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ABSTRACT 

Aluminium matrix syntactic foams (AMSFs) are composite materials consisting of hollow 

ceramic microspheres (CMs) embedded in a metal matrix. They have higher specific stiffness, 

specific strength and energy absorption capacity than metal foams or polymeric syntactic 

foams. They are promising candidate materials for energy absorption applications, e.g. crash 

protection, packing materials and damping panels. 

The present study focuses on the fabrication of AMSFs and characterisation of their 

mechanical properties under static and dynamic loading. CMs with three different particle 

size ranges, large - 250-500 m, medium - 125-250 m and small - 70-125 m, were used. 

Three types of AMSFs were fabricated: uniform, layered and mixed structures. Uniform 

AMSFs contain large, medium or small CMs alone. Double-CM layered AMSFs contain half 

each of large and small CMs, and have six layer structures. Triple-CM layered AMSFs contain 

one third each of large, medium and small CMs, and have three different layer structures. 

Fully mixed AMSFs contain a single layer of fully mixed large and small CMs, and have three 

different proportions. Partly mixed AMSFs contain several layers of fully mixed large and small 

CMs, with different proportions. All AMSFs exhibited homogeneous microstructures in each 

layer or the whole sample with uniformly distributed CMs in the Al matrix. 

Static compression tests were conducted on the AMSFs. The compressive strength of uniform 

AMSFs increased with decreasing CM size. The results show that the compressive strength of 

layered AMSFs increased with increasing number of layers and reducing layer thickness. Layer 

order had no effect on compressive strength, with soft layers failing before strong layers 

regardless the relative layer locations. The compressive behaviour of mixed AMSFs was 

similar to uniform AMSFs, with the compressive strength higher than the average strength of 

the uniform AMSFs containing the same constituent CMs.  

Low speed impact tests were performed on the AMSFs. Three failure modes, ductile, brittle 

and ductile-brittle, were observed. Uniform AMSFs with smaller CMs and layered AMSFs with 

more layers had higher peak stresses. Mixed AMSFs had a higher peak stress than the average 

of peak stresses of their constituent layers, while layered AMSFs had a lower peak stress than 

the average of peak stresses of their constituent layers. Layered AMSFs showed better
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ductility than uniform and mixed AMSFs. The ductility of AMSFs decreased with increasing 

impact energy. Both peak stress and energy absorption were found to increase with impact 

energy, but not significantly affected by impact momentum. 

The energy absorption capacity of the different types of syntactic foams was compared. The 

energy absorption was mainly determined by the type of CMs in the AMSFs and was less 

affected by the structure. Uniform AMSFs with smaller CMs and layered AMSFs with more 

layers had higher energy absorption. Mixed AMSFs had higher energy absorption than the 

average of the uniform AMSFs containing the same constituent CMs. 

An analytical model has been developed to simulate the stress and strain evolutions in ASMFs 

under impact loading. Impact loading generates an elastic wave and a plastic wave at the top 

of specimen. The elastic wave turns into a plastic wave when it bounces back at the bottom 

of the specimen. The two plastic waves then propagate inside the specimen with the same 

speed but opposite directions. The analytical model captures the key characteristics of stress 

fluctuation during impact. Both the inertia stress, caused by movement of particles in the 

specimen, and the contact stress, caused by momentum loss of impactor, can also be 

calculated by the analytical model. Experimental stress was caused by momentum loss of 

impactor. Theoretical predictions of evolutions of the base stress, which is the sum of inertia 

stress and contact stress, and the strain during impact agreed well with the experimental 

results.  
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Chapter 1 Introduction 

1.1 Motivation  

Aluminium matrix syntactic foams (AMSFs) are a novel class of lightweight composite 

materials, which use hollow particles known as ceramic microballoons (CM) such as alumina 

cenospheres (Kiser et al. 1999; Alizadeh et al. 2012) and fly ash (Rohatgi et al. 2002; Rohatgi 

et al. 2009) to embed in aluminium matrix. The main role of microballoons is to introduce 

porosity. AMSFs offer advantages of low weight, high specific stiffness, high damage tolerance, 

and high mechanical energy absorption capabilities. In comparison with polymeric syntactic 

foams, AMSFs have higher strength and can be used at higher temperatures. In comparison 

with metal foams or porous metals, AMSFs have higher compressive yield strength and better 

energy-absorption capacity, due to the extensive strain accumulation at relatively higher 

plateau stress, although they usually have higher density. These properties of AMSFs lead to 

many applications. AMSFs are used as core layer in sandwich structure, crash protection and 

damping panels (Zhao et al. 2009). Energy absorption capacity is usually affected by porous 

structure. It is possible to design syntactic foams with various kind of hollow spheres (Goel et 

al. 2015) for various applications. Hollow spheres can be divided into different densities and 

sizes by flotation methods and sieves.  

 

AMSFs are normally manufactured with pressure infiltration to acquire homogeneous 

structure. The main disadvantage of this method is that the volume percentage of ceramic 

particles in the syntactic foam is largely fixed, around 63% (Hartmann et al. 1999) when the 

particles have a similar size and are randomly packed. In impact loading, stress evolution is 

not evenly distributed across the specimen, which means homogeneous AMSFs are not 
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structurally fit for impact loading. Functionally graded syntactic foams (FGSFs) have a gradual 

and controlled positional change of at least one property. FGSFs have been proposed and 

manufactured in different industries (Jamil et al. 2017; Gupta et al. 2006; Movahedi et al. 2019). 

 

In order to optimise the physical and mechanical property of syntactic foams to the desired 

level, it is important to keep each layer independent during fabrication. Traditional solution 

is to fabricate each layer independently and then bond layers together with adhesive like 

epoxy. However, graded structures manufactured from this approach have poor structural 

integrity between layers. FGSFs manufactured by one-step infiltration casting have a better 

structural integrity and mechanical properties (Pham et al. 2018). 

 

Nowadays, most studies have focused on the energy absorption capacity in FGSFs, few has 

studied if FGSFs have sufficient ductility to match the energy absorption capacity. Besides, 

the theoretical explanation on impact response in FGSFs is not thoroughly. This work have 

studied the match between energy absorption capacity and impact ductility of layered 

syntactic foams, and the analytical explanation on the impact stress evolution. 

 

1.2 Objectives and contributions 

The primary objective of this study is to fabricate AMSFs with different structures (uniform, 

graded, mixed), to study their mechanical properties and to investigate the effect of impact 

loading on mechanical property. The specific objectives to be achieved by experimental work 

and analytical modelling are as follows. 
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The effect of material parameters is studied. Including the effect of CM size and the effect of 

structure variation (uniform, layered and mixed) on the compressive strength and energy 

absorption behaviour.  

 

The effect of loading parameters is studied based on the failure mode. Loading parameters 

include impact velocity, impact momentum and impact energy, on the impact peak stress, 

energy absorption and impact ductility in AMSFs is studied.  

 

An analytic model for impact loading is developed to theoretically understand the stress 

evolution and strain evolution in AMSFs under impact loading. Experimental results is 

compared with the prediction of analytic model. 

 

The original contributions of this work are: manufacturing layered syntactic foam with the 

structure benefit of increasing impact ductility without compromising energy absorption 

capacity, in comparison with uniform structure. Proposing a way to study impact ductility by 

judging if the syntactic foam have sufficient ductility to fulfil its energy absorption capacity. 

Explaining two key features in impact stress evolution, the time interval and amplitude of the 

fluctuation with analytical model. 

 

1.3 Structure of thesis 
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A total of seven chapters are included in this thesis. Chapter 2 evaluates the relevant literature 

to the work presented. The manufacture methods and mechanical properties of metallic 

syntactic foams are first reviewed. The compressive behaviours of cellular materials are then 

introduced. The current understandings in the effect of impact loading on graded structure 

are also reviewed. 

 

Chapter 3 gives a detailed experimental procedures used in this work, including fabrication 

procedures used to manufacture different types of syntactic foams, the characterization 

methods, and the mechanical tests for characterising the syntactic foam samples. 

Chapter 4 presents the experimental results. The microstructures of the syntactic foam are 

presented. The calculated values of density and porosity of the syntactic foams are also 

presented. The mechanical properties in both quasi-static compression and impact tests are 

also presented. Moreover, ductility criteria are developed based on different failure 

mechanisms found in AMSFs.  

 

Chapter 5 presents an analytic model for predicting the stress evolution and strain evolutions 

in AMSFs under impact loading. The theoretical basis of the analytic model is introduced. An 

iteration-based numerical solution of the model is proposed. The predictions and 

experimental results on both stress evolution and strain evolution are compared. 

 

Chapter 6 presents a detailed analysis of the experimental and modelling results. The effects 

of material parameters and loading parameters, including ceramic sphere type, syntactic 
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foam structure (uniform, layered and mixed), impact velocity, impact momentum and impact 

energy on the mechanical properties, including strength, peak stress and energy absorption, 

of syntactic foams are analysed and discussed. Effects of experimental parameters on impact 

ductility in AMSFs are also discussed. 

 

Chapter 7 summarises the conclusions drawn from this study and possible areas for future 

work. 
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Chapter 2 Literature Review 

2.1 Introduction to syntactic foam 

Syntactic foam with hollow spheres is a porous composite material with good crush strength 

and good energy absorption capacity. It has attracted increasing interest and attention from 

scientific and engineering communities. Syntactic foam materials can be applied in numerous 

fields such as mining, marine, transportation, civil defence and aerospace (Gibsib et al. 2003). 

For instance, due to the damping capacity and low density features, they can be used as 

automotive brake rotors, and steer rods, or as covers/hulls/packaging (sandwich cores) 

structures (Gupta et al. 2014; Lapcik et al. 2016). Their high-energy absorption capacity and 

high compressive strength can also be beneficial in crash energy absorption zones and 

protective panel applications. By applying syntactic foam for roadside barrier, the impact 

force can be significantly reduced while the energy absorption capacity remains (Kim et al. 

2000). In open pit mines, syntactic foam can be applied to the edge protection, which allows 

narrower open pit haul roads while satisfying the safety requirement for trucks (Durkin et al. 

2016). For marine applications, syntactic foam is able to provide buoyancy due to its light 

weight and withstand high water pressure for deep-sea exploration (Hinves et al. 1993; Le 

Gall et al. 2014; Wu et al. 2016). 

 

Syntactic foam can be classified into one-phase, two-phase and three-phase foams (Wu et al. 

2016; Pham et al. 2018). Typical syntactic foam consists of a filler and a binder matrix. The 

fillers can be made of glass, metal, ceramic in forms of micro-sphere or macro-sphere (Lau et 

al. 2006; Swetha et al. 2011; Geng et al. 2016). The binder matrix can be made of polymers, 
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normally epoxy (Gupta et al. 2006), vinyl ester (Gupta et al. 2010) and bismaleimide 

(Koopman et al. 2006), or metals, normally aluminium (Tao & Zhao, 2009), steel (Castro et al, 

2012; Luong et al. 2015), magnesium (Xia et al. 2015), titanium (Mondal et al. 2012; Xue et al. 

2012) and Zinc (Broxtermann et al. 2018). One-phase foam is formed by bonding an 

engineered composite sphere matrix, which is made from expanded polystyrene (EPS) beads 

coated with epoxy resin or fibre reinforced epoxy using “rolling ball method” (Wu et al, 2016). 

The coated EPS spheres beads can be cured and post-cured to shrink the EPS beads inside the 

spheres to produce a hollow structure. The hollow composite spheres are then bonded to 

form into a one-phase foam. To improve the mechanical properties of syntactic foams, the 

micro-spheres and macro spheres made of various fillers can be added and mixed with binder 

matrix to form two-phase and three-phase syntactic foams (Swetha et al, 2011; Geng et al, 

2016).  

 

From a structure perspective, syntactic foam can be classified into uniform syntactic foam and 

functionally graded syntactic foam (FGSF). FGSFs are advanced engineering materials that 

exhibit a gradual and controlled positional change of at least one property. The graded 

properties may arise from geometrical parameters such as diameter, width, wall thickness etc. 

They can also be caused by variable material properties including density, strength and even 

material type. The graded property can be a single factor alone, or multiple graded properties 

can take effect the same time. The graded properties can be achieved by changing the volume 

fraction of constituents, microstructure or material type from one location to another (Naebe 

et al. 2016). Designing FGSF with tailored properties (mechanical or physical) has the potential 

to produce considerable benefits. In general, the introduction of gradients in FGSF brings 
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greater flexibility and a wider design domain in energy-absorption structures and materials. 

The crashworthiness performance of these FGSFs can be further improved by appropriate 

design optimization (Baroutaji et al, 2017). There is no doubt that design optimization 

techniques will always play an important role in this process to obtain optimal solutions with 

different objectives, constraints and design variables. 

 

As syntactic foam is mainly designed for mechanical applications and the main loading mode 

is compression, the compressive behaviour of syntactic foams has been widely studied (Kiser 

et al, 1999; Rohatgi et al, 2006; Daoud et al, 2007; Orbulov et al, 2012; Santa Maria et al, 

2014). Due to its importance, the testing methodology and characteristic properties of 

syntactic foams under quasi-static loading have been described in standard procedures (DIN 

50134 standard, 2008). Dynamic loading is also important from the perspective of collision 

damper or protective applications. In dynamic studies, dynamic loading is normally applied 

with either Split Hopkinson Pressure Bar (SHPB) for high strain rate (Luong et al, 2011), or 

drop weight impact for low strain rate (Hebert et al, 2008). However, the effect of dynamic 

loading has not been investigated as fully as compression, for example, deformation 

mechanism under dynamic loading.  

 

In this chapter, syntactic foams with both uniform and graded structures will be reviewed, 

including fabrication methods, microstructural characteristics and mechanical properties. 

Meanwhile, current investigations on the effects of compressive loading, both quasi-static 

and dynamic/impact, on mechanical properties such as peak strength, energy absorption and 

ductility will also be reviewed. 
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2.2 Syntactic foams with uniform structure 

  2.2.1 Polymeric syntactic foam 

2.2.1.1 Fabrication process 

The three primary constituents used in the fabrication of polymeric syntactic foams are (i) 

matrix material (epoxy resin), (ii) porosity provider material (hollow spheres) and (iii) curing 

agent to cure the matrix material (Huang et al, 2016). A fourth constituent, a diluent, which 

helps in lowering the viscosity of the resin, is sometimes used (Woldesenbet et al. 2005).  

 

Fabrication of polymeric syntactic foams is carried out with two primary steps: mixing and 

casting. The resin is heated to a liquid form before mixing. The hollow spheres are added to 

the epoxy resin matrix in multiple steps (Huang & Li, 2015) and mechanically mixed with epoxy 

resin thoroughly using a stirrer. Ultrasonic mixing is applied in some cases by immersing an 

ultrasonic probe in the mixture to improve mixing further (Woldesenbet, 2008). After the 

mixture becomes a uniform slurry, the slurry is left in a vacuum oven at room temperature to 

reduce the air bubbles arising during the stirring process. Subsequently, the mixture is cast in 

a metallic mould and cured for at least 24 h at room temperature.  

 

Although this process is easy to operate, a few issues should be considered. Firstly, breakage 

of hollow spheres should be prevented during the mixing process. Apart from gentle stirring, 

a wooden or other soft material stirrer may be used to minimize breakage (Gupta et al. 2006). 

Secondly, different casting methods should be used according to different viscosities caused 

by different volume fractions of hollow spheres (Bunn et al. 1992). For syntactic foams with a 
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low volume fraction of hollow spheres, the mixture slurry has a low viscosity and can be 

directly poured into the mould. With an increased volume fraction, the mould has to be filled 

by extrusion due to the increased viscosity of the slurry. For a volume fraction of hollow 

spheres high than 50%, the slurry is too dry to extrude and high pressure moulding is used to 

produce the sample. Thirdly, different densities between hollow spheres and epoxy resin 

matrix can lead to inhomogeneous structure during the casting. However, the gravity-settling 

effect caused by different densities could be used to fabricate syntactic foams with gradient 

structures (Kishore et al. 2005). 

 

2.2.1.2 Microstructure 

The microstructure of polymeric syntactic foams consists of matrix resin and hollow 

microspheres. The scanning electron micrograph of a typical polymeric syntactic foam is 

shown in Figure 2.1 (Gupta et al. 2011). The microstructure of the syntactic foam after 

dynamic loading is shown in Figure 2.2. As the syntactic foam is made by mixing epoxy resin 

and microballoons by stirring followed by casting, air voids are observed in the microstructure 

(Gupta et al. 2004). Under dynamic loading, some microballoons are crushed and the foam is 

densified. With increased strain rate, the specimen showed higher content of uncrushed 

microballoons while the epoxy resin shows brittleness, indicated by cracks in the matrix. 
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Figure 2.1 Scanning electron micrograph of a typical syntactic foam containing glass 
microballoons in vinyl ester matrix (Gupta et al. 2011) 

 

 

Figure 2.2 SEM image showing the fracture surface of a syntactic foam containing glass 
microballoons in vinyl ester matrix tested at a strain rate of 903s-1 (Gupta et al. 2011) 

 

2.2.1.3 Mechanical property 

Compressive properties of syntactic foams generally include compressive strength, energy 

absorption capacity and failure mechanism. The mechanical properties of syntactic foams are 

a function of either material parameters, such as types of constituents, volume fraction of 

microballoons (Gupta et al. 2004), wall thickness of microballoons (Woldesenbet et al. 2009), 

size of microballoons (Ahmadi et al. 2015) and strengthening particles (Wouterson et al. 2007; 

Li et al. 2008), or loading parameters in different loading conditions, such as compressive 
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loading (Song et al. 2004), tensile loading (Yu et al. 2012), and flexural loading (Woldesenbet 

et al. 2009).  

 

Syntactic foams are mainly designed for impact protection purposes. Therefore, compressive 

properties of syntactic foams are widely investigated. Early results on compressive strength 

were reported by Bunn and Mottram (1993). They tested syntactic foams with volume 

fractions of microballoons between 0% and 53%. As the volume fraction of the microballons 

decreased from 53% to 0%, it was found that the bulk density increased from 0.78g/cm3 to 

1.5g/cm3. A linear relation was observed between the filler content and the bulk density. 

Compressive tests showed that the lowest strength was for foams having the highest 

microballoon concentration. This indicates that the addition of microballoons reduced the 

compressive strength.  

 

D’Almedia (1999) studied the effect of changing the diameters of the diameters of the 

microballoons on the mechanical properties. At a fixed volume fraction of microballoons, 

which act as pores inside the resin matrix, the compressive strength and elastic modulus are 

higher for composites fabricated with microballoons of smaller diameters. This means smaller 

microballoons leads to higher strength and elastic modulus. Rousseau et al. (2017) pointed 

out that the size of the embedded particulates is one of the key factors that regulates the 

behaviour of syntactic foam. As impact loading causes impact wave inside the specimen, the 

use of larger particulates promotes greater attenuation levels of such impact wave. With 

larger microspheres, large void pockets enhance stress wave scattering, whereas the pure 

epoxy matrix reduces the wave through an absorptive phenomenon.  
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Karthikenyan et al. (2000) studied the compressive strength of syntactic foams with and 

without fibrous reinforcements in the matrix. They found that besides physical features like 

voids, microstructural variations had a significant influence on the compressive behaviour. 

The addition of fibres in low proportions of around 2% did not increase the compressive 

strength, whereas the addition of fibres in high proportions, around 6%, increased the 

compressive strength significantly. The compressive fracture surfaces had plastic deformation 

marks in the form of steps. These marks cannot be generated if the matrix fractures in 

compression, but are possible in shear failure. The banded structure appeared due to the 

frequent change in the localized plane of crack propagation in specific directions. Li et al. 

(2007) pointed out that fibrous reinforcement not only increased the compressive strength, 

but also increased the energy absorption by providing new energy absorption mechanisms 

such as fibre pull-out and fibre bridge-over. SEM observations showed that syntactic foams 

with fibrous reinforcement could not only absorb impact energy through micro-damage, but 

also had mechanisms to contain and arrest micro-length scale damages and prevent them 

from propagating into catastrophic macrocracks. Therefore, fibrous reinforcements provided 

more impact damage tolerance in comparison with plain syntactic foams.  

