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Abstract

Collagen-derived hydroxyproline (Hyp)-containing peptides have a variety of biological effects on
cells. These bioactive collagen peptides are locally generated by the degradation of endogenous
collagen in response to injury. However, no comprehensive study has yet explored the functional
links between Hyp-containing peptides and cellular behavior. Here, we show that the dipeptide
prolyl-4-hydroxyproline (Pro-Hyp) exhibits pronounced effects on mouse tendon cells. Pro-Hyp
promotes differentiation/maturation of tendon cells with modulation of lineage-specific factors and
induces significant chemotactic activity in vitro. In addition, Pro-Hyp has profound effects on cell
proliferation, with significantly upregulated ERK-phosphorylation and extracellular matrix production
and increased type | collagen network organization. Using proteomics, we have predicted molecular
transport, cellular assembly and organization, and cellular movement as potential linked-network
pathways that could be altered in response to Pro-Hyp. Mechanistically, cells treated with Pro-Hyp
demonstrate increased directional persistence, and significantly increased directed motility and
migration velocity. They are accompanied by elongated lamellipodial protrusions with increased
levels of active B1-integrin-containing focal contacts, as well as reorganization of thicker peripheral
F-actin fibrils. Pro-Hyp-mediated chemotactic activity is significantly reduced (P < 0.001) in cells
treated with the MEK1/2 inhibitor PD98059 or the a5f1-integrin antagonist ATN-161. Furthermore,
ATN-161 significantly inhibits uptake of Pro-Hyp into adult tenocytes. Thus, our findings document
the molecular basis of the functional benefits of the Pro-Hyp dipeptide in cellular behavior. These
dynamic properties of collagen-derived Pro-Hyp dipeptide could lead the way to its application in

translational medicine.



Introduction

Collagen is the most abundant extracellular matrix (ECM) protein in tissue/organ stroma and
significantly contributes to tissue/organ integrity (1). Collagen contains at least one domain of
repeated sequences of glycine (Gly)-X-Y, where X and Y are most frequently proline (Pro) and 4-
hydroxyproline (Hyp), respectively (2,3). Collagen-derived Hyp-containing peptides show a variety of
physiological activities (4-9): Pro-Hyp and alanine (Ala)-Hyp-Gly promote cell proliferation in dermal
fibroblasts, while Pro-Hyp, Ala-Hyp-Gly, and leucine (Leu)-Hyp-Gly enhance collagen secretion in
pre-osteoblast cells (7,10). Hyp-Gly promotes myogenic differentiation and myotube hypertrophy
(11). Leu-Hyp-Gly shows strong angiotensin-converting enzyme inhibitory activity (12). Pro-Hyp is
shown to be generated by the degradation of endogenous collagen in granulation tissue to activate
cells involved in tissue reconstruction/remodeling (13). The administration of gelatin hydrolysate
produces a significant increase in the mean diameter of collagen fibrils in Achilles tendon (14).
However, to date, no detailed study has explored the functional role of Hyp-containing peptides in
tendon cell behavior. It also remains unknown whether the cellular uptake of collagen-derived
peptides in tendon cells is a carrier-mediated process.

Tendon is a dense connective tissue composed of highly organized parallel and longitudinal
collagen fiber bundles (15-17). Resident tendon cells (“tenocytes”) originate from multipotent
mesenchymal cells and actively produce unique and tendon-specific ECM (18). Tendon
stem/progenitor cells exist in normal adult human and mouse tendons (19). We have recently
demonstrated that tendon progenitor cells but not residential tenocytes play a central role in the
repair following adult tendon injury (20). Scleraxis (SCX) is a basic helix-loop-helix transcription
factor that has been identified as a highly specific marker for tendon and ligament cells (21). The
transcription of type | collagen (Collal and Colla2) genes is specifically and directly controlled by
SCX in tenocytes and cardiac fibroblasts (22-24). The tenogenic marker Scx and the chondrogenic
marker SRY-box 9 (SOX 9) are known to coordinately regulate the determination of cellular lineages
during embryonic development (25). Adult tenocytes in tendon/ligaments with osteoarthritis acquire
chondrogenic potential, showing down-regulation of SCX and upregulation of SOX 9 (20,26).
Mohawk (MKX) and tenomodulin (TNMD) are also tenogenic markers during development. MKX is a
transcription factor that regulates the expression of tendon-related genes such as Scx and type |
collagen (27-29). TNMD is a type Il transmembrane glycoprotein that is predominantly expressed in
tendons and ligaments in the late stage of tendon development (30). Nevertheless, no studies to
date have identified a requirement for Hyp-containing peptides in tenogenic differentiation and
tenocyte maturation.

The major ECM component in tendon tissues is type | collagen (31). We have demonstrated that
there are at least two independent mechanisms underlying type | collagen fibril re-organization
following adult tissue injury, a fibronectin-dependent mechanism and a transforming growth factor-
beta (TGF-B)/ type V collagen-dependent mechanism (32,33). Integrins are ECM receptors

composed of transmembrane a3 heterodimeric subunits that mediate the organization of ECM, focal
4



contacts and actin-containing cytoskeleton (34,35). A knowledge of complex integrin-mediated
“outside-in” and “inside-out” signal transduction is crucial to our understanding of how integrin is
associated with extracellular ligands and/or intracellular effector molecules and consequently
regulates cellular behavior (36-38).

Cell migration is a dynamic process which is important for a variety of biological processes,
including embryonic development, tissue repair, immune response, and tumor invasion (39,40).
Integrin engagement has a significant impact in migrating cells (41,42): it is associated with the
extension of lamellipodial and filopodial protrusions at the leading edge, where newly polymerizing
actin fibers and activated but unligated integrins are clustered (43). Growing evidence reveals that
the persistence of lamellipodia is a critical factor in steering cell migration and regulating cell
directionality (44). The directionality of cell migration is defined as the displacement divided by the
total path length of the cell; thus, if the cell is migrating more randomly, the cell directionality
decreases and vice versa (45).

It remains to be elucidated how Hyp-containing peptides alter tendon cell phenotypes in vitro, and
the precise underlying molecular mechanisms are unknown. In the present study, we hypothesized
that Hyp-containing peptides have functional roles in improving cellular homeostasis in tendon cells.
We recently established adult tenocyte and tendon progenitor cell lines from mouse Achilles tendon
tissues that express the scx promoter-driven green fluorescent protein (GFP) as a marker, in which
the expression of SCXGFP is observed when the cells differentiate into mature tenocytes (20,46).
Here, we explore the phenotypic changes in mouse tendon cells mediated by Hyp-containing

peptides.



Results

Hyp-containing peptides enhance cell proliferation in adult tenocytes and tendon progenitor
cells.

The phenotypic contribution of Hyp-containing peptides to tendon cells has not yet been studied.
Micro- to millimolar concentrations of collagen-derived peptides induce chemotactic activity in a
variety of cell types in vitro (47,48), and food-derived collagen peptides in human peripheral blood
are present in micromolar concentrations (49,50). To study the cell response to Hyp-containing
peptides, cells were initially cultured with four different Hyp-containing peptides at micromolar
concentrations (Ala-Hyp-Gly, Leu-Hyp-Gly, Hyp-Gly, and Pro-Hyp; 80 pg/mL [289-462 uM]) in
medium containing 5% dialyzed fetal bovine serum (FBS). Among the peptides examined, Pro-Hyp
showed the greatest activity in adult tenocytes and tendon progenitor cells at day 3, which was
accompanied by significant upregulation of type | collagen and fibronectin mRNA levels (Suppl. Fig.
1A, 1B). mRNA of the tendon-specific transcription factor Scx was also significantly upregulated at
day 6 (Suppl. Fig. 1B). Next, to explore the cell response to Hyp-containing peptides, the dose-
response to Pro-Hyp peptide was studied focusing on micromolar concentrations (0.1-500 pg/mL
[0.5-2,200 uM]). We found that higher concentrations, 200 and 500 pug/mL, showed more effective
cell proliferation activity in both tenocytes and tendon progenitor cells (Fig. 1A). More specifically,
Pro-Hyp significantly upregulated cell proliferation activity in both cell types in a concentration-
dependent manner (Fig. 1B). Treatment of cells with the same concentration of L-Pro or L-Hyp did
not produce any changes (data not shown). These results indicate that Pro-Hyp is the most active
peptide in tendon cells. Hereafter, we focused on cellular phenotypes induced by 200 and 500
pg/mL Pro-Hyp.

Uptake of Pro-Hyp into adult tenocytes

The important unsolved questions are whether Pro-Hyp is directly associated with specific
receptors and activates subsequent intracellular signaling cascades, or carrier-mediated
intracellular uptake of Pro-Hyp occurs, which results in the activation of inside-out signaling
cascades. To study the potential for Pro-Hyp uptake into adult mouse tenocytes, a time-course
assay was carried out using a stable isotopically labeled Pro-Hyp, **Cs°N;-Pro-Hyp (SI-Pro-Hyp).
SI-Pro-Hyp uptake into adult mouse tenocytes exhibited transporter-mediated uptake kinetics with a
linear phase of uptake (about 30 min) (Fig. 2A). Importantly, this uptake was significantly decreased
at 4°C (Fig. 2B). To further investigate this process, a kinetic analysis was performed at 37°C in the
linear phase of uptake at a fixed 30-min time point with increasing Pro-Hyp concentrations ranging
from 200-30,000 pg/mL. However, saturation was not observed up to 30,000 pg/mL Pro-Hyp, and
Pro-Hyp uptake did not follow Michaelis—Menten kinetics (data not shown). Glycylsarcosine (Gly-
Sar), a typical substrate for peptide transporter 1 (PEPT1) (51), did not inhibit Pro-Hyp uptake in
adult tenocytes (data not shown), indicating that the uptake of Pro-Hyp is not mediated by PEPT1.



Recently, a series of studies on cell-penetrating peptides have revealed that these peptides are
incorporated into cells via various non-selective pathways such as endocytosis and direct
translocation pathways (52-54). To study further the localization of internalized Pro-Hyp in adult
tenocytes, subcellular localization analysis was carried out using Sl-Pro-Hyp immediately after
uptake. Interestingly, 75.5% of total SI-Pro-Hyp incorporated into cells was localized in the cytosolic
fraction, 16.4% in the membranes, 5.8% in the cytoskeleton, and 2.3% in the nucleus (Fig. 2C) at 60
min after Pro-Hyp treatment, suggesting that tenocytes internalize Pro-Hyp through multiple
pathways, including transporters and non-selective pathways.

Pro-Hyp promotes tenogenic differentiation and maturation

We next explored the extent of the contribution of Pro-Hyp to differentiation and maturation in
adult tenocytes and tendon progenitor cells. At day 6, mRNA of the tenogenic marker Scx was
significantly upregulated (up to ~4.0-fold increase compared to untreated control), whereas mRNA
of the chondrogenic marker Sox 9 was significantly downregulated (~0.3-fold compared to untreated
control) in both tenocytes and tendon progenitor cells. Thereafter, Scx mRNA levels were markedly
downregulated by day 11 (Fig. 3A). The mRNA levels of another tenogenic marker, mohawk, and of
the tendon maturation marker tenomodulin (55) were upregulated (up to ~40-fold increase
compared to untreated control) at a later stage (day 11) in both tenocytes and tendon progenitor
cells (Fig. 3A). The expression levels of type Il collagen and aggrecan mRNA in both cell types were
undetectable even after treatment with Pro-Hyp (data not shown).

