dA(m̂)

dm̂

∣∣∣∣
m̂=m

+ . . . (5.84)

We emphasise that this is a derivative with respect to the bare mass. We therefore made

a distinction, in the computation of this derivative, between the bare heavy quark mass

m̂ appearing in the QCD Lagrangian (and which therefore appears in the propagators Di

of our loop integrals) and the mass parameter M in the HVM spin projector (which is set

numerically equal to twice the renormalised heavy quark mass at LO in NRQCD). One

must be mindful of this distinction too in a similar computation performed for the UV mass

renormalisation at a higher-order so as to allow for a consistent and correct treatment of

the UV physics.

The explicit expressions for the renormalisation constants at one-loop are

δZα = −1

ε
β0 + δZhq

α , β0 =
11

3
CA −

4

3
TF Nf , (5.85)

δZA = −δZhq
α =

(
µ2
R

m2

)ε(
− 4

3ε
TF

)
, (5.86)

δZ2 = δZm =

(
µ2
R

m2

)ε
CF

(
−3

ε
− 4

)
. (5.87)
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The last relation follows as Z2 = Zm at one-loop [215], where Zm is the renormalisation

constant for m̂.

Although the above renormalisation procedure is stated for the bare amplitudes, it

can equally be applied to each of the bare coefficient functions Ĉi=⊥,L, j=g,q. The UV

renormalised coefficient functions are thus given by

Ĉ
(0),UV
i,j =S−1

ε

(
µ2
R

µ2
0

)ε
Ĉ

(0)
i,j , (5.88)

Ĉ
(1),UV
i,j =S−2

ε

(
µ2
R

µ2
0

)2ε

Ĉ
(1)
i,j +

(ng
2
δZA +

nq
2
δZ2 + δZα

)
Ĉ

(0),UV
i,j

+ S−1
ε

(
µ2
R

µ2
0

)ε
δZmĈ

mct,(0)
i,j . (5.89)

The relevant mass counterterm coefficient functions are

Ĉ
mct,(0)
⊥,g =

4B0

Nc(N2
c − 1)

(
v − 1

vw2 − 1
(1− ε) +

v + 1

vw2 + 1
(1− ε)− 2

w4
+

3

w2
− 3 + 2ε

)
, (5.90)

Ĉ
mct,(0)
L,g =

8B0

Nc(N2
c − 1)

(w2 − 1)3/2

w4
. (5.91)

Note that the v and w dependence in Ĉ
mct,(0)
i,g differ from that in the corresponding bare tree

level coefficient functions because of the derivative in Amct,(0). Since the quark amplitudes

enter only at a2
s they are trivially modified by the above procedure.

After renormalisation in the UV, poles in ε still remain in both the quark and gluon one-

loop coefficient functions and must be absorbed into the definition of the GPDs via mass

factorisation, as outlined in Section 2.1. This procedure generates additional counterterms

which finally render the coefficient functions finite at the amplitude level. Concretely,

we replace the bare quark singlet (F̂S) and gluon (F g) GPDs with the mass factorised,

factorisation scale (µF ) dependent, GPDs,

F̂S(X, ξ) = FS(X, ξ, µ2
F ) +

as
ε

(
µ2
R

µ2
F

)ε

×
∫ 1

−1

dz

|ξ|

[
V (1)
qq

(
X

ξ
,
z

ξ

)
FS(z, ξ, µ2

F ) + ξ−1V (1)
qg

(
X

ξ
,
z

ξ

)
F g(z, ξ, µ2

F )

]
,

(5.92)
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F̂ g(X, ξ) = F g(X, ξ, µ2
F ) +

as
ε

(
µ2
R

µ2
F

)ε

×
∫ 1

−1

dz

|ξ|

[
ξV (1)

gq

(
X

ξ
,
z

ξ

)
FS(z, ξ, µ2

F ) + V (1)
gg

(
X

ξ
,
z

ξ

)
F g(z, ξ, µ2

F )

]
.

(5.93)

Here V (1) is the coefficient of αs/(4π) in the generalised splitting function V . See Ap-

pendix C for their explicit expressions. Inserting these relations into the bare version of

the factorisation formula eqn. (5.38) and absorbing the divergent terms into the coefficient

functions we obtain

C
(1)
i,j = Ĉ

(1),UV
i,j + Ĉ

mf,(1)
i,j , (5.94)

where Ĉ
mf,(1)
i,j are the mass factorisation counterterms. Explicitly, expanding the transverse

part of eqn. (5.38) in terms of bare coefficient functions and GPDs, and to O(â2
s), gives

T (µν) = −gµν⊥
∫ 1

−1

dX

X

[
âsĈ

(0)
⊥,q

(
ξ

X
,Q2

)
F̂S(X, ξ)

2
+ âsĈ

(0)
⊥,g

(
ξ

X
,Q2

)
F̂ g(X, ξ)

X

+ â2
sĈ

(1)
⊥,q

(
ξ

X
,Q2

)
F̂S(X, ξ)

2
+ â2

sĈ
(1)
⊥,g

(
ξ

X
,Q2

)
F̂ g(X, ξ)

X

]
+ . . . ,

(5.95)

where the ellipses denote contributions that are higher twist or higher order in âs. As

Ĉ
(0)
⊥,q = 0, the mass factorisation counterterms generated in the convolution of the GPDs

with the bare quark coefficient functions start at O(â3
s) and are therefore not needed here.

