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Abstract11

In the ad-hoc radio network model, nodes communicate with their neighbors via radio signals,12

without knowing the topology of the underlying digraph. We study the information gathering13

problem, where each node has a piece of information called a rumor, and the objective is to14

transmit all rumors to the designated target node. For the model without any collision detection15

we provide an Õ(n1.5) deterministic protocol, significantly improving the trivial bound of O(n2).16

We also consider a model with a mild form of collision detection, where a node receives a 1-bit17

acknowledgement if its transmission was received by at least one out-neighbor. For this model18

we give an Õ(n) deterministic protocol for information gathering in acyclic graphs.19
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1 Introduction26

We address the problem of information gathering in ad-hoc radio networks. A radio network27

is represented by a directed graph (digraph) G, whose nodes represent radio transmitter-28

s/receivers and directed edges represent their transmission ranges; that is, an edge (u, v) is29

present in the digraph if and only if node v is within the range of node u. When a node30

u transmits a message, this message is immediately sent out to all its out-neighbors. How-31

ever, a message may be prevented from reaching some out-neighbors of u if it collides with32

messages from other nodes. A collision occurs at a node v if two or more in-neighbors of v33

transmit at the same time, in which case v will not receive any of their messages, and it will34

not even know that they transmitted.35

Radio networks, as defined above, constitute a useful abstract model for studying proto-36

cols for information dissemination in networks where communication is achieved via broad-37

cast channels, as opposed to one-to-one links. Such networks do not need to necessarily38

utilize radio technology; for example, in local area networks based on the ethernet protocol39

all nodes communicate by broadcasting information through a shared carrier. Different40

variants of this model have been considered in the literature, depending on the assumptions41

about the node labels (that is, identifiers), on the knowledge of the underlying topology,42
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and on allowed message size. In this work we assume that nodes are labelled 0, 1, ..., n− 1,43

where n is the network size. (All our results remain valid if the labels are selected from44

the range 0, 1, ..., O(n)). We focus on the ad-hoc model, where the digraph’s topology is45

unknown when the computation starts, and a protocol needs to complete its task within a46

desired time bound, no matter what the topology is. At the beginning of the computation47

each node v is in possession of a unique piece of information, that we refer to as a rumor.48

Different communication primitives are defined by specifying how these rumors need to be49

disseminated across the network. In this paper we do not make any assumptions about the50

size of transmitted messages; thus a node can aggregate multiple rumors and transmit them51

in one message. In fact, it could as well transmit as one message the complete history of its52

past computation.53

The two most studied information dissemination primitives for this model are broad-54

casting and gossiping. In broadcasting (or one-to-all communication), a single source node s55

attempts to deliver its rumor to all nodes in the network. For broadcasting to be meaning-56

ful, we need to assume that all nodes in G are reachable from s. In gossiping (or all-to-all57

communication), the objective is to distribute all rumors to all nodes in the network, under58

the assumption that G is strongly connected. Both these primitives can be solved in time59

O(n2) by a simple protocol called RoundRobin, where all nodes transmit cyclically one60

at a time (see Section 2). Past research on ad-hoc radio networks focussed on designing61

protocols that improve this trivial bound.62

For broadcasting, gradual improvements in the running time have been reported since63

early 2000’s [6, 21, 2, 3, 12, 13, 11], culminating in the upper bound ofO(n logD log log(D∆/n))64

in [10], where D denotes the diameter of G and ∆ its maximum in-degree. This is already65

almost tight, as the lower bound of Ω(n logD) is known [9]. For randomized algorithms, the66

gap between lower and upper bounds is also almost completely closed, see [1, 22, 11].67

In case of gossiping, major open problems remain. The upper bound of O(n2) was68

improved to Õ(n1.5) in [6, 29] and then later to Õ(n4/3) in [18], and no better bound is69

currently known1. No lower bound better than Ω(n logn) (that follows from [9]) is known.70

In contrast, in the randomized case it is possible to achieve gossiping in time Õ(n) [11, 23, 7].71

The reader is referred to survey papers [15, 20, 16, 27, 19] that contain more information72

about information dissemination protocols in different variants of radio networks.73

In this paper we address the problem of information gathering (that is, all-to-one com-74

munication). In this problem, similar to gossiping, each node v has its own rumor, and the75

objective is to deliver these rumors to a designated target node t. (We assume that t is76

reachable from all nodes in G.)77

The problem of information gathering for trees was introduced in [5], where an O(n)-78

time algorithm was presented. Other results in [5] include algorithms for the model without79

rumor aggregation or the model with transmission acknowledgements.80

Our results. Our main result, in Section 4, is a deterministic protocol that solves the81

information gathering problem in arbitrary ad-hoc networks in time Õ(n1.5). To our know-82

ledge this is the first protocol for this problem that achieves running time faster than the83

trivial O(n2) bound. One of our key technical contributions is in solving this problem in84

time Õ(n1.5) for acyclic graphs (Section 3). Previous protocols developed for gossiping on85

strongly connected graphs rely on feedback (see the discussion below), and are not applic-86

able to this problem. This algorithm for acyclic graphs is based on careful application of87

1 We use notation Õ(f(n)) to conceal poly-logarithmic factors; that is, g(n) = Õ(f(n)) iff g(n) =
O(f(n) logc n) for some constant c. Also, we write f(n) = Ω̃(g(n)) if and only if g(n) = Õ(f(n)).
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combinatorial structures called strong selectors, combined with a novel amortization tech-88

nique to measure progress of the algorithm. To extend this protocol to arbitrary graphs,89

we integrate it with a gossiping protocol. Roughly, the two sub-protocols run intertwined in90

parallel, with the sub-protocol for acyclic graphs transferring rumors between strongly con-91

nected components and the gossiping sub-protocol disseminating them within each strongly92

connected component. This requires overcoming two challenges. One is that the partition93

of G into strongly connected components is not actually known, so the combined protocol94

needs to gradually “learn” the connectivity structure of G while it executes. The second95

challenge is in synchronizing the computation of the two sub-protocols, since they are based96

on entirely different principles.97

In the second part of the paper, in Section 5, we take the “dual” approach to investigate98

the time complexity of information gathering: rather than optimizing the running time99

in the general case, we examine what assumptions on the model would permit achieving100

running time Õ(n). To this end, we consider a relaxation of our model by allowing a mild101

form of collision detection. In this new model each node v, after each transmission, receives102

a 1-bit acknowledgement indicating whether its transmission was received by at least one103

out-neighbor. With this assumption, we provide an Õ(n)-time algorithm for information104

gathering in acyclic radio networks.105

Additional context and motivations. If G is strongly connected then information gath-106

ering and gossiping are equivalent. (This also naturally applies to connected undirected107

graphs.) Trivially, a gossiping algorithm gathers all rumors in t, solving the information108

gathering problem. On the other hand, one can solve the gossiping problem by running109

an information gathering protocol followed by any Õ(n)-time broadcasting protocol with110

source node t. However, unlike gossiping, the information gathering problem applies to a111

wider class of digraphs, namely all digraphs where the target node is reachable from all112

nodes.113

This weakening of connectivity assumptions introduces new challenges for information114

gathering. The crucial one is lack of feedback, namely that the nodes in the network do not115

receive any information about the fate of their transmissions. This should be contrasted116

with the gossiping problem where the nodes can take advantage of strong connectivity to117

eventually learn whether their earlier transmissions were successful. In fact, the existing118

protocols for gossiping critically rely on this feature, as they use it to identify nodes that119

have collected a large number of rumors, and subsequently broadcast these rumors to the120

whole network, thus removing them from consideration and reducing congestion.121

Some evidence that feedback might help to speed up information gathering can be found122

in [4], where the authors studied the model in which rumor aggregation is not allowed.123

In this model they developed an O(n)-time protocol for trees, under the assumption that124

nodes receive immediate acknowledgements of successful transmissions. In contrast, without125

feedback the best known upper bound (also from [4]) for this problem is O(n log logn).126