The protein expression of Scx promoter-driven GFP (SCXGFP) (20,46) was further analyzed
under the fluorescence microscope during the time course. From day 4 after treatment of adult
tenocytes with Pro-Hyp, SCXGFP became visible, suggesting promotion to more mature tenocytes
(Fig. 3B). Although there was only weak induction, SCXGFP had also become visible in tendon
progenitor cells by day 10, confirming promotion to tendon-lineage differentiation by Pro-Hyp (Fig.
3B). SCXGFP was not induced in untreated cells used as negative controls (Fig. 3B).

Pro-Hyp upregulates ECM production and type | collagen assembly in vitro

SCX is known to directly regulate the Collal and Colla2 genes in tendon cells (24). Since Scx is
upregulated in response to Pro-Hyp dipeptide, the functional link between Pro-Hyp and ECM
production was addressed. Adult tenocytes and tendon progenitor cells treated with Pro-Hyp for 3
days showed significantly higher mRNA expression of type | collagen and the type | collagen-
nucleation factor fibronectin, whereas another nucleation factor, type V collagen (33,56), was
unchanged (Fig. 4A). The protein production of type | collagen and fibronectin was also significantly
increased in cellular lysates in response to Pro-Hyp in both cell types (Fig. 4B), whereas type V
collagen production did not show marked changes (data not shown). Pro-Hyp also affected (up to
~1.5-fold increase) the amounts of type | collagen secreted into the culture medium (data not
shown). Collagen network organization is a critical process that occurs upon tissue damage and/or

remodeling (57,58). We further explored the functional role of Pro-Hyp in the structural integrity of
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collagen in vitro. Phase-contrast image analysis showed that cells formed similar dense sheet-like
structures with or without peptide treatment. Immunofluorescence analysis revealed that treatment
of adult tenocytes with 500 pg/mL Pro-Hyp resulted in a significantly denser and thicker type |
collagen fibril network organization compared to untreated controls (Fig. 4C). We have recently
demonstrated that there are at least two independent mechanisms of type | collagen assembly,
fibronectin-mediated and type V collagen-mediated (33). Thus, ~50% increase of fibronectin
production in response to 500 pg/mL Pro-Hyp shown above may reflect the significant increase of
type | collagen organization in adult tenocytes.

Proteomics analysis and activation of extracellular signal-regulated kinase (ERK) in
response to Pro-Hyp

It is not yet known what the functional links are between Pro-Hyp and cell cycle progression or
between cell proliferation and other signaling pathways. We next sought to understand how Pro-Hyp
dipeptide modulates adult tenocyte behavior at an early time point using proteomics as a global
screening tool. Liquid chromatography—mass spectrometry (LC-MS)/MS identified 3006 proteins
across all samples (the mass spectrometry proteomics data have been deposited to the
ProteomeXchange Consortium via the PRIDE (59) partner repository with the dataset identifier
PXD023176). After exposure to Pro-Hyp for 6 hrs, 26 proteins were significantly increased and 290
significantly decreased compared to the time-matched control sample, as revealed by ANOVA.
Since the number and significance of the changes were small, the data were evaluated by
functional annotation and Ingenuity pathway analysis (IPA). IPA identified molecular transport,
cellular assembly and organization, and cellular movement as predicted linked-network pathways at
this early time point in adult tenocytes (Suppl. Table 2 and Suppl. Fig. 2). Therefore, these events
and related signaling molecules were investigated further.

The classical ERK family (p42/44 mitogen-activated protein kinase [MAPK]; shown in Suppl. Fig.
2B) is known to be an intracellular checkpoint for cellular mitogenesis. In cultured cells, mitogenic
stimulation by growth factors correlates with stimulation of p42/44 MAPK, indicating that the ERK
cascade plays a pivotal role in the control of cell cycle progression (60). Therefore, the
phosphorylation level of ERK was investigated during the time course. Treatment of tendon cells
with 200 pg/mL Pro-Hyp resulted in the significant upregulation of phospho-ERK: the maximum
upregulation of phospho-ERK (~6.0-fold increase) was found at 24 hrs after treatment in adult
tenocytes and at 12 hrs after treatment in tendon progenitor cells, compared to untreated time 0
(Fig. 5A). These findings indicate the involvement of ERK signaling pathways in tendon cells treated

with Pro-Hyp.

Pro-Hyp-driven cell motility
Accumulating evidence has revealed that ERK signaling is one of the critical regulators of cell
motility, although it is classically known as an important regulator of cell proliferation, differentiation

and survival through the regulation of gene expression (61). Since IPA identified cellular movement
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as one of the predicted linked-network pathways in response to Pro-Hyp (Suppl. Fig. 2B) and Hyp-
containing peptides show chemotactic activity in a variety of cell types (4,47,48,62), a transwell
migration assay was next performed using Boyden chambers. Adult tenocytes and tendon
progenitor cells exhibited significantly enhanced chemotactic activity (up to ~3.3-fold increase) in
response to Pro-Hyp (Fig. 5B).

During directional migration, cells move in response to an extracellular chemotactic signal or
intrinsic cues provided by the basic motility machinery (63). In order to visualize the detailed
morphological changes that cells undergo during Pro-Hyp-induced migration, time-lapse image
analysis of adult tenocytes was carried out. Elongated lamellipodia-like protrusions, which are
broad, flat protrusions at the leading edge of cells moving on a flat substratum (44), were observed
at 11 hrs after treatment with Pro-Hyp (Fig. 6A, Suppl. Fig. 3). The numbers of cells with
lamellipodia-like protrusions increased significantly (~1.78-fold compared to untreated cells; Fig.
6A). In trajectory plots analyzing migrating tracks, cells treated with Pro-Hyp clearly demonstrated
increased directional persistence compared to untreated controls (Fig. 6B): this resulted in a
significantly increased (~2.0-fold) number of cells with directional cell movement (cells that migrate
with a directionality ratio of more than 0.8; see details in Materials and methods) (Fig. 6C).
Furthermore, the numbers of cells i) migrating more than 10 um and ii) migrating more than 5 pum/hr
in response to Pro-Hyp were also significantly increased (Fig. 6C).

Since the engagement of active integrin is known to be important for protrusion formation with
reorganization of the actin cytoskeleton (41,42), the functional link between Pro-Hyp dipeptide and
integrin/actin cytoskeletal organization was addressed. Integrin expression profiles in primary
tenocytes from adult mouse Achilles tendon as assessed by fluorescence-activated cell sorting
(FACS) analysis revealed that adult tenocytes were positive for 31, a1, a5, a11, and av integrins,
and very weak or negative for a6, a2, and B3 integrins (Suppl. Fig. 4). There is experimental
evidence that cell-matrix adhesions containing a5B1 integrin are highly dynamic, whereas
adhesions containing avB3 are more static (64). We therefore explored the cellular distribution of the
most ubiquitously expressed integrin subunit, f1, which was positive in tenocytes (using antibody
9EG7, which recognizes an extracellular epitope of ligand-inducible active B1 (65)).
Immunofluorescence analysis demonstrated that treatment of adult tenocytes with 500 pg/mL Pro-
Hyp resulted in a significantly increased number (~2.2-fold) of active B1-integrin-containing focal
contacts and a significantly increased thickness (~2.8-fold) of peripheral F-actin fibrils compared to
untreated controls (Fig. 7A).

Finally, the functional links between Pro-Hyp induced cellular phenotypes and ERK- and f1-
integrin-mediated signaling were addressed. Pretreatment of adult tenocytes with mitogen-activated
protein kinase kinase (MEK)1/2 inhibitor PD98059 completely abrogated Pro-Hyp-mediated
increased migratory activity (P < 0.001), and the magnitude of migration was decreased to a level
slightly less than that of controls not treated with Pro-Hyp (Fig. 7B). In addition, although to a lesser
degree, pretreatment of adult tenocytes with the a5B1-integrin antagonist ATN-161 (66) resulted in a

reduction (~64.2%; P < 0.001) in Pro-Hyp-mediated cell migration. Furthermore, ATN-161
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significantly inhibited (~76.8% inhibition) uptake of Pro-Hyp into adult tenocytes (Fig. 7C),
suggesting Pro-Hyp as a5B1-integrin ligand and mediation of outside-in signaling. Thus, taken
together, these findings indicate the involvement of ERK-mediated and B1-integrin-mediated
signaling in Pro-Hyp-induced cellular phenotypes such as cell migration activity in adult tendon

cells.
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Discussion

Although a previous observation suggests a functional role of specific collagen-derived peptides in
the biosynthesis of matrix molecules of tendon and ligament cells (67), as of today, no molecular
framework exists for understanding the mechanisms that regulate adult tendon cell phenotypes in
response to those peptides. Our current study on tendon cells provides compelling evidence for the
following propositions: 1) Among the peptides examined, Pro-Hyp is the most effective one to
induce cellular phenotypes, and the cellular uptake of Pro-Hyp is suggested to occur by multiple
pathways; 2) Pro-Hyp promotes differentiation/maturation of tendon cells, enhances cell proliferation
with significantly upregulated ERK-phosphorylation, and promotes type | collagen assembly in vitro;
3) Cells treated with Pro-Hyp demonstrate significantly increased cell motility and migration
velocity, which are accompanied by elongated lamellipodial protrusions with increased active p1-
integrin-containing focal contacts and thicker peripheral F-actin fibrils; and 4) Pro-Hyp-mediated
chemotactic activity shows significant reduction on treatment of cells with the MEKZ1/2 inhibitor
PD98059 or the a5B1-integrin antagonist ATN-161. Furthermore, ATN-161 significantly inhibits

uptake of Pro-Hyp into adult tenocytes.

Possible mechanisms of the cellular uptake of Pro-Hyp in tendon cells

A growing body of evidence indicates novel and unique roles of transporters in regulating
metabolites and signaling molecules, and in communication between organs and organisms (68).
Little insight into mechanisms of the cellular uptake of Hyp-containing peptides has emerged from
pharmacokinetic studies in tendon cells. In the present study, the intracellular uptake of Pro-Hyp in
tendon cells is suggested to be a carrier-mediated process. Pro-Hyp-specific transporters have not
yet been identified, but several candidate molecules have been suggested. One example is the
peptide transporter PEPT1, which can transport di- and tri-peptides (51). However, we found that
glycylsarcosine (Gly-Sar), a typical substrate for PEPT1, did not inhibit Pro-Hyp uptake in adult
tenocytes. Another example, the peptide/histidine transporter PHT-1, mediates di- and tri-peptide
uptake, and co-administration of histidine partially inhibits Hyp-Gly-induced cellular differentiation
(11). Our subcellular localization analysis showed that Pro-Hyp peptide was incorporated into not
only the cytosol but also the membranes/organelles, the cytoskeleton, and the nucleus, and a531-
integrin antagonist ATN-161 significantly inhibited uptake of Pro-Hyp. These findings strongly
suggest the existence of more than one mechanism for the intracellular incorporation of Pro-Hyp,
i.e., not only selective uptake mediated by transporters but also non-selective uptake mediated by
endocytosis (52-54). The detailed mechanisms underlying the uptake of Hyp-containing peptides

remain to be elucidated in tendon cells.

Pro-Hyp/phospho-ERK/Scx and Pro-Hyp/phospho-ERK/integrin axes in tendon cells
Collagen-derived Hyp-containing peptides can promote osteogenesis and chondrogenesis in vitro

(8,9,69). Recent observations show that both fibroblast growth factor (FGF)/mitogen-activated
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protein kinase (MAPK)-ERK and TGFB/Smad2/3 signaling pathways are necessary and sufficient
for Scx expression in chick undifferentiated limb cells, whereas inhibition of the MAPK-ERK
signaling pathway is sufficient to activate scx in developing mouse limb progenitors (70,71). SCX
directly regulates the transcription of type | collagen (Collal and Colla2) genes in tendon cells (24)
and has been shown to be necessary and sufficient for Tnmd expression (21,30,72). This
experimental evidence supports our current findings demonstrating that Pro-Hyp significantly
upregulates Scx, Mkx, and Tnmd expression and promotes tenogenic differentiation/maturation,
which results in a significant increase in type | collagen production and network organizations
brought about by tendon cells. In contrast, Scx-null progenitors display higher chondrogenic
potential with upregulation of Sox 9 (20). These findings document the counteracting effects of
lineage-specific transcription factors on cellular differentiation/maturation by Pro-Hyp.