 

The effect of adding nanocaly in the matrix on the mechanical properties of epoxy syntactic 

foam has also been investigated. Ho et al. (2006) concluded that adding montmorillonite clay 

to epoxy resin hinders the linking of epoxy chains thereby decreasing the ductility of the 

composite. However, the hardness increased with addition of nanoclay in the epoxy, which 

suggests that such a composite can resist high stress but will have limited capacity for 

deformation. Lam et al. (2005) also observed that the ductility of epoxy-nanoclay composite 
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is less than that of plain epoxy. Balakrishnan et al. (2005) however stated that the decrease 

in ductility of the composite is not significant in the case of nanoscale particles because of 

formation of subcritical cracks. It was found that the addition of nanoparticles not only 

increases the strength of the epoxy matrix but also serves as a mechanism to contain the 

microcracks from developing into macrocracks. Major improvement in properties was also 

observed when the nanoclay was fully exfoliated and reinforced in the polymer without 

agglomeration (Fu et al.2006). The method of mixing nanoclay in epoxy resin is important to 

achieve effective dispersion of the nanoclay. Ultrasonication of nanoclay in epoxy resin with 

additional diluents produced superior nanoscale dispersion compared to shear mixing 

methods (Hussain et al. 2007).  

 

Gupta and Nagorny (2005) studied the tensile behaviour of polymeric syntactic foams 

fabricated with glass microballoons with different volume fractions in the range of 30% to 60% 

and different wall thickness to diameter ratios. They reported that the tensile strength 

increases with a decrease in volume fraction of microballoons. The tensile strengths of all the 

syntactic foams were found to be decreased by 60%-80% compared with that of neat resin. 

They also studied the effect of wall thickness to diameter ratio on tensile modulus and found 

that foams containing low strength microballoons showed lower tensile modulus compared 

with the nest resin, but the presence of high strength microballoons led to an increase in the 

tensile modulus. Yu et al. (2012) stated that the mechanical behaviour of syntactic foams is 

dominated by brittle fracture under tensile loading. They developed a three-dimensional 

microstructure based finite element model by means of a representative volume element 

(RVE), to predict the tensile strength and associated failure modes of syntactic foams. They 
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introduced cohesive elements into the finite element model to capture the progressive 

damage behaviour of the microsphere-matrix interface. 

 

Kim and Khamis (2001) studied the fracture characteristics of polymeric syntactic foams by 

varying the volume fraction of the microballoons. The specific flexural strength decreased as 

the volume fraction of microballoons increased. The specific fracture toughness decreased 

with increase in the volume fraction of microballoons. The fracture characteristics of the 

syntactic foams with high volume fractions of microballoons were dominated by 

microballoons and less affected by matrix. Maharsia et al. (2006) investigated the flexural 

properties of syntactic foams modified by rubber and nanoclay particles, developed for high 

damage tolerance. In the rubber hybrid foams, 40 and 75 um rubber particles, 2% by volume, 

were used. In nanoclay hubrid foams, the volume of nanoclay particles was maintained at 2% 

and 5% to study the effect of volume fraction of nanoclay particles. The total volume of all 

types of particles was maintained at 65% in all types of plain and hybrid syntactic foams. An 

increase in flexural strength was observed with the incorporation of rubber particles in 

syntactic foams. In nanoclay hybrid foams, flexural strength was observed to depend on the 

nanoclay volume fraction. The strength of microballoons played an important role in 

determining the fracture mode of plain and hybrid syntactic foams. Rubber particles were 

found to increase the energy absorption under the flexural loading conditions. 

 

2.2.2 Metal matrix syntactic foam  

  2.2.2.1 Fabrication process 
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Most metal matrix syntactic foams (MMSFs) commonly use light metals or alloys including 

aluminium (A356, A380, 2014, 6061 and 7075) (Santa Maria et al. 2013; Ferguson et al. 2013; 

Zou et al. 2013) and magnesium (AM20, AM50 and AZ91) (Anantharaman et al. 2015) as 

matrix materials. While commonly used filler materials are fly-ash (Rohatgi et al. 2005), glass 

microballoons (Anbuchezhiyan et al. 2017), or metallic hollow spheres (Szlancsik et al. 2015), 

naturally occurring materials such as pumice (Taherishargh et al. 2015), expanded clay (Puga 

et al. 2018), expanded perlite (EP) (Taherishargh et al. 2014; Fiedler et al. 2015) and expanded 

glass (EG) (Al-Sahlani et al. 2017) are attractive alternatives due to a further reduction in 

material costs. 

 

Metal matrix syntactic foams are normally fabricated by infiltration casting or stir casting. In 

infiltration casting (pressure infiltration, melt infiltration), the molten metal is pressed to 

infiltrate in to the packed ceramic particles and solidifies to produce a metal matrix syntactic 

foam. The infiltration casting process can be conducted either by a gas pressure assisted 

infiltration (Balch 2005) or by die casting (Rohatgi et al. 2009) (Zhang et al. 2009). The 

reported infiltration pressure is in the range of 0.2-3.5 MPa depending on the matrix and 

spheres used in the fabrication process. Marchi & Mortensen (2002) suggested that the 

pressure required for full infiltration is related to the size and volume fraction of spheres. 

Finer spheres and larger volume fractions of CMs require higher infiltration pressures. It is 

suggested that the heating temperature be about 100℃ above the melting point of the metal 

matrix (Nadler et al. 1999). A temperature far higher than the melting point of matrix could 

accelerate the dissolution of ceramic spheres used for fabricating the syntactic foam (Palmer 

et al. 2007). In most cases, the packed spheres are randomly distributed and account for 63%, 
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i.e., the voids between the packed spheres account for about the 37%, when they have a 

similar size (Hartmann 1999).  

 

In stir casting, the ceramic particles are mixed in the liquid metal and then cast to produce 

syntactic foams (Daoud 2008). This method is widely used in producing metal matrix 

composites and its advantages and limitations are well documented. The volume fraction of 

the ceramic particles can be easily adjusted and production cost is low. However, this method 

has a few problems. The ceramic particles are normally not wetted by the molten metal and 

tend to cluster together. They also tend to float to the top of the melt because they are much 

lighter than the metal. Both of these problems lead to potential poor dispersion of the 

ceramic particles in the liquid metal and therefore inhomogeneous structures of the syntactic 

foams. 

 

2.2.2.2 Microstructure 

Metallic syntactic foams fabricated by different methods can have different microstructures, 

as shown in Figure 2.3 and Figure 2.4. The syntactic foams fabricated by the infiltration casting 

method have a more uniform distribution of ceramic spheres and better bonding between 

metal matrix and ceramic spheres than those fabricated by the stir casting method. Some 

hollow spheres may be broken either when received or during packing and infiltration, and 

can be infiltrated with metal in both foams fabricated by the infiltration method and the stir 

casting method.  
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Figure 2.3 Microstructure of metallic syntactic foam fabricated by melt pressure infiltration 
method (Myers et al. 2015) 

 

 

Figure 2.4 Microstructure of metallic syntactic foam fabricated by stir casting method (Goel 
et al.  2014) 
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In comparison to polymeric syntactic foams, the porosity of metallic syntactic foams is 

determined mainly by the porosity of the cellular spheres since there are normally no voids 

in the metal matrix. Zhang and Zhao (2007) developed a formula to calculate the porosity of 

metallic syntactic foams suitable for all types of cellular spheres: 

𝜑 =
𝜌𝑚−𝜌𝑓

𝜌𝑚−𝜌𝑒
(1 −

𝜌𝑒

𝜌𝑠
)                                                            (2.1) 

where 𝜑  is the porosity of the syntactic foams, 𝜌𝑚 , 𝜌𝑓  and 𝜌𝑠  are the densities of metal 

matrix, syntactic foam and solid part of the cellular spheres, respectively, and 𝜌𝑒  is the 

effective density of the cellular spheres. 

 

    2.2.2.3 Mechanical property 

Similar to polymeric syntactic foams, mechanical property of metal matrix syntactic foams 

(MMSFs) also includes strength, energy absorption capacity and failure mechanism. The 

mechanical properties of MMSFs are a function of material parameters, like volume fraction 

(Rohatgi et al. 2006), density (Rohatgi et al. 2006), porosity (Tao et al. 2009; Santa Maria et 

al. 2013), wall thickness (Orbulov et al. 2013) and size (Santa Maria et al. 2014) of 

microballoons/microspheres, and loading parameters and conditions, such as quasi-static 

compressive loading (Tao et al. 2009) and dynamic/impact loading (Peroni et al. 2014). In this 

section, we focus on the mechanical properties of syntactic foams under quasi-static loading. 

The effect of dynamic/impact loading will be discussed separately in Section 2.4. 

 

The compressive strength of MMSFs is largely determined by their density. However, the 

micro-sphere size, microsphere structure and distribution are also important parameters 



20 
 

determining the properties. In early research, Kiser et al. (1999) studied the effect of wall 

thickness to radius ratios (t/R) of hollow Al2O3 spheres on Al matrix syntactic foams. The 

compressive strength was found to be sensitive to t/R. With the same A202 aluminium alloy 

matrix, the compressive strength of the syntactic foam increased from 70 to 230 MPa with 

the t/R increasing from 0.12 to 0.48. Licitra et al. (2015) performed quasi-static compression 

tests on MMSFs with A356 alloy matrix and Al2O3 particles. They reported that lower density 

syntactic foams have lower modulus, compressive strength and plateau stress. Failure in the 

specimen was found to initiate from particle failure, followed by shear failure of matrix. The 

study on the compressive behaviour of syntactic foams with hollow ceramic microspheres of 

same composition but different densities showed similar result (Zhou et al. 2006). The 

syntactic foams with high density ceramic microspheres were found to have a higher 

compressive strength than those with low density microspheres. Wu et al. (2007) indicated 

that the size of the ceramic spheres also affects the compressive strength of MMSFs. Orbulov 

et al. (2014) studied various kinds of MMSFs with matrix of Al99.5, AlSi12, AlMgSi1 and AlCu5 

alloys and particles of ceramic hollow spheres Al2O3, SiO2 and mullite under both free and 

constrained quasi-static loading. MMSF with 1450 μm sphere had densification limit of 40%, 

while MMSF with 150 μm had densification limit of 55%. With same other parameters, they 

reported that the densification limit was primarily influenced by the hollow spheres’ size and 

distribution in constrained compression. The amount of recoverable energy in the 

constrained compression was influenced by the applied heat treatment. The overall absorbed 

mechanical energy was largely influenced by the compression mode (free or constrained).  
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The energy absorption is defined as the area under the stress-strain curve in the compression 

test, up to the onset densification strain. Therefore, the energy absorption capacity of 

syntactic foam is generally determined by plateau stress and densification strain, as shown in 

Figure 2.5. The plateau stress is dependent on the strength of the constituents, i.e. the metal 

matrix and the ceramic particles. The densification strain, defined as the strain where the 

syntactic foam is densified with no pores inside, is mainly dependent on the level of porosity 

in the syntactic foam. Metal matrix syntactic foams have higher strength than polymer matrix 

syntactic foams. Therefore, they often have better capability of energy absorption. Balch et 

al. (2004) achieved specific energy absorption of 39 and 49 J/g for syntactic foams with a CP 

Al matrix and an Al 7075 - T6 matrix, respectively. Wang et al. (2013) reported that the specific 

mechanical properties of MMSFs are much higher than those of conventional metal foams. 

 

Figure 2.5 Typical stress-strain curve for compression test of syntactic foam (Gupta et al. 
2003) 

 

Apart from strength and energy absorption, failure behaviour is also important. Ductile failure 

leads to better structural integrity, stable plateau stress in the stress-strain curve and 

therefore a higher energy absorption, while brittle failure leads to poor structural integrity 

and lower energy absorption. The ductile foam materials collapse due to the crushing of 
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ceramic microspheres, whereas the brittle ones fail due to the shear failure in the form of 

cracks (Mondal et al. 2009). The ductility of MMSFs could sharply drop if the thickness to 

diameter (t/D) ratio of microspheres is too high, which may shorten the plateau regime. Three 

other factors can also affect the failure behaviour of MMSFs: (i) the structure of the ceramic 

microspheres (Wu et al. 2007; Orbulov et al. 2010), (ii) the volume fraction of the ceramic 

microspheres (Rohatgi et al. 2006) and (iii) the void defects in the metal matrix. As a 

consequence, the ductility of MMSFs can be tailored by selecting suitable metal matrix and 

ceramic microspheres. 

 

2.3 Functionally graded structures and materials for energy absorption 

Introduction of property gradients can bring greater flexibility and wider design domain in 

energy-absorption structures and materials. The crashworthiness of these structures and 

materials can be further improved by appropriate design optimization (Baroutaji et al. 2017). 

There is no doubt that design optimization techniques always play an important role in this 

process to obtain optimal solutions with different objectives, constraints and design variables. 

 

However, the introduction of gradients may result in some difficulties in the fabrication or 

manufacturing of such structures and materials. Fortunately, this obstacle can be eliminated 

with the advance of manufacturing science and process technology. For example, various 

tailoring and forming technologies can be employed to fabricate structures with graded 

properties. Some mature production technologies, such as tailor welded blank (TWB), tailor 

rolling blank (TRB) and tailor hot stamping (THS), etc., have been widely applied in various 

engineering fields, especially in the automotive industry. The components produced by those 
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technologies are all representations of thin walled structures with graded properties. 

Although manufacturing metal syntactic foams with graded structures is still a challenging 

task, progress is being made in this field. 

 

2.3.1 Thin-walled structures 

    2.3.1.1 Thin-walled structures with graded diameter 

Thin-walled tapered tubes or frusta are the most simple and commonly-used structures with 

gradient property, as shown in Figure 2.6. They are employed to endure axial or oblique 

impact loads. A prior motivation of employing tapered tubes is to improve the load uniformity 

of energy absorbers during impact scenarios. For a circular (square) tube, a decrease in the 

diameter will lead to a reduction in the initial peak force. That is why the smaller end of 

tapered tubes is always placed proximal to the striker. 

 

Figure 2.6 Schematic diagram of a thin-wall frustum (Xu et al. 2018) 

 

Early studies on axial crushing of tapered tubes were performed by Mamalis and Johnson 

(1983) in the 1980s. Based on the compression tests of thin-walled cylinders and frusta, 
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empirical expressions of the mean crushing load were firstly derived for frusta with various 

semi-apical angles by fitting the results of frusta with various crumpling modes (Mamalis et 

al. 1984). A theoretical model was then proposed to analyse the extensional mode of frusta 

(Mamalis et al. 1986), and the mean force was correlated with the yield stress of material, 

wall thickness, top diameter and semi-apical angle of the frusta. The effect of end constraints 

on the energy absorption of frusta was investigated experimentally by Sobky et al. (2001). 

Constraining the frusta at the top was reported to enhance the energy absorption capacity 

under both static and impact loading. 

 

With the advance of computer technology, numerical simulation have been widely applied in 

the crashworthiness analysis and design of tapered tubes. For example, Nagel and 

Thambiratnam (2004; 2005) investigated the energy absorption response of tapered thin-

walled rectangular tubes numerically and compared with that of straight tubes. Effects of 

various factors including wall thickness, taper angle, impact mass and velocity were analysed. 

Avalle and Chiandussi (2007) introduced a tapered initiator to a tubular component as the 

front structure or front longitudinal beam of a vehicle body. Results showed that the tapered 

initiator could reduce the initial peak force and hence lower the maximum acceleration during 

impact events. 

 

Apart from improving load uniformity, another significant benefit of tapered tubes is to resist 

oblique loading. In fact, energy-absorbing structures are always subject to oblique or inclined 

loading in real crashing events. A compression analysis of the responses of straight and 

tapered rectangular tubes under oblique loading was carried out by Nagel and Thambiratnam 
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(2006) using a numerical model validated by experiment. The influences of load angle, impact 

velocity and geometric dimensions were analysed, and tapered tubes were found 

advantageous in applications where oblique loading is expected. In addition, filling the 

structure with foam filler is also one of the most commonly-used ways to improve the 

crashworthiness of thin-walled tubes. The foam filler was found to further improve the 

performance of tapered tubes (Ahmad et al. 2010), especially under oblique loading. 

Moreover, adopting multi-cell sections is another effective way to substantially increase the 

capacity of energy absorbing components (Zhang & Zhang, 2013; Zhang et al. 2017). 

 

    2.3.1.2 Thin-walled structures with graded wall thickness 

Thin-walled structures with graded wall thickness also attracted wide attentions in recent 

years. It is not a new concept to employ variable wall thickness to improve the 

crashworthiness. In 1993, Chirwa (1993) investigated the plastic collapse of a type of invert 

buck tube with graded thickness along the longitudinal direction. The energy absorption 

efficiency was reported to be increased by up to 50%, compared to tubes with constant wall 

thickness. However, due to the limitations on fabrication, the variation or distribution of the 

wall thickness was not controlled artificially at that time. 

 

With the advance in material rolling technology, metal plates with continuous thickness 

changes can be produced without difficulty. As shown in Figure 2.7, tailor rolled blank (TRB) 

technology is now employed to produce vehicle components with graded thickness and 

lighter weight. Yang et al. (2007) applied TRB for designing frontal energy-absorption 

structures and Chuang et al. (2008) investigated the performance of TRB in vehicle structures. 
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Based on the design optimization technology, they both reported that the components with 

graded thickness through TRB technology could achieve comparable performance as 

traditional design with less structural mass. 

 

Figure 2.7 Schematic of tailor rolled blank (TRB) technology (Merklien et al. 2014) 

 

Thin-walled structures with variable wall thickness can be fabricated by other methods in 

laboratory. Wire cut electrical discharge machining (WEDM) technique is one effective 

approach with high accuracy. As shown in Figure 2.8, two types of square tubes with linearly 

distributed wall thickness along the cross-section, i.e., tubes with single surface gradient (SSG) 

and double surface gradient (DSG), were fabricated and their axial crush response was 

investigated by Zhang et al. (2014). Square tubes with uniform thickness and the same mass 

were also tested for comparison. Up to 30%-35% increase in mean force and energy 

absorption efficiency was achieved without the increase of structural mass and initial peak 

force. Their work was further extended to the axial crush of multi-cell tubes with variable 

thickness by Fang et al. (2015).  
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Figure 2.8 Square tubes with graded thickness along the radial direction (Zhang et al. 2014) 

 

Numerical analysis and optimization design strategy were also performed to improve the 

performance of graded structures. For axial crushing of square tubes, thickness gradient in 

the axial direction was investigated numerically by Sun et al. (2014). The performance of 

tubular structures with graded thickness was superior to counterparts with uniform thickness. 

They also performed a multi-objective design optimization to achieve high specific energy 

absorption and low initial peak force. Axially graded thickness was also extended to multi-cell 

sections by Yin et al. (2015) and corresponding optimization design was performed.  

 

    2.3.1.3 Thin-walled structures with graded material property 

The material property of structures can also show gradient tendency by adopting some 

advanced fabrication technologies. For example, the tailored hot stamping (THS) process is 

often used to alter the tensile properties of materials, and thus the energy-absorbing 

structures with graded strength or variable hardness profile could be obtained (Karbasian & 
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Tekkaya, 2010; Kranjc et al. 2010). Different strengths can be fabricated through tooling 

heated up to various temperatures, so that the structures will show different mechanical 

properties in different regions of the same part. For example, THS is often employed to B-

pillars in automotive body to achieve a structure containing a soft zone, a hard zone and a 

transition zone across its area (Perez-Santiago et al. 2013). Other components, such as A-

pillars, side impact protections, frame components, bumpers can also be manufactured by 

the THS technology. By the combination of forming and hardening, an ideal graded strength 

property could be tailored for the construction of structural elements and energy-absorbing 

components in the automotive industry.  

 

George et al. (2012) performed crushing tests on a structure with graded material properties 

and reported that the graded specimen absorbed more energy and displayed better crush 

efficiency. In summary, the graded material property from THS technology provides another 

way for engineers and designers to obtain remarkable energy-absorbing structures. 

Structures with variable strength or hardness profile can be fabricated through hot stamping 

and cooling to meet the requirements of lightweight and higher energy-absorption capacity.  

 

  2.3.2 Cellular materials with graded structures 

    2.3.2.1 Graded cellular foam 

Although metal matrix syntactic foam and metal foam are different types of material in that 

the former is a composite and the latter is a one phase material, both can be classified as 
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cellular materials. This section reviews the mechanical properties of graded structure cellular 

materials, which have some common characteristics with graded metal matrix syntactic foam. 

 

The major merit of graded structure cellular material lies in the fact that the microstructural 

detail can be spatially varied and graded through a non-uniform distribution of the two phases 

with different properties, sizes and shapes (Brook, 1995). By varying microscale parameters 

(density, cell wall and face thickness, area inertia moment, etc.), the local load-bearing 

capacity becomes a controllable spatial variable rather than an approximately constant value 

(Yu et al. 2007).  

 

Early studies, as described by Gibson and Ashby (1999), have shown that foams can absorb a 

considerable amount of energy when the stress reaches a roughly constant plateau value. 

Graded aluminium foam blocks with varying or gradient cross-sections have also been 

investigated more recently (Shen et al. 2015; Gan et al. 2016). Significant advances have been 

made in syntactic foam technology to enable the fabrication of spatial grading of properties 

of the foams containing microballoons (hollow particles) (Chittineni et al. 2010; Gupta, 2007).  