Various forms of feedback have been studied in the past in the context of contention res-127

olution for multiple-access channels (MAC), where nodes communicate via a single shared128

channel. (Ethernet is one example.) Depending on more specific characteristics of this129

shared channel, one can model this problem as the information gathering problem either on130

a complete graph or a star graph, which is a collection of n nodes connected by directed edges131

to the target node t. (See [24, 26, 25, 14] for information about contention resolution proto-132

cols.) For instance, in [5] a tight bound of Θ(n logn) was given for randomized information133

gathering on star graphs (or MACs) even if the nodes have no labels (are indistinguishable)134

and receive no feedback.135
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As explained earlier, in our model rumor aggregation is allowed. This capability is needed136

to beat the O(n2) upper bound, as without rumor aggregation it is quite easy to show a137

lower bound of Ω(n2) for both gossiping and information gathering, even for randomized138

algorithms and with the topology known [17].139

Interestingly, the randomized gossiping algorithms in [7, 23] can be adapted to inform-140

ation gathering, retaining their Õ(n) expected running time. Thus randomization can help141

not only to overcome collisions, but also lack of feedback2.142

2 Preliminaries143

Graph terminology. Throughout the paper, we assume that the radio network is rep-144

resented by a digraph (directed graph) G = (V,E) with a distinguished target node t that145

is reachable from all other nodes. By n = |V | we denote the number of nodes in G. If146

(u, v) ∈ E then we refer to u as the in-neighbor of v and to v as the out-neighbor of u. For147

any node v, by N−(v) = {u ∈ V : (u, v) ∈ E} we denote the set of its in-neighbors.148

For brevity, we will refer to strongly connected components of G as sc-components. For149

each node v, the sc-component containing v will be denoted by C(v). We partition the150

set of in-neighbors of v into those that belong to C(v) and those that do not: N−SCC(v) =151

N−(v) ∩ C(v) and N−ACY(v) = N−(v) \ C(v).152

The ancestor set of v in G, denoted Anc[v], is the set of all nodes of G from which153

v is reachable (via a directed path). Note that C(v) ⊆ Anc[v]. In fact, if A is an sc-154

component then all vertices in A have the same ancestor set. It will be thus convenient to155

extend this definition to sc-components of G; if A is an sc-component then its ancestor set156

is defined as Anc[A] = Anc[v], for some arbitrary v ∈ A. The proper ancestor set of A is157

Anc(A) = Anc[A] \A.158

Radio networks. We now give the description of the radio network model that our results159

apply to. We first provide the standard definition, as used in the earlier literature. Later160

in this section we will show that some restrictions of this model can be relaxed, in order to161

simplify the algorithms and proofs.162

As mentioned in the introduction we assume that each node of G has a unique label from163

the set [n] = {0, 1, ..., n− 1}. For convenience, we will identify nodes with their labels, so a164

“node u” really means the node with label u. We assume that n is known. All our protocols165

still work correctly within the claimed time bounds if the label set is [N ] for N = O(n),166

provided that N is known upfront (but not necessarily n).167

The time is divided into discrete time steps numbered with non-negative integers. We168

assume that all nodes start to execute the protocol simultaneously at time step 0. At each169

step each node can be either in the transmitting state, when it can only transmit, or in170

the receiving state, when it can only listen to transmissions from other nodes. Only one171

message can be transmitted at each step. This is not an essential restriction because, as172

already mentioned, we are not imposing any restrictions on the size or format of messages173

transmitted by nodes.174

If a node u transmits a message at a time τ , this message is sent to all out-neighbors175

of u in the same step. If v is one of these out-neighbors then v will receive this message176

2 We should point out, however, a subtle difference. In the randomized case of information gathering,
while gathering all rumors in the target node will indeed complete in expected time Õ(n), the nodes
in the network have no way to determine whether the process has completed, except for simply just
waiting for O(n2) steps. In case of gossiping, the expected running time of Õ(n) includes broadcasting
the confirmation of the process’ completion to the whole network.
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at time τ provided that v is in the receiving state and that u is the only in-neighbor of v177

that transmits at time τ . If there are two or more in-neighbors of v that transmit at time τ178

then a collision occurs, and v does not receive any information (independently of its current179

state). In other words, collisions are indistinguishable from absence of transmissions. There180

is no feedback mechanism available in this model, that is a sender of a message does not181

receive any information as to whether its transmission was successful or not. (We will relax182

this restriction later in Section 5.)183

Selectors. A strong (n, k)-selector is a sequence of label sets S = (S0, S1, ..., S`−1) (that184

is, Si ⊆ [n] for each i) that “singles out” each label from each subset with at most k labels,185

in the following sense: for each X ⊆ [n] with |X| ≤ k and each x ∈ X there is an index186

i such that Si ∩ X = {x}. It is known [8] that there exist strong (n, k)-selectors of size187

` = O(k2 logn).188

Such selectors are often used in protocols for ad-hoc radio networks for reducing collisions.189

In a protocol based on a strong (n, k)-selector S each time step is associated with some set190

Si and only the nodes in Si are allowed to transmit at this time step. To illustrate more191

concretely how such selectors are used in our work, consider a node v of in-degree at most192

k, and suppose that its in-neighbors are initially dormant, staying in the receiving state,193

and they activate at certain (possibly different) times. Each in-neighbor w of v, after it194

activates, transmits its message at a time step τ if and only if w ∈ Sτ mod `. (Observe195

that, importantly, at any time τ all nodes use the same transmission set Sτ mod `.) Let X196

be the set of in-neighbors of v and suppose that some w ∈ X activates at time η. Then197

the definition of strong (n, k)-selectors implies that there will be τ ∈ [η, η + `) such that198

Sτ mod ` ∩X = {w}. In other words, w will be the only in-neighbor of v that transmits at199

time step τ . So if v stays dormant until time η + ` then v will receive w’s message after at200

most ` = O(k2 logn) time steps since the activation time of w. (In fact, it is sufficient if v201

happens to be in the receiving state at time τ .) We stress that this is true independently of202

the label assignment and of activation times of the nodes other than w.203

For all j = 0, 1, ..., 1
2 logn, by 2j-Select = (Sj0, S

j
1, ..., S

j
`j−1) we will denote a strong204

(n, 2j)-selector of size `j = O(4j logn). Without loss of generality we can assume that `j+1 =205

4`j for all j ≤ 1
2 logn−1. We remark that in Section 5, where we consider transmissions with206

acknowledgements, it will be desirable to have many (but not necessarily all) of a collection207

of competing in-neighbors of a node transmit successfully. For this purpose we will there208

introduce a different type of selectors.209

Another basic protocol that is often used is called RoundRobin. In this protocol all210

nodes transmit cyclically one by one; that is each node w transmits in a step τ if and only if211

w = τ mod n. In RoundRobin there are no collisions, so, in the setting above, node w will212

successfully transmit its message to v in at most n time steps. Observe that a protocol based213

on a strong (n, k)-selector can be faster than RoundRobin only when k = O(
√
n/ logn).214

Note: To avoid clutter, in the definitions above, as well as later throughout the paper,215

we omit the notation for rounding and assume that in all formulas representing integer216

quantities (the number of nodes, steps, etc.) their values are appropriately rounded. This217

will not affect asymptotic running time estimates.218

Simplifying assumptions. To streamline the presentation of our protocols, in the paper219

we use a relaxed communication model with two additional features:220

(MFC) We assume that some number κ of radio frequency channels, numbered 0, 1, ..., κ−1,221

is available for communication. So a node may receive and transmit up to κ messages at222

each step, one per channel. There is no interference between channels; that is, a message223
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sent on one channel cannot collide with a message sent on a different channel. For each224

individual frequency the standard collision rule applies: if two in-neighbors of a node225

transmit on this frequency channel at the same time step, then a collision occurs and226

this node does not receive any information on this channel at this step.227

(SRT) Further, for each frequency f , a node can receive and transmit at frequency f in228

a single step. The restriction is that the messages transmitted at all frequencies in any229

step do not depend on the messages received in this step.230

All protocols in this paper are presented in terms of this relaxed model. Below we231

explain, however, how to convert these protocols to the standard radio network model (as232

defined earlier), increasing the running time only by factor O(κ); that is, a protocol that233

uses features (MFC) and (SRT), and for which we give an upper bound O(T ) on the running234

time, can be converted into a protocol in the standard model whose running time is O(κT ).235

Since κ = O(logn) in our protocols, their Õ(·)-complexity is not affected.236

Simulating multiple frequencies. We first explain how we can convert any protocol A that237

uses κ frequencies and runs in time O(T ) into a protocol A′ that uses only one frequency238

and runs in time O(κT ). This can be done by straightforward time multiplexing. In more239

detail: A′ organizes all time steps 0, 1, 2, ... into rounds. Each round r = 0, 1, 2, ... consists240

of κ consecutive steps rκ, rκ+ 1, ..., rκ+ κ− 1. Each step s of A is simulated by round s of241

A′. For each frequency f , the message transmitted at frequency f by A is transmitted by242

A′ in step sκ + f , that is the fth step of round s. At the end of round s, A′ will know all243

messages received in this round, so it will know what messages would A receive in step s,244

and therefore it knows the state of A and can determine the transmissions of A in the next245

step.246

0 1 f 90 1 f 9 0 1 f 9.  .  . .  .  . .  .  . .  .  . .  .  . .  .  ..  .  .  .  . .  .  .  .  .

round 0 round 1 round r

frequency f

Figure 1 Partition of A′’s time steps into rounds, for κ = 10 frequencies.