There is evidence that, when integrins are activated by ligands, endocytosis pathways through
the recycling endosome are activated (73,74). Our present findings have demonstrated ~64.2%
reduction in Pro-Hyp-mediated tenocyte migration by ATN-161. Furthermore, ATN-161 has
significantly inhibited uptake of Pro-Hyp into adult tenocytes, although not complete inhibition
(~76.8%). These findings support a scenario that Pro-Hyp could mainly function as a ligand for
a5B1-integrin and activate downstream ERK cascades by outside-in signaling.

Although an earlier study indicates that Pro-Hyp can abolish the suppression of the growth of skin
fibroblasts on collagen gel rather than acting as a growth factor (4), the underlying molecular
mechanisms have not been addressed. We have shown here the links between cell proliferation
and phospho-ERK upregulation in tendon cells treated with Pro-Hyp. Recent lines of evidence have
revealed the engagement of integrin-mediated inside-out signaling axes in cellular behaviors,
including mediation by the MEK/ERK signaling pathway (75-77). The signaling axis by which
intracellularly transported Pro-Hyp mediates enhanced cell proliferation through upregulated
phospho-ERK remains to be elucidated.

Upregulation of Pro-Hyp-driven cell migration activity in tendon cells

Although the recent observation of treating cells with mitomycin C suggests that Pro-Hyp enhances
the growth of skin fibroblasts but does not enhance their motility (4), it is not clear whether Pro-Hyp
can alter cell motility with the engagement of active integrins and actin re-organization in tendon
cells. Integrins affect a multitude of signal transduction cascades in the control of cell proliferation
and differentiation, migration, and the production of ECM (34,36). Cell migration requires membrane
protrusion at the cell front, and integrins mediate actin polymerization and organization at the
leading edge of migrating cells (78). Our finding that the numbers of cells with lamellipodial
protrusions were significantly increased in the presence of Pro-Hyp is consistent with the fact that
lamellipodial protrusion is powered by actin polymerization, which in turn is mediated by the
nucleation of branched actin networks induced by actin-related protein 2/3 (Arp2/3) (44) and by the
small GTPases Cdc42 and Rac (79). The next question will be which cascades are triggered as the

driving machinery to promote cell migration and actin reorganization in response to Pro-Hyp (80).
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Hyp-containing peptides for translational medicine

Adult tendon injury is a difficult clinical problem. It occurs frequently, and injured tendon heals
very slowly and is rarely restored to its normal undamaged state (81-83). Tendon disorders are thus
highly debilitating and painful (81). Growing evidence demonstrates that, in response to injury, Pro-
Hyp is locally generated by the degradation of endogenous collagen at the wound site to activate
cells involved in tissue reconstruction/remodeling ((84,85), reviewed in (13)). Collagen-derived
hydrolysates can promote the production of type Il and type | collagen and proteoglycan in
tendon/ligament cells in vitro and increase the average collagen fibril diameter in both normal and
injured tendons in vivo (14,67,86). Pro-Hyp is identified as a major constituent of food-derived
collagen in human blood after oral ingestion of gelatin hydrolysate (49,50). Clinically, oral
supplementation of specific collagen peptides combined with calf-strengthening exercises enhances
function and reduces pain in Achilles tendinopathy patients (87). Our current findings demonstrate
several functional benefits of Pro-Hyp dipeptide at rather high concentrations (200-500 pg/mL [880—
2,200 pMY)) in tendon cell behavior without any cytotoxic effects. These findings, taken together,
make it tempting to speculate that local injections of Hyp-containing peptides could be suitable
therapeutic candidates for improving the slow-healing response to adult tendon injury by promoting
tendon cell differentiation/maturation and/or enhancing collagen fibrillogenesis following injury.
Detailed analysis of the dynamic properties of collagen-derived peptides could shed the light on

their potential application to translational medicine.
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Materials and Methods

Cell culture

Adult mouse tendon progenitor cells and adult mouse tenocyte lines were established from primary
cell cultures of Achilles tendons from 10-to-12-wk-old Scx(flox/flox)/ScxGFP/p53(-/-) and
Scx(flox/flox)/ScxGFP/p21(-/-) mice, as described previously (20,46). Tendon progenitors and
tenocytes were maintained in Minimum Essential Medium Eagle Alpha Modification medium (MEM-
a) and Dulbecco’s modified Eagle’s medium (DMEM), respectively, supplemented with 10% FBS
and 1% non-essential amino acids. All Hyp-containing peptide experiments were performed using
culture medium containing 5% dialyzed FBS. In studies performed over 3 or more days, cultures
were re-dosed with peptides daily. Primary tenocyte cultures from adult mouse Achilles tendons
were performed as described elsewhere (46).

Reagents and antibodies

Pro-Hyp and Hyp-Gly peptides were purchased from Bachem (Switzerland), and other peptides
were custom synthesized by AnyGen (Korea). The following antibodies were used: rabbit polyclonal
antibody (pAb) against mouse type | collagen (Chemicon: this antibody shows less than 0.1%
reactivity with mouse collagen types Il and IV in addition to 1.0% reactivity with mouse collagen type
lll); rabbit pAb against mouse fibronectin (Chemicon: this antibody has cross-reactivity to bovine
fibronectin, and shows less than 0.1% reactivity with mouse laminin and collagen types |, Ill, and IV
by radioimmunoassay); rabbit pAb against the C-telopeptide of the a1 chain of type | collagen
(LF68; provided by Dr. Larry Fisher, NIH, USA); rabbit pAb (Abcam) and goat pAb (Thermo Fisher)
against human type V collagen; mouse monoclonal antibody (mAb) against phospho-ERK1/2
(pT202/pY204) and rabbit pAb against total Erk (Cell Signaling); rat mAb against mouse integrin (31
(clone 9EGY7) (65), hamster mAbs against mouse integrin 1 (clone Ha2/5), mouse integrin a1
(clone Ha31/8), and mouse integrin a2 (clone Ha1/29); rat mAbs against mouse integrin a5 (clone
5H10-27), mouse integrin a6 (clone GoH3), and mouse integrin av (clone RMV-7) and hamster mAb
against mouse integrin B3 (clone 2C9.G2) (all from Pharmingen); a11 (rabbit pAb; provided by Dr
Donald Gullberg, Univ. Bergen, Norway); rabbit pAb against human calnexin (sc-11397; Santa
Cruz); rabbit pAb against human Histone H1.0 (GeneTex); mouse mAb against human vimentin
(clone VIM-13.2; Sigma); mouse mAb against a-tubulin (clone B-5-1-2; Sigma); and mouse mAb
against rabbit glyceraldehyde-3-phosphate dehydrogenase (GAPDH; clone 3H12; MBL).
Peroxidase-conjugated donkey anti-mouse and anti-rabbit IgG were from Jackson ImmunoRes
Laboratories Inc. Alexa Fluor 488 goat anti-rat 1I9G, Alexa Fluor 568 goat anti-rabbit IgG and Alexa
Fluor 568 Phalloidin were from Invitrogen. Platelet-derived growth factor (PDGF) from porcine
platelets and human recombinant transforming growth factor-betal (TGF-B1) were from R&D
Systems. MEK1/2 inhibitor PD98059 (ICso = 2 uM) was from Calbiochem, and a5B1 integrin

antagonist ATN-161 was from Tocris.
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Uptake and subcellular localization analysis of Pro-Hyp in adult mouse tendon cells

Adult tenocytes were seeded at 3 x 10° cells/well in 6-well plates and cultured for 12 hrs in growth
medium. The growth medium was then replaced with transport buffer consisting of Hanks balanced
salt solution (HBSS), 25 mM HEPES, and 0.1% (w/v) bovine serum albumin (BSA) at pH 7.4 with
13C5N;-Pro-Hyp (SI-Pro-Hyp; 200 pg/mL) or Pro-Hyp (200-30,000 pg/mL). After incubation at
37°C for various time periods, cells were washed three times with ice-cold phosphate-buffered
saline (PBS), and cell lysates were harvested in 0.1% Triton X-100 containing protease inhibitor
cocktail. After one freeze-thaw cycle and freeze-drying of the solution, the sample was reconstituted
with 0.1% formic acid, and a previously developed internal standard mixture containing *Cs"°N;-
Pro-"*Cs"°N;-Hyp (2SI-Pro-Hyp) was added as an internal standard (88). Then the sample was
subjected to LC—-MS analysis in multipole reaction monitoring mode for quantification of SI-Pro-Hyp
(m/z 235.2—75.1) and Pro-Hyp (m/z 229.2—70.1), whose concentrations were determined by the
peak area ratio relative to 2SI-Pro-Hyp (m/z 241.2—75.1) as described previously (88).

To study the effect of the a 5B1-integrin antagonist ATN-161 on uptake of SI-Pro-Hyp in adult
tenocytes, cells were preincubated with ATN-161 (100 uM; (89)) for 60 min. Then the uptake assay
was performed using 200 ug/mL SI-Pro-Hyp at 37°C for 60 min as described above. We confirmed
that the concentration of ATN-161 used did not affect adult tenocyte proliferation (data not shown).

In subcellular localization analysis, adult tenocytes were seeded at 3 x 10° cells/well in 6-well
plates and cultured for 12 hrs in growth medium. The growth medium was then replaced with
transport buffer containing 200 ug/mL of SI-Pro-Hyp. After incubation at 37°C for 60 min, cells were
washed three times with ice-cold PBS. Cells were sequentially extracted by the Calbiochem®
ProteoExtract® Subcellular Proteome Extraction Kit (Millipore) according to the manufacturer’s
instructions. The accuracy of fractionation was confirmed by Western blot analysis using antibodies
against GAPDH (MBL; cytosolic), Calnexin (Santa Cruz; membrane/organelle), Histone-1 (Genetex;
nulcear), and Vimentin (Sigma; cytoskeletal) (Suppl. Fig. 5). After addition of the internal standard
mixture containing 2SI-Pro-Hyp, the extracted samples were diluted with 0.1% formic acid and
subjected to LC-MS analysis.

Immunofluorescence

Immunofluorescence studies were performed as described previously (90). In type | collagen
network and active B1-integrin and F-actin staining, images were captured with the same gain,
offset, magnitude, and exposure time. For quantification of type | collagen network-positive areas, a
minimum of four different cell images werre randomly selected and their intensities quantified using

ImageJ software (version 1.48; National Institutes of Health) (56).

