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Abstract. In this paper we propose an extension to interval arithmetic to include arithmetic with
bivariate sets, which allows for an initial dependency to be propagated, as well as the tracking
of complicated dependencies arising from repeated variables. These bivariate sets are represented
by Boolean fields which define where two intervals jointly exist or not. We name this extended
interval arithmetic zone arithmetic. We show how conditional sets may be constructed from bivariate
intervals, and how dependent interval arithmetic may be performed with this conditioning. With
conditioning we calculate the dependencies between the inputs and outputs of operations, allowing
for the extra uncertainty from repeated variables to be greatly reduced. Recent work on using
copulas to perform a similar calculations with p-boxes is also reviewed.
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1. Introduction

Uncertain computer arithmetics have gained a lot of attention and research over the years (Williamson,
1989; Ferson and Hajagos, 2004; Rump, 1999; Tucker, 2011). They are an intrusive alternative to
sampling based methods for uncertainty propagation and quantification. They relay on access to
the source code of the computational model. Much like how automatic differentiation calculates
the derivative after every line of code, the uncertainty arithmetics calculate the uncertainty. These
intrusive methods work by replacing floating point operations with operations defined for uncertain
numbers, such as intervals, distributions, fuzzy numbers or p-boxes. This allows for uncertainty to
be propagated with the following features:

− Only a single model evaluation needed; albeit more expensive than an evaluations based on
floating point.

− A bounded solution to the output uncertainty is achieved. That is, an outer approximation
which contracts to the correct result with more computational effort. Interval calculations also
allow for automatically verified computation.

− Functions of sets of probability distributions can be computed as cheaply as functions of
singular distributions.
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One of the main problems for this type of uncertainty propagation is known as the dependency
problem, or sometimes called repeated variables or the wrapping effect in interval arithmetic. That
when a variable appears multiple times in a sequence of operations, the uncertainty is over-
estimated. By the nature of the uncertainty arithmetics, the correct solution is still bounded,
however the bounds can be prohibitively large. For example consider the following sequence of
binary operations:

Z = X + Y

Ỹ = Z −X
[−1, 1] + [−1, 1] = [−2, 2]

[−2, 2]− [−1, 1] = [−3, 3]
(1)

The left shows a sequence of operations, and the right shows it evaluated with interval arithmetic. X
and Y are the intervals [−1, 1], and are summed to create Z. X is then subtracted from Z to create
Ỹ . Clearly since the same X was added and then subtracted: Y = Ỹ . However the calculation gave
us Y ⊂ Ỹ (i.e. [−1, 1] ⊂ [−3, 3]). This extra uncertainty came from the fact that X was repeated
in the sequence of operations. Operations between uncertain quantities are a function of their
dependence. Since Z was created in a binary operation involving X, they are somehow dependent
on one another and it was the disregard of this dependence that lead to the over-estimation. The
calculation sequence itself introduces a dependence.

There are been several proposed solutions for repeated variables in interval arithmetic, including
significance arithmetic (Hyman, 1982), affine arithmetic (Rump and Kashiwagi, 2015), zonotopes
(Bogomolov et al, 2019) and Taylor models (Makino, 1998). There has also been a method proposed
for probability distributions (Li and Hyman, 1998). In this paper we propose an alternative where
interval dependencies are propagated and tracked through operations, allowing for an initial interval
dependency to be propagated as well as capturing the dependence arising from a sequence of
operations with repeated variables. A similar technique for p-boxes but using copulas recently
proposed by the authors will also be reviewed.

2. Interval Dependencies

There have been a number of proposed models for dependencies amongst intervals, two which are
notable from previous proceedings of the International Workshop on Reliable Engineering. Ferson
and Kreinovich (2006) describe a dependence between two intervals as regions where the two sets
are pair-wise allowed and disallowed (values where the two sets jointly exist). They describe a
number of parametric families for interval dependencies, and show how arithmetic operations can
be performed with these families. They include non-interactive (the standard interval arithmetic
case), perfect and opposite dependencies as special cases. Ceberio et al (2006) similarly describe a
joint interval as a set of possible allowed pairs, but allow the set to take any shape. They define
a dependence between two intervals x1 and x2 to be any proper subset of their Cartesian product
Jx1,x2 ⊆ x1×x2. They describe how any arbitrary subset of x1×x2 can be represented on a computer
by a discrete outer approximation. They first divide the box x1×x2 into n×n sub-boxes; and then
describe the set Jx1,x2 as the union of sub-boxes which contain a possible pair. This representation
of a set is the well known upper approximation used in rough set theory (Polkowski, 2002), where
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Figure 1. Shows an outer approximation of a set represented by a zone. Also shown are several intervals which would
be included and excluded by the zone.

dependent interval operations are performed with interval arithmetic on each individual sub-box,
much in the style of sub-intervalisation. In this section we expand on this, describing in more
detail how multivariate intervals may be defined and manipulated. We also describe a method for
performing an arithmetic with dependent intervals, which is computationally cheaper than sub-
intervalisation and may be used to determine dependencies between inputs and outputs of binary
and unary operations, a task which is required for dependency tracking.