Simulating simultaneous receiving/transmitting. By the argument above, we can assume247

that we have only one frequency channel. We first give a generic argument that applies to248

arbitrary protocols. (The construction in this paragraph is not strictly needed for our results,249

but we include it, as it has some independent interest and provides useful context.) For an250

arbitrary protocol we claim that we can disallow simultaneous receiving and transmitting251

at the cost of only adding a logarithmic factor to the running time. To see this, suppose252

that B is some transmission protocol where nodes can transmit and listen at the same time.253

(Recall that the transmission of B at any step does not depend on the information it receives254

in the same step.) We use a strong (n, 2)-selector 2-Select = (S1
i )i of size `1 = O(logn).255

We replace each step τ of B by a time segment Iτ of length `1. For any node w and any256

i = 0, 1, ..., `1 − 1, if w ∈ S1
i then at the ith step of segment Iτ node w transmits whatever257

message it would transmit in B at time τ ; otherwise w is in the receiving state. By definition,258

in this new protocol B′ nodes do not transmit and receive at the same time. Further, for259

any edge (u, v), let i be such that S1
i ∩ {u, v} = {u}. If u transmitted successfully to v in260

step τ of B, then in B′ in the i-th step of segment Iτ u will be in the transmitting state and261

v will be in the receiving state, guaranteeing that u’s message will reach v.262
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We now claim that for the type of protocols presented in the paper this additional factor263

of logn is not necessary; that is, allowing simultaneous reception and transmission does264

not affect their asymptotic running time at all. Our protocols ArbGather in Section 4265

and AcyGatherAck in Section 5 are selector-based, namely the computation of each node266

is divided into time intervals, where in each interval the node transmits either according to267

RoundRobin or according to some strong selector, in the manner described earlier in this268

section. In case of RoundRobin, the simultaneous reception and transmission capability is269

(trivially) not needed. For intervals where a strong selector is used, the argument how this270

capability can be removed was given in [4]. Roughly, the idea is that whenever a protocol271

uses a strong (n, k)-selector, this selector can be replaced by a strong (n, k + 1)-selector.272

The size of this (n, k + 1)-selector is O(k2 logn), so for k > 1 it is asymptotically the same273

as for a strong (n, k)-selector. (And the contribution to our running time bounds from274

the strong (n, 1)-selectors is comparatively negligible.) This guarantees that, during each275

complete cycle (of length O(k2 logn)) of this selector, for any node v with k in-neighbors276

and any v’s in-neighbor u there will be a step when v is in the receiving state and u is the277

only in-neighbor in the transmitting state.278

We will make yet another assumption in the paper, this one concerning the initial know-279

ledge that the nodes possess about the digraph. In the standard definition given earlier in280

this section, the nodes know the size n of the digraph but do not know its topology. Without281

any loss of generality, we will relax the latter restriction as follows:282

(INN) We assume that when the computation starts each node v knows the labels of its283

in-neighbors, that is the set N−(v).284

The reason that we can assume (INN) is that any protocol in our paper, prior to starting285

its execution, can execute one cycle of RoundRobin, where each node transmits only its286

own label. This costs only time O(n), so the asymptotic running time of the protocol is not287

affected. (In the paper we only consider protocols whose worst-case running time is Ω(n).)288

3 Õ(n1.5)-Time Protocol for Acyclic Digraphs289

We first consider ad-hoc radio networks whose underlying digraph G is acyclic and has one290

designated target node t that is reachable from all other nodes in G. We give a determ-291

inistic information gathering protocol that gathers all rumors in the target node t in time292

O(n1.5 log3 n), independently of the topology of G.293

As explained in Section 2, we make Assumptions (MFC), (SRT) and (INN), namely294

that the protocol has multiple frequency channels available, that on each frequency it can295

simultaneously receive and transmit messages at each step, and that each node knows its296

in-neighbors.297

The protocol is based on strong selectors 2j-Select and on RoundRobin, following the298

principles outlined in Section 2. Thus, whenever we say that a node w transmits according299

to 2j-Select during some time interval [η, η′], we mean that for any time step τ ∈ [η, η′]300

node w transmits if and only if w ∈ Sjτ mod `j
. (Recall that `j is the size of 2j-Select.) The301

concept of transmitting according to RoundRobin is defined analogously.302

Let θ = 1
2 (logn − log logn) + 2. In the algorithm below we use a sequence of θ + 1303

values β0, β1, ..., βθ, defined as follows: β0 = 0, βj =
∑
g<j `g for j = 1, ..., θ − 1, and304

βθ =
∑
g<θ `g + n.305

Protocol AcyGather. We start with an overview of the algorithm. The algorithm306

transmits on θ frequencies numbered 0, 1, ..., θ − 1. Each node v uses information received307
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from its in-neighbors to determine its activation time, denoted by α(v). Node v will be active308

during its activity period [α(v), α(v)+βθ); before step α(v) it is called dormant and after step309

α(v) + βθ − 1 it is called expired. Dormant and expired nodes do not transmit; active nodes310

may or may not transmit at any given step. While active, v will also periodically compute311

and transmit a value called its recommended wake-up time, denoted rwsv. (The out-neighbors312

of v use these values to determine their own activation times.) Each message transmitted313

by v will contain the following information: (i) all rumors collected by v, including its own,314

(ii) the label of v, and (iii) the current value of rwsv.315

We are now ready to detail the steps of the algorithm, and in particular to describe how316

exactly the values of α(v) and rwsv are computed by a node v.317

First, we explain how v determines its activation time α(v). If v is a source node (that318

is, its in-degree is 0), then α(v) = 0. Otherwise α(v) is determined by the messages received319

by v, as follows. For each in-neighbor u of v, we denote by rws1
u→v the first rwsu value320

received by v from u. (This may not be the first rwsu value transmitted by u, since earlier321

transmissions of u might have collided at v.) Node v waits until it receives messages from322

all its in-neighbors, and, as soon as this happens, if u is the last in-neighbor of v that323

successfully transmitted to v, then v sets α(v) = rws1
u→v.324

Next, we define the transmission sequence of v. The activity period [α(v), α(v) + βθ) of325

v is divided into θ activity stages, where, for j = 0, 1, ..., θ−1, the jth activity stage consists326

of the time interval [α(v) + βj , α(v) + βj+1). (See Figure 2.) During its jth activity stage,327

for j ≤ θ − 2, node v transmits according to selector 2j-Select using frequency j. During328

the (θ− 1)th activity stage, the protocol transmits using RoundRobin on frequency θ− 1.329

At all other times v does not transmit. The recommended wake-up time value included in330

v’s messages during its jth activity stage is rwsv = α(v) + βj+1. (Note that it changes from331

one activity stage to next.)332

α(v) α(v) +β1

v receives message
from last in-neighbor 

α(v) +β2 α(v) +β3time steps:

v  active

3rd activity stage
�3 steps

α(v) +β4

0
1
2
3
4

fr
eq

ue
nc

y

α(v) +β5

Figure 2 Illustration of activity stages. (The picture is not up to scale. In reality the length
of activity stages increases at rate 4.) Shaded regions show frequencies used in different activity
stages.

Correctness. We first show that the algorithm is correct, in the sense that each rumor will333

eventually reach the target node t. This should be intuitively clear, because once a node334

becomes active, it is guaranteed to successfully transmit its message to its all out-neighbors335

using the RoundRobin protocol during its last activity stage.336

Formally, we can prove correctness by induction. For a given node v, let δ(v) denote the337

length of the longest directed path from some source node to v. (This path cannot repeat338

vertices due to our assumption that G is acyclic.) Let δ∗ = maxv∈G δ(v). The definition of339

δ() implies directly the following observation:340
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I Observation 1. The values of δ() satisfy the following properties:341

(i) δ(v) = 0 if and only if v is a source node of G.342

(ii) δ(v) = δ∗ if and only if v = t.343

(iii) If u ∈ N−(v) then δ(u) < δ(v).344

(iv) If δ(v) > 0 then there is u ∈ N−(v) with δ(u) = δ(v)− 1.345

It is convenient to visualize δ() in terms of partitioning of G into layers B0, B1, ..., Bδ∗ ,346

where Bi denotes the set of nodes with δ(v) = i. This partitioning is illustrated in Figure 3.347

The key properties are that B0 consists of the source nodes, Bδ∗ = {t}, and all edges go348

from lower- to higher-indexed layers. (This representation will be useful in Section 5.)349

t

B0 B1 B2 B3 B4 B5

Figure 3 Partiton of G into layers B0, B1, ..., Bδ∗ . In this example δ∗ = 5.