Real-time PCR
Real-time PCR was performed as described elsewhere (46,91). The following primers were used:
Scx forward, 5’-GAGACGGCGGCGAGAAC-3’; Scx reverse, 5-TTGCTCAACTTTCTCTGGTTGCT-

3’; Sox9 forward, 5-CGGCTCCAGCAAGAACAAG-3’; Sox9 reverse, 5-TGCGCCCACACCATGA-3’;
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Mkx forward, 5-GCAGAATGGAGGGAAGGTAAG-3’; Mkx reverse, 5.
GGTTGTCACGGTGCTTGTA-3’; Tnmd forward, 5-GAAACCATGGCAAAGAATCCTCCAGAG-3’;
Tnmd reverse, 5-TTAGACTCTCCCAAGCATGCGGGC-3’; collagen type | (Collal) forward, 5'-
TTTGTGGACCTCCGGCTC-3’; collagen type | (Collal) reverse, 5-AAGCAGAGCACTCGCCCT-3’;
collagen type V (Col5al) forward, 5-AGGACCACACAGGGAAGC-3’; collagen type V (Col5al)
reverse, 5-CTTGTAGACACTGAGAGCAATTCG-3’; fibronectin forward, 5-
GGCTCCAGATCCATCCAACAC-3’; fibronectin reverse, 5-GACAGCCACTTTCACAGACAG-3’;
collagen type Il (Col2al) forward, 5-AGAACAGCATCGCCTACCTG-3’; collagen type Il (Col2al)
reverse, 5-CTTGCCCCACTTACCAGTGT-3’; aggrecan forward, 5-GAGGAGAGAACTGGAGAAG-
3’; aggrecan reverse, 5-GGCGATAGTGGAATACAA-3; 18S TrRNA forward, 5'-
GGCGACGACCCATTCG-3; and 18S rRNA reverse, 5-ACCCGTGGTCACCATGGTA-3. All
samples were analyzed at least in triplicate. After the reactions, the specificity of amplification in
each sample was confirmed by dissociation analysis, showing that each sample gave a single
melting peak. mMRNA levels were normalized to the level of 18S rRNA.

Western blot analysis

Western blot analyses were performed as described elsewhere (33). In some immunoblot analyses,
samples were transferred onto an Immobilon-FL polyvinylidene fluoride (PVDF) membrane
(Millipore Corp.) and probed with primary and IRDye 800CW- or IRDye 680-conjugated secondary
antibodies (LI-COR Biosciences). Immunoreactive bands were detected using the Odyssey IR

Imaging System (LI-COR Biosciences).

Proteomics analysis

Adult tenocytes were treated with or without 500 pug/mL of Pro-Hyp for certain time periods, then
washed, scraped and pelleted in phosphate buffer (pH 7.4). Subsequently, cells were resuspended
in a volume of 0.5 M tetraethylammonium bromide (TEAB)/0.1% SDS equivalent to the volume of
the cell pellet, subjected to one freeze-thaw cycle, sonicated and centrifuged. Samples were
prepared in duplicate and randomized across 3 iTRAQ experiments, with a pool of all the samples
acting as a common denominator in each of the iTRAQ runs. Samples containing 100 pg protein
were denatured, reduced and treated with methyl methanethiosulfonate according to the
manufacturer’s protocol (Sciex), before being labelled with 8-plex isobaric tags for absolute and
relative quantification (iTRAQ), pre-fractionated by cation exchange chromatography and analyzed
on a Triple TOF 6600 mass spectrometer (Sciex) as previously described (92). Briefly, 40 desalted
fractions were reconstituted in 0.1% formic acid and 5 pl of each was loaded onto the column.
Peptides were separated by in-line reversed phase chromatography on an Eksigent nanoLC 415
(nanoACQUITY UPLC Symmetry C18 Trap Column and an ACQUITY UPLC Peptide BEH C18
nanoACQUITY Column; Waters, UK). A gradient from 2-50% ACN/0.1% formic acid (v/v) over 90
min at a flow rate of 300 nL/min was applied. Spectra were acquired automatically in positive ion

mode using information-dependent acquisition (Analyst TF 1.7.1. software; Sciex). Up to 25 MS/MS
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spectra were acquired per cycle (approximately 10 Hz) using a threshold of 500 counts per sec and
with dynamic exclusion for 20 sec. The rolling collision energy was increased automatically by
selecting the iITRAQ check box in Analyst, and manually by increasing the collision energy
intercepts by 5. Data were searched using ProteinPilot 5.0 (Sciex) and the Paragon algorithm
(Sciex) against the SwissProt database (May 2019; 17,013 mouse entries) with methylthio as a
fixed modification of cysteine residues and biological modifications allowed. The mass tolerance for
precursor and fragment ions was 10 ppm. The data were also searched against a reversed decoy
database and proteins lying within a 1% global false discovery rate were included in further
analyses. Data from the 3 iTRAQ experiments were merged using RStudio V.1.0.143 and only
proteins for which there were values in all samples were taken forward. ANOVA was performed on
the natural log transformed data using Partek Genomics Suite 7.18, with iTRAQ experiment and
treatment as variables. Functional annotation cluster analysis was performed on altered proteins
using the Database for Annotation, Visualization and Integrated Discovery (DAVID), with the full list
of proteins identified in the combined iITRAQ data as the background list (93,94). In addition,
functional pathway prediction activity, upstream regulator analysis and network analysis was
performed on the same list of genes using the Ingenuity Pathway Analysis (IPA) software.
Functional pathway prediction activity is designed to infer which functions may be activated or
repressed. IPA is able to infer a functional response by comparing the observed change in protein
expression with prior knowledge of expected effects between regulatory and effector genes stored
in the Ingenuity Knowledge database. We applied this approach to identify which biological
functions were likely to be activated or repressed as well as to infer which proteins that may not
have been detected by the proteomics analysis may be responsible for driving the observed
differences in the proteomic profile (upstream regulator analysis). Network Analysis instead

identified protein interactions that link the list of input proteins.

Cell migration

Cell migration assays were performed in modified Boyden chambers containing Nucleopore
polycarbonate membranes (5-um pore size; Costar Corp., Cambridge, MA) as described previously
(65,95). Briefly, the filters were soaked overnight in a 100 pg/mL solution of gelatin.
Chemoattractants in culture medium were added to the lower compartment of the chambers. Cells
suspended in culture media were introduced into the upper compartment of the chamber. The
chambers were then incubated for 6 hrs at 37°C. The filters were fixed and stained, and the cells
that had migrated to the lower surface were counted.

To study the effect of the MEK1/2 inhibitor PD98059 (ICso = 2 puM) and the a5@1-integrin
antagonist ATN-161 on Pro-Hyp-mediated cell migration in adult tenocytes, cells were preincubated
for 1 h and treated with PD98059 (20 uM) or ATN-161 (100 uM; (89)). Then migration assays were
performed as described above. We confirmed that the concentration of the inhibitors used did not

affect adult tenocyte proliferation (data not shown).
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Time-lapse microscopic analysis

Adult tenocytes (20,000 cells) were plated on one compartment of 3.5-cm four-compartment dishes.
Cells were initially cultured for the first 4 hrs without peptides, then treated with 200 or 500 pg/mL of
Pro-Hyp and cultured for a further 11 hrs. During time-lapse assays, cells were imaged every 10 min
for 15 hrs on a Zeiss LSM 710 confocal microscope with incubation conditions set to 37 °C and 5 %
CO,. The time-lapse settings were under transmitted light, with a 10x NA 0.45 objective, 1% laser
intensity (488-nm line), 251 Master Gain, 512 x 512-pixel size. Six non-overlapping regions of
interest were randomly selected for analysis (at least 36 cells under each set of condition). We
defined directional-movement-positive cells as cells that migrated with a directionality ratio of more
0.8 (displacement divided by total cell movement) (96).

Data presentation and statistical analysis

All experiments were performed at least in triplicate on separate occasions, and the data shown
were chosen as representative of results consistently observed. Results are presented as means *
standard deviation (S.D.). Differences between groups were analyzed using the two-sided Student’s
t-test on raw data. In cases where more than two groups were compared, one-way ANOVA and
Dunnett’s post-hoc test, or two-way ANOVA and Tukey’s post-hoc test were used. A p value of <

0.05 was considered significant. All ANOVA data are shown in Suppl. Table 1.

Data Availability

All protein identifications are shown in Suppl. Table 3. All remaining data are contained within the
article. The mass spectrometry proteomics data have been deposited to the ProteomeXchange
Consortium via the PRIDE (https://www.ebi.ac.uk/pride/archive/) (59) partner repository with the
dataset identifier PXD023176.
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Figure Legends

Fig. 1. Cell response to Pro-Hyp in adult tenocytes and tendon progenitor cells.

(A) Dose-responses to Pro-Hyp peptide. Cells were cultured with different concentrations of Pro-
Hyp for 24 hrs. Dose responses are shown relative to the control value of 100% (cultured without
Pro-Hyp). Error bars represent the standard deviation (n = 3).

(B) Cell proliferation activity. Cells were cultured with 200 or 500 pug/mL Pro-Hyp for up to 3 days.
Error bars represent the standard deviation (n = 3). **, P < 0.01; ***, P < 0.001: significantly different
compared to untreated controls in post-hoc analysis.

Fig. 2. Uptake of Pro-Hyp into adult tenocytes.

(A) Time-course of uptake of stable isotopically labeled Pro-Hyp (SI-Pro-Hyp; 200 pg/mL) at 37 °C
in adult tenocytes. Error bars represent the standard deviation (n = 4).

(B) Accumulation of SI-Pro-Hyp in tenocytes after 60 min at 37°C and 4 °C. Error bars represent the
standard deviation (n = 4). **, P < 0.01.

(C) Subcellular localization analysis of 200 pg/mL SI-Pro-Hyp in adult tenocytes after 60 min at

37°C. Error bars represent the standard deviation (n = 4).

Fig. 3. Enhanced tenogenic differentiation in response to Pro-Hyp in adult tenocytes and tendon
progenitor cells.

(A) Real-time PCR analysis of Scx, Sox 9, Mkx, and Tnmd mRNA levels. Cells were treated with
Pro-Hyp and cultured for 3, 6 and 11 days. mRNA expression levels are shown relative to the
control value of 1 (untreated cells). Error bars represent the standard deviation (n = 3). *, P < 0.05;
** P <0.01; ***, P <0.001 (in post-hoc analysis).

(B) The effect of Pro-Hyp on ScxGFP expression in adult tenocytes and tendon progenitor cells. In

adult tenocyte cultures, TGF-B1 (2 ng/mL) was used as a positive control (46). Scale bars, 100 pm.

Fig. 4. Upregulated ECM mRNA expression and protein production, and type | collagen network
organization in tendon cells.

(A) Real-time PCR analysis of type | collagen (Collal), fibronectin, and type V collagen (Col5al)
MRNA levels in tendon cells. Cells were cultured with Pro-Hyp for 3 days. mRNA expression levels
are shown relative to the control value of 1 (untreated cells). Error bars represent the standard
deviation (n = 3). *, P < 0.05 (in post-hoc analysis).

(B) Western blot analysis of type | collagen (COL1A1) and fibronectin in cellular lysates of tendon
cells. Cells were cultured with Pro-Hyp for 3 days. Band intensity was measured by densitometry
and normalized to a-tubulin (loading control). a-tubulin blots were reused in each analysis. The type
I collagen and fibronectin levels are shown relative to the control value of 1 (untreated cells). Error

bars represent the standard deviation (n = 3). *, P < 0.05 (in post-hoc analysis).
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(C) Enhanced type | collagen network organization in adult tenocytes. (Upper panels) Phase-
contrast micrographs and immunofluorescence staining for type | collagen (red)/ DAPI (blue) with
Pro-Hyp for 3 days. Scale bars, 100 um. (Lower panel) Quantification of type | collagen positivity by
densitometric analysis. Error bars represent the standard deviation (n = 3). *, P < 0.05 (in post-hoc

analysis).

Fig. 5. Effect of Pro-Hyp on phospho-ERK (ERK[p202/204]) expression and cell migration activity in
adult tenocytes and tendon progenitor cells.

(A) Western blot analysis of phospho-ERK and total ERK (left panels), and analysis of phospho-
ERK intensities (right panels). Band intensity was measured by densitometry and normalized to total
ERK. Each phospho-ERK level is shown relative to the control value of 1 (at time O of untreated
cells). Error bars represent the standard deviation (n = 3). MW, molecular weight marker. *, P < 0.05
(in post-hoc analysis).