The mass factorisation counterterms generated by the convolutions of the GPDs with the

bare gluon coefficient functions start atO(â2
s) and so do contribute to the renormalisation of

the amplitude at NLO. Extraction of the term proportional to Ĉ
(0)
⊥,g in eqn. (5.95), replacing

the bare GPDs in terms of the renormalised ones as given in eqns. (5.92) and (5.93),

relabelling z ↔ X and identifying the outer z integral, gives the O(a2
s) transverse mass

factorisation counterterms in the quark and gluon sector,

Ĉ
mf,(1)
⊥,q =

1

ε

(
µ2
R

µ2
F

)ε
ξ

|ξ|

∫ 1

−1

dz

z2
Ĉ

(0),UV
⊥,g

(
ξ

z
,Q2

)
2V (1)

gq

(
z

ξ
,
X

ξ

)
, (5.96)

Ĉ
mf,(1)
⊥,g =

1

ε

(
µ2
R

µ2
F

)ε
1

|ξ|

∫ 1

−1

dz

z2
Ĉ

(0),UV
⊥,g

(
ξ

z
,Q2

)
V (1)
gg

(
z

ξ
,
X

ξ

)
. (5.97)
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The corresponding equations for the O(a2
s) longitudinal mass factorisation counterterms

can be obtained with the replacement Ĉ
(0),UV
⊥,g → Ĉ

(0),UV
L,g ,

Ĉ
mf,(1)
L,q =

1

ε

(
µ2
R

µ2
F

)ε
ξ

|ξ|

∫ 1

−1

dz

z2
Ĉ

(0),UV
L,g

(
ξ

z
,Q2

)
2V (1)

gq

(
z

ξ
,
X

ξ

)
, (5.98)

Ĉ
mf,(1)
L,g =

1

ε

(
µ2
R

µ2
F

)ε
1

|ξ|

∫ 1

−1

dz

z2
Ĉ

(0),UV
L,g

(
ξ

z
,Q2

)
V (1)
gg

(
z

ξ
,
X

ξ

)
. (5.99)

The only z-dependence in the tree level gluon coefficient functions is that due to the

z2/((z − ξ)(z + ξ)) factor. The kernels V
(1)
gq and V

(1)
gg resume the form

V (1)
gq = ρ(x, y)V̂+,gq + ρ(−x,−y)V̂−,gq,

V (1)
gg = ρ(x, y)V̂+,gg + ρ(−x,−y)V̂−,gg +Aδ(x− y),

(5.100)

where V̂+ and V̂− are the coefficients of the support functions ρ(x, y) and ρ(−x,−y) in

each case, respectively, see eqn. (C.9) in Appendix C. The factor A does not depend on x

or y. The part of the integration over z that is dependent on ρ may be simplified using

the representation of ρ in terms of explicit theta functions given in Appendix C. In the

quark subprocess, for example, upon imposition of the physical restriction 0 < ξ < 1, we

encounter integrals of the form,

Ĉ
mf,(1)
i,q ∼

∫ 1

−1

dz

z2
Ĉ

(0),UV
i,g

(
ξ

z
,Q2

)
V (1)
gq

(
z

ξ
,
X

ξ

)

=

∫ 1

−1

dz

z2
Ĉ(0),UV

(
ρ

(
z

ξ
,
X

ξ

)
V̂+,gq + ρ

(
−z
ξ
,−X

ξ

)
V̂−,gq

)

=

(
θ(X + ξ)

∫ X

−ξ

dz

z2
Ĉ(0),UVV̂+,gq − θ(−ξ −X)

∫ −ξ

X

dz

z2
Ĉ(0),UVV̂+,gq

)

−
(
θ(ξ −X)

∫ ξ

X

dz

z2
Ĉ(0),UVV̂−,gq − θ(X − ξ)

∫ X

ξ

dz

z2
Ĉ(0),UVV̂−,gq

)

=

∫ X

−ξ

dz

z2
Ĉ(0),UVV̂+,gq −

∫ ξ

X

dz

z2
Ĉ(0),UVV̂−,gq,

(5.101)

where Ĉ(0),UV ≡ Ĉ(0),UV
i,g

(
ξ/z,Q2

)
.
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We find

Ĉ
mf,(1)
⊥,g =

1

ε

(
µ2
R

µ2
F

)ε
S−1
ε

(
µ2
R

µ2
0

)ε
4TF
Nc

B0

(
CA

(
1

vw4
+

2v + 2

vw2 + 1
− 1

vw2
− 1

w2
− 1

)
f6

+
β0

4

w2 − 1

w2
+ {v → −v}

)
, (5.102)

Ĉ
mf,(1)
L,g = −

Ĉ
mf,(1)
⊥,g√
w2 − 1

, (5.103)

Ĉ
mf,(1)
⊥,q =

1

ε

(
µ2
R

µ2
F

)ε
S−1
ε

(
µ2
R

µ2
0

)ε
64T 2

F

N2
c

B0
x+x−
x2

(
1

vw2
+

1

w2
− 1

vw4
− v + 1

vw2 + 1

)
f6

+ {v → −v} , (5.104)

Ĉ
mf,(1)
L,q = −

Ĉ
mf,(1)
⊥,q√
w2 − 1

. (5.105)

Using these expressions in eqn. (5.94) gives finally our renormalised, finite coefficient

functions that can be numerically convoluted with renormalised, finite GPDs to produce

a renormalised amplitude and predictions for physical observables. These renormalised

coefficient functions constitute the main results of this chapter and are provided in an

ancillary MATHEMATICA file alongside the arXiv submission of our [216].

5.7 High-energy limit

One can make an expansion in the parameter ξ̂ to extract the high-energy asymptotic

behaviour of the exclusive electroproduction amplitude. In the integration over X ∈ [−1, 1]

in our NLO collinear factorisation set-up, the high-energy result receives contributions

from the broad sub-integration interval ξ � |X| � 1. As is shown explicitly below, this

corresponds to the part of the DGLAP region which is (double)-logarithmically enhanced.

As our results above are expressed entirely within the ERBL region, we first perform

acutely the analytic continuation into the physical regime and then proceed with the Lau-

rent expansion in ξ around zero of the resulting expression. Care was taken to ensure

the logarithms and dilogarithms in our result were evaluated on the correct side of their
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respective branch-cuts. See Appendix A.0.2 for their correct analytic continuations.