We claim that for each i = 0, 1, ..., δ∗, and for each node v ∈ Bi, we have α(v) ≤ iβθ,350

and that at time α(v) all rumors from Anc[v] are already in v. This is sufficient, because351

this guarantees that after δ∗βθ steps all rumors will be collected in the target node t. The352

claim is trivially true for i = 0, because all nodes in B0 are source nodes. For i > 0, suppose353

that the claim holds for indices i′ = 0, 1, ..., i − 1. This means that for each w ∈ N−(v),354

as w ∈
⋃i−1
i′=0 Bi′ , we have α(w) ≤ (i − 1)βθ and at time α(w) all rumors from Anc[w]355

are in w. In its last activity stage [α(w) + βθ−1, α(w) + βθ) node w will transmit using356

RoundRobin, so v will receive a message from w no later than at time α(w) +βθ − 1. This357

messages includes all rumors in Anc[w] and w’s current recommended activation time value358

rwsw, whose maximum value is α(w) + βθ ≤ (i − 1)βθ + βθ ≤ iβθ. Then the definition of359

α(v) implies that α(v) ≤ iβθ. At time α(v) node v will have received messages from all its360

in-neighbors, so at that time it will collect rumors from
⋃
w∈N−(v) Anc[w] ∪ {v} = Anc[v],361

completing the proof of the inductive step, and the claim.362

Running time. Next, we analyze the running time of Protocol AcyGather. Figure 4363

provides a snapshot of the computation of Protocol AcyGather that should be helpful in364

understanding our analysis. It shows three types of nodes: expired, active and dormant.365

The in-neighbors of dormant nodes can be of any three types, but each dormant node has366

at least one in-neighbor that is either dormant or active. The in-neighbors of active nodes367

are either expired or active. All in-neighbors of expired nodes are expired. These properties368

follow from the algorithm, because the activation times of all non-source nodes v satisfy369

max
u∈N−(v)

α(u) < α(v) ≤ max
u∈N−(v)

α(u) + βθ ,370

and because the activation periods of all nodes have the same length (which implies that an371

expiration time of a node is strictly after the expiration times of all its in-neighbors).372
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t

expired
dormant 

active

Figure 4 Bird’s-eye view of the computation of Protocol AcyGather.

To establish our upper bound, we choose in the graph G a critical path373

P = (v0, v1, ..., vp = t) ,374

defined as follows: for each a = p− 1, p− 2, ..., 0, va is the in-neighbor of va+1 who was last375

in succeeding to transmit its message to va+1 (that is, α(va+1) = rws1
va→va+1

), and v0 is a376

source node. The argument about correctness of protocol AcyGather, presented above,377

implies that P is well defined. (Note that, since we define this path in the backward order,378

the indexing of the nodes va can be determined only after we determine the whole path.)379

The definition of P implies that the overall running time is upper-bounded by the time for380

the rumor of v0 to reach t along P .381

If at a step τ a node v is in its j-th activity stage (that is, τ ∈ [α(v) + βj , α(v) + βj+1))382

then we refer to j as v’s stage index in step τ . We extend this (artificially) to dormant and383

expired nodes as follows: if v is dormant then its stage index is −1, and if v is expired then384

its stage index is θ. As time progresses, an active node will move from one activity stage385

to next, which results in an increment of its stage index. Within any time interval multiple386

nodes may have their stage indices incremented.387

Note that the stage index of each individual node is incremented θ + 1 = O(logn)388

times, so the total number of these increments in the whole computation is O(n logn). Our389

estimate on the running time is obtained by “charging” the delay between activation times390

of consecutive nodes on P to stage-index increments in the graph. The intuition is that391

if collisions cause a long delay when va attempts to send its message to va+1, then va+1392

must have many in-neighbors that transmit in this time period. But then these in-neighbors393

will have their stage indices incremented during this time, and since the overall number of394

stage-index increments is O(n logn), we cannot have too many such long delays.395

We now formalize this intuition. Consider some node va 6= t on P . (See Figure 5.) Our396

argument is based on the following key lemma.397

I Lemma 1. There are the total of Ω( 1√
n logn (α(va+1)− α(va))) stage-index increments in398

the time interval [α(va), α(va+1)).399

Proof. Suppose that the first transmission of va that is successfully received by va+1 occurs400

during va’s h-th activity stage.401

I Claim 1. For a < p and h < θ − 1 we have α(va+1)− α(va) = O(4h logn).402

This claim follows from the definition of P , as α(va+1) = rws1
va→va+1

= α(va) + βh+1,403

and βh+1 =
∑
g<h+1 `g = O(4h logn).404
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v0 t=vp
P

va
va+1

U

Figure 5 Illustration of the time analysis for acyclic graphs.

We now continue the proof of the lemma. If h = 0 then there is at least one stage405

increment in [α(va), α(va+1)) (namely the increment of the stage index of va from −1 to 0406

at time α(va)) and α(va+1)− α(va) = `0 = O(logn), so the lemma holds trivially.407

Thus for the rest of the proof we can assume that 1 ≤ h ≤ θ − 1. By the choice of h, va408

has not succeeded in its (h−1)th activity stage [α(va) +βh−1, α(va) +βh). Let U be the set409

of in-neighbors of va+1 (including va) whose (h− 1)th activity stage overlapped that of va.410

I Claim 2. |U | > 2h−1.411

To justify Claim 2, we argue by contradiction. Suppose that |U | ≤ 2h−1. During this412

activity stage va transmitted according to 2h−1-Select using only frequency h−1. Further,413

by the definition of the protocol, at each step of this stage the in-neighbors of va+1 with stage414

index other than h− 1 did not use frequency h− 1 for transmissions. So the transmissions415

from va to va+1 in this stage can only conflict with transmissions from U \{va} to va+1. The416

definition of strong selectors and the assumption that |U | ≤ 2h−1 imply that then va would417

have successfully transmitted to va+1 during its (h − 1)th activity stage, contradicting the418

definition of h. Thus Claim 2 is indeed true.419

I Claim 3. The total number of stage-index increments in time interval [α(va), α(va+1)) is420

at least 2h−1.421

The proof of Claim 3 is quite simple: The (h − 1)th activity stage lasts `h−1 steps,422

so for each node in U its (h − 1)th activity stage ends before time α(va) + βh + `h−1 <423

α(va) + βh+1 = α(va+1). By the definition of U , it also cannot end before α(va). So, each424

time the (h − 1)th activity stage of a node in U ends, it contributes 1 to the total number425

of stage-index increments in time interval [α(va), α(va+1)). This implies Claim 3.426

Now, to complete the proof of the lemma we have two cases. If h < θ − 1 then, by427

Claim 3, the number of stage-index increments in time interval [α(va), α(va+1)) is at least428

2h−1 = 1
2 · 2

−h · 4h = Ω( 1√
n logn (α(va+1)− α(va)) ),429

because 2−h ≥ 2− 1
2 logn = 1/

√
n (as h ≤ 1

2 logn) and 4h = Ω( (α(va+1)− α(va))/ logn ), by430

Claim 1.431

On the other hand, if h = θ − 1 then α(va+1) − α(va) = n. From the definition of θ432

we have h ≥ 1
2 logn − log logn + 1 so, applying Claim 3, we obtain that the number of433

stage-index increments in time interval [α(va), α(va+1)) is at least 2h−1 ≥ 2 1
2 logn−log logn =434 √

n/ logn = 1√
n logn (α(va+1)− α(va)). J435

We now show how we can use Lemma 1 to establish an O(n1.5 log3 n) upper bound on436

the running time of Protocol AcyGather.437
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I Theorem 2. Let G be an acyclic directed graph with n vertices and a designated target node438

reachable from all other nodes. Algorithm AcyGather completes information gathering on439

G in time O(n1.5 log3 n).440

Proof. Let T be the running time of Protocol AcyGather in our relaxed model of com-441

munication, namely with assumptions (MFC), (SRT), and (INN). Since α(v0) = 0 and442