 

Various approaches have been reported to produce and evaluate functionally graded foams 

using different techniques. He et al. (2014) produced uniform and functionally graded closed 

cell aluminium foams using a specially modified casting technique. Quasi-static compression 

tests indicated noticeable strain hardening. Dynamic loading of graded foams produced a 

lower peak stress and a more extended plateau region than uniform foams. Hangai et al. 
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(2016) fabricated a functionally graded foam using a sintering-dissolution technique. During 

the dissolution step, the removal of the space holder (NaCl) was partially stopped. The 

resulting graded material was a combination of open-cell Al foam and Al/NaCl composite. In 

another study (Hangai et al. 2011), a functionally graded closed-cell aluminium foam was 

prepared by the friction stir processing technique, using different amounts of foaming agent 

in the precursor. The as-produced samples consisted of two layers with different porosities. 

By tailoring the high and low porosity layers, it was possible to control the deformation 

mechanism of the functionally graded composite foam. Hassani et al. (2012) fabricated a 

functionally graded open cell aluminium foam using a powder metallurgical method. They 

used carbamide particles as space holders and changed the particle size in the longitudinal 

direction of the foam. 

 

MMSFs are a special group of metal foams, which consist of a metal matrix with embedded 

filler particles (Gupta et al. 2015). In most cases, MMSFs are produced by homogeneous 

distribution of fillers inside the matrix. As a result, MMSFs with uniform physical properties 

are achieved. To gain the benefits of graded structure, a property gradient can be introduced 

into syntactic foams by altering the size or volume fraction of particles and/or by employing 

tailored distributions of two or more different particle types. Ferreira et al. (2010) produced 

a functionally graded aluminium syntactic foam using a centrifugal casting technique. In their 

study, a changing volume fraction of microballoons was distributed along the radial direction 

of the cast samples. Majlinger and Orbulov (2014) studied hybrid metal syntactic foams. They 

embedded random mixtures of two different filler particles, hollow ceramic and hollow iron 

spheres, inside an aluminium alloy matrix. 
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    2.3.2.2 Graded honeycomb 

Graded honeycomb, another widely studied cellular material, is also an effective energy 

absorption element (Ruan et al. 2003). Honeycombs are typical thin-walled structures with 

periodic cells with different properties in different directions. Gradients can be introduced in 

wall thickness, cell width or material properties. A variable yielding stress or strain hardening 

of honeycomb cell wall was introduced as the graded characteristic by Shen et al. (2013) and 

Mousanezhad et al. (2014). Different strengths were achieved among the honeycomb cells, 

which provided a graded feature to control the in-plane crushing collapse.  

 

Honeycombs with variable cell wall thickness were also investigated (Al et al. 2008). By 

varying cell wall thickness along the crushing direction, a thickness-graded in-plane crushing 

mode was established (Zhang et al. 2014). The in-plane dynamic crushing behaviour of graded 

honeycomb structures with miss-wall defects was also investigated (Fan, 2016). Besides 

hexagonal honeycombs, dynamic response of the circle-arc honeycombs with density 

gradients was investigated (Zhang et al. 2015). The gradient density of cellular structure was 

demonstrated to have a remarkable influence on the energy absorption capability. 

 

In summary, cellular materials with graded properties are promising energy absorbing 

materials. Energy absorption capability can be significantly affected by multiple factors such 

as density, cell wall thickness, material strength, graded distribution and the number of layers. 

By appropriate design of these factors, cellular materials can be made to bear much higher 

loads and absorb more energy. 
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2.4 Effect of dynamic/impact loading on mechanical properties of syntactic foams 

The attention on mechanical behaviour of syntactic foams normally lies in three aspects: 

strength (peak stress, plateau stress), energy absorption and failure mechanism. Therefore, 

the effects of dynamic/impact loading can be considered in these aspects. However, these 

three aspects are interdependent. Generally speaking, high strength leads to high energy 

absorption but can result in a brittle failure mechanism, while brittle failure in return leads to 

low energy absorption. In this section, the effects of dynamic/impact loading will therefore 

be discussed as a whole instead of on each aspect separately, unlike the case with mechanical 

properties of syntactic foams under quasi-static loading. 

 

2.4.1 Polymeric syntactic foams 

Dynamic properties of polymeric syntactic foams have been extensively investigated 

experimentally. Song et al. (2007) investigated the mechanical properties of epoxy syntactic 

foam at intermediate strain rates using modified split Hopkinson pressure bar (SHPB) and 

reported that the failure strength exhibited strain-rate dependency. Li et al. (2009) conducted 

compressive tests on glass microballoon syntactic foams using a hydraulic loading machine 

for medium strain rates and SHPB for high strain rates up to 4000 s-1. The stress-strain 

response obtained exhibited strain rate dependency. They combined microscopic 

observations with numerical simulations to study the failure mode and failure mechanism. 

Ouellet et al. (2006) also investigated the compressive properties of polymeric syntactic 

foams under quasi-static condition and medium and high strain rate conditions using SHPB. 

They found that the strain rate effects became pronounced at strain rates above 1000 s-1.  
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Viot et al. (2008) examined the properties of syntactic foams under high strain rate loadings. 

They observed significant effects of microsphere volume fraction, projectile mass and drop 

height on the energy absorption. The energy absorption mechanism included the visco-plastic 

deformation of the matrix and the fracture of the glass bubbles. The energy absorption was 

mainly governed by the failure of the glass bubbles when their volume fraction was high and 

was primarily controlled by the resin deformation when the volume fraction of glass bubbles 

was low. Shams et al. (2017) developed a micromechanical model to simulate syntactic foams 

under high strain rate loads. This numerical model was able to predict syntactic foam 

behaviour at a wide range of strain rates and various microballoon configurations. 

 

2.4.2 Metal matrix syntactic foams 

The compressive behaviour of MMSFs, especially aluminium matrix syntactic foams (AMSFs), 

under dynamic loading has been widely studied. As the present thesis is focused on AMSFs, 

this section mainly reviews the dynamic properties of AMSFs. 

 

Balch et al. (2005) fabricated AMSFs by liquid metal infiltration of commercially pure 

aluminium and 7075 aluminium alloy. The dynamic compression tests showed about 10-30% 

increase in peak strength compared to the quasi-static results. Strain rate sensitivity was 

similar to that of aluminium matrix composite materials. Goel et al. (2012) studied the 

dynamic behaviour of aluminium cenosphere syntactic foams with 30% porosity at higher 

strain rates (up to 1400/s) and reported that the compressive strength and energy absorption 

of these foams reached a maximum at a strain rate of approximately 750/s and then 

decreased with further increasing strain rate. Luong et al. (2011) determined the strain rate 
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dependence of compressive response for A4032 aluminium alloy/hollow fly ash AMSFs. They 

reported that the AMSFs showed a higher strength and a higher energy absorption capability 

at a higher strain rate. Santa Maria et al. (2014) studied the quasi-static and dynamic 

mechanical properties of A380-Al2O3 AMSFs with six different microsphere sizes and different 

size ranges. The tests, conducted at strain rates between 880 and 1720 s-1, revealed that the 

properties of the AMSFs containing hollow spheres with average diameters of 0.425-0.85 and 

0.85-1 mm were not strain rate-dependent and, therefore, their performance was similar to 

that in quasi-static tests. Dou et al. (2007) investigated the high strain rate compression 

behaviour of AMSFs with cenosphere and pure aluminium and compared their performance 

to that displayed under quasi-static loading conditions. It was found that the foams exhibited 

distinct strain rate sensitivity and that the peak strengths increased by about 50% and the 

energy absorption capacity increased by about 50-70%. Goel et al. (2012; 2013; 2014) studied 

the compression behaviour of AMSFs with cenosphere at strain rates ranging from quasi-

static conditions to 1400 s-1. The compressive strength and energy absorption of the foams 

attained a maximum at a strain rate of approximately 750 s-1, and then decreased as the strain 

rate increased. It was also found that the foam with coarser cenospheres appeared to be 

more strain rate sensitive. Feidler et al. (2015) conducted a dynamic analysis of low cost 

AMSFs with expanded perlite under dynamic compressive loading conditions. The yield stress 

was found to increase slightly at higher strain rates, indicating positive strain-rate sensitivity. 

The perlite particles had a positive effect on the compression resistance at high strain rates. 

Cox et al. (2014) studied the dynamic behaviour of AMSFs with A356 alloy and SiC particles at 

strain rates up to 1520 s-1. They found that the hollow spheres were crushed at the end of the 

elastic region and failure of the AMSFs at high strain rates was initiated by particle cracking 

and shear band formation.  
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The effects of low strain rate dynamic loading have also been investigated. Park et al. (2002) 

studied the mechanical properties of steel syntactic foams at strain rates 4.5 x 10-5 s-1 to 16 s-

1. Their results showed that the energy absorption increased linearly with strain rate. The yield 

strength of the samples showed stronger strain rate dependence at higher strain rates. 

Mondal et al. (2009) assessed the deformation response and energy absorption 

characteristics of closed cell aluminium-fly ash particle composite foams at different strain 

rates (from 10-2 to 101 s-1). The influence of strain rate on the deformation response was found 

to be very marginal; the strain rate sensitivity was measured to be very low (0.02-0.04) when 

the foam relative density was greater than 0.1 and was found to be negative when the foam 

relative density was less than 0.1. 

 

In summary, dynamic loading, i.e. high strain rate, leads to higher stress and higher energy 

absorption capacity than quasi-static loading. At low strain rates (around 10 s-1), strain rate 

sensitivity is negative. At higher strain rates (around 1000 s-1), strain rate sensitivity causes 

significant increases in strength and energy absorption (10%-70%). When the strain rate is 

greater than a certain value, the strength and energy absorption no longer increase. 

 

2.4.3 Theoretical analysis of impact loading 

For decades, many efforts have been made to theoretically explain the material behaviour 

under impact loading. Generally speaking, the theoretical models for impact loading are 

based on the propagation of impact wave in one-dimensional formulation. There are two 

approaches in these models: non-linear wave theory or linear wave theory with simplified 
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stress-strain curve. This section reviews the development, advantages and disadvantages of 

both approaches. 

 

Any material with a stress-strain curve which is monotonically increasing and is convex to the 

strain axis tends to form impact wave under impact loading (Reid et al. 1997). Jahsman (1968) 

used one-dimensional non-linear wave theory to model the behaviour of syntactic foams 

under high velocity dynamic compression. His model includes a precursor elastic wave and a 

centred fan of inelastic waves preceding the impact front. Similarly, Zaretsky and Ben-Dor 

(1995) derived impact equations based on more complex experimental or theoretical stress-

strain relationships for the material to produce Hugoniot relationships for polymeric foams. 

Recently, Karagiozova et al. (2010, 2012, 2015) proposed an approach to study the 

compaction of cellular materials with uniform density exhibiting strain hardening. It was 

based on one-dimensional stress wave propagation and used actual experimentally-derived 

stress-strain curves together with their Hugoniot strain velocity representation. The 

densification strain was not assumed in advance but obtained as part of the solution. This 

model was verified by numerical simulations under various loading conditions. Similarly, 

Rostilov et al. (2021) also used Hugoniot condition to describe shocked states behind the 

wave front and demonstrated the two-wave configuration of stress-evolution in syntactic 

foam under impact.  

 

The mathematical equations used to describe the constitutive relationships in non-linear 

wave theory can only be solved numerically. Non-linear wave theory also causes problems in 

certain systems like ring systems (Reid et al. 1983). A first order approximation was then 
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produced by Johnson (1972) with an idealized material model of linear strain hardening. This 

approach retained the two key features of the stress-strain curves, a yield strength and a 

densification strain as these two basic parameters can be simply defined from experimental 

results. This model provides an analytical expression for the crushing stress under impact 

loading and gives a good physical feel for the effect of various parameters on the impact 

process. For example, stress fluctuation was observed experimentally by Rousseau et al. 

(2017). Johnson’s theory can demonstrate that propagation of impact waves leads to stress 

fluctuation in a specimen, resulting in higher stress at the end of specimen than in the middle. 

Recently, Pham et al. (2018) used Johnson’s theory to explain the failure mechanism in 

syntactic foam under impact loading. 

 

Other models were also used to simplify the material’s behaviour. Cellular material was 

idealised as a perfectly-plastic rigid material in Reid’s work (1997), assuming a constant 

plateau stress up to the predefined densification strain. This approach was further extended 

to linear hardening by Zheng et al. (2012). Tan et al. (2005a, 2005b) proposed a model taking 

into account the elastic material properties. Harrigan et al. (2005) used an elastic-plastic 

model with hardening, while Lopatnikov et al. (2004) developed an elastic-perfectly-plastic 

rigid model. 

 

Take Reid’s (1997) approach for example, material was assumed to be rigid, perfectly-plastic, 

locking (RPPL). Fig. 2.9 (i) shows a wooden cylinder of initial length 𝐿0R, cross-sectional area 

𝐴0R and density 𝜌0R with an attached mass 𝑀𝑅 striking a rigid target normally with an impact 

velocity 𝑣0𝑅. The wood is assumed to deform under uniaxial compressive strain conditions. 

When impact occurs an impact wave is initiated which propagates along the cylinder. Because 
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of the rigid nature of the initial response, the stress in all material ahead of the shock is 

instantaneously raised to 𝜎𝑐𝑟𝑅. As it passes through the material it brings it to rest, increases 

its density by compaction up to the locking strain 𝜀1𝑅 and raises the stress to 𝜎𝑅
∗. Fig. 2.9 (ii) 

shows the state of the system at time 𝑡𝑅 when the shock has advanced a distant 𝑥𝑅 from the 

contact surface. The shaded region ahead of the shock front denotes the material which is 

traversed by the shock in time 𝛿𝑡𝑅. It is shown in its crushed state in Fig. 2.9 (iii). The equations 

governing the propagation of the shock are made up of kinematic equations and equations of 

conservation of mass and momentum for material crossing the shock front. 

 

Figure 2.9 Shock propagation model for RPPL material (Reid & Peng, 1997) 

If 𝑢𝑅 is the displacement of the rigid mass at time 𝑡𝑅, the from Fig. 2.9, 𝑥0𝑅, the un-

deformed length of the crushed portion is given by 
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𝑥0𝑅 = 𝑢𝑅 + 𝑥𝑅                                                                  (2.1) 

Where 𝑥𝑅 is the deformed length of crushed wood. 

From Fig. 2.9 we also have 

𝑢𝑅 + 𝑥𝑅 + 𝐿𝑅 = 𝐿0𝑅                                                         (2.2a) 

and so 

   𝐿𝑅̇ = −(𝑥𝑅̇ + 𝑢𝑅̇)                                                         (2.2b) 

Where superposed dots denote differentiation with respect to time and 𝑢𝑅̇ =d𝑢𝑅/d𝑡𝑅 = 𝑣𝑅is 

the current velocity of the rigid mass and the un-deformed portion of the wood. 

Assuming that no radial expansion occurs, conservation of mass gives, 

𝜌1𝑅𝐴0𝑅𝑥𝑅 = 𝜌0𝑅𝐴0𝑅(𝑢𝑅 + 𝑥𝑅)                                               (2.3) 

Where 𝜌0𝑅 is the initial density and 𝜌1𝑅is the density when fully crushed. Thus 

𝛾𝑅 =
𝜌0𝑅

𝜌1𝑅
=

𝑥𝑅

𝑢𝑅+𝑥𝑅
                                                        (2.4) 

By definition, 

𝜀1𝑅 =
𝑥0𝑅−𝑥𝑅

𝑥0𝑅
=

𝑢𝑅

𝑢𝑅+𝑥𝑅
                                                     (2.5) 

Thus, 

𝛾𝑅 = 1 − 𝜀1𝑅                                                            (2.6) 

Rearranging Eq. (2.4) gives 

𝑥𝑅 =
𝛾𝑅𝑢𝑅

1−𝛾𝑅
=

1−𝜀1𝑅

𝜀1𝑅
𝑢𝑅                                                    (2.7) 

The shock speed relative to the projectile, 𝑐𝑠𝑅 is equal to d𝑥/d𝑡. Thus from Eq. (2.7), 

𝑐𝑠𝑅 =
𝛾𝑅

1−𝛾𝑅
𝑢𝑅̇ =

𝛾𝑅

𝛾𝑅
𝑣𝑅                                                (2.8) 

This indicates that the shock speed reduces as the un-deformed portion of the projectile is 

slowed down. The mass 𝛿𝑚𝑅 of the shaded element of length 𝛿𝑥𝑅 = 𝑐𝑠𝑅𝛿𝑡𝑅 is given by 
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𝛿𝑥𝑅 = 𝜌1𝑅𝐴0𝑅𝑐𝑠𝑅𝛿𝑡𝑅 =
𝜌0𝑅𝐴0𝑅𝑐𝑠𝑅𝛿𝑡𝑅

𝛾𝑅
 

From Eq. (2.4) 

Conservation of momentum for this element of mass gives 

𝐴0𝑅(𝜎𝑅
∗ − 𝜎𝑐𝑟𝑅)𝛿𝑡𝑅 =

𝜌0𝑅𝐴0𝑅𝑐𝑠𝑅𝑣𝑅𝛿𝑡𝑅
𝛾𝑅

 

Or 

𝜎𝑅
∗ = 𝜎𝑐𝑟𝑅 +

𝜌0𝑅𝑐𝑠𝑅𝑣𝑅
𝛾𝑅

 

Thus 

𝜎𝑅
∗ = 𝜎𝑐𝑟𝑅 +

𝜌0𝑅𝑣𝑅
2

𝜀1𝑅
                                                             (2.9) 

 

In summary, both the non-linear and the simplified approaches are based on the propagation 

of impact waves. Johnson’s theory has simpler mathematical expressions while captures the 

key features of stress evolution in impact loading. Theoretical analysis in this work is based 

on Johnson’s theory. 

 

2.4.4 Impact ductility 

Syntactic foam is designed as impact protection material. It requires not only energy 

absorption capacity to absorb the impact energy, but also ductility to keep structure integrity 

during impact. Crack/fracture could be harmful from engineering perspective. Generally, 

strong material has high energy absorption but low ductility, and material under impact 

loading has even lower ductility than that of static loading. Therefore, an ideal syntactic foam 

should have a good match between energy absorption and ductility to ensure a good 

performance.  
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However, most studies nowadays are focused on the energy absorption capacity, e.g. specific 

energy absorption (Broxtermann et al. 2018), energy absorption efficiency (Zhang et al. 2016). 

Although fracture strain is mentioned in some researches (Orbulov et al. 2014; Myers et al. 

2015), and fracture mode is also mentioned in some works (Gupta et al. 2006; Omar et al. 

2015; Movahedi et al. 2019). Few has studied the match between energy absorption capacity 

and ductility. As a result, there is no widely recognized way in studying impact ductility of 

syntactic foam so far. 

 

 This work proposes a way to study impact ductility by judging if the syntactic foam has 

sufficient ductility to fulfil its energy absorption capacity, i.e. whether it cracks apart or not 

before densification.             
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Chapter 3 Experimental Procedure 

This chapter presents a detailed description of the raw materials, fabrication processes, 

density measurement, microstructural observations and mechanical testing procedures for 

the Al syntactic foam samples with both uniform and layered structures. 

 

3.1 Raw materials 

The raw materials used for fabricating the Al matrix syntactic foam samples were an Al 6082 

alloy, in the form of a block, and a ceramic microsphere (CM) powder. The Al alloy had a 

chemical composition of 1.3% Si, 0.5% Fe, 0.4% Mn, 0.8% Mg, by weight, and balance for Al. 

The CM powder used in this study was supplied by Envirospheres Pty Ltd Australia. The CM 

powder had a composition of ~60% SiO2, ~40% Al2O3 and 0.4-0.5% Fe2O3 by weight, and had 

an effective density of 0.66 g/cm3. The effective density is the mass of the powder divided by 

the volume of the powder less the air voids between the microspheres. The as-received CM 

powder was divided into three size groups with diameter ranges of 70-125 m, 125-250 m 

and 250-500 m, which were designated as CM Powder S, M and L, respectively, and are 

shown in Figure 3.1. The majority of the particles in CM powders M and S have a regular 

spherical shape, a smooth shining surface and a hollow inner structure. The majority of the 

particles in CM powder L have a quasi-spherical shape, a coarse surface and a porous inner 

structure. 
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Figure 3.1 Optical images of the three types of ceramic mircospheres (a) L, 250-500 m, (b) 

M, 125-250 m and (c) S, 70-125 m  

 

3.2 Melt infiltration casting method 

The Al syntactic foams were produced by melt infiltration casting, as shown in Fig. 3.2. 