(B) Cell migration of tendon cells through gelatin-coated filters using Boyden chamber. Pro-Hyp
(200 or 500 pg/mL) was added in the lower chamber. Bars represent the mean cell number/0.785
mm? field. Error bars represent the standard deviation (n = 4). PDGF (10 ng/mL) was used as a

positive control. **, P < 0.01; ***, P < 0.001 (in post-hoc analysis).

Fig. 6. Effect of Pro-Hyp on cell displacement and velocity in adult tenocytes.

(A) (Upper panels) Time-lapse images at 4 hr (the time point when Pro-Hyp was added) and 15 hr
in adult tenocytes. In “Control”, cells were analyzed for 15 hr-observation periods without Pro-Hyp.
Red arrows indicate lamellipodia-like protrusions. Scale bars, 100 um. (Lower panel) Percentage of
cells showing lamellipodial protrusions for 11 hr-observation periods. Error bars represent the
standard deviation. ***, P < 0.001 (in post-hoc analysis).

(B) Trajectory plots measured by cell displacement with Pro-Hyp in adult tenocytes for 11 hrs. The
X- and Y-axes show cell movement observed every 10 min for 11 hrs.

(C) (Left panel) Percentage of cells showing directional movement with Pro-Hyp (cells that migrate
with a directionality ratio of more than 0.8; see details in Materials and methods). (Middle and right
panels) Percentage of cells moving more than 10 um (Middle panel) and more than 5 um/hr (Right
panel) for 11-hr observation periods. Error bars represent the standard deviation. **, P < 0.01; ***, P

< 0.001 (in post-hoc analysis).

Fig. 7. Engagement of B1-integrin- and ERK-signaling in Pro-Hyp-mediated cell migration.

(A) (Left panels) Immunofluorescence staining for B1-integrin (clone 9EG7, which recognizes an
extracellular epitope of ligand-inducible active 1 (65): green)/DAPI (blue) and F-actin (red)/DAPI
(blue). Adult tenocytes were treated with 500 pug/mL Pro-Hyp for 6 hrs. Scale bars, 20 um. (Right
panels) The numbers of active B1-integrin-containing focal contacts, and the thickness of F-actin
filaments when cells were treated with 500 pg/mL Pro-Hyp for 6 hrs. Error bars represent the

standard deviation (n = 4; 4-spearate culture experiments). **, P < 0.01; *** P < 0.001.
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(B) Effect of MEK1/2 inhibitor PD98059 or a5@1-integrin antagonist ATN-161 on Pro-Hyp-mediated
cell migration in adult tenocytes using Boyden chamber. Cell migration activity is shown relative to
the control value of 100% (cells treated with 200 pug/mL Pro-Hyp). Error bars represent the standard
deviation (n = 5). *** P < 0.001 (in post-hoc analysis).

(C) Effect of ATN-161 on uptake of stable isotopically labeled Pro-Hyp (SI-Pro-Hyp; 200 pg/mL) in
adult tenocytes for 60 min at 37°C. Error bars represent the standard deviation (n = 8). *** P <
0.001.
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Suppl. Fig. 1. Physiological activity of Hyp-containing peptides in tendon cells.

(A) Cell proliferation assays. Adult tenocytes and tendon progenitor cells were cultured with 80 ug/mL
of the Hyp-containing peptides Ala-Hyp-Gly, Leu-Hyp-Gly, Hyp-Gly, and Pro-Hyp, for up to 3 days.

(B) Real-time PCR analysis of type | collagen (Collal) and fibronectin (at day 3) and Scx (at day 6)
MRNA levels. Cells were treated with 80 or 200 ug/mL of Hyp-containing peptides. Error bars
represent the standard deviation (n = 3). *, P < 0.05; **, P < 0.01; ***, P < 0.001: significantly
different compared to untreated controls (in post-hoc analysis).



Network No. Score Focus Molecules Top Diseases and Functions

1 65 30 [Molecular Transport, Protein Trafficking, RNA Post-Transcriptional Modification]
2 51 25 [Cell Morphology, Organismal Injury and Abnormalities, Skeletal and Muscular Disorders)
3 45 23 [Cellular Assembly and Organization, Molecular Transport, RNA Trafficking]
4 37 20 [Cellular Movement, Embryonic Development, Renal and Urological System Development and Function]
5 26 15 [Cell Signaling, Cellular Assembly and Organization, Cellular Function and Maintenance]
6 21 13 [Cell Morphology, Cellular Assembly and Organization, DNA Replication, Recombination, and Repair]
7 21 13 [Cellular Development, Cellular Movement, Reproductive System Development and Function]
8 19 12 [Cancer, Post-Translational Modification, Protein Folding]
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Suppl. Fig. 2. Proteomics analysis in adult tenocytes.

(Upper panel) The 8 networks that Ingenuity Pathway Analysis (IPA) identified linking the proteins
differentially regulated at 6 hrs after Pro-Hyp treatment. Columns show the network ID, score, number
of proteins included in each network and functions enriched in each network. (Lower panels) The 4
significant IPA networks identified using the list of proteins differentially regulated at 6 hrs after Pro-
Hyp treatment. The network number represents each network described in the upper panel.
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Suppl. Fig. 3. Live-cell imaging: Time-lapse microscopic analysis of adult tenocytes for 15 hrs.
Adult tenocytes were (A) left untreated for 15 hrs or treated with (B, C) 200 pg/mL or (D, E) 500 pug/mL
Pro-Hyp at the 4-hr time point and further observed for 11 hrs (total 15 hrs). The data are shown in
separate video files (.avi). Scale bar, 100 pm.

«1(69.1%) a2(3.3%) | | a5(92.0%)| ab(9.8%) | a11(73.0%) av(74.3%) | | $1(96.3%) | $3(2.3%)
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Suppl. Fig. 4. Integrin expression profiles in adult mouse primary tenocytes by FACS analysis.
Adult mouse primary cultured tenocytes were stained with the anti-integrin antibodies a1 (clone
Ha31/8), a2 (clone Ha1/29), a5 (clone 5H10-27), a6 (clone GoH3), a11, av (clone RMV-7), B1 (clone
Ha2/5), or B3 (clone 2C9.G2). Red and black histograms denote control fluorescence and
cell/antibody-bound fluorescence, respectively. The percentage of positive cells is indicated in each
panel.
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36 - .- - GAPDH
90 - w - Calnexin
35 - - - Histone-1
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Suppl. Fig. 5. Western blot analysis of GAPDH (cytosolic marker), Calnexin (membrane), Histone-1
(nucleus), and Vimentin (cytoskeleton) after fractionation of cytosol, membrane/organelle, nucleus,
and cytoskeleton from adult tenocytes.



Suppl. Table 1. Results of the ANOVA analyses

Figure Statistics ANOVA, ANOVA,
F value P value
Fig. 1B Adult tenocytes, day 1 22.89 0.001
Adult tenocytes, day 3 24.41 0.001
Progenitors, day 1 20.8 0.002
Progenitors, day 3 22.07 0.001
Fig. 3A Adult tenocyts, day 6, Scx 43.02 < 0.001
Adult tenocytes, day 6, Sox 9 13.17 0.002
Progenitors, day 6, Scx 7.35 0.005
Progenitors, day 6, Sox 9 6.8 0.008
Adult tenocytes, day 11, Mkt 19.23 0.002
Adult tenocytes, day 11, Tnmd 33.79 < 0.001
Progenitors, day 11, Mkt 18.77 0.002
Progenitors, day 11, Tnmd 20.95 0.001
Fig. 4A Adult tenocytes, Col1a1 5.25 0.012
Adult tenocytes, Fibronectin 443 0.025
Progenitors, Col1a1 6.19 0.02
Progenitors, Fibronectin 6.727 0.029
Fig. 4B Adult tenocytes, COL1A1 5.8 0.019
Adult tenocytes, Fibronectin 5.61 0.026
Progenitors, COL1A1 6.81 0.007
Progenitors, Fibronectin 15.62 0.001
Fig. 4C Adult tenocytes, Col positive area 12.39 0.007
Fig. S5A# Adult tenocytes, Control vs Pro-Hyp treated 8.39 0.008
Adult tenocytes, Time course 2.62 0.05
Adult tenocytes, Interaction 1.04 0.42
Progenitors, Control vs Pro-Hyp treated 6.87 0.015
Progenitors, Time course 4.26 0.007
Progenitors, Interaction 0.56 0.73
Fig. 5B Progenitors, Migration 66.42 < 0.001
Fig. 6A Cells with lamellipodia 148.2 < 0.001
Fig. 6C Directional movement 112.6 < 0.001
Movement > 10 um 13.09 < 0.001
Velocity > 5 um/hour 38.09 < 0.001
Fig. 7B Cell migration 98.94 <0.001



Suppl. Fig. 1A Adult tenocytes, day 3 5.38 0.014

Progenitors, day 3 4.07 0.032

Suppl. Fig. 1B Adult tenocytes, Col1a1 (200 ug/mL peptide) 12.67 < 0.001
Progenitors, Col1a1 (80 ug/mL peptide) 4.05 0.033
Progenitors, Col1A1 (200 mg/mL peptide) 8.95 0.006
Adult tenocytes, Fibronectin (200 ng/mL peptide) 3.85 0.038
Progenitors, Fibronectin (80 ng/mL peptide) 13.14 < 0.001
Progenitors, Fibronectin (200 ug/mL peptide) 7 0.012
Adult tenocytes, Scx (80 png/mL peptide) 3.98 0.034
Adult tenocytes, Scx (80 ng/mL peptide) 4.35 0.027
Progenitors, Scx (80 pug/mL peptide) 4.95 0.018
Progenitors, Scx (200 ug/mL peptide) 9.16 0.002

#, Data in Fig. 5A were analyzed using Two-way ANOVA.



Suppl. Table 2. Proteomics analysis in adult tenocytes. List of proteins where the fold change is
significant for at least two time points by two-way ANOVA using the Database for Annotation,

Visualization and Integrated Discovery (DAVID).

Protein Accession p-value Ratio Fold-Change | Fold-Change (Description)
Dystroglycan Q62165 0.044 0.115 -8.681 6h + down vs 6h -
Mitochondrial import inner membrane translocase
- Q9WV98 0.049 0.118 -8.451 6h + down vs 6h -

subunit Tim9
ATP synthase subunit gamma, mitochondrial Q91VR2 0.049 0.120 -8.358 6h + down vs 6h -
Hepatoma-derived growth factor P51859 0.042 0.131 -7.647 6h + down vs 6h -
Exocyst complex component 5 Q3TPX4 0.027 0.148 -6.764 6h + down vs 6h -
RNA-binding protein Raly Q64012 0.041 0.151 -6.641 6h + down vs 6h -
Transient receptor potential cation channel subfamily M Q7TN37 0.027 0.157 6.360 6h + down vs 6h -
member 4
Protein virilizer homolog A2AIV2 0.016 0.182 -5.500 6h + down vs 6h -
Myristoylated alanine-rich C-kinase substrate P26645 0.018 0.190 -5.270 6h + down vs 6h -
Exocyst complex component 6B A6H573 0.033 0.192 -5.212 6h + down vs 6h -
Epi | h f; ki -lik

plde‘rma growth factor receptor kinase substrate 8-like Q99K30 0.039 0.192 5.198 6h + down vs 6h -
protein 2
Sorting nexin-7 Q9CY18 0.026 0.196 -5.093 6h + down vs 6h -
Nucleoside diphosphate kinase B Q01768 0.007 0.205 -4.885 6h + down vs 6h -
Cysteine and histidine-rich domain-containing protein 1 Q9D1P4 0.037 0.211 -4.739 6h + down vs 6h -
Endoribonuclease LACTB2 Q99KR3 0.035 0.213 -4.700 6h + down vs 6h -
Serine/threonine-protein kinase SIK3 Q6P4S6 0.047 0.214 -4.664 6h + down vs 6h -
NADH deh iqui 1alph |