T ≤ α(vp), we can bound this running time as T ≤
∑p−1
a=0(α(va+1) − α(va)). Then443

Lemma 1 implies that the total number of stage index increments during the computation444

is Ω(T/
√
n logn). Since this number is also O(n logn), it gives us that T = O(n1.5 log2 n).445

The number of frequencies is κ = O(logn). Thus, as explained in Section 2, we can446

eliminate all three assumptions (MFC), (SRT), and (INN), increasing the running time only447

by a factor O(logn). Such modified Protocol AcyGather will run in time O(n1.5 log3 n)448

in the standard model of ad-hoc radio networks. J449

Note: With more careful analysis the logarithmic factors in Theorem 2 can be slightly450

improved (at least to O(n1.5 log2.5 n)). We leave this as an exercise for the reader.451

4 Õ(n1.5)-Time Protocol for Arbitrary Digraphs452

We now extend our information gathering protocol AcyGather from Section 3 to arbitrary453

digraphs, retaining running time O(n1.5 log3 n). Throughout this section G will denote an454

n-vertex digraph with a designated target node t that is reachable from all other nodes in455

G.456

The main obstacle we need to overcome is that protocol AcyGather critically depends457

on G being acyclic. For instance, in that protocol each node waits until it receives messages458

from all its in-neighbors. If cycles are present in G, this leads to a deadlock, where each node459

in a cycle waits for its predecessor. On the other hand, the known gossiping protocols [6,460

29, 18] do not work correctly if the graph is not strongly connected, because they rely on461

broadcasting to periodically flush out some rumors from the system, and on leader election462

to synchronize computation.463

The idea behind our solution is to integrate protocol AcyGather with the gossiping pro-464

tocol from [18], using AcyGather to transmit information between different sc-components465

of G and using gossiping to disseminate information within sc-components. The idea is nat-466

ural but it faces some technical challenges. One challenge is that the sc-components are467

actually not known. In fact, a node v doesn’t even know the size of C(v), but it needs to468

provide this size to the gossiping protocol. To get around this issue, the algorithm runs in469

parallel logn copies of a gossiping protocol for sizes that are powers of 2. Another challenge470

is that transmissions from outside of an sc-component may interfere with the execution of the471

gossiping protocol in this sc-component. This will be addressed by executing the gossiping472

algorithm repeatedly until it succeeds. In order to verify whether the gossiping succeeded,473

its nodes will distribute and collect additional information, not just rumors.474

Protocol SccGossip for gossiping. We will refer to the gossiping algorithm from [18]475

as SccGossip. The following property of SccGossip is crucial for our algorithm:476

(scc) If the input digraph is strongly connected and has at most n̄ vertices, with the477

node labels from the set [N ] = {0, 1, ..., N − 1}, then algorithm SccGossip completes478

gossiping in time O(n̄4/3 log10/3 N).479
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The bound on the running time of SccGossip given in [18] (see their Theorem 2) assumes480

that N is bounded polynomially in n̄ and it does not explicitly separate the dependence on481

n̄ and N . In Appendix A we explain how the bound in Property (scc) follows from the482

analysis in [18].483

As explained earlier, one idea of our algorithm is to execute SccGossip on its sc-484

components. The details of this will be provided shortly. For now, we only make an485

observation that captures one basic principle of this process. Let A be an sc-component486

of size nA and let j = dlognAe, so that 2j−1 < nA ≤ 2j . Let SccGossipj denote SccGos-487

sip specialized for strongly connected digraphs of size n̄ = 2j and label set [N ] = [n], and488

let TSCC(j) be the running time of SccGossipj on such digraphs. Suppose also that all489

nodes in Anc(A) are idle and that the nodes in A execute SccGossipj , all starting at the490

same time and ignoring any information collected so far in A. Since the nodes in Anc(A)491

are idle, there will be no interference from outside A. Then the execution of SccGossipj492

on A will be identical to its execution on the sub-digraph of G induced by A; that is, as if493

the rest of G did not exist. Therefore, using Property (scc), this execution of SccGossipj494

will complete correctly in time TSCC(j) = O(n4/3
A log10/3 n). In our analysis we will use the495

estimate TSCC(j) = Õ(n4/3
A ), hiding the polylogarithmic factor, as the degree of this factor496

will not affect the overall asymptotic running time of our algorithm.497

Algorithm ArbGather. Our protocol can be thought of as running two parallel sub-498

routines, the SCC-subroutine and the ACY-subroutine, that use two disjoint sets of frequen-499

cies. There will be θ ACY-frequencies indexed 0, 1, ..., θ−1, where θ = 1
2 (logn−log logn)+2,500

as in Section 3. These will be used by the ACY-subroutine to simulate protocol AcyGather.501

We will also have θ′ = logn SCC-frequencies indexed 0, 1, ..., θ′ − 1, used by the SCC-502

subroutine to simulate protocol SccGossip. Due to using different frequencies, there will503

be no signal interference between these two subroutines. In the SCC-subroutine, each504

SCC-frequency j will be used to simulate SccGossipj . Thus these different instances of505

SccGossipj will also do not interfere with each other.506

Before providing the detailed descriptions of these subroutines, we give an overview of507

the algorithm, expanding on the intuitions described earlier in this section. A good way508

to visualize the computation of Algorithm ArbGather is to think of the ACY-subroutine509

as a “master process” that transmits rumors between sc-components (that form an acyclic510

graph), while the SCC-subroutine is run as a “background” iterative process in all nodes.511

Consider some sc-component A. The nodes in A will repeatedly run in parallel θ′ copies512

of protocol SccGossip, one for each SCC-frequency, all attempting to determine A and to513

collect rumors from Anc[A]. While a node v in A executes these protocols SccGossip, its514

in-neighbors in Anc(A) (that is, outside of A) may be transmitting to v. Messages sent from515

Anc(A) to v on ACY-frequencies contribute to progress, as they contain rumors from Anc(A),516

that v needs to collect, and do not interfere with v’s executions of SccGossip. Messages517

sent from Anc(A) to v on SCC-frequencies are problematic, because they can collide with518

transmissions of SccGossip’s coming from in-neighbors of v in A. (And also, they do not519

provide useful information.)520

We focus on one particular value of j, namely j = dlognAe, as for this j SccGossipj521

is most likely to succeed quickly on A. Some number of repetitions of SccGossipj in A522

may fail, either because of collisions with transmissions on SCC-frequencies from Anc(A),523

or because of some nodes in A not being yet ready to participate in the gossiping in A, if524

they have not yet received messages from all of their in-neighbors in Anc(A). Eventually525

though, all the nodes in Anc(A) will complete their own executions of SccGossipj , stop the526

simulation of SccGossip altogether, and switch to the ACY-subroutine. As a result, these527
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nodes will no longer interfere with the executions of SccGossipj in A, and their execution528

of the ACY-subroutine will successfully transmit their messages to the nodes in A. At this529

point a repetition of SccGossipj in A will succeed, in the sense that each node v ∈ A will530

determine A, it will receive all rumors from Anc[A], and it will also learn that other nodes in531

A have successfully completed this process. This will happen for all nodes in A during the532

same repetition of SccGossipj , allowing the algorithm to “synchronize” the computation533

of all nodes in A so that they all can simultaneously stop executing the SCC-subroutine and534

switch to executing the ACY-subroutine.535

Next, we give formal descriptions of both subroutines.536

The SCC-subroutine. For each j = 0, 1, ..., θ′ − 1, SCC-frequency j will be used to simulate537

protocol SccGossipj . For s = 0, 1, ... let ψj,s = 2sTSCC(j). For each SCC-frequency j, the538

computation of v on frequency j is partitioned into j-frames, where the s-th j-frame, for any539

s ≥ 0, is [ψj,s, ψj,s+1) — a time interval sufficient for two complete simulations (described540

below) of SccGossipj on a digraph with at most 2j nodes. For each j, these simulations541

start at time 0 and stop as soon as v determines that for at least one SCC-frequency j′ the542

simulation of SccGossipj′ successfully completed in C(v). (More precisely, they stop at543

time αACY(v) that will be defined shortly.)544

Consider a j-frame r, for some r ≥ 0. In this j-frame v executes two runs of SccGossipj .545

The first one is called the exploration run and it is used to distribute node labels; that is,546

any node v uses its own label v as the “rumor” for the purpose of gossiping. The second547

run of SccGossipj is called the dissemination run. In this run v’s “rumor” is the 5-tuple548