Uniform syntactic foam samples were fabricated by infiltrating molten Al into monomodal 

(single particle size range) CMs. Graded syntactic foam samples were fabricated by infiltrating 

molten Al into multimodal (two or three particle size ranges) CMs. All AMSF samples have 
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nominal dimensions of 15 mm × 15 mm × 15 mm for quasi-static compression tests and 10 

mm × 10 mm × 15 mm for impact tests. 

 

Figure 3.2 Schematic diagram of melt infiltration casting 

 

Before infiltration, a steel tube, sealed by a circular steel disc at bottom, was filled with the 

CM powder or powders. The diameter of the tube was 50 mm and the length was 50 mm. The 

total mass of the CM powder(s) contained in the tube was 16.5 g.  An Al alloy block of 40 g 

was then placed on top of the CM powder(s). The volume ratio of Al to CM was maintained 

at 1:2, at which the Al is slightly more than the amount needed to ensure full infiltration of 

the CM powder. Another circular steel disc, which was slightly smaller than the internal 

diameter of the tube, was placed above the Al block. The assembly was heated to 755°C and 

maintained for 30 minutes in an electric furnace to ensure that the Al block was fully molten. 

The assembly was then moved to a hydraulic machine where the molten Al alloy was 

compressed into the voids among the CM particles by a piston. After complete solidification, 

the resultant AMSF sample was removed from the steel tube and ground into cuboid 

specimens.  
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 3.2.1 Uniform syntactic foam 

A uniform syntactic foam sample is shown schematically in Figure 3.3. The uniform AMSF 

samples are designated as L, M and S, according to the CM powder used. All the samples have 

a density approximately 1.6 g/cm3, containing 55% CM particles. The details of composition 

and structure of the uniform syntactic foam samples are listed in Table 3.1. 

 

Figure 3.3 Schematic diagram of uniform AMSF 

Table 3.1 Composition and structure of uniform syntactic foam samples 

Sample CM type and volume 
percentage 

Layer structure order and relative 
thickness of each layer 

U1 100% L L (100%) 

U2 100% M M (100%) 

U3 100% S S (100%) 

 

  3.2.2 Layered syntactic foam  

Layered syntactic foam samples are shown schematically in Figure 3.4. Four sets of layered 

AMSFs were fabricated with two, three, four and five layers of CM, either using all three types 

of CMs (L, M, S) or using any two of the three types of CMs. In manufacturing a layered 

structure sample, different types of CM were placed in the steel tube layer by layer before 

infiltration with predetermined order and mass. The different types of CMs contained in the 

sample had equal masses, with the total mass of CMs maintained at 16.5 g. Each type of CMs 
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was either kept in one layer or split into two or three separate layers, resulting in two, three, 

four or five layers in the final sample. The details of composition and structure of the layered 

syntactic foam samples are listed in Table 3.2. 

 

Figure 3.4 Schematic diagrams of triple (left) and double (right) layered AMSFs 

Table 3.2 Composition and structure of layered syntactic foams  

Sample CM type and volume 
percentage 

Layer structure order and relative 
thickness of each layer 

T1 33% L, 33% M, 33% S L-M-S (33%-33%-33%) 

T2 33% L, 33% M, 33% S M-L-S (33%-33%-33%) 

T3 33% L, 33% M, 33% S L-S-M (33%-33%-33%) 

D1 50% L, 50% S L-S (50%-50%) 

D2 50% L, 50% S L-S-L (25%-50%-25%) 

D3 50% L, 50% S S-L-S (25%-50%-25%) 

D4 50% L, 50% S L-S-L-S (25%-25%-25%-25%) 

D5 50% L, 50% S L-S-L-S-L (17%-25%-17%-25%-17%) 

D6 50% L, 50% S S-L-S-L-S (17%-25%-17%-25%-17%) 

 

3.2.3 Mixed syntactic foam 

Syntactic foam samples with mixed-powder structure are shown schematically in Figure 3.5. 

Three types of fully mixed samples were manufactured by mixing CM powders L (250-500 um) 

and S (70-125 um) at three different ratios. Three types of partly mixed samples were 
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manufactured by alternating single powder (L or S) layers with mixed powder (L and S) layers, 

while maintaining a fixed total ratio of 1:1 between powders L and S. The details of 

composition and structure of the mixed syntactic foam samples are listed in Table 3.3. 

 

Figure 3.5 Schematic diagrams of fully-mixed (left) and partly-mixed (right) AMSFs 

Table 3.3 Composition and structure of fully-mixed and partly-mixed syntactic foams  

Sample CM type and volume 
percentage 

Layer structure order and relative 
thickness of each layer 

M1 25% L, 75% S 25% L/75% S (100%) 

M2 50% L, 50% S 50% L/50% S (100%) 

M3 75% L, 25% S 75% L/25% S (100%) 

P1 50% L, 50% S L - 25%L/75%S - S -25% L/75% S - L 

(20%-20%-20%-20%-20%) 

P2 50% L, 50% S L - 50%L/50%S - S - 50%L/50%S - L 

(12.5%-25%-25%-25%-12.5%) 

P3 50% L, 50% S 75% L/25% S - S - 75% L/25% S 

(33%-33%-33%) 

 

3.3 Measurement of density 

The density of the as fabricated syntactic foam samples was measured by the Archimedes 

method using water as the working medium. The density of the three CM powders, L, M and 

S, was also measured by the Archimedes method. As the CM particles have a lower density 

than water and are also subject to water penetration, a small amount of pure wax was used 
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to achieve more accuracy. The wax was first placed in a glass container, melted and then 

cooled to full solidification. The volume of the wax together with the glass container was 

measured by the Archimedes method in water. The wax was then re-melted at 80°C without 

any evaporation. An amount of the CM powder was weighed, poured into the liquid wax, 

gently stirred with a steel wire to eliminate any air bubbles and then allowed to cool to room 

temperature and solidify. After complete solidification, the total volume of the wax, CM 

powder and glass container was measured again by the Archimedes method. The volume of 

the CM powder was the difference between the two measurements. The density of the CM 

powder was determined using the measured values of its weight and volume. 

 

3.4 Microstructural observation 

The syntactic foam samples were ground by metallographic sandpaper with different grit sizes 

from 120 to 600, and then polished with silk on a polishing machine for optical microscopy. A 

Nikon optical microscope was used to observe the distribution of CM particles and the 

bonding condition with the Al matrix in the AMSFs. 

 

3.5 Mechanical tests 

Compressive and impact tests were performed on all the uniform, layered and mixed syntactic 

foams. At least three samples were tested for each type of syntactic foam to verify the 

repeatability. 

 

  3.5.1 Quasi-static compression test 
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Uniaxial quasi-static compression tests were carried out on an Instron 4045 machine. The 

samples were cubic with the approximate dimensions 15 mm x 15 mm x 15 mm, with errors 

less than 10%. Each sample was tested with a cross head speed around 0.9 mm/min to a strain 

rate of 0.001 s-1. The load-displacement history was recorded. The stress was calculated by 

dividing the applied load by the original cross-sectional area of the sample; the strain was 

calculated by dividing the displacement by the original length of the sample. The stress-strain 

curve was then obtained. 

 

  3.5.2 Low speed drop weight impact test  

Drop weight impact tests were conducted using an instrumented drop weight impact tower 

as shown in Fig. 3.6. The vertical guides of the impact tower were lubricated to minimize any 

friction generated during the descent of the carriage. The samples were manufactured 

manually. They were rectangular parallelepipeds with the approximate dimensions 15 mm x 

10 mm x 10 mm, with errors less than 20%. In each test, the sample was placed at the base 

and the drop weight was released from a pre-determined height to achieve a pre-determined 

kinetic impact energy. One of four drop weights, 10 kg, 12 kg, 15 kg and 20 kg, was used, 

depending on the type of the syntactic foam. The impact velocity was varied from 1.7 m/s to 

5 m/s by adjusting the height of drop weight accordingly, to achieve a kinetic impact energy 

varying from 22 J to 150 J, depending on the type of the syntactic foam. The impact test 

conditions for all the syntactic foam samples are summarised in Table 3.4. The instant impact 

force-time data was recorded by a Kistler 9061A piezo-electric load-cell with a maximum 

capacity of 200 kN. The impactor velocity and displacement as a function of time were 

measured by a MotionPro-X4 high-speed camera. Images were captured with a time interval 
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of 0.2 ms. ProAnalyst software was used to analyse the motion of drop weight and to obtain 

displacement-time and velocity-time data. 

 

Figure 3.6 Drop weight test facility 

Table 3.4 Impact test conditions 

Sample Impact mass (kg) Impact velocity 
(m/s)  

Strain rate (/s) 
 

Impact energy 
(J) 

 
 
 
 
 
U1 

10 3.6 240 65 

 
12 

4 267 96 

4.4 293 116 

5 333 150 

 
 
15 

3.3 220 82 

3.5 233 92 

3.7 247 103 

4 267 120 

4.3 287 139 

20 2 133 40 

 
 
U2 

10 4.6 307 105 

 
12 

3.8 253 86 

4.2 280 106 

4.6 307 127 

15 3.2 213 77 

 
 
 
 
U3 

10 4.5 300 101 

 
12 

3.9 260 91 

4.3 287 110 

4.8 320 138 

 
15 

1.7 113 22 

2.4 160 43 

2.9 196 63 

3.3 220 82 

20 1.5 100 23 

(To be continued) 
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Sample Impact mass (kg) Impact velocity 
(m/s)  

Strain rate (/s) 
 

Impact energy 
(J) 

 
 
 
 
T1-up 

10 4 267 80 

 
12 

3.5 233 73 

3.9 260 91 

4.3 287 111 

 
 
15 

2.2 147 36 

3.3 220 82 

3.7 247 103 

4 267 120 

4.3 287 139 

20 2.6 173 68 

 
T1-down 

 
15 

3.3 220 82 

3.7 247 103 

4 267 120 

4.3 287 139 

 
 
T2 

10 3.5 233 62 

 
12 

3.9 260 91 

4.2 280 106 

4.6 307 127 

15 3.7 247 103 

20 2.8 187 78 

 
 
T3 

10 3.8 253 72 

 
12 

3.4 227 69 

3.6 240 78 

3.8 253 87 

15 2.8 187 59 

20 2.1 140 40 

 
 
 
 
D1 

10 4.3 287 92 

 
12 

3.6 240 78 

4.2 280 106 

4.5 300 122 

 
 
15 

3.1 207 72 

3.3 220 82 

3.7 247 103 

4 267 120 

4.3 287 139 

20 2.5 167 63 

 
D2 

 
15 

2.9 193 63 

3.3 220 82 

3.7 247 103 

4 267 120 

(To be continued) 
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Sample Impact mass (kg) Impact velocity 
(m/s)  

Strain rate (/s) 
 

Impact energy 
(J) 

 
D3 

 
15 

2.9 193 63 

3.3 220 82 

3.7 247 103 

4 267 120 

 
D4 

 
15 

2.9 193 63 

3.3 220 82 

3.7 247 103 

4 267 120 

 
D5 

 
15 

2.9 193 63 

3.3 220 82 

3.7 247 103 

4 267 120 

 
D6 

 
15 

3.3 220 82 

3.7 247 103 

4 267 120 

4.3 287 139 

 
M1 

 
15 

2.4 160 43 

2.9 193 63 

3.3 220 82 

3.7 247 103 

 
M2 

 
15 

1.7 113 22 

2.4 160 43 

2.9 193 63 

3.3 220 82 

 
M3 

 
15 

 1.7 113 22 

2.4 160 43 

2.9 193 63 

3.3 220 82 

 
P1 

 
15 

1.7 113 22 

2.4 160 43 

2.9 193 63 

3.3 220 82 

 
P2 

 
15 

2.4 160 43 

2.9 193 63 

3.3 220 82 

3.7 247 103 

 
P3 

 
15 

2.4 160 43 

2.9 193 63 

3.3 220 82 

3.7 247 103 
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Chapter 4 Experimental Results 

4.1 Structural characteristics of AMSFs   

4.1.1 Microstructure of AMSFs 

Fig 4.1 shows typical AMSF specimens with one, two or three layers. In the uniform AMSF 

specimens, the CMs are well distributed in the Al matrix (Fig. 4.1a). The specimen with CM L 

(left) has the largest pores and the specimen with CM S (right) has the smallest pores. In the 

two-layer AMSF specimens (Fig. 4.1b), there is a clear straight boundary between the two 

layers with equal thickness. In the three-layer AMSF specimens, the layers also have an equal 

thickness and the boundaries are clear and straight. 

   

 

Figure 4.1 Typical AMSF specimens with (a) uniform, (b) two layer and (c) three layer 
structures 

 

Figure 4.2 shows the micrographs of the layered AMSFs with the three types of CM layer 

boundaries, L-M, M-S and L-S. It is shown that the CMs are distributed randomly in the Al 

6082 matrix in all cases, resulting in a homogeneous macroscopic structure. While most CMs 

in the syntactic foam samples were intact during fabrication, a small number of CMs are 

infiltrated with molten Al 6082. It seems porous CMs are more defective because of their thin 
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surface membranes and therefore more apt to be invaded by molten Al under pressure during 

the melt infiltration process. As consequence, layers with CM L have infiltrated CMs than 

layers with CM M and CM S. M-S and L-S boundaries are distinctive, with few CMs distributed 

across the boundary. The L-M boundary is wider than those of M-S and L-S, as the differences 

in size between some L spheres and M spheres are small.  

 

 

Figure 4.2 Optical micrographs of layered AMSFs (a) L-M, (b) M-S, (c) L-S, showing layer 
boundaries 

 

4.1.2 Density and porosity of AMSFs 

4.1.2.1 Density and porosity of uniform syntactic foams 
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Figure 4.3 shows the average densities and average porosities of the three types of uniform 

syntactic foams U1 (L), U2 (M), U3 (S) fabricated by melt infiltration, containing monomodal 

CMs L, M and S, respectively. The average value for each foam was calculated by testing four 

samples. The syntactic foams containing CM M have a slightly higher density than those 

containing CMs L and S. The densities of these syntactic foam samples fall in a range of 1.4-

1.6 g/cm3. Given that the theoretical volume percentage of the CMs in a free packed 

monomodal CM powder is 63% (Hartmann, 1999), the theoretical density of the syntactic 

foam is calculated to be 1.42 g/cm3. The experimental density values are slightly higher than 

the theoretical value, mainly because a small number of CMs were infiltrated with Al. 

 

Figure 4.3 Densities (a) and porosities (b) of uniform syntactic foams 

 

The porosities of the AMSFs were estimated from the measured densities of the foam 

specimens and CMs. The basis for the estimation is described as follows. The density of the 

AMSF specimen is determined by the density of the matrix, and the density and volume 

fraction of the CMs:  

𝜌𝑓 = 𝜌𝑚(1 − 𝑓𝐶𝑀) + 𝜌𝑒𝑓𝐶𝑀                                                 (4.1) 
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where 𝜌𝑓 is the density of AMSF specimen, 𝜌𝑚 is the density of the Al matrix, 𝜌𝑒 is the 

effective density of the CM and 𝑓𝐶𝑀 is the volume fraction of the CM. The volume fraction of 

the CM is therefore: 

𝑓𝐶𝑀 =
𝜌𝑚−𝜌

𝜌𝑚−𝜌𝑒
                                                                 (4.2) 

The porosity in the CMs is determined by the density of the CMs and the density of the CM 

shell, i.e. the solid part of the CM spheres (Zhang and Zhao 2007), by: 

𝑃𝑣 = (1 −
𝜌𝑒

𝜌𝑠
)                                                                   (4.3) 

where 𝑃𝑣 is the porosity in the CM powder, 𝜌𝑒 is the density of the CM spheres, and 𝜌𝑠 is the 

density of the CM shell. 

Therefore, the porosity of the AMSF specimen is: 

𝜑 = 𝑓
𝐶𝑀
𝑃𝑣 =

𝜌𝑚−𝜌𝑓

𝜌𝑚−𝜌𝑒
(1 −

𝜌𝑒

𝜌𝑠
)                                           (4.4) 

 

4.1.2.2 Density and porosity of layered syntactic foams 

The densities and porosities of the double-CM syntactic foams, D1-D6, are presented in Figure 

4.4. The density of the double-CM syntactic foams is in the range of 1.44-1.64 g/cm3 and the 

porosity is in the range of 40.5%-48.2%. Double-CM syntactic foams have slightly higher 

average densities than uniform syntactic foams, and consequently lower average porosities.  

 

The densities and porosities of the triple-CM layered syntactic foams, T1-T3, are shown in 

Figure 4.5. The triple-CM syntactic foams have a greater density range of 1.50-1.63 g/cm3, 
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with the porosities between 40.8% and 46%. The average densities of the triple-CM syntactic 

foams T1, T2 and T3 are 1.58, 1.55 and 1.56 g/cm3, respectively. The corresponding average 

porosities are 42.8%, 44% and 43.6%, respectively. The average densities are slightly higher 

than those of the uniform foams.  

 

Figure 4.4 Densities (a) and porosities (b) of double-CM layered syntactic foams 

 

Figure 4.5 Densities (a) and porosities (b) of triple-CM layered syntactic foams 

 

4.1.2.3 Density and porosity of mixed syntactic foams 

Figure 4.6 shows the densities and porosities of the mixed syntactic foams, including fully 

mixed M1-M3 and partly mixed P1-P3. The density the double-CM syntactic foams is in the 

range of 1.48-1.64 g/cm3 and the porosity is in the range of 40%-46.7%. The average densities 



58 
 

of the mixed syntactic foams are also slightly higher than those of the uniform syntactic foams, 

with the average densities of M1, M2 and M3 being 1.51, 1.59 and 1.53 g/cm3 (porosities of 

45.5%, 42.4% and 44.8, respectively) and the average densities of P1, P2 and P3 being 1.58, 

1.56 and 1.55 g/cm3 (porosities of 42.8%, 43.6% and 44%, respectively).  

 

Figure 4.6 Densities (a) and porosities (b) of mixed syntactic foams 

 

4.2 Quasi-static loading response 

4.2.1 Quasi-static loading response of uniform syntactic foams 

Figure 4.7 shows the quasi-static compressive stress-strain curves of the uniform syntactic 

foams. The three typical regions found in the compression of cellular solids, namely linear 

elastic, plateau and densification, are observed in all the stress-strain curves. All the curves 

start with a linear elastic region, followed by a strain-hardening region where the stress 

increases gradually with increasing strain. The maximum stress of the linear elastic region, i.e. 

the yield stress of the foam, appears at a strain in the range of 0.03-0.05. The stress-strain 

curve then enters the plateau region after a small stress drop. In foam U1, this hardening 

region is nearly linear. In U2 and U3, stress increases in fluctuation. All curves enter the 
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densification region at a strain in the range of 0.47-0.55, where the stress increases rapidly 

with a small increase in strain.  

 

Figure 4.7 Quasi-static compressive stress-strain curves of uniform AMSFs 

 

The characteristic compressive properties of the uniform syntactic foams are presented in 

Table 4.1. The three foams have different yield stresses. With the CM size in U1 to U3 

decreasing from L to S, the yield stress increased from 60 MPa to 119 MPa. The apparent 

Young’s modulus, which is defined as the slope of the linear region, is similar between U1, U2 

and U3. 

Table 4.1 Characteristic compressive properties of uniform AMSFs  

Specimen Yield stress 

(MPa) 

Apparent Young’s 

modulus (GPa) 

Specific energy absorption 

(J/g) 

U1 60±5 3±0.2 20.3±2 

U2 

U3 

100±6 

119±10 

3±0.2 

2.9±0.2 

27.3±2 

32.6±3 
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The specific energy absorption values of the uniform syntactic foams are also shown in Table 

4.1. Specific energy absorption is usually defined as the energy absorbed by a unit 

mass/volume of the syntactic foam from the start of compression up to the onset of 

densification. It is mainly determined by three factors: density, plateau stress and onset strain 

of densification, and is shown as the area under the stress-strain curve in quasi-static 

compression. The onset strain of densification is mainly determined by the porosity of the 

syntactic foam in equation (4.4). As the densification strain in the uniform syntactic foams is 

between 0.47 and 0.55, the specific energy absorption is defined here as the energy absorbed 

by a unit mass of the syntactic foam from the start of compression up to the densification 

point, which is considered corresponding to 0.5 strain throughout this work for easier 

comparison. 