2.1. Exclusion Zones

In probability theory, a copula returns a cdf value for a (u, v) pair in the unit square [0, 1]2,
C : [0, 1]2 → [0, 1], and can be used to define any probabilistic dependency. Following a similar
idea, we define any generic interval dependency as an indicator function Z(u, v) on [0, 1]2 which
returns a Boolean value, Z : [0, 1]2 → {0, 1}, stating whether the pair (u, v) is contained in the
bivariate set. Much like how univariate intervals make no statement of how the probability is
distributed within them, these bivariate sets only state whether possible pairs are contained or
not. Generally the set Z may be any arbitrarily complicated shape, however we construct an outer
approximation of Z by a uniform grid of sub-boxes on [0, 1]2, which may be stored on the computer
by a n × n Boolean field. Z may also be extended to allow for interval inputs, in which case Z
returns a 1 if any real values in the interval are included in Z:
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Z(u, v) =

{
1 if (u× v) ∩ Z 6= ∅
0 otherwise

(2)

Stated another way, Z returns a 0 only if all the values in the interval are not in the original set,
and in that sense Z guarantees exclusion. For this reason we label functions like Z as exclusion
zones, or zones for short. Figure 1 shows a hypothetical interval dependency represented by a zone,
with some examples of intervals which would be included and excluded. This set is the union of
two rings, and is just an example of a general bivariate set picked to show the flexability of this
method. Note that the zone does not need to extend to the entire [0, 1]2 range, which is a modelling
choice. Information about the bounds of one variable may inform the bounds of the other, and may
not extend to its entire range. Also for practical reasons, any values outside [0, 1]2 will be returned
as 0.

Much like how a bivariate distribution may be defined in terms of two marginals and a copula,
a joint interval may be defined by two marginal (or univariate) intervals x1, x2 and a zone Z(u, v),
by the following relation: Jx1,x2(x, y) = suppZ(u, v) with u = (x − x1)/(x1 − x1) and v = (y −
x2)/(x2− x2). This defines a grid of sub-boxes following Z by a uniform scaling by the intervals x1
and x2, and then taking the support of resulting indicator function. This allows dependencies to
be stored and manipulated independently from marginal intervals.

3. Zone Arithmetic

Ceberio et al (2006) suggest that binary operations may be performed with J by performing interval
arithmetic on each individual sub-box, which requires of the order of ∼ n2 interval operations. We
proposed an alternative method which only requires ∼ n operations. For this we use another familiar
concept for probability theory: conditioning. Much like how a univariate distribution can be created
from a bivariate distribution by conditioning on a value, it’s possible to produce a conditional set
from a bivariate set. A conditional set J(x| y = Y ) may be created from the bivariate interval
J(x, y) by intersecting the it with an interval, or real value, Y :

J(x| y = Y ) = J(x, y) ∩ ([−∞,∞]× Y ) (3)

J(x| Y ) is a univariate set’s indicator function, and may be the union of several disjoint intervals.
For example, if we condition the zone in figure 1 with v = [0.48, 52], we would get a set made up
of 4 disjoint intervals: [0.195, 0.255] ∪ [0.395, 0.455] ∪ [0.545, 0.605] ∪ [0.745, 0.8]. Figure 2 shows an
illustration of this. Calculations of this sort can be performed quite efficiently in terms of zones,
since it’s merely a subselection of an array of Z.

We perform dependent interval operations using this conditioning. Instead of n2 interval opera-
tions, we perform n (for each row or column) set operations on the conditionals. Since a conditional
may contain more than one interval, multiple interval operations are performed per set operation,
however the overall number of interval operations remains lower than n2. The minimum number of
interval operations is n, corresponding to the non-interactive case (everywhere true). The maximum
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[0.395, 0.455][0.195, 0.255] [0.745, 0.8][0.545, 0.605]

[0.42, 0.52]

Figure 2. illustration of conditioning a zone with the interval v = [0.48, 52]. The resulting set is the union of the
disjoint intervals [0.195, 0.255] ∪ [0.395, 0.455] ∪ [0.545, 0.605] ∪ [0.745, 0.8].

number of required interval operations is n2

2 , where is a very extreme case where every other element
of the zone is empty.