[ v , C̃(v) , N−(v) , Ñ−ACY(v) , R(v) ] ,549

where550

C̃(v) is the set of labels received by v during the exploration run of j-frame r, including551

v itself.552

Ñ−ACY(v) ⊆ N−(v) is the set of in-neighbors of v that have successfully transmitted a553

message to v on some ACY-frequency before time ψj,r (the beginning of r-th j-frame),554

and555

R(v) is the set of all (original) rumors received on ACY-frequencies before time ψj,r, plus556

the rumor of v.557

Let C̃ ′(v) be the set of node labels received by v in this dissemination run of SccGossipj ,558

including v itself. Then, immediately after the dissemination run, v performs three tests:559

Test 1: Is it true that C̃(v) = C̃ ′(v)?560

Test 2: Is it true that C̃(v) = C̃(u) for all u ∈ C̃ ′(v)?561

Test 3: Is it true that N−(u) \ Ñ−ACY(u) ⊆ C̃(v) for all u ∈ C̃ ′(v)?562

If at least one of these tests fails, v continues the execution of the SCC-subroutine on563

frequency j, proceeding to j-frame r + 1. If all tests pass, v aborts its SCC-subroutine564

altogether (thus aborting the simulations of SccGossipj′ for all frequencies j′) and switches565

to the ACY-subroutine, with its set of collected rumors being
⋃
u∈C̃(v) R(u). Let αACY(v) =566

ψj,r+1 denote this time step. We call it the ACY-activation time of v.567

The ACY-subroutine. The ACY-activation time αACY(v) of v, defined above, plays the568

role of v’s activation time in protocol AcyGather. In this subroutine v will transmit569

at the ACY-frequencies and it simply executes AcyGather in its ACY-activity period570
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[αACY(v), αACY(v) + βθ). The activity stages and the transmissions of each node are defined571

in exactly the same way as in protocol AcyGather (except that we use αACY(v) instead of572

α(v)). At each step any node is in one of three possible states: ACY-dormant, ACY-active,573

or ACY-expired. These concepts are natural adaptations of the corresponding concepts for574

protocol AcyGather. (The only difference is that now ACY-dormant nodes are not truly575

“dormant”, as they execute the SCC-subroutine.)576

Correctness. To show correctness, we need to show that all rumors will eventually reach577

t, the target node of G. The basic structure of the proof is similar to the proof for Pro-578

tocol AcyGather in Section 3, namely we proceed by induction. The difference is that579

now in one step of the inductive argument we analyze progress in a whole sc-component,580

rather than a single vertex; that is we show that all nodes in any given sc-component A581

will collect all rumors from Anc[A]. This can be captured formally by considering an aux-582

iliary acyclic digraph SccDag(G) that represents the structure of sc-components of G. The583

vertices of SccDag(G) are the sc-components of G, and for any two sc-components A and584

A′, we include edge (A,A′) in SccDag(G) iff there are vertices u ∈ A and v ∈ A′ with edge585

(u, v) ∈ E. The induction is then with respect to the values of δ(A), the maximum path586

length from a source sc-component to A in SccDag(G). In the argument below we focus on587

analyzing the algorithm’s progress within one sc-component A (see Lemma 3 below), as the588

details of the argument showing that the nodes in A will receive the rumors from Anc(A)589

are essentially the same as in Section 3, that is they are based on the usage of RoundRobin590

in Protocol AcyGather.591

With each node v of G we will associate a time step called the SCC-ready time, denoted592

ρSCC(v). Its definition is identical to the activation time in AcyGather: If N−ACY(v) = ∅593

then ρSCC(v) = 0. Otherwise, ρSCC(v) is the last received value rws1
u→v for u ∈ N−ACY(v),594

where rws1
u→v denotes the first rwsu value received by v from u. As explained earlier, these595

rwsu values will be received on ACY-frequencies. (We stress that the SCC-ready times are596

used only for the analysis. In fact, the value of ρSCC(v) depends on C(v), so it cannot even be597

computed before v determines C(v).) We extend this definition naturally to sc-components;598

if A is an sc-component, we let ρSCC(A) = maxu∈A ρSCC(u).599

Any node v that ever becomes ACY-active is guaranteed to successfully transmit during600

the ACY-subroutine, because this subroutine involves a round of RoundRobin. Thus the601

key difficulty in proving correctness is to show that, for any sc-component A, each node602

v ∈ A will correctly complete the SCC-subroutine, meaning that it will collect all rumors603

from Anc[v] before time αACY(v), when it switches to executing the ACY-subroutine. We604

make this more precise in the lemma below.605

I Lemma 3. Let A be an sc-component of G. Let nA be its size and j = dlognAe. Then606

(i) ρSCC(A) is well-defined (that is, finite).607

(ii) All nodes in A complete subroutine SccGossip at the same time. In other words, all608

values αACY(v), for v ∈ A, are equal. (Below we use notation αACY(A) for this common609

value of αACY(v) for v ∈ A.)610

(iii) At time αACY(A) each node in A has all rumors from Anc[A].611

(iv) αACY(A) ≤ ρSCC(A) + 4 · TSCC(j).612

Proof. As indicated earlier, the proof of Lemma 3 is by induction with respect to δ(A).613

That is, assuming that all nodes in Anc(A) satisfy the claims (i)-(iv) of the lemma, we argue614

that they also hold for A.615

We start with part (i). By the inductive assumption, at some time step all nodes in616

Anc(A) will complete their execution of the SCC-subroutine and start the ACY-subroutine.617
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ACY-active

Figure 6 Bird’s-eye view of the snapshot of a computation of Protocol ArbGather. The striped
ovals represent sc-components of G or, equivalently, vertices of SccDag(G). The arrows are the edges
of SccDag(G), with two sc-components connected by an edge if they contain vertices connected by
an edge of G. Note that in each sc-component all nodes are of the same type. This follows from
Lemma 3 and from all ACY-activity intervals having the same length.

Since the ACY-subroutine involves RoundRobin, eventually all nodes in A will receive618

messages of Protocol AcyGather from their in-neighbors outside A. (For details, see the619

argument in Section 3). This implies that ρSCC(v) is well-defined for each v ∈ A, implying620

part (i).621

In the proof of the remaining parts (ii)-(iv), the main idea is that once the nodes in622

Anc(A) stop executing their SCC-subroutine, and thus do not interfere with A, the compu-623

tation of the SCC-subroutine in frequency j is guaranteed to succeed in A in time TSCC(j).624

One minor but complicating caveat is that this may not actually be true as stated, because625

a node in A can conceivably get “lucky” by having passed Tests 1-3 on some other frequency626

j′, in which case this node will terminate its execution of the whole SCC-subroutine in the627

middle of the current j-frame. In this case we need to argue that then in fact all nodes in628

A will succeed on frequency j′ at that time.629

To formalize this idea, we first show that at least one v ∈ A will terminate its SCC-630

subroutine and become ACY-active at time step αACY(v) ≤ ρSCC(A) + 4 · TSCC(j). Let631

r be the index such that ψj,r−1 ≤ ρSCC(A) < ψj,r. Since ψj,r+1 = ψj,r−1 + 4 · TSCC(j) ≤632

ρSCC(A)+4·TSCC(j), it is sufficient to show that at least one v ∈ A will have αACY(v) ≤ ψj,r+1.633

If some node v ∈ A passes Tests 1-3 on some frequency j′ 6= j before time ψj,r+1 then634

αACY(v) ≤ ψj,r+1, and we are done. So suppose that this is not the case, that is all nodes635

in A remain ACY-dormant and execute SccGossipj until time ψj,r+1. By the choice of r,636

at times τ ≥ ψj,r the nodes in Anc(A) are either ACY-active or ACY-expired, so they do637

not transmit at SCC-frequencies anymore. Then the two runs of SccGossipj in j-frame r638

will not experience any interference from outside A. Therefore, by the paragraph before the639

description of the algorithm, both these runs will complete correctly, namely for each node640

v ∈ A all Tests 1-3 will pass and v will become ACY-active at time αACY(v) = ψj,r+1, as641

needed. (Note that in this case this holds in fact for all nodes in A.)642

So now we know that at least one v ∈ A became ACY-active at time ψj,r+1 or earlier.643

Let v be the first node in A that became ACY-active, and let j′ be the frequency for which644

v passed Tests 1-3, say after executing two runs of SccGossipj′ in some j′-frame s. Thus645