dehydrogenase [ubiquinone] 1 alpha subcomplex | gp,¢)g 0.041 0218 4579 6h + down vs 6h -

subunit 8
60S ribosomal protein L35 Q6ZWV7 0.025 0.226 -4.427 6h + down vs 6h -
Beta-arrestin-1 Q8BWGS8 0.033 0.228 -4.378 6h + down vs 6h -
Transportin-2 Q99LG2 0.003 0.233 -4.297 6h + down vs 6h -
Protein Noxp20 Q9D281 0.012 0.234 -4.278 6h + down vs 6h -
Vesicle- iated b tein- iated i
Ae5|c e-associated membrane protein-associated protein QOWVSS 0.015 0.235 -4.258 6h + down vs 6h -
Parathymosin Q9oD0J8 0.030 0.237 -4.228 6h + down vs 6h -
Glycylpeptide N-tetradecanoyltransferase 1 070310 0.038 0.239 -4.183 6h + down vs 6h -
Cleavage and polyadenylation specificity factor subunit 3 Q9QXK7 0.042 0.241 -4.149 6h + down vs 6h -
Cohesin subunit SA-2 035638 0.034 0.242 -4.132 6h + down vs 6h -
5'-AMP-activated protein kinase subunit beta-1 Q9R078 0.029 0.246 -4.062 6h + down vs 6h -
Mitochondrial inner membrane protein OXA1L Q8BGA9 0.043 0.247 -4.053 6h + down vs 6h -
H/ACA ribonucleoprotein complex subunit DKC1 QIESX5 0.037 0.248 -4.038 6h + down vs 6h -
Serine/threonine-protein phosphatase 2A 6

erine/threonine-protein phosphatase 2A 65 kDa Q76Mz3 0.033 0.249 4,013 6h + down vs 6h -
regulatory subunit A alpha isoform
Cysteine desulfurase, mitochondrial Q971J3 0.040 0.250 -3.997 6h + down vs 6h -
Eukaryotic translation initiation factor 2 subunit 2 Q99L45 0.012 0.257 -3.896 6h + down vs 6h -
THUMP domain-containing protein 3 P97770 0.002 0.257 -3.893 6h + down vs 6h -
Constitutive coactivator of PPAR-gamma-like protein 2 Q8C3F2 0.039 0.257 -3.889 6h + down vs 6h -
S-formylglutathione hydrolase Q9ROP3 0.021 0.263 -3.800 6h + down vs 6h -
X-ray repair cross-complementing protein 5 P27641 0.025 0.265 -3.780 6h + down vs 6h -
Far upstream element-binding protein 1 Q91wWJ8 0.027 0.270 -3.709 6h + down vs 6h -
WD td in ph hoi itide-int ti tei
) repeat domain phosphoinositide-interacting protein Q8R3E3 0.025 0.270 3,699 6h + down vs 6h -
Plasminogen activator inhibitor 1 RNA-binding protein Q9CY58 0.023 0.271 -3.687 6h + down vs 6h -
Coatomer subunit epsilon 089079 0.026 0.273 -3.668 6h + down vs 6h -
E3 ubiquitin-protein ligase UBR3 Q5U430 0.017 0.274 -3.647 6h + down vs 6h -
Nuclear factor 1 X-type P70257 0.019 0.276 -3.628 6h + down vs 6h -
LRP chaperone MESD Q9ERE7 0.028 0.276 -3.623 6h + down vs 6h -
Microtubule-associated protein 4 P27546 0.017 0.278 -3.599 6h + down vs 6h -
Histone-binding protein RBBP4 Q60972 0.046 0.280 -3.572 6h + down vs 6h -
Cytoskeleton-associated protein 5 A2AGTS 0.028 0.283 -3.528 6h + down vs 6h -
Anaphase-promoting complex subunit 1 P53995 0.028 0.284 -3.527 6h + down vs 6h -
Aldose reductase-related protein 2 P45377 0.022 0.285 -3.511 6h + down vs 6h -
COMM domain-containing protein 4 Q9CQ02 0.032 0.291 -3.439 6h + down vs 6h -
Cytochrome b-c1 complex subunit 7 Q9D855 0.036 0.294 -3.400 6h + down vs 6h -
Sulfite oxidase, mitochondrial Q8R086 0.031 0.296 -3.378 6h + down vs 6h -
Protein CDV3 Q4VAA2 0.044 0.297 -3.364 6h + down vs 6h -
Ran-binding protein 3 Q9CT10 0.029 0.302 -3.315 6h + down vs 6h -
Probable ATP-dependent RNA helicase DDX6 P54823 0.019 0.304 -3.289 6h + down vs 6h -
N-alpha-acetyltransferase 35, NatC auxiliary subunit Q6PHQ8 0.011 0.304 -3.287 6h + down vs 6h -
Dual specificity mitogen-activated protein kinase kinase 4 P47809 0.009 0.305 -3.277 6h + down vs 6h -
Rabankyrin-5 Q810B6 0.046 0.305 -3.274 6h + down vs 6h -
Tyrosine-protein kinase BAZ1B Q97277 0.035 0.307 -3.255 6h + down vs 6h -




Ras GTPase-activating protein-binding protein 2 P97379 0.022 0.309 -3.241 6h + down vs 6h -
Dedicator of cytokinesis protein 7 Q8R1A4 0.045 0.309 -3.231 6h + down vs 6h -
Mitochondrial fission 1 protein Q9CQ92 0.038 0.319 -3.138 6h + down vs 6h -
Torsin-1B Q9ER41 0.037 0.320 -3.129 6h + down vs 6h -
Elongation factor Ts, mitochondrial Q9CZR8 0.013 0.321 -3.120 6h + down vs 6h -
Phosphoacetylglucosamine mutase Q9CYR6 0.028 0.321 -3.115 6h + down vs 6h -
D-aminoacyl-tRNA deacylase 2 Q8BHA3 0.038 0.321 -3.115 6h + down vs 6h -
Elongation factor G, mitochondrial Q8K0OD5 0.046 0.323 -3.099 6h + down vs 6h -
Elongation factor 1-delta P57776 0.014 0.323 -3.097 6h + down vs 6h -
Acyl-coenzyme A thioesterase 9, mitochondrial Q9R0OX4 0.049 0.324 -3.090 6h + down vs 6h -
Sorting nexin-4 Q91YJ2 0.025 0.324 -3.084 6h + down vs 6h -
14-3-3 protein gamma P61982 0.028 0.324 -3.082 6h + down vs 6h -
Ribosomal L1 domain-containing protein 1 Q8BVYO 0.014 0.325 -3.075 6h + down vs 6h -
Mth938 domain-containing protein Q8R0OP4 0.002 0.327 -3.062 6h + down vs 6h -
Zinc finger C2HC domain-containing protein 1A Q8BJH1 0.018 0.329 -3.043 6h + down vs 6h -
Coatomer subunit beta' 055029 0.019 0.329 -3.040 6h + down vs 6h -
Ubiquitin thioesterase OTUB1 Q7TQlI3 0.027 0.332 -3.010 6h + down vs 6h -
Mitochondrial proton/calcium exchanger protein Q97210 0.039 0.334 -2.993 6h + down vs 6h -
Methyltransferase-like 26 Q9DCS2 0.034 0.335 -2.986 6h + down vs 6h -
Thyroid hormone receptor-associated protein 3 Q56976 0.039 0.335 -2.985 6h + down vs 6h -
Metaxin-2 088441 0.047 0.336 -2.980 6h + down vs 6h -
Ezrin P26040 0.050 0.338 -2.960 6h + down vs 6h -
Cytosolic acyl coenzyme A thioester hydrolase Q91V12 0.023 0.342 -2.925 6h + down vs 6h -
Host cell factor 1 Q61191 0.042 0.343 -2.920 6h + down vs 6h -
Caprin-1 Q60865 0.010 0.348 -2.876 6h + down vs 6h -
Eukaryotic translation initiation factor 5B Q05D44 0.032 0.352 -2.845 6h + down vs 6h -
Serine-threonine kinase receptor-associated protein Q971722 0.004 0.354 -2.825 6h + down vs 6h -
U6 snRNA-associated Sm-like protein LSm2 035900 0.014 0.356 -2.809 6h + down vs 6h -
Microtubule-associated protein 1A Q9QYR6 0.025 0.357 -2.799 6h + down vs 6h -
Pumilio homolog 3 Q8BKS9 0.009 0.361 -2.772 6h + down vs 6h -
Anaphase-promoting complex subunit 2 Q8BzQ7 0.003 0.361 -2.770 6h + down vs 6h -
Ribosome biogenesis protein BOP1 P97452 0.030 0.361 -2.770 6h + down vs 6h -
Lysosome-associated membrane glycoprotein 2 P17047 0.035 0.362 -2.762 6h + down vs 6h -
Protein transport protein Sec16A E9QAT4 0.031 0.364 -2.750 6h + down vs 6h -
Mitofusin-2 Q80U63 0.000 0.364 -2.745 6h + down vs 6h -
Hemoglobin subunit alpha P01942 0.033 0.365 -2.741 6h + down vs 6h -
Lamin-B1 P14733 0.021 0.366 -2.733 6h + down vs 6h -
Aconitate hydratase, mitochondrial Q99KIO 0.037 0.366 -2.730 6h + down vs 6h -
14-3-3 protein zeta/delta P63101 0.009 0.366 -2.730 6h + down vs 6h -
Fumarate hydratase, mitochondrial P97807 0.041 0.370 -2.706 6h + down vs 6h -
Apoptosis-inducing factor 1, mitochondrial Q9Z0X1 0.031 0.371 -2.693 6h + down vs 6h -
Sorting nexin-5 Q9D8US8 0.037 0.372 -2.691 6h + down vs 6h -
Thloredoxm.—dependent peroxide reductase, 20108 0.043 0.372 2,688 6h + down vs 6h -
mitochondrial

Protein farne.syltransferase/ geranylgeranyltransferase Q61239 0.038 0.374 2673 6h + down vs 6h -
type-1 subunit alpha

Protein Niban Q3UW53 0.004 0.374 -2.671 6h + down vs 6h -
Eukaryotic translation initiation factor 5 P59325 0.045 0.375 -2.670 6h + down vs 6h -
Elongator complex protein 1 Q777137 0.025 0.379 -2.641 6h + down vs 6h -
Ataxin-10 P28658 0.026 0.380 -2.630 6h + down vs 6h -
Struct.ural malint‘enance of chromosomes flexible hinge Q6P5D8 0.018 0.382 2616 6h + down vs 6h -
domain-containing protein 1

Probable 2-.oxoglutar.ate dehydrogenase E1 component A2ATUO 0.042 0.384 2.605 6h + down vs 6h -
DHKTD1, mitochondrial

Protein PRRC2C Q3TLH4 0.024 0.385 -2.600 6h + down vs 6h -
V-type proton ATPase subunit C 1 Q971G3 0.034 0.386 -2.590 6h + down vs 6h -
Nucleotide exchange factor SIL1 Q9EPK6 0.022 0.386 -2.590 6h + down vs 6h -
Serme/threonme—protem phosphatase 4 regulatory QOVGB7 0.011 0.386 2.589 6h + down vs 6h -
subunit 2