The only X-dependence in the LO gluon coefficient function comes from that within the

GPD projection, residing in B0 in the LO coefficient function, eqns. (5.43, 5.44), so here we

can proceed analytically. Let A±±LO and A±±LO, HE denote the LO transverse amplitudes and

their high-energy limits respectively. A00
LO and A00

LO, HE represent the analogous quantities

for the longitudinal component. Then, from eqn. (5.38),

−
√
w2 − 1A00

LO = A±±LO ∼ lim
δ→0+

∫ 1

−1

dX

X2

X2

(X + ξ − iδ)(X − ξ + iδ)
F g(X, ξ) (5.106)

= lim
δ→0+

2

∫ 0

−1

dX

X2

X2

(X + ξ − iδ)(X − ξ + iδ)
F g(X, ξ), (5.107)

where we used the fact that the integrand is an even function of X, see Section 2.3.2. With

0 < ξ < 1 and X < 0 in the above, it follows that X − ξ 6= 0 and so we may drop the +iδ

from one of the denominator terms. Then,

= lim
δ→0+

2

∫ 0

−1

dX

(X − ξ)(X + ξ − iδ)
F g(X, ξ) = lim

δ→0+
2

∫ 0

−1

dX

(X − ξ)
X + ξ + iδ

((X + ξ)2 + δ2)
F g(X, ξ)

(5.108)

= lim
δ→0+

[
2

∫ 0

−1

dX

(X − ξ)
X + ξ

((X + ξ)2 + δ2)
F g(X, ξ) + 2i

∫ 0

−1

πdX

(X − ξ)ηδ(X + ξ)F g(X, ξ)

]

(5.109)

= 2P
∫ 0

−1

dX

(X − ξ)(X + ξ)
F g(X, ξ) + 2i

∫ 0

−1

πdX

(X − ξ)δ(X + ξ)F g(X, ξ) (5.110)

= 2P
∫ 0

−1

dX

(X − ξ)(X + ξ)
F g(X, ξ)− iπ

ξ
F g(−ξ, ξ), (5.111)

where, in the last few lines, we used the fact that

π ηδ(α) =
δ

α2 + δ2
and lim

δ→0+
ηδ(α) = δ(α), (5.112)

with P the principal value integral. Here, ηδ(α) is a nascent Dirac delta distribution.

As mentioned in Chapter 4, for very small x, one expects the gluon density to tend to a

constant F g(X, ξ) ∼ const, with the singlet quarks growing as a power law, F q(X, ξ) ∼
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1/X. Then,

A±±LO, HE ∼ −
iπ

ξ
F g(ξ, ξ), (5.113)

where we took the most singular term in ξ, giving the leading behaviour in the high-energy

limit. In the NLO coefficient functions, there is an additional X-dependence in both the

fi and ci. The complete high-energy result to NLO, showing only the dominant term in ξ,

is

A±±HE = − 2m√
−Q2

A00
HE ∼ −

4iπ2eq4m
2

Ncξ(4m2 −Q2)

(〈O1〉V
m3

)1/2

×

×
[
αsF

g(ξ, ξ) +
α2
sNc

π
ln

(
4m2 −Q2

4µ2
F

)∫ 1

ξ

dX

X
F g(X, ξ)

+
α2
sCF
π

ln

(
4m2 −Q2

4µ2
F

)∫ 1

ξ
dX (F q(X, ξ)− F q(−X, ξ))

]
.

(5.114)

The overall i implies the high-energy result is dominated by the imaginary part of the

amplitude, a general feature of amplitudes in the asymptotic energy regime based on

Regge theory considerations. The photoproduction limit of eqn. (5.114) coincides with

the high-energy result in [18]. With F g(X, ξ) ∼ const and F q(X, ξ) ∼ 1/X at high-

energy, where ξ � 1, the lower boundary of the integration generates another logarithmic

enhancement ∼ ln(1/ξ) which, together with the explicit large logarithm already appearing

in eqn. (5.114), gives the electroproduction amplitude to double-logarithmic-accuracy.

The structure of the high-energy limit is therefore highly suggestive of the factorisation

scale choice,

µ2
F =

4m2 −Q2

4
, (5.115)

which provides for a resummation of this double logarithmic enhancement in the NLO

contribution at high-energies. The Q2 → 0 limit of this equation reproduces µ2
F = m2, as

used in the photoproduction phenomenological analyses of Chapters 3 and 4.

5.8 Comparison with literature

The authors of [103] have also computed the transverse and longitudinal renormalised

amplitudes at NLO for the exclusive electroproduction of heavy quarkonia, within the
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same calculational framework of collinear factorisation and LO NRQCD. Their paper was

published while our calculation was still on-going, so our work serves as an independent,

simultaneous analysis of the process and, in addition, a check on the results they have

presented. We have obtained agreement numerically with both their quark and gluon

transverse and longitudinal renormalised amplitudes after publication of their erratum,

in which they corrected typographical errors and resolved an inconsistency in their high

energy limit that we had pointed out.8

From our point of view, some notable aspects of the manner in which we have presented

the results, in comparison with those of [103], include the following. First and foremost, our

results are expressed in terms of a basis set comprising of a smaller number of appearing

logarithms and dilogarithms. Besides this being aesthetically desirable, the set we have

selected is such that all basis functions appearing are manifestly real if the coefficient

function is real. This is not the case for the set presented in [103]. Throughout the entire

ERBL phase space, all of our basis functions evaluate to a real number. In addition, hand

in hand with our basis constituting a more minimal set with a smaller cardinality, we have

also only one non-rationalised square root argument appearing therein. The substitution

z2 = (1 + 2v− vw2)/(1 + vw2) would allow all arguments to become rationalised, however

this would upset our explicit v → −v symmetry which we deem to be a more important

feature to maintain. We have also decided to keep track of all the group theory factors

that arise and refrain from inserting their numerical evaluations in the presentation of our

analytical results. Amongst other reasons, this allows one to generalise the expressions for

Nc 6= 3 and be valid for an arbitrary SU(Nc) gauge theory instead.