Using conditioning, the dependencies between inputs and outputs of operations may be calcu-
lated, which is required for dependency tracking. Take for example the sequence of operations in
the title of this paper: x + y = z, and then z − x, where initially the joint interval JXY is known.
For z−x to be evaluated tightly, the joint JZX , or similarly the zone ZZX , must be calculated. For
this we condition JXY on some subinterval x = X, and evaluate the x+ y with the conditional set,
which gives JZX(z|x = X). This is then repeated for n subintervals of x, and the joint JZX can be
calculated as the union of the resulting conditionals of z:

JZX(z|x = X) = JY X(y|x = X) +X (4)

JZX(z, x) =
n⋃
i=1

JZX(z|x = Xi) (5)

where the + operator is an interval sum, and where Xi is a subinterval. Figure 3 shows an example
of this, where x + y = z is evaluated for x, y = [−1, 1] and with JXY having the complement
of a ring shaped dependence shown on the left. The calculated interval z = [−2, 2] as expected,
however the dependence has also been propagated. If ỹ = z− x is evaluated using zone arithmetic,
then ỹ = [−1.08, 1.08], which tightly encloses the correct solution of ỹ = y = [−1, 1], and a vast
improvement of the standard interval arithmetic answer of ỹ = [−3, 3]. The tightness of the result
depends on the discretisation used, and for this example a discretisation 200× 200 was used. Using
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Figure 3. An example of using conditional arithmetic to propagate an interval dependency though a binary operator.
Shown is x + y = z, with x, y = [−1, 1] having the dependency shown on the left figure. Right shows the calculated
bivariate set JZX . Shown in red is a conditional set, conditioned on a particular subinterval of x, which is used to
construct JZX .
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Figure 4. Examples of dependency tracking through unary functions, for discretisations 50× 50. Shown is sin([0, 6])
(top left) and [−3, 3]2 (right). Also shown is x sin(x) for x = [−6, 6] on the bottom left.
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Figure 5. Shown is the evolution of an ellipse through the repeated evaluation of wi+1 = wi ∗ x
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Figure 6. Shown is the evolution of an interval dependence through the repeated evaluation of wi+1 = wi ∗x, starting
from the complement of a ring shaped dependence in the top left.
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fewer sub-boxes will compute the result quicker and lead to a wider result, however it is still
guaranteed to bound the correct dependency and marginal. A similar calculation can be performed
for unary functions such as sin(x) or x2, which is shown in figure 4. It can be seen that the shape
of the unary function is enclosed. This method can also be used to propagate dependencies further,
such as through x sin(x) as shown on the bottom left in figure 4. Figure 5 shows the tracking of
an elliptical set through repeated evaluation of wi+1 = wi ∗ x for an initial. It can be seen that
the dependency does not remain an ellipse. A similar calculation is shown on figure 6 but with an
initial ring shaped dependence. It can be seen that this method can tightly track the quite complex
dependencies that arise from repeated variables.

4. Copulas and p-boxes

A similar method for dependency tracking with p-boxes has recently been proposed by the authors,
and is available through the Julia package ProbabilityBoundsAnalysis.jl (Gray, 2020). Here we will
review the main elements of the method.

A binary operation of two random variables X and Y with a known joint distribution can
be computed by the following Lebesgue-Stieltjes integral or convolution (Williamson and Downs,
1990):

σC,L(F,G)(x) =

ˆ
L{x}

dC(F (u), G(v)) (6)

which is called the σ convolution, written for any two arbitrary inputs cdfs F and G, with a copula
C and a binary operation L. The integration domain is L{x} = {(u, v)|u, v ∈ <, L(u, v) < x}, and
where L(u, v) is a binary operation, for example L(u, v) = u+v. The σ convolution computes the cdf
of a binary operation of two distribution functions with a known joint distribution, and is effectively
the integral which is approximated when Monte Carlo simulation is performed. A σ convolution
may also be perform with p-box inputs (Williamson, 1989). Computing a σ convolution requires a
copula C to be specified, which may be available at the beginning of a sequence of operations, but
will be lost as the calculation sequence is executed. This leads to the only option being a Fréchet
convolution, which calculates a binary operation between p-boxes for all possible C. This however,
as in the interval case, leads to an overestimation of the uncertainty.