M. Chrobak, K. Costello, L. Gąsieniec XX:17

αACY(v) = ψj′,s+1 ≤ ψj,r+1. We need to show that then all other nodes in A pass these tests646

in the same j′-frame s.647

To this end, we claim first that at time ψj′,s+1 we have C̃(v) = A. Indeed, Tests 1-2648

imply that each u ∈ C̃(v) and v are reachable from each other, and therefore C̃(v) ⊆ A. And649

if we had A\C̃(v) 6= ∅ then, by strong connectivity of A, there would be a vertex z ∈ A\C̃(v)650

with an out-neighbor u in C̃(v). By the choice of v, this z is still ACY-dormant, so it has651

not yet done any transmissions on ACY-frequencies. This means that z ∈ N−(u) \ Ñ−ACY(u)652

and z /∈ C̃(u), so Test 3 would fail for this u, and v could not terminate its execution of the653

SCC-subroutine — contradiction. We thus conclude that C̃(v) = A, as claimed.654

Next, we claim that the two runs of SccGossipj′ in A in j′-frame s did not experience655

any interference from nodes outside A. Consider any u ∈ A. By the choice of v, the nodes in656

A are not ACY-active before j′-frame s, and therefore Ñ−ACY(u)∩A = ∅. Also, since u passed657

v’s Test 3, we have N−(u)\ Ñ−ACY(u) ⊆ A. This implies that Ñ−ACY(u) = N−ACY(u). Therefore658

all nodes z ∈ N−ACY(u), since they transmitted on ACY-frequencies before j′-frame s, must659

be either ACY-active or ACY-expired throughout j′-frame s, so they do not transmit at660

SCC-frequencies. This shows that there is no interference from outside of A during j′-frame661

s, as claimed.662

With no outside interference, both the exploration and dissemination runs of SccGossipj′663

in A will complete successfully for all nodes v ∈ A. This implies (ii) and (iii). As for (iv),664

it now follows from the bounds we established earlier: αACY(A) = αACY(v) ≤ ψj,r+1 ≤665

ρSCC(A) + 4 · TSCC(j). J666

Running time. Next, we estimate the running time. The argument follows the reasoning667

in Section 3, but now we need to account for the contribution of the SCC-subroutine. To this668

end, we apply Lemma 3, which gives us that for an sc-component A of size nA and for j =669

dlognAe we have αACY(A)−ρSCC(A) ≤ 4·TSCC(j) = Õ(n4/3
A ). The quantity αACY(A)−ρSCC(A)670

represents the contribution of A to slowing down the ACY-subroutine. Accumulated over671

all sc-components, this slowdown works out to be Õ(n4/3). On the other hand, the ACY-672

subroutine itself, which simply executes AcyGather, contributes the total of O(n1.5 log3 n)673

to the running time. Putting it all together, we obtain the O(n1.5 log3 n) upper bound on674

the running time of Algorithm ArbGather.675

To make this argument more precise, we extend the definition of a critical path that was676

introduced in Section 3. In this section, the critical path (see Figure 7) will be defined as a677

sequence of nodes P = (v0, w0, v1, w1, ..., vp, wp = t) determined as follows:678

For any a = p, p−1, ..., 0, suppose that wa has already been defined, and let Ca = C(wa).679

If Anc(Ca) 6= ∅, then let va ∈ Ca be the node for which ρSCC(va) = ρSCC(Ca). In other680

words, va is the node in Ca for which ρSCC(va) is maximum. (It could happen that681

va = wa.) On the other hand, if Anc(Ca) = ∅ (that is, Ca is a source sc-component),682

then a = 0 and v0 ∈ C0 is arbitrary; for example we can take v0 = w0.683

For any a = p − 1, p − 2, ..., 0, suppose that va+1 has already been defined. Then wa is684

the node in N−ACY(va+1) for which ρSCC(va+1) = rws1
wa→va+1

. In other words, wa is the685

in-neighbor of va+1 outside of Ca+1 whose message was received last by va+1.686

Denote by T the running time of protocol ArbGather on G. For a = 0, 1, ..., p, let also687

na = |Ca| and ja = dlognae. By Lemma 3(iii), at time αACY(Cp) all rumors from G will688

be collected by t; thus T ≤ αACY(Cp). By definition, ρSCC(C0) = 0. So we can bound T as689



XX:18 Information Gathering in Ad-Hoc Radio Networks

v0
t=wp

P

va+1
w0

v1

wa+1

va

w1

vp

C0

C1

Ca
Ca+1 Cp

U

wa

Figure 7 Illustration of the time analysis for arbitrary digraphs.

follows690

T ≤ αACY(Cp)− ρSCC(C0)691

=
p∑
a=0

[αACY(Ca)− ρSCC(Ca) ] +
p−1∑
a=0

[ ρSCC(Ca+1)− αACY(Ca) ] .692

693

We estimate the two sums separately. From Lemma 3(iv) we have αACY(Ca) ≤ ρSCC(Ca) +694

4 · TSCC(ja), so the first sum is695

p∑
a=0

[αACY(Ca)− ρSCC(Ca) ] ≤ 4 ·
p∑
a=0

TSCC(ja)696

= 4 ·
p∑
a=0

Õ(n4/3
a ) = Õ(n4/3),697

698

because
∑p
a=0 na ≤ n. To estimate the second sum, by the definition of va+1 and wa and699

by Lemma 3(ii) we have700

ρSCC(Ca+1)− αACY(Ca) = ρSCC(va+1)− αACY(wa) = rws1
wa→va+1

− αACY(wa) .701

We can now apply the charging argument identical to that in Section 3, namely we charge the702

delay rws1
wa→va+1

−αACY(wa) to stage index increments. (Specifically, these will be charged703

to the stage-index increments in the set U of in-neighbors of va+1, defined analogously as in704

the proof of Lemma 1.) This will give us a bound of O(n1.5 log3 n) on the second sum. We705

thus obtain the main result of this paper:706

I Theorem 4. Let G be an arbitrary digraph with n vertices and a designated target node707

reachable from all other nodes. Algorithm ArbGather completes information gathering in708

G in time O(n1.5 log3 n).709

5 Õ(n)-Time Protocol With Acknowledgements for Acyclic Graphs710

We now consider the problem of gathering in acyclic graphs with a weak form of acknow-711

ledgment of transmission success. In this model, following each transmission from a node712

v, v receives a single bit of information indicating whether at least one node successfully713

received that transmission. Thus v does not learn which specific node, or how many nodes in714

total, received its transmission. Our main goal in this section is to show that this single bit715
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is enough to allow for gathering to be performed in time O(n log2 n) on acyclic graphs with716

n vertices. The key idea here will be that nodes which have successfully transmitted can at717

least temporarily stop transmitting, making it easier for other nodes to succeed. In order718

for this to work, though, we need to guarantee that successful transmissions are occurring719

at a reasonable rate. The following combinatorial object will be our main tool for this.720

We say that a collection (S0, S1, . . . , Sb−1) of label sets forms a (n, k)-half-selector if for721

every X ⊆ [n] with |X| ≤ k there are at least |X|/2 choices of x ∈ X for which there is722

an index i with Si ∩X = {x}. (This is in contrast to strong selectors where we want this723

property to hold for every choice of x). It is a consequence of Lemma 1 in [6] that for every724

n and k ≤ n there exists an (n, k)-half-selector of size O(k logn).725

For all j = 0, 1, . . . , logn, by 2j-HalfSelect = (Sj0, S
j
1, . . . , S

j
bj−1) we will denote an726

(n, 2j)-half-selector of size bj = O(2j logn). Without any loss of generality we can also727

assume that bj+1 = 2bj for all j ≤ logn− 1, implying that bj = γ2j logn for some absolute728

constant γ.729

As in the previous sections, our algorithm is presented in the relaxed radio-network730

model that satisfies Assumptions (MFC), (SRT) and (INN) from Section 2. The algorithm731

will use κ = logn + 2 frequencies. The intuition here is that for 0 ≤ j ≤ κ− 2 frequency j732

will be used to handle potential interferences involving at most 2j vertices.733

Algorithm AcyGatherAck. At any given time step, a node can be either dormant or734

active. Initially the source nodes (with no in-neighbors) will be active and the remaining735

nodes will be dormant. Any active node transmits according to 2j-HalfSelect on each736

frequency j = 0, 1, ..., κ− 2, and according to RoundRobin on frequency κ− 1. An active737

node which receives an acknowledgement of a successful transmission moves to the dormant738

state, and a dormant node which receives a transmission becomes active.739

We remind the reader that when we write that “an active node transmits according to740