5.9 Summary

In this chapter, we have computed renormalised coefficient functions for exclusive electro-

production of heavy vector mesons to NLO in the collinear factorisation framework. The

description of the QQ̄→ V transition vertex was made within LO NRQCD and the mass

of the heavy vector meson set equal to twice the on-shell mass of the heavy quark. Our re-

sults respect the physical ξ → −ξ symmetry and coincide with the renormalised coefficient

functions for exclusive production of heavy vector mesons in the Q2 → 0 limit. In this

limit, the longitudinal component vanishes and there is only a non-vanishing amplitude to

8I thank Zi-Qiang Chen and Cong-Feng Qiao for this private communication.
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produce a transversely polarised HVM from a transversely polarised photon. Note that

the m2 → 0 limit is not smooth and cannot be taken. The tensor decomposition of the

amplitude in eqn. (5.27) was verified explicitly and all partial fraction linear reductions

were checked numerically. Moreover, at one-loop, gluon propagators introduce a gauge pa-

rameter dependence on the Feynman diagram level if computed in a linear covariant gauge,

as done here. The cancellation of all gauge parameter dependent terms at the amplitude

level provides a further check.

Our results can be used in a phenomenological analysis of the exclusive electroproduc-

tion data already measured at HERA and, in time, with the data from LHC, the upcoming

EIC and the proposed LHeC and FCC. They may also help in studying the onset of sat-

uration physics and, importantly, our predictions and these data can collectively provide

further constraints on the gluon distribution in nuclei at moderate to low values of the

scale Q2 and Bjorken x.
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Conclusions

In this thesis, we have cast a light on the new and improved prediction for exclusive J/ψ

production at NLO in the collinear factorisation scheme, as well as on PDF determinations

at small x.

In Chapter 3, after supplementing the naive MS result with a low Q cut off procedure

and low x resummation, the observable prediction was demonstrated to have sufficient

stability and precision to improve on the large PDF uncertainties in the very low x do-

main. Indications that evolution à la BFKL and inclusion of effects beyond the standard

collinear factorisation framework are not relevant in the HERA region for this observable

were realised. The resummation of the large logarithms and, more importantly, the Q0

subtraction provided for a stable and reliable prediction at NLO with excellent agreement

with the data at larger x. The exclusive process was shown, as a result, to be driven by

the gluon parton distribution function with a vanishingly small quark PDF contribution

over the entire HERA and LHC energy range considered.

With this, in Chapter 4, we performed a reweighted fitting procedure within a frame-

work of Bayesian statistics, to extract a low x and low scale gluon PDF in the kinematic

region µ2 ∼ 2.4 GeV2 and 3×10−6 < x < 10−3. This was backed up with a fit in which the

gluon PDF is ansatzed to grow as a pure power, agreeing favourably with the reweighted

prediction. The chi square statistic obtained using this power law rise of the gluon PDF

was found to be close to unity, with an extracted gluon slope in line with arguments from

previous literature. The quantitative features of our extracted gluon PDFs were compared

to that obtained in an independent similar reweighted analysis using the inclusive D meson

data appearing in the literature. In this comparison, we observed some tension in the low
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x growth and provided explanations. A note regarding the absence of saturation effects in

the given kinematic range considered was also made. The constraining power of the low

x exclusive data, evident from our results, was emphasised and the repercussions for the

global fit extractions made clear.

In Chapter 5, using a semi-automated state of the art computational workflow, we

provided renormalised NLO coefficient functions for exclusive electroproduction of HVMs

in collinear factorisation. The novel features of our calculation, amounting to linear de-

pendencies in the external kinematics due to our specific gluon and quark GPD and HVM

projections, were discussed and alleviated. A brief comparison with existing work was

made.

The work presented in this thesis motivates several future exploratory studies. More

immediate avenues of work surrounding the exclusive J/ψ production mechanism presented

in this thesis, which would complement its study at higher orders, comprise the following.

• The effect of explicit ln 1/x terms were surmised to be small in the BFKL equation

after the Q0 subtraction, but this can be quantified by actually performing the cut

to extract a modified Q0 subtracted BFKL kernel. As well as being of obvious

application elsewhere, this would be expected to reinforce the statements we have

made regarding our choice of resummation.

• The dependability of the Shuvaev Transform as a reliable means to relate the GPD

to the PDF at low x, ξ and low scales at NNLO should perhaps not be taken for

granted. As discussed in Section 2.3.3, at LO the relation is valid at O(ξ2) while

at NLO it is instead O(ξ). What happens at NNLO? Is there a saturation of the

accuracy or is it demoted further? In any case, we expect the higher order relation

to be suppressed by the higher powers of αs, but this is an interesting question to

explore and acknowledge.

• From the rather technical side, it may be useful to incorporate the low x gluon con-

straints we have obtained from the furnished exclusive J/ψ prediction into xFitter,

extending the scope of this software to include exclusive observables, and provide a

LHAPDF6 formatted grid computer package. This would be of practical use and benefit

to the PDF fitter groups and, indeed, to the wider particle physics community.

• The tool-chain we have developed for the computation of exclusive HVM electro-

production is easily extendable to allow predictions for e.g. open exclusive quarks
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and/or open jets to be made. It would be interesting to explore the interplay be-

tween the higher orders in NRQCD and that of collinear factorisation, as well as to

understand the weighting the modelling of the exclusive HVM within NRQCD has

on our predictions. As a next step, we can perform numerical analyses using the co-

efficient functions presented in Chapter 5, comparing e.g. the resulting cross section

predictions with the electroproduction data.

More broadly, it is our intention to extend the framework developed for exclusive J/ψ

production via pp ultraperipheral collisions at the LHC, to the nuclear sector. In partic-

ular, the potential of heavy-ion data at the LHC, together with exclusive vector meson

production data at the upcoming EIC, will allow for additional constraints on e.g. the

nuclear gluon PDF, which is even less constrained at low values of x. In addition, such

observables are typically anticipated to present signals of saturation more forthcomingly

due to the different properties of the colliding ion compared to the proton.