 

4.2.2 Quasi-static loading response of layered syntactic foams 

Figure 4.8 shows the quasi-static compressive stress-strain curves of the double- and triple-

CM layered syntactic foams (D1, D2, D4 and D5, and T1, T2 and T3, respectively). All curves of 

the double- and triple-CM layered syntactic foams have an initial elastic region with a linear 

stress-strain relationship. They show different characteristics in the subsequent plastic 

deformation. D1 (L-S) has a larger stress drop after yield stress in comparison with D2 (L-S-L), 

D4 (L-S-L-S) and D5 (L-S-L-S-L). Foams T1 (L-M-S) have a stress drop immediately after the 

stress reaches compressive yield strength, while foam T2 (M-L-S) and T3 (L-S-M) shows a near-

plateau region of deformation where the strain increases extensively under a relatively 

narrow range of stresses.  
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Figure 4.8 Quasi-static compressive stress-strain curves of triple-CM (a) and double-CM (b) 
layered AMSFs 

 

Table 4.2 shows the characteristic compressive properties of the layered syntactic foams. The 

yield strengths and the specific energy absorptions of the layered syntactic foams lie in the 

ranges of those of their components, i.e. U1, U2 and U3. The yield strength increases slightly 

from 100 MPa to 116 MPa in the double-CM syntactic foams D1-D4, with an increasing layer 

number. The yield strengths for the triple-CM syntactic foams, T1, T2 and T3, are 100, 95 and 

102 MPa, respectively. The specific energy absorptions of D1, D2, D3 and D4 are 29, 33.1, 33.6 

and 34.8 J/g, respectively, and the specific energy absorptions of T1, T2 and T3 are 26.5, 27.6 

and 31.7 J/g, respectively. The apparent Young’s modulus of D1, D2, D3 and D4 are 2.7, 3.3, 3 

and 2.5 GPa, respectively, and the apparent Young’s modulus of T1, T2 and T3 are 2.4, 3.1 and 

2.5 GPa, respectively. 

 

It is noted that although both double- and triple-CM syntactic foams contain layers with 

different yield stresses, they all show only one yield point. This is probably because the layers 

in the layered AMSFs have low ratios of layer height to sample diameter. The ratio for a CM L 

layer, which is the softest, ranges from 0.17 to 0.5 in the double-CM foams, D1-D5, and is 0.33 
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in the triple-CM foams, T1-T3. Low height-to-diameter ratios can reduce the barrelling effect 

and therefore increase the yield strength of the layer, especially for the weak layer L. The 

bonding of the weak layer L to the stronger layer S or M at the boundaries can also provide 

extra strength for the weak layer L due to constrained compression. The coordinated 

deformation makes the individual layers with different strengths act the same way as the 

uniform syntactic foams and have similar compression stress-strain curves. 

Table 4.2 Characteristic compressive properties of layered AMSFs 

Specimen Yield stress 
(MPa) 

Apparent Young’s 
modulus (GPa) 

Specific energy absorption 
(J/g) 

T1 100 2.4 26.5 

T2 95 3.1 27.6 

T3 102 2.5 31.7 

D1 100 2.7 29.0 

D2 104 3.3 33.1 

D4 

D5 

109 

116 

3 

2.5 

33.6 

34.8 

 

4.2.3 Quasi-static loading response of mixed syntactic foams 

Figure 4.9 shows the compressive response of fully mixed syntactic foam M2 (50% L/50% S) 

and partly mixed syntactic foam P2 (L - 50%L/50%S - S - 50%L/50%S - L). It seems the mixed 

syntactic foams have larger stress drops in compression than the layered syntactic foams. An 

example is the drop at the strain range of 0.33-0.43 in P2, which is caused by cracks emerging 

during compression.  
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Figure 4.9 Quasi-static compressive stress-strain curves of mixed AMSFs 

 

Table 4.3 shows the characteristic compressive properties of the two mixed foams. The 

increase in yield strength, and accordingly specific energy absorption, in mixed foams can be 

explained by the effect of mixing large CMs with small CMs. The dispersion of small CMs in 

the interstices between large CMs strengthens the matrix in the mixed syntactic foams.  

Table 4.3 Characteristic compressive properties of mixed AMSFs 

Specimen Yield stress 
(MPa) 

Apparent Young’s 
modulus (GPa) 

Specific energy absorption 
(J/g) 

M2 126 4.4 39.4 

P2 118 4 37.2 

 

4.3 Impact loading response 

  4.3.1 Impact loading response of uniform syntactic foams 

4.3.1.1 Impact stress evolution 

Figure 4.10 shows the typical impact stress-time traces of the uniform syntactic foams U1, U2 

and U3 under different impact energy levels. The peak stress values for these samples are 
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listed in Table 4.4. The impact stress represents the stress pulse produced by the impact of 

the drop-weight on the cubical specimen. It was calculated by dividing the real time impact 

load by the cross-sectional area of the specimen. In general, the stress response evolves in an 

oscillation way. In most cases, the stress-time curves can be divided into three regions, a 

linear elastic region, an oscillating plateau region, and a densification region. Densification 

region is defined as the region where the impact stress increase significantly after the sample 

is densified. For convenient comparison between samples, a nominal strain of 0.5 can be 

considered as the start of densification.  

 

 

Figure 4.10 Stress-time traces of uniform ASMFs (a) U1, (b) U2 and (c) U3 at three different 
impact energy levels in drop-weight test 
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Table 4.4 Peak stress, maximum strain, densification time and specific energy absorption in 
impact test of uniform AMSFs under different impact energy levels 

Sample Impact 
energy 
(J) 

Peak stress 
(MPa) 

Maximum 
strain 

Time to reach 
densification 
(ms) 

Specific energy 
absorption 
(J/g) 

U1 82 92 0.6 2.8 26.8 

103 103 0.7 2.5 31 

120 109 0.8 2.1 28.5 

U2 86 141 0.45 - 40 

106 131 0.55 2.6 46 

127 166 0.7 2 43 

U3 43 205 0.25 - 20.5 

63 185 0.33 - 31 

83 236 0.4 - 42 

 

In U1 (L), the maximum peak stress appears at the end of the elastic region, i.e., at the first 

impact oscillation. The impact peak stress of each subsequent oscillation decreases gradually. 

The oscillation amplitude also decreases with the impact process. At the end stage of impact, 

between 1.75 ms and 2.5 ms, the increase of impact stress under an impact energy of 120 J 

indicates the start of densification. In U2 (M), a similar trend is shown, with the maximum 

peak stress at beginning, plateau region in the middle and densification region at the end. In 

U3 (S), the peak stress is significantly higher at the beginning and drops dramatically in the 

plateau region. The impact stress keeps dropping at the end of impact due to brittle fracture. 

In all three samples, the average impact stress in each oscillation is similar to the stress under 

quasi-static loading, although the peak stress is significantly higher than the average stress. 

Besides, the impact stress increases slightly with impact energy. 
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It is noted that the stress oscillations in all the uniform foam samples have almost the same 

time period of about 0.2-0.25 ms, although they contain different types of CMs and are tested 

under different impact conditions. Johnson (1972) pointed out that impact loading creates 

elastic wave as well as plastic wave inside the sample. The speeds of these waves are 

determined by the elastic and plastic moduli of the syntactic foam, which can be determined 

from the quasi-static stress-strain curve in the elastic and plastic deformation stages, 

respectively. When the waves hit the top or bottom side of the sample, the impact stress 

shows an oscillation. Because samples U1, U2 and U3 have a similar plastic modulus, the 

oscillation time period is similar according to the impact wave theory.  

 

4.3.1.2 Impact strain evolution 

Figure 4.11 shows the typical impact strain-time traces of the uniform syntactic foams U1, U2 

and U3 under different impact energy levels. The maximum strain values for these samples 

are listed in Table 4.4. The impact strain represents the relative amount of deformation of the 

sample caused by the moving impact hammer. It was calculated by dividing the real-time 

displacement of the impact hammer by the height of the specimen, which was measured from 

the image captured by a high-speed camera. In general, the strain response evolves according 

to impact energy and impact velocity, with higher impact energy leading to higher strain. 

 

In U1 (L), the impact hammer travels with small amount of velocity loss as the impact energy 

is significantly higher than the energy needed to densify the sample. This leads to an almost 

linear relation between strain and time. In comparison, U2 (M) has a two-stage strain-time 
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evolution. The strain increases linearly with time in the beginning and then the slope 

decreases due to the loss of impact hammer velocity, because U2 consumes more energy to 

densify. U3 (S) shows three stages in strain-time evolution: linear region, decreasing slope 

region and constant strain region. U3 has the highest strength and specific energy absorption 

among the three uniform foams, so it absorbs the impact energy more quickly. At any of the 

three impact energy levels, 43 J, 63 J and 83 J, the impact hammer stopped before full 

densification of the syntactic foam occurred.  

 

 

Figure 4.11 Strain-time traces of uniform ASMFs (a) U1, (b) U2 and (c) U3 at three different 
impact energy levels in drop-weight test 

 

4.3.1.3 Impact velocity evolution 
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Figure 4.12 shows the typical impact velocity-time traces of the uniform syntactic foams U1, 

U2 and U3 under different impact energy levels. The impact velocity is the velocity of the 

impact hammer measured by a high speed camera. In general, the impact velocity evolves 

according to energy absorption in the syntactic foam, with higher energy absorption leading 

to lower impact velocity. 

 

 

Figure 4.12 Velocity-time traces of uniform ASMFs (a) U1, (b) U2 and (c) U3 at three different 
impact energy levels in drop-weight test 

 

All syntactic foams, U1-U3, show a generally decreasing velocity with time, indicating the 

energy absorption process. There is an approximately linear relation between velocity and 
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time. Nevertheless, some oscillations are shown in the results. The oscillations are due to the 

velocity measurement method used in this work. In the measurements, the evolution of 

velocity was acquired by a high speed camera with an interval of 0.2 ms per frame by tracking 

a specific point on the hammer.  

 

4.3.1.4 Impact energy absorption evolution 

Figure 4.13 shows the typical impact energy absorption-time relations for the uniform 

syntactic foams U1, U2 and U3 under different impact energy levels. The specific energy 

absorption values for these samples are listed in Table 4.4. The impact energy absorption 

represents the energy absorbed by the sample due to deformation. Neglecting energy loss 

caused by friction and temperature change of the sample during impact, all kinetic energy 

loss of the impact hammer can be assumed to be absorbed by the syntactic foam. The impact 

energy absorption was therefore calculated as initial kinetic energy minus kinetic energy of 

the impact hammer at each time point, i.e., the kinetic energy loss of the impact hammer. 

Therefore, the energy absorption response evolves according to the impact velocity response. 

The energy absorption increases with decreasing impact velocity. 

 

All uniform syntactic foams, U1-U3, show an increasing energy absorption with time, as the 

kinetic energy of hammer is absorbed by the specimen. The evolution of energy absorption 

also shows oscillations, due to the velocity oscillations. In U1 (L) and U2 (M), energy 

absorption increases steadily until the sample is densified, as the impact energy is higher than 

the sample’s energy absorption capacity. At 86 J, the energy absorption in U2 increases more 



70 
 

slowly at the end of impact (2.5-3 ms), because this impact energy is just enough to densify 

the specimen. In U3 (S), energy absorption stops increasing before full densification under all 

three impact energy levels, because all the impact energy has been absorbed before the 

sample is densified.  

 

 

Figure 4.13 Energy absorption-time relations for uniform ASMFs (a) U1, (b) U2 and (c) U3 at 
three different impact energy levels in drop-weight test 

 

It is noted that all the syntactic foams, U1, U2 and U3, absorb more energy in impact than in 

quasi-static loading at the same strain. For example, Sample U2 absorbs 46.3 J/g at a nominal 

densification strain of 0.5 under an impact energy of 106 J and at an impact velocity of 2.61 

m/s, while the specific energy absorption of U2 under quasi-static loading is 27.3 J/g, as shown 
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Crush 

in Table 4.1. This is because impact loading generates impact waves, which lead to higher 

impact stress than quasi-static loading.  

 

4.3.1.5 Impact deformation sequence 

Figures 4.14, 4.15 and 4.16 show the typical first 5 frames from the images, acquired by a high 

speed camera, of the uniform syntactic foams U1, U2 and U3 during impact under different 

impact energy levels. The 5 frames represent the times at 0, 0.2, 0.4, 0.6 and 0.8 ms, as the 

time interval between two frames is 0.2 ms. Impact loading causes higher peak stress than 

quasi-static loading, especially at the beginning. These frames can reveal the effect of such 

high peak stresses on the deformation and fracture of the sample.  

 

 0 ms 0.2 ms 0.4 ms 0.6 ms 0.8 ms 

82 J 

     
103 J 

     
120 J 

     
Figure 4.14 First 5 frames acquired during impact of U1 under different impact energy levels 
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Crack 

 0 ms 0.2 ms 0.4 ms 0.6 ms 0.8 ms 

86 J 

     

106 J 

     

127 J 

     

Figure 4.15 First 5 frames acquired during impact of U2 under different impact energy levels 

 

 0 ms 0.2 ms 0.4 ms 0.6 ms 0.8 ms 

43J 

     

63 J 

     

82 J 

     

Figure 4.16 First 5 frames acquired during impact of U3 under different impact energy levels 

 

Three different types of deformation were observed under impact. First, ductile deformation, 

where the syntactic foam is crushed layer by layer. This was observed in U1 (L) under all the 

three impact energy levels. Second, brittle fracture, where the sample cracks at the beginning 
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stage of impact and propagates through the whole sample. U2 (M) at all three impact energy 

levels and U3 (S) at 63 J and 82 J showed this type of fracture. Some samples showed one 

crack (e.g., U2 under 106 J), while others had X-shaped cracks (e.g., U3 under 63 J). Third, 

ductile-brittle fracture, where the deformation is a combination between ductile deformation 

and brittle fracture. U3 under 43 J is an example, where a partial crack appeared in the middle 

of the sample.  

 

4.3.2 Impact loading response of layered syntactic foams 

4.3.2.1 Impact stress evolution 

Figures 4.17 and 4.18 show the typical impact stress-time traces of double-CM syntactic 

foams (D1-D6) and triple-CM syntactic foams (T1-T3), respectively, under different impact 

energy levels. The peak stress values for these samples are listed in Table 4.5. To study the 

effect of impact direction, T1 (L-M-S) was impacted from both directions and was designated 

as Ti-up when impacted from the L layer side or T1-down when impacted from the S layer 

side. The stress response of layered syntactic foams is similar to uniform syntactic foams and 

evolves in an oscillation manner. In most cases, the stress-time curves can be divided into 

three regions, a linear elastic region, an oscillating plateau region, and a densification region. 

For the cases where the impact energy is insufficient for full densification, like T3 40 J and 59 

J, the stress drops at the end of the impact process.  
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Figure 4.17 Stress-time traces of double-CM layered ASMFs: (a) D1, (b) D2, (c) D3 (d) D4, 
(e) D5 and (f) D6 in drop-weight test at three different impact energy levels 
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Figure 4.18 Stress-time traces of triple-CM layered ASMFs: (a) T1-up, (b) T1-down, (c) T2 
and (d) T3 in drop-weight test at three different impact energy levels 

 

Table 4.5 Peak stress, maximum strain, densification time and specific energy absorption in 
impact test of layered AMSFs under different impact energy levels  

Sample Impact 
energy 
(J) 

Peak stress 
(MPa) 

Maximum 
strain 

Time to reach 
densification 
(ms) 

Specific energy 
absorption 
(J/g) 

D1 82 120 0.55 3 33 
120 115 0.75 2.2 35 
139 150 0.8 2 40 

D2 63 137 0.5 3.2 31 
82 148 0.55 2.5 36 
103 152 0.6 2.3 39 

D3 63 118 0.5 3.4 31 
82 130 0.55 3 34 
120 137 0.7 2.4 45 

D4
  

63 142 0.5 3.4 31 
82 133 0.55 3 37 
120 170 0.7 2.4 40 
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D5 63 143 0.45 - 31 
82 151 0.55 3 39 
120 175 0.75 1.9 42 

D6 82 144 0.6 2.6 35 
103 145 0.67 2.3 42 
139 151 0.8 1.7 39 

T1-up 103 147 0.65 2.3 28 
120 146 0.75 2 30 
139 154 0.8 1.9 27 

T1-
down 

82 132 0.57 2.8 30 
103 142 0.7 2.1 29 
139 165 0.8 1.9 33 

T2 62 125 0.4 - 31 

78 119 0.5 3.5 31 

103 130 0.6 3 43 

T3 40 76 0.15 - 20 
59 97 0.32 - 28 
87 124 0.5 3.5 35 

 

In D1 (L-S), all three samples were densified at about 2 ms, with the impact peak stress 

increasing with the impact energy increased from 82 J to 120 J and then to 139 J. In D2 (L-S-

L), the peak stress is similar among the three impact energy levels, 63 J, 82 J and 103 J. 

However, the impact stress after densification under 103 J is significantly higher than that at 

63 J and 82 J. In D3 (S-L-S), the peak stress also increases with increasing impact energy. After 

densification at about 1.5 ms, the impact stress under 120 J is much higher than that under 

lower impact energies. In D4 (L-S-L-S), the peak stress under 120 J is significantly higher than 

that under 63 J and 82 J. In D5 (L-S-L-S-L), the impact stress under 120 J is extremely high after 

densification at 1.75 ms, reaching 280 MPa at the end. Such high impact stress (> 250 MPa) is 

also shown in D6 (S-L-S-L-S) under 139 J. 

 

In T1 (L-M-S), the maximum peak stress appears at the end of the elastic region, i.e. at the 

first impact oscillation. The impact peak stress of each subsequent oscillation decreases 
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gradually. The oscillation amplitude also decreases with the impact process. The increase of 

impact stress at about 2 ms in the late stage of impact indicates the start of densification. 

Comparing Figs. 4-18(a) and (b) shows that switching the side of sample under impact loading 

has little effect on the behaviour. T2 (S-M-L) shows a similar trend, with peak stress appearing 

at the beginning, followed by plateau and then densification regions. The impact stress-time 

traces under 62 J and 78 J are similar, while the impact stress in the densification region under 

103 J is significantly higher. Unlike in quasi-static loading, where strain is evenly distributed 

across the sample, impact loading causes uneven strain distribution in the sample. Some parts 

of the sample may be densified while other parts are not densified and even not strained. 

This is especially evident in layered syntactic foams where the layers have different yield 

stresses. Soft layers can densify before strong layers and the densified part can result in a 

significantly higher impact stress. In T3 (M-L-S), impact energies of 40 J and 59 J are not 

sufficient to densify the specimen and the impact process terminates before densification. 

The impact stress drops in the last stage, instead of increasing. 

 

In layered syntactic foams, each oscillation in the impact stress-time traces has a similar 

period time of 0.2-0.25 ms, which is similar to uniform syntactic foams. The oscillation 

represents the propagation of impact waves inside the sample (the effect of such impact 

waves will be discussed in Chapter 5). The quasi-static compression results showed that the 

layered syntactic foams have a similar plastic modulus as the uniform syntactic foams. 

Therefore, the oscillation period time is also similar. 

 

4.3.2.2 Impact strain evolution 
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Figures 4.19 and 4.20 show the typical impact strain-time traces of the double- and triple-CM 

layered syntactic foams, respectively, under different impact energy levels. In general, the 

strain evolves according to impact energy and impact velocity, with higher impact energy 

leading to higher strain. Similar as in uniform syntactic foams, slight oscillation is also shown 

in strain-time evolution in some specimens.  

 

The effect of impact energy on densification time (the time to reach 0.5 strain) and maximum 

strain can be seen in Table 4.4. In double-CM AMSFs D1-D6, it generally takes about 60-80 J 

and 2-3 ms to densify the specimen. More impact energy leads to shorter time to reach 

densification and larger maximum strain. Comparisons among D1 (L-S), D2 (L-S-L), D4 (L-S-L-

S) and D5 (L-S-L-S-L) show that more layers lead to smaller maximum strain, indicating more 

energy absorption capacity. In the triple-CM AMSF T1-up, impact hammer travels with a small 

amount of velocity loss, as the impact energy level is higher than the energy needed to densify 

the sample. There is an almost linear relation between strain and time. The impact process 

ends at 0.6-0.7 strain after sample is densified. T1-down shows a similar trend, confirming 

that impact direction does not matter. Comparison among T1 (L-M-S), T2 (M-L-S) and T3 (L-S-

M) shows that it takes about 80 J to densify the specimens.  
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Figure 4.19 Strain-time traces of double-CM layered ASMFs: (a) D1, (b) D2, (c) D3 (d) D4, 
(e) D5 and (f) D6 in drop-weight test at three different impact energy levels 
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Figure 4.20 Strain-time traces of triple-CM layered ASMFs: (a) T1-up, (b) T1-down, (c) T2 
and (d) T3 in drop-weight test at three different impact energy levels 

 

4.3.2.3 Impact velocity evolution 

Figures 4.21 and 4.22 show the typical impact velocity-time traces of the double-CM syntactic 

foams D1-D6 and triple-CM syntactic foams T1-up, T1-down, T2 and T3 under different impact 

energy levels, respectively. The impact velocity is the velocity of the impact hammer 

measured by a high speed camera. In general, the impact velocity evolves according to energy 

absorption in the syntactic foam, with higher energy absorption leading to lower impact 

velocity. Similar to uniform syntactic foams, double- and triple-CM syntactic foams show a 

generally decreasing velocity with time, indicating the energy absorption process. There is an 
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approximately linear relation between velocity and time. Nevertheless, some oscillations are 

shown in the results, which are characteristic in impact.  