14-3-3 protein beta/alpha Q9ICQVvs8 0.009 0.387 -2.587 6h + down vs 6h -
Neurolysin, mitochondrial Q91YP2 0.002 0.390 -2.565 6h + down vs 6h -
Farnesyl pyrophosphate synthase Q920E5 0.018 0.393 -2.541 6h + down vs 6h -
Anaphase-promoting complex subunit 5 Q8BTZ4 0.029 0.395 -2.534 6h + down vs 6h -
Receptor expression-enhancing protein 5 Q60870 0.019 0.396 -2.527 6h + down vs 6h -
Serine/threonine-protein kinase ULK3 Q3u3Q1 0.030 0.398 -2.510 6h + down vs 6h -
LIM domain and actin-binding protein 1 Q9ERGO 0.032 0.399 -2.505 6h + down vs 6h -
Adenosine deaminase P03958 0.004 0.399 -2.504 6h + down vs 6h -
Segment polarity protein dishevelled homolog DVL-2 Q60838 0.042 0.401 -2.494 6h + down vs 6h -
Serine/threonine-protein kinase WNK1 P83741 0.013 0.402 -2.486 6h + down vs 6h -
Periodic tryptophan protein 2 homolog Q8BUO3 0.039 0.404 -2.473 6h + down vs 6h -




Conserved oligomeric Golgi complex subunit 6 Q8R3I13 0.030 0.405 -2.468 6h + down vs 6h -
Protein arginine N-methyltransferase 1 QIJIFO 0.028 0.405 -2.467 6h + down vs 6h -
Apoptotic chromatin condensation inducer in the nucleus Q9JIX8 0.024 0.408 -2.451 6h + down vs 6h -
Calponin-3 Q9DAW9 0.039 0.409 -2.444 6h + down vs 6h -
Catenin alpha-1 P26231 0.023 0.410 -2.438 6h + down vs 6h -
NAD(P) transhydrogenase, mitochondrial Q61941 0.045 0.411 -2.435 6h + down vs 6h -
Beta-1,3-glucosyltransferase Q8BHT6 0.047 0.411 -2.432 6h + down vs 6h -
Nuclear pore complex protein Nup155 Q99P88 0.033 0.412 -2.428 6h + down vs 6h -
Extended synaptotagmin-2 Q371727 0.038 0.416 -2.405 6h + down vs 6h -
Methylmalonyl-CoA mutase, mitochondrial P16332 0.012 0.418 -2.393 6h + down vs 6h -
Phosphoglucomutase-1 Q9DOF9 0.016 0.418 -2.392 6h + down vs 6h -
40S ribosomal protein S27 Q6ZWU9 0.018 0.418 -2.392 6h + down vs 6h -
Basigin P18572 0.016 0.422 -2.369 6h + down vs 6h -
COP9 signalosome complex subunit 5 035864 0.044 0.422 -2.368 6h + down vs 6h -
Pleckstrin homology-like domain family B member 2 Q8K1N2 0.015 0.423 -2.365 6h + down vs 6h -
Interleukin enhancer-binding factor 2 QI9CXY6 0.021 0.423 -2.364 6h + down vs 6h -
Proliferation-associated protein 2G4 P50580 0.035 0.425 -2.352 6h + down vs 6h -
Acid ceramidase Q9WV54 0.041 0.425 -2.351 6h + down vs 6h -
Trifunctional purine biosynthetic protein adenosine-3 Q64737 0.040 0.427 -2.342 6h + down vs 6h -
Septin-11 Q8C1B7 0.025 0.428 -2.334 6h + down vs 6h -
PC4 and SFRS1-interacting protein Q99JF8 0.030 0.429 -2.331 6h + down vs 6h -
Alpha-galactosidase A P51569 0.012 0.429 -2.329 6h + down vs 6h -
Nesprin-1 Q6ZWR6 0.026 0.430 -2.326 6h + down vs 6h -
Interleukin-6 receptor subunit beta Q00560 0.038 0.433 -2.311 6h + down vs 6h -
Collagen alpha-1(V) chain 088207 0.035 0.433 -2.309 6h + down vs 6h -
DNA-directed RNA polymerase Il subunit RPB2 Q8CFI7 0.029 0.435 -2.300 6h + down vs 6h -
Actin-related protein 3 Q99JY9 0.038 0.435 -2.297 6h + down vs 6h -
Transcription elongation factor SPT5 055201 0.049 0.436 -2.293 6h + down vs 6h -
Major vault protein Q9EQKS5 0.029 0.438 -2.284 6h + down vs 6h -
Amln.oacyl'tRNA synthase complex-interacting P31230 0.049 0.439 2,278 6h + down vs 6h -
multifunctional protein 1

Sorting nexin-12 070493 0.033 0.440 -2.273 6h + down vs 6h -
Lupus La protein homolog P32067 0.044 0.441 -2.266 6h + down vs 6h -
Protein disulfide-isomerase TMX3 Q8BXZ1 0.047 0.442 -2.264 6h + down vs 6h -
COMM domain-containing protein 7 Q8BGY94 0.034 0.445 -2.249 6h + down vs 6h -
Torsin-1A-interacting protein 1 Q92172 0.048 0.446 -2.243 6h + down vs 6h -
Proteasome adapter and scaffold protein ECM29 Q6PDI5 0.035 0.447 -2.239 6h + down vs 6h -
Programmed cell death 6-interacting protein Q9WU78 0.019 0.447 -2.239 6h + down vs 6h -
26S proteasome non-ATPase regulatory subunit 12 Q9D8W5 0.035 0.447 -2.238 6h + down vs 6h -
Inter-alpha-trypsin inhibitor heavy chain H2 Q61703 0.017 0.448 -2.234 6h + down vs 6h -
Proteasome subunit alpha type-4 Q9R1PO 0.042 0.448 -2.231 6h + down vs 6h -
Lysine--tRNA ligase Q99MN1 0.006 0.448 -2.231 6h + down vs 6h -
T-complex protein 1 subunit eta P80313 0.014 0.449 -2.228 6h + down vs 6h -
Nuclear pore glycoprotein p62 Q63850 0.028 0.450 -2.223 6h + down vs 6h -
TAR DNA-binding protein 43 Q921F2 0.046 0.450 -2.222 6h + down vs 6h -
Methylosome protein 50 Q99J09 0.023 0.453 -2.208 6h + down vs 6h -
Calaufn/calmodulm—dependent protein kinase type Il Q92379 0.024 0.453 2,207 6h + down vs 6h -
subunit gamma

Talin-1 P26039 0.009 0.455 -2.197 6h + down vs 6h -
Heterogeneous nuclear ribonucleoprotein M QI9DOE1 0.044 0.455 -2.196 6h + down vs 6h -
NHL repeat-containing protein 2 Q8BZW8 0.044 0.456 -2.191 6h + down vs 6h -
Vasodilator-stimulated phosphoprotein P70460 0.045 0.457 -2.189 6h + down vs 6h -
.[Pyruvate dehydrogenése (acetyl-transferring)] kinase Q922H2 0.034 0.459 2178 6h + down vs 6h -
isozyme 3, mitochondrial

Eukaryotic initiation factor 4A-II P10630 0.019 0.469 -2.134 6h + down vs 6h -
Heterogeneous nuclear ribonucleoprotein F Q972X1 0.045 0.471 -2.122 6h + down vs 6h -
sram—speaflc angiogenesis inhibitor 1-associated protein Q8BKX1 0.016 0.474 2.109 6h + down vs 6h -
Glutamine-rich protein 1 Q3UA37 0.002 0.474 -2.108 6h + down vs 6h -
N-terminal kinase-like protein Q9EQCS 0.047 0.475 -2.105 6h + down vs 6h -
ATP-citrate synthase Q91V92 0.042 0.476 -2.099 6h + down vs 6h -
Phosducin-like protein 3 Q8BVF2 0.039 0.478 -2.093 6h + down vs 6h -
Cytochrome b-c1 complex subunit Rieske, mitochondrial Q9CR68 0.036 0.480 -2.085 6h + down vs 6h -
Ectonucleoside triphosphate diphosphohydrolase 5 Q9WUZ9 0.038 0.484 -2.068 6h + down vs 6h -
14-3-3 protein eta P68510 0.039 0.484 -2.067 6h + down vs 6h -
60S ribosomal protein L8 P62918 0.008 0.485 -2.062 6h + down vs 6h -
AH receptor-interacting protein 008915 0.023 0.487 -2.055 6h + down vs 6h -
Probable ATP-dependent RNA helicase DDX5 Q61656 0.036 0.487 -2.053 6h + down vs 6h -




Dymeclin Q8CHY3 0.034 0.488 -2.049 6h + down vs 6h -
Zinc finger CCCH-type antiviral protein 1 Q3UPF5 0.036 0.488 -2.048 6h + down vs 6h -
Transformer-2 protein homolog beta P62996 0.030 0.490 -2.040 6h + down vs 6h -
Lamina-associated polypeptide 2, isoforms alpha/zeta Q61033 0.034 0.493 -2.028 6h + down vs 6h -
Mitotic checkpoint protein BUB3 Q9WVA3 0.036 0.494 -2.023 6h + down vs 6h -
Nodal modulator 1 Q6GQT9 0.006 0.495 -2.021 6h + down vs 6h -
Importin-5 Q8BKC5 0.039 0.495 -2.021 6h + down vs 6h -
Adenylate kinase 2, mitochondrial Q9WTP6 0.021 0.496 -2.018 6h + down vs 6h -
2-oxoglutarate dehydrogenase, mitochondrial Q60597 0.026 0.496 -2.014 6h + down vs 6h -
Vam6/Vps39-like protein Q8R5L3 0.015 0.496 -2.014 6h + down vs 6h -
Exportin-2 Q9ERK4 0.015 0.500 -1.999 6h + down vs 6h -
Thimet oligopeptidase Q8C1A5 0.026 0.501 -1.997 6h + down vs 6h -
Serine/threonine-protein phosphatase 6 catalytic subunit| Q9CQR6 0.010 0.501 -1.996 6h + down vs 6h -
Transportin-1 Q8BFY9 0.021 0.502 -1.992 6h + down vs 6h -
Fascin Q61553 0.002 0.503 -1.988 6h + down vs 6h -
Protein PBDC1 Q9D0B6 0.003 0.503 -1.986 6h + down vs 6h -
SR.A stem-lo.op-lnteractmg RNA-binding protein, QUD8T7 0.045 0.504 1.085 6h + down vs 6h -
mitochondrial

Serine/threonine-protein kinase DCLK1 Q9JLM8 0.031 0.504 -1.985 6h + down vs 6h -
Hexokinase-2 008528 0.005 0.504 -1.984 6h + down vs 6h -
14-3-3 protein theta P68254 0.042 0.505 -1.979 6h + down vs 6h -
Pre—B?ceII leukemia transcription factor-interacting QaTVig 0.012 0.507 1.972 6h + down vs 6h -
protein 1

Nucleosome assembly protein 1-like 1 P28656 0.032 0.512 -1.954 6h + down vs 6h -
Protein-L-isoaspartate(D-aspartate) O-methyltransferase P23506 0.017 0.514 -1.945 6h + down vs 6h -
Biliverdin reductase A Q9CY64 0.030 0.517 -1.934 6h + down vs 6h -
Signal transducer and transcription activator 6 P52633 0.039 0.517 -1.933 6h + down vs 6h -
Eukaryotic translation initiation factor 3 subunit E P60229 0.032 0.518 -1.929 6h + down vs 6h -
Dual specificity mitogen-activated protein kinase kinase 3 009110 0.001 0.519 -1.928 6h + down vs 6h -
Mltochondrlal import inner membrane translocase Q9D880 0.048 0.520 1.925 6h + down vs 6h -
subunit TIM50