While there are measurements of inclusive C−even quarkonia hadroproduction from

LHCb with kinematic cuts at pT > 6 GeV, see e.g. [217] for the ηc meson, it would be useful

to probe the lower transverse momentum domain of this observable due to its sensitivity to

the gluon distribution at low scales, too. This would complement the studies we have done

here, except now with another measurement in the conventional inclusive mode. It would

be interesting to ascertain the manner in which a gluon extracted in a phenomenological

analysis of this data compares with that obtained from the inclusive D sector and our

exclusive J/ψ study. The reconciliation of the tension between these latter independent

analyses, as presented in this work, would provide a nice future platform of interaction

between theory and experiment.

Furthermore, the measurements of S-wave charmonia at LHCb are susceptible to large

uncertainties [105], alike that of the D-mesons, which cannot be mitigated via the con-

struction of ratios due to large statistical data errors on the experimental front. While the

original scale dependence of the exclusive J/ψ prediction within collinear factorisation can,

in principle, instead be combated through such ratios we would argue the Q0 subtraction

is more fundamental and, in any case, the data statistics for exclusive J/ψ production at

low x, at the time of writing, are not sufficient to make this a practical mode of study. The

upcoming High-Luminosity LHC program will help facilitate greater data statistics here.

For this reason, from the theory side, it would be virtuous to probe the effect the low Q0

cut has for scale dependencies in other low scale observable predictions.
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Conventions and Properties

In this Appendix, we will collect some of the conventions used in this thesis and present the

definition and analytic continuation properties of the logarithms and dilogarithms. These

functions appear in the photoproduction NLO coefficient functions used in Chapters 3 and

4 and in the electroproduction NLO coefficient functions presented in Chapter 5. The

group theory algebra needed in Chapter 5 is also given.

A.0.1 Sudakov Decomposition

We use the following convention for the metric tensor in four dimensions,

gµν = gµν = diag(+1, −1, −1, −1). (A.1)

The generic Sudakov decomposition of a four vector Aµ = (A0, A1, A2, A3) is

Aµ = (A · n)pµ + (A · p)nµ +Aµ⊥, (A.2)

where p, n are two Sudakov light-like basis vectors and

Aµ⊥ = (0, A1, A2, 0) = (0,A⊥, 0). (A.3)
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We define

pµ =
1√
2

Λ(1, 0, 0, 1), (A.4)

nµ =
1√
2

1

Λ
(1, 0, 0,−1), (A.5)

from which

p · p = n · n = p ·A⊥ = n ·A⊥ = 0, p · n = 1, A⊥ ·A⊥ = −A2
⊥. (A.6)

Here, the Sudakov parameter Λ has a mass dimension of one. The perpendicular metric

tensor is defined as the projection of the metric tensor onto the plane perpendicular to p

and n,

gµν⊥ = gµν − pµnν − pνnµ. (A.7)

A.0.2 Polylogarithms

If s > 0, the analytic continuation for the logarithm is

lim
δ→0+

ln(−s± iδ) = ln(s)± iπ. (A.8)

The dilogarithm is defined as

Li2(s) = −
∫ s

0

dz

z
ln(1− z) (A.9)

≡
∞∑

n=1

sn

n2
, for |s| ≤ 1. (A.10)

If s ≤ 1, the analytic continuation for the dilogarithm is

lim
δ→0+

Li2(s± iδ) = Li2(s) (∈ R). (A.11)

If s > 1,

lim
δ→0+

Li2(s± iδ) = Re Li2(s)± iπ ln(s) (∈ C). (A.12)
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A.0.3 Trace identities

In this section, we summarise aspects of the group theory needed in Chapter 5 of this thesis.

Let T a, a = 1, 2, . . . , N2
c − 1, denote the group generators of SU(Nc) in the fundamental

representation. All relevant traces can be obtained from the relation

T aT b =
1

2

(
1

Nc
δab + (dabc + ifabc)T c

)
, (A.13)

or a contracted product of generators,

(T a)ij(T
a)kl =

1

2

(
δilδjk −

1

Nc
δijδkl

)
, i, j, k, l = 1, 2, . . . , Nc, (A.14)

where fabc is the totally antisymmetric structure constant,

[T a, T b] = ifabcT c, a, b, c = 1, 2, . . . , N2
c − 1, (A.15)

and dabc is the totally symmetric constant satisfying,

{
T a, T b

}
=

1

Nc
δab + dabcT c. (A.16)

It follows from eqn. (A.13) that

Tr (T aT bT c) =
1

4

(
dabc + ifabc

)
(A.17)

and from eqn. (A.14) that

Tr (T cT aT cT b) = − 1

4Nc
δab =

1

2

(
CF −

CA
2

)
δab (A.18)

and

Tr (T aT bT cT c) =
1

4

(
Nc −

1

Nc

)
δab =

1

2
CF δ

ab, (A.19)

where the fundamental and adjoint Casimirs of SU(Nc) are

CF =
N2
c − 1

2Nc
and CA = Nc, (A.20)
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respectively, with the normalisation

Tr (T aT b) = TF δ
ab =

1

2
δab. (A.21)

Inversion of eqn. (A.15) for fabc using eqn. (A.21), it follows that

facdf bcd = Nc δ
ab = CA δ

ab (A.22)

after repeated application of eqn. (A.14). Then,

fadc Tr (T bT dT c) =
i

4
fadc f bdc =

i

4
CA δ

ab, (A.23)

as fadcdbdc = 0 identically.

Eqn. (A.21) shows up in the computation of the quark coefficient function while eqns. (A.18),

(A.19), (A.22) and (A.23) are all relevant for the gluon coefficient function.
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Resummation in the (x,Q2) plane

Every physical observable, within perturbative QCD, may be written as a systematic power

expansion in the strong coupling, αs, accompanied by coefficients cn(x,Q2) at each order

n in the series:
∑

n α
n
s cn(x,Q2). These coefficients include logarithms which can become

enhanced (relative to the smallness of αs) in certain parts of the (x,Q2) plane, leading

to the need for a so-called resummation of such terms. One obtains different evolution

equations depending on the type and power of logarithms which are considered in the

resummation procedure.