This may be overcome if C is also propagated through binary operations. For some binary
operation between random variables Z = X � Y , where � is some binary operator (eg � = +), the
joint distribution of Z and X is given by:

FZX(z, w) =

¨

Dzw

dFXY (x, y) (7)

where the area of integration Dzw is the region in the (x, y) plane where x � y < z and x < w
(Williamson, 1989). Using Sklars theorem:
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Figure 7. Left shows the calculation sequence of equation 1, with X,Y ∼ U(0, 1) and independent. The right shows
the result the sequence of binary operations but with X and Y starting as the p-boxes U([−1, 0], 1) and with a gaussian
copula with correlation = 0.5. The Fréchet result is plotted in both case to show the contraction in uncertainty. The
green p-box is the result of random slicing and interval arithmetic.

CZX(u, v) =

¨

DF∧
Z

(u),F∧
X

(v)

dCXY (FX(x), FY (y)) (8)

where the area of integration is now where x � y < F∧Z (u) and x < F∧X(v), where F∧Z (u) is the
inverse cdf of Z, which can be found by first computing a σ convolution. Equation 8 may be quite
computationally difficult to compute due to the complex integration region. However since the
copula is a cdf, it is possible to perform this calulation iteratively, reusing previously calculated
values. For some step δ:

CZX(u+ δ, v + δ) = CZX(u, v)− CZX(u+ δ, v)− CZX(u, v + δ) +

¨

A

dCXY (FX(x), FY (y)) (9)

with the integration region A being where F∧Z (u) ≤ x� y < F∧Z (u+ δ) and F∧X(v) ≤ x < F∧X(v+ δ).
Equation 9 uses the 2-d version of the H-volume formula (Schweizer and Sklar, 2011), which can be
used to find the probability mass in some hyper-rectangle from a n-d cdf. An identical calculation
can be performed for Y .

The above methodology was applied to the problem posed in the title of the paper, the sequence
of binary operations 1. That is the copula CZX was calulated for Z = X + Y with X and Y being
independently and uniformly distributed U(−1, 1). Figure 7 shows the results of using this method.
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Fz was first calculated with σπ,+(FX , FY ), the copula CZX was then calculated with equation 8,
defining the calculation dependency between Z and X. FỸ was then calulated with σCZX ,−(FZ , FX).

It can be seen that Ỹ and Y are the same, plus some outward directed numerical error from the
calculation. The Fréchet calculation is also plotted to show the reduction in uncertainty from
dependency tracking. This example was with two independent uniform distributions, however any
copula may be initially used. The initial variables may even be p-boxes. The right of figure 7 shows
the same calculation but with X and Y being the p-boxes U([−1, 0], 1) and with an initial Gaussian
copula with correlation of 0.5. Again it can be seen that the calculation with dependency tracking
tightly encloses the correct result. The green p-box is the result of random slicing, where random
intervals are generated from X and Y using the gaussian copula. The sequence of binary operations
is then evaluated with interval arithmetic and resulting p-box is constructed from the random set.
It can be see that random slicing is an improvement over Fréchet (although more expensive to
evaluate), but also suffers from repeated variables, since there is no dependency tracking in the
interval calculations. Note that when this calculation is performed with p-boxes, equation 8 must
be evaluated twice, for the upper and lower copula bound.

5. Conclusions

In this paper an extension to interval arithmetic to include dependence was proposed, where interval
dependencies were defined in terms of bivariate sets. These bivariate sets define where two intervals
co-exist or not, and may be arbitrarily complex with continuous boundaries. We represent such
sets on the computer with finite Boolean fields, like an n × n Boolean matrix, which defines
a grid of sub-intervals. For continuous sets, we create an discrete outer approximation which is
guaranteed to enclose all elements of the continuous set. Much in the style of copulas, we describe
how interval dependencies may be modelled independently from univariate intervals. We describe
how conditional sets are constructed by conditioning bivariate sets on real numbers or intervals, and
describe a dependent interval arithmetic in terms of conditioning. Dependent interval arithmetic by
conditioning requires of the order of ∼ n operations, which is an improvement over the standard sub-
intervalisation which is around ∼ n2 interval operations. We show that when interval dependencies
are propagated and calculated this way, the repeated variable problem present in standard interval
arithmetic is greatly reduced, and that this method can calculate the complex dependencies that
arise in computational models with repeated variables. A similar method for p-boxes using copulas
was described, and we show that copulas are capable at modelling the probabilistic dependencies
that arise from repeated variables in computations involving distributions and p-boxes. For this
task, we calculate the copulas between the inputs and outputs of binary operators involving p-
boxes, capturing the dependencies arising from the operation. Uncertainty is greatly reduced when
dependency arising from the computation model is tracked when compared to Fréchet convolutions
or propagation with random slicing.
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