Protein PRRC1 Q3UPH1 0.039 0.520 -1.924 6h + down vs 6h -
Proteasome subunit beta type-7 P70195 0.017 0.522 -1.917 6h + down vs 6h -
40S ribosomal protein S20 P60867 0.042 0.524 -1.910 6h + down vs 6h -
Prefoldin subunit 2 070591 0.036 0.524 -1.908 6h + down vs 6h -
Stress-70 protein, mitochondrial P38647 0.013 0.525 -1.905 6h + down vs 6h -
ADP-ribosylation factor-like protein 3 Q9WUL7 0.033 0.527 -1.897 6h + down vs 6h -
Histidine--tRNA ligase, cytoplasmic Q61035 0.048 0.532 -1.881 6h + down vs 6h -
von Willebrand factor A domain-containing protein 8 Q8CC88 0.004 0.536 -1.864 6h + down vs 6h -
Tyrosine-protein phosphatase non-receptor type 23 Q6PB44 0.029 0.537 -1.864 6h + down vs 6h -
4-aminobutyrate aminotransferase, mitochondrial P61922 0.041 0.538 -1.859 6h + down vs 6h -
Enoyl-[acyl-carrier-protein] reductase, mitochondrial Q9DCS3 0.007 0.539 -1.856 6h + down vs 6h -
Protein FAM98B Q80VD1 0.020 0.539 -1.855 6h + down vs 6h -
116 kDa U5 small nuclear ribonucleoprotein component 008810 0.012 0.540 -1.852 6h + down vs 6h -
26S proteasome non-ATPase regulatory subunit 6 Q99J14 0.041 0.540 -1.851 6h + down vs 6h -
28S ribosomal protein S31, mitochondrial Q61733 0.012 0.541 -1.848 6h + down vs 6h -
Glutamate dehydrogenase 1, mitochondrial P26443 0.008 0.542 -1.845 6h + down vs 6h -
DoI|chy|-d|phosphoo||gosa.ccharlde--protem QIDBG6 0.018 0.542 1.844 6h + down vs 6h -
glycosyltransferase subunit 2

Cytochrome b-c1 complex subunit 1, mitochondrial Q9CZ13 0.027 0.543 -1.843 6h + down vs 6h -
Quinone oxidoreductase P47199 0.040 0.544 -1.839 6h + down vs 6h -
Integrator complex subunit 4 Q8CIM8 0.044 0.546 -1.833 6h + down vs 6h -
Importin subunit beta-1 P70168 0.046 0.546 -1.831 6h + down vs 6h -
Histone H1.0 P10922 0.007 0.546 -1.830 6h + down vs 6h -
Conserved oligomeric Golgi complex subunit 1 Q97160 0.008 0.548 -1.825 6h + down vs 6h -
OCIA domain-containing protein 2 Q9D8W7 0.033 0.548 -1.823 6h + down vs 6h -
AMP deaminase 3 008739 0.026 0.550 -1.819 6h + down vs 6h -
Heme-binding protein 1 Q9R257 0.006 0.552 -1.812 6h + down vs 6h -
Thioredoxin-like protein 1 Q8CDN6 0.026 0.554 -1.805 6h + down vs 6h -
Ve?ry Iong—cham specific acyl-CoA dehydrogenase, P50544 0.041 0.555 1.802 6h + down vs 6h -
mitochondrial

Vigilin Q8VDJ3 0.022 0.557 -1.794 6h + down vs 6h -
26S proteasome non-ATPase regulatory subunit 8 QI9CX56 0.043 0.558 -1.794 6h + down vs 6h -
Plexin-B2 B2RXS4 0.014 0.558 -1.792 6h + down vs 6h -
Protein unc-45 homolog A Q99KD5 0.035 0.560 -1.786 6h + down vs 6h -




cAMP-dependent protein kinase type ll-beta regulatory

. P31324 0.049 0.560 -1.784 6h + down vs 6h -
subunit
S-methyl-5'-thioadenosine phosphorylase Q9CQ65 0.039 0.563 -1.778 6h + down vs 6h -
Eukaryotic translation initiation factor 3 subunit F Q9DCH4 0.032 0.564 -1.775 6h + down vs 6h -
Periodic tryptophan protein 1 homolog Q99LL5 0.005 0.568 -1.760 6h + down vs 6h -
THO complex subunit 4 008583 0.034 0.569 -1.759 6h + down vs 6h -
WASH complex subunit 2 Q6PGL7 0.004 0.571 -1.751 6h + down vs 6h -
Staphylococcal nuclease domain-containing protein 1 Q78PY7 0.043 0.587 -1.704 6h + down vs 6h -
NPC intracellular cholesterol transporter 2 Q970J0 0.027 0.587 -1.703 6h + down vs 6h -
Acid sphingomyelinase-like phosphodiesterase 3b P58242 0.037 0.588 -1.702 6h + down vs 6h -
Guan|r.1e nucleotide-binding protein G(1)/G(S)/G(0) 080527 0.044 0.589 1,699 6h + down vs 6h -
subunit gamma-5
Haloa‘ud dehalogenase-like hydrolase domain-containing Q3UGRS 0.019 0.589 1.697 6h + down vs 6h -
protein 2
Importin subunit alpha-5 Q60960 0.041 0.592 -1.690 6h + down vs 6h -
Cleft lip and palate transmembrane protein 1 homolog Q8VBZ3 0.018 0.594 -1.684 6h + down vs 6h -
Eukaryotic translation initiation factor 3 subunit B Q8JZQ9 0.046 0.598 -1.671 6h + down vs 6h -
Glutathione S-transferase A4 P24472 0.014 0.605 -1.653 6h + down vs 6h -
Transcription factor BTF3 Q64152 0.047 0.605 -1.653 6h + down vs 6h -
DNA mismatch repair protein Msh6 P54276 0.045 0.609 -1.642 6h + down vs 6h -
Dihydrofolate reductase P00375 0.021 0.610 -1.639 6h + down vs 6h -
Peptidyl-prolyl cis-trans isomerase FKBP2 P45878 0.020 0.613 -1.630 6h + down vs 6h -
Coiled-coil domain-containing protein 102A Q3TMW1 0.024 0.618 -1.619 6h + down vs 6h -
39S ribosomal protein L13, mitochondrial Q9D1P0O 0.009 0.624 -1.602 6h + down vs 6h -
UHRF1-binding protein 1-like A2RSJ4 0.050 0.625 -1.601 6h + down vs 6h -
CCR4-NOT transcription complex subunit 11 QI9CWN7 0.050 0.630 -1.587 6h + down vs 6h -
M|tochondrlal import inner membrane translocase 035857 0.034 0.649 1.541 6h + down vs 6h -
subunit TIM44
Dynein assembly factor 5, axonemal B9EJR8 0.048 0.653 -1.531 6h + down vs 6h -
Alpha-1,3/1,6-mannosyltransferase ALG2 Q9DBE8 0.040 0.655 -1.527 6h + down vs 6h -
2-amino-3-ketobutyrate coenzyme A ligase, 088986 0.041 0.663 -1.508 6h + down vs 6h -
mitochondrial
Bloger?esw of lysosome-related organelles complex 1 Q8VED2 0.043 0.671 -1.490 6h + down vs 6h -
subunit 4
DDRGK domain-containing protein 1 Q80WW9 0.011 0.671 -1.490 6h + down vs 6h -
CTP synthase 1 P70698 0.044 0.674 -1.483 6h + down vs 6h -
Heterogeneous nuclear ribonucleoprotein H2 P70333 0.000 0.684 -1.462 6h + down vs 6h -
Methylthioribulose-1-phosphate dehydratase Q9WVQ5 0.011 0.691 -1.446 6h + down vs 6h -
39S ribosomal protein L39, mitochondrial Q9JKF7 0.014 0.698 -1.432 6h + down vs 6h -
Peroxisomal membrane protein PMP34 070579 0.043 0.701 -1.427 6h + down vs 6h -
Pyroglutamyl-peptidase 1 QIESW8 0.032 0.702 -1.424 6h + down vs 6h -
Actin-related protein 2/3 complex subunit 5 QI9CPW4 0.015 0.734 -1.363 6h + down vs 6h -
Nucleolysin TIAR P70318 0.035 0.752 -1.330 6h + down vs 6h -
Peroxisomal acyl-coenzyme A oxidase 3 Q9EPL9 0.007 0.767 -1.304 6h + down vs 6h -
Alpha-2-macroglobulin receptor-associated protein P55302 0.039 0.768 -1.302 6h + down vs 6h -
Anaphase-promoting complex subunit 13 Q8R034 0.012 0.777 -1.287 6h + down vs 6h -
NFU1 iron-sulfur cluster scaffold homolog, mitochondrial Q9Qz23 0.032 0.778 -1.285 6h + down vs 6h -
Serine/threonine-protein kinase 24 Q99KH8 0.038 0.797 -1.254 6h + down vs 6h -
U5 small nuclear ribonucleoprotein 40 kDa protein Q6PEO1 0.010 0.806 -1.241 6h + down vs 6h -
Putative hydroxypyruvate isomerase Q8R1F5 0.047 1.188 1.188 6h + up vs 6h -
Protein LSM12 homolog Q9DOR8 0.006 1.312 1.312 6h + up vs 6h -
Vesicle-associated membrane protein 7 P70280 0.041 1.318 1.318 6h + up vs 6h -
Mixed lineage kinase domain-like protein Q9D2Y4 0.029 1.359 1.359 6h + up vs 6h -
Methionine adenosyltransferase 2 subunit beta Q99LB6 0.022 1.377 1.377 6h + up vs 6h -
Peroxisomal membrane protein PEX14 Q9R0OA0 0.021 1.444 1.444 6h + up vs 6h -
Protein mono-ADP-ribosyltransferase PARP4 E9PYK3 0.043 1.472 1.472 6h + up vs 6h -
Sorbin and SH3 domain-containing protein 1 Q62417 0.042 1.534 1.534 6h + up vs 6h -
Protein ABHD16A Q971Q2 0.039 1.566 1.566 6h + up vs 6h -
Cytochrome c oxidase subunit 7A2, mitochondrial P48771 0.022 1.584 1.584 6h + up vs 6h -
Core histone macro-H2A.1 Q9QzQ8 0.031 1.585 1.585 6h + up vs 6h -
U6 snRNA-associated Sm-like protein LSm1 Q8V(C85 0.043 1.589 1.589 6h + up vs 6h -
Protein FAM98A Q3TJZ6 0.010 1.703 1.703 6h + up vs 6h -
Ras-related protein Rab-10 P61027 0.048 1.791 1.791 6h + up vs 6h -
N-acetylgalactosamine kinase Q68FH4 0.031 1.835 1.835 6h + up vs 6h -
Uracil phosphoribosyltransferase homolog B1AVZ0 0.014 2.071 2.071 6h + up vs 6h -
Cadherin-11 P55288 0.014 2.173 2.173 6h + up vs 6h -
ATPase family AAA domain-containing protein 3 Q92511 0.033 2.258 2.258 6h + up vs 6h -
CREB-regulated transcription coactivator 1 Q68ED7 0.032 2.322 2.322 6h + up vs 6h -




Huntingtin P42859 0.018 2.447 2.447 6h + up vs 6h -
Proteolipid protein 2 Q9R1Q7 0.049 2.500 2.500 6h + up vs 6h -
F-box-like/WD repeat-containing protein TBL1XR1 Q8BHJ5 0.036 2.513 2.513 6h + up vs 6h -
Erlin-1 Q91X78 0.046 2.532 2.532 6h + up vs 6h -
ATP synthase subunit g, mitochondrial QI9CPQ8 0.050 2.817 2.817 6h + up vs 6h -
Growth arrest-specific protein 1 Q01721 0.014 3.677 3.677 6h + up vs 6h -
NADH dehydrogenase [ubiquinone] 1 beta subcomplex Q9cass 0.009 4.858 4.858 6h +up vs 6h -

subunit 9
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