In the leading-log(Q2)-approximation (LLQA), at each order in perturbation theory

only the highest power in ln(Q2) is retained. That is, in this approximation, the above

series is of the form

LLQA:
∑

n

αns lnn(Q2)

(
lnn
(

1

x

)
+ lnn−1

(
1

x

)
+ . . .

)
, (B.1)

which amounts to, in a physical gauge, the strong ordering in transverse momentum

Q2 � k2
T1
� k2

T2
� k2

T3
� · · · � k2

Tn ,

where k2
Ti

is the ith successive transverse momentum of the parton in evolution cell i towards

the hard scattering scale Q2. This is to say in the LLQA, the resummed coefficients are of

the form

cn(x,Q2) = c̃n(x) lnn(Q2),

retaining the exact x-dependence at each order in n.
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In the next-to-leading-log(Q2)-approximation (NLLQA), sub-dominant terms of the

form αns lnn−1(Q2) are in addition kept. The LLQA and NLLQA give rise to the LO and

NLO DGLAP evolution equations respectively.

In the leading-log(1/x)-approximation (LLxA), it is instead the highest power of ln(1/x)

that is kept. These logarithms are clearly relevant in the limit of asymptotically small x

with a relatively moderate momentum transfer Q2. The series is then of the form

LLxA:
∑

n

αns lnn
(

1

x

)(
lnn
(
Q2
)

+ lnn−1
(
Q2
)

+ . . .
)
, (B.2)

where (LLQA) ↔ (LLxA) corresponds to Q2 ↔ 1/x. In this case, the strong ordering is in

the longitudinal momentum

x� x1 � x2 � x3 � · · · � xn � 1,

where xi is the ith successive longitudinal momentum of the parton in evolution cell i and

the resummed coefficients are of the form

cn(x,Q2) = c̃n(Q2) lnn
(

1

x

)
.

This leads to the LO BFKL evolution equation [166, 167, 168]. The BFKL approach

is based on the so-called reggeized gluon and describes the evolution of the unintegrated

gluon distribution,

f(x, k2
T ) =

∂xg(x, k2
T )

∂ ln k2
T

(B.3)

in ln(1/x). Schematically, the BFKL equation takes the form

∂f

∂ ln(1/x)
= κ⊗ f, (B.4)

where κ is the BFKL kernel and ⊗ is a convolution over the transverse momenta, in contrast

to the DGLAP evolution equation where this is instead a convolution over longitudinal

momenta. Resummation of the terms (αs ln(1/x))n in the BFKL kernel give rise to the

LLxA and the LO BFKL equation. It predicts that the gluon density grows as x−ω0 at

low x, with the Pomeron intercept αBFKL = 1 + ω0 = 1 + 4Ncαs/π ln 2 ≈ 1.6, which is,

however, too large [166, 167, 168]. The NLO BFKL kernel is also known, see [218] and
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corresponds to the NLLxA and resummation of terms αs(αs ln(1/x))n.

When both ln(Q2) and ln(1/x) are large, a double logarithm ∼ αns lnn(Q2) lnn(1/x) is

enhanced relative to the single logarithms ∼ αns lnn(Q2) or ∼ αns lnn(1/x) and one may

then consider the double-leading-logarithmic-approximation (DLLA)

DLLA:
∑

n

αns lnn
(
Q2
)

lnn
(

1

x

)
, (B.5)

where here the strong ordering is in both the transverse momentum and longitudinal

momentum while the resummed coefficient is uniquely identified,

cn(x,Q2) = lnn
(
Q2
)

lnn
(

1

x

)
.

Note that the resummation of the double logarithms is included in the DGLAP evolution,

see the first term of eqn (B.1). If one wants to resum only the double logarithmic terms,

then strong ordering in k2
n = k2

Tn
and x is required, as shown structurally below in the

DGLAP integrals1

(∫ Q2

µ2

dk2
n

k2
n

∫ k2
n

µ2

dk2
n−1

k2
n−1

. . .

∫ k2
2

µ2

dk2
1

k2
1

) (∫ 1

x

dxn
xn

∫ 1

xn

dxn−1

xn−1
. . .

∫ 1

x2

dx1

x1

)

∼ 1

(n!)2
[αs ln(Q2/µ2) ln(1/x)]n = αnsCn(x,Q2).

(B.6)

Here, µ2 (Q2) is the initial (final) scale of the DGLAP evolution. The summation over n

of αnsCn(x,Q2) is related to the modified I0 Bessel function of the first kind. Using its

asymptotic expansion gives

∞∑

n=0

αnsCn(x,Q2) ∼ exp

(√
αs ln

(
1

x

)
ln

(
Q2

µ2

))
, (B.7)

providing an all order resummation to DLLA accuracy.

1This corresponds to the DGLAP contribution that is enhanced, relative to ln(Q2), by a ln(1/x) arising
from the integrands 1/x1, 1/x2, . . . , 1/xn corresponding to the leading terms of the LO Pgg splitting func-
tions at small x in each iteration of the strongly ordered x evolution. In a physical gauge, this corresponds
to only gluon ladder diagrams.
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GPD Singlet Evolution Kernels

As shown in Section 2.3.2, the non-singlet quantities represent the quark contributions that

decouple from the gluon density in their evolution. The evolution of the singlet GPDs,

however, is coupled and the matrix evolution equation mixes the quark and gluon sectors

as follows,

µ2
F

d

dµ2
F

(
FS(x, ξ, µ2

F )

F g(x, ξ, µ2
F )

)
=

∫ 1

−1

dy

|ξ|


 V qq

(
x
ξ ,

y
ξ

)
ξ−1V qg

(
x
ξ ,

y
ξ

)

ξV gq
(
x
ξ ,

y
ξ

)
V gg

(
x
ξ ,

y
ξ

)


(
FS(x, ξ, µ2

F )

F g(x, ξ, µ2
F )

)
.