 

 

 

Figure 4.21 Velocity-time traces of double-CM layered ASMFs (a) D1, (b) D2, (c) D3 (d) D4, 
(e) D5 and (f) D6 in drop-weight test at three different impact energy levels 
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Figure 4.22 Velocity-time traces of triple-CM layered ASMFs (a) T1, (b) T2, (c) T3 and (d) T4 
in drop-weight test at three different impact energy levels 

 

4.3.2.4 Impact energy absorption evolution 

Figures 4.23 and 4.24 show the typical impact energy absorption-time relation for the double-

CM syntactic foams D1-D6 and triple-CM syntactic foams T1-T3 under different impact energy 

levels. Similar to uniform syntactic foams, double-CM syntactic foams show an increasing 

energy absorption with time and with decreasing impact velocity. A higher impact energy 

level generally leads to a higher energy absorption in all the double-CM specimens. A similar 

trend is shown in triple-CM layered syntactic foams. All three samples, T1 (L-M-S), T2 (M-L-S) 

and T3 (L-S-M), had similar energy absorption, indicating that layer order has no effect on 
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energy absorption capacity. Besides, energy absorption of the triple-CM layered syntactic 

foams is slightly lower than the average of their constituent layers. All double- and triple-CM 

syntactic foams absorb more energy under impact loading than under quasi-static loading at 

the same strain, due to increased stress caused by the impact waves, as explained in the case 

of uniform syntactic foams. 

 

The relation between specific energy absorption and impact energy can also be seen in Table 

4.4. Generally, specific energy absorption increases with increasing impact energy in both 

double- and triple-CM AMSFs. The number and order of layers have no significant effect on 

the specific energy absorption.  

 

4.3.2.5 Impact deformation sequence 

Figures 4.25-4.34 show the typical first 5 frames from the images, acquired by a high speed 

camera, of each of the double- (D1-D6) and triple-CM (T1-T3) syntactic foams under different 

impact energy levels. As in uniform syntactic foams, three different types of deformation 

were observed in the layered syntactic foams: ductile, brittle and ductile-brittle deformation. 

In double-CM syntactic foams, a sample consisting of several thin layers leads to brittleness 

with lower impact energy than a sample with fewer thick layers. Similar with double-CM 

AMSFs, L is also ductile and S is brittle In triple-CM syntactic foams, cracks generally emerge 

in brittle S layers while the ductile L layers remain ductile, regardless of layer order. Increasing 

impact energy generally increases the sample’s tendency of brittle deformation.  
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Figure 4.23 Energy absorption-time traces of double-CM layered ASMFs (a) D1, (b) D2, (c) 
D3 (d) D4, (e) D5 and (f) D6 in drop-weight test at three different impact energy levels 
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Crush 

 

 

Figure 4.24 Energy absorption-time traces of triple-CM layered ASMFs (a) T1, (b) T2, (c) T3 
and (d) T4 in drop-weight test at three different impact energy levels 

 

 0 ms 0.2 ms 0.4 ms 0.6 ms 0.8 ms 

82 J 

     

120 J 

     

139 J 

     

Figure 4.25 First 5 frames acquired during impact of double-CM layered syntactic foam D1 
under different impact energy levels 
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Figure 4.26 First 5 frames acquired during impact of double-CM layered syntactic foam D2 
under different impact energy levels 
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Figure 4.27 First 5 frames acquired during impact of double-CM layered syntactic foam D3 
under different impact energy levels 
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Figure 4.28 First 5 frames acquired during impact of double-CM layered syntactic foam D4 
under different impact energy levels 

 

 0 ms 0.2 ms 0.4 ms 0.6 ms 0.8 ms 

63 J 

     

82 J 

     

120 J 

     

Figure 4.29 First 5 frames acquired during impact of double-CM layered syntactic foam D5 
under different impact energy levels 
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Figure 4.30 First 5 frames acquired during impact of double-CM layered syntactic foam D6 
under different impact energy levels 
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Figure 4.31 First 5 frames acquired during impact of triple-CM layered syntactic foam T1-up 
under different impact energy levels 
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Figure 4.32 First 5 frames acquired during impact of triple-CM layered syntactic foam T1-
down under different impact energy levels 
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Figure 4.33 First 5 frames acquired during impact of triple-CM layered syntactic foam T2 
under different impact energy levels 
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Figure 4.34 First 5 frames acquired during impact of triple-CM layered syntactic foam T3 

under different impact energy levels 

  

4.3.3 Impact loading response of mixed syntactic foams 

    4.3.3.1 Impact stress  

Figures 4.35 and 4.36 show the typical impact stress-time traces of the fully mixed syntactic 

foams M1-M3 and partly mixed syntactic foams P1-P3 under different impact energy levels, 

respectively. The peak stress values for these samples are listed in Table 4.6. In M1 (25% L/75% 

S), the maximum peak stress appears at the end of the elastic region, i.e., at the first impact 

oscillation. Both the impact peak stress and the oscillation amplitude of each subsequent 

oscillation decrease gradually and level off near the end stage of impact. The sample was not 

densified at all three impact energy levels. In M2 (50% L/50% S), similar trend is shown under 

impact energy levels of 43 J and 63 J, where the samples were not densified. Under an impact 

energy of 82 J, densification occurred and then the stress increased. In M3 (75% L/25% S), 

stress also increased after densification. Partly mixed AMSFs P1-P3 had similar behaviour as 

fully mixed AMSFs, with increasing stress after densification. 
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Table 4.6 Peak stress, maximum strain, densification time and specific energy absorption in 
impact test of mixed AMSFs under different impact energy levels 

Sample Impact 
energy 
(J) 

Peak stress 
(MPa) 

Maximum 
strain 

Time to reach 
densification 
(ms) 

Specific energy 
absorption (J/g) 

M1 43 200 0.3 - 23 

63 204 0.4 - 31 

82 211 0.5 3.5 41 

M2 43 194 0.28 - 21 

63 201 0.34 - 31 

82 209 0.46 - 39 

M3 43 130 0.33 - 18 

63 162 0.48 - 30 

82 172 0.6 2.7 25 

P1
  

22 153 0.16 - 10 

43 196 0.35 - 21 

82 204 0.6 2.7 35 

P2 43 136 0.28 - 21 

63 138 0.4 - 30 

83 175 0.46 - 41 

P3 43 158 0.32 - 22 

63 205 0.4 - 31 

82 229 0.45 - 40 
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Figure 4.35 Stress-time traces of fully mixed ASMFs (a) M1, (b) M2 and (c) M3 in drop-
weight test at three different impact energy levels 
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Figure 4.36 Stress-time traces of partly mixed ASMFs (a) P1, (b) P2 and (c) P3 in drop-
weight test at three different impact energy levels 

 

4.3.3.2 Impact strain  

Figures 4.37 and 4.38 show the typical impact strain-time traces of the fully mixed syntactic 

foams M1-M3 and partly mixed syntactic foams P1-P3 under different impact energy levels, 

respectively. The maximum strain values for these samples are listed in Table 4.6.  Generally, 

higher impact energy leads to higher impact strain. In M1 (25% L/75% S), the maximum impact 

strains are lower than 0.5 and the specimens are not densified under all three impact energy 

levels. In M2 (50% L/50% S), M3 (75% L/25% S) and the partly mixed AMSFs P1-P3, the 

specimens are not densified under 43 J and 63 J and barely densified under 82 J. 
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Figure 4.37 Strain-time traces of fully mixed ASMFs (a) M1, (b) M2 and (c) M3 in drop-
weight test at three different impact energy levels 
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Figure 4.38 Strain-time traces of partly mixed ASMFs (a) P1, (b) P2 and (c) P3 in drop-
weight test at three different impact energy levels 

 

4.3.3.3 Impact velocity  

Figures 4.39 and 4.40 show the typical impact velocity-time traces of the fully mixed syntactic 

foams M1-M3 and the partly mixed syntactic foams P1-P3 under different impact energy 

levels, respectively. Similar to uniform and layered samples, both fully and partly mixed 

syntactic foams show a generally decreasing velocity with time, with an approximately linear 

relation. 
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Figure 4.39 Velocity-time traces of fully mixed ASMFs (a) M1, (b) M2 and (c) M3 in drop-
weight test at three different impact energy levels 
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Figure 4.40 Velocity-time traces of partly mixed ASMFs (a) P1, (b) P2 and (c) P3 in drop-
weight test at three different impact energy levels 

 

4.3.3.4 Impact energy absorption  

Figures 4.41 and 4.42 show the typical impact energy absorption-time relations for the fully 

mixed syntactic foams M1-M3 and partly mixed syntactic foams P1-P3 under different impact 

energy levels. The specific energy absorption values for these samples are listed in Table 4.6.  

Same as uniform and layered syntactic foams, the energy absorption response corresponds 

to the impact velocity response and increases with decreasing impact velocity. In M1 (25% 

L/75% S) and M2 (50% L/50% S), impact energy is all absorbed before densification under 43 

J and 63 J. The specimens are just densified under the impact energy of 82 J. The M3 (75% 

L/25% S) specimens are not densified under all three impact energy levels. In all partly mixed 
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samples P1-P3, impact energy is absorbed before densification under all impact energy levels. 

Similar to uniform syntactic foams, mixed syntactic foams absorb more energy in impact than 

in quasi-static loading at the same strain. 

 

 

Figure 4.41 Energy absorption-time traces of fully mixed ASMFs (a) M1, (b) M2 and (c) M3 
in drop-weight test at three different impact energy levels 
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Figure 4.42 Energy absorption-time traces of partly mixed ASMFs (a) P1, (b) P2 and (c) P3 
in drop-weight test at three different impact energy levels 

 

4.3.3.5 Impact deformation 

Figures 4.43-4.48 show the first 5 frames from images, acquired by a high speed camera, of 

fully mixed syntactic foams M1-M3 and partly mixed syntactic foams P1-P3 during impact 

under different impact energy levels. Similar to uniform and layered syntactic foams, three 

different fracture types were observed, with higher impact energy leading to brittle fracture 

and lower impact energy leading to ductile deformation. Ductile deformation was 

characteristic of crushing, while brittle fracture was in the form of crack propagation. Both 

crushing and cracking were observed in ductile-brittle deformation.  



100 
 

Crush Crack 

Crack 

 0 ms 0.2 ms 0.4 ms 0.6 ms 0.8 ms 

43 J 

     

63 J 

     

103 J 

     

Figure 4.43 First 5 frames acquired during impact of fully mixed syntactic foam M1 under 
different impact energy levels 
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Figure 4.44 First 5 frames acquired during impact of fully mixed syntactic foam M2 under 
different impact energy levels 
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Figure 4.45 First 5 frames acquired during impact of fully mixed syntactic foam M3 under 
different impact energy levels 
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Figure 4.46 First 5 frames acquired during impact of partly mixed syntactic foam P1 under 
different impact energy levels 
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Figure 4.47 First 5 frames acquired during impact of partly mixed syntactic foam P2 under 
different impact energy levels 
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Figure 4.48 First 5 frames acquired during impact of partly mixed syntactic foam P3 under 
different impact energy levels 
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Chapter 5 Analytical modelling based on Impact Wave Propagation 

This chapter presents an analytical model to estimate the stress-strain evolution in both 

uniform and layered AMSFs under impact loading. Based on impact theory (Johnson, 1972) 

on impact waves in materials, the inertia stress evolution in the AMSFs is simulated and the 

contact stress as a function of impact hammer velocity is calculated. Comparison between the 

sum of the predicted inertia stress and contact stress and the measured impact stress is 

carried out to evaluate the validity of the model. The model is used to explain the 

experimental results, including the high peak stress, the stress fluctuation, the effect of 

impact mass and velocity and the effect of impact direction.  

 

5.1 Introduction to Impact Theory and analytical model 

Impact loading generates movement of particles in materials (Johnson, 1972). Such 

movement includes elastic movement and plastic movement. The particles in materials do 

not move simultaneously, they move in sequence. The front of the movement of the particles, 

i.e. the boundary between the particles moved and the particles not yet moved, is defined as 

impact wave. There are elastic wave and plastic wave. The speed of particles and stress in the 

specimen remain unchanged until the impact wave has passed. When impact wave hits the 

edge of the specimen, it bounces back into the specimen. A new cycle starts every time impact 

wave bounces. Impact wave front represents the boundary between particles moved and 

particles not yet moved, or sudden change in speed and stress due to the impact wave.  
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Fig. 5.1 shows schematic diagrams of impact wave propagation. After an impactor hits the 

specimen (Fig. 5.1 (a)), an elastic wave 𝑐0 and a plastic wave 𝑐1 are generated. The region 

passed by 𝑐0 is stressed elastically, the region passed by 𝑐1 is deformed plastically, and the 

region passed by neither remains static, as shown in Fig. 5.1 (b). When the elastic wave hits 

the bottom of specimen after a time of ℎ0/𝑐0, the plastic wave is still in the middle of the 

sample due to a lower speed, as shown in Fig. 5.1 (c) and (d). Afterwards, the elastic wave 

bounces back and turns into a plastic wave (Fig. 5.1 (e)). Now there are two plastic waves with 

opposite directions. If the speed of elastic wave is significantly higher than the speed of plastic 

wave, the time the elastic wave takes to travel to the bottom is negligible. It can be assumed 

that two plastic waves are generated simultaneously from both ends of the specimen. It takes 

a time of ℎ0/𝑐1 for each plastic wave to reach the other end of the specimen, as shown in Fig. 

5.1. (f). After the two plastic waves reach the ends, they bounce back in a new cycle with 

similar behaviour. 

 

Figure 5.1 Schematic diagrams of impact wave propagation: (a) impact loading on 
specimen, (b) elastic and plastic wave generated, (c) elastic wave hitting the bottom, (d) 
wave propagation when elastic wave hits the bottom, (e) wave propagation when two 

plastic waves meet, (f) simplification wave propagation in two plastic waves 
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5.2 Impact wave-based analytical model for AMSF 

When a projectile or hammer impacts a specimen, it accelerates the specimen and thus 

generates inertia forces in the specimen (Pham et al. 2018). Meanwhile, a contact force is 

generated at the impact end, where the hammer contacts the specimen, due to the 

acceleration of the hammer. Rieder and Mindess (1998) showed that there is a difference 

between the contact force and the force measured at the base of the specimen. They 

recommended that the impact force should be measured at the base of specimens and this 

suggestion was adopted by a previous study (Xu et al. 2012). The impact force in this study 

was measured by a load cell placed at the base of the specimen and is termed as base force. 

The base force is equal to the contact force plus the sum of the inertia forces. In this work, 

the inertia force is calculated based on Johnson’s theory (1972) while the contact force is 

calculated from the velocity change of the impact hammer. 

 

5.2.1 Model formulation 

Let us consider an AMSF specimen with an initial height h0, situated on a frictionless flat rigid 

die and subjected to compression by an upper die of mass M, moving with an initial speed v0, 

as shown in Fig. 5.2 (a). Based on the compressive stress-strain curves of the AMSF specimens 

in Chapter 4, the AMSF can be assumed to be an ideal elastic-linear strain-hardening material 

with yield stress 𝜎𝑦, elastic modulus E and plastic modulus P, as shown schematically in Fig. 

5.2. According to the impact theory (Johnson, 1972), impact loading creates an elastic wave 

c0 and a plastic wave c1 in the specimen; these two waves propagate inside the specimen as 

shown in Fig. 5.2 (b). The speeds of elastic and plastic waves are:  
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𝑐0 = √
𝐸

𝜌
; 𝑐1 = √

𝑃

𝜌
                                                                   (5.1)  

where  is the density of the specimen, which changes in the case of a porous material as 

plastic deformation proceeds. 

 

Figure 5.2 Impact waves inside an AMSF specimen under impact, (a) schematic of impact, (b) 
impact wave and impact velocity evolution, and (c) simplified impact wave evolution model 

 

All the AMSF specimens in this work have a similar elastic modulus E (3 GPa) and plastic 

modulus P (0.02 GPa), with only yield stress y being different (60 – 120 MPa). For simplicity, 

we can assume that the elastic modulus and plastic modulus are constant and independent 

of the specimens. The elastic modulus E is significantly higher than the plastic modulus P. As 

a consequence, the elastic wave speed, c0, is nearly one order of magnitude higher than the 

plastic wave speed, c1. We can neglect the time the elastic wave travels from the top to the 

bottom of the specimen and assume that two plastic waves emerge simultaneously from both 

sides of the specimen at the outset of impact.  

 

Stress-strain evolution in the specimen is a result of the propagation of the two plastic waves, 

designated as wave X and wave Y, as shown in Fig. 5.2 (c). In each cycle when the two waves 

travel from one end to the other, four different stress zones can be identified in the specimen: 
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before the waves pass (zone B), passed by wave X (zone X), passed by wave Y (zone Y) and 

after both waves passed (zone A). The stresses in these four zones can be determined from 

the yield stress of the material, the elastic wave speed, the plastic wave speed and the impact 

velocity, using a set of equations well defined by the Johnson’s theory. When the waves reach 

the end of the specimen, they bounce back and travel to the other end. The same four zones 

can be identified in this new cycle, each accompanied by a stress increase. This process is 

repeated for a number of cycles until the impact energy is consumed and the impact velocity, 

or hammer velocity, is reduced to zero.  

 

An explicit analytical solution of the stress evolution during impact is only possible if the 

impact velocity remains constant. In practical impact tests, however, the impact velocity 

decreases with time as the kinetic energy of the hammer is gradually absorbed by the AMSF 

specimen. Fortunately, the plastic wave speed (c1  108 m/s) is significantly higher than the 

impact velocity (v0  1.7-4.3 m/s). We can neglect the change in impact velocity and the 

change in strain within one cycle when the plastic waves travel from one end to the other and 

assume a step change in the impact velocity and a step change in the strain from one cycle to 

the next. The wave propagation process can be split into discrete steps, marked as time 

periods t1, t2, t3, etc., as shown in Fig. 5.2c. Each step represents one cycle and 

corresponds to plastic waves traveling the specimen length from one end to the other. While 

the impact velocity, specimen length, density, stress and strain change from one cycle to the 

other, they are considered constant within each cycle and can be calculated analytically.  

 

5.2.2 Stress-strain evolution inside the specimen 
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Up to three stress zones are produced in the specimen at any one time with the propagation 

of the waves, namely zone X, zone Y and the middle zone, as shown in Fig. 5.2c. The middle 

zone is designated as zone B before the two plastic waves pass and as zone A after both waves 

have passed. In zone B, a stress equal to the yield stress of the specimen is produced instantly 

when the elastic wave travels from top to bottom. In zone X, an additional stress is generated 

by the plastic wave X. Similarly, an additional stress is generated by the wave Y in zone Y, but 

with a different magnitude from zone X due to different wave direction to the impact. In zone 

A, a cumulative additional stress is generated by the two plastic waves. When each wave 

bounces back at the top or bottom edge of the specimen, it creates a stress increment. As a 

result, the stress in each zone is increased successively in the following cycles of wave 

propagation.  

 

Based on the impact theory for the constant impact velocity case (Johnson, 1972), the stresses 

in the different zones in the first cycle of wave propagation can be expressed as follows: 

{
 
 
 

 
 
 𝜎𝑋(1) = 𝜎𝑦 (1-

𝑐1
𝑐0
)+𝜌0𝑐1𝑣0 = 𝜎𝑦 (1-√

𝑃

𝐸
)+√𝜌0𝑃𝑣0

𝜎𝑌(1) = 𝜎𝑦 (1+√
𝑃

𝐸
)

𝜎𝐵(1) = 𝜎𝑦

𝜎𝐴(1) = 𝜎𝑦 + √𝜌0𝑃𝑣0

                          (5.2) 

where X, Y, B and A are the stresses in zones X, Y, B and A, respectively, 0 is the initial 

density of the specimen before any plastic deformation, and the subscript 1 in brackets 

indicates the first cycle in the time period t1. 

 



109 
 

Taken into account the change in impact velocity between adjacent cycles, the stress in each 

zone in the current cycle of wave propagation is increased by a fixed amount from the 

previous cycle and can be obtained as follows: 

𝜎𝑧(𝑛) = 𝜎𝑧(𝑛−1) +√𝜌𝑛−1𝑃𝑣𝑛−1                                                          (5.3) 

where z designates the zone, i.e., X, Y, A or B, the subscript n in brackets indicates the nth cycle 

of wave propagation, (n-1) indicates the previous cycle, n-1 is the density of the specimen in 

the previous cycle and vn-1 is the impact velocity in the previous cycle. n can also be 

understood as the number of times each plastic wave has travelled through the full length of 

the specimen forwards and backwards.  