2j-HalfSelect”, we mean that at a step τ this node, say v, will transmit if and only if741

v ∈ Sjτ mod bj
. (Thus, on any given frequency, at any given time step all nodes use the same742

transmission set to determine if they are supposed to transmit or not.) The meaning of743

transmitting according to RoundRobin is analogous.744

Observe that, unlike in the previous algorithms, it is now possible for a node to become745

active multiple times during the process as it continually receives new messages. Also, the746

target node, once it receives the first message, remains in the active state forever.747

Analysis. We now prove correctness of Algorithm AcyGatherAck and establish an upper748

bound of O(n logn) on its running time. To this end, we show that after at most O(n logn)749

steps each rumor will reach the target node t.750

Our proof uses again the layered structure of G introduced in Section 3. Recall that,751

for a node v, δ(v) denotes the length of the longest directed path from some source node to752

v, and that δ∗ = maxv∈G δ(v) = δ(t). For i = 0, 1, ..., δ∗, Bi denotes the set of nodes with753

δ(v) = i. (See Figure 3 for illustration.)754

Let τi = 4γ
∑
p<i |Bp| logn for all i = 0, 1, ..., δ∗. (In particular, τ0 = 0.) Our argument755

is based on the lemma below:756

I Lemma 5. The following two properties hold for every i = 0, 1, ..., δ∗:757

(i) All nodes in
⋃
p<iBp remain dormant at all times after τi (inclusive).758

(ii) At time τi each rumor is in some active node in
⋃
p≥iBp.759

Proof. We establish Lemma 5 inductively. Both parts (i) and (ii) of the claim hold vacuously760

for i = 0. Now we assume that parts (i) and (ii) hold for some i and we consider the761
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computation of the nodes in
⋃
p≥iBi, beginning at time τi. The proof involves three claims762

below that capture fundamental properties of Algorithm AcyGatherAck.763

I Claim 4. If some rumor is in an active node in
⋃
p≥iBp at some time step τ , then it will764

be in some active node in
⋃
p≥iBp at any time step τ ′ ≥ τ .765

To justify Claim 4 note that if some rumor is in an active node w ∈
⋃
p≥iBp then w766

remains active until it successfully transmits its message, which includes this rumor, to at767

least one of its out-neighbors. And once an out-neighbor of w, say u, receives this message768

from w, it gets immediately activated, if it’s not already active. Since u ∈
⋃
p≥iBp as well,769

Claim 4 follows.770

I Claim 5. Let A be the set of nodes in Bi that are active at time τi. Then (i) Any node771

in Bi \ A remains dormant forever, and (ii) any node in A becomes permanently dormant772

right after its first successful transmission.773

The proof of Claim 5 is quite simple: Each node in A that successfully transmits is774

immediately made dormant by the algorithm. The nodes in Bi will not receive any rumors775

after time τi since, by the inductive hypothesis (i) and Observation 1, none of their in-776

neighbors will be active after time τi. So any node in Bi that is dormant at some time777

τ ≥ τi will remain dormant forever.778

I Claim 6. Each node in A will succeed in transmitting its message and become dormant779

before time τi+1.780

To prove Claim 6, choose j such that 2j−1 < |Bi| ≤ 2j . Trivially, |A| ≤ |Bi| ≤ 2j .781

Since the algorithm runs 2j-HalfSelect on frequency j, at least |A|/2 nodes in A will782

have a time step in the interval [τi, τi + bj) when they will successfully transmit, at which783

point they become permanently dormant, by Claim 5. Thus, if A′ is the set of nodes in Bi784

that are active at time τi + bj , then |A′| ≤ |A|/2 ≤ 2j−1. Next, we look at time interval785

[τi + bj , τi + bj + bj−1). Since the algorithm runs 2j−1-HalfSelect on frequency j − 1,786

using the same argument, if A′′ is the set of nodes in Bi active at time τi + bj + bj−1 then787

|A′′| ≤ |A′|/2 ≤ 2j−2. Continuing inductively, all the nodes in A will succeed (and become788

dormant) no later than at time789

τi +
∑j
q=0 bq = τi + γ(

∑j
q=0 2q) logn790

< τi + γ2j+1 logn791

< τi + 4γ|Bi| logn = τi+1,792
793

completing the proof of Claim 6.794

By Claims 5 and 6, all nodes in
⋃
p<i+1 Bp will be permanently dormant starting no later795

than at time τi+1. Each successful transmission from Bi arrives at a node in
⋃
p≥i+1 Bp, so796

at time τi+1 all rumors are in some active nodes in
⋃
p≥i+1 Bp, by Claims 6 and 4. This797

completes the inductive step and the proof of Lemma 5. J798

Taking i = δ∗ in Lemma 5, we obtain that the algorithm delivers all rumors to t in at most799

τδ∗ = 4γ
∑δ∗−1
p=0 |Bp| logn ≤ 4γn logn time steps. This proves correctness and establishes an800

O(n logn) bound on the running time in our relaxed communication model with κ frequencies801

and assumptions (MFC), (SRT), and (INN). Since κ = O(logn), as explained in Section 2,802

this implies an O(n log2 n)-time bound on the running time of Algorithm AcyGatherAck803

in the standard single-frequency model. This is summarized in the theorem below.804
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I Theorem 6. Let G be an acyclic directed graph with n vertices and a designated target805

node reachable from all other nodes. Using acknowledgements of successful transmissions,806

Algorithm AcyGatherAck completes information gathering in G in time O(n log2 n).807

6 Final Comments808

In this paper we provided an Õ(n1.5)-time protocol for information gathering in ad-hoc radio809

networks, improving the trivial upper bound of O(n2). For the model with transmissions810

acknowledgments we gave a Õ(n)-time protocol for acyclic digraphs.811

We hope that some ideas behind our algorithms will lead to further improvements, and812

perhaps find applications to other communication dissemination problems in ad-hoc radio813

networks. One idea that is particularly promising is the amortization technique in Section 3,814

where a failure of a node in transmitting its message is charged to stage-index increments815

of the interfering nodes. Another idea is the technique for integrating a gossiping protocol816

(applicable only to strongly connected digraphs) with an information gathering protocol for817

acyclic digraphs, to obtain an information gathering protocol for arbitrary digraphs. Using818

this technique, improving the upper bound to below Õ(n1.5) should be possible by designing819

an appropriate protocol that beats the Õ(n1.5) bound for acyclic graphs.820

Several open problems remain. The two most intriguing problems are about the time821

complexity of gossiping and information gathering, as for both problems the best known822

lower bounds are only Ω(n logn), the same as for broadcasting.823

There are a number of other natural questions about information gathering protocols for824

radio networks that deserve study. For example, how does the complexity of information825

gathering depend on the graph diameter D and maximum degree ∆? Some initial work826

in this direction was done in [28], where refined bounds for the case of trees were given.827

Another natural direction of research would be to analyze the complexity of information828

gathering when the graph topology is known. This has been well studied for broadcasting829

and gossiping – see, for example, the survey in [15].830
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A About Protocol SccGossip903

The analysis of Algorithm SccGossip in [18] (called Gossip2 in that paper) assumes that904

N is bounded polynomially in n̄. Since in this case logN = O(log n̄), the bound on the905

running time of their algorithm (see Theorem 2 of that paper) does not explicitly separate906

the dependence on n̄ and N . We now explain how the bound given in our Property (scc)907

follows from the analysis in [18]. In essence, the running time depends on N in three ways:908

as the label range of selectors, as the range of binary search, or as the range of a doubling (or909

halving) process. All these three contributions are only logarithmic in N . (In fact, in some910

cases the range of binary search or doubling can be reduced to n̄, but this is not relevant to911

our application.) A more detailed explanation follows.912

The algorithm in [18] uses a broadcasting algorithm from [6] in their procedure Disperse()913

(Section 3). In [6] it is assumed that the label set is [n̄] and the running time is given as914

O(n̄ log2 n̄). However, all this algorithm does is to repeatedly run selectors, so for the label915

range [N ] its running time can be expressed as O(n̄ log2 N). Procedure Disperse() in [18]916

also involves a binary search, introducing another factor of O(logN). Thus the running917

time of Disperse() (Lemma 2 in [18]) can be restated as O((n̄/x) + r)n̄ log3 N). Phase I of918

Algorithm Gossip2 in Section 3.2 in [18] involves a halving process that executes a selector919

in each iteration. Phase II involves O(log n̄) iterations, each executing a selector. For this920

reason, only logarithmic factors in the running time will depend on N .921
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