(C.1)

The LO [219, 220, 54, 221] and NLO [222, 81, 223, 224, 225] evolution kernels, V , are known

in the literature. To O(αs), the singlet evolution kernels for the GPDs considered in this

work, i.e. the unpolarised GPDs, are collected below and taken from [108]. Together with

V NS(x, y) = V qq(x, y), (C.2)
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identically at O(αs) for all V NS, we have,

V qq(x, y) =
αs
4π
CF

[
ρ(x, y)

1 + x

1 + y

(
1 +

2

y − x

)
+ {x→ −x, y → −y}

]

+

, (C.3)

V qg(x, y) = −αs
4π

2TFNf

(
ρ(x, y)

1 + x

(1 + y)2
(1− 2x+ y − xy)− {x→ −x, y → −y}

)
,

(C.4)

V gq(x, y) =
αs
4π
CF

(
ρ(x, y)

(
(2− x)(1 + x)2 − (1 + x)2

1 + y

)
− {x→ −x, y → −y}

)
, (C.5)

V gg(x, y) =
αs
4π
CA

[
ρ(x, y)

(1 + x)2

(1 + y)2

(
2 +

2

y − x

)
+ {x→ −x, y → −y}

]

+

(C.6)

+
αs
4π
CA

[
ρ(x, y)

(1 + x)2

(1 + y)2
(1− 2x+ 2y − xy) + {x→ −x, y → −y}

]
(C.7)

+
αs
4π

(
β0 −

14

3
CA

)
δ(x− y), (C.8)

where Nf is the number of light quark flavours and ρ(x, y) specifies the support as

ρ(x, y) = θ

(
1 + x

1 + y

)
θ

(
1− 1 + x

1 + y

)
sgn(1+y) = θ(y−x)θ(x+1)−θ(x−y)θ(−x−1). (C.9)

Here, CA = 3, CF = 4/3 and TF = 1/2 and [·]+ denotes the plus-prescription regulator

such that, ∫ 1

−1
dxf(x, y)[g(x, y)]+ =

∫ 1

−1
dx(f(x, y)− f(y, y))g(x, y). (C.10)

In the forward limit, ξ → 0, the two-dimensional off-forward splitting kernels above

reduce to the conventional one-dimensional forward ones, with each resulting expression

manifestly a function of the single variable z = x/y.
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HVM Auxiliary Topologies

In this Appendix, we present the fourteen distinct auxiliary topologies constructed and used

in the computation of exclusive HVM electroproduction to NLO in collinear factorisation

in Chapter 5. We also give, in Table D.1, the association of each topology with the

corresponding Feynman diagrams appearing in Fig. 5.5.

Auxiliary topology (1):

D(1)
5 =

{
D

(1)
1 , D

(1)
2 , D

(1)
3 , D

(1)
4 , D

(1)
5

}
, where (D.1)

D
(1)
1 = l2, (D.2)

D
(1)
2 = (l + p1)2, (D.3)

D
(1)
3 = (l + p1 + p3)2 −m2, (D.4)

D
(1)
4 = (l + p1 + p3 + p4)2 −m2, (D.5)

D
(1)
5 = (l + p1 + p3 + p4 + p5)2, (D.6)

139



C.A.Flett

Auxiliary topology (2):

D(2)
5 =

{
D

(2)
1 , D

(2)
2 , D

(2)
3 , D

(2)
4 , D

(2)
5

}
, where (D.7)

D
(2)
1 = l2, (D.8)

D
(2)
2 = (l + p1)2, (D.9)

D
(2)
3 = (l + p1 + p5)2 −m2, (D.10)

D
(2)
4 = (l + p1 + p5 + p2)2 −m2, (D.11)

D
(2)
5 = (l + p1 + p5 + p2 + p4)2 −m2, (D.12)

Auxiliary topology (3):

D(3)
5 =

{
D

(3)
1 , D

(3)
2 , D

(3)
3 , D

(3)
4 , D

(3)
5

}
, where (D.13)

D
(3)
1 = l2, (D.14)

D
(3)
2 = (l + p1)2, (D.15)

D
(3)
3 = (l + p1 + p5)2 −m2, (D.16)

D
(3)
4 = (l + p1 + p5 + p4)2 −m2, (D.17)

D
(3)
5 = (l + p1 + p5 + p4 + p2)2 −m2, (D.18)

Auxiliary topology (4):

D(4)
5 =

{
D

(4)
1 , D

(4)
2 , D

(4)
3 , D

(4)
4 , D

(4)
5

}
, where (D.19)

D
(4)
1 = l2, (D.20)

D
(4)
2 = (l + p1)2, (D.21)

D
(4)
3 = (l + p1 + p2)2, (D.22)

D
(4)
4 = (l + p1 + p2 + p3)2 −m2, (D.23)

D
(4)
5 = (l + p1 + p2 + p3 + p4)2 −m2, (D.24)
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Auxiliary topology (5):

D(5)
5 =

{
D

(5)
1 , D

(5)
2 , D

(5)
3 , D

(5)
4 , D

(5)
5

}
, where (D.25)

D
(5)
1 = l2, (D.26)

D
(5)
2 = (l + p1)2, (D.27)

D
(5)
3 = (l + p1 + p4)2, (D.28)

D
(5)
4 = (l + p1 + p4 + p2)2, (D.29)

D
(5)
5 = (l + p1 + p4 + p2 + p3)2 −m2, (D.30)

Auxiliary topology (6):

D(6)
5 =

{
D

(6)
1 , D

(6)
2 , D

(6)
3 , D

(6)
4 , D

(6)
5

}
, where (D.31)

D
(6)
1 = l2, (D.32)

D
(6)
2 = (l + p1)2, (D.33)

D
(6)
3 = (l + p1 + p4)2, (D.34)

D
(6)
4 = (l + p1 + p4 + p2)2, (D.35)

D
(6)
5 = (l + p1 + p4 + p2 + p5)2 −m2, (D.36)

Auxiliary topology (7):

D(7)
5 =

{
D

(7)
1 , D

(7)
2 , D

(7)
3 , D

(7)
4 , D

(7)
5

}
, where (D.37)

D
(7)
1 = l2 −m2, (D.38)

D
(7)
2 = (l + p1)2 −m2, (D.39)

D
(7)
3 = (l + p1 + p2)2 −m2, (D.40)