 

According to the idealised mechanical behaviour of the AMSFs shown in Fig. 5.3, the strain 

in each zone can be easily obtained from the stress by: 

𝜀𝑧 =
𝜎𝑧−𝜎𝑦

𝑃
                                                                       (5.4) 

 
Figure 5.3 Idealised mechanical behaviour of AMSFs, indicating yield stress y, elastic 

modulus E and plastic modulus P 
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where z and z are the strain and stress in zone z, with z being X, Y, B or A. The strain in each 

zone is manifested in a displacement, which depends on the size of the zone. The total strain 

of the specimen at any time can be calculated from the cumulative displacements from all the 

zones present at this particular time by: 

{
 =

ℎ𝑋𝜀𝑋+ℎ𝑌𝜀𝑌+ℎ𝐵𝜀𝐵

ℎ0
  (0 ≤ 𝑡 ≤

∆𝑡

2
)

 =
ℎ𝑋𝜀𝑋+ℎ𝑌𝜀𝑌+ℎ𝐴𝜀𝐴

ℎ0
  (
∆𝑡

2
< 𝑡 < ∆𝑡)

                                                     (5.5) 

where hX, hY, hB and hA, are the unstrained heights of each zone, X, Y, B and A are the strains 

of zones X, Y, B and A, respectively, h is the height of the specimen in the current cycle, t is 

the time of wave propagation from the onset of the current cycle, and t is the duration of 

the current cycle. The heights of the respective zones change with time in each cycle as 

follows: 

{
ℎ𝑋 = ℎ𝑌 = 𝑐1𝑡; ℎ𝐵 = ℎ − 2𝑐1𝑡  (0 ≤ 𝑡 ≤

∆𝑡

2
)

ℎ𝑋 = ℎ𝑌 = ℎ − 𝑐1𝑡;  ℎ𝐴 = 2𝑐1𝑡 − ℎ  (
∆𝑡

2
< 𝑡 < ∆𝑡)

                        (5.6) 

The height of the specimen, h, the density of the specimen, , the duration of the wave 

propagation cycle, t, and the impact velocity, v, change from cycle to cycle. The change in 

the height of the specimen between two successive cycles is the distance travelled by the 

hammer, so the height of the specimen in the current cycle can be calculated from the height 

in the previous cycle by: 

ℎ𝑛 = ℎ𝑛−1 − 𝑣𝑛−1∆𝑡𝑛−1                                                       (5.7) 

The duration, or time period, of the wave propagation cycle is simply:  

∆𝑡𝑛−1 =
ℎ𝑛−1

𝑐1(𝑛−1)
= ℎ𝑛−1√

𝜌𝑛−1

𝑃
                                                (5.8) 
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The decrease in impact velocity is due to the kinetic energy of the hammer being consumed 

by the plastic deformation of the AMSF specimen. In each cycle, the energy conversion can 

be expressed by: 

1

2
𝑀𝑣𝑛−1

2 −
1

2
𝑀𝑣𝑛

2 = 𝐴(
𝜎𝐵(𝑛−1)+𝜎𝐴(𝑛−1)

2
) 𝑣𝑛−1∆𝑡𝑛−1                       (5.9) 

where A is the cross sectional area of the specimen. The left hand side of Eq. (5.9) is the kinetic 

energy loss of the hammer in a cycle. The right hand side is the energy absorbed by the plastic 

deformation in the cycle, which is equal to the product of the force and displacement in the 

specimen. It should be noted that the stress in the specimen in a cycle is not constant but 

changes from B at the beginning to A at the end of the cycle, so the average stress is used 

in determining the energy absorbed.  

Re-arranging Eq. (5.9) gives the impact velocity of the current cycle as: 

𝑣𝑛 = √𝑣𝑛−1
2 −

𝐴(𝜎𝐵(𝑛−1)+𝜎𝐴(𝑛−1))𝑣𝑛−1

𝑀
                              (5.10) 

As the plastic deformation of a porous material is associated with the collapse of pores, the 

cross sectional area of the specimen does not change when the height of the specimen 

changes during plastic deformation. The density of the specimen is therefore inversely 

proportional to specimen height and can be calculated by:  

𝜌𝑛 = 𝜌𝑛−1
ℎ𝑛−1

ℎ𝑛
                                                                       (5.11) 

 

5.2.3 Base stress based on inertia stress and contact stress 

When a specimen is subjected to the impact of a hammer on the top, as shown in Fig. 5.2 (a), 

a contact stress is generated on the top of the specimen by the hammer and an inertia stress 
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is induced inside the specimen due to the elastic and plastic waves. There is a difference 

between the contact stress at impact and the stress transmitted through the specimen to the 

base (Rieder et al., 1998). The transmitted stress exerted on the supporting base, or base 

stress, is the sum of the contact stress, 𝜎𝑐, and the total inertia stress, 𝜎𝑖: 

𝜎𝑏 = 𝜎𝑐 + 𝜎𝑖                                                              (5.12) 

The contact stress occurring at the hammer-specimen interface is proportional to the 

deceleration and can be estimated from the velocity change of the impact hammer by: 

𝜎𝑐 =
𝑀

𝐴
 
∆𝑣

∆𝑡
                                                           (5.13) 

where ∆𝑣 is the velocity change between two adjacent cycles, which can be calculated from 

Eq. (5.10), and ∆𝑡 is the cycle time, which can be calculated from Eq. (5.8).  

 

The inertia stress is caused by the moving particles in the specimen. The moving particles 

are confined to the zones behind the plastic waves, i.e., zones X and Y only. Neither of the 

two plastic waves has reached zone B and the two opposing waves have both passed zone 

A, so the particles in zones B and A are stationery. Therefore, the inertia stress is the sum of 

the height-weighted stresses in zones X and Y, relative to the initial specimen height. Given 

that the heights of zones X and Y are symmetric, the total inertia stress is: 

𝜎𝑖 =
ℎ𝑋(𝜎𝑋+𝜎𝑌)

ℎ0
                                                             (5.14) 

 

5.2.4 Considerations for layered AMSFs 
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In the layered AMSFs, the individual layers (L, M and S) have a very similar density and plastic 

modulus, so the plastic waves in these individual layers have nearly the same propagation 

velocity. Consequently, the impact wave propagation in layered AMSF structures consisting 

of different layers is the same as that in homogeneous AMSF structures. The plastic waves in 

a layered AMSF specimen also propagate through the whole length of the specimen and 

reverberate in a cyclic manner, as shown in Fig. 5.2 (c). However, the individual layers (L, M 

and S) in a layered AMSF specimen have different yield stresses and will experience different 

stresses and therefore have different strains during impact. The amounts of plastic 

deformation in the layers in each cycle are small relative to the specimen height. The ratios 

of the layer thicknesses can be considered to remain the same during the impact. The 

analytical model developed for uniform structures can be applied directly to layered 

structures. The contact stress, inertia stress and base stress can be calculated in the same way, 

except local yield stress replacing global yield stress. 

 

5.3 Predictions and comparisons with experimental results 

In this work, we have uniform AMSFs, layered AMSFs and mixed AMSFs. Experimentally, 

mixed AMSFs behave same way as uniform AMSFs. With same elastic modulus and plastic 

modulus in all layers L, M and S, mixed AMSFs are regarded same as uniform AMSFs, only 

different yield stress. Therefore, in this section, we only compare theoretical results and 

experimental results among some uniform and layered AMSFs as examples for the analytical 

model proposed. 
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5.3.1 Stress evolution predictions 

The theoretical results for the evolutions of the contact stress, inertia stress and base stress 

in the uniform AMSFs U1 and U3, subjected to an impact energy of 80 J, are shown in Fig. 5.4 

and Fig. 5.5, respectively. In the experiments, the impact stress was measured at the bottom 

of the specimen. It is equivalent to the base stress in Eq. (5.12), which is composed of the 

contact stress and the inertia stress. The contact stress is caused by the deceleration of the 

hammer or change of impact velocity (Eq. 5.13), which increases with time. As a consequence, 

the contact stress increases with time (Fig. 5.4 (a) and Fig. 5.5 (a)). The contact stress is 

sensitive to the yield stress of the material, hence the significant difference between 

specimens L and S. The inertia stress fluctuates because it is proportional to the height of 

zones X and Y (Eq. 5.14). In each impact cycle, it increases from zero at the outset to the 

maximum at the midpoint and then decreases to zero at the end of the cycle (Fig. 5.4 (b) and 

Fig. 5.5 (b)). This fluctuating inertia stress results in the fluctuation in the base stress and 

hence the experimentally measured stress. U3 has higher inertia stress than specimen L 

because the former has a higher yield stress. 

 

The theoretical predictions agree reasonably well with the experimental results (Fig. 5.4 (c) 

and Fig. 5.5 (c)), especially for U1. The analytical model captures the key characteristics of 

stress fluctuation with fairly accurate predictions of time period and reasonable estimation of 

stress range of fluctuation. The considerable deviation in the fluctuation stress range for 

specimen S is due to its higher degree of brittleness. The analytical model assumes that the 

specimens undergo plastic deformation under impact without any fracture. In practice, micro 
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or macro cracks emerge during impact, especially for more brittle specimens, which can 

release the stress and decrease the fluctuation range.  

 

  

 

Figure 5.4 Theoretical stress evolutions in the uniform AMSF U1 subjected to an impact 
energy of 80 J: (a) contact stress, (b) inertia stress, and (c) base stress compared to 

experimental result 
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Figure 5.5 Theoretical stress evolutions in the homogeneous AMSF specimen S subjected to 
an impact energy of 80 J: (a) inertia stress, (b) contact stress, and (c) base stress compared 

to experimental result 

 

Fig. 5.6 compares the theoretical and experimental results of base stress evolutions in double-

CMs layered AMSFs D1 and D2, as an example to illustrate the applications of the model to 

layered AMSFs. Similar as in the case of uniform AMSFs, the analytical model captures the key 

characteristics of stress fluctuation with fairly accurate prediction of time period of stress 

fluctuation and reasonable estimation of stress range of fluctuation.  
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Figure 5.6 Theoretical and experimental base stress evolutions in layered AMSFs: (a) D1 and 
(b) D2  

 

5.3.2 Strain evolution predictions 

The theoretical strain calculated in Eq. (5.5) for the uniform AMSFs U1 and U3, subjected to 

an impact energy of 80 J, is compared with experimental results in Fig. 5.7. Due to the higher 

yield stress, S consumed more energy which leads to lower impact strain. The theoretical 

strain fits well with the experimental strain in both L and S. The difference is in the same order 

as the experimental errors caused friction or damping of the equipment. 

 

Figure 5.7 Theoretical and experimental strain in uniform AMSFs: (a) U1 and (b) U3 
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Fig. 5.8 compares the theoretical and experimental results of strain evolutions in double-CMs 

layered AMSFs D1 and D2. The theoretical strain agrees well with the experimental strain in 

both D1 and D2.  

 

Figure 5.8 Theoretical and experimental strain evolutions in layered AMSFs: (a) D1 and (b) 
D2 

 

 

 

 

 

 

 

 

 

 



119 
 

Chapter 6 Discussions 

One of the chief aims of using syntactic foams is impact energy absorption. It is essential to 

conduct experiments to establish the ideal particle size and the ideal structure of particle 

distribution in the matrix for achieving this purpose. In this chapter, the effects of material 

parameters and loading conditions on the impact behaviour and properties of AMSFs, based 

on the experimental results in Chapter 4, will be discussed. The material parameters 

considered include ceramic microsphere size, uniform, layered and mixed structures. Impact 

loading conditions, including impact direction, impact velocity, impact energy and impact 

momentum, are considered. The impact properties considered include peak stress, energy 

absorption and ductility. These considerations may provide useful information for the design 

and selection of syntactic foams for different purposes. 

 

6.1 Effect of microsphere size on impact properties 

  6.1.1 Effect of microsphere size on impact peak stress 

Figure 6.1 shows the variation of impact peak stress in uniform syntactic foams under 

different impact energy levels, obtained from the experimental results in Chapter 4. Generally, 

peak stress increases with impact energy for all syntactic foams, often nearly linearly. In U1, 

the samples under 40 J are not densified and have lower peak stresses. The samples under 63 

J and over are densified and have higher peak stresses. In U2, all samples are densified. In U3, 

the samples are not densified until 100 J and the densified samples have higher peak stresses 

than the un-densified samples.  
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Figure 6.1 Impact peak stress of uniform syntactic foams under different impact energy 
levels 

 

Figure 6.1 shows that peak stress clearly increases with decreasing ceramic microsphere (CM) 

size. U3 (70-125 m) has the highest peak stress, U1 (250-500 m) has the lowest and U2 

(125-250 m) lies in between. The results that small particle size leads to higher strength are 

consistent with relevant research for both quasi-static loading (Ahmadi et al., 2015) and 

impact loading (Rousseau et al., 2017). Such effects are easily explained by the fact that 

smaller microspheres always have greater stiffness than larger ones. Composites with large 

diameter inclusions have a larger mitigating effect on the imparted stress, while composites 

made from smaller inclusions have less attenuation, sometimes below the level provided by 

the matrix (Rousseau et al., 2017). The voids in syntactic foam promote multiple reflections 

within the specimen, resulting in scattering of the propagation wave. Such scattering also 

becomes a conduit for further attenuation. However, with absorption being dominated, a 

decrease in the volume or mass of the matrix may result in a decrease in absorption that is 
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more significant than the gains attained through scattering. That explains smaller inclusions 

lead to less attenuation. 

 

Microsphere size also has some effect on crack propagation. Cracks can develop through the 

matrix, the microspheres or at the interfaces between the microspheres and the matrix. For 

the same volume fraction, the number of small microspheres is more than that of large 

microspheres. The interfacial surface, as a type of defect, is larger for small microspheres, 

which may lead to easier fracture. On the other hand, small microspheres, as a reinforcement, 

increase the barriers to crack propagation. Therefore, the strength of the bond between the 

microspheres and the matrix is a crucial factor. If the interfacial bond is strong enough, the 

strength increases with decreasing microsphere size, as observed in this study. 

 

  6.1.2 Effect of microsphere size on impact energy absorption 

Figure 6.2 shows the relation between the specific impact energy absorption up to 

densification and impact energy in uniform syntactic foams, obtained from the experimental 

results in Chapter 4. It is noted that the specific impact energy absorption here is defined as 

the energy absorbed at the densification point for the densified samples or at the end of 

impact for the un-densified samples, the latter of which is basically the initial impact energy. 

Specific energy absorption generally increases with impact energy, rapidly for un-densified 

samples and more slowly for densified samples.  
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Figure 6.2 Specific impact energy absorption of uniform syntactic foams up to densification, 
under different impact energy levels 

 

Figure 6.2 shows that U1, with the greatest CM size, has the lowest specific energy absorption, 

while U2 and U3 have a similar specific energy absorption. Specific energy absorption is 

mainly determined by plateau stress and densification strain. Since the porosity of the 

syntactic foams in this work is nearly the same, plateau stress is crucial in examining specific 

energy absorption. Normally, smaller CM size leads not only to higher peak stress, but also to 

higher plateau stress, assuming specimen is ductile. This explains why U2 has higher specific 

energy absorption than U1. However, small CMs also bring about brittleness (Tao et al., 2012). 

The high strength due to small CMs restricts the plastic deformation of the Al matrix, resulting 

in low strains before fracture. Small CMs also provide more stress concentration sites for the 

initiation of cracks. When a crack emerges in the plateau region, the stress decreases and so 

does energy absorption. This explains why U2 and U3 have a similar specific energy absorption.  
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  6.1.3 Effect of microsphere size on impact ductility  

Syntactic foams are mainly used for energy absorption purposes. Brittle fracture and cracks 

lead to stress drop and therefore low energy absorption as well as poor structural integrity. 

It is therefore important to study the ductility of AMSFs to determine the appropriate load 

range for each type of syntactic foams.  

 

Figure 6.3 shows the relation between impact ductility of the uniform syntactic foams and 

impact energy. The nature of failure was observed from the images acquired by high speed 

camera during impact and classified according to the criteria described in Chapter 4. Ductile 

means samples are crushed, brittle means samples are cracked. The ductile (D) and brittle (B) 

samples are marked in the graph, while the unmarked ones are ductile-brittle (DB) samples. 

 

Figure 6.3 Impact ductility of uniform syntactic foams under different impact energy levels 

 

As discussed before, higher impact energy leads to higher peak stress, which normally leads 

to more brittleness. U1 has excellent ductility, showing no cracks under impact energies from 
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40 J up to 150 J. It indicates that U1 can be used for a wide range of load. U2 is brittle under 

impact energies from 77 J to 127 J, which means the limit of impact energy for U2 to be ductile 

is less than 77 J. U3 is ductile at 20 J, ductile-brittle at 40 J, and brittle over 60 J. The limit of 

impact energy for U3 to be ductile is between 20 J and 40 J. Although U3 has a high specific 

energy absorption, such a high specific energy absorption cannot be fulfilled under impact 

loading, because cracks emerge far before densification. Despite the high energy absorption 

of U2 and U3, the ductility of U1 makes it more impact-tolerating. 

 

The effect of microsphere size on ductility is due to different failure mechanisms with the 

evolution of stress and energy absorption (Banhart et al., 1999; Tao et al., 2012). The results 

in Chapter 4 showed that syntactic foams with large and weak ceramic microspheres (U1) 

tend to fail in a ductile manner by gradual collapse. The microspheres crumble under the 

compressive stress. Syntactic foams with small and strong ceramic microspheres (U2 and U3) 

often fail by brittle fracture with crack formation.  

 

Plastic collapse occurs when the compressive stress exerted on the microspheres exceeds 

their compressive strength. The load partition between the metal matrix and the ceramic 

microspheres depends on the relative magnitudes of their elastic modulus, with the stiffer 

phase bearing a higher stress (Hull & Clyne 1996). A study (Balch & Dunand 2005) on an Al 

matrix syntactic foam under uniaxial compression showed that the ceramic microspheres 

bear significantly more stress, by a factor of two, than the matrix.  
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Brittle fracture of syntactic foams U2 and U3 has the characteristics of Griffith rupture for 

brittle solids subjected to uniaxial compression. In Griffith rupture, tensile stress 

concentration at the tips of one or more cracks induces fracture. Griffith rupture has two 

characteristic features: the fracture cracks propagate at a preferred angle of 30° to the loading 

direction; the compressive strength is eight times of its tensile strength (Griffith, 1924; 

Jayatilaka, 1979). Syntactic foams manufactured by infiltration are in effect aggregates of 

ceramic particles with the interstices filled with a metal network. The numerous contacts 

between the ceramic particles are effectively cracks, providing a favourable condition for 

Griffith rupture. Apart from Griffith rupture, cracks with 45° to loading direction are also 

developed, which is characteristic of shear fracture. The precedence between Griffith rupture 

and share fracture depends on the shear strength of each syntactic foam. 

 

6.2 Effect of layered structure on impact properties 

Many efforts have been made to study the properties of syntactic foams with layered 

structures (Kishore et al., 2005; N. Gupta et al., 2006; A. Jamil et al., 2017; N. Movahedi et al., 

2019). However, the effect of layered structure on impact properties is still not well 

understood. In this section, the impact properties of syntactic foams with layered structures 

will be compared with those of uniform structures of the constituent layers.  

 

  6.2.1 Effect of layered structure on impact peak stress 

Figures 6.4 and 6.5 show the relation between peak stress and impact energy in double- and 

triple-CM layered syntactic foams, respectively. As the double- and triple-CM layered 



126 
 

syntactic foams are made of layers of uniform syntactic foams U1-U3, the average peak stress 

of the constituent layers at each impact energy is shown for comparison purposes. As the 

impact energy is not exactly the same among the uniform syntactic foams, linear interpolation 

has been applied to obtain the average peak stress at some impact energy levels. 

  

Figure 6.4 Impact peak stress of double-CM layered syntactic foams under different impact 
energy levels: (a) D1-D3 and (b) D4-D6  

 

 

Figure 6.5 Impact peak stress of triple-CM layered syntactic foams under different impact 
energy levels 
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All six types of double-CM layered syntactic foams have the same components, half each of L 

and S layers. The only difference among the samples is the number and/or order of layers. All 

samples generally have lower peak stresses than the averages of their components, as shown 

in Figure 6.4. All samples are densified at impact energy above about 78 J and peak stress 

increases slightly with impact energy. The effect of number of layers is significant. D1 (two 

layers) has a lower peak stress than the other five types of layered syntactic foams. Its peak 

stress is also significantly lower than the average of the peak stresses of the components. 