D
(7)
4 = (l + p1 + p2 + p4)2 −m2, (D.41)

D
(7)
5 = (l + p1 + p2 + p4 + p3)2, (D.42)
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Auxiliary topology (8):

D(8)
5 =

{
D

(8)
1 , D

(8)
2 , D

(8)
3 , D

(8)
4 , D

(8)
5

}
, where (D.43)

D
(8)
1 = l2 −m2, (D.44)

D
(8)
2 = (l + p1)2 −m2, (D.45)

D
(8)
3 = (l + p1 + p2)2 −m2, (D.46)

D
(8)
4 = (l + p1 + p2 + p3)2, (D.47)

D
(8)
5 = (l + p1 + p2 + p3 + p5)2 −m2, (D.48)

Auxiliary topology (9):

D(9)
5 =

{
D

(9)
1 , D

(9)
2 , D

(9)
3 , D

(9)
4 , D

(9)
5

}
, where (D.49)

D
(9)
1 = l2 −m2, (D.50)

D
(9)
2 = (l + p1)2 −m2, (D.51)

D
(9)
3 = (l + p1 + p4)2 −m2, (D.52)

D
(9)
4 = (l + p1 + p4 + p2)2 −m2, (D.53)

D
(9)
5 = (l + p1 + p4 + p2 + p3)2, (D.54)

Auxiliary topology (10):

D(10)
5 =

{
D

(10)
1 , D

(10)
2 , D

(10)
3 , D

(10)
4 , D

(10)
5

}
, where (D.55)

D
(10)
1 = l2 −m2, (D.56)

D
(10)
2 = (l + p1)2 −m2, (D.57)

D
(10)
3 = (l + p1 + p4)2 −m2, (D.58)

D
(10)
4 = (l + p1 + p4 + p3)2, (D.59)

D
(10)
5 = (l + p1 + p4 + p3 + p5)2 −m2, (D.60)
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Auxiliary topology (11):

D(11)
5 =

{
D

(11)
1 , D

(11)
2 , D

(11)
3 , D

(11)
4 , D

(11)
5

}
, where (D.61)

D
(11)
1 = l2 −m2, (D.62)

D
(11)
2 = (l + p1)2 −m2, (D.63)

D
(11)
3 = (l + p1 + p4)2 −m2, (D.64)

D
(11)
4 = (l + p1 + p4 + p5)2, (D.65)

D
(11)
5 = (l + p1 + p4 + p5 + p2)2, (D.66)

Auxiliary topology (12):

D(12)
5 =

{
D

(12)
1 , D

(12)
2 , D

(12)
3 , D

(12)
4 , D

(12)
5

}
, where (D.67)

D
(12)
1 = l2 −m2, (D.68)

D
(12)
2 = (l + p1)2 −m2, (D.69)

D
(12)
3 = (l + p1 + p3)2, (D.70)

D
(12)
4 = (l + p1 + p3 + p5)2 −m2, (D.71)

D
(12)
5 = (l + p1 + p3 + p5 + p2)2 −m2, (D.72)

Auxiliary topology (13):

D(13)
5 =

{
D

(13)
1 , D

(13)
2 , D

(13)
3 , D

(13)
4 , D

(13)
5

}
, where (D.73)

D
(13)
1 = l2 −m2, (D.74)

D
(13)
2 = (l + p1)2 −m2, (D.75)

D
(13)
3 = (l + p1 + p3)2, (D.76)

D
(13)
4 = (l + p1 + p3 + p5)2 −m2, (D.77)

D
(13)
5 = (l + p1 + p3 + p5 + p4)2 −m2, (D.78)
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Auxiliary topology (14):

D(14)
5 =

{
D

(14)
1 , D

(14)
2 , D

(14)
3 , D

(14)
4 , D

(14)
5

}
, where (D.79)

D
(14)
1 = l2 −m2, (D.80)

D
(14)
2 = (l + p1)2 −m2, (D.81)

D
(14)
3 = (l + p1 + p5)2, (D.82)

D
(14)
4 = (l + p1 + p5 + p2)2, (D.83)

D
(14)
5 = (l + p1 + p5 + p2 + p3)2 −m2, (D.84)

NAT Quark diagrams Gluon diagrams

1 5.4.2, 5.4.3, 5.4.5 5.5.13, 5.5.33, 5.5.36, 5.5.37, 5.5.41, 5.5.44
5.5.48, 5.5.56, 5.5.60, 5.5.64, 5.5.71

2 N/A 5.5.4, 5.5.16, 5.5.51, 5.5.62, 5.5.79
3 N/A 5.5.22, 5.5.29, 5.5.40, 5.5.49, 5.5.68, 5.5.78
4 5.4.1, 5.4.4, 5.4.6 5.5.2, 5.5.19, 5.5.23, 5.5.31, 5.5.32, 5.5.35, 5.5.39

5.5.42, 5.5.45, 5.5.54, 5.5.58, 5.5.66, 5.5.74
5 LQ N/A
6 LQ N/A
7 N/A 5.5.24, 5.5.28, 5.5.59, 5.5.75
8 N/A 5.5.6, 5.5.17, 5.5.53, 5.5.67, 5.5.72
9 N/A 5.5.52, 5.5.80
10 N/A 5.5.1, 5.5.10, 5.5.18, 5.5.20, 5.5.27, 5.5.61, 5.5.73
11 N/A 5.5.3, 5.5.12, 5.5.26, 5.5.38, 5.5.43, 5.5.69, 5.5.76
12 N/A 5.5.46, 5.5.55, 5.5.77
13 N/A 5.5.7, 5.5.11, 5.5.14, 5.5.30, 5.5.47, 5.5.65, 5.5.70
14 N/A 5.5.5, 5.5.8, 5.5.9, 5.5.15, 5.5.21, 5.5.25

5.5.34, 5.5.50, 5.5.57, 5.5.63, 5.5.81

Table D.1: NAT assignment to each quark and gluon Feynman diagram. The ‘LQ’ quark
diagrams refer to those where the photon attaches to the light quark line.
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