Increasing the number of layers decreases the relative layer thickness, which reduces the 

barrelling effect and therefore increases the stress in each layer. The barrelling effect is 

especially significant in weak layer L, which mainly deforms at the beginning of impact. 

Therefore, the relative layer thickness of weak layer largely determines the peak stress of 

layered structure. Comparing D2 and D3 and comparing D5 and D6 show that the order of 

layers has little effect on peak stress. 

 

All three types of triple-CM layered syntactic foams have the same components, one third 

each of L, M and S layers. The only difference is the order of layers. Figure 6.5 shows that, 

same as uniform structure, the peak stress of all the triple-CM layered syntactic foams 

generally increases with impact energy. All samples are densified at impact energy above 

about 75 J. They have a similar peak stress at each impact energy. The same behaviour among 

the samples confirms that order of layers has no effect on peak stress of layered syntactic 

foams. This is because the weaker layer in layered structures always fail before the stronger 

layers, regardless of relative positions. This has been confirmed by the images of the samples 

taken during the impact.  
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Figure 6.5 also shows that all the triple-CM layered syntactic foams have lower peak stresses 

after densification than the averages of their components. The lower impact stress than 

uniform syntactic foams with the same components is due the preferential initial deformation 

in one layer instead of the whole sample. This may provide benefits in impact energy 

absorption applications, where impact stress is also important. In applications as a protective 

material, the syntactic foam is considered safer if it has a low peak stress and is not densified 

after impact. If the impact energy is not totally absorbed by the syntactic foam before 

densification, the impact stress will increase steadily. In any case, the peak stress is exerted 

to the bottom of samples. A lower peak stress means that the object being protected by the 

syntactic foam suffers less impact force.  

 

  6.2.2 Effect of layered structure on impact energy absorption 

Figures 6.6 and 6.7 show the relation between specific energy absorption and impact energy 

in double- and triple-CM layered syntactic foams, respectively. The average specific energy 

absorption of the constituent layers at each impact energy, obtained with linear interpolation 

wherever necessary, is shown for comparison.  

 

All six types of double-CM layered syntactic foams (D1-D6) have similar specific energy 

absorptions as the averages of their components, as shown in Figure 6.6. Compared to the 

uniform syntactic foam U1, the proportion of L layer in D1-D6 is increased from one third to 

one half. As a consequence, the ductility, as well as the specific energy absorption, is improved. 

It can be concluded that, with the same components, a layered structure provides the same 
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energy absorption performance as the uniform structure but a lower peak stress on the object 

being protected. The structural benefit of the layered syntactic foams is that impact is 

directed to the soft layers at the beginning and then to the strong layers at the later stage. 

The former lowers the peak stress and the latter improves the energy absorption capacity.  

  

Figure 6.6 Specific impact energy absorption of double-CM layered syntactic foams up to 
densification under different impact energy levels: (a) D1-D3 and (b) D4-D6 

 

 

Figure 6.7 Specific impact energy absorption of triple-CM layered syntactic foams up to 
densification under different impact energy levels 
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The specific energy absorption values of the triple-CM layered structure are lower than the 

averages of their components. This is due to the brittleness of the M and S layers. The M layer 

(see U2) is brittle between 78 J and 127 J and the S layer (see U3) is brittle between 60 J and 

140 J. Although the L layer (see U1) layer is ductile, it accounts for only one third of the sample 

and is insufficient to keep all sample ductile. 

 

  6.2.3 Effect of layered structure on impact ductility 

Figures 6.8 and 6.9 show the relation between impact ductility and impact energy for the 

double- and triple-CM layered syntactic foams, respectively. It is clear that a low impact 

energy leads to ductile failure and a higher impact energy gradually leads to brittle failure. 

 

Among the double-CM layered syntactic foams, D1 has excellent ductility where no cracks 

emerge under 140 J, which is almost twice its densification energy, 75 J. This suggests that D1 

has good energy absorption performance under impact loading up to a very high impact 

energy. D3 is ductile under 100 J and D2, D4-D5 are ductile under 80 J. All samples have higher 

ductile to brittle transition impact energy than the densification energy, suggesting improved 

ductility due to increased proportion of L layer. The trend of ductility of the double-CM 

layered syntactic foams coincides with that of their peak stress shown in Figure 6.5. This 

confirms that the brittleness is caused by peak stress in impact loading. 
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Figure 6.8 Impact ductility of double-CM layered syntactic foams under different impact 
energy levels: (a) D1-D3, (b) D4-D6 

 

  

 

Figure 6.9 Impact ductility of triple-CM layered syntactic foams under different impact 
energy levels 
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All three types of triple-CM layered syntactic foams (T1-T3) are ductile before densification 

and the ductile to brittle transition impact energy is the same as the densification energy. As 

T1-T3 consist of three layers (L, M and S), it means the poor ductility of the S layer is improved 

and its high specific energy absorption capacity is fulfilled without the emergence of cracks. 

When the impact energy is higher than the densification energy, cracks emerge in all samples, 

which suggests that they cannot be safely used above the densification energy.  

 

  6.3 Effect of mixed structure on impact properties 

  6.3.1 Effect of mixed structure on impact peak stress 

Figures 6.10 and 6.11 present the relation between peak stress and impact energy in fully 

mixed and partly mixed syntactic foams, respectively. The weighted average peak stress value 

of the constituent layers for each sample, calculated by rule of mixture and linear 

interpolation, is also listed for reference. Figure 6.10 shows that peak stress increases with 

impact energy. M1 is densified at an impact energy of about 90 J, while M2 and M3 are 

densified at about 70 J. The peak stress in M3 is lower than in M1 and M2, because it has 

weaker L spheres than M1 and M2.  

 

It is shown that fully and partly mixed structures have higher peak stresses than the averages 

of their constituent layers. The higher peak stress can lead to poor impact ductility. Although 

a higher peak stress leads to an increased specific energy absorption, the energy absorption 

capacity cannot be fulfilled with such a poor ductility.  
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Figure 6.10 Impact peak stress of fully mixed syntactic foams under different impact energy 
levels: (a) M1, (b) M2, (c) M3 

 

 

Figure 6.11 Impact peak stress of partly mixed syntactic foams under different impact 
energy levels 



134 
 

  6.3.2 Effect of mixed structure on impact energy absorption 

Figures 6.12 and 6.13 show the relation between specific energy absorption and impact 

energy in fully mixed and partly mixed syntactic foams, respectively. The weighted average 

energy absorption values calculated from their constituent layers are also shown for 

reference. All densified mixed syntactic foams have higher specific energy absorption values 

than the averages of their components, due to increased peak stresses. However, as discussed 

before, high energy absorption capacity is not sufficient for impact loading applications. 

Adequate ductility is required to keep the sample intact during impact.  

  

 

Figure 6.12 Specific impact energy absorption of fully mixed syntactic foams under different 
impact energy levels: (a) M1, (b) M2, (c) M3 
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Figure 6.13 Specific impact energy absorption of partly mixed syntactic foams under 
different impact energy levels 

 

  6.3.3 Effect of mixed structure on impact ductility 

Figures 6.14 and 6.15 illustrate the impact ductility of fully and partly mixed syntactic foams 

under different impact energy levels, respectively. M1, M2, M3, P1, P2 and P3 are ductile 

under an impact energy at or below 40, 20, 20, 20, 40 and 40 J, respectively. They have cracks 

emerging before densification, which occurs at impact energies about 70 - 90 J. Such poor 

ductility restricts the energy absorption process.  

 

In summary, mixed structures, both fully mixed and partly mixed, lead to higher peak stress 

and higher energy absorption but lower ductility. The syntactic foams start to crack before 

densification. Therefore, mixed structures, at least the ones studied in this work, are not ideal 

for impact loading applications due to the poor ductility. 
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Figure 6.14 Impact ductility of fully mixed syntactic foams under different impact energy 
levels 

 

 

Figure 6.15 Impact ductility of partly mixed syntactic foams under different impact energy 
levels 

 

6.4 Effect of impact loading direction on impact properties 

6.4.1 Effect of loading side on impact peak stress 
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Figure 6.16 shows peak stress of T1-up and T1-down under different impact energy levels. It 

shows that the triple-CM layered syntactic foam T1 has the same peak stress when impacted 

from both directions. The theoretical analysis in Chapter 5 has shown that there is no real 

difference between the top side and bottom side of the sample during the entire impact 

process, although stress distribution across the sample varies with the propagation of plastic 

waves. The experimental results have also shown that weak layers always fail before strong 

layers regardless of their relative locations. This suggests that layered syntactic foams, as an 

impact protecting material, can have the strong layer either outside or inside and will make 

little difference from peak stress point of view. 

 

Figure 6.16 Effect of impact direction on peak stress in triple-CM layered AMSFs under 
different impact energy levels  

 

6.4.2 Effect of loading side on impact energy absorption 

Figure 6.17 shows the specific energy absorption of T1-up and T1-down under different 

impact energy levels. Similar to the trend in peak stress, impact direction has little effect on 

specific energy absorption up to densification. This is because stress evolution in T1-up and 
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T1-down has the same pattern. The layered syntactic foams will have a similar deformation 

behaviour when impacted from either direction and therefore have the same specific energy 

absorption capacity.  

 

Figure 6.17 Effect of impact direction on specific energy absorption in triple-CM layered 
AMSFs under different impact energy levels  

 

6.4.3 Effect of loading side on impact ductility 

Figure 6.18 shows the impact ductility of T1-up and T1-down under different impact energy 

levels. It shows that the triple-CM layered syntactic foam T1 has the same ductility when 

impacted from both directions. It is ductile under an impact energy up to 80 J, regardless of 

the impact direction. It confirms that impact on different sides of the layered structure has 

no effect on impact ductility due to the same failure behaviour. In summary, the effect of 

impact direction on layered syntactic foams on peak stress, specific energy absorption and 

ductility is negligible, if the impact load is applied perpendicular to the layers. 
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Figure 6.18 Effect of impact direction on impact ductility in triple-CM layered AMSFs under 

different impact energy levels  

 

  6.5 Effect of impact strain rate on impact properties 

Effect of dynamic or impact loading on syntactic foams is widely studied (Altenaiji et al., 2014; 

Goel et al., 2014;Myers et al., 2015; Zhang et al., 2016; Pham et al., 2018). It is conclusive that 

dynamic or impact loading leads to brittleness. Higher strain rate leads to higher peak stress, 

higher plateau stress and higher energy absorption.  

 

The failure modes in syntactic foams under quasi-static and dynamic or impact conditions are 

different. In quasi-static loading, a slow and diffusive compression of the specimen is 

observed. The hollow spheres are broken and flattened and the matrix material is deformed 

plastically, with the specimen remaining a whole piece. In dynamic loading, the nature of 

failure changes due to the restricting effect of the material during sudden loading. Hollow 

spheres rupture, cracks emerge and the specimen is broken into large pieces.  
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Impact loading test is generally applied with either split-Hopkinson press bar (SHPB) for high 

strain rate (HSR) (Omar et al., 2015; Licitra et al., 2015) or drop weight test for low strain rate 

(Li et al, 2007; Woldesenbet, 2008). In SHPB, strain rate is constant and the effect of impact 

loading is normally described as a function of discrete strain rate. In drop weight test, however, 

the impact energy is gradually absorbed by specimen and the strain rate is decreasing. 

Therefore, the effect of impact loading is normally described as a function of the initial strain 

rate. In this work, the initial strain rate, which is acquired by dividing the initial impact velocity 

with the height of specimen, is used. In this section, the impactor mass was kept constant, 12 

kg for syntactic foams U2, T2 and T3, and 15 kg for the other types of syntactic foams. 

 

6.5.1 Effect of strain rate on impact peak stress 

Figure 6.19 presents the relation between peak stress and initial strain rate in the uniform, 

layered and mixed syntactic foams. Peak stress increases with initial strain rate for all types 

of syntactic foams, which agrees with the results of similar studies (Goel et al., 2012; Zou et 

al., 2013; Luong et al., 2013). 

 

6.5.2 Effect of strain rate on impact energy absorption 

Figure 6.20 shows the effect of initial strain rate on specific energy absorption in the uniform, 

layered and mixed syntactic foams. At lower initial strain rates, where the impact energy is 

insufficient to densify the specimen (like in U3, M1-M3 and P1-P3), specific energy absorption 

increases rapidly with initial strain rate. After densification, specific energy absorption either 

increases slightly with strain rate (U1, U2, T2, T3 and D3-D5) or remains constant (T1, D1, D2 
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and D6). The effect of impact loading parameters is secondary, because specific energy 

absorption describes the capacity of the syntactic foam and is primarily determined by the 

material.  

 

 

 

Figure 6.19 Effect of strain rate on peak stress and ductility in AMSFs: (a) uniform, (b) 
double-CM layered, (c) triple-CM layered, (d) fully mixed and (e) partly mixed  
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Figure 6.20 Effect of strain rate on specific energy absorption in AMSFs: (a) uniform, (b) 
double-CM layered D1-D3, (c) double-CM layered D4-D6, (d) triple-CM layered, (e) fully 

mixed and (f) partly mixed  
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6.5.3 Effect of strain rate on impact ductility 

The effect of initial strain rate on impact ductility is also shown in Figure 6.19. As shown, some 

syntactic foams, like U1, D1 and D3, have better ductility; some, like U2, U3, M1-M3 and P1-

P3, have poor ductility; and some, like T1, T3, D2 and D4-D6, have medium ductility.  

 

As discussed previously, small CM size leads to high specific energy absorption but poor 

ductility due to the high peak stress. However, high specific energy absorption is pointless 

without sufficient ductility, because the syntactic foam will crack apart before the energy 

absorption capacity is fulfilled. Therefore, it is necessary for the syntactic foam to remain 

ductile or at least have a medium ductility before densification under an impact energy. It 

would be even better if the syntactic foam remains ductile under an impact higher than the 

densification energy. In this study, D1 (L-S) and D3 (S-L-S) are found to be optimised layered 

structures with both high energy absorption capacity, derived from small CMs, and high 

ductility, derived from large CMs. 

 

  6.6 Effect of impact momentum on impact properties 

Up to date, few studies have discussed the effect of impact momentum on impact properties 

of syntactic foams. In most studies, impact mass or impact velocity is changed separately to 

study their effects. Different combinations of impact mass and impact velocity can result in 

the same impact energy but different momenta, or vice versa. In this work, we fix impact 

energy and change the initial impact momentum, through changing the combination of 

impact mass and impact velocity, so that we can study the effect of impact momentum alone. 
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Samples under similar impact energies are grouped together as the impact energies are 

normally not identical. 

 

6.6.1 Effect of impact momentum on impact peak stress 

Figure 6.21 shows the effect of impact momentum on peak stress in selected syntactic foam 

samples under similar impact energies. In both uniform and layered syntactic foams, peak 

stress generally decreases with increasing impact momentum. For the same impact energy, a 

higher impact momentum means a higher impact mass and a lower impact velocity. The latter 

leads to lower strain rate and lower peak stress. This suggests that impact velocity is more 

important to the impact behaviour than impact mass. 

 

 

Figure 6.21 Effect of impact momentum on peak stress in AMSFs: (a) uniform, (b) double-CM 
layered, (c) triple-CM layered  
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6.6.2 Effect of impact momentum on impact energy absorption 

Figure 6.22 shows the relation between specific energy absorption and impact momentum. 

Under a similar impact energy, changing impact momentum can lead to either an increase or 

a decrease in specific energy absorption. The effect of impact momentum on specific energy 

absorption is inconclusive. Although both impact momentum and impact energy are 

dependent variables derived from impact mass and impact velocity, it seems that impact 

energy is more important to the energy absorption process while impact momentum only 

affects peak stress. 

 

 

Figure 6.22 Effect of impact momentum on specific energy absorption in AMSFs: (a) uniform, 
(b) double-CM layered, (c) triple-CM layered 

  



146 
 

Chapter 7 Conclusions and Future Work 

7.1 Conclusions 

7.1.1 Microstructure 

AMSFs with uniform, layered and mixed structures were fabricated by the pressure 

infiltration process. The uniform, layered and mixed AMSFs had porosity ranges of 42% - 49%, 

40.5% - 48.2% and 40% - 46.7%, respectively. Uniform AMSFs have a homogeneous 

microstructure containing large (250-500 m, L), medium (125-250 m, M) or small (70-125 

m, S) CMs. Double-CM layered AMSFs contain half each of L and S, and have six layer 

structures: L-S, L-S-L, S-L-S, L-S-L-S, L-S-L-S-L and S-L-S-L-S. Triple-CM layered AMSFs contain 

one third each of L, M and S, and have three layer structures: L-M-S, M-L-S and L-S-M. All 

layered AMSFs exhibited homogeneous microstructures with uniformly distributed CMs in 

the Al matrix. Fully mixed AMSFs contain mixed structure of L and S, with 25%, 50% or 75% of 

L. Partly mixed AMSFs contain several layers of L-S mixtures: L-25%L/75%S-S-25%L/75%S-L, L-

50%L/50%S-S-50%L/50%S-L or 75%L/25%S-S-75%L/25%S. The mixed AMSFs also exhibited 

homogeneous microstructures with uniformly distributed CMs in the Al matrix.  

 

7.1.2 Compressive behaviour 

Uniform AMSFs with small CMs had higher compressive strengths than those with larger CMs. 

Each layered AMSF had a single yield strength, although each layer has a different yield 

strength, because the layers are well bonded and forced to deform in coordination. Increasing 

number of layers and reducing layer thickness in layered AMSFs led to higher compressive 

strength, while changing order of layers had no effect on compressive strength. Mixed AMSFs 
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behaved like uniform AMSFs, the compressive strength was higher than the average of its 

component. 

 

Energy absorption up to densification in AMSFs was mainly determined by the plateau stress. 

Uniform AMSFs with smaller CMs and layered AMSFs with more layers had higher 

compressive strength and therefore higher energy absorption, provided they are ductile. 

Mixed AMSFs had higher energy absorption than the average of its component. 

 

7.1.3 Impact behaviour 

Uniform AMSFs with smaller CMs and layered AMSFs with more layers had higher peak 

stresses. Mixed AMSFs had a higher peak stress than the average of peak stresses of its 

constituent layers, while layered AMSFs had a lower peak stress than the average of peak 

stresses of its constituent layers. A higher strain rate led to a higher peak stress in all uniform, 

layered and mixed AMSFs. Impact on different side of the layered structure showed similar 

properties. Under the same impact energy, the effect of impact momentum on peak stress 

was not significant. Energy absorption up to densification had the same trend as peak stress.  

 

Uniform AMSFs with smaller CMs were more brittle. Layered structures had better ductility 

than uniform and mixed structures. Soft layers yield before strong layers regardless the 

relative layer locations. Layered structures with more layers were more brittle. Mixed AMSFs 

were more brittle than uniform ASMFs. Impact on different side of the layered structure had 

no effect on impact ductility.  
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Layered structures combining high strength layers and high ductility layers can have a reduced 

peak stress and an improved ductility under impact, without compromising the energy 

absorption capacity. Layered structures are a promising solution for optimum energy 

absorption performance combining high energy absorption capacity and good ductility.  

 

7.1.4 Analytical model 

An analytical model has been developed to simulate the stress and strain evolutions in ASMFs. 

Impact loading generates an elastic wave and a plastic wave at the top of specimen. The 

elastic wave turns into a plastic wave when it bounces back at the bottom the specimen. The 

two plastic waves then propagate inside the specimen with the same speed but opposite 

directions. In each cycle when the two plastic waves propagate from one end to the other, 

the specimen can be divided into four zones: one wave has passed (X2), neither wave has 

passed, and both waves have passed. The stress and strain in each zone are calculated 

separately and summed up to give the total inertia stress and strain in the specimen. The base 

stress is the sum of the inertia stress and the contact stress, which is calculated from the loss 

of impactor momentum. The evolutions of base stress and strain during impact predicted by 

the analytical model agreed well with the experimental results.  

 

7.2 Future work 

Layered AMSFs were found to have better ductility than uniform AMSFs under impact loading, 

without compromising energy absorption capacity. However, the improvement on ductility 
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has not been optimized in this work. To increase the ductility further, more studies on the 

effects of layered structures, including CM size, proportion, distribution and layer thickness, 

are needed. 

 

Theoretically, impact peak stress is directly related to the impact force, which is expected to 

be proportional to the momentum of the projectile or hammer at the point of impact. 

However, the effect of impact momentum on peak stress is inconclusive in this work. Further 

studies are necessary to understand the effect of impact momentum on the behaviour of 

AMSFs, to complement the understanding of the effect of impact energy.  

 

The bonding between layers in layered AMSFs was found to have a significant effect on the 

behaviour of the ASMFs, e.g., the ductility under impact loading. Further tests, like shear test, 

can be carried out to study the effect of layer bonding on static and impact behaviour of 

layered AMSFs, in order to maximise their energy absorption performance